Université du Québec INRS-ETE

ÉTUDE COMPARATIVE DE MÉTHODES DE DÉTERMINATION DE PÉRIMÈTRES DE PROTECTION AUTOUR DES OUVRAGES DE CAPTAGE DANS LES AQUIFÈRES CAPTIFS FRACTURÉS DU SUD-OUEST DU QUÉBEC

Par Gilbert Karanta

Mémoire présenté pour l'obtention du grade de Maître ès sciences (M.Sc.)

Jury d'évaluation

Président du jury et Examinateur interne

Examinateur externe

Directeur de recherche

Codirecteurs de recherche

René Lefebvre, ing., Ph.D. INRS-ETE Université du Québec

Alain Rouleau, ing., Ph.D. Université du Québec à Chicoutimi

Richard Martel, ing., Ph.D. INRS-ETE Université du Québec

Miroslav Nastev, ing., Ph.D. Commission géologique du Canada

René Therrien, ing., Ph.D. Université Laval

Octobre 2002

© droits réservés de Gilbert Karanta, 2002

RÉSUMÉ

Les activités anthropiques, qu'elles soient agricoles, industrielles ou commerciales, peuvent contribuer à la dégradation des eaux potables. Au Québec, l'eau souterraine constitue la source privilégiée d'alimentation en eau pour près de 20 % de la population. Les risques inhérents à la pollution de cette ressource sont en grande partie tributaires des activités humaines à la surface du sol. Afin de préserver sa qualité au fil des années, il s'avère nécessaire d'avoir une connaissance adéquate du système d'écoulement de l'eau souterraine et de faire la délimitation d'un périmètre autour des ouvrages de captage, à l'intérieur duquel les sources potentielles de contamination sont gérées. Le périmètre de protection (PDP) définit un territoire, comprenant la surface et le sous-sol autour d'un ouvrage de captage (puits, sources), à travers lequel des contaminants peuvent migrer et atteindre l'eau souterraine pompée par le captage (EPA, 1991). Le Ministère de l'Environnement du Québec (MENVQ, 2002) définit deux types de périmètres de protection selon le nouveau Règlement sur le captage des eaux souterraines : le périmètre rapproché et le périmètre éloigné. Le périmètre rapproché vise à protéger le captage contre les sources de contamination bactérienne ou virale et correspond à une distance équivalente à un temps de transport de 200 jours (protection bactériologique) et 550 jours (protection virologique). Le temps de transport utilisé dans les calculs des aires de protection dans ce mémoire et qui était en vigueur au moment de l'étude est de 60 jours. Le périmètre éloigné a pour but de protéger le captage contre les substances polluantes persistantes et il est défini par l'aire d'alimentation du captage. Plusieurs méthodes de détermination des PDP existent et diffèrent tant par leur degré de complexité d'application que par leurs coûts. Une méthode est d'autant plus exacte si elle permet l'intégration des caractéristiques géologiques et hydrogéologiques de la région étudiée.

Aucune étude comparative de périmètres de protection n'a jusqu'à lors été faite au Québec dans les aquifères captifs de roc fracturé. Le but principal de cette étude vise à identifier le seuil d'information nécessaire qui assure une détermination réaliste des périmètres de protection pour des conditions représentant les aquifères fracturés des Basses-Terres du St-Laurent. L'objectif de la présente recherche est d'appliquer, de

comparer et de valider différentes méthodes de détermination des périmètres de protection applicables aux aquifères captifs en milieux fracturés.

Le contexte hydrogéologique de deux municipalités a été étudié, soit Sainte-Anne-des-Plaines et Saint-Janvier. Un essai de pompage d'une durée de sept jours a été réalisé à chaque site, où les variations de la nappe ont été enregistrées par des capteurs de pression installés dans des puits d'observation. Les donnés recueillies ont permis d'évaluer les propriétés hydrauliques des aquifères et de permettre le calcul des périmètres de protection autour des ouvrages de captage. Sept méthodes de délimitation de périmètres de protection ont été évaluées. Pour les périmètres rapprochés, la méthode CAPZONE/GWPATH est privilégiée. Pour les périmètres éloignés, c'est la méthode hybride 3A2E qui représente le niveau minimum de sophistication qui semble assurer une détermination réaliste des périmètres de protection.

> Gilbert Karanta Étudiant

Richard Martel Directeur de recherche

ABSTRACT

Human activities, whether they are agricultural, industrial or commercial, can contribute to the degradation of drinking water quality. In Quebec, groundwater constitutes the main water supply source for nearly 20 % of the population. The risks of contaminating this resource are mainly tributary of the activities occurring at the ground surface. In order to preserve its quality, a good knowledge of the groundwater flow system and the delineation of an area surrounding a production well within which potential contamination sources are managed are essential. A wellhead protection area (WHPA) is defined by the U.S. Environmental Protection Agency (EPA, 1991) as "the surface and subsurface area surrounding a water well or wellfield, supplying a public water system, an area through which contaminants are reasonably likely to move toward and reach such water well or wellfield." The Ministère de l'Environnement du Québec (MENVQ, 2002) defines two zones within the WHPA according to the new Regulation respecting groundwater catchment : the zone of travel (ZOT) and the zone of contribution (ZOC). The ZOT defines a distance from the well equivalent to a time that is necessary for any bacteria (200 days) or viruses (550 days) to be degraded naturally. The time of travel used for the WHPA delineations, which was in effect at the time of the study, is 60 days. The ZOC is the area where all flow paths intercept the well over an infinite period of time. Several methods for area delineation of wellhead protection exist and differ by their degree of complexity and their costs. The integration of more hydraulic characteristics of the study area increases the precision of any given method.

No WHPA comparative studies were carried in confined fractured rock aquifers in Quebec until now. The overall goal of this study is to identify the minimal information necessary to allow a realistic determination of WHPA for conditions that represent the fractured rock aquifers of the St-Lawrence Lowlands. The objective is mainly to apply, compare and validate different methods applicable to confined fractured aquifers.

The hydrogeological context of two municipalities has been investigated : Sainte-Annedes-Plaines and Saint-Janvier. Aquifer tests were conducted to obtain hydraulic properties. A seven day pumping test was conducted in each study area to monitor spatial and temporal hydraulic head changes. Data collected from these tests were used to evaluate the hydraulic properties of the aquifers and to delineate the wellhead protection areas. Seven delineation methods were evaluated in this study. For the zone of contribution (ZOC), the 3A2E hybrid method represents the minimal information necessary to ensure a realistic determination of wellhead protection areas. For the zone of travel (ZOT), CAPZONE/GWPATH is considered the most precise method.

REMERCIEMENTS

Je tiens en premier lieu à remercier mon directeur de recherche, Richard Martel, pour son support au niveau scientifique et pour la confiance qu'il m'a accordée tout au long de ma maîtrise. Je remercie également mes co-directeurs de recherche, Miroslav Nastev et René Therrien, pour leur grande disponibilité et leurs précieux conseils qui ont su guider mes réflexions. Un merci très spécial à Daniel Paradis pour toute l'attention qu'il a voulu porter à mon projet. Son savoir et sa grande disponibilité m'ont grandement facilité la tâche dans plusieurs étapes de ma recherche. Je désire aussi remercier René Lefebvre qui a pris le temps de répondre à mes interrogations.

Les travaux de terrain n'auraient pu avoir lieu sans le support des municipalités avec lesquelles j'ai travaillé. Un grand merci à M. Forget de Sainte-Anne-des-Plaines pour sa disponibilité et sa gentillesse. Merci également à M. Roy, M. Lajeunesse et Mme Trudeau de Mirabel pour leur soutien continuel tout au long du projet. Je tiens sincèrement à remercier toute l'équipe du projet AFSOQ de la CGC-Québec, dirigé par Martine Savard, pour leur assistance sur le terrain et leur compétence. Enfin, je remercie la population des deux municipalités pour leur grande collaboration à notre projet en nous donnant l'accessibilité à leur puits.

L'étude en cours a aussi été rendue possible grâce au support financier de plusieurs organismes dont l'INRS-ETE, le programme de bourse du FCAR ainsi que le CRSNG.

Je profite aussi de l'occasion pour remercier Édith Bourque et Nathalie Fagnan pour leurs précieux conseils et leur support au cours des campagnes des étés 1999-2000. Merci aussi pour votre bonne humeur et votre humanité.

Finalement, merci à ma famille, Dominic et Mélanie pour leur patience, leur compréhension et leur appui dans ce grand défi qu'a représenté pour moi la réalisation de ce projet de recherche.

TABLE DES MATIÈRES

RÉSUMÉ	III
ABSTRACT	V
REMERCIEMENTS	VII
TABLE DES MATIÈRES	VIII
LISTE DES TABLEAUX	XII
LISTE DES FIGURES	XIII

CHAPITRE 1. INTRODUCTION GÉNÉRALE	1
1.1 PROBLÉMATIQUE	1
1.2 OBJECTIFS	4
1.3 MÉTHODOLOGIE	4
1.3.1 COMPILATION DES DONNÉES EXISTANTES	4
1.3.2 TRAVAUX DE TERRAIN	5
1.3.3 ANALYSE DES DONNÉES	6
1.3.4 CHOIX DES MÉTHODES	7
1.3.5 COMPARAISON ET VALIDATION DES MÉTHODES	8
1.4 STRUCTURE DU MÉMOIRE	10
CHAPITRE 2. HYPOTHÈSE DU MILIEU POREUX ÉQUIVALENT	11
CHAPITRE 2. HYPOTHÈSE DU MILIEU POREUX ÉQUIVALENT 2.1 APPROCHES DISCRÈTES ET CONTINUES	11
CHAPITRE 2. HYPOTHÈSE DU MILIEU POREUX ÉQUIVALENT 2.1 APPROCHES DISCRÈTES ET CONTINUES 2.2 ÉTUDES ANTÉRIEURES	11 11
CHAPITRE 2. HYPOTHÈSE DU MILIEU POREUX ÉQUIVALENT 2.1 APPROCHES DISCRÈTES ET CONTINUES 2.2 ÉTUDES ANTÉRIEURES 2.3 DESCRIPTION ET VALIDATION DES CRITÈRES	11 11 12 13
 CHAPITRE 2. HYPOTHÈSE DU MILIEU POREUX ÉQUIVALENT 2.1 APPROCHES DISCRÈTES ET CONTINUES 2.2 ÉTUDES ANTÉRIEURES 2.3 DESCRIPTION ET VALIDATION DES CRITÈRES 2.3.1 RÉPONSES DE L'ESSAI DE POMPAGE 	11 12 13 13
 CHAPITRE 2. HYPOTHÈSE DU MILIEU POREUX ÉQUIVALENT 2.1 APPROCHES DISCRÈTES ET CONTINUES 2.2 ÉTUDES ANTÉRIEURES 2.3 DESCRIPTION ET VALIDATION DES CRITÈRES 2.3.1 RÉPONSES DE L'ESSAI DE POMPAGE 2.3.2 CONFIGURATION DE LA PIÉZOMÉTRIE 	11 12 13 13 16
 CHAPITRE 2. HYPOTHÈSE DU MILIEU POREUX ÉQUIVALENT 2.1 APPROCHES DISCRÈTES ET CONTINUES 2.2 ÉTUDES ANTÉRIEURES 2.3 DESCRIPTION ET VALIDATION DES CRITÈRES 2.3.1 RÉPONSES DE L'ESSAI DE POMPAGE 2.3.2 CONFIGURATION DE LA PIÉZOMÉTRIE 2.3.3 RATIO ENTRE L'ÉCHELLE DES FRACTURES ET LA PROBLÉM. 	11 12 13 13 16 ATIQUE 18
 CHAPITRE 2. HYPOTHÈSE DU MILIEU POREUX ÉQUIVALENT 2.1 APPROCHES DISCRÈTES ET CONTINUES 2.2 ÉTUDES ANTÉRIEURES	11 12 13 13 16 ATIQUE 18 18
 CHAPITRE 2. HYPOTHÈSE DU MILIEU POREUX ÉQUIVALENT 2.1 APPROCHES DISCRÈTES ET CONTINUES 2.2 ÉTUDES ANTÉRIEURES	11 12 13 13 16 ATIQUE 18 18 19

CHAPITRE 3. COMPARATIVE STUDY OF METHODS FOR WELLHEAD		
PROTECTION AREA DELINEATION IN CONFINED FRACTURED	ROCK	
AQUIFERS	21	
3.1 INTRODUCTION	21	
3.2 PREVIOUS STUDIES	24	
3.3 METHODOLOGY		
3.3.1 INVESTIGATION OF THE HYDRAULIC PROPERTIES	25	
3.3.2 SELECTION OF WHPA METHODS	26	
3.3.3 METHOD COMPARISON PROCEDURE	27	
3.4 SITES CHARACTERISATION		
3.4.1 SAINTE-ANNE-DES-PLAINES		
3.4.1.1 Geology	28	
3.4.1.2 Hydrogeology	30	
3.4.1.3 Hydraulic Properties		
3.4.2 SAINT-JANVIER		
3.4.2.1 Geology		
3.4.2.2 Hydrogeology	35	
3.4.2.3 Hydraulic Properties		
3.5 WHPA ANALYSIS		
3.5.1 WHPA METHODS DESCRIPTION AND APPLICATION		
3.5.1.1 Calculated Fixed Radius		
3.5.1.2 Uniform Flow Equation		
3.5.1.3 Time of Travel (TOT)	40	
3.5.1.4 Hybrid Method	41	
3.5.1.5 Flow System Mapping	41	
3.5.1.6 CAPZONE/GWPATH	42	
3.5.1.7 MODFLOW/MODPATH		
3.5.2 WHPA COMPARISON	46	
3.5.2.1 Sainte-Anne-des-Plaines		
3.5.2.1 Saint-Janvier	51	
3.6 CONCLUSION	56	

3.7 RECOMMENDATIONS	
AKNOWLEDGMENTS	60
REFERENCES	61
CHAPITRE 4. CONCLUSION GÉNÉRALE	65
CHAPITRE 5. RECOMMANDATIONS	67
ΝΈΡΩΡΝΟΙΟ	-1

ANNEXES
ANNEXE A : Localisation et description des mesures de niveau d'eau avant et à la fin de l'essai de pompage dans les puits de Sainte-Anne-des-Plaines
ANNEXE B : Schémas d'aménagement des puits : Site de Sainte-Anne-des Plaines81
ANNEXE C : Essais de perméabilité <i>in situ</i> par choc hydraulique : Site de Sainte-Anne- des-Plaines
ANNEXE D : Données des essais de pompage et de récupération : Site de Sainte-Anne- des-Plaines
ANNEXE E : Analyse physico-chimique de l'eau souterraine au puits de pompage P8 : Site de Sainte-Anne-des-Plaines
ANNEXE F : Localisation et description des mesures de niveau d'eau avant et à la fin de l'essai de pompage dans les puits de Saint-Janvier
ANNEXE G : Schémas d'aménagement des puits : Site de Saint-Janvier133
ANNEXE H : Essais de perméabilité in situ par choc hydraulique : Site de Saint- Janvier
ANNEXE I : Données des essais de pompage et de récupération : Site de Saint-Janvier157
ANNEXE J : Analyse physico-chimique de l'eau souterraine au puits de pompage STJA1 : Site de Saint-Janvier

Х

LISTE DES TABLEAUX

Tableau 1.1 : Méthodes utilisées pour la détermination des périmètres de protection8
Table 3.1 : Selected methods for travel and contribution zones. 27
Table 3.2 : Parameter values used in the calculations of the WHPA for the calculatedfixed radius, the uniform flow equation, the time of travel, the hybrid and the flow systemmapping methods
Table 3.3 : Hydrogeological parameters values for ZOT and ZOC delineationusing the CAPZONE/GWPATH model.42
Table 3.4 : Hydraulic parameters used in the numerical model of Sainte-Anne-des Plaines.
Table 3.5 : Hydraulic parameters used in the numerical model of Saint-Janvier45
Table 3.6 : Comparative study results for the zone of travel (ZOT) for P8 and Barrette wells. The basis of comparison is Modflow/Modpath and the best method is in italic48
Table 3.7 : Comparative study results for the zone of contribution (ZOC) for P8 andBarrette wells. The basis of comparison is the flow system mapping and the selected bestmethod is in italic
Table 3.8 : Classification of the methods applied for the zone of travel and the zone ofcontribution at Ste-Anne-des-Plaines.51
Table 3.9 : Comparative study results for the zone of travel (ZOT) for STJA1 and Charles wells. The basis of comparison is Modflow/Modpath and the best method is in italic53
Table 3.10 : Comparative study results for the zone of contribution (ZOC) for STJA1 and Charles wells. The basis of comparison is the flow system mapping and the selected best method is in italic
Table 3.11 : Classification of the methods applied for the zone of travel and the zone of contribution at St-Janvier. 56
Table 3.12 : Classification of methods for Saint-Lawrence Lowlands

LISTE DES FIGURES

Figure 1.1 : Répartition de l'utilisation de l'eau souterraine au Québec (MENVQ, 1999). 1
Figure 1.2 : Rapports d'aires entre les méthodes à comparer et la base de comparaison (modifié de Paradis, 2000)
Figure 2.1 : Rabattement en fonction du temps des puits de Ste-Anne-des-Plaines14
Figure 2.2 : Rabattement en fonction du temps des puits de St-Janvier14
Figure 2.3 : Cône du rabattement absolu (en mètres) à Ste-Anne-des-Plaines15
Figure 2.4 : Cône du rabattement absolu (en mètres) à St-Janvier15
Figure 2.5 : Carte piézométrique avant pompage de Ste-Anne-des-Plaines17
Figure 2.6 : Carte piézométrique avant pompage de St-Janvier
Figure 3.1 : Localisation of Sainte-Anne-des-Plaines and Saint-Janvier
Figure 3.2 : Relation between the zone of influence (ZOI), the zone of travel (ZOT) and the zone of contribution (ZOC) (from EPA, 1994)23
Figure 3.3 : Geological map of Ste-Anne-des-Plaines (Rocher et al., 2001)
Figure 3.4 : Surficial deposits map of Ste-Anne-des-Plaines (from Hamel, 2002)
Figure 3.5 : Cross section (NW-SE) in the groundwater flow direction at the Ste-Anne-des-Plaines site
Figure 3.6 : Dynamic potentiometric map of Ste-Anne-des-Plaines
Figure 3.7 : Average hydraulic property values from pumping and slug tests conducted at the Ste-Anne-des-Plaines site
Figure 3.8 : Transmissivity profile of the P9 well at the Ste-Anne-des-Plaines site (from packer test at 3.7 m intervals represented by the grey rectangles)32
Figure 3.9 : Geological map of St-Janvier (Rocher et al., 2001)
Figure 3.10 : Surficial deposits map of St-Janvier (from Hamel, 2002)

Figure 3.11 : Cross section (W-E) in the groundwater flow direction at the St-Janvier site.
Figure 3.12 : Dynamic potentiometric map of St-Janvier
Figure 3.13 : Average hydraulic property values from pumping and slug tests conducted at the St-Janvier site
Figure 3.14 : Transmissivity profile of the STJA1 well at the St-Janvier site (from packer test at 3.7 m intervals represented by the grey rectangles)
Figure 3.15 : Delineation of zones of travel (ZOT) for P8 and Barrette wells at the Ste Anne-des-Plaines site. The zones delineated with the comparison standard (Modflow) are outlined with grey shading
Figure 3.16 : Delineation of zones of contribution (ZOC) for P8 well at Ste-Anne-des Plaines site. The standard method is outlined with grey shading. The dark grey shading shows where the standard method overlaps the recharge zone (vulnerable zone)
Figure 3.17 : Delineation of zones of contribution (ZOC) for Barrette well at Ste-Anne des-Plaines site. The flow standard method is outlined with grey shading. The dark grey shading shows where the standard method overlaps the recharge zone (vulnerable zone).
Figure 3.18 : Delineation of zones of travel (ZOT) for STJA1 and Charles wells at St-Janvier site. The zones delineated with the comparison standard (Modflow) are outlined with grey shading
Figure 3.19 : Delineation of zones of contribution (ZOC) for STJA1 well at St-Janvier site. The flow mapping standard method is outlined with grey shading. The dark grey shading shows where the standard method overlaps the recharge zone (vulnerable zone).
Figure 3.20 : Delineation of zones of contribution (ZOC) for Charles well at St-Janvier site. The flow mapping standard method is outlined with grey shading. The dark grey shading shows where the standard method overlaps the recharge zone (vulnerable zone).

CHAPITRE 1. INTRODUCTION GÉNÉRALE

Au Québec, les eaux souterraines représentent pour près de 1,5 millions de personnes, soit 20 % de la population, la source privilégiée d'alimentation en eau. À l'intérieur des formations géologiques, l'eau circule à travers les pores, les fractures et autres interstices. L'eau souterraine est alimentée par les précipitations dans les zones de recharge et fait donc partie intégrante du cycle de l'eau. Les réserves renouvelables disponibles sont évaluées à 200 km³ pour les régions habitées (MENVQ, 1999). L'eau souterraine extraite représente 0,2 % de cette réserve et elle est utilisée selon les proportions exposées à la figure 1.1 :

Figure 1.1 : Répartition de l'utilisation de l'eau souterraine au Québec (MENVQ, 1999).

1.1 PROBLÉMATIQUE

Les municipalités de Sainte-Anne-des-Plaines et de Saint-Janvier s'approvisionnent à 100 % en eau souterraine. Les agriculteurs, les industries, les résidents ainsi que les municipalités constituent les principaux utilisateurs. La zone agricole représente plus de 85 % du territoire dans les deux sites à l'étude. La fertilisation des terres et l'épandage de pesticides présentent un risque potentiel de dégradation de la qualité de la ressource en eau souterraine. Les risques de contamination sont donc en grande partie tributaires des activités humaines à la surface du sol. Afin de préserver la qualité de l'eau souterraine au

fil des ans, la connaissance du système d'écoulement de l'eau souterraine et la délimitation autour des ouvrages de captage d'un périmètre de protection s'avèrent essentielles. Le périmètre de protection (PDP) définit un territoire, comprenant la surface et le sous-sol autour d'un ouvrage de captage (puits, sources), à travers lequel des contaminants peuvent migrer et atteindre l'eau souterraine pompée par le captage (EPA, 1991). La détermination d'un périmètre a pour but d'élaborer un plan permettant aux gestionnaires d'identifier les activités anthropiques susceptibles d'altérer la qualité de l'eau des puits d'approvisionnement. La gestion des activités humaines à l'intérieur du périmètre de protection est alors mise en place afin de prévenir toute contamination de l'eau souterraine. Le Ministère de l'Environnement (MENVQ) recommande depuis 1984 la détermination de périmètres de protection autour des ouvrages de captage. Jusqu'à maintenant, seulement quelques municipalités ont réalisé cet exercice (MENVQ, 1999). En 1995, le MENVQ a publié un guide sur la détermination des périmètres de protection. Il définit trois différents périmètres :

- le **périmètre immédiat** définit une zone clôturée ayant un rayon minimal de 30 mètres autour de l'ouvrage de captage et permet de protéger ce dernier ainsi que les installations;
- le **périmètre rapproché** correspond à une distance équivalente à un transport de 60 jours de l'eau souterraine, temps présumé nécessaire pour l'élimination de toute contamination bactérienne et virale par atténuation naturelle, et qui ne doit pas être inférieure à 100 mètres à partir du captage;
- le périmètre éloigné correspond à toute l'aire d'alimentation d'un ouvrage de captage et permet de le protéger contre les contaminants mobiles et persistants susceptibles d'être relâchés.

Le nouveau *Règlement sur le captage des eaux souterraines* du MENVQ (2002) est en vigueur depuis le 15 juin 2002. Les principales modifications concernent le périmètre rapproché dont un temps de transport est défini selon le type de contamination. Les aires

de protection bactériologique et virologique correspondent désormais à un temps de migration de l'eau souterraine de 200 jours et 550 jours respectivement. Puisque le temps de transport en vigueur au moment de l'étude était de 60 jours, c'est cette valeur qui a été employée pour les calculs des aires de protection dans ce mémoire. Une analyse de sensibilité du paramètre de porosité présentée à l'annexe K permet de prévoir l'effet du changement du temps de transport sur la forme du périmètre rapproché aux sites étudiés.

Plusieurs méthodes de détermination des PDP existent et diffèrent tant par leur degré de complexité d'application que par leurs coûts. Une méthode est d'autant plus exacte si elle permet l'intégration des caractéristiques géologiques et hydrogéologiques de la région étudiée. Pour l'instant, le MENVQ ne privilégie pas de méthode particulière pour la détermination de périmètres de protection.

Une gestion globale des eaux souterraines devient relativement complexe lorsque les caractéristiques des formations hydrogéologiques sont mal connues. En effet, il existe peu de documents d'interprétation de données hydrogéologiques à l'échelle locale ou régionale au Québec. Plus précisément, au niveau des périmètres de protection, aucune étude comparative n'a jusqu'à maintenant été faite dans les aquifères captifs fracturés. La grande difficulté de l'étude hydrogéolgique réside dans la nature même du roc. Celui-ci peut se révéler hétérogène et anisotrope. Il se compose bien souvent de multiples réseaux de fractures, de pores et de divers interstices qui deviennent un obstacle à l'écoulement uniforme de l'eau souterraine. L'hypothèse du milieu poreux équivalent peut toutefois s'appliquer à des aquifères fracturés comme expliqué au chapitre deux.

Des méthodes de détermination des PDP ont été appliquées dans des aquifères de roc fracturé, principalement aux États-Unis (Bair et Roadcap, 1992; Marquis et Stewart, 1992; Bradbury et Muldoon, 1994). Plusieurs méthodes, allant des plus simples aux plus sophistiquées, ont été appliquées dans des contextes hydrogéologiques propres à leur région d'étude. Certaines de ces méthodes sont reprises dans la présente étude en vue de leur validation dans les aquifères de roc fracturé des Basses-Terres du St-Laurent.

1.2 OBJECTIFS

Le présent mémoire vise principalement à identifier le seuil d'information nécessaire qui assure une détermination réaliste des périmètres de protection pour des conditions représentant les aquifères fracturés en conditions captives des Basses-Terres du St-Laurent. Plus spécifiquement, les objectifs sont :

- Réaliser une étude hydrogéologique approfondie des aquifères de la région de Sainte-Anne-des-Plaines et de Saint-Janvier (interprétation du système d'écoulement, détermination des propriétés hydrauliques des aquifères fracturés et élaboration de cartes piézométriques);
- Appliquer, comparer et valider différentes méthodes de détermination des périmètres de protection applicables aux milieux confinés fracturés.

1.3 MÉTHODOLOGIE

La méthodologie adoptée en vue de l'atteinte des objectifs mentionnés précédemment comprend cinq étapes : 1) la compilation des données existantes; 2) l'acquisition de données complémentaires par des travaux de terrain; 3) l'analyse des données recueillies sur le terrain; 4) la sélection des méthodes de détermination des périmètres de protection; 5) la comparaison et la validation des méthodes appliquées aux deux sites à l'étude.

1.3.1 COMPILATION DES DONNÉES EXISTANTES

La première étape a trait au rassemblement de toute l'information concernant les deux régions. Elle inclut les cartes géologiques, topographiques et géomorphologiques publiées par la Commission Géologique du Canada, les données de stratigraphie et de profondeur au roc à partir de la banque des puisatiers du MENVQ, les propriétés hydrauliques des aquifères provenant des rapports hydrogéologiques (Massicotte *et al.*,

1991; Hydrogéo Canada inc., 1977), des rapports de forage ainsi que des données pertinentes qui proviennent des municipalités concernant l'utilisation de l'eau sur le territoire.

1.3.2 TRAVAUX DE TERRAIN

La grande partie de l'information sur l'hydrogéologie des régions étudiées a été obtenue lors des travaux de terrain qui se sont déroulés au cours des étés 1999 et 2000. Les travaux ont débuté avec une campagne de mesure des niveaux d'eau dans plus de 100 puits privés et municipaux dans les deux sites à l'étude. Ce relevé a été effectué en vue de la caractérisation du système d'écoulement et de l'élaboration des cartes piézométriques (Annexes A et F). Pour déterminer les propriétés hydrauliques des aquifères, trois types d'essais ont été effectués : 1) des essais de pompage; 2) des essais de perméabilité *in situ* à choc hydraulique; 3) des essais Lugeon.

