

CO, Geological Storage in the Province of Québec, Canada **Basin-scale prospectivity assessment and capacity evaluation**

Karine Bédard, Michel Malo, Félix-Antoine Comeau

Institut national de la recherche scientifique, Centre - Eau Terre Environnement

BASIN SUITABILITY FOR CO₂STORAGE

The basin classification method used for Southern Québec is based on the work of Bachu (2003) and Kaldi and Gibson-Poole (2008). Five (5) basins were evaluated :

- Magdalen Basin
- Silurian-Devonian Gaspé Basin
- Cambrian-Ordovician Appalachian Basin
- Anticosti Basin
- St. Lawrence Lowlands Basin

3D MODEL OF THE ST. LAWRENCE LOWLANDS BASIN

The evaluation of the effective storage capacity of the St. Lawrence Lowlands was performed using a 3D geological model of the basin. This allowed calculating the volume of the potential reservoirs as well as the density of CO_2 in every cell of the model.

The Covey Hill and Cairnside formations are considered in the basin-scale storage capacity evaluation. The Trenton, Black River, Chazy and Beekmantown groups are not considered because of their low global porosity.

3D MODEL INPUT DATA

BASIN EVALUATION AND RANKING FOR CO₂STORAGE

The St. Lawrence Lowlands Basin is, by far, the most prospective for CO₂ sequestration in the Province of Québec. It contains excellent reservoir-seal pairs, many well and seismic data are available, several large CO_2 emitters are present directly in the basin, accessibility is easy and infrastructure is extensively developed. Deep saline aquifers present in the autochthon sedimentary units are considered as potential CO_2 reservoir in the basin.

3D GEOLOGICAL MODEL

Mo favor	able Less favorable	ST. LAWRENCE LOWLANDS	ANTICOSTI	APPALACHIAN	GASPÉ	MAGDALEN
GEOLOGICAL CRITERIA	Seismicity (tectonic setting)	Low (4)	Low (4)	Low (4)	Low (4)	Low (4)
	Size	Medium (3)	Very large (5)	Very large (5)	Large (4)	Large (4)
	Depth	Intermediate (4)	Intermediate (4)	N/A	Intermediate (4)	Intermediate (4)
	Deformation (faults and fractures)	Limited (3)	Limited (3)	Extensive (1)	Extensive (1)	Limited (3)
	Reservoir-seal pair	Excellent (3)	Excellent (3)	Poor (1)	Poor (1)	Excellent (3)
	Geothermal	Cold basin (3)	Cold basin (3)	Cold basin (3)	Cold basin (3)	Cold basin (3)
	Hydrocarbon potential	Medium (3)	Medium (3)	None (1)	Small (2)	Large (4)
	Evaporites	None (1)	None (1)	None (1)	None (1)	Domes (2)
	Coal	None (1)	None (1)	None (1)	None (1)	Deep (2)
	Maturity of exploration	Developing (3)	Exploration (2)	Unexplored (1)	Exploration (2)	Exploration (2)
PRACTICAL CRITERIA	On/Off shore	Onshore (4)	Shallow offshore and onshore (3)	Onshore (4)	Onshore (4)	Shallow offshore (2)
	Climate	Temperate (5)	Temperate (5)	Temperate (5)	Temperate (5)	Temperate (5)
	Accessibility	Easy (4)	Difficult (2)	Easy (4)	Easy (4)	Difficult (2)
	Infrastructures	Extensive (4)	Minor (2)	Extensive (4)	Extensive (4)	Minor (2)
	CO ₂ sources	Many (5)	Few (2)	Moderate (3)	None (1)	Few (2)
	General score <i>R</i> _k	0.84	0.70	0.51	0.59	0.68

W S E

COVEY HILL AND CAIRNSIDE : 800-3500 m

Theresa

Precambrian basement

Cairnside average : ~180 m

ST. LAWRENCE LOWLANDS BASIN CHARACTERISTICS

The St. Lawrence Lowlands Basin is made up of Cambrian to Upper Ordovician rocks resting unconformably on the Precambrian Shield. It represents a complete siliciclastic and carbonate platform succession. NE-SW normal syn-sedimentary faults affect the succession as well as the bedrock which result in a deepening of the basin toward to Appalachians to the SE.

Modified from Castonguay et al. (2010)

Malo and Bédard (2012); Bédard et al. (2011)