
Abstract 
Biodiesel production across the globe has resulted in proportional 
increase of crude-glycerol as by-product. Crude-glycerol is a good 
carbon source for fermentative hydrogen production over other 
organic wastes. This study compared energy balance and 
greenhouse-gas emissions during H2 production using crude-glycerol 
derived from different feedstock used for biodiesel production. 
RESULTS: The energy balance had significant impact by three 
factors: inoculum, media and electricity. The net energy (MJ) for 
different feedstock (vegetable source -174.68, multi-feedstock -
127.18 and animal waste -97.08) during H2 production varied with 
glycerol content.  The highest estimated H2 production was around 
21 cm3 with total production of 2.12 L equivalent fossil diesel and 
greenhouse-gas reduction around (6.14 kg CO2 eq) from 1 kg of 
crude-glycerol. The total energy input for industrial enrichment of 
glycerol (1455.20 MJ) is 4 fold times higher in comparison to 
maximum total energy input of vegetable feedstock (345.16 MJ).  
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CONCLUSION: For efficient utilization, bioconversion of 
crude-glycerol to hydrogen production by dark 
fermentation can be considered as a suitable option. 
Minimizing media and inoculum components with crude-
glycerol utilization as only carbon source will surely 
reduce the total energy input. By doing so, the net energy 
for different feedstock will have a positive value 
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2005 6,1 0,5 62,1 0,3 2,2
2011 65,9 103,2 177,7 3,3 53,4
2020 89,7 154,1 173,4 4,4 76,7
CG in 2020 9,0 15,4 17,3 0,4 7,7
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Estimated Benefits for 
CG produced/day in 

2020 across worldwide 
Crude Glycerol 1 kg 44715 kg 594600 kg 

Hydrogen 20.57 g 929 kg 12353 kg 
Biogas 3414.2 L 16 million L 203 million L 

Fossil Fuel replacement 2.12 L 94897 kg 1262115 kg 

GHG reduction (CO2 eq) 7.33 kg  0.3 million kg 4.3 million kg 

Figure 2: Process details of biodiesel production using different feedstock in 
biodiesel industries. 

Figure 1: Production of biodiesel across continents during 2005 and 2011,           
with estimated biodiesel and crude glycerol production for the year 2020.  

Table 1: Biohydrogen productions at lab scale by dark fermentation process using crude glycerol derived from biodiesel production plants which used different feedstock as its raw material.  Energy balance (%) summary across each steps during dark 
fermentation with values of total energy input (MJ), energy credit (MJ) and net energy (MJ) details of different feedstock. 

Table 2: Estimation of environmental benefits from bioconversion of 1 kg of crude glycerol and 
estimating the results for CG production per day in 2020 across Canada and worldwide. 
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Experimental Data Energy Balance Calculation 

Ref. Feedstock 
Composition of 

CG Microorganisms Temp/pH 

H2 yield 
(mol/mol 
glycerol) 

Inoculum 
Step (%) 

Media 
preparation 

Step (%) 

Electricity 
Consumed 

(%) 

Total 
energy 

input (MJ) 

Energy 
credit 
(MJ) 

Net 
energy 
(MJ) 

Energy 
output 
(MJ) 

Energy 
ratio 

Commercial Pure Anaerobic digested sludge 37ºC/6.0 0.71 0 37 63 278 105 -173 8 -21 1 
Commercial Pure Enterobacter aerogenes 37ºC/6.8 0.89 27 17 56 315 83 -232 8 -28 2 

Vegetable source (soyabean, rapeseed, used veg oil) glycerol: 80% Thermotoga neapolitana 37ºC/7.5 2.73 25 25 50 345 85 -260 8 -31 3 
Vegetable source (waste vegetable oil ) glycerol 41% Enterobacter aerogenes 37ºC/6.8  1.12 27 17 56 315 83 -232 8 -28 4 

Vegetable source (rapeseed, sunflower and soya) glycerol:90% Microbial mixed culture 37ºC/6.8  0.96 16 16 68 258 83 -175 8 -21 5 
Animal waste (fried chicken oil) glycerol: 44% Thermoanaerobacterium 55ºC/5.5 0.30 4 10 86 205 82 -123 8 -15 6 

Animal waste (meat processing, restaurant waste) glycerol: 24% Enterobacter aerogenes 37ºC/6 0.31 2 0 98 179 82 -97 8 -12 7 
Multi-feedstock (soybean, beef tallow, pork lard) glycerol 84% Engineered  37ºC/6.3 1.02 1 31 68 258 83 -174 8 -21 8 

Multi-feedstock (animal fats, recycled cooking oil) glycerol 82% Enterobacter aerogenes 37ºC/6.8 0.85 0 14 85 210 83 -127 8 -15 9-10 

Figure 3: Energy and mass balance values for the CG generated from the animal 
waste feedstock used in Sarma et al.10  
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