Le premier essai de pompage a été réalisé à Sainte-Anne-des-Plaines au puits municipal P8. D'une durée de sept jours sans interruption, le pompage s'est déroulé à un débit constant de 2.3×10^{-2} m³/s. Les fluctuations du niveau d'eau ont été enregistrées par huit capteurs de pression installés dans des puits d'observation situés à des distances du puits de pompage variant entre 3 m et 1970 m. La remontée de la nappe, suite à la sollicitation par le puits de pompage, a été suivie pendant les sept jours suivant l'arrêt du pompage (Annexe D). À Saint-Janvier, trois puits d'observation et un piézomètre ont été forés et aménagés en vue de l'essai de pompage qui s'est déroulé sur une période de sept jours à un débit moyen de 5.8×10^{-3} m³/s au puits STJA1. Les variations temporelles et spatiales du niveau d'eau ont été relevées par huit capteurs de pression installés dans sept puits d'observation et un piézomètre situés à des distances comprises entre 27 m et 800 m. La remontée de l'eau a été enregistrée durant les sept jours suivant l'arrêt du pompage (Annexe I).

L'essai de pompage permet d'obtenir les propriétés hydrauliques de l'aquifère à l'échelle régionale alors que les essais de perméabilité *in situ* permettent d'acquérir des valeurs ponctuelles parce qu'ils sollicitent l'aquifère au niveau du puits uniquement avec un faible rayon d'influence. Deux essais ont été effectués à Sainte-Anne-des-Plaines en utilisant une technique d'essai *in situ* par choc hydraulique qui consiste à injecter de l'air sous pression dans le puits au-dessus du niveau d'eau pour l'abaisser. Une fois la pression relâchée, un capteur de pression note la remontée de l'eau (Annexe C). À Saint-Janvier, quatre puits forés dans le roc ont fait l'objet d'essais de perméabilité *in situ* à choc hydraulique, mais dans ce cas-ci le niveau d'eau dans le puits est modifié par ajout ou enlèvement d'un volume d'eau à l'aide d'un tube à clapet (Annexe H). Ces tests servent à évaluer les propriétés hydrauliques à l'endroit des puits et sont complémentaires aux essais de pompage qui donnent des valeurs plus globales pour l'aquifère.

L'essai Lugeon (packer test) permet, à l'aide d'obturateurs et d'équipements spécialisés, de mesurer la transmissivité à différentes profondeurs dans un puits (Nastev, 2001). Cela permet de tracer le profil de la transmissivité de l'aquifère en fonction de la profondeur. Ainsi, il est possible de repérer dans l'aquifère les horizons susceptibles de contribuer à l'écoulement de l'eau souterraine. Un essai a été réalisé au puits P9 de la municipalité de Sainte-Anne-Plaines, situé à 79 m au sud du puits de pompage P8. L'essai à Saint-Janvier a été effectué au puits de pompage STJA1. Outre les valeurs de transmissivité, ces tests ont permis d'estimer la base imperméable de l'aquifère.

1.3.3 ANALYSE DES DONNÉES

Toutes les données recueillies sur le terrain ont été saisies dans la base de données du projet AFSOQ (Aquifères Fracturés du Sud-Ouest du Québec) et conservées principalement dans les classeurs EXCEL (Microsoft Corporation, 1997). Les relevés des niveaux d'eau ont été transférés dans Mapinfo (Mapinfo Corporation, 1999) pour la réalisation des cartes piézométriques avec le logiciel Vertical Mapper (Northwood Geoscience Ltd, 1999).

Les données de rabattement et de remontée de l'eau souterraine des essais de pompage ont été analysées par le logiciel Aquifertest 2.54 (Roehrich, 1995). Pour la détermination de la conductivité hydraulique et de l'emmagasinement de l'aquifère confiné, les méthodes de Theis (1935) et de Cooper-Jacob (1946) ont été employées parce que les courbes de rabattement/remontée en fonction du temps ont une allure similaire aux courbes-types, excepté pour la phase initiale du pompage (les premières minutes) dont les points forment plutôt un segment de droite (Annexes D et I). La méthode de Gringarten-Witherspoon (1972) a aussi été utilisée, considérant que l'essai de pompage a eu lieu dans le roc fracturé. Cette méthode permet de représenter l'aquifère comme une fracture verticale simple. En ce qui concerne les essais de perméabilité *in situ*, les propriétés hydrauliques ont été obtenues en utilisant les méthodes de Bouwer et Rice (1976) et de Van der Kamp (1976) et Uffink (1984) (Annexes C et H). Cette dernière a été employée dans les cas où les variations de la charge hydraulique de la nappe ont eu un comportement oscillatoire.

1.3.4 CHOIX DES MÉTHODES

Nombre de méthodes de détermination des PDP existent et se distinguent entre elles au niveau de la complexité et du coût d'application. L'intégration des caractéristiques géologiques et hydrogéologiques augmentent l'exactitude d'une méthode. Elle doit être relativement facile d'application et à coût raisonnable. La méthode privilégiée est celle qui a la capacité de simplifier le système d'écoulement tout en préservant ses caractéristiques géologiques et hydrogéologiques (Bair & Roadcap, 1992). Les méthodes se divisent en deux catégories : le périmètre rapproché et le périmètre éloigné. À partir d'études antérieures et d'une revue de littérature, sept méthodes ont été sélectionnées pour la présente étude (Annexe K). Les méthodes, de par leur application, varient de simples à plus complexes. Le tableau 1.1 présente les méthodes de détermination des périmètres de protection qui ont été appliquées aux sites de Sainte-Anne-des-Plaines et de Saint-Janvier.

MÉTHODE	ТҮРЕ	PÉRIMÈTRE
Équation du cylindre (EPA, 1994)	Calculs simples	Rapproché
Temps de transport (Bear et Jacob, 1965)	Calculs simples	Rapproché
Écoulement uniforme (Todd, 1980)	Calculs simples	Éloigné
Hybride 3A2E (Paradis, 2000)	Méthodes combinées	Éloigné et rapproché
Piézométrie (EPA, 1991)	Cartographie hydrogéologiqu	Éloigné
CAPZONE/GWPATH (Bair <i>et al.</i> , 1991)	Analytique	Éloigné et rapproché
MODFLOW/MODPATH (McDonald et Harbaugh, 1988)	Numérique	Éloigné et rapproché

Tableau 1.1 : Méthodes utilisées pour la détermination des périmètres de protection.

1.3.5 COMPARAISON ET VALIDATION DES MÉTHODES

L'approche utilisée pour la validation des méthodes consiste à faire le choix de celle qui représente le mieux les conditions hydrogéologiques du site et de l'utiliser comme base de comparaison (Figure 1.2). Pour le périmètre rapproché, la modélisation numérique de l'écoulement par MODFLOW/MODPATH est la méthode la plus précise parce qu'elle intègre le mieux les caractéristiques hydrogéologiques de l'aquifère. C'est la méthode étalon, car elle est basée sur une étude détaillée du site. Pour ce qui est du périmètre éloigné, le standard de comparaison est la cartographie hydrogéologique, car elle incorpore le mieux les caractéristiques hydrauliques, géologiques et hydrogéologiques du domaine d'étude (Paradis, 2000). L'étude de comparaison pour les périmètres éloignés

s'est concentrée spécialement dans la région du site la plus vulnérable à la contamination : la zone de recharge. Cette dernière n'est pas protégée naturellement par une couche imperméable d'argile contrairement à l'ensemble du terrain. Dans l'étude comparative, les bases de comparaison citées plus haut ne sont pas évaluées parce qu'elles constituent les méthodes étalons. Afin de quantifier l'efficacité de chacune des méthodes avec les bases de comparaison, les équations géométriques suivantes sont utilisées (Annexe L) :

1.4 STRUCTURE DU MÉMOIRE

Le mémoire est rédigé sous forme d'un article qui résume les travaux effectués au cours de l'étude et les principaux résultats obtenus. Le mémoire est divisé en cinq chapitres. Le premier est l'introduction au mémoire qui présente la problématique, les objectifs de l'étude et la méthodologie employée. Le chapitre deux traite de l'hypothèse sur laquelle est basée l'analyse des données recueillies sur le terrain et leur interprétation. Les critères permettant la validation de l'hypothèse du milieu poreux équivalent sont énumérés et débattus. Le troisième chapitre est l'article, rédigé en anglais, qui constitue le corps du mémoire. Dans cette partie, on retrouve la description des diverses méthodes citées à la section 1.3.4, une revue de littérature, les deux études approfondies des sites de Sainte-Anne-des-Plaines et de Saint-Janvier qui comprennent la géologie, l'hydrogéologie, la méthodologie ainsi que les résultats de l'étude de comparaison des méthodes. La conclusion générale au chapitre quatre résume les résultats obtenus et l'apport de l'étude à la compréhension des aquifères fracturés. Le chapitre cinq présente les principales recommandations et la dernière section du mémoire contient toutes les annexes qui offrent une information complémentaire à l'article.

L'implication de plusieurs personnes a permis la réalisation de la maîtrise. Le travail de terrain, l'analyse et l'interprétation des données ainsi que la rédaction du mémoire ont été effectués par l'auteur Gilbert Karanta. J'ai aussi contribué à des rapports scientifiques de la CGC dont le *Rapport Final* sur les études locales du projet AFSOQ (Paradis *et al.*, 2002). De plus, un article portant sur les résultats préliminaires de la présente recherche a été publié lors de la conférence de l'AIH en 2001 à Calgary (Karanta *et al.*, 2001). Les co-auteurs qui ont contribué en tant que conseillers et évaluateurs des travaux accomplis à cet article ainsi qu'à celui du chapitre 3 du mémoire sont Richard Martel, Miroslav Nastev, René Therrien, Daniel Paradis et René Lefebvre. L'implication de Daniel Paradis dans le projet a été essentielle au niveau de l'analyse et l'interprétation des données. René Lefebvre fut pour le présent ouvrage source de conseils pertinents. Finalement, les chercheurs, les étudiants et les assistants de terrain du projet AFSOQ ont contribué à leur façon à la réalisation de ma maîtrise.

CHAPITRE 2. HYPOTHÈSE DU MILIEU POREUX ÉQUIVALENT

La validation de l'hypothèse selon laquelle un milieu fracturé se comporte comme un milieu poreux équivalent est préalable à l'utilisation d'équations standards de l'écoulement dans la délimitation des périmètres de protection. L'échelle à laquelle l'étude a lieu est un point déterminant dans la problématique de protection des aquifères. Par exemple, une fracture de grande envergure à une échelle de terrain restreinte devient mineure dans un domaine où l'échelle est d'ordre kilométrique. L'hypothèse du milieu poreux équivalent implique que les équations de l'écoulement de l'eau souterraine demeurent valides à l'échelle du terrain, que la connaissance des propriétés hydrauliques de chaque fracture soit négligeable et que l'aquifère de roc fracturé puisse être caractérisé par des techniques développées pour les milieux poreux (EPA, 1991).

2.1 APPROCHES DISCRÈTES ET CONTINUES

La caractérisation des aquifères de roc fracturé peut se faire selon deux approches différentes : les fractures discrètes et l'approche continue. L'approche discrète considère chaque fracture individuellement. Pour une étude détaillée de l'écoulement de l'eau souterraine selon cette approche, des mesures de la longueur, de l'orientation, de la largeur, de l'ouverture, de la rugosité des parois ainsi que de la connexion entre les fractures sont nécessaires. L'inconvénient de cette approche réside principalement dans l'énorme quantité de données de terrain nécessaire et leur analyse complexe qui la rendent inapplicable dans les cas où l'étude se fait à grande échelle. L'approche continue considère pour sa part que le roc fracturé se comporte comme un milieu poreux équivalent à une échelle de terrain déterminée où les propriétés de chacune des fractures ne sont plus considérées. Contrairement à l'approche discrète, la quantité de données nécessaires à la bonne connaissance du système d'écoulement est moindre. Toutefois, elle ne peut exprimer autant de détails que permet l'approche discrète. Par exemple,

l'approche continue ne permet pas de représenter l'écoulement de l'eau souterraine dans l'aquifère rocheux à l'échelle locale ou des fractures.

2.2 ÉTUDES ANTÉRIEURES

Depuis une vingtaine d'années, des études ont porté sur les critères qui permettent de valider l'hypothèse du milieu poreux équivalent dans des situations où les fractures forment le médium à travers lequel l'eau souterraine circule principalement. Deux d'entre elles sont présentées dans cette section parce qu'elles décrivent avec détail les critères permettant la validation de l'hypothèse. La section 2.3 présente l'approche qui est privilégiée pour la validation de l'hypothèse, soit celle de l'EPA (1991).

L'expérimentation de Bradbury et Muldoon (1994) implique l'utilisation du modèle bidimensionnel de l'écoulement de Rouleau (Stochastic Discrete Fracture, 1988) dans les fractures discrètes couplé au code de transport de particules PARTRACK (advection). Ils ont étudié spécifiquement l'effet de l'anisotropie et de la densité des fractures sur la détermination de l'aire d'alimentation. Leurs travaux ont révélé que même dans les cas où l'aquifère est densément fracturé, l'aire d'alimentation tracée par le modèle de Rouleau est plus large que celle circonscrite par les modèles qui considèrent un milieu poreux. Ils considèrent que les critères validant l'hypothèse du milieu poreux équivalent exigent une étude approfondie du terrain qui s'avère difficile et coûteuse. Ils reconnaissent toutefois que les modèles avec fractures discrètes demeurent complexes pour la délimitation des périmètres de protection.

Long *et al.* (1982) décrivent dans leur étude les critères qui permettent de valider l'hypothèse du milieu poreux équivalent. Un aquifère fracturé est considéré équivalent à un milieu poreux lorsque la fracturation est très dense, l'ouverture des fractures est constante plutôt que distribuée, l'orientation des fractures est distribuée et que l'aire d'étude est supérieure à la longueur des fractures. Bien que ces critères soutiennent la validation de l'hypothèse, les difficultés et les coûts reliés aux tests sont élevés.

2.3 DESCRIPTION ET VALIDATION DES CRITÈRES

La plupart des études portant sur les périmètres de protection suggèrent une combinaison de critères subjectifs. Ces critères incluent les réponses de l'essai de pompage, la configuration de la piézométrie de l'aquifère, le ratio entre l'échelle des fractures et l'échelle de la problématique sur le terrain, la distribution de la conductivité hydraulique et les variations de la chimie de l'eau (EPA, 1991).

2.3.1 RÉPONSES DE L'ESSAI DE POMPAGE

Trois critères permettent de valider l'hypothèse du milieu poreux équivalent lorsque sont utilisées les données d'un essai de pompage :

- Le rabattement dans les puits d'observation devraient augmenter de façon linéaire avec l'augmentation du débit de pompage. Le graphique du rabattement versus le débit du pompage devrait montrer une ligne droite sur une échelle lin-lin;
- Les courbes de rabattement en fonction du temps (échelle log-log) de tous les puits d'observation localisés dans différentes directions du puits de pompage doivent épouser une forme similaire. Aussi, elles ne devraient pas exhiber d'inflexions, ce qui pourrait suggérer des frontières hydrauliques;
- Le tracé du cône de rabattement issu d'un essai de pompage avec plusieurs puits d'observation devrait être circulaire ou elliptique.

Le premier critère ne peut être vérifié, car les essais par paliers qui ont eu lieu n'impliquaient que le relevé du rabattement dans le puits de pompage même sans la prise de mesures aux puits d'observation. Pour le deuxième critère, les figures 2.1 et 2.2 montrent la superposition des courbes de rabattement de chaque puits d'observation pour Sainte-Anne-des-Plaines et Saint-Janvier respectivement dont la distance au puits de pompage est indiquée entre parenthèses dans la légende. Dans les deux cas, on retrouve une similarité dans le comportement hydraulique en divers points de l'aquifère. De légères inflexions sont notées à la fin des courbes. Elles sont fort probablement causées par la présence des puits municipaux environnants qui pompent à grand débit dans chaque région. Elles ne seraient donc pas d'origine naturelle (failles, fractures).

Figure 2.1 : Rabattement en fonction du temps des puits de Ste-Anne-des-Plaines.

Figure 2.2 : Rabattement en fonction du temps des puits de St-Janvier.

Le critère trois est vérifié par l'allure des isolignes du rabattement absolu. Le tracé des cônes de rabattement pour les deux sites ont une forme elliptique (figures 2.3 et 2.4). Cela suggère une certaine anisotropie horizontale de la conductivité hydraulique selon les directions, mais ne met pas en cause la validation du milieu poreux équivalent.

Figure 2.3 : Cône du rabattement absolu (en mètres) à Ste-Anne-des-Plaines.

Figure 2.4 : Cône du rabattement absolu (en mètres) à St-Janvier.

2.3.2 CONFIGURATION DE LA PIÉZOMÉTRIE

Les isopièzes des aquifères fracturés qui équivalent un milieu poreux exhibent une surface lisse et continue sans changement rapide des niveaux d'eau. La surface piézométrique ne devrait pas montrer d'anomalies dans son tracé, ce qui est le cas dans les aquifères fracturés où des fractures peuvent représenter un contraste de conductivité hydraulique entre des blocs de roc. Mais l'absence d'anomalies ne signifie pas pour autant que l'hypothèse du milieu poreux équivalent est validée. Les erreurs d'interprétation de la surface piézométrique proviennent dans certains cas d'un manque de données et nécessiterait plusieurs points d'observation en vue de justifier l'hypothèse.

En vue de représenter les cartes piézométriques, tracées par interpolation linéaire, qui reflètent le plus fidèlement possible l'état de la surface de l'eau souterraine, plusieurs mesures ont été prises dans des puits d'observation situés en périphérie de l'essai de pompage et qui couvrent adéquatement l'ensemble du territoire. En effet, les niveaux d'eau dans 50 puits ont été relevés dans chacun des deux sites à l'étude à des distances variant entre 3 m et 6000 m du puits de pompage. La figure 2.5 représente la carte piézométrique avant pompage de Sainte-Anne-des-Plaines. Elle reflète une surface piézométrique lisse avec un gradient hydraulique relativement uniforme. La seule anomalie visible est causée par le puits municipal Barrette qui est en pompage presque continu. La figure 2.6 représente la carte piézométrique avant le pompage à Saint-Janvier. À premier vue, elle semble plus complexe que celle de Sainte-Anne-des-Plaines. À l'ouest, en pointillé, se trouve la limite de partage des eaux qui représente les points les plus élevés du roc dans la région. La surface piézométrique est assez régulière sur tout le territoire, à l'exception des effets qu'ont le puits municipal Charles et la portion est de la rivière Mascouche. À cet endroit, il est supposé que cette dernière n'a aucun contact hydraulique direct avec l'aquifère. L'allure des courbes piézométriques exprime plutôt des dépôts de sédiments plus importants au niveau de la rivière qui forment un petit chenal d'écoulement qui s'estompe vers l'est. En résumé, les cartes piézométriques ne montrent pas d'anomalies significatives qui témoigneraient de fractures influentes sur l'écoulement régional.

Figure 2.5 : Carte piézométrique avant pompage de Ste-Anne-des-Plaines.

Figure 2.6 : Carte piézométrique avant pompage de St-Janvier.

2.3.3 RATIO ENTRE L'ÉCHELLE DES FRACTURES ET LA PROBLÉMATIQUE

Pour les aquifères considérés comme un milieu poreux équivalent, les fractures doivent être nombreuses à l'échelle de la problématique de protection de l'aire d'alimentation des puits. La règle va comme suit : les dimensions de l'aire de protection doivent être au moins 100 fois celles de l'espacement des fractures (EPA, 1991).

L'analyse de la fracturation des aquifères fracturés du sud-ouest du Québec a été réalisée par Lemieux *et al.* (2001). Les résultats de son étude montrent un espacement entre les factures qui varie entre deux et cinq mètres en moyenne dans le roc moins fracturé. Puisque l'échelle de la région à protéger est de l'ordre du kilomètre, la règle est alors respectée. De plus, les rapports de forage des puits dans les deux régions à l'étude rapportent une fracturation intense dans les premiers mètres du roc. Cette fracturation est issue principalement de fractures sub-verticales, de joints de litage ainsi que de l'altération du roc en surface. L'étude de la fracturation suppose qu'il s'agit d'un milieu poreux équivalent pour l'échelle à laquelle s'est effectuée l'étude des périmètres de protection.

2.3.4 DISTRIBUTION DE LA CONDUCTIVITÉ HYDRAULIQUE

La distribution de la conductivité hydraulique sur un territoire, estimée à partir d'essais de perméabilité *in situ* réalisés dans des puits d'observation, devrait être log-normale. Dans des aquifères où la distribution est fortement bimodale, l'hypothèse du milieu poreux équivalent pourrait être invalide.

À Sainte-Anne-des-Plaines, deux essais de perméabilité *in situ* ont été effectués. La conductivité hydraulique au puits P9, situé à 79 m du puits de pompage P8, est de 3.9 x 10^{-4} m/s. L'essai au puits P08, situé à 3.3 m du puits de pompage, a pour sa part donné une conductivité hydraulique de 1.6 x 10^{-3} m/s. Ces valeurs se trouvent à l'intérieur d'un ordre de grandeur. À Saint-Janvier, quatre essais de perméabilité *in situ* ont été réalisés

dans des puits d'observation situés dans un rayon de 100 m du puits de pompage STJA1. La conductivité hydraulique de chaque puits est la suivante : le puits STJA1, $1.7x10^{-4}$ m/s; le puits STJA2, situé à 45.7 m, $8.9x10^{-5}$ m/s; le puits STJA3, distant de 26.9 m, $2.8x10^{-4}$ m/s; et le puits STJA4, situé à 101.4 m, $2.5x10^{-4}$ m/s. Ces valeurs sont semblables et se trouvent elles aussi à l'intérieur d'un ordre de grandeur. Par contre, le nombre restreint de tests sur le terrain ne permet pas de faire une courbe de distribution fiable. Afin de mieux valider l'hypothèse à ce site, il faudrait réaliser d'autres essais à différentes distances du puits de pompage.

2.3.5 CHIMIE DE L'EAU SOUTERRAINE

Les variations de la chimie de l'eau souterraine peuvent servir à déterminer si un aquifère fracturé agit comme un milieu poreux équivalent ou un système de fractures discrètes. Dans les systèmes de fractures discrètes, les variations dans la chimie de l'eau peuvent être significatives d'une place à l'autre dans l'aquifère et à travers le temps. L'eau souterraine circulant à travers un milieu poreux devrait avoir plutôt une composition chimique relativement semblable, en fonction du temps et de la distance au puits en pompage.

L'eau souterraine des puits de pompage P9 de Sainte-Anne-des-Plaines et STJA1 de Saint-Janvier a été analysée (Annexes E et J). Quatre échantillons ont été prélevés à Sainte-Anne-des-Plaines et trois à Saint-Janvier, à différentes périodes lors de l'essai de pompage, à au moins un jour d'intervalle. La majorité des éléments de l'eau ont gardé des valeurs constantes au niveau temporel parce qu'elles représentent un mélange de toute l'eau de la région affectée par le pompage. La validation complète du critère de la chimie de l'eau n'a pu se faire lors de la présente étude. Il faudrait prélever des échantillons en divers points de l'aquifère lors d'un essai de pompage afin de conclure que le roc fracturé agit comme un milieu poreux équivalent pour ce critère.

2.4 CONCLUSION

Les cinq critères décrits dans la section précédente ont permis de mettre en lumière le comportement et la composition de l'eau souterraine dans le milieu dans lequel elle circule et évolue. Selon que l'aquifère fracturé agit comme un milieu poreux équivalent ou comme un système de fractures discrètes, les types d'analyses sur les données recueillies lors d'essais sur le terrain seront différentes. L'hypothèse selon laquelle un aquifère fracturé agit comme un milieu poreux équivalent simplifie les tâches reliées aux travaux sur le terrain en plus de permettre de résoudre les problématiques de protection des aquifères avec des méthodes accessibles et peu coûteuses.

La validation de certains des critères développés à la section 2.3 supportent l'hypothèse du milieu poreux équivalent pour les aquifères fracturés des sites de Sainte-Anne-des-Plaines et de Saint-Janvier. Le haut degré de fracturation de l'aquifère, spécialement dans les premiers mètres de l'aquifère, les réponses des essais de pompage ainsi que la configuration de la piézométrie sont autant d'évidences qui justifient l'utilisation de techniques et de méthodes propres aux milieux poreux. Cependant, les critères utilisés pour valider l'hypothèse sont subjectifs et les données disponibles ne permettent pas de supporter d'autres approches. Il est impossible d'affirmer sans aucun doute que le roc fracturé se comporte comme un milieu poreux équivalent. Toutefois, les données présentées dans cette section supportent cette hypothèse et il n'y a pas d'évidence directe du contraire.

CHAPITRE 3. <u>COMPARATIVE STUDY OF METHODS FOR</u> WELLHEAD PROTECTION AREA DELINEATION IN CONFINED FRACTURED ROCK AQUIFERS

3.1 INTRODUCTION

Human activities, whether they are agricultural, industrial or commercial, can contribute to the degradation of ground water quality. In Quebec, groundwater constitutes the main water supply source for nearly 20 % of the population. The risks of contamination are mainly tributary of the activities occurring at the ground surface. In order to preserve this resource, a good knowledge of the groundwater flow system and the delineation of an area surrounding a production well within which potential contamination sources are managed are essential. Several methods for delineating wellhead protection areas (WHPA) exist and differ by their degree of complexity and their costs. The integration of more geologic and hydrogeologic characteristics of the study area increases the precision of any given method. The delineation of a wellhead protection area can be particularly difficult in fractured aquifers because of their heterogeneity and anisotropy. Fractured rock may not behave like porous media, which is an underlying assumption of the groundwater flow equations applied in delineation techniques. However, often due to the scale of the WHPA, equivalent porous media approach may be applied.

No WHPA comparative studies had been conducted for the fractured rock aquifers in Quebec until now. This study is part of the Geological Survey of Canada (GSC) large scale hydrogeologic mapping project in the Saint-Lawrence Lowlands in south-western Quebec (Savard *et al.*, 2000). The two sites presented in this paper are the municipalities of Saint-Janvier and Sainte-Anne-des-Plaines. They are located 35 km north-west of Montreal and are 10 km apart (Figure 3.1). The Saint-Lawrence Lowlands are bounded to the north by the Canadian Shield and to the south by the Outaouais River, Deux-Montagnes Lake and Des Mille-Îles River. The Mascouche River, which flows from west to east, crosses Saint-Janvier and passes south of Sainte-Anne-des-Plaines.

Figure 3.1 : Localisation of Sainte-Anne-des-Plaines and Saint-Janvier.

This research is a continuation of the work of Paradis (2000) which compared the accuracy of several methods for WHPA delineation in unconfined granular aquifers. The overall goal of this study is to identify the minimal information necessary to ensure a realistic determination of WHPA for conditions that represent the confined fractured rock aquifers of the St-Lawrence Lowlands. The objective is mainly to apply, compare and validate different methods applicable to confined aquifers.

The U.S. Environmental Protection Agency (EPA, 1991) defines a WHPA as "the surface and subsurface area surrounding a water well or wellfield, supplying a public water system, an area through which contaminants are reasonably likely to move toward and reach such water well or wellfield." Three zones inside the WHPA are defined (Figure 3.2):

PLAN VIEW

Figure 3.2 : Relation between the zone of influence (ZOI), the zone of travel (ZOT) and the zone of contribution (ZOC) (from EPA, 1994).

1) the zone of influence (ZOI) is the distance from the well where changes in the ground water surface can be measured or inferred as a result of pumping; 2) the zone of travel (ZOT) defines an isochrone that indicates how long water or a contaminant will take to reach a well from a point within the zone of contribution; 3) the zone of contribution (ZOC) is an area containing all the ground water that may flow toward a pumping well over an infinite period of time (EPA, 1994). According to the new *Regulation respecting groundwater catchment*, the Ministère de l'Environnement du Québec (MENVQ, 2002) defines two travel time for the ZOT depending of the type of the contamination. The ZOT is defined as a distance from the well equivalent to a time that is necessary for any bacteria (200 days) or viruses (550 days) to be degraded naturally. The time of travel used for WHPA delineation in this research, which was in effect at the time of the study, is 60 days.

The WHPA delineation methods vary in complexity. The methods that allow the easiest and least expensive integration of the hydraulic characteristics of the study area should be favoured. This paper presents two case studies where seven methods were applied to delineate wellhead protection areas in confined fractured rock aquifers.

3.2 PREVIOUS STUDIES

In 1991, the EPA published a document concerning WHPA methods in fractured rocks. Six methods were presented in order of increasing complexity : 1) arbitrary fixed radius; 2) calculated fixed radius; 3) vulnerability mapping; 4) flow-system mapping (with TOT calculations and analytical equations); 5) residence-time approach; 6) numerical flow/transport modelling. The study showed that flow-system mapping combined with TOT calculations and numerical modelling are the two approaches that offer the best protection for fractured aquifers.

