

Abstract

Biodiesel production across the globe has resulted in proportional increase of crude-glycerol as by-product. Crude-glycerol is a good carbon source for fermentative hydrogen production over other organic wastes. This study compared energy balance and greenhouse-gas emissions during H₂ production using crude-glycerol derived from different feedstock used for biodiesel production. **RESULTS:** The energy balance had significant impact by three factors: inoculum, media and electricity. The net energy (MJ) for different feedstock (vegetable source -174.68, multi-feedstock -127.18 and animal waste -97.08) during H₂ production varied with glycerol content. The highest estimated H₂ production was around 21 cm3 with total production of 2.12 L equivalent fossil diesel and greenhouse-gas reduction around (6.14 kg CO2 eq) from 1 kg of crude-glycerol. The total energy input for industrial enrichment of glycerol (1455.20 MJ) is 4 fold times higher in comparison to maximum total energy input of vegetable feedstock (345.16 MJ).

Figure 3: Energy and mass balance values for the CG generate waste feedstock used in Sarma et al.¹⁰

Energy balance and greenhous biohydrogen production from cruc

Vinayak Pachapur^a, Saurabh Jyoti Sarn Satinder Kaur Brar^a*, Yann Le Bihan^b, Gel

Figure 1: Production of biodiesel across continents during 2005 with estimated biodiesel and crude glycerol production for the year 2020.

Experimental Data				Energy Balance Calculation									
				H2 yield		Media	Electricity	Total	Energy	Net	Energy		
	Composition of			(mol/mol	Inoculum	preparation	Consumed	energy	credit	energy	output	Energy	
	CG	Microorganisms	Temp/pH	glycerol)	Step (%)	Step (%)	(%)	input (MJ)	(MJ)	(MJ)	(MJ)	ratio	Ref.
	Pure	Anaerobic digested sludge	37°C/6.0	0.71	0	37	63	278	105	-173	8	-21	1
	Pure	Enterobacter aerogenes	37°C/6.8	0.89	27	17	56	315	83	-232	8	-28	2
	glycerol: 80%	Thermotoga neapolitana	37°C/7.5	2.73	25	25	50	345	85	-260	8	-31	3
	glycerol 41%	Enterobacter aerogenes	37°C/6.8	1.12	27	17	56	315	83	-232	8	-28	4
	glycerol:90%	Microbial mixed culture	37°C/6.8	0.96	16	16	68	258	83	-175	8	-21	5
	glycerol: 44%	Thermoanaerobacterium	55°C/5.5	0.30	4	10	86	205	82	-123	8	-15	6
	glycerol: 24%	Enterobacter aerogenes	37°C/6	0.31	2	0	98	179	82	-97	8	-12	7
	glycerol 84%	Engineered	37°C/6.3	1.02	1	31	68	258	83	-174	8	-21	8
	glycerol 82%	Enterobacter aerogenes	37°C/6.8	0.85	0	14	85	210	83	-127	8	-15	9-10

Table 1: Biohydrogen productions at lab scale by dark fermentation process using crude glycerol derived from biodiesel production plants which used different feedstock as its raw material. Energy balance (%) summary across each steps during dark fermentation with values of total energy input (MJ), energy credit (MJ) and net energy (MJ) details of different feedstock.

8 h) End products pH:6 H ₂ Bio gas	Bioconversion ProcessDark FermentationBioconversion ProcessBenefitsCrude Glycerol1 kgHydrogen20.57 gBiogas3414.2 LFossil Fuel replacement2.12 L		Estimated Benefits for CG produced/day in 2020 across Canada 44715 kg 929 kg 16 million L	Estimated Benefits for CG produced/day in 2020 across worldwide 594600 kg 12353 kg 203 million L 1262115 kg	CONCLUS crude-gly fermenta Minimizia glycerol reduce th for differ References 1.Siefert K et a 2.Markov SA 3.Ngo TA et al 4.Ito T et al., J		
	GHG reduction (CO ₂ eq)	7.33 kg	0.3 million kg	4.3 million kg	6.Sittijunda A 7.Sarma SJ et a		
0.42 MJ + 81.94 MJ).42 MJ + 31.94 MJ Bable 2: Estimation of environmental benefits from bioconversion of 1 kg of crude glycerol and estimating the results for CG production per day in 2020 across Canada and worldwide. 						
Energy credit: 82.36 MJ ed from the animal	(ASABE)		5-M==1	ntreal	*Author Telephon		
		CSBE SCG	AB July 13	- 16, 2014	E-mail: v		

e gas de gly	emiss zerol	by da	valuation o rk fermenta
na ^a , Rat	ul Kuma	r Das ^a ,	aINRS, Ce
erardo B	uelna ^b , M	I. Verma ^c	^o Centre de recl ^c CO ₂ Solutions I
el produ	ction		Animal waste Methanol
Europe	Eurasia	Asia & Oceania	Crude F
62,1	0,3	2,2	
177,7	3,3	53,4	
173,4	4,4	76,7	
17,3	0,4	7,7	Biodiesel
s continents	during 200:	5 and 2011,	Figure 2: Process details

Figure 2: Process details of biodiesel production using different feedstock in biodiesel industries.

ation

entre - Eau Terre Environnement, Québec(QC), Canada cherche industrielle du Québec (CRIQ), Québec(QC), Canada Inc., 2300, rue Jean-Perrin, Québec, Québec G2C 1T9 Canada

SION: For efficient utilization, bioconversion of ycerol to hydrogen production by dark ation can be considered as a suitable option. ing media and inoculum components with crude-utilization as only carbon source will surely he total energy input. By doing so, the net energy rent feedstock will have a positive value

*Author details: Vinayak Pachapur, PhD student, Telephone: + 418 654 2524 (4477); E-mail: vinayak.pachapur@ete.inrs.ca

Acknowledgement

Financial support from NSERC, CRIQ and INRS-ETE has been acknowledged. SJ Sarma is greatly thankful to FQRNT for financial assistance through a doctoral fellowship (MELS).