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Methodology 

A Novel approach for monitoring cyanobacterial blooms using an ensemble based system from 
MODIS imagery downscaled to 250 meters spatial resolution 
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Due to standard sampling programs limitations (spatial distribution and 
temporal frequency [1]), remote sensing data have become 
increasingly used for monitoring Harmful algae blooms (HAB), called also 
Cyanobacterial blooms (CB), in freshwaters by detecting the bio-optical 
activity of their principal pigment, the Chlorophyll-a (Chl-a). Recent 
studies demonstrated that waters loaded in Chl-a exhibit different 
apparent optical properties enabling them to be discriminated and 
used different classification approaches for water surveillance [2]. Such 
classifiers are however local and unstable [3]. On the other hand, 
Classifiers based on ensemble systems are more general and stable [4], 
but their biggest limitation is time consumption due to their 
conceptualization based on re-sampling techniques. To reduce this time 
consumption, we used the Gaussian quadrature formula which has the 
potential to convert this re-sampling problem to probabilistic numerical 
calculations that are simpler and are accurate and approved [5].  
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Methodology (continued) 
Concurrent MODIS imageries to dates of in situ measurements were firstly 
loaded from the NASA’s website [6] and were pre-processed as follow:  
1.The HKM and QKM Level 1B product were used for downscaling the 
spatial resolution of the bands 3 to 7 to 250 meters; 
2.The MOD03 Level 1B product was used to re-project images from SIN to LCC 
projection; 
3.The MOD08_D3 Level 3 product was used for atmospheric correction using the 
SMAC (Simplified model for atmospheric correction) algorithm.  
All pre-processing steps were done using a tool developed at the Canadian 
center for remote sensing [7].  

Study area and calibration data 
The calibration data set used in this work was collected by the 
environmental Ministry of Quebec called MDDELCC (Ministère du 
Développement Durable, Environnement et Lutte contre les 
Changements Climatiques), between the years 2004 and 2010 over 22 
freshwaters. This data set is composed by three classes of 
cyanobacterial density: 1) waters with cell densities lower than 20,000 
cells mL-1, 2) waters with densities between 20,000 and 100,000 cells mL-1, 
and 3) waters with densities higher than 100,000 cells mL-1. 

Geographic location of the water bodies used for model calibration and validation 

RGB MODIS original product (500 m spatial resolution) RGB downscaled images (250 m spatial resolution) 

Data analysis 
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Averages of spectral signature picked up over training data 
for waters poorly, moderately, and highly charged in Chl-a. 

General Scheme of discrimination between three classes of 
water charged in Chl-a using the Classification and 
Regression Three algorithm.  
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Flowchart of methodological approach. 
Gary, red, and blue boxes refer 
respectively to calibration, validation, 
and evaluation steps. 
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 𝜇𝜇1𝑣𝑣1= Nominal classifier (V1) 

 𝜇𝜇1𝑣𝑣2= Nominal classifier (V2) 

 

𝜇𝜇1𝑣𝑣2 + ��𝜇𝜇2𝑣𝑣2 × √3� 

Upper classifier (V2) 

 

𝜇𝜇1𝑣𝑣1 − ��𝜇𝜇2𝑣𝑣1 × √3� 

Lower classifer (V1) 

CART classifier 

Gaussian quadrature ensemble classifier 

n 𝒛𝒛𝒊𝒊 𝑨𝑨𝒊𝒊 
0 0 1 

2 −𝟏𝟏 , +𝟏𝟏 
𝟏𝟏
𝟐𝟐

,
𝟏𝟏
𝟐𝟐

 

3 −√𝟑𝟑 ,𝟎𝟎 , +√𝟑𝟑 
𝟏𝟏
𝟔𝟔

,
𝟐𝟐
𝟑𝟑

,
𝟏𝟏
𝟔𝟔

 
 

Abscissas and weights for the standard normal distribution 
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Results 
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GUQEC and CART classifiers application on MODIS 
imageries (Missisquoi bay of Champlain Lake) 

Conclusions 

CART and GUQEC accuracy 
assessment and robustness 
analysis. 

This study was conducted to develop a classifier based on ensemble 
method using MODIS images downscaled to 250 m spatial resolution  
and to test its performance in terms of accuracy and robustness.  
Even the developed approach is relatively less accurate (Kappa 
index = 86% versus 86.6% ) then a standard classifier, its robustness 
was higher. A further asset of the developed method is its ability to 
map transition areas between classes. by the present work, it was 
possible to highlight the potential of remote sensing data to monitor 
HAB in freshwaters with an acceptable error rate.  
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Objective 
The objective of this study was then to develop a GAussian Quadrature 
Ensemble Classifier (GAQEC) and to compare its performance to 
Classification and regression tree (CART) in a context of HAB monitoring 
in Quebec freshwaters using MODIS images downscaled to 250 m spatial 
resolution. The performance of the two approaches was evaluated 
based on the same validation database using confusion matrices for a 
classification accuracy assessment and a standard-deviation 
computation for a robustness analysis.  
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