Bair and Roadcap (1992) and Marquis and Stewart (1992) both made comparative studies of WHPA delineation in fractured carbonate aquifers using flow models : 1) semianalytical (DREAM/WHPA); 2) analytical (CAPZONE/GWPATH); 3) numerical (MODFLOW/MODPATH). Based on the predictive accuracy of the three groundwater flow models, the CAPZONE flow model produced predictions nearly as accurate as those of MODFLOW and at a level of effort, after the field data are synthesised into a conceptual model, that is considerably less (Bair and Roadcap, 1991). The results from the modelling suggest that, in complex hydrogeologic environments, the semi-analytical flow model typically fails to incorporate the major features of flow systems. Therefore, the model has a greater amount of predictive error than analytical or numerical flow models (Marquis & Stewart, 1992).

Paradis (2000) made a comparative study of methods for WHPA delineation in unconfined granular aquifers of the Laurentian Piedmont in Quebec (Portneuf area). The methods compared include the calculated fixed radius, infiltration equation, uniform flow

equation, time of travel (TOT) calculations (Bear and Jacob, 1965; Darcy's Law), hydrogeological mapping (EPA, 1991), 3A2E hybrid method (Paradis, 2000), WHAEM semi-analytical model (Strack *et al.*, 1994; Haitjema *et al.*, 1994) and MODFLOW/-MODPATH numerical model (McDonald and Harbaugh, 1988). The comparative study showed that the hybrid method gives the best results for both travel (ZOT) and contribution zones (ZOC). However, it was suggested that this method should be used as a first approximation as it doesn't take directly into account the groundwater flow. For a better precision in delineating wellhead protection areas, hydrogeological mapping and numerical modelling were favoured.

3.3 METHODOLOGY

This section includes a description of the methodology used to characterise the hydraulic properties of the fractured rock aquifer, the selection of the WHPA methods and the procedure for comparison and validation of each delineation method in the studied areas of Sainte-Anne-des-Plaines and Saint-Janvier.

3.3.1 INVESTIGATION OF THE HYDRAULIC PROPERTIES

In order to characterise hydraulic properties of the fractured rock aquifers in Sainte-Annedes-Plaines and Saint-Janvier areas, hydraulic tests including pumping tests, slug tests, packer tests and water table survey were conducted during summers 1999 and 2000.

Two seven days pumping test were conducted at the Sainte-Anne-des-Plaines and Saint-Janvier sites. Groundwater levels were continuously measured manually and with data loggers before, during and after the pumping period. Groundwater levels were obtained in more than 50 wells in each site at distances reaching 6 km. Drawdown and recovery data of groundwater during pumping tests were analysed with the Aquifertest 2.54 software (Roehrich, 1995). Hydraulic properties were calculated using the Theis (1935)

and Cooper-Jacob (1946) methods for confined aquifers and Gringarten-Witherspoon's (1972) method for confined fractured aquifers, which gave similar results. Representative aquifer hydraulic conductivity and storativity values were obtained as geometric mean of all values calculated at the observation wells.

Slug tests were conducted at the Sainte-Anne-des-Plaines and Saint-Janvier sites for evaluating aquifer hydraulic conductivity at the local scale. Two kinds of slug tests were applied. The test conducted at the Sainte-Anne-des-Plaines site consisted in injecting pressurised air in the well above the water to create a drawdown of the water level. Once it had stabilised, the pressure was then released and water level fluctuations were recorded by an automatic water level logger. At Saint-Janvier site, the approach consisted in using a bailer to provoke an instantaneous variation of the water level by adding or retrieving a volume of water. Hydraulic conductivity was obtained using the Bouwer and Rice (1976) method for confined aquifers and Van der Kamp (1976) and Uffink (1984) method for oscillatory response.

Packer tests were conducted in both sites. These tests allowed to measure the vertical variation of transmissivity in the wells and helped identify potential water bearing horizons of the rock sequence.

3.3.2 SELECTION OF WHPA METHODS

Bair and Roadcap (1992) define the most appropriate flow model for capture zones delineation as the one which simplifies the flow system as much as possible while still preserving the geological and hydrologic characteristics of the flow system.

Methods of delineation are divided in two categories : zone of travel and zone of contribution. Based on previous studies and a literature review, seven methods were selected. The methods range from simple approaches to complex computer models and include the calculated fixed radius (cylinder method), uniform flow equation, time of

travel (TOT) calculations, 3A2E hybrid method, flow system mapping, analytical (CAPZONE) and numerical (MODFLOW) models (Table 3.1).

DELINEATION METHODS	CLASSIFICATION	ZONE
Calculated fixed radius (EPA, 1994)	Simple calculations	Travel
Uniform flow equation (Todd, 1980)	Simple calculations	Contribution
TOT (Bear and Jacob, 1965)	Simple calculations	Travel
3A2E Hybrid method (Paradis, 2000)	Combined methods	Travel and Contribution
Flow system mapping (EPA, 1991)	Hydrogeologic mapping	Contribution
CAPZONE/GWPATH (Bair <i>et al.</i> , 1991)	Analytical model	Travel and Contribution
MODFLOW/MODPATH (McDonald and Harbaugh, 1988)	Numerical model	Travel and Contribution

Table 3.1 : Selected methods for travel and contribution zones.

3.3.3 METHOD COMPARISON PROCEDURE

Two methods have been chosen as most representative to the validation of the applied WHPA methods enumerated in section 3.3.2. For the zone of contribution, flow system mapping is chosen as the standard method because it is based on a detailed survey of the site including water levels measurements and identification of hydraulic boundaries. For the zone of travel, the most precise delineation method is the numerical model (MODFLOW/MODPATH) because it allows the best integration of hydraulic, geologic and hydrogeologic characteristics of the study area (Paradis, 2000). The comparative

study for the zone of contribution was concentrated in the recharge zone which is the most vulnerable part of the aquifer. It is a sensitive area of the aquifer to contamination knowing that it is not naturally protected with an impermeable layer.

3.4 SITES CHARACTERISATION

A detailed description for the Sainte-Anne-des-Plaines (section 3.4.1) and Saint-Janvier (section 3.4.2) sites follows. It includes for each studied area the geology, the hydrogeology and the hydraulic properties.

3.4.1 SAINTE-ANNE-DES-PLAINES

3.4.1.1 Geology

The bedrock geology (Figure 3.3) consists of sedimentary rock formations such as dolomite, limestone and shale (Rocher *et al.*, 2001). These Ordovician rocks are part of the Beekmantowm, Chazy and Trenton, and Black River Groups respectively. Regionally, the Quaternary surficial deposits (Hamel, 2002) consist of, from above : sand (0-5 m thick), clay (0-18 m) and a non-continuous layer of till (0-3 m) overlying the bedrock (Figure 3.4). Two important production wells are part of the current site : P8 well where a pumping test was conducted at a discharge rate of 2.3×10^{-2} m³/s and the Barrette well (4.4×10^{-2} m³/s) that supplies water to nearly 13 000 residents. At the local scale, the pumping well (P8), 19.5 m deep, intercepts the Chazy Group. The stratigraphy is as follows, from surface : 9.4 m of clay, 1.5 m of till, 5.8 m of fractured rocks and 2.7 m of solid rock. The well is screened over 4.9 m from the bottom. The Barrette municipal well is located 1890 m south-west of P8 well and is drilled 25.3 m deep in the Beekmantown Group. From the surface, the stratigraphy consists of 16.8 m of clay, 4.6 m of sand and 3.9 m of till/fractured rock dolomite.

Figure 3.3 : Geological map of Ste-Anne-des-Plaines (Rocher et al., 2001).

Figure 3.4 : Surficial deposits map of Ste-Anne-des-Plaines (from Hamel, 2002).

3.4.1.2 Hydrogeology

The aquifer exploited by the municipality of Sainte-Anne-des-Plaines consists of highly fractured rocks in the first meters of the limestone sequence and till which also plays a role in the groundwater flow. The hydraulic conductivity of the rock matrix is small. Therefore, water travels preferentially through fractures (secondary porosity). Regionally, the aquifer is confined by a 11 to 18 m layer of clay. The recharge zone is located approximately 5 km north-west of the municipal pumping well, where bedrock outcrops or is overlain by a fine permeable till layer less than 5 m thick (Figure 3.5). Streams in the area have no hydraulic contact with the aquifer due to the presence of the clay layer. Groundwater flows from the north-west to the south-east direction (Figure 3.6) with a hydraulic gradient averaging 0.003. The aquifer is hydraulically bounded to the north by the Canadian Shield where transmissivity of the Precambrian rock is much smaller ($3.5x10^{-7}$ m²/s according to Nastev, 2001). Packer tests showed very low transmissivity at a depth of 75 m, which is assumed to be the lower boundary of the aquifer.

Figure 3.5 : Cross section (NW-SE) in the groundwater flow direction at the Ste-Anne-des-Plaines site.

Figure 3.6 : Dynamic potentiometric map of Ste-Anne-des-Plaines.

3.4.1.3 Hydraulic Properties

The pumping rate at P8 well, where the pumping test was conducted, was 2.3×10^{-2} m³/s for a non-stop period of 168 hours (approximately 7 days). Then, recovery was monitored for an equivalent period of time : 159.5 hours. An average hydraulic conductivity value of 4.5×10^{-3} m/s and a storativity of 9.6×10^{-4} were obtained from the pumping test conducted at the P8 well (Figure 3.7). The low storativity value indicated that the aquifer is confined. The hydraulic conductivity is relatively high and is comparable to gravel aquifers. The Sainte-Anne-des-Plaines aquifer is thus an excellent groundwater conductor. Slug tests were conducted at the P08 and P9 wells, located at 3.3 m and 79 m from pumping well P8 respectively. The average hydraulic conductivity from the two slug tests was 7.8×10^{-4} m/s which is six times less than the one obtained by the pumping test. This can be explained by local variations of the aquifer permeability which is function dependant of the fractures density and rock porosity.

Figure 3.7 : Average hydraulic property values from pumping and slug tests conducted at the Ste-Anne-des-Plaines site.

Figure 3.8 : Transmissivity profile of the P9 well at the Ste-Anne-des-Plaines site (from packer test at 3.7 m intervals represented by the grey rectangles).

Figure 3.8 shows the transmissivity profile at the P9 well. Three main peaks suggest important transmissivities at 40 m (21 m from surface), 21 m and 9 m elevations, ranging from $3x10^{-4}$ m²/s to $1x10^{-3}$ m²/s for 3.7 m packer intervals but are still low when compared to pumping and slug tests. The first meters of the transmissivity profile of the aquifer were impossible to measure due to the casing of the well. The first highly fractured and altered meters of the aquifer are considered to contribute the most to groundwater flow. Figure 3.8 shows that values of transmissivity from packer tests tend to vary more than those of slug tests or pumping tests because they represent values at the fracture scale in one well.

3.4.2 SAINT-JANVIER

3.4.2.1 Geology

The bedrock geology (Rocher *et al.*, 2001) consists of dolomitic sedimentary rocks (Figure 3.9). The Ordovician formations of Beauharnois and Theresa found at Saint-Janvier are from the Beekmantown Group. Regionally, the Quaternary surface deposits (from Hamel, 2002) consist of sand (0-5 m), clay (0-25 m) and till (0-3 m) (Figure 3.10). Two wells are part of the current WHPA comparative study at the Saint-Janvier site : the STJA1 well where a pumping test was conducted at a discharge rate of 5.8×10^{-3} m³/s and the Charles well (2.4×10^{-2} m³/s) that supplies water to over 8 000 residents.

At the local scale of the pumping well (STJA1), the bedrock is part of the Beauharnois Formation. The well is 73.1 m deep and the stratigraphy is as follow, from surface : 1.5 m of medium sand, 13.1 m of clay, 1.2 m of till and 57.3 m of dolomite. The well is open from a depth of 15.5 m down to the bottom. The Charles municipal well is located 1630 m south-west of STJA1 well. The well is drilled 82.3 m deep in the Beekmantown Group (Beauharnois Formation). From the surface, the stratigraphy consists of 7.3 m of clay, 3.2 m of till/fractured rock and 71.8 m of dolomite.

Figure 3.9 : Geological map of St-Janvier (Rocher et al., 2001).

Figure 3.10 : Surficial deposits map of St-Janvier (from Hamel, 2002).

The aquifer at the Saint-Janvier site consists of highly fractured rocks in the first meters of the dolomite and the overlying permeable till layer. Till and fractured rocks have similar hydraulic conductivities and form a single hydrogeological unit. The aquifer is confined with a thick layer of clay at the pumping site. However, the clay layer thickness gradually decreases towards north and north-west and is absent at a 1.5 km distance from the pumping well. The recharge zone is located in that area where a thin layer of till (less than 5 m) covers the rock aquifer (Figure 3.11). This same area corresponds also to a local groundwater divide. Vertically, it is supposed that the aquifer is bounded at 90 m depth , where packer tests showed very low transmissivity (Figure 3.14). The Mascouche River crosses the municipality from west to east and is not hydraulically connected to the aquifer because of the presence of the clay layer. Groundwater flows regionally from north-west to south-east with a hydraulic gradient of 0.0036, and from west to east at the pumping well scale (Figure 3.12).

Figure 3.11 : Cross section (W-E) in the groundwater flow direction at the St-Janvier site.

Figure 3.12 : Dynamic potentiometric map of St-Janvier.

3.4.2.3 Hydraulic Properties

The pumping test was conducted for a period of 171 hours with an average pumping rate of 5.8×10^{-3} m³/s. Measurements of the water level recovery were taken over a period of 148 hours. For the hydraulic conductivity, an average value of 3.9×10^{-4} m/s was obtained, and 2.7×10^{-3} for storativity (Figure 3.13). The hydraulic conductivity value is high for a fractured aquifer and is equivalent to a gravel aquifer, though one order of magnitude less than what is found for the Sainte-Anne-des-Plaines aquifer. The dolomitic aquifer is also considered a good groundwater conductor. Four slug tests were conducted in the pumping well STJA1 and the observation wells STJA2, STJA3 and STJA4 located at distances less than 100 m from the pumping well. The average hydraulic conductivity obtained is 1.8×10^{-4} m/s which is two times less than what is obtained from pumping test. This can be explained by local variations of the aquifer permeability. Slug tests are used as a first approximation of the aquifer hydraulic properties and must remain a complement for pumping tests.

Figure 3.13 : Average hydraulic property values from pumping and slug tests conducted at the St-Janvier site.

Figure 3.14 : Transmissivity profile of the STJA1 well at the St-Janvier site (from packer test at 3.7 m intervals represented by the grey rectangles).

Figure 3.14 shows the transmissivity profile of STJA1 pumping well determined with packer tests. Transmissivity has a general downward trend with depth. However, three main peaks show important transmissivities at 48 m (21 m from surface), 40 m and 3 m elevation, ranging from 7.5×10^{-5} m²/s to 2.2×10^{-4} m²/s for a packer spacing of 3.7 m. These three peaks represent potential important pathways for groundwater flow.

3.5 WHPA ANALYSIS

This section includes the description of the WHPA methods applied at the Sainte-Annedes-Plaines and Saint-Janvier sites, the parameters used for their application and the comparison results. For complement information concerning the application of the WHPA methods, see appendix K.

3.5.1 WHPA METHODS DESCRIPTION AND APPLICATION

The seven methods applied at the Sainte-Anne-des-Plaines and Saint-Janvier sites are : 1) calculated fixed radius; 2) uniform flow equation; 3) time of travel; 4) hybrid method; 5) flow system mapping; 6) CAPZONE; 7) MODFLOW. The results of their application are shown in section 3.5.2. The description of all these methods follows. For the first five methods, the parameters used are presented together in table 3.2. The parameters are expressed in meters and days to simplify the values and because the time of travel for the ZOT is in days. CAPZONE and MODFLOW methods require more complex parameters that are defined respectively in tables 3.3, 3.4 and 3.5. The recharge values in table 3.2 come from the evaluation done by Hamel (2002). The values correspond to the total annual precipitation that falls within the ZOC delineated with the flow system mapping method. The porosity value was determined from the stratigraphy at each well where the value for the fractured rock/till zone is 19.5 % (Landry and Mercier, 1992) and for the less fractured zone, 0.14% (Sainte-Anne-des-Plaines) and 0.11 % (Saint-Janvier). The proportion of each zone in the open interval for each well gives the resulting porosity. Transmissivity and hydraulic conductivity values come from the pumping tests results.

Parameter	Ste-Anne-des-Plaines		St-Janvier	
Well	P8	Barrette	STJA1	Charles
Pumping rate Q (m ³ /day)	1987.2	3815.3	504	2106.7
time of travel t (day)	60	60	60	60
Open interval/Saturated thickness H/b (m)	4.87	2.79	57.62	71.3
Porosity <i>n</i>	0.088	0.1207	0.0051	0.0051
Transmissivity T=K*b(m ² /day)	1174.9	1174.9	100.6	100.6
Hydraulic conductivity K (m/day)	241.3	421.2	1.75	1.41
Hydraulic gradient <i>i</i>	0.0029	0.0029	0.00356	0.00356
Recharge <i>R</i> (mm/year)	46.14	58.95	58.11	78.94
Upstream limit (m)	7790	7430	3700	3870
Downstream limit (m)	177.4	298.2	130	520

Table 3.2 : Parameter values used in the calculations of the WHPA for the calculated fixed radius, the uniform flow equation, the time of travel, the hybrid and the flow system mapping methods.

3.5.1.1 Calculated Fixed Radius

This method, known as the cylinder method, uses a volumetric flow equation to calculate a fixed radius r around a well through which water flows at a specified travel time. The basic equation is :

$$r = \sqrt{\frac{Qt}{n\pi H}} \tag{1}$$

This method is most appropriate for a strictly confined aquifer with no vertical leakage from the overlying confining bed. It also requires a negligible regional gradient (< 0.001) as steeper gradients result in a non circular zone of travel.

3.5.1.2 Uniform Flow Equation

This method was developed by Forchheimer in 1930. It assumes a uniform and twodimensional aquifer that approximates a porous medium. The general equation for the boundary of the region producing inflow to a pumping well is (Todd, 1980) :

$$\frac{-y}{x} = \tan\left[\left(\frac{2\pi Kbi}{Q}\right)y\right]$$
(2)

where x and y are spatial co-ordinates. Three equations are derived from equation 2 to calculate the downstream limit (A), the maximum width of the ZOC upstream (L) and the width of the ZOC at the well (B) :

$$A = \frac{Q}{2\pi K bi}$$
(3)

$$L = \frac{Q}{Kbi}$$
(4)

$$B = \frac{L}{2}$$
(5)

The uniform flow equation applies to confined aquifers and it does not account for leakage nor aquifer heterogeneity.

3.5.1.3 Time of Travel (TOT)

This method is used for delineating a zone of transport with sloping regional potentiometric surface (Bear and Jacob, 1965). For a specified time t, a d point is positioned up gradient from the pumping well, on an axis parallel to groundwater flow. The equation is as follows :

$$t = \frac{nd}{Ki} - \frac{Qn}{2\pi K^2 i^2 b} \ln \left[1 + \left(\frac{2\pi K bid}{Q} \right) \right]$$
(6)

The d point determines a circle ark radius where the pumping well represents the centre and the zone of contribution (ZOC) calculated by the uniform flow equation, the lateral limits. The equation does not consider any hydrodynamic dispersion nor retardation processes.

3.5.1.4 Hybrid Method

This method is a combination of simple methods and flow system mapping (Paradis, 2000). An ellipse of a calculated surface area is drawn where one of its axis is oriented in the same direction as groundwater flow, which its extremities correspond to the upstream and downstream limits. The downstream and upstream limits are determined using equations 3 and 6 for the ZOT. For the ZOC, the flow system mapping method is used. To determine the total surface area of the ellipse, the cylinder (equation 1) and the infiltration equations are used for the ZOT and the ZOC respectively. The infiltration equation is as follows :

$$\mathbf{r}^2 = \frac{Q}{\pi R} \tag{7}$$

3.5.1.5 Flow System Mapping

Hydrogeologic mapping identifies the physical and hydrological features that control groundwater flow. Physical boundaries can include fault-block walls, geologic contacts forming the limits of the aquifer, and topographic features that may act as groundwater divides. Hydrologic boundaries include rivers, lakes and channels (EPA, 1991). The method uses these boundaries to delineate a zone of contribution where flow paths intercept the well over an infinite period of time.

3.5.1.6 CAPZONE/GWPATH

Bair *et al.* (1991) developed an analytical model that can be used to build representative groundwater flow models for two-dimensional flow systems characterised by isotropic and homogeneous confined, leaky-confined, or unconfined flow conditions. CAPZONE computes drawdown distributions at the nodes of a user-defined grid in confined aquifers or unconfined aquifers using the Theis equation (Theis, 1935) and in leaky-confined aquifers using the Hantush-Jacob equation (Hantush and Jacob, 1954). The drawdown distribution can be superimposed on a background non-pumping potentiometric surface to include the effects of a uniform or a non-uniform regional flow field. The use of GWPATH (Shafer, 1990), a contouring program, is necessary for plotting the capture zones.

Parameter	Parameter Ste-Anne-des-Plain		St-Ja	nvier	
Well	P8	Barrette	STJA1	Charles	
Type of aquifer		Leaky C	onfined		
Equation		Hantush-Ja	.cob (1954)	
Pumping rate Q (m ³ /day)	1987.2	3816	504	2102.4	
Transmissivity T (m²/day)	1	175	2	08	
Storativity	9.59x10 ⁻⁴		8x	10 ⁻⁴	
Vertical hydraulic conductivity <i>Kv</i> (m/day)	y) $9x10^{-5}$ $9x10^{-5}$		10 ⁻⁵		
Confining bed thickness b (m)	9.4 13.1		3.1		
Effective porosity <i>n</i> (%)	19 19		19		
Recharge <i>R</i> (m ³ /day/well)	205.06 -		-		
Hydraulic gradient <i>i</i>	0.0018 0.002		002		
Head at grid origin <i>h</i> (m)	49.5		6	69.5	
Flow direction (°)	275		. 3	50	
Number of rows	63		43		
Number of columns	70 47		47		
Increments (m)	150		1	50	

 Table 3.3 : Hydrogeological parameters values for ZOT and ZOC delineation using the CAPZONE/GWPATH model.

The values of the hydrogeological parameters used in the CAPZONE/GWPATH calculations are shown in the table 3.3. The use of the CAPZONE analytical model implies a simplification of the hydrogeological conditions of the study area. The Sainte-Anne-des-Plaines and Saint-Janvier aquifers are confined with sand and clay layers. These units cannot be included in the model. They are substituted by a confining layer where the vertical hydraulic conductivity (Kv) and thickness (b) are known. The Kv value of the clay that comes from literature was used for both sites. To take into account the vertical leakance, the Hantush-Jacob (1954) equation is used to compute drawdown in the model. The number of rows and columns used to define the grid are different in both sites because it depends on the size of the area to be modelled (see Table 3.3). The rows and columns for both sites are regularly spaced with an increment of 150 m. Transmissivity and storativity values come from the pumping tests conducted at both sites.

To simulate the recharge zone at the Sainte-Anne-des-Plaines site, 43 injection wells were included in the model. The total injection flux is equivalent to the aquifer annual recharge (205.06 m³/day/well equals an annual recharge of 270 mm/year). To calibrate the Sainte-Anne-des-Plaines model, the recharge parameter has fluctuated between 200 mm/year and 400 mm/year (all the other parameters values remaining the same) to finally reach 270 mm/year. The calibration of the Saint-Janvier model was done by adjusting the transmissivity and storativity values because recharge was not simulated for this model. Therefore, they have been modified from their initial values cited in table 3.2 but have remained inside the interval values shown in figure 3.13.

The modelling was done in steady-state conditions to determine the WHPA of the wells for a time of travel of 60 days (ZOT) and 20 years (ZOC). The drawdown distribution result was superimposed on a uniform potentiometric surface computed by CAPZONE. The following parameters where used to establish the uniform potentiometric surface : the hydraulic gradient i, the head h at the point origin of the grid and the flow direction values (Table 3.3).

3.5.1.7 MODFLOW/MODPATH

MODFLOW (McDonald and Harbaugh, 1988) is a three-dimensional finite-difference flow model based on discretization of the flow domain into a grid, which solves the governing flow equations at nodal points in the grid. The model can simulate steady-state or transient flow; unconfined, confined and leaky-confined conditions; discharge to or from streams; pumping or injection from wells; spatial variations in hydraulic parameters; and specified-head, specified-flux and head-dependent-flux boundary conditions. MODPATH (Pollack, 1989) is used for capture zone delineations. It computes forwardtracked and reverse-tracked pathlines for specified time periods within the velocity field computed using the cell-by-cell fluxes previously calculated by MODFLOW.

Because the application of MODFLOW is complex, only a general description of the parameters are presented in this section. Refer to appendix K for a detailed description and application. The values of the hydraulic parameters used in the MODFLOW model for Sainte-Anne-des-Plaines and Saint-Janvier sites are presented in tables 3.4 and 3.5 respectively.

Devemeters	Layer 1		Layer 2		Layer 3	
Farameters	Zone 1	Zone 2	Zone 1	Zone 2	Zone 1	Zone 2
Hydraulic conductivity K (m/s)	4.7×10^{-3}	1.4×10^{-3}	$2x10^{-7}$	6.9×10^{-8}	4.0×10^{-9}	1.4x10 ⁻⁹
Transmissivity T (m ² /s)	1.4×10^{-2}	4.2×10^{-3}	1.0×10^{-5}	3.5×10^{-6}	1.0×10^{-7}	3.5×10^{-8}
Specific storage Ss	3.2×10^{-5}	3.2×10^{-5}	1.6x10 ⁻⁵	1.6x10 ⁻⁵	3.2×10^{-6}	3.2×10^{-6}
P8 well pumping rate Q (m ³ /s)	2.3x	10^{-2}	1.7x	×10 ⁻⁵	1.7x	10 ⁻⁷
Barrette well pumping rate Q (m ³ /s)						
time step 1 (0-900 min.)	4.4x	$x10^{-2}$	3.2x	×10 ⁻⁵	3.2x	:10 ⁻⁷
time step 1 (900-1350 min.)	3.3x	$x10^{-2}$	2.4x	×10 ⁻⁵	2.4x	10 ⁻⁷
time step 1 (1350-5700 min.)	5.1x	10^{-2}	3.7x	×10 ⁻⁵	3.7x	10^{-7}
time step 1 (5700-10080 min.)	4.4x	×10 ⁻²	3.2x	x10 ⁻⁵	3.2x	10 ⁻⁷
Porosity n (%)	19	9.5	0.	14	0.	14
Till zone recharge (mm/year)			42	20		
Clay zone recharge (mm/year)				8		

Table 3.4 : Hydraulic parameters used in the numerical model of Sainte-Anne-des-Plaines.

Parameters	Layer 1	Layer 2	Layer 3
Hydraulic conductivity K (m/s)	6.7x10 ⁻⁴	2.0x10 ⁻⁸	$4.0 \mathrm{x} 10^{-10}$
Transmissivity T (m²/s)	2.0×10^{-3}	1.0x10 ⁻⁶	1.0x10 ⁻⁸
Specific storage Ss	1.0x10 ⁻⁴	5.0x10 ⁻⁵	1.0x10 ⁻⁵
STJA1 well pumping rate <i>Q(</i> m ³ /s)	5.8×10^{-3}	5.0x10 ⁻⁶	5.0x10 ⁻⁸
Charles well pumping rate Q (m ³ /s)	2.4×10^{-2}	2.1x10 ⁻⁵	2.1x10 ⁻⁷
Porosity n (%)	19.5	0.11	0.11
Till zone recharge (mm/year)			
South-east		63	
Centre-south	194		
Centre-north	7.9		
Norh-east	73.6		
Clay zone recharge (mm/year)	21.6		

Table 3.5 : Hydraulic parameters used in the numerical model of Saint-Janvier.

The Sainte-Anne-des-Plaines and Saint-Janvier models are divided in three layers of different transmissivities identified by packer tests. The first layer is 3 m thick and includes the most transmissive units : the permeable till and the highly fractured rock. The second and third layer, 50 m and 25 m thick respectively, represent less fractured rocks. For the Sainte-Anne-des-Plaines site only, the three layers are divided in two zones which represent the permeability contrast between the rocks of the Carillon Formation associated with the Chazy Group (Zone 1), and the Beauharnois Formation (Zone 2) (Figure 3.3). The grids of both sites are oriented with the geographical north. The smallest cells of the grids are centered on the wells with a 100 m by 100 m dimension. From these points, the cells dimensions increase by 10 % to attain a maximum size of 500 m by 500 m. The Sainte-Anne-des-Plaines grid has 57 columns and 51 rows and the Saint-Janvier one has 40 columns and 47 rows. For a full description of the models hydraulic limits, see appendix K. The sand and clay layers present in the field were not directly added to both models. They were substituted instead by an equivalent recharge that was imposed on the first layer surface. The recharge values were estimated from the study by Hamel (2002). The till zones have higher recharge values

whereas the clay zones obtain the lowest (Figures 3.4 and 3.10). The recharge zone in the till was divided in four sections at the Saint-Janvier site to take into account the recharge variations over this area (Table 3.4). Values presented in tables 3.4 and 3.5 are calibrated for the transient simulation for a pumping period of seven days. Due to the pumping rate fluctuations of the Barrette well at Sainte-Anne-des-Plaines during the pumping of P8 well, the discharge rate was divided in four time steps as described in Table 3.4. To delineate the capture zones for each well with the MODPATH program, the model was simulated in steady-state conditions at each site.

3.5.2 WHPA COMPARISON

This section compares the results of the different methods used for the delineation of the wellhead protection areas, for the travel (ZOT) and the contribution zones (ZOC). As described in section 3.3.3, the MODFLOW and the flow system mapping methods are used as standards for comparison, for the ZOT and the ZOC respectively.

3.5.2.1 Sainte-Anne-des-Plaines

Delineation methods have been applied for the two municipal wells of Sainte-Anne-des-Plaines : P8 and Barrette. For the ZOT, results are shown in figure 3.15 and table 3.6. For the ZOC, results from the methods applied at the P8 and Barrette wells are presented in figures 3.16 and 3.17 respectively, and in table 3.7.

Zone of Travel

The area delineated using the calculated fixed radius equation tends to overprotect downstream and underprotect upstream areas, especially for the P8 well. The perimeter defined around this well covers 77 % of the area calculated by MODFLOW/MODPATH.

However, for the Barrette well, with 96 % of common area, the calculated fixed radius is the method that allows the best groundwater protection. The area calculated by the TOT method is the one that overprotects the most upstream with 85 % and 118 % for P8 and Barrette wells respectively. The hybrid method does not give the best results although obtaining reasonable values over 80 % for both wells. The areas delineated overprotect upstream as does the TOT method. The main reason is that the hybrid method uses the TOT calculations to fix the upstream limit. For the P8 well, CAPZONE is the most accurate method, covering entirely the standard method area. For the Barrette well, on the contrary, this method is the least precise (79 %). Results from using the CAPZONE method are therefore not consistent when applied in different parts of the aquifer.

Figure 3.15 : Delineation of zones of travel (ZOT) for P8 and Barrette wells at the Ste-Annedes-Plaines site. The zones delineated with the comparison standard (Modflow) are outlined with grey shading.

Table 3.6 : Comparative study results for the zone of travel (ZOT) for P8 and Barrette wells. The basis of comparison is Modflow/Modpath and the best method is in italic.

Ste-Anne-des-Plaines	Zone of Travel (ZOT)			
Barrette well	Common area %	Unprotected area %	Overprotected area %	
Modflow/Modpath	100	0	0	
Hybrid method	86	14	78	
TOT (Bear & Jacob)	85	15	118	
Calculated fixed radius	96	4	69	
Capzone/Gwpath	79	21	10	

Ste-Anne-des-Plaines	Zone of Travel (ZOT)			
P8 well	Common area %	Unprotected area %	Overprotected area %	
Modflow/Modpath	100	0	0	
Hybrid method	80	20	47	
TOT (Bear & Jacob)	86	14	85	
Calculated fixed radius	77	23	51	
Capzone/Gwpath	100	0	74	

Zone of Contribution

The uniform flow equation protects the least the fractured rock aquifer for both wells as shown in figures 3.16 and 3.17. Moreover, the vulnerable part of the aquifer (the vulnerable zone is the intersection between the ZOC of the standard method and the recharge zone) is absolutely not covered. This method does not take into account the spatial variation of the groundwater flow system and mainly explains the poor performance of this method. Numerical modelling also fails in attempting to protect correctly the vulnerable zone. Although taking approximately the same shape as the standard method near the wells, the areas delineated with MODFLOW/MODPATH deviate from the vulnerable zone toward the west until they reach the northern limit of the aquifer (Canadian Shield). CAPZONE shows better results than the numerical model even though it is less complex. In fact, areas delineated with this analytical model cover the vulnerable zone 35 % to 122 % greater than MODFLOW/MODPATH. Among all methods, the hybrid method is the most efficient for protecting the vulnerable zone of the most efficient for protecting the vulnerable zone of the most efficient for protecting the vulnerable zone of the most efficient for protecting the vulnerable zone of the most efficient for protecting the vulnerable zone of the most efficient for protecting the vulnerable zone of the fractured rock aquifer (Table 3.7).

Figure 3.17 : Delineation of zones of contribution (ZOC) for Barrette well at Ste-Anne-des-Plaines site. The flow standard method is outlined with grey shading. The dark grey shading shows where the standard method overlaps the recharge zone (vulnerable zone). Table 3.7 : Comparative study results for the zone of contribution (ZOC) for P8 andBarrette wells. The basis of comparison is the flow system mapping and the selected bestmethod is in italic.

Ste-Anne-des-Plaines	Zone of Contribution (ZOC)				
P8 well	Common area %	Unprotected area %	Overprotected area %	Vulnerable Zone %	
Flow system mapping	100	0	0	100	
Hybrid method	97	3	112	99	
Modflow/Modpath	64	36	23	27	
Uniform flow equation	31	69	30	0	
Capzone/Gwpath	83	17	8	60	

Ste-Anne-des-Plaines	Zone of Contribution (ZOC)				
Barrette well	Common area %	Unprotected area %	Overprotected area %	Vulnerable Zone %	
Flow system mapping	100	0	0	100	
Hybrid method	98	2	100	100	
Modflow/Modpath	70	30	16	54	
Uniform flow equation	38	62	29	7	
Capzone/Gwpath	83	17	3	73	

Classification of WHPA Methods

Five methods were applied for each well at the Sainte-Anne-des-Plaines site for the zone of travel (ZOT) and for the zone of contribution (ZOC). These methods vary in complexity. Complex methods are not necessarily the most accurate. That is the case for the zone of travel where the calculated fixed radius (for the Barrette well) and the CAPZONE/GWPATH (for the P8 well) methods are the most accurate before the hybrid method which incorporates the calculated fixed radius equation (Table 3.8). The same conclusion is found for the zone of contribution. In this case, the hybrid method provides the best results, protecting over 99 % of the vulnerable zone for both wells tested. The numerical model, MODFLOW/MODPATH, comes in third place, behind the hybrid and the CAPZONE/GWPATH methods which are less complex. The comparative study easily proves that simpler methods can ensure a realistic determination of wellhead protection areas.

SAINTE-ANNE-DES-PLAINES					
ZONE OF TRAVEL ZONE OF CONTRIBUTION					
MODFLOW/MODPATH (standard method)	ODFLOW/MODPATH FLOW SYSTEM MAPPING (standard method) (standard method)				
1. CAPZONE/GWPATH 1. Hybrid method					
2. Calculated fixed radius 2. CAPZONE/GWPATH					
3. TOT calculations (Bear & Jacob) 3. MODFLOW/MODPATH					
4. Hybrid method	4. Uniform flow equation				

 Table 3.8 : Classification of the methods applied for the zone of travel and the zone of contribution at Ste-Anne-des-Plaines.

3.5.2.1 Saint-Janvier

This section presents the results for the different methods used for the delineation of the wellhead protection areas of the travel and the contribution zones. Delineation methods have been applied at two wells of the Saint-Janvier municipality : the STJA1 and Charles wells.

Zone of Travel

The area delineated using the calculated fixed radius method tends to overprotect downstream and underprotect upstream for both wells, especially in the case of the STJA1 well (Figure 3.18). In fact, for this well, this method covers the least the area delineated by the standard method with a common area of 92 % (Table 3.9). The match between this method and the standard is still quite good. For Charles well, this method gives the best results, with the hybrid method, covering entirely the zone to be protected. For the STJA1 and Charles wells, the TOT method is the most overprotective method, but

protects entirely the zone of travel (ZOT) defined by the standard method. Although CAPZONE method comes in first place with TOT calculations for best score in common area comparison for STJA1 well, it represents the most accurate method because it overprotects less the aquifer. For Charles well, CAPZONE under protects pretty much downstream and that places this method last. This method is thus quite inconsistent in its accuracy. The hybrid method represents, as the calculated fixed radius method, the best fit for Charles well.

Figure 3.18 : Delineation of zones of travel (ZOT) for STJA1 and Charles wells at St-Janvier site. The zones delineated with the comparison standard (Modflow) are outlined with grey shading.

St-Janvier	Zone of Travel (ZOT)				
STJA1 well	Common area %	Unprotected area %	Overprotected area %		
Modflow/Modpath	100	0	0		
Hybrid method	96	4	41		
TOT (Bear & Jacob)	100	0	127		
Calculated fixed radius	92	8	44		
Capzone/Gwpath	100	0	102		

Table 3.9 : Comparative study results for the zone of travel (ZOT) for STJA1 and Charles wells. The basis of comparison is Modflow/Modpath and the best method is in italic.

St-Janvier	Zone of Travel (ZOT)				
Charles well	Common area %	Unprotected area %	Overprotected area %		
Modflow/Modpath	100	0	0		
Hybrid method	100	0	53		
TOT (Bear & Jacob)	100	0	94		
Calculated fixed radius	100	0	53		
Capzone/Gwpath	72	28	6		

Zone of Contribution

The uniform flow equation method fails to take into account for spatial variations of the groundwater flow. This is represented by the delineation of a rectilinear perimeter that passes beside the zone to be protected as it is the case for STJA1 well (Figure 3.19). For the Charles well, the area delineated by this method covers entirely the vulnerable zone but overprotects laterally the standard method area (Figure 3.20). MODFLOW provides, as the CAPZONE method, the worse results for the STJA1 well. In fact, only 1 % of the vulnerable zone is protected (Table 3.10). For the Charles well, good results are obtained with CAPZONE which covers the whole vulnerable zone. Concerning STJA1 well, opposite results are found with 53 % of common area with the whole standard area. Moreover, CAPZONE covers no part of the vulnerable area. For STJA1 well, the hybrid method is the most accurate for protecting the recharge zone. For the Charles well, even though CAPZONE is the most accurate method, the recharge zone.

Figure 3.20 : Delineation of zones of contribution (ZOC) for Charles well at St-Janvier site. The flow mapping standard method is outlined with grey shading. The dark grey shading shows where the standard method overlaps the recharge zone (vulnerable zone).

Table 3.10 : Comparative study results for the zone of contribution (ZOC) for STJA1 andCharles wells. The basis of comparison is the flow system mapping and the selected bestmethod is in italic.

St-Janvier	Zone of Contribution (ZOC)				
STJA1 well	Common area %	Unprotected area %	Overprotected area %	Vulnerable Zone %	
Flow system mapping	100	0	0	100	
Hybrid method	97	3	80	95	
Modflow/Modpath	62	38	71	1	
Uniform flow equation	90	10	208	73	
Capzone/Gwpath	53	47	173	0	

St-Janvier	Zone of Contribution (ZOC)				
Charles well	Common area %	Unprotected area %	Overprotected area %	Vulnerable Zone %	
Flow system mapping	100	0	0	100	
Hybrid method	98	2	33	95	
Modflow/Modpath	- 99	1	25	98	
Uniform flow equation	100	0	124	100	
Capzone/Gwpath	100	0	46	100	

Classification of WHPA Methods

For each well at the Saint-Janvier site, five methods were applied for the zone of travel and for the zone of contribution. The comparative study shows that simple methods can be accurate for delineating capture zones. This is the case for the zone of travel where the hybrid method hits first place for the Charles well, outclassing the CAPZONE method considered more sophisticated (Table 3.11). Conclusions are similar for the zone of contribution where the hybrid and the CAPZONE methods are the most precise methods for the STJA1 and Charles wells respectively. In fact, they overlay more than 95 % the vulnerable zone. For the Charles well, the hybrid method gives also good results with 95 % of common area with the vulnerable zone compared to CAPZONE that overlays 0 %This places the hybrid method in first place for the zone of for the STJA1 well. contribution. The MODFLOW method, considered very complex, finishes last behind simpler methods such as the hybrid and the CAPZONE methods. The comparative study demonstrates, as for Sainte-Anne-des-Plaines site, that with limited means it is possible to obtain a realistic determination of wellhead protection areas for the fractured aquifers in south-western Quebec.

 Table 3.11: Classification of the methods applied for the zone of travel and the zone of contribution at St-Janvier.

SAINT-JANVIER				
ZONE OF TRAVEL	ZONE OF CONTRIBUTION			
MODFLOW/MODPATH (standard method)	FLOW SYSTEM MAPPING (standard method)			
1. Hybrid method	1. Hybrid method			
2. CAPZONE/GWPATH	2. CAPZONE/GWPATH			
3. TOT calculations (Bear & Jacob)	3. Uniform flow equation			
4. Calculated fixed radius	4. MODFLOW/MODPATH			

3.5 CONCLUSION

This study permitted the application, the comparison and the validation of several WHPA methods. Two sites were thoroughly investigated : Sainte-Anne-des-Plaines and Saint-Janvier municipalities located 35 km north-west of Montreal.

Hydraulic tests were carried at each site to evaluate the fractured rock hydrogeological properties in confined conditions. Results from these tests show a relatively high hydraulic conductivity value. This is explained by the highly altered and fractured rock layer in the first meters of the aquifer associated with the overlying layer of permeable till. Both layers contribute to groundwater flow. Water levels measurements permitted the establishment of the potentiometric maps for the fractured rocks, thus giving a better understanding of the flow system. The main hydrological feature is the presence of a ground water divide located north-west of the Saint-Janvier site that corresponds to the highest points of the rock elevation. At the Sainte-Anne-des-Plaines site, the north-western limit of the groundwater flow system is represented by the permeability contrast between the sedimentary rocks of St-Lawrence Lowlands and the igneous/metamorphic

rocks of the Canadian Shield. The field works permitted a good evaluation of the hydrogeological conditions and a better understanding of the groundwater flow system in confined fractured rock aquifers.

Data collected from hydraulic tests were used for the delineation of wellhead protection areas. Seven methods were applied at the Saint-Janvier and Sainte-Anne-des-Plaines sites. The numerical modelling (MODFLOW/MODPATH) and flow system mapping were used as standard methods for the zone of travel (ZOT) and the zone of contribution (ZOC) respectively. The comparison and validation of the other WHPA methods were done against these two methods. For the ZOC (Table 3.12), the hybrid method showed best match because it represents the minimal information that is necessary to ensure a realistic delineation of wellhead protection areas. Actually, for both sites, more than 95 % of the vulnerable zone, located within the recharge zone, was covered. The hybrid method could contribute to the preservation of groundwater quality if contamination sources are managed within delineated protection areas. For the ZOT, the CAPZONE/GWPATH method covers best the 60 days travel time zone. However, it should be pointed out as well the good performance of the hybrid method which covers between 80 % and 100 % of the area defined with the standard method. All WHPA for the ZOT were delineated in the confined part of the aquifer which represent no potential contamination risks. Thus, for a travel time of 60 days, the establishment of a ZOT for protecting the ground water is not necessary. For both travel and contribution zones, the hybrid method gives always values of common area superior to 80 % for each well at both sites. The constant good results allow placing the hybrid method in first place for groundwater protection if only one method has to be applied. The comparative study shows that a relatively simple method can ensure a realistic delineation of a wellhead protection area when applied in the fractured rock aquifers of the St-Lawrence Lowlands. Since the hybrid method cannot take directly into account the groundwater flow direction, it should be used with precaution. In cases where the direction of the groundwater flow is unsteady, this method could fail to protect effectively the capture zone. Nevertheless, the hybrid method is far more precise than simple methods by the integration of more hydraulic parameters and less complex and expensive than numerical models.
SAINT-LAWRENCE LOWLANDS										
ZONE OF TRAVEL	ZONE OF CONTRIBUTION									
MODFLOW/MODPATH (basis of comparison)	FLOW SYSTEM MAPPING (basis of comparison)									
1. CAPZONE/GWPATH	1. Hybrid method									
2. Hybrid method	2. CAPZONE/GWPATH									
3. Calculated fixed radius	3. MODFLOW/MODPATH									
4. TOT calculations (Bear & Jacob)	4. Uniform flow equation									

Table 3.12 : Classification of methods for Saint-Lawrence Lowlands.

3.6 RECOMMENDATIONS

The recharge zone at the Saint-Janvier and Sainte-Anne-des-Plaines sites constitutes one of the entries for the water that supplies the regional aquifer. This zone must be carefully supervised because it is the most vulnerable part of the aquifer to surface contamination. Attention must also be paid to the whole zone of contribution for each well at both sites. Within the WHPA, human activities should be managed to prevent any potential contaminant to reach the groundwater, even where the aquifer is confined by a thick clay layer. In fact, contaminants could reach the aquifer along the casing of wells which were not properly installed or through the windows in the clay layer filled with coarser materials. Therefore, all abandoned wells should be cemented and verifications should be made to make sure that operational wells have been installed correctly. Such preventive measures could decrease the potential contamination risks but they don't invalidate the classical management practice by controlling the industrial and agricultural activities.

In order to raise the degree of confidence for the zone of travel standard method, comparison between time of transport obtained with numerical modelling (MODFLOW-/MODPATH) and time obtained by tracer tests is suggested. For the zone of travel, the CAPZONE/GWPATH method can be used as a first approximation of the area to be

protected. However, assuming that numerical modelling is more accurate, this method should be privileged for a detailed study. For the zone of contribution, the hybrid method gives excellent results with common area values higher than 95 %. This method should be favoured to delineate wellhead protection areas in territories where the hydrogeological context is not well known. The hybrid method, adapted in Quebec, was applied in unconfined granular aquifers by Paradis (2000). That study showed also excellent results using the hybrid method in Portneuf, Quebec. The methods mentioned above should be applied in other hydrogeological, geological and hydrological conditions in other aquifers to ensure their validity. It should be interesting to apply them in unconfined fractured rock aquifer contexts to see the influence of infiltration, associated with hydraulic limits, on the delineation of wellhead protection areas. Also, the methods should be tested in aquifers where fracturing and hydraulic conductivity are clearly inferior to what is found at the Sainte-Anne-des-Plaines and Saint-Janvier sites. These two parameters play an important role on the shape and size of wellhead protection areas and methods are therefore submitted to more variable conditions. To prevent groundwater contamination and to ensure a good long-term water supply quality, the establishment of a wellhead protection program is essential. This program, elaborated by EPA (1993), contains five steps :

- 1) Form a community planning team;
- 2) Define the land area to be protected;
- 3) Identify and locate potential contaminants;
- 4) Manage the wellhead protection area;
- 5) Plan for the future.

This study focused mainly on step 2. It helped identify the best method, the hybrid method, that should be applied for confined fractured rock conditions for WHPA delineation. These recommendations are tools that should be used and applied by municipalities to preserve the groundwater resource today and for the future.

AKNOWLEDGMENTS

Funding of this project was provided by the Geological Survey of Canada, Economic Development Canada, Conseil Régional de Développement-Laurentides, Ministère de l'Environnement du Québec, Regional County Municipalities of Argenteuil, Mirabel, Deux-Montagnes and Thérèse-de-Blainville, and the Association des Professionnels de Développement Économique des Laurentides. Financial support for the first author was provided by FCAR and INRS-ETE as a postgraduate scholarship. We thank all the crew of the AFSOQ project for field assistance, Mr. Forget from Sainte-Anne-des-Plaines municipality, and Mr. Roy, Mr. Lajeunesse and Mrs. Trudeau from the city of Mirabel. Also, special thanks to Mrs. Édith Bourque and Nathalie Fagnan for their continual support. We thank the population of both municipalities for giving access to their wells. This research used the laboratory facilities and field equipments of the Hydrogeology Lab at the Quebec Geoscience Centre.

REFERENCES

BAIR, E.S. et G.S Roadcap. 1992. «Comparison of Flow Models Used to Delineate Capture Zones of Wells : Leaky-Confined Fractured-Carbonate Aquifer». <u>Ground Water</u>, vol. 30, no. 2, march-april, p.199-211.

BAIR, E.S., A.E. Springer et G.S. Roadcap. 1991. «Delineation of Travel Time-Related Capture Areas of Wells Using Analytical Flow Models and Particle-Tracking Analysis». <u>Ground Water</u>, vol.29, no.3, may-june, p.387-397.

BEAR, J. et M. Jacob. 1965. «On the Movement of Water Bodies Injected into Aquifers». Journal of Hydrology, vol. 3, p. 37-57.

BOUWER, H.H. et R.C. Rice. 1976. «A Slug Test Method for Determining Hydraulic Conductivity of Unconfined Aquifers, with Completely or Partially Penetrating Wells». Water Resources Research, vol. 12, no. 3, p. 423-428.

COOPER, Jr. H.H. et C.E. Jacob. 1946. «A Generalized Graphical Method for Evaluating Formation Constants and Summarizing Well Field History». <u>Trans. Am. Geophysical Union</u>, 27 (4), p. 526-534.

ENVIRONMENTAL PROTECTION AGENCY (EPA). 1994. <u>Ground Water and</u> <u>Wellhead Protection Handbook</u>. EPA, Office of Research and Development, Washington, DC, 269 p.

EPA. 1993. <u>Wellhead Protection : A Guide for Small Communities</u>. Seminar publication, EPA/625/R-93-002.

EPA. 1991. <u>Delineation of Wellhead Protection Areas in Fractured Rocks</u>. U.S.EPA, Office of Groundwater, Washington, DC, 144 p.

EPA. 1987. <u>Guidelines for Delineation of Wellhead Protection Areas</u>. U.S.EPA, Office of Groundwater, Washington, DC.

GRINGARTEN, A.C. et P.A. Witherspoon. 1972. «A Method of Analyzing Pump Test Data from Fractured Aquifers». Int. Soc. Rock Mechanic sand, Int. Ass. Geol., Proc. Symp. Rock Mechanics, Stuttgart, vol.3-B, p.1-9.

HAITJEMA, H., J. Wittman, V. Kelson et N. Bauch. 1994. WHAEM : Program Documentation for the Wellhead Analytic Element Model. EPA/600/R-94/210, 117 p.

HAMEL, A.. 2002. «Détermination de la recharge des aquifères de roc fracturé du sudouest du Québec». Mémoire présenté à la faculté des études supérieures de l'Université Laval pour l'obstention du grade maître ès Sciences (M.Sc.), Département de géologie et génie géologique. 47 p.

HANTUSH, M.S.. 1966. «Analysis of Data from Pumping Tests in Anisotropic Aquifers». Journal of Geophysical Research, vol.71, no.2, january 15, p.421-426.

HANTUSH, M.S. et C.E. Jacob. 1954. «Plane Potential Flow of Ground-Water with Linear Leakage». Transactions, Am., <u>Geophys. Union</u>, vol.35, p.917-936.

INTERNATIONAL ASSOCIATION OF HYDROGEOLOGISTS (IAH). 1998. «Fundamentals of the Contaminant Hydrogeology of Fractured Rocks». 14-16 Mai, Québec.

LANDRY, B. et M. Mercier. 1992. <u>Notions de géologie</u>. Modulo Éditeur, Mont-Royal, Québec, 3^e édition, 565 p.

LEMIEUX, J.-M., D. Kirkwood et R. Therrien. 2001. «Detailed Hydrogeological Study of a Fractured Dolostone». Fractured Rock 2001, 26-28 march, Toronto, 4 p.

LONG, J.C.S., J.S. Remer, C.R. Wilson et P.A. Witherspoon. 1982. «Porous Media Equivalents for Networks of Discontinuous Fractures». <u>Water Resources Research</u>, vol.18, no.3, June, p.645-658.

MARQUIS, S.A. Jr., R.G., R.E.A. et E. Stewart. 1992. «The Delineation of Wellhead Protection Areas in Fractures Bedrock Terrains Using Groundwater Flow Models». McLaren/Hart Environmental Engineering, California, p.327-341.

McDONALD, M.G. et A.W. Harbaugh. 1988. <u>A Modular Three Dimensional Finite-Difference Ground-Water Flow Model</u>. U.S. Geological Survey Techniques of Water Resources Investigations Book, 6, Chapter A1, 586 p.

NASTEV, M. 2001. «Investigation of Hydraulic Properties of Regional Fractured Rock Aquifers». 54th Canadian Geotechnical Conference, Calgary, 2nd Joint IAH-CNC and GSC Groundwater Specialty Conference Proceedings, p.1058-1066.

PARADIS, D. 2000. «Comparaison des méthodes de détermination des périmètres de protection des ouvrages de captage d'eau souterraine dans les aquifères granulaires du piémont laurentien». Mémoire de maîtrise, INRS-Géoressources, 138 p.

POLLACK, D.W. 1989. <u>Documentation of Computer Programs to Compute and Display</u> <u>Pathlines Using Results from the U.S. Geological Survey Modular Three Dimensional</u> <u>Finite-Difference Ground-Water Flow Model</u>. U.S. Geological Survey open-file report 89-381, 188 p.

ROCHER, M., O. Salad-Hersi et S. Castonguay, 2001. Carte géologique des Basses-Terres du Saint-Laurent-Secteur Ouest de Montréal, mise-à-jour dans PARADIS, D., M.M. Savard, M. Nastev et R. Lefebvre. 2002. Atlas hydrogéologique du système aquifère fracturé du sud-ouest du Québec : Partie III. Rapport final. 15 mai 2002, 48 p. ROEHRICH, T. 1995. Aquifertest. Version 2.54, Waterloo hydrogeologic Inc.

SAVARD, M.M., M. Nastev, R. Lefebvre, R. Martel, N. Fagnan, E. Bourque, V. Cloutier, K. Lauzière, P. Gélinas, D. Kirkwood, P. Lapcevic, G. Karanta, A. Hamel, A. Bolduc, M. Ross, M. Parent, J.-M. Lemieux, E. Boisvert, O. Salad Hersi, D. Lavoie, F. Girard, K. Novakowski, R. Therrien, M. Etienne et R. Fortier. 2000. «Regional hydrogeology of fractured rock aquifers in Southwestern Quebec (St.Lawrence Lowlands)». 53rd Canadian Geotechnical Conference, Ocotober 15-18, Montréal, 1st Joint IAH-CNC and GSC Groundwater Specialty Conference Proceedings, session GW6, p. 247-253.

SHAFER, J.M., 1990. GWPATH. Version 4.0 Champaign IL.

STRACK, O.D.L. et al. 1994. CZAEM : User's Guide. EPA/600/R-94/174, 53 p.

THEIS, C.V. 1935. «The Relation Between the Lowering of the Piezometric Surface and the Rate and Duration of Discharge of a Well Using Ground Water Storage». Trans. Am. <u>Geophysical Union</u> 16 (Pt2), p.519-524.

TODD, D.K. 1980. Groundwater Hydrology. Second Edition, USA.

UFFINK, G.J.M. 1984. <u>Theory of the Oscillating Slug Test</u>. Nat. Institute for Public Health and Environmental Hygiene, Bilthoven, Unpublished research report, 18 p.

VAN DER KAMP, G. 1976. «Determining Aquifer Transmissivity by Means of Well Response Tests : The Underdamped Case». Water Resources Research, vol.12, p.71-77.

CHAPITRE 4. CONCLUSION GÉNÉRALE

La présente recherche a permis d'appliquer, de comparer et de valider des méthodes de détermination de périmètres de protection. Deux sites ont fait l'objet d'une étude hydrogéologique détaillée, soit les municipalités de Sainte-Anne-des-Plaines ainsi que de Saint-Janvier, toutes deux situées à 35 km au nord de Montréal.

Les résultats des essais hydrauliques ont démontré que les aquifères testés ont une conductivité hydraulique très élevée qui s'apparente à ce qui est obtenu dans les aquifères granulaires. En effet, les premiers mètres du roc sont très fracturés, voire altérés, qui, associés au till perméable sus-jacent, contribuent grandement à l'écoulement de l'eau souterraine. Les relevées de la piézométrie aux deux sites ont permis l'élaboration de cartes piézométriques des aquifères de roc fracturé. Il ressort de ces dernières des limites hydrologiques importantes. À Saint-Janvier, par exemple, une limite de partage des eaux souterraines est située au nord-ouest de la ville et correspond à un sommet topographique du roc. À Sainte-Anne-des-Plaines, le Bouclier Canadien constitue une limite à l'écoulement. Les travaux de terrain ont permis d'évaluer les conditions hydrogéologiques des deux sites. Aussi, l'étude a contribué à une meilleure compréhension du système d'écoulement de l'eau souterraine dans le roc fracturé.

La validation de l'hypothèse selon laquelle un milieu fracturé se comporte comme un milieu poreux équivalent est préalable à l'utilisation d'équations standards de l'écoulement dans la délimitation des périmètres de protection. Le haut degré de fracturation de l'aquifère, spécialement dans les premiers mètres de l'aquifère, les réponses des essais de pompage ainsi que la configuration de la piézométrie sont autant d'évidences démontrées au chapitre 2 qui justifient l'utilisation de techniques et de méthodes propres aux milieux poreux pour les aquifères fracturés.

Les données recueillies provenant des essais réalisés sur le terrain ont servi aux calculs des périmètres de protection. L'étude comparative des méthodes appliquées aux sites de

Sainte-Anne-des-Plaines et de Saint-Janvier a permis l'évaluation de sept méthodes ayant comme base de comparaison deux d'entre elles, soit la modélisation numérique pour les périmètres rapprochées et la cartographie hydrogéologique pour les périmètres éloignés (Annexe K). Ces méthodes choisies comme référence sont fiables même si on ne peut en faire la démonstration par comparaison avec les «vraies» conditions du terrain, car les périmètres qui y sont issus sont fondés sur une caractérisation rigoureuse des sites. Pour les périmètres éloignés, c'est la méthode hybride 3A2E qui représente le niveau minimum de sophistication qui assure une détermination réaliste des périmètres de protection pour les deux sites à l'étude. Elle s'avère très efficace pour couvrir adéquatement les zones de recharge qui sont des fenêtres ouvertes sur l'aquifère confiné, donc vulnérables à la contamination des eaux souterraines. Cette méthode est plus simple d'application et peut contribuer à la préservation de la qualité de l'eau souterraine si des mesures de contrôle des sources de contamination sont appliquées à l'intérieur du périmètre. Dans l'ensemble des puits des deux sites, pour les périmètres rapprochés, c'est la méthode CAPZONE/GWPATH qui couvre le mieux l'aire d'alimentation pour un temps de 60 jours. Notons toutefois la bonne performance de la méthode hybride avec des valeurs de 80 % à 100 % d'aire commune dans tous les puits avec la méthode étalon. La constance dans les résultats de l'application de la méthode hybride pour la protection adéquate des zones vulnérables permet de la situer au premier rang, tant pour les périmètres éloignés que rapprochés. L'étude comparative démontre qu'il est possible, avec une méthode relativement simple, d'assurer une détermination réaliste des périmètres de protection pour des conditions représentant les aquifères fracturés du sud-ouest du Québec. Cette méthode comporte toutefois un minimum de données hydrogéologiques et géologiques nécessaires telles des puits d'observation, la stratigraphie et la géologie des formations présentes, les caractéristiques hydrauliques des formations et le débit des puits en opération. Puisque la méthode hybride ne tient pas compte directement de l'écoulement, elle doit être utilisée avec discernement. Dans les cas où la direction de l'écoulement est fortement variable, cette méthode risque d'échouer dans la tentative de circonscrire correctement la zone d'alimentation du puits. Malgré cela, la méthode hybride s'avère plus précise que les méthodes simples par l'intégration de plusieurs paramètres hydrogéologiques et moins complexe et coûteuse que les modèles numériques.

66

CHAPITRE 5. <u>RECOMMANDATIONS</u>

a) Aire d'alimentation et zone de recharge

Pour les sites de Sainte-Anne-des-Plaines et de Saint-Janvier, la zone de recharge constitue l'entrée d'eau principale qui alimente l'aquifère régional. Le secteur à protéger pour assurer une bonne qualité d'eau à long terme est donc la zone de recharge qui est recoupée par les aires d'alimentation des puits. Cette zone doit faire l'objet d'une supervision particulière, car elle forme la région de l'aquifère la plus vulnérable à la contamination. L'attention doit être portée aussi à toute l'aire d'alimentation tracée pour chaque puits de la région par la cartographie hydrogéologique. À l'intérieur de chaque périmètre, les activités humaines doivent être gérées (agriculture, épandage de sels déglaçants sur les routes), même aux endroits où l'aquifère se trouve protégé par une couche d'argile. En effet, l'aquifère peut être potentiellement contaminé, dans ces zones naturellement protégées, par la présence de puits qui sont une fenêtre ouverte sur l'aquifère. Tous les puits abandonnés devraient être cimentés et on doit s'assurer que les puits en opération ont été bien installés. Ces mesures contribueraient grandement à la diminution des risques potentiels de contamination.

b) Périmètre rapproché

En vue d'augmenter le degré de fiabilité de la base de comparaison pour le périmètre rapproché, la comparaison entre les temps de transport obtenus par modélisation numérique (MODFLOW/MODPATH) avec ceux obtenus par des essais de traceurs est suggérée. Pour les périmètres rapprochés, la méthode CAPZONE/GWPATH, qui a donné de bons résultats, peut servir de première approximation de l'aire à protéger en vue d'une étude plus détaillée.

c) Périmètre éloigné

En ce qui concerne le périmètre éloigné, la méthode hybride se démarque facilement des autres méthodes appliquées. Elle représente une constance dans les résultats de son application avec des valeurs très respectables de plus de 95 % d'aire commune. Elle a notamment fait l'objet d'une étude comparative dans les aquifères granulaires à Portneuf (Québec), donnant encore une fois d'excellents résultats (Paradis, 2000). Cette méthode serait donc à privilégier dans l'établissement des périmètres de protection éloignés.

d) Validation des méthodes

Les méthodes doivent être appliquées dans d'autres contextes hydrogéologiques de roc fracturé pour s'assurer de leur validité. Il serait intéressant d'appliquer ces méthodes dans des contextes de roc fracturé où la fracturation et la conductivité hydraulique sont nettement inférieures à ce qui est retrouvé à Sainte-Anne-des-Plaines et à Saint-Janvier, puisque l'aquifère de la région est considéré comme un milieu poreux équivalent. Ces deux paramètres jouent un rôle important sur la forme et l'étendue des périmètres de protection et soumettent ainsi les méthodes à des conditions plus variables de l'écoulement. Il est aussi suggéré d'appliquer les méthodes évaluées dans la présente étude dans un contexte d'aquifère fracturé à nappe libre et de voir ainsi l'influence de l'infiltration, en association avec les limites hydrauliques, sur la configuration des périmètres de protection.

e) Programme de protection des eaux souterraines

En vue de prévenir la contamination des eaux souterraines et assurer un approvisionnement en eau de bonne qualité, la mise en place d'un programme de protection des puits s'avère essentielle. Ce programme, développé par l'EPA (1993), comporte cinq étapes :

1) Formation d'un comité local de protection des ressources en eau;

2) Délimitation des périmètres de protection;

3) Inventaire de l'utilisation du sol et établissement d'une cédule d'inspection;

4) Gestion des aires de protection et programme d'éducation du public;

5) Alternative d'approvisionnement en eau.

L'étude a porté spécialement sur l'étape 2 de ce programme qui a permis d'identifier la meilleure méthode de délimitation des périmètres de protection qui devrait être appliquée pour des conditions d'aquifère confiné fracturé. Le comité local a pour objectif de développer, de mettre en place et de réviser périodiquement le programme de protection des puits. Il est composé de représentants municipaux qui s'occupent de la gestion de l'eau et de représentants des groupes d'intérêts locaux. Ses membres devraient posséder des connaissances du sol et du sous-sol, tant au niveau de leurs utilisations que de leurs caractéristiques géologiques et hydrogéologiques. Les périmètres de protection sont réalisés par l'application de méthodes qui assurent la détermination réaliste des aires à protéger. La conception des périmètres est basée sur l'analyse des données de terrain existantes ainsi que de la cueillette et de l'analyse de travaux supplémentaires. L'étape trois a pour objectifs de documenter les usages du sol antérieurs et présents dans l'aire d'alimentation, d'identifier les sources potentielles de contamination et d'estimer les risques et menaces de contamination des puits et de l'aquifère. L'objectif de l'étape quatre est d'envisager des mesures de protection pour réduire les menaces de contamination et prévenir la contamination. Les mesures ont pour but de résoudre les problèmes de quantité et de qualité de l'eau souterraine à l'intérieur des périmètres, d'effectuer un contrôle de l'usage du sol par des règlements et de sensibiliser la population en général sur la problématique des eaux souterraines. La dernière étape consiste à prévenir aujourd'hui les problèmes potentiels futurs. Les problèmes éventuels reliés à une pénurie d'eau, une contamination de l'ouvrage de captage ou de bris d'aqueduc, peuvent être prévisibles en effectuant une étude approfondie de la demande en eau, de l'inventaire des sources d'approvisionnement ainsi que de l'évaluation des sources alternatives. En résumé, ces recommandations visent à préserver la ressource en

eau en faisant un usage du territoire qui n'altérerait pas ses fonctions essentielles pour le présent et le futur.

RÉFÉRENCES

BAIR, E.S. et G.S Roadcap. 1992. «Comparison of Flow Models Used to Delineate Capture Zones of Wells : Leaky-Confined Fractured-Carbonate Aquifer». <u>Ground Water</u>, vol. 30, no. 2, march-april, p.199-211.

BAIR, E.S., A.E. Springer et G.S. Roadcap. 1991. «Delineation of Travel Time-Related Capture Areas of Wells Using Analytical Flow Models and Particle-Tracking Analysis». <u>Ground Water</u>, vol.29, no.3, may-june, p.387-397.

BEAR, J. et M. Jacob. 1965. «On the Movement of Water Bodies Injected into Aquifers». Journal of Hydrology, vol. 3, p. 37-57.

BOUWER, H.H. et R.C. Rice. 1976. «A Slug Test Method for Determining Hydraulic Conductivity of Unconfined Aquifers, with Completely or Partially Penetrating Wells». Water Resources Research, vol. 12, no. 3, p. 423-428.

BRADBURY, K.R. et M.A. Muldoon. 1994. «Effects of Fracture Density and Anisotropy on Delineation of Wellhead-Protection Areas in Fractured Rock Aquifers». <u>Applied</u> <u>Hydrogeology</u>, Wisconsin, p.17-23.

COOPER, Jr. H.H. et C.E. Jacob. 1946. «A Generalized Graphical Method for Evaluating Formation Constants and Summarizing Well Field History». <u>Trans. Am. Geophysical Union</u>, 27 (4), p. 526-534.

ENVIRONMENTAL PROTECTION AGENCY (EPA). 1994. <u>Ground Water and</u> <u>Wellhead Protection Handbook</u>. EPA, Office of Research and Development, Washington, DC, 269 p. EPA. 1993. Wellhead Protection : A Guide for Small Communities. Seminar publication, EPA/625/R-93-002.

EPA. 1991. <u>Delineation of Wellhead Protection Areas in Fractured Rocks</u>. U.S.EPA, Office of Groundwater, Washington, DC, 144 p.

EPA. 1987. <u>Guidelines for Delineation of Wellhead Protection Areas</u>. U.S.EPA, Office of Groundwater, Washington, DC.

GRINGARTEN, A.C. et P.A. Witherspoon. 1972. «A Method of Analyzing Pump Test Data from Fractured Aquifers». Int. Soc. Rock Mechanic sand, Int. Ass. Geol., Proc. Symp. Rock Mechanics, Stuttgart, vol.3-B, p.1-9.

HAITJEMA, H., J. Wittman, V. Kelson et N. Bauch. 1994. WHAEM : Program Documentation for the Wellhead Analytic Element Model. EPA/600/R-94/210, 117 p.

HAMEL, A.. 2002. «Détermination de la recharge des aquifères de roc fracturé du sudouest du Québec». Mémoire présenté à la faculté des études supérieures de l'Université Laval pour l'obetention du grade maître ès Sciences (M.Sc.), Département de géologie et génie géologique. 47 p.

HANTUSH, M.S. 1966. «Analysis of Data from Pumping Tests in Anisotropic Aquifers». Journal of Geophysical Research, vol.71, no.2, January 15, p.421-426.

HANTUSH, M.S. et C.E. Jacob. 1954. «Plane Potential Flow of Ground-Water with Linear Leakage». Transactions, Am., Geophys. Union, vol.35, p.917-936.

HYDROGÉO CANADA INC. 1977. Alimentation en eau, puits d'exploitation St-Janvier, 10 p.

INTERNATIONAL ASSOCIATION OF HYDROGEOLOGISTS (IAH). 1998. «Fundamentals of the Contaminant Hydrogeology of Fractured Rocks». 14-16 Mai, Québec.

KARANTA, G., R. Martel, M. Nastev, R. Therrien, D. Paradis, R. Lefebvre. 2001. «Comparative study of methods for wellhead protection area delineation in fractured rocks». 2nd joint IAH-CGS groundwater conference, 16-19 September, Calgary, <u>www.cgygeosociety.org.</u>

LANDRY, B. et M. Mercier. 1992. <u>Notions de géologie</u>. Modulo Éditeur, Mont-Royal, Québec, 3^e édition, 565 p.

LEMIEUX, J.-M., D. Kirkwood et R. Therrien. 2001. «Detailed Hydrogeological Study of a Fractured Dolostone». Fractured Rock 2001, 26-28 march, Toronto, 4 p.

LONG, J.C.S., J.S. Remer, C.R. Wilson et P.A. Witherspoon. 1982. «Porous Media Equivalents for Networks of Discontinuous Fractures». <u>Water Resources Research</u>, vol.18, no.3, June, p.645-658.

Mapinfo Corporation, 1999. Mapinfo, version 5.5.

MARQUIS, S.A. Jr., R.G., R.E.A. et E. Stewart. 1992. «The Delineation of Wellhead Protection Areas in Fractures Bedrock Terrains Using Groundwater Flow Models». McLaren/Hart Environmental Engineering, California, p.327-341.

MASSICOTTE, G., R. Desrochers et R. Brouillet. Approvisionnement en eau potable : Étude hydrogéologique, site de la Montée Barrette. Les consultants Dessau Inc., Laval (Québec), 14 p. McDONALD, M.G. et A.W. Harbaugh. 1988. <u>A Modular Three Dimensional Finite-Difference Ground-Water Flow Model</u>. U.S. Geological Survey Techniques of Water Resources Investigations Book, 6, Chapter A1, 586 p.

MENVQ. 2002. <u>Règlement sur le captage des eaux souterraines</u>. http://www.menv.gouv.qc.ca/eau/souterraines/index.htm.

MENVQ. 2001. <u>Règlement sur la qualité de l'eau potable</u>. Bibliothèque Nationale du Québec, 32 p.

MENVQ. 1999. La gestion de l'eau au Québec. Document de consultation publique, www.menv.gouv.qc.ca/eau/consultation/themes.htm.

MENVQ. 1995. <u>Guide : Les périmètres de protection autour des ouvrages de captage</u> <u>d'eau souterraine</u>. Direction des politiques des secteurs agricole et naturel, Publications du Québec, Ste-Foy (Qc).

MICROSOFT CORPORATION. 1997. Excel. Version 1997.

NASTEV, M. 2001. «Investigation of Hydraulic Properties of Regional Fractured Rock Aquifers». 54th Canadian Geotechnical Conference, Calgary, 2nd Joint IAH-CNC and GSC Groundwater Specialty Conference Proceedings, p.1058-1066.

NORTHWOOE GEOSCIENCES Ltd. 1999. Vertical Mapper. Version 2.5.

PARADIS, D et al. 2002. Études locales de secteurs choisis du système aquifère fracturé du sud-ouest du Québec. Rapport final, Partie IV, 15 mai 2002, 146 p.

PARADIS, D. 2000. «Comparaison des méthodes de détermination des périmètres de protection des ouvrages de captage d'eau souterraine dans les aquifères granulaires du piémont laurentien». Mémoire de maîtrise, INRS-Géoressources, 138 p.

POLLACK, D.W. 1989. <u>Documentation of Computer Programs to Compute and Display</u> <u>Pathlines Using Results from the U.S. Geological Survey Modular Three Dimensional</u> <u>Finite-Difference Ground-Water Flow Model</u>. U.S. Geological Survey open-file report 89-381, 188 p.

ROCHER, M., O. Salad-Hersi et S. Castonguay, 2001. Carte géologique des Basses-Terres du Saint-Laurent-Secteur Ouest de Montréal, mise-à-jour dans PARADIS, D., M.M. Savard, M. Nastev et R. Lefebvre. 2002. Atlas hydrogéologique du système aquifère fracturé du sud-ouest du Québec : Partie III. Rapport final. 15 mai 2002, 48 p.

ROEHRICH, T. 1995. Aquifertest. Version 2.54, Waterloo hydrogeologic Inc.

ROULEAU, A. 1988. «A Numerical Simulation for Flow and Transport in Stochastic Discrete Fracture Networks». NHRI, Paper 39, National Hydrology Research Institute, Saskatoon, Sakatchewan, 204 p.

SAVARD, M.M., M. Nastev, R. Lefebvre, R. Martel, N. Fagnan, E. Bourque, V. Cloutier, K. Lauzière, P. Gélinas, D. Kirkwood, P. Lapcevic, G. Karanta, A. Hamel, A. Bolduc, M. Ross, M. Parent, J.-M. Lemieux, E. Boisvert, O. Salad Hersi, D. Lavoie, F. Girard, K. Novakowski, R. Therrien, M. Etienne et R. Fortier. 2000. «Regional hydrogeology of fractured rock aquifers in Southwestern Quebec (St.Lawrence Lowlands)». 53rd Canadian Geotechnical Conference, Ocotober 15-18, Montréal, 1st Joint IAH-CNC and GSC Groundwater Specialty Conference Proceedings, session GW6, p. 247-253.

SHAFER, J.M., 1990. <u>GWPATH</u>. Version 4.0 Champaign IL.

STRACK, O.D.L. et al. 1994. CZAEM : User's Guide. EPA/600/R-94/174, 53 p.

THEIS, C.V. 1935. «The Relation Between the Lowering of the Piezometric Surface and the Rate and Duration of Discharge of a Well Using Ground Water Storage». Trans. Am. <u>Geophysical Union</u> 16 (Pt2), p.519-524.

TODD, D.K. 1980. Groundwater Hydrology. Second Edition, USA.

UFFINK, G.J.M. 1984. <u>Theory of the Oscillating Slug Test</u>. Nat. Institute for Public Health and Environmental Hygiene, Bilthoven, Unpublished research report, 18 p.

VAN DER KAMP, G. 1976. «Determining Aquifer Transmissivity by Means of Well Response Tests : The Underdamped Case». <u>Water Resources Research</u>, vol.12, p.71-77.

ANNEXE A

Localisation et description des mesures de niveau d'eau avant et à la fin de l'essai de pompage dans les puits de Sainte-Anne-des-Plaines

Description des mesures de niveau d'eau avant l'essai de pompage de Sainte-Anne-des-Plaines. Station Date Capitage X Um Nad53 Y Um Nad53 Y Um Nad53 Profondeur (m) Charge hydraulque (m) 6(4900) 1706000 PT 58740 567733 2014 2017 513.3 6(4900) 1706000 PT 58944 509534 507532 513 513.3											_						_					_		_	_							_														_	
Description des mesures de niveau d'eau avant l'essai de pompage de Sainte-A Station Date Capitage X Um Nad83 Y Um Nad83 E valion Profondeur (m) 6K,99-001 12/06/2000 -PT 597810 5067588 60.72 7.50 6K,99-001 12/06/2000 PT 592445 5071729 60.22 7.50 6K,99-001 12/06/2000 PT 592845 5007657 60.02 10.71 6K,99-001 12/06/2000 PT 592845 5071572 60.03 61.43 82.8 6K,99-001 12/06/2000 PT 502345 5006358 60.40 11.13 6K,99-011 12/06/2000 PT 502345 5070578 61.44 8.20 6K,99-011 12/06/2000 PT 502345 5070578 60.40 11.13 6K,99-011 12/06/2000 PT 502345 5070578 60.40 11.13 6K,99-011 12/06/2000 PT 500212 5070787 60.40 11.13 6K,99-011	nne-des-Plaines	Charge hydraulique (m)	53.22	51.33	52.79	58.43	52.61	52.18	50.36	52.95	53.38	49.20	49.09	56.56	53.26	52.85	49.42	48.60	53.25	53.57	52.43	47.87	53.28	52.00	52.59	52.37	48.52	52.11	44.98	46.53	46.61	41.16	40.67	52.71	52.57	52.70	52.71	55.29	51.81	50.92	51.69	49.62	47.71	47.50	70.00	60.00	
Description des mesures de niveau d'eau avant l'essai de pompag Station Date Captage X Um Nad63 Elévation du sol (m) cr. 99-001 1206/2000 PT 587310 5667588 60.72 cr. 99-001 1206/2000 PT 587310 5667588 60.72 cr. 99-001 1206/2000 PT 588489 507367 51.04 cr. 99-001 1206/2000 PT 588489 507367 61.07 cr. 99-001 1206/2000 PT 582287 507367 61.07 cr. 99-011 1206/2000 PT 582489 5077678 61.04 cr. 99-013 1206/2000 PT 582287 507655 61.45 cr. 99-013 1206/2000 PT 582287 507655 61.45 cr. 99-014 1206/2000 PT 582287 507655 61.45 cr. 99-015 1206/2000 PT 580274 507472 61.45 cr. 99-016 1206/2000 PT 580443 5077655	e de Sainte-A	Profondeur (m)	7.50	10.71	8.28	5.53	9.16	9.27	19.58	8.48	8.20	11.29	11.31	19.44	9.66	9.68	18.10	22.32	9.65	8.27	13.65	17.05	8.63	15.03	8.83	7.30	17.94	15.22	19.90	18.89	17.33	25.76	24.72	8.85	8.89	8.86	8.84	6.62	7.78	9.68	8.71	8.13	9.40	8.07	0.00	0.00	
Description des mesures de niveau d'eau avant l'Station Date Captage X Um Nad83 Y Um Nad83 Station Date Captage X Um Nad83 Y Um Nad83 Y Um Nad83 Station Date Captage X Um Nad83 Y Um Nad83 Y Um Nad83 Station Date Captage X Um Nad83 Y Um Nad83 Y Um Nad83 Station Date Captage X Um Nad83 Y Um Nad83 Y Um Nad83 Station Date Captage X Um Nad83 Y Um Nad83 S671729 Station 12/06/2000 PT 585483 5071659 5071659 Station 12/06/2000 PT 590221 5071659 5071659 Station 12/06/2000 PT 5902863 5071655 5071659 Station 12/06/2000 PT 5902863 5071659 50687443 Station 12/06/2000 PT 5902863 5071659 5071659 Station 12/06/2000 PT 5902863 50716753 <t< td=""><td>essai de pompag</td><td>Élévation du sol (m)</td><td>60.72</td><td>62.04</td><td>61.07</td><td>63.96</td><td>61.77</td><td>61.45</td><td>72.00</td><td>61.43</td><td>61.58</td><td>60.49</td><td>60.40</td><td>76.00</td><td>62.92</td><td>62.53</td><td>67.52</td><td>70.92</td><td>62.90</td><td>61.84</td><td>66.08</td><td>64.92</td><td>61.91</td><td>67.03</td><td>61.42</td><td>59.67</td><td>66.46</td><td>67.33</td><td>64.88</td><td>65.42</td><td>63.94</td><td>66.92</td><td>65.39</td><td>61.56</td><td>61.46</td><td>61.56</td><td>61.55</td><td>61.91</td><td>59.59</td><td>60.60</td><td>60.40</td><td>57.75</td><td>57.11</td><td>55.57</td><td>0.00</td><td>0.00</td><td></td></t<>	essai de pompag	Élévation du sol (m)	60.72	62.04	61.07	63.96	61.77	61.45	72.00	61.43	61.58	60.49	60.40	76.00	62.92	62.53	67.52	70.92	62.90	61.84	66.08	64.92	61.91	67.03	61.42	59.67	66.46	67.33	64.88	65.42	63.94	66.92	65.39	61.56	61.46	61.56	61.55	61.91	59.59	60.60	60.40	57.75	57.11	55.57	0.00	0.00	
Description des mesures de niveau d Station Date Captage X Utm Nad83 Station 12/06/2000 PT 587810 Station 12/06/2000 PT 582645 Station 09/06/2000 PT 582645 Station 09/06/2000 PT 582645 Station 12/06/2000 PT 589245 Station 12/06/2000 PT 589245 Station 12/06/2000 PT 59	d'eau avant l	Y Utm Nad83	5067588	5071729	5069349	5066391	5068058	5071652	5073167	5069758	5069718	5070678	5070565	5071559	5070472	5070123	5069442	5070253	5069907	5067376	5067575	5067652	5068230	5067419	5068749	5068681	5069432	5067250	5067017	5068137	5067858	5067678	5068346	5068830	5068771	5068828	5068632	5066471	5067803	5067803	5064198	5065132	5065117	5064861	5074346	5073382	
Description des mesures Station Date Captage GK 99-001 12/06/2000 PT GK 99-003 12/06/2000 PT GK 99-013 12/06/2000 PT GK 99-013 12/06/2000 PT GK 99-013 12/06/2000 PT GK 99-014 12/06/2000 PT GK 99-013 12/06/2000 PT GK 99-014 12/06/2000 PT GK 99-013 12/06/2000 PT GK 99-013 12/06/2000 PT GK 99-025 12/06/2000 PT GK 99-026 12/06/2000 PT GK 99-026 12/06/2000 PT GK 99-033 12/06/2000 PT GK 99-033 12/06/2000 PT GK 99-0	s de niveau o	X Utm Nad83	587810	592645	589804	585489	588412	592545	592287	590280	590221	594948	594885	588187	591054	590726	592101	593663	590569	587536	591051	591433	588646	590423	591027	590958	592028	590167	593430	593124	593516	594832	595815	591034	590976	591037	589041	586447	589512	589444	586242	589526	590650	592201	585277	586936	
Description des Station Date Station Da	mesures	Captage	*pT	РТ	Ы	ЪТ	ΡŢ	РТ	ΡŢ	ΡŢ	РТ	РΤ	РТ	ΡТ	РТ	РТ	РΤ	ΡТ	РТ	ЪТ	ΡΤ	РТ	РТ	ΡT	РТ	РΤ	ΡТ	РТ	РΤ	ΡŢ	ΡТ	рт	Ы	L L	ΡT	ΡТ	ЪТ	Ы	Ы	Ы	ЪТ	ΡŢ	ЪТ	РТ	Rivière	Riviêre	
Descr Station	iption des	Date	12/06/2000	12/06/2000	12/06/2000	12/06/2000	12/06/2000	09/06/2000	09/06/2000	09/06/2000	12/06/2000	12/06/2000	12/06/2000	12/06/2000	12/06/2000	12/06/2000	09/06/2000	12/06/2000	09/06/2000	12/06/2000	12/06/2000	12/06/2000	12/06/2000	12/06/2000	16/06/2000	07/06/2000	12/06/2000	12/06/2000	12/06/2000	12/06/2000	12/06/2000	12/06/2000	12/06/2000	07/06/2000	07/06/2000	07/06/2000	12/06/2000	12/06/2000	09/06/2000	09/06/2000	12/06/2000	12/06/2000	12/06/2000	13/06/2000	I	•	Ibulaire
	Descri	Station	GK 99-001	GK_99-003	GK_99-004	GK_99-005	GK_99-006	GK_99-007	GK_99-008	GK_99-009	GK_99-010	GK_99-013	GK_99-014	GK_99-016	GK_99-017	GK_99-018	GK_99-019	GK_99-020	GK_99-021	GK_99-022	GK_99-023	GK_99-025	GK_99-026	GK_99-027	GK_99-028	GK_99-029	GK_99-030	GK_99-032	GK_99-033	GK_99-036	GK_99-037	GK_99-038	GK_99-039	GK_99-040	GK_99-041	GK_99-042	GK_99-043	GK_00-008	GK_00-024	GK_00-025	MB_99-010	MB_99-019	MB_99-022	MB_99-030	*PA1	PA2	* PT = Puits tu

62

se

* PA = Puits ajouté

e pompage de Sainte-Anne-des-Plaines	u sol (m) Profondeur (m) Charge hydraulique (m)	72 7.17 53.55	34 11.01 51.03	J7 8.83 52.24	96 6.05 57.91	77 9.44 52.33	45 9.52 51.93	00 19.82 52.18	43 10.23 51.20	58 9.48 52.10 52.10 bit of the second	49 11.55 48.94	40 11.57 48.83	00 19.77 56.23	92 10.26 52.66	53 10.20 52.33	52 17.90 49.62	92 22.74 48.18	90 10.80 52.10	34 8.36 53.48 53.48	38 14.26 51.82	92 16.90 48.03	91 9.56 52.35	03 15.36 51.67	42 9.72 51.70	57 8.06 51.61 51.61	46 17.75 48.71	33 15.46 51.87	88 20.16 44.72	42 18.82 46.60	94 17.34 46.60	32 25.67 41.25	39 24.65 40.74	56 10.80 50.76	46 9.73 51.73	56 10.90 50.66	55 9.27 52.28	91 6.66 55.25	59 8.19 51.40	50 9.97 50.63	40 8.84 51.56	75 8.70 49.05	11 9.59 48.52	57 8.00 47.57	0 0.00 70.00	
le l'essai d	Élévation c	60.7	62.(61.0	63.5	61.7	61.4	72.0	61.4	61.5	60.4	60.4	76.(62.9	62.5	67.5	20.6	62.6	61.8	66.(64.9	61.5	67.(61.4	59.6	.99	67.3	64.8	65.4	63.9	66.9	65.3	61.5	61.4	61.5	61.5	61.9	59.5	60.6	60.4	57.7	57.1	55.6	0.0	•
eau à la fin c	Y Utm Nad83	5067588	5071729	5069349	5066391	5068058	5071652	5073167	5069758	5069718	5070678	5070565	5071559	5070472	5070123	5069442	5070253	5069907	5067376	5067575	5067652	5068230	5067419	5068749	5068681	5069432	5067250	5067017	5068137	5067858	5067678	5068346	5068830	5068771	5068828	5068632	5066471	5067803	5067803	5064198	5065132	5065117	5064861	5074346	
de niveau d'e	X Utm Nad83	587810	592645	589804	585489	588412	592545	592287	590280	590221	594948	594885	588187	591054	590726	592101	593663	590569	587536	591051	591433	588646	590423	591027	590958	592028	590167	593430	593124	593516	594832	595815	591034	590976	591037	589041	586447	589512	589444	586242	589526	590650	592201	585277	
mesures	Captage	*PT	ΡT	ΡT	ΡŢ	ΡŢ	ΡT	РТ	ЪТ	PT	РТ	Ы	РТ	РТ	РТ	ΡT	ΡΤ	ЪТ	ЪТ	ЪΤ	ΡТ	ΡŢ	ЪТ	ΡŢ	ΡŢ	ΡŢ	РŢ	ΡŢ	ЪТ	Ъ,	μ	Ы	ΡT	ЪТ	ЪТ	Ы	ΡΤ	РТ	РТ	РΤ	ΡТ	РТ	ЪТ	Rivière	
iption des	Date	27/06/2000	27/06/2000	27/06/2000	27/06/2000	27/06/2000	27/06/2000	27/06/2000	27/06/2000	27/06/2000	27/06/2000	27/06/2000	27/06/2000	27/06/2000	27/06/2000	27/06/2000	27/06/2000	27/06/2000	27/06/2000	27/06/2000	27/06/2000	27/06/2000	27/06/2000	27/06/2000	27/06/2000	27/06/2000	27/06/2000	27/06/2000	27/06/2000	27/06/2000	27/06/2000	27/06/2000	27/06/2000	27/06/2000	27/06/2000	27/06/2000	27/06/2000	27/06/2000	27/06/2000	27/06/2000	27/06/2000	27/06/2000	27/06/2000	,	-
Descr	Station	GK_99-001	GK_99-003	GK_99-004	GK_99-005	GK_99-006	GK_99-007	GK_99-008	GK_99-009	GK_99-010	GK_99-013	GK_99-014	GK_99-016	GK_99-017	GK_99-018	GK_99-019	GK_99-020	GK_99-021	GK_99-022	GK_99-023	GK_99-025	GK_99-026	GK_99-027	GK_99-028	GK_99-029	GK_99-030	GK_99-032	GK_99-033	GK_99-036	GK_99-037	GK_99-038	GK_99-039	GK_99-040	GK_99-041	GK_99-042	GK_99-043	GK_00-008	GK_00-024	GK_00-025	MB_99-010	MB_99-019	MB_99-022	MB_99-030	*PA1	

* PA = Puits ajouté

80

ANNEXE B

Schémas d'aménagement des puits : Site de Sainte-Anne-des-Plaines

ANNEXE C

Essais de perméabilité *in situ* par choc hydraulique : Site de Sainte-Anne-des-Plaines Carte de localisation des puits d'observation lors de l'essai de pompage et des puits d'essais de perméabilité in situ par choc hydraulique à Sainte-Anne-des-Plaines

87

Site : Ste-Anne-de	s-Plaines		Puits d'observation : P08								
Projet : AFSOQ			Pression imposée : 3 kPa								
Coordonnées X Ut	Test no : 1										
Coordonnées Y Utm-Nad 83 : 5 068 830.0											
Temps	Rabattement	Temps	Rabattement								
(sec)	(m)	(sec)	(m)								
0.5	0.162	3.5	0.014								
1.5	0.090	4.5	0.002								
2.5	0.040	5.5	0.001								

Site : Ste-Anne-de	s-Plaines		Puits d'observation : P08								
Projet : AFSOQ			Pression imposée : 4 kPa								
Coordonnées X Utm-Nad 83 : 591 034.2 Test no											
Coordonnées Y Utm-Nad 83 : 5 068 830.0											
Temps	Rabattement	Temps	Rabattement								
(sec)	(m)	(sec)	(m)								
0.5	0.235	3.5	0.031								
1.5	0.143	4.5	0.007								
2.5	0.077	5.5	0.000								

Site : Ste-Anne-des-PlainesPuits d'observatiProjet : AFSOQPression imposée												
Coordonnées X Utm-Nad 83 : 591 034.2 Test no												
Coordonnées Y Utm-Nad 83 : 5 068 830.0												
Temps	Rabattement	Temps	Rabattement									
(sec)	(m)	(sec)	(m)									
0.5	0.306	4.5	0.022									
1.5	0.197	5.5	0.006									
2.5	0.114	6.6	0.000									
3.5	0.057											

Site : Ste-Anne-de	s-Plaines	Pı	its d'observation : P9
Projet : AFSOQ		Pre	ssion imposée : 5 kPa
Coordonnées X Ut	m-Nad 83 : 591 026.6	• · · · · · · · · · · · · · · · · · · ·	Test no : 1
Coordonnées Y Ut	m-Nad 83 : 5 068 749	0.3	
Temps	Rabattement	Temps	Rabattement
(sec)	(m)	(sec)	(m)
0.5	-0.259	31.5	-0.002
1.5	-0.050	32.5	0.000
2.5	0.137	33.5	0.003
3.5	0.170	34.5	0.004
4.5	0.066	35.5	0.003
5.5	-0.064	36.5	0.001
6.5	-0.108	37.5	0.000
7.5	-0.054	38.5	0.001
8.5	0.030	39.5	0.003
9.5	0.069	40.5	0.004
10.5	0.046	41.5	0.003
11.5	-0.009	42.5	0.002
12.5	-0.044	43.5	0.001
13.5	-0.034	44.5	0.002
14.5	0.002	45.5	0.002
15.5	0.029	46.5	0.003
16.5	0.028	47.5	0.003
17.5	0.005	48.5	0.002
18.5	-0.015	49.5	0.002
19.5	-0.017	50.5	0.002
20.5	-0.004	51.5	0.002
21.5	0.012	52.5	0.002
22.5	0.016	53.5	0.002
23.5	0.008	54.5	0.002
24.5	-0.003	55.5	0.002
25.5	-0.008	56.5	0.002
26.5	-0.004	57.5	0.002
27.5	0.004	58.5	0.002
28.5	0.008	59.5	0.002
29.5	0.006	60.5	0.002
30.5	0.000		

Site : Ste-Anne-des-Plaines Projet : AFSOQ Coordonnées X Utm-Nad 83 : 591 026.6		Pı	Puits d'observation : P9 Pression imposée : 10 kPa	
		Press		
			Test no : 2	
Coordonnées Y Ut	m-Nad 83 : 5 068 749.	3		
Temps	Rabattement	Temps	Rabattement	
(sec)	(m)	(sec)	(m)	
0.5	-0.485	31.5	-0.003	
1.5	-0.001	32.5	-0.001	
2.5	0.294	33.5	0.006	
3.5	0.290	34.5	0.009	
4.5	0.075	35.5	0.008	
5.5	-0.140	36.5	0.005	
6.5	-0.177	37.5	0.001	
7.5	-0.063	38.5	0.001	
8.5	0.068	39.5	0.004	
9.5	0.112	40.5	0.006	
10.5	0.057	41.5	0.007	
11.5	-0.030	42.5	0.005	
12.5	-0.072	43.5	0.003	
13.5	-0.045	44.5	0.003	
14.5	0.013	45.5	0.004	
15.5	0.048	46.5	0.005	
16.5	0.038	47.5	0.006	
17.5	0.001	48.5	0.005	
18.5	-0.027	49.5	0.003	
19.5	-0.025	50.5	0.004	
20.5	-0.001	51.5	0.004	
21.5	0.021	52.5	0.004	
22.5	0.023	53.5	0.005	
23.5	0.009	54.5	0.005	
24.5	-0.007	55.5	0.004	
25.5	-0.012	56.5	0.004	
26.5	-0.002	57.5	0.004	
27.5	0.010	58.5	0.005	
28.5	0.015	59.5	0.005	
29.5	0.009	60.5	0.004	
30.5	0.001	61.5	0.005	

Site : Ste-Anne-des-Plaines Projet : AFSOQ Coordonnées X Utm-Nad 83 : 591 026.6 Puits d'observation : P9 Pression imposée : 15.5 kPa Test no : 3

Coordonnées Y Utm-Nad 83 : 5 068 749.3

Temps	Rabattement	Temps	Rabattement
(sec)	(m)	(sec)	(m)
0.5	-0.973	31.5	-0.002
1.5	-0.571	32.5	-0.005
2.5	0.155	33.5	0.000
3.5	0.459	34.5	0.008
4.5	0.366	35.5	0.011
5.5	0.037	36.5	0.008
6.5	-0.221	37.5	0.003
7.5	-0.219	38.5	0.000
8.5	-0.048	39.5	0.003
9.5	0.106	40.5	0.006
10.5	0.134	41.5	0.007
11.5	0.047	42.5	0.005
12.5	-0.058	43.5	0.002
13.5	-0.093	44.5	0.001
14.5	-0.045	45.5	0.003
15.5	0.028	46.5	0.005
16.5	0.060	47.5	0.006
17.5	0.037	48.5	0.005
18.5	-0.011	49.5	0.004
19.5	-0.039	50.5	0.003
20.5	-0.027	51.5	0.003
21.5	0.005	52.5	0.004
22.5	0.029	53.5	0.005
23.5	0.026	54.5	0.005
24.5	0.005	55.5	0.005
25.5	-0.013	56.5	0.003
26.5	-0.014	57.5	0.004
27.5	0.000	58.5	0.005
28.5	0.014	59.5	0.005
29.5	0.016	60.5	0.005
30.5	0.009	61.5	0.005

ANNEXE D

Données des essais de pompage et de récupération : Site de Sainte-Anne-des-Plaines

Puits	P8 (GK_99-042)
UTM X - NAD 83 (Zone 18)	591 036.6
UTM Y - NAD 83 (Zone 18)	5 06 8 827.7
Distance du puits P8 (m)	0
Durée de l'essai (heure)	168
Débit de pompage (m ³ /s)	2.3x10 ⁻²
Rayon du puits (cm)	12.7
Élévation du sol (m)	61.559
Profondeur de la nappe p/r au sol (m)	8.86
Section ouverte du puits (m)	4.87
Prof. de la base du puits p/r au niv. initial de la nappe (m)	10.64

Temps	Rabattement	Temps	Rabattement	
(sec)	(m)	(sec)	(m)	
Données non-disponibles				

Puits	P08 (GK_99-040)
UTM X - NAD 83 (Zone 18)	591 034.2
UTM Y - NAD 83 (Zone 18)	5 068 830
Distance du puits P8 (m)	3.3
Durée de l'essai (heure)	168
Rayon du puits (cm)	15.24
Élévation du sol (m)	61.559
Profondeur de la nappe p/r au sol (m)	8.85
Section ouverte du puits (m)	3.5
Prof. de la base du puits p/r au niv. initial de la nappe (m)	5.65

Temps	Rabattement	Temps	Rabattement
(sec)	(m)	(sec)	(m)
1	0.069	141	0.393
2	0.078	158	0.402
3	0.070	178	0.412
4	0.050	200	0.423
5	0.020	224	0.433
6	0.001	251	0.445
7	0.002	282	0.469
8	0.012	316	0.481
9	0.035	355	0.494
10	0.063	398	0.507
11	0.083	447	0.521
13	0.140	501	0.535
14	0.161	562	0.550
16	0.193	631	0.565
18	0.214	708	0.577
20	0.231	794	0.591
22	0.243	891	0.609
25	0.261	1000	0.624
28	0.270	1122	0.640
32	0.292	1259	0.657
35	0.306	1413	0.678
40	0.314	1585	0.697
45	0.317	1778	0.718
50	0.316	1995	0.738
56	0.321	2239	0.757
63	0.330	2512	0.778
71	0.337	2818	0.800
79	0.347	3162	0.821
89	0.357	3548	0.843
100	0.366	3981	0.867
112	0.374	4467	0.888
126	0.384	5012	0.910

Temps	Rabattement	Temps	Rabattement
(sec)	(m)	(sec)	(m)
5623	0.931	63096	1.308
6310	0.956	70795	1.318
7079	0.979	79433	1.317
7943	0.999	89125	1.348
8913	1.019	100000	1.370
10000	1.042	112202	1.386
11220	1.067	125893	1.408
12589	1.089	141254	1.434
14125	1.111	158489	1.461
15849	1.135	177828	1.491
17783	1.161	199526	1.537
19953	1.182	223872	1.588
22387	1.205	251189	1.630
25119	1.227	281838	1.673
28184	1.253	316228	1.691
31623	1.273	354813	1.701
35481	1.291	398107	1.664
39811	1.307	446684	1.667
44668	1.314	501187	1.639
50119	1.331	562341	1.623
56234	1.315		

Puits	P9 (GK_99-028)
UTM X - NAD 83 (Zone 18)	591 026.6
UTM Y - NAD 83 (Zone 18)	5 068 749.3
Distance du puits P8 (m)	79
Durée de l'essai (heure)	168
Rayon du puits (cm)	7.62
Élévation du sol (m)	61.423
Profondeur de la nappe p/r au sol (m)	8.83
Section ouverte du puits (m)	39.64
Prof. de la base du puits p/r au niv. initial de la nappe (m)	48.19

Temps	Rabattement	Temps	Rabattement
(min)	(m)	(min)	(m)
1	0.011	1100	0.464
2	0.008	1200	0.483
3	0.016	1300	0.473
4	0.020	1400	0.478
5	0.020	1500	0.488
6	0.027	1600	0.495
7	0.030	1700	0.497
8	0.034	1800	0.501
9	0.039	1900	0.504
10	0.042	2000	0.508
20	0.071	2100	0.517
30	0.087	2200	0.520
40	0.110	2300	0.531
50	0.122	2400	0.547
60	0.140	2500	0.560
70	0.156	2600	0.579
80	0.171	2700	0.605
90	0.180	2800	0.595
100	0.191	2900	0.593
120	0.211	3000	0.595
140	0.227	3100	0.602
160	0.246	3200	0.606
180	0.255	3300	0.624
200	0.272	3400	0.636
300	0.320	3500	0.641
400	0.359	3600	0.656
500	0.379	3700	0.668
600	0.405	3800	0.687
700	0.411	3900	0.714
800	0.419	4000	0.728
900	0.449	4100	0.734
1000	0.456	4200	0.745

Temps	Rabattement	Temps	Rabattement
(min)	(m)	(min)	(m)
4300	0.746	7200	0.696
4400	0.746	7300	0.699
4500	0.751	7400	0.684
4600	0.750	7500	0.690
4700	0.751	7600	0.694
4800	0.753	7700	0.691
4900	0.749	7800	0.651
5000	0.738	7900	0.672
5100	0.720	8000	0.683
5200	0.751	8100	0.707
5300	0.772	8200	0.718
5400	0.785	8300	0.726
5500	0.796	8400	0.719
5600	0.805	8500	0.724
5700	0.806	8600	0.722
5800	0.800	8700	0.719
5900	0.785	8800	0.720
6000	0.782	8900	0.704
6100	0.777	9000	0.699
6200	0.765	9100	0.688
6300	0.761	9200	0.692
6400	0.747	9300	0.700
6500	0.746	9400	0.692
6600	0.753	9500	0.696
6700	0.751	9600	0.710
6800	0.755	9700	0.726
6900	0.743	9800	0.743
7000	0.716	9900	0.761
7100	0.704	10000	0.769

Puits	P5 (GK_99-029)
UTM X - NAD 83 (Zone 18)	590 957.85
UTM Y - NAD 83 (Zone 18)	5 068 681.5
Distance du puits P8 (m)	166
Durée de l'essai (heure)	168
Rayon du puits (cm)	7.62
Élévation du sol (m)	59.665
Profondeur de la nappe p/r au sol (m)	8.83
Section ouverte du puits (m)	8
Prof. de la base du puits p/r au niv. initial de la nappe (m)	12.7

Temps	Rabattement	Temps	Rabattement
(min)	(m)	(min)	(m)
1	0.003	1100	0.402
2	0.009	1200	0.415
3	0.015	1300	0.398
4	0.016	1400	0.394
5	0.017	1500	0.397
6	0.021	1600	0.399
7	0.023	1700	0.402
8	0.028	1800	0.411
9	0.031	1900	0.409
10	0.031	2000	0.410
20	0.055	2100	0.422
30	0.073	2200	0.426
40	0.089	2300	0.443
50	0.100	2400	0.465
60	0.115	2500	0.478
70	0.130	2600	0.506
80	0.134	2700	0.522
90	0.146	2800	0.519
100	0.152	2900	0.507
120	0.172	3000	0.515
140	0.182	3100	0.522
160	0.194	3200	0.527
180	0.208	3300	0.531
200	0.219	3400	0.546
300	0.262	3500	0.554
400	0.286	3600	0.561
500	0.315	3700	0.582
600	0.322	3800	0.613
700	0.333	3900	0.636
800	0.341	4000	0.650
900	0.371	4100	0.662
1000	0.383	4200	0.660

Temps	Rabattement	Temps	Rabattement
(min)	(m)	(min)	(m)
4300	0.660	7200	0.594
4400	0.662	7300	0.596
4500	0.664	7400	0.597
4600	0.664	7500	0.596
4700	0.661	7600	0.600
4800	0.662	7700	0.609
4900	0.662	7800	0.545
5000	0.630	7900	0.570
5100	0.629	8000	0.598
5200	0.668	8100	0.625
5300	0.690	8200	0.640
5400	0.708	8300	0.656
5500	0.726	8400	0.664
5600	0.734	8500	0.650
5700	0.730	8600	0.596
5800	0.722	8700	0.549
5900	0.712	8800	0.517
6000	0.694	8900	0.513
6100	0.686	9000	0.521
6200	0.678	9100	0.525
6300	0.672	9200	0.531
6400	0.662	9300	0.542
6500	0.657	9400	0.577
6600	0.670	9500	0.605
6700	0.672	9600	0.676
6800	0.686	9700	0.749
6900	0.656	9800	0.791
7000	0.621	9900	0.772
7100	0.602	10000	0.728

Puits	Vocelle (GK_99-004)
UTM X - NAD 83 (Zone 18)	590 220.6
UTM Y - NAD 83 (Zone 18)	5 069 718.1
Distance du puits P8 (m)	1210
Durée de l'essai (heure)	168
Rayon du puits (cm)	7.62
Élévation du sol (m)	61.576
Profondeur de la nappe p/r au sol (m)	8.2
Section ouverte du puits (m)	3.05
Prof. de la base du puits p/r au niv. initial de la nappe (m)	10.28

Temps	Rabattement	Temps	Rabattement
(min)	(m)	(min)	(m)
1	0.001	1100	0.389
2	0.003	1200	0.395
3	0.004	1300	0.388
4	0.005	1400	0.401
5	0.007	1500	0.416
6	0.009	1600	0.431
7	0.011	1700	0.440
8	0.013	1800	0.446
9	0.015	1900	0.453
10	0.017	2000	0.463
20	0.039	2100	0.475
30	0.053	2200	0.488
40	0.070	2300	0.500
50	0.081	2400	0.497
60	0.096	2500	0.499
70	0.107	2600	0.506
80	0.118	2700	0.525
90	0.127	2800	0.536
100	0.136	2900	0.543
120	0.154	3000	0.554
140	0.191	3100	0.564
160	0.179	3200	0.578
180	0.193	3300	0.595
200	0.204	3400	0.613
300	0.254	3500	0.628
400	0.284	3600	0.646
500	0.313	3700	0.658
600	0.336	3800	0.664
700	0.349	3900	0.676
800	0.361	4000	0.683
900	0.384	4100	0.687
1000	0.385	4200	0.704

Temps	Rabattement	Temps	Rabattement
(min)	(m)	(min)	(m)
4300	0.717	7200	0.728
4400	0.727	7300	0.734
4500	0.737	7400	0.736
4600	0.741	7500	0.730
4700	0.744	7600	0.731
4800	0.752	7700	0.728
4900	0.759	7800	0.722
5000	0.756	7900	0.729
5100	0.755	8000	0.738
5200	0.762	8100	0.729
5300	0.764	8200	0.729
5400	0.762	8300	0.718
5500	0.768	8400	0.710
5600	0.765	8500	0.709
5700	0.764	8600	0.716
5800	0.767	8700	0.718
5900	0.762	8800	0.715
6000	0.755	8900	0.707
6100	0.750	9000	0.701
6200	0.743	9100	0.694
6300	0.758	9200	0.698
6400	0.733	9300	0.702
6500	0.728	9400	0.711
6600	0.730	9500	0.720
6700	0.714	9600	0.610
6800	0.717	9700	0.611
6900	0.716	9800	0.618
7000	0.721	9900	0.625
7100	0.725		

Puits	AlarieF (GK_99-004)
UTM X - NAD 83 (Zone 18)	589 803.90
UTM Y - NAD 83 (Zone 18)	5 069 349.40
Distance du puits P8 (m)	1330
Durée de l'essai (heure)	168
Rayon du puits (cm)	7.62
Élévation du sol (m)	61.071
Profondeur de la nappe p/r au sol (m)	8.28
Section ouverte du puits (m)	4.27
Prof. de la base du puits p/r au niv. initial de la nappe (m)	16.72

Temps	Rabattement	Temps	Rabattement
(min)	(m)	(min)	(m)
1	0.000	1100	0.235
2	0.000	1200	0.242
3	0.001	1300	0.230
4	0.002	1400	0.241
5	0.003	1500	0.253
6	0.004	1600	0.265
7	0.005	1700	0.272
8	0.006	1800	0.277
9	0.007	1900	0.283
10	0.008	2000	0.291
20	0.020	2100	0.301
30	0.026	2200	0.312
40	0.033	2300	0.318
50	0.042	2400	0.324
60	0.051	2500	0.326
70	0.058	2600	0.335
80	0.065	2700	0.352
90	0.071	2800	0.360
100	0.077	2900	0.366
120	0.089	3000	0.374
140	0.102	3100	0.385
160	0.111	3200	0.398
180	0.120	3300	0.413
200	0.128	3400	0.430
300	0.158	3500	0.445
400	0.169	3600	0.460
500	0.187	3700	0.473
600	0.206	3800	0.485
700	0.215	3900	0.499
800	0.221	4000	0.506
900	0.236	4100	0.514
1000	0.235	4200	0.528

Temps	Rabattement	Temps	Rabattement
(min)	(m)	(min)	(m)
4300	0.544	7200	0.541
4400	0.544	7300	0.545
4500	0.551	7400	0.547
4600	0.554	7500	0.542
4700	0.555	7600	0.540
4800	0.560	7700	0.538
4900	0.574	7800	0.508
5000	0.554	7900	0.531
5100	0.559	8000	0.532
5200	0.578	8100	0.535
5300	0.583	8200	0.535
5400	0.576	8300	0.529
5500	0.590	8400	0.524
5600	0.591	8500	0.522
5700	0.582	8600	0.526
5800	0.585	8700	0.527
5900	0.579	8800	0.524
6000	0.571	8900	0.516
6100	0.564	9000	0.509
6200	0.554	9100	0.503
6300	0.552	9200	0.508
6400	0.543	9300	0.510
6500	0.539	9400	0.517
6600	0.537	9500	0.526
6700	0.528	9600	0.537
6800	0.529	9700	0.543
6900	0.531	9800	0.553
7000	0.536	9900	0.561
7100	0.537		

Puits	Lauzon (GK_99-043)
UTM X - NAD 83 (Zone 18)	589 041.3
UTM Y - NAD 83 (Zone 18)	5 068 632.2
Distance du puits P8 (m)	1970
Durée de l'essai (heure)	168
Rayon du puits (cm)	7.62
Élévation du sol (m)	61.553
Profondeur de la nappe p/r au sol (m)	8.84
Section ouverte du puits (m)	4.27
Prof. de la base du puits p/r au niv. initial de la nappe (m)	16.16

Temps	Rabattement	Temps	Rabattement
(min)	(m)	(min)	(m)
802	0.000	1500	0.047
803	0.008	1600	0.069
804	0.013	1700	0.065
805	0.017	1800	0.067
806	0.013	1900	0.066
807	0.009	2000	0.065
808	0.007	2100	0.077
809	0.008	2200	0.078
810	0.012	2300	0.085
820	0.019	2400	0.099
830	0.023	2500	0.095
840	0.030	2600	0.120
850	0.026	2700	0.142
860	0.023	2800	0.136
870	0.016	2900	0.142
880	0.022	3000	0.164
890	0.027	3100	0.173
900	0.032	3200	0.176
910	0.032	3300	0.195
920	0.040	3400	0.212
930	0.034	3500	0.216
940	0.035	3600	0.224
950	0.032	3700	0.249
960	0.034	3800	0.269
970	0.038	3900	0.293
980	0.036	4000	0.304
990	0.027	4100	0.313
1000	0.031	4200	0.316
1100	0.040	4300	0.324
1200	0.054	4400	0.332
1300	0.030	4500	0.329
1400	0.038	4600	0.332

Temps	Rabattement	Temps	Rabattement
(min)	(m)	(min)	(m)
4700	0.323	7400	0.339
4800	0.328	7500	0.333
4900	0.323	7600	0.324
5000	0.274	7700	0.308
5100	0.304	7800	0.262
5200	0.328	7900	0.281
5300	0.331	8000	0.290
5400	0.347	8100	0.300
5500	0.364	8200	0.301
5600	0.371	8300	0.301
5700	0.367	8400	0.308
5800	0.378	8500	0.290
5900	0.370	8600	0.306
6000	0.351	8700	0.316
6100	0.349	8800	0.305
6200	0.331	8900	0.294
6300	0.332	9000	0.284
6400	0.310	9100	0.276
6500	0.312	9200	0.271
6600	0.314	9300	0.278
6700	0.313	9400	0.290
6800	0.329	9500	0.294
6900	0.328	9600	0.313
7000	0.345	9700	0.320
7100	0.336	9800	0.347
7200	0.343	9900	0.366
7300	0.336		

Puits	Packer (GK_99-024)
UTM X - NAD 83 (Zone 18)	589 512.1
UTM Y - NAD 83 (Zone 18)	5 067 803
Distance du puits P8 (m)	1830
Durée de l'essai (heure)	168
Rayon du puits (cm)	3.81
Élévation du sol (m)	59.589
Profondeur de la nappe p/r au sol (m)	7.78
Section ouverte du puits (m)	79.42
Prof. de la base du puits p/r au niv. initial de la nappe (m)	91.46

Temps	Rabattement	Temps	Rabattement
(min)	(m)	(min)	(m)
1198	0.043	6838	0.247
2636	0.133	8501	0.223
4049	0.256	9942	0.273
5621	0.304		

Puits	P08 (GK_99-040)
UTM X - NAD 83 (Zone 18)	591 034.2
UTM Y - NAD 83 (Zone 18)	5 068 830
Distance du puits P8 (m)	3.3
Durée de l'essai (heure)	159.5
Rayon du puits (cm)	15.24
Élévation du sol (m)	61.559
Profondeur de la nappe p/r au sol (m)	8.85
Section ouverte du puits (m)	3.5
Prof. de la base du puits p/r au niv. initial de la nappe (m)	5.65

Temps	Remontée	Temps	Remontée
(sec)	(m)	(sec)	(m)
1	0.065	141	0.566
2	0.147	158	0.573
3	0.234	178	0.580
4	0.307	200	0.588
5	0.364	224	0.596
6	0.406	251	0.605
7	0.429	282	0.613
8	0.447	316	0.621
9	0.459	355	0.631
10	0.467	398	0.640
11	0.469	447	0.650
13	0.474	501	0.663
14	0.474	562	0.673
16	0.474	631	0.686
18	0.475	708	0.699
20	0.479	794	0.712
22	0.481	891	0.727
25	0.486	1000	0.742
28	0.490	1122	0.759
32	0.496	1259	0.774
35	0.500	1413	0.792
40	0.505	1585	0.811
45	0.509	1778	0.831
50	0.514	1995	0.850
56	0.519	2239	0.874
63	0.524	2512	0.895
71	0.530	2818	0.916
79	0.536	3162	0.941
89	0.542	3548	0.964
100	0.548	3981	0.989
112	0.554	4467	1.013
126	0.559	5012	1.038

Temps	Remontée	Temps	Remontée
(sec)	(m)	(sec)	(m)
5623	1.063	63096	1.567
6310	1.087	70795	1.591
7079	1.114	79433	1.611
7943	1.140	89125	1.631
8913	1.165	100000	1.664
10000	1.188	112202	1.703
11220	1.213	125893	1.744
12589	1.238	141254	1.759
14125	1.263	158489	1.793
15849	1.287	177828	1.809
17783	1.314	199526	1.845
19953	1.338	223872	1.859
22387	1.357	251189	1.875
25119	1.385	281838	1.868
28184	1.406	316228	1.881
31623	1.429	354813	1.897
35481	1.452	398107	1.945
39811	1.478	446684	1.956
44668	1.496	501187	1.951
50119	1.520	562341	2.004
56234	1.542		

Puits	P9 (GK_99-028)
UTM X - NAD 83 (Zone 18)	591 026.6
UTM Y - NAD 83 (Zone 18)	5 068 749.3
Distance du puits P8 (m)	79
Durée de l'essai (heure)	159.5
Rayon du puits (cm)	7.62
Élévation du sol (m)	61.423
Profondeur de la nappe p/r au sol (m)	8.83
Section ouverte du puits (m)	39.64
Prof. de la base du puits p/r au niv. initial de la nappe (m)	48.19

Temps	Remontée	Temps	Remontée
(min)	(m)	(min)	(m)
1	0.003	1100	0.513
2	0.007	1200	0.517
3	0.015	1300	0.522
4	0.017	1400	0.532
5	0.020	1500	0.555
6	0.022	1600	0.570
7	0.022	1700	0.591
8	0.024	1800	0.608
9	0.028	1900	0.622
10	0.036	2000	0.638
20	0.055	2100	0.677
30	0.073	2200	0.677
40	0.090	2300	0.679
50	0.106	2400	0.669
60	0.124	2500	0.676
70	0.140	2600	0.675
80	0.152	2700	0.676
90	0.163	2800	0.676
100	0.171	2900	0.694
120	0.196	3000	0.691
140	0.215	3100	0.702
160	0.233	3200	0.712
180	0.247	3300	0.727
200	0.259	3400	0.738
300	0.325	3500	0.734
400	0.367	3600	0.733
500	0.403	3700	0.739
600	0.438	3800	0.739
700	0.480	3900	0.731
800	0.496	4000	0.727
900	0.507	4100	0.719
1000	0.511	4200	0.716

Temps	Remontée	Temps	Remontée
(min)	(m)	(min)	(m)
4300	0.711	7100	0.798
4400	0.714	7200	0.805
4500	0.716	7300	0.810
4600	0.728	7400	0.813
4700	0.739	7500	0.821
4800	0.751	7600	0.825
4900	0.758	7700	0.827
5000	0.757	7800	0.876
5100	0.749	7900	0.860
5200	0.745	8000	0.843
5300	0.734	8100	0.829
5400	0.734	8200	0.812
5500	0.731	8300	0.802
5600	0.742	8400	0.800
5700	0.754	8500	0.805
5800	0.750	8600	0.816
5900	0.759	8700	0.817
6000	0.770	8800	0.829
6100	0.780	8900	0.835
6200	0.794	9000	0.845
6300	0.793	9100	0.848
6400	0.827	9200	0.874
6500	0.841	9300	0.891
6600	0.823	9400	0.879
6700	0.801	9500	0.868
6800	0.793	9600	0.862
6900	0.789	9700	0.860
7000	0.790		

Puits	P5 (GK_99-029)
UTM X - NAD 83 (Zone 18)	590 957.85
UTM Y - NAD 83 (Zone 18)	5 068 681.5
Distance du puits P8 (m)	166
Durée de l'essai (heure)	159.5
Rayon du puits (cm)	7.62
Élévation du sol (m)	59.665
Profondeur de la nappe p/r au sol (m)	8.83
Section ouverte du puits (m)	8
Prof. de la base du puits p/r au niv. initial de la nappe (m)	12.7

Temps	Remontée	Temps	Remontée
(min)	(m)	(min)	(m)
1	0.005	1100	0.280
2	0.007	1200	0.303
3	0.013	1300	0.354
4	0.013	1400	0.415
5	0.013	1500	0.475
6	0.019	1600	0.502
7	0.021	1700	0.526
8	0.023	1800	0.550
9	0.027	1900	0.572
10	0.031	2000	0.594
20	0.059	2100	0.625
30	0.077	2200	0.557
40	0.099	2300	0.501
50	0.118	2400	0.395
60	0.142	2500	0.447
70	0.154	2600	0.371
80	0.168	2700	0.355
90	0.184	2800	0.429
100	0.203	2900	0.489
120	0.231	3000	0.533
140	0.250	3100	0.553
160	0.275	3200	0.569
180	0.295	3300	0.588
200	0.308	3400	0.606
300	0.397	3500	0.613
400	0.457	3600	0.612
500	0.510	3700	0.588
600	0.573	3800	0.511
700	0.570	3900	0.514
800	0.501	4000	0.417
900	0.442	4100	0.363
1000	0.334	4200	0.418

Temps	Remontée	Temps	Remontée
(min)	(m)	(min)	(m)
4300	0.498	7000	0.418
4400	0.546	7100	0.458
4500	0.576	7200	0.503
4600	0.608	7300	0.534
4700	0.640	7400	0.550
4800	0.669	7500	0.556
4900	0.688	7600	0.573
5000	0.673	7700	0.584
5100	0.621	7800	0.674
5200	0.542	7900	0.648
5300	0.449	8000	0.621
5400	0.369	8100	0.569
5500	0.333	8200	0.505
5600	0.430	8300	0.458
5700	0.527	8400	0.453
5800	0.554	8500	0.479
5900	0.569	8600	0.505
6000	0.585	8700	0.533
6100	0.606	8800	0.577
6200	0.622	8900	0.609
6300	0.621	9000	0.628
6400	0.661	9100	0.641
6500	0.638	9200	0.684
6600	0.554	9300	0.685
6700	0.463	9400	0.605
6800	0.435	9500	0.473
6900	0.446	9600	0.389

Puits	Vocelle (GK_99-004)
UTM X - NAD 83 (Zone 18)	590 220.6
UTM Y - NAD 83 (Zone 18)	5 069 718.1
Distance du puits P8 (m)	1210
Durée de l'essai (heure)	159.5
Rayon du puits (cm)	7.62
Élévation du sol (m)	61.576
Profondeur de la nappe p/r au sol (m)	8.2
Section ouverte du puits (m)	3.05
Prof. de la base du puits p/r au niv. initial de la nappe (m)	10.28

Temps	Remontée	Temps	Remontée
(min)	(m)	(min)	(m)
1	0.000	1100	0.436
2	0.001	1200	0.453
3	0.001	1300	0.460
4	0.003	1400	0.474
5	0.003	1500	0.488
6	0.003	1600	0.503
7	0.005	1700	0.521
8	0.005	1800	0.539
9	0.006	1900	0.553
10	0.008	2000	0.566
20	0.019	2100	0.579
30	0.026	2200	0.586
40	0.043	2300	0.596
50	0.053	2400	0.606
60	0.063	2500	0.615
70	0.073	2600	0.628
80	0.083	2700	0.639
90	0.091	2800	0.644
100	0.100	2900	0.648
120	0.117	3000	0.647
140	0.133	3100	0.657
160	0.148	3200	0.665
180	0.160	3300	0.675
200	0.173	3400	0.679
300	0.230	3500	0.678
400	0.270	3600	0.681
500	0.302	3700	0.683
600	0.329	3800	0.686
700	0.349	3900	0.692
800	0.375	4000	0.697
900	0.399	4100	0.705
1000	0.420	4200	0.701

Temps	Remontée	Temps	Remontée
(min)	(m)	(min)	(m)
4300	0.690	7100	0.779
4400	0.686	7200	0.776
4500	0.687	7300	0.771
4600	0.692	7400	0.770
4700	0.695	7500	0.777
4800	0.702	7600	0.781
4900	0.701	7700	0.781
5000	0.695	7800	0.784
5100	0.701	7900	0.778
5200	0.705	8000	0.773
5300	0.704	8100	0.774
5400	0.712	8200	0.772
5500	0.717	8300	0.775
5600	0.722	8400	0.775
5700	0.713	8500	0.770
5800	0.716	8600	0.779
5900	0.720	8700	0.783
6000	0.728	8800	0.792
6100	0.735	8900	0.796
6200	0.742	9000	0.804
6300	0.748	9100	0.808
6400	0.757	9200	0.814
6500	0.762	9300	0.819
6600	0.740	9400	0.819
6700	0.763	9500	0.825
6800	0.762	9600	0.828
6900	0.765	9700	0.840
7000	0.775		

Puits	AlarieF (GK_99-004)
UTM X - NAD 83 (Zone 18)	589 803.90
UTM Y - NAD 83 (Zone 18)	5 069 349.40
Distance du puits P8 (m)	1330
Durée de l'essai (heure)	159.5
Rayon du puits (cm)	7.62
Élévation du sol (m)	61.071
Profondeur de la nappe p/r au sol (m)	8.28
Section ouverte du puits (m)	4.27
Prof. de la base du puits p/r au niv. initial de la nappe (m)	16.72

Temps	Remontée	Temps Remontée		
(min)	(m)	(min)	(m)	
1	0.000	1100	0.292	
2	0.000	1200	0.303	
3	0.000	1300	0.314	
4	0.000	1400	0.320	
5	0.001	1500	0.340	
6	0.001	1600	0.355	
7	0.002	1700	0.372	
8	0.002	1800	0.389	
9	0.003	1900	0.401	
10	0.003	2000	0.413	
20	0.008	2100	0.435	
30	0.016	2200	0.436	
40	0.017	2300	0.444	
50	0.021	2400	0.451	
60	0.026	2500	0.456	
70	0.032	2600	0.465	
80	0.038	2700	0.473	
90	0.044	2800 0.479		
100	0.050	2900 0.482		
120	0.060	3000 0.481		
140	0.070	3100 0.491		
160	0.080	3200	0.500	
180	0.093	3300	0.510	
200	0.105	3400	0.515	
300	0.144	3500	0.514	
400	0.171	3600	0.517	
500	0.189	3700	0.517	
600	0.222	3800	0.520	
700	0.230	3900 0.521		
800	0.251	4000	0.525	
900	0.272	4100 0.527		
1000	0.288	4200	0.515	

Temps	Remontée	Temps Remontée		
(min)	(m)	(min) (m)		
4300	0.510	7100 0.601		
4400	0.507	7200	0.597	
4500	0.511	7300	0.593	
4600	0.515	7400	0.596	
4700	0.520	7500	0.603	
4800	0.529	7600	0.608	
4900	0.527	7700	0.609	
5000	0.529	7800	0.633	
5100	0.527	7900	0.613	
5200	0.526	8000	0.606	
5300	0.525	8100	0.603	
5400	0.530	8200	0.598	
5500	0.533	8300	0.599	
5600	0.540	8400	0.595	
5700	0.533	8500	0.602	
5800	0.536	8600	0.604	
5900	0.543	8700 0.610		
6000	0.552	8800 0.617		
6100	0.560	8900 0.622		
6200	0.568	9000 0.630		
6300	0.567	9100 0.635		
6400	0.592	9200	0.659	
6500	0.587	9300	0.653	
6600	0.584	9400	0.651	
6700	0.582	9500	0.653	
6800	0.580	9600	0.649	
6900	0.578	9700	0.663	
7000	0.594			

Puits	Lauzon (GK_99-043)
UTM X - NAD 83 (Zone 18)	589 041.3
UTM Y - NAD 83 (Zone 18)	5 068 632.2
Distance du puits P8 (m)	1970
Durée de l'essai (heure)	159.5
Rayon du puits (cm)	7.62
Élévation du sol (m)	61.553
Profondeur de la nappe p/r au sol (m)	8.84
Section ouverte du puits (m)	4.27
Prof. de la base du puits p/r au niv. initial de la nappe (m)	16.16

Temps	Remontée	Temps	Remontée
(min)	(m)	(min)	(m)
220	0.008	2934	0.199
373	0.026	5764	0.218
490	0.036	7152	0.286
1241	0.075	8686	0.298
1732	0.130		

Puits	Packer (GK_99-024)
UTM X - NAD 83 (Zone 18)	589 512.1
UTM Y - NAD 83 (Zone 18)	5 067 803
Distance du puits P8 (m)	1830
Durée de l'essai (heure)	168
Rayon du puits (cm)	3.81
Élévation du sol (m)	59.589
Profondeur de la nappe p/r au sol (m)	7.78
Section ouverte du puits (m)	79.42
Prof. de la base du puits p/r au niv. initial de la nappe (m)	91.46

Temps	Remontée	Temps	Remontée
(min)	(m)	(min)	(m)
563	0.071	6348	0.298
1995	0.183	7705	0.329
3680	0.266	9152	0.353
5022	0.251		

.

ANNEXE E

Analyse physico-chimique de l'eau souterraine au puits de pompage P8 : Site de Sainte-Anne-des-Plaines

Puits P8

Prélèvement de 4 échantillons de l'eau souterraine au puits de pompage de Sainte-Anne-des-Plaines

Heure	: '	17h41
-------	-----	-------

Échantillons	Anne-4	Anne-5	Anne-6	Anne-7	NORMES
Date	24/08/99	25/08/99	26/08/99	27/08/99	
Heure	11:30	14:59	13:37	17:00	
Température (°C)	9.3	10.99	9.19	14.8	
SpC-conduct. Spécifique (mS/cm)	1.14	1.153	1.167	1.204	
Cnd-conductivité (mS/cm)	0.798	0.845	0.816	0.967	
TDS-solides dissous totaux (mg/L)	0.74	0.75	0.759	0.777	·
Salinité (ppt)	0.57	0.58	0.58	0.6	
DO (%)	38.1	27.4	22.4	39.7	
DO (mg/L)	4.33	3	2.55	3.98	
pH	7.98	7.12	7.94	7.64	6.5 à 8.5
Redox	-209	-230	-210	-204	
Alcalinité totale CaCO3 (mg/L)	490	500	500	500	30 à 500
Argent	0.0003	< 0.0003	0.0003	< 0.0003	0.05
Aluminium	0.05	0.05	0.04	0.01	
Arsenic	< 0.001	< 0.001	< 0.001	< 0.001	0.05
Bore	0.81	0.82	0.79	0.82	5
Baryum	0.38	0.38	0.39	0.42	1
Bromures (mg/L)	0.48	0.56	0.56	0.59	
Calcium	9.8	9.9	10	9.9	200
Cadmium	0.0009	0.0008	0.0006	0.0008	0.005
Carbone inorganique dissous	120	11.7	120	DEL	
Chlorures (mg/L)	90	110	110	110	250
Cyanures totaux	< 0.003	PA	< 0.003	0.003	0.2
Carbone organique dissous	7.3	. 7.1	7.1	DEL	
Chrome	< 0.0009	< 0.0009	< 0.0009	< 0.0009	0.05
Cuivre	< 0.001	< 0.001	0.001	< 0.001	
Fluorures	1.4	1.4	1.4	1.5	1.5
Fer (mg/L)	0.006	0.006	0.005	0.006	0.3
Mercure	< 0.0001	< 0.0001	< 0.0001	< 0.0001	0.001
lodures	< 0.1	< 0.1	< 0.1	< 0.1	
Potassium	30	31	31	25	
Lithium	0.03	0.03	0.03	0.03	
Magnésium	14.7	14.8	14.9	14.8	150
Manganèse (mg/L)	0.0007	< 0.0003	< 0.0007	0.0006	0.05
Azote total	1	1	1	1.06	
Sodium	210	230	20		270
Azote ammoniacal	0.98	0.99	0.97	0.96	0.5
Nickel	< 0.0008	< 0.0008	< 0.0008	< 0.0008	
Nitrates et nitrites (mg/L)	0.03	0.02	0.04	< 0.02	10
Phosphore inorganique total	2.1	2.1	2.1	2	
Phosphore total dissous	2.1	2.1	2.1	2	
Plomb	< 0.0040	< 0.0040	< 0.0040	0.004	0.05
Sélénium	< 0.001	< 0.001	< 0.001	< 0.001	0.01
silice	10.8	10.7	10.7	10.6	
Sulfates	9	8	11	12	500
Strontium	9.2	9.2	9.3	9.1	
Sulfures	0.96	2.2	2.5	0.98	0.05
Uranium	0.006	< 0.005	< 0.005	0.009	0.02
Zinc	< 0.005	< 0.005	< 0.005	< 0.005	

*DEL=Échantillon rejeté

ANNEXE F

Localisation et description des mesures de niveau d'eau avant et à la fin de l'essai de pompage dans les puits de Saint-Janvier

		· · · · ·							_										_					_							_							_				
nt-Janvier	Charge hydraulique (m)	62.96	62.88	59.93	65.85	61.29	66.12	64.89	59.75	60.51	59.31	53.41	59.69	66.45	61.92	66.02	64.97	65.19	61.09	63.68	51.69	53.22	67.00	49.62	64.48	53.17	59.43	59.21	59.38	59.18	53.35	53.36	53.37	56.73	54.24	55.25	63.62	67.17	51.69	63.54	55.68	
npage de Saii	Profondeur (m)	6.90	6.27	5.20	3.70	3.35	3.50	0.00	10.05	7.88	10.88	15.24	5.90	1.60	5.47	4.38	1.79	2.97	5.14	3.78	8.71	11.87	7.95	8.13	4.11	16.22	9.60	9.43	9.32	10.34	13.87	13.84	14.01	8.92	10.90	9.72	6.46	2.22	10.40	2.75	6.81	
ant l'essai de pon	Élévation du sol (m)	69.86	69.15	65.13	69.55	64.64	69.62	64.89	69.80	68.39	70.19	68.65	65.59	68.05	67.39	70.40	66.76	68.16	66.23	67.46	60.40	65.09	74.95	57.75	68.59	69.39	69.03	68.64	68.70	69.52	67.22	67.20	67.38	65.65	65.14	64.97	70.08	69.39	62.09	66.29	62.49	
eau d'eau av	Y Utm Nad83	5063187	5063526	5065417	5062365	5063928	5063836	5065498	5061786	5061372	5061331	5062424	5061011	5066337	5061963	5062964	5060310	5059884	5061652	5060067	5064198	5063029	5067775	5065132	5063821	5062449	5061809	5061841	5061790	5061761	5062552	5062481	5062410	5062695	5062541	5062442	5058234	5059528	5063900	5059643	5060953	
sures de nive	X Utm Nad83	582576	582844	584553	582016	583213	580820	580664	584579	583948	584600	584780	583176	581368	583527	582316	581878	581337	583528	582544	586242	584614	582690	589526	578565	586381	584527	584559	584508	584613	584794	584723	584652	584381	584208	584151	583208	580682	585682	581820	583138	
on des me	Captage	Tq*	ЪТ	РТ	ΡŢ	PT	ΡŢ	ΡŢ	ЪТ	ΡŢ	РТ	РТ	ΡŢ	ΡT	ΡŢ	ΡŢ	РТ	РТ	ЪТ	ΡΤ	ЪТ	ΡŢ	ЪТ	ΡŢ	ΡŢ	ΡT	ΡT	РТ	ΡT	РТ	РТ	ЪТ	ΡΤ	PT	ΡΤ	PT	ΡŢ	ΡT	ΡT	РТ	Puits Charles	
Descriptic	Date	08/05/2000	08/05/2000	08/05/2000	09/05/2000	09/05/2000	25/05/2000	25/05/2000	24/05/2000	24/05/2000	24/05/2000	24/05/2000	25/05/2000	25/05/2000	31/05/2000	24/05/2000	24/05/2000	24/05/2000	25/05/2000	25/05/2000	25/05/2000	24/05/2000	25/05/2000	25/05/2000	25/05/2000	25/05/2000	04/07/2000	04/07/2000	04/07/2000	04/07/2000	24/05/2000	24/05/2000	24/05/2000	24/05/2000	24/05/2000	24/05/2000	25/05/2000	25/05/2000	24/05/2000	24/05/2000	1	ulaire
	Station	GK_00-001	GK_00-002	GK_00-004	GK_00-005	GK_00-006	GK_00-010	GK_00-011	GK_00-012	GK_00-013	GK_00-014	GK_00-015	GK_00-016	GK_00-018	GK_00-021	MB_99-001	MB_99-002	MB_99-003	MB_99-005	MB_99-006	MB_99-010	MB_99-011	MB_99-017	MB_99-019	MB_99-020	NF_99-084	STJA_00-001	STJA_00-002	STJA_00-003	STJA_00-004	VT_00-001	VT_00-002	VT_00-003	VT_00-004a	VT_00-005	VT_00-006	VT_00-007	VT_00-008a	VT_00-009	VT_00-010	GK_00-022	* PT = Puits tub

				_				_						_			_				_																			_	
aint-Janvier	Charge hydraulique (m)	62.60	62.46	59.54	65.44	60.04	65.34	64.19	57.45	59.35	57.36	52.98	58.51	65.75	61.26	64.41	63.64	64.64	60.12	62.69	51.25	52.76	66.60	49.05	63.70	52.55	55.58	57.49	57.63	57.60	52.95	52.97	53.01	0.00	53.87	54.80	62.69	66.31	51.33	62.68	55.68
ompage de Sa	Profondeur (m)	7.26	6.69	5.59	4.11	4.60	4.28	0.70	12.35	9.04	12.83	15.67	7.08	2.30	6.13	5.99	3.12	3.52	6.11	4.77	9.15	12.33	8.35	8.70	4.89	16.84	13.45	11.15	11.07	11.92	14.27	14.23	14.37	9.57	11.27	10.17	7.39	3.08	10.76	3.61	6.81
fin de l'essai de p	Élévation du sol (m)	69.86	69.15	65.13	69.55	64.64	69.62	64.89	69.80	68.39	70.19	68.65	65.59	68.05	67.39	70.40	66.76	68.16	66.23	67.46	60.40	65.09	74.95	57.75	68.59	69.39	69.03	68.64	68.70	69.52	67.22	67.20	67.38	65.65	65.14	64.97	70.08	69.39	62.09	66.29	62.49
u d'eau à la	Y Utm Nad83	5063187	5063526	5065417	5062365	5063928	5063836	5065498	5061786	5061372	5061331	5062424	5061011	5066337	5061963	5062964	5060310	5059884	5061652	5060067	5064198	5063029	5067775	5065132	5063821	5062449	5061809	5061841	5061790	5061761	5062552	5062481	5062410	5062695	5062541	5062442	5058234	5059528	5063900	5059643	5060953
res de nivea	X Utm Nad83	582576	582844	584553	582016	583213	580820	580664	584579	583948	584600	584780	583176	581368	583527	582316	581878	581337	583528	582544	586242	584614	582690	589526	578565	586381	584527	584559	584508	584613	584794	584723	584652	584381	584208	584151	583208	580682	585682	581820	583138
des mesu	Captage	±PT	ΡŢ	ΡT	ΡT	ΡŢ	PT	ΡT	ЪТ	PT	PT	ΡT	РТ	ЪТ	ЪТ	РТ	ЪТ	ΡT	Ы	ЪТ	ΡŢ	ΡŢ	μ	ΡŢ	PT	ЪТ	ΡT	ЪТ	PT	ΡΤ	Ы	ЪТ	РТ	ΡΤ	F	ЪТ	Ы	РТ	ЪТ	PT	Puits Charles
escription	Date	12/07/2000	12/07/2000	12/07/2000	12/07/2000	12/07/2000	12/07/2000	12/07/2000	12/07/2000	12/07/2000	12/07/2000	12/07/2000	12/07/2000	12/07/2000	12/07/2000	12/07/2000	12/07/2000	12/07/2000	12/07/2000	12/07/2000	12/07/2000	12/07/2000	12/07/2000	12/07/2000	12/07/2000	12/07/2000	12/07/2000	12/07/2000	12/07/2000	12/07/2000	12/07/2000	12/07/2000	12/07/2000	12/07/2000	12/07/2000	12/07/2000	12/07/2000	12/07/2000	12/07/2000	12/07/2000	12/07/2000
Ť	Station	GK_00-001	GK_00-002	GK_00-004	GK_00-005	GK_00-006	GK_00-010	GK_00-011	GK_00-012	GK_00-013	GK_00-014	GK_00-015	GK_00-016	GK_00-018	GK_00-021	MB_99-001	MB_99-002	MB_99-003	MB_99-005	MB_99-006	MB_99-010	MB_99-011	MB_99-017	MB_99-019	MB_99-020	NF_99-084	STJA_00-001	STJA_00-002	STJA_00-003	STJA_00-004	VT_00-001	VT_00-002	VT_00-003	VT_00-004a	VT_00-005	VT_00-006	VT_00-007	VT_00-008a	VT_00-009	VT_00-010	GK_UU-UZZ

PT = Puits tubulaire

ANNEXE G

Schémas d'aménagement des puits : Site de Saint-Janvier

Numén Projet Schém Locali Coord	ro du projet : 980011 : AFSOQ Ia d'aménagement : Puits d'obs isation : Municipalité de St-Janv Ionnées (NAD83/Zone 18) : 584	ervation S' vier 559.0 m E	TJA2 ., 5 061 840.5 m N.	Cupation
PROF. (M)	STRATIGRAPHIE	ÉLÉV. (M)	DESCRIPTION	DONNÉES DE FORAGE
0		<u>68.638</u> 67.418	Sable moyen	
		<u>59/208</u>	Argile	Méthode de forage : marteau fond de trou Tubage dans le sol : 14.96 m Diamètre du forage : 15.24 cm
		69,308	Till/Roc fracturé	-
20		25.958	Roches dolomitiques Groupe de Beekmantowm Formation de Beauhamois	
Comp	agnie de forage : Les Puits Deu	x-Montagn	es	Date : 23/06/2000

Numéi Projet Schém Locali Coord	ro du projet : 980011 : AFSOQ a d'aménagement : Puits de po sation : Municipalité de St-Jany onnées (NAD83/Zone 18) : 583	mpage mur vier 138.4 m E	nicipal Charles ., 5 060 952.9 m N.	Church
PROF. (M)	STRATIGRAPHIE	ÉLÉV. (M)	DESCRIPTION	DONNÉES DE FORAGE
0	<u>~</u>	62,492		
5		55,682	Argile	Méthode de forage :
		E1 000	Till/Roc fracturé	marteau tond de trou
		51,992		Tubage dans le sol : 10.5 m
15-				Diamètre du forage : 30.5 cm
20				Diamètre du forage de 76.8 mà 82.3 m de profondeur : 15.2 cm
26				
35				
40			Roches dolomitiques Groupe de Beekmantowm Formation de Beauharnois	
45 <u>-</u>				
50- <u>-</u>				
55				
70- <u>-</u>				
75				
80				
		-19.808	······	
~				
Comp	agnie de forage : Roch Fréchett	e et Fils		Date : Mai 1984

ANNEXE H

Essais de perméabilité *in situ* par choc hydraulique : Site de Saint-Janvier Carte de localisation des puits d'observation lors de l'essai de pompage et des puits d'essais de perméabilité in situ par choc hydraulique à Saint-Janvier

Site : St-Janvier		Puits	de pompage : STJA1
Projet : AFSOQ		Volume d'	eau enlevé : 9.5 litres
Coordonnées X Ut	m-Nad 83 : 584 526.5	5	Test no : 1
Coordonnées Y Ut	m-Nad 83 : 5 061 809	9.3	
Temps	Rabattement	Temps	Rabattement
(sec)	(m)	(sec)	(m)
0.5	0.204	5	0.044
1	0.178	5.5	0.032
1.5	0.152	6	0.024
2	0.132	6.5	0.020
2.5	0.110	7	0.012
3	0.096	7.5	0.006
3.5	0.078	8	0.004
. 4	0.066	8.5	0.004
4.5	0.056	9	0.000

Site : St-Janvier		Puits	de pompage : STJA1
Projet : AFSOQ		Volume d	eau enlevé : 9.5 litres
Coordonnées X Ut	tm-Nad 83 : 584 526.5		Test no : 2
Coordonnées Y U	tm-Nad 83 : 5 061 809.	3	
Temps	Rabattement	Temps	Rabattement
(sec)	(m)	(sec)	(m)
0.5	0.192	6	0.034
1	0.190	6.5	0.030
1.5	0.164	7	0.024
2	0.142	7.5	0.018
2.5	0.118	8	0.014
3	0.106	8.5	0.014
3.5	0.088	9	0.010
4	0.076	9.5	0.010
4.5	0.064	10	0.012
5	0.052	10.5	0.010
5.5	0.042	11	0.006

Site : St-Janvier		Puits	de pompage : STJA1					
Projet : AFSOQ		Volume d'eau enlevé : 9.5 litres						
Coordonnées X Ut	m-Nad 83 : 584 526.:	5	Test no : 3					
Coordonnées Y Ut	m-Nad 83 : 5 061 809	9.3						
	D-1-stterment	Танар	Dahattanaant					
Temps	Rabattement	Temps	Rabattement					
(sec)	(m)	(sec)	(m)					
0.5	0.212	5	0.042					
1	0.184	5.5	0.036					
1.5	0.158	6	0.028					
2	0.136	6.5	0.020					
2.5	0.118	7	0.014					
3	0.092	7.5	0.008					
3.5	0.080	8 .	0.004					
4	0.066	8.5	0.002					
4.5	0.054							

Site : St-Janvier		Puits d	l'observation : STJA2
Projet : AFSOQ		Volume d	eau enlevé : 9.5 litres
Coordonnées X U	tm-Nad 83 : 584 559.0		Test no : 1
Coordonnées Y U	tm-Nad 83 : 5061840.5		
Temps	Rabattement	Temps	Rabattement
(sec)	(m)	(sec)	(m)
0.5	-0.167	18.5	0.003
1.5	-0.102	19.5	0.003
2.5	-0.005	20.5	0.001
3.5	0.044	21.5	0.003
4.5	0.024	22.5	0.003
5.5	-0.005	23.5	-0.001
6.5	-0.013	24.5	0.000
7.5	-0.008	25.5	-0.001
8.5	0.004	26.5	0.003
9.5	0.013	27.5	0.000
10.5	-0.001	28.5	0.000
11.5	-0.005	29.5	0.001
12.5	-0.005	30.5	0.003
13.5	-0.003	31.5	0.000
14.5	-0.001	32.5	-0.003
15.5	0.003	33.5	-0.003
16.5	0.001	34.5	0.001
17.5	0.000		

Site : St-Janvier		Puits d	observation : STJA2
Projet : AFSOQ		Volume d'	eau enlevé : 9.5 litres
Coordonnées X Ut	m-Nad 83 : 584 559.0)	Test no : 2
Coordonnées Y Ut	m-Nad 83 : 5061840.	5	
Temps	Rabattement	Temps	Rabattement
(sec)	(m)	(sec)	(m)
0.5	-0.137	23.5	-0.001
1.5	-0.121	24.5	-0.004
2.5	-0.022	25.5	-0.001
3.5	0.039	26.5	-0.004
4.5	0.038	27.5	0.000
5.5	0.000	28.5	-0.003
6.5	-0.022	29.5	-0.004
7.5	-0.017	30.5	-0.004
8.5	-0.004	31.5	-0.004
9.5	0.004	32.5	0.000
10.5	0.001	33.5	0.000
11.5	-0.007	34.5	0.000
12.5	-0.009	35.5	-0.004
13.5	-0.005	36.5	0.000
14.5	0.000	37.5	-0.001
15.5	0.000	38.5	-0.003
16.5	-0.001	39.5	-0.001
17.5	-0.007	40.5	-0.005
18.5	-0.009	41.5	-0.004
19.5	-0.004	42.5	0.000
20.5	-0.005	43.5	0.000
21.5	-0.003	44.5	-0.003
22.5	-0.003	45.5	-0.007

Site : St-Janvier		Puits d	observation : STJA3
Projet : AFSOQ		Volume d'	eau enlevé : 1.2 litres
Coordonnées X Ut	m-Nad 83 : 584 507.	7	Test no : 1
Coordonnées Y Ut	m-Nad 83 : 5 061 789	9.5	
Temps	Rabattement	Temps	Rabattement
(sec)	(m)	(sec)	(m)
0.5	-0.168	7.5	-0.002
1	-0.066	8	-0.002
1.5	0.028	8.5	0.002
2	0.058	9	0.008
2.5	0.048	9.5	0.010
3	0.016	10	0.008
3.5	-0.024	10.5	0.006
4	-0.030	11	0.000
4.5	-0.018	11.5	-0.002
5	0.002	12	-0.004
5.5	0.016	12.5	-0.004
6	0.024	13	-0.002
6.5	0.016	13.5	0.000
7	0.004		

Site : St-Janvier		Puits	Puits d'observation : STJA4						
Projet : AFSOQ		Volume d	l'eau enlevé : 9.5 litres						
Coordonnées X Ut	m-Nad 83 : 584 613.4	4	Test no : 1						
Coordonnées Y Ut	m-Nad 83 : 5 061 76	0.5							
Temps	Rabattement	Temps	Rabattement						
(sec)	(m)	(sec)	<u>(</u> m)						
0.5	0.341	6.5	0.016						
1.5	0.241	7.5	0.007						
2.5	0.159	8.5	0.007						
3.5	0.103	9.5	0.005						
4.5	0.058	10.5	0.004						
5.5	0.030								

Site : St-Janvier		Puits o	Puits d'observation : STJA4					
Projet : AFSOQ		Volume d	eau enlevé : 9.5 litres					
Coordonnées X Ut	m-Nad 83 : 584 613.4	4	Test no : 2					
Coordonnées Y Ut	m-Nad 83 : 5 061 760).5						
	-							
Temps	Rabattement	Temps	Rabattement					
(sec)	(m)	(sec)	(m)					
0.5	0.324	4.5	0.054					
1.5	0.224	5.5	0.030					
2.5	0.149	6.5	0.008					
3.5	0.091	7.5	0.007					

Site : St-Janvier		Puits	Puits d'observation : STJA4	
Projet : AFSOQ		Volume d	Volume d'eau enlevé : 9.5 litres	
Coordonnées X Utm-Nad 83 : 584 613.4		Test no : 3		
Coordonnées Y Utm-Nad 83 : 5 061 760.5		0.5		
Temps	Rabattement	Temps	Rabattement	
(sec)	(m)	(sec)	(m)	
0.5	0.328	4.5	0.040	
1.5	0.228	5.5	0.013	
2.5	0.142	6.5	0.003	
3.5	0.083			

<u>ANNEXE I</u>

Données des essais de pompage et de récupération : Site de Saint-Janvier

Puits	STJA_00-001
UTM X - NAD 83 (Zone 18)	584 526.5
UTM Y - NAD 83 (Zone 18)	5 061 809
Distance du puits P8 (m)	0
Durée de l'essai (heure)	171
Débit de pompage (m³/s)	5.83x10 ⁻³
Rayon du puits (cm)	10.16
Élévation du sol (m)	69.034
Profondeur de la nappe p/r au sol (m)	9.6
Section ouverte du puits (m)	57.62
Prof. de la base du puits p/r au niv. initial de la nappe (m)	63.57

Temps	Rabattement	Temps	Rabattement	
(sec)	(m)	(sec)	(m)	
Données non-disponibles				

Puits	STJA_00-002
UTM X - NAD 83 (Zone 18)	584 559
UTM Y - NAD 83 (Zone 18)	5 061 840.5
Distance du puits P8 (m)	45.7
Durée de l'essai (heure)	171
Rayon du puits (cm)	7.62
Élévation du sol (m)	68.638
Profondeur de la nappe p/r au sol (m)	9.43
Section ouverte du puits (m)	27.72
Prof. de la base du puits p/r au niv. initial de la nappe (m)	33.25

Temps	Rabattement	Temps	Rabattement
(min)	(m)	(min)	(m)
1	0.019	1100	0.938
2	0.016	1200	0.982
3	0.027	1300	1.021
4	0.028	1400	1.063
5	0.020	1500	1.102
6	0.026	1600	1.130
7	0.032	1700	1.173
8	0.036	1800	1.211
9	0.035	1900	1.231
10	0.038	2000	1.270
20	0.059	2100	1.292
30	0.071	2200	1.324
40	0.089	2300	1.335
50	0.103	2400	1.363
60	0.121	2500	1.387
70	0.134	2600	1.394
80	0.142	2700	1.410
90	0.151	2800	1.434
100	0.171	2900	1.447
120	0.198	3000	1.458
140	0.223	3100	1.481
160	0.245	3200	1.482
180	0.273	3300	1.500
200	0.293	3400	1.504
300	0.396	3500	1.508
400	0.491	3600	1.513
500	0.570	3700	1.515
600	0.642	3800	1.534
700	0.710	3900	1.536
800	0.774	4000	1.538
900	0.827	4100	1.536
1000	0.894	4200	1.536

Temps	Rabattement	Temps	Rabattement
(min)	(m)	(min)	(m)
4300	1.534	7300	1.603
4400	1.539	7400	1.618
4500	1.546	7500	1.628
4600	1.546	7600	1.628
4700	1.554	7700	1.628
4800	1.546	7800	1.628
4900	1.559	7900	1.633
5000	1.555	8000	1.637
5100	1.562	8100	1.640
5200	1.567	8200	1.648
5300	1.562	8300	1.642
5400	1.558	8400	1.654
5500	1.563	8500	1.644
5600	1.574	8600	1.654
5700	1.571	8700	1.656
5800	1.568	8800	1.661
5900	1.559	8900	1.669
6000	1.567	9000	1.685
6100	1.558	9100	1.685
6200	1.558	9200	1.683
6300	1.556	9300	1.689
6400	1.554	9400	1.699
6500	1.539	9500	1.710
6600	1.542	9600	1.720
6700	1.554	9700	1.719
6800	1.554	9800	1.723
6900	1.559	9900	1.715
7000	1.563	10000	1.723
7100	1.582	10100	1.716
7200	1.590	10200	1.719

Puits	STJA_00-003
UTM X - NAD 83 (Zone 18)	584 507.74
UTM Y - NAD 83 (Zone 18)	5 061 789.5
Distance du puits P8 (m)	26.9
Durée de l'essai (heure)	171
Rayon du puits (cm)	2.54
Élévation du sol (m)	68.695
Profondeur de la nappe p/r au sol (m)	9.32
Section ouverte du puits (m)	1.52
Prof. de la base du puits p/r au niv. initial de la nappe (m)	5.31

Temps	Rabattement	Temps	Rabattement
(min)	(m)	(min)	(m)
1	0.022	1100	0.958
2	0.028	1200	1.000
3	0.031	1300	1.045
4	0.035	1400	1.083
5	0.038	1500	1.123
6	0.040	1600	1.166
7	0.043	1700	1.204
8	0.045	1800	1.242
9	0.048	1900	1.265
10	0.048	2000	1.292
20	0.066	2100	1.320
30	0.082	2200	1.348
40	0.098	2300	1.370
50	0.115	2400	1.393
60	0.127	2500	1.414
70	0.141	2600	1.431
80	0.153	2700	1.445
90	0.169	2800	1.464
100	0.181	2900	1.480
120	0.206	3000	1.495
140	0.232	3100	1.511
160	0.256	3200	1.520
180	0.278	3300	1.528
200	0.301	3400	1.528
300	0.404	3500	1.535
400	0.500	3600	1.538
500	0.576	3700	1.545
600	0.653	3800	1.554
700	0.721	3900	1.558
800	0.785	4000	1.556
900	0.853	4100	1.555
1000	0.906	4200	1.552

Temps	Rabattement	Temps	Rabattement
(min)	(m)	(min)	(m)
4300	1.555	7300	1.635
4400	1.557	7400	1.647
4500	1.566	7500	1.654
4600	1.564	7600	1.659
4700	1.571	7700	1.657
4800	1.569	7800	1.657
4900	1.575	7900	1.659
5000	1.577	8000	1.668
5100	1.583	8100	1.673
5200	1.589	8200	1.673
5300	1.588	8300	1.674
5400	1.584	8400	1.675
5500	1.583	8500	1.677
5600	1.596	8600	1.678
5700	1.590	8700	1.679
5800	1.588	8800	1.684
5900	1.584	8900	1.692
6000	1.590	9000	1.705
6100	1.586	9100	1.711
6200	1.584	9200	1.711
6300	1.581	9300	1.718
6400	1.576	9400	1.728
6500	1.572	9500	1.740
6600	1.574	9600	1.743
6700	1.586	9700	1.745
6800	1.583	9800	1.747
6900	1.594	9900	1.743
7000	1.596	10000	1.744
7100	1.607	10100	1.747
7200	1.623	10200	1.748

Puits	STJA_00-004
UTM X - NAD 83 (Zone 18)	584 613.4
UTM Y - NAD 83 (Zone 18)	5 061 760.5
Distance du puits P8 (m)	101.4
Durée de l'essai (heure)	171
Rayon du puits (cm)	7.62
Élévation du sol (m)	69.516
Profondeur de la nappe p/r au sol (m)	10.34
Section ouverte du puits (m)	24.69
Prof. de la base du puits p/r au niv. initial de la nappe (m)	32.34

Temps	Rabattement	Temps	Rabattement
(min)	(m)	(min)	(m)
1	0.014	1100	0.926
2	0.018	1200	0.970
3	0.021	1300	1.011
4	0.024	1400	1.049
5	0.027	1500	1.089
6	0.028	1600	1.130
7	0.031	1700	1.166
8	0.033	1800	1.203
9	0.036	1900	1.231
10	0.036	2000	1.254
20	0.057	2100	1.280
30	0.072	2200	1.305
40	0.088	2300	1.329
50	0.101	2400	1.354
60	0.115	2500	1.372
70	0.129	2600	1.390
80	0.142	2700	1.403
90	0.156	2800	1.421
100	0.167	2900	1.436
120	0.194	3000	1.452
140	0.217	3100	1.467
160	0.240	3200	1.477
180	0.261	3300	1.486
200	0.285	3400	1.486
300	0.386	3500	1.491
400	0.479	3600	1.494
500	0.556	3700	1.502
600	0.629	3800	1.509
700	0.697	3900	1.513
800	0.761	4000	1.512
900	0.824	4100	1.510
1000	0.876	4200	1.508

Temps	Rabattement	Temps	Rabattement
(min)	(m)	(min)	(m)
4300	1.511	7300	1.584
4400	1.512	7400	1.598
4500	1.518	7500	1.606
4600	1.520	7600	1.613
4700	1.528	7700	1.611
4800	1.525	7800	1.610
4900	1.532	7900	1.612
5000	1.533	8000	1.618
5100	1.537	8100	1.624
5200	1.545	8200	1.624
5300	1.546	8300	1.626
5400	1.539	8400	1.624
5500	1.540	8500	1.628
5600	1.550	8600	1.628
5700	1.545	8700	1.630
5800	1.544	8800	1.634
5900	1.540	8900	1.643
6000	1.546	9000	1.657
6100	1.541	9100	1.663
6200	1.541	9200	1.666
6300	1.535	9300	1.671
6400	1.530	9400	1.680
6500	1.525	9500	1.690
6600	1.527	9600	1.693
6700	1.538	9700	1.696
6800	1.535	9800	1.697
6900	1.545	9900	1.694
7000	1.546	10000	1.695
7100	1.560	10100	1.698
7200	1.574		

Puits	Hamel (GK_00-012)
UTM X - NAD 83 (Zone 18)	584 578.5
UTM Y - NAD 83 (Zone 18)	5 061 786.5
Distance du puits P8 (m)	57.6
Durée de l'essai (heure)	171
Rayon du puits (cm)	15.24
Élévation du sol (m)	69.798
Profondeur de la nappe p/r au sol (m)	10.05
Section ouverte du puits (m)	57.93
Prof. de la base du puits p/r au niv. initial de la nappe (m)	66.17

Temps	Rabattement	Temps	Rabattement
(min)	(m)	(min)	(m)
1	0.016	1100	0.929
2	0.019	1200	0.974
3	0.027	1300	1.016
4	0.032	1400	1.055
5	0.040	1500	1.091
6	0.040	1600	1.133
7	0.036	1700	1.167
8	0.039	1800	1.200
9	0.043	1900	1.228
10	0.044	2000	1.253
20	0.060	2100	1.288
30	0.077	2200	1.308
40	0.098	2300	1.332
50	0.110	2400	1.359
60	0.122	2500	1.372
70	0.130	2600	1.390
80	0.148	2700	1.399
90	0.168	2800	1.429
100	0.183	2900	1.446
120	0.199	3000	1.457
140	0.226	3100	1.472
160	0.247	3200	1.481
180	0.265	3300	1.488
200	0.288	3400	1.492
300	0.391	3500	1.492
400	0.484	3600	1.493
500	0.558	3700	1.503
600	0.634	3800	1.509
700	0.700	3900	1.515
800	0.758	4000	1.512
900	0.824	4100	1.513
1000	0.878	4200	1.509
Temps	Rabattement	Temps	Rabattement
-------	-------------	-------	-------------
(min)	(m)	(min)	(m)
4300	1.512	7300	1.589
4400	1.516	7400	1.599
4500	1.523	7500	1.605
4600	1.520	7600	1.612
4700	1.528	7700	1.612
4800	1.531	7800	1.608
4900	1.536	7900	1.609
5000	1.534	8000	1.621
5100	1.538	8100	1.622
5200	1.550	8200	1.624
5300	1.548	8300	1.624
5400	1.540	8400	1.624
5500	1.543	8500	1.628
5600	1.552	8600	1.633
5700	1.546	8700	1.633
5800	1.546	8800	1.638
5900	1.538	8900	1.651
6000	1.547	9000	1.661
6100	1.544	9100	1.663
6200	1.546	9200	1.668
6300	1.531	9300	1.673
6400	1.536	9400	1.679
6500	1.524	9500	1.691
6600	1.526	9600	1.696
6700	1.539	9700	1.700
6800	1.538	9800	1.694
6900	1.546	9900	1.695
7000	1.550	10000	1.703
7100	1.565	10100	1.696
7200	1.581	10200	1.703

Puits	GK_00-014
UTM X - NAD 83 (Zone 18)	584 599.9
UTM Y - NAD 83 (Zone 18)	5 061 330.6
Distance du puits P8 (m)	450
Durée de l'essai (heure)	171
Rayon du puits (cm)	7.62
Élévation du sol (m)	70.194
Profondeur de la nappe p/r au sol (m)	10.88
Section ouverte du puits (m)	10.49
Prof. de la base du puits p/r au niv. initial de la nappe (m)	19.61

Temps	Rabattement	Temps	Rabattement
(min)	(m)	(min)	(m)
2	0.000	1200	0.732
4	0.003	1300	0.766
6	0.008	1400	0.797
8	0.009	1500	0.825
10	0.007	1600	0.852
12	0.015	1700	0.881
14	0.017	1800	0.907
16	0.017	1900	0.929
18	0.017	2000	0.951
20	0.020	2100	0.972
30	0.027	2200	0.995
40	0.039	2300	1.015
50	0.047	2400	1.036
60	0.051	2500	1.058
70	0.064	2600	1.075
80	0.071	2700	1.087
90	0.084	2800	1.098
100	0.089	2900	1.106
120	0.104	3000	1.114
140	0.123	3100	1.127
160	0.136	3200	1.135
180	0.158	3300	1.144
200	0.176	3400	1.136
300	0.250	3500	1.140
400	0.318	3600	1.143
500	0.385	3700	1.146
600	0.439	3800	1.150
700	0.494	3900	1.151
800	0.545	4000	1.158
900	0.605	4100	1.154
1000	0.649	4200	1.156
1100	0.697	4300	1.152

Temps	Rabattement	Temps	Rabattement
(min)	(m)	(min)	(m)
4400	1.158	7400	1.221
4500	1.160	7500	1.226
4600	1.168	7600	1.233
4700	1.171	7700	1.241
4800	1.174	7800	1.238
4900	1.179	7900	1.234
5000	1.182	8000	1.238
5100	1.190	8100	1.245
5200	1.204	8200	1.249
5300	1.202	8300	1.254
5400	1.207	8400	1.255
5500	1.206	8500	1.254
5600	1.209	8600	1.255
5700	1.207	8700	1.261
5800	1.198	8800	1.265
5900	1.195	8900	1.267
6000	1.202	9000	1.281
6100	1.198	9100	1.285
6200	1.192	9200	1.297
6300	1.183	9300	1.303
6400	1.179	9400	1.303
6500	1.172	9500	1.323
6600	1.167	9600	1.338
6700	1.175	9700	1.338
6800	1.178	9800	1.349
6900	1.182	9900	1.349
7000	1.186	10000	1.357
7100	1.187	10100	1.362
7200	1.200	10200	1.374
7300	1.207		

Puits	GK_00-013
UTM X - NAD 83 (Zone 18)	583 948.10
UTM Y - NAD 83 (Zone 18)	5 061 372.40
Distance du puits P8 (m)	750
Durée de l'essai (heure)	171
Rayon du puits (cm)	7.62
Élévation du sol (m)	68.388
Profondeur de la nappe p/r au sol (m)	7.88
Section ouverte du puits (m)	2.13
Prof. de la base du puits p/r au niv. initial de la nappe (m)	12.19

Temps	Rabattement	Temps	Rabattement
(min)	(m)	(min)	(m)
144	0.020	4741	0.580
421	0.100	5476	0.615
1316	0.310	6971	0.600
2396	0.500	8576	0.670
3006	0.560	10151	0.800
3996	0.560		

Graphique des courbes de rabattement vs t/r² au site de St-Janvier

Puits	STJA_00-002
UTM X - NAD 83 (Zone 18)	584 559
UTM Y - NAD 83 (Zone 18)	5 061 840.5
Distance du puits P8 (m)	45.7
Durée de l'essai (heure)	148
Rayon du puits (cm)	7.62
Élévation du sol (m)	68.638
Profondeur de la nappe p/r au sol (m)	9.43
Section ouverte du puits (m)	27.72
Prof. de la base du puits p/r au niv. initial de la nappe (m)	33.25

Temps	Remontée	Temps	Remontée
(min)	(m)	(min)	(m)
1	0.023	1100	0.821
2	0.028	1200	0.852
3	0.034	1300	0.887
4	0.034	1400	0.921
5	0.036	1500	0.935
6	0.042	1600	0.956
7	0.036	1700	0.978
8	0.036	1800	1.005
9	0.047	1900	1.023
10	0.042	2000	1.047
20	0.062	2100	1.063
30	0.071	2200	1.068
40	0.087	2300	1.083
50	0.103	2400	1.097
60	0.121	2500	1.107
70	0.130	2600	1.117
80	0.137	2700	1.140
90	0.149	2800	1.133
100	0.152	2900	1.153
120	0.176	3000	1.150
140	0.202	3100	1.156
160	0.220	3200	1.160
180	0.234	3300	1.165
200	0.253	3400	1.172
300	0.340	3500	1.183
400	0.418	3600	1.173
500	0.491	3700	1.173
600	0.563	3800	1.176
700	0.629	3900	1.176
800	0.668	4000	1.179
900	0.712	4100	1.187
1000	0.770	4200	1.183

Temps	Remontée	Temps	Remontée
(min)	(m)	(min)	(m)
4300	1.184	6600	1.262
4400	1.180	6700	1.259
4500	1.171	6800	1.277
4600	1.179	6900	1.278
4700	1.172	7000	1.288
4800	1.187	7100	1.298
4900	1.198	7200	1.293
5000	1.202	7300	1.300
5100	1.204	7400	1.297
5200	1.198	7500	1.301
5300	1.208	7600	1.312
5400	1.206	7700	1.331
5500	1.210	7800	1.327
5600	1.226	7900	1.337
5700	1.222	8000	1.337
5800	1.222	8100	1.333
5900	1.231	8200	1.336
6000	1.232	8300	1.348
6100	1.245	8400	1.331
6200	1.246	8500	1.321
6300	1.255	8600	1.316
6400	1.258	8700	1.304
6500	1.262		

Puits	STJA_00-003
UTM X - NAD 83 (Zone 18)	584 507.74
UTM Y - NAD 83 (Zone 18)	5 061 789.5
Distance du puits P8 (m)	26.9
Durée de l'essai (heure)	148
Rayon du puits (cm)	2.54
Élévation du sol (m)	68.695
Profondeur de la nappe p/r au sol (m)	9.32
Section ouverte du puits (m)	1.52
Prof. de la base du puits p/r au niv. initial de la nappe (m)	5.31

Temps	Remontée	Temps	Remontée
(min)	(m)	(min)	(m)
1	0.024	1100	0.829
2	0.028	1200	0.868
3	0.032	1300	0.901
4	0.032	1400	0.928
5	0.034	1500	0.950
6	0.037	1600	0.972
7	0.040	1700	0.995
8	0.043	1800	1.017
9	0.044	1900	1.039
10	0.047	2000	1.058
20	0.062	2100	1.072
30	0.075	2200	1.083
40	0.089	2300	1.097
50	0.101	2400	1.109
60	0.111	2500	1.123
70	0.123	2600	1.140
80	0.135	2700	1.154
90	0.146	2800	1.156
100	0.157	2900	1.167
120	0.176	3000	1.163
140	0.197	3100	1.162
160	0.216	3200	1.174
180	0.236	3300	1,179
200	0.257	3400	1.186
300	0.345	3500	1.186
400	0.429	3600	1.184
500	0.504	3700	1.186
600	0.570	3800	1.185
700	0.628	3900	1.187
800	0.682	4000	1.188
900	0.734	4100	1.190
1000	0.783	4200	1.189

Temps	Remontée	Temps	Remontée
(min)	(m)	(min)	(m)
4300	1.185	6600	1.277
4400	1.187	6700	1.279
4500	1.184	6800	1.288
4600	1.185	6900	1.297
4700	1.186	7000	1.306
4800	1.197	7100	1.312
4900	1.207	7200	1.314
5000	1.211	7300	1.313
5100	1.210	7400	1.314
5200	1.212	7500	1.324
5300	1.215	7600	1.330
5400	1.221	7700	1.340
5500	1.228	7800	1.343
5600	1.235	7900	1.347
5700	1.235	8000	1.346
5800	1.236	8100	1.349
5900	1.241	8200	1.355
6000	1.245	8300	1.363
6100	1.249	8400	1.347
6200	1.261	8500	1.334
6300	1.267	8600	1.323
6400	1.270	8700	1.319
6500	1.272	8800	1.312

Puits	STJA_00-004
UTM X - NAD 83 (Zone 18)	584 613.40
UTM Y - NAD 83 (Zone 18)	5 061 760.50
Distance du puits P8 (m)	101.4
Durée de l'essai (heure)	148
Rayon du puits (cm)	7.62
Élévation du sol (m)	69.516
Profondeur de la nappe p/r au sol (m)	10.34
Section ouverte du puits (m)	24.69
Prof. de la base du puits p/r au niv. initial de la nappe (m)	32.34

Temps	Remontée	Temps	Remontée
(min)	(m)	(min)	(m)
1	0.015	1100	0.794
2	0.018	1200	0.832
3	0.021	1300	0.862
4	0.024	1400	0.889
5	0.025	1500	0.911
6	0.027	1600	0.930
7	0.030	1700	0.953
8	0.032	1800	0.974
9	0.034	1900	0.995
10	0.036	2000	1.013
20	0.051	2100	1.028
30	0.065	2200	1.039
40	0.077	2300	1.053
50	0.088	2400	1.066
60	0.100	2500	1.078
70	0.110	2600	1.096
80	0.123	2700	1.109
90	0.133	2800	1.113
100	0.143	2900	1.122
120	0.161	3000	1.119
140	0.179	3100	1.118
160	0.199	3200	1.130
180	0.218	3300	1.135
200	0.236	3400	1.141
300	0.322	3500	1.140
400	0.404	3600	1.139
500	0.477	3700	1.140
600	0.541	3800	1.139
700	0.598	3900	1.141
800	0.651	4000	1.143
900	0.701	4100	1.144
1000	0.749	4200	1.143

Temps	Remontée	Temps	Remontée
(min)	(m)	(min)	(m)
4300	1.140	6600	1.230
4400	1.140	6700	1.234
4500	1.137	6800	1.244
4600	1.140	6900	1.253
4700	1.140	7000	1.262
4800	1.152	7100	1.266
4900	1.160	7200	1.268
5000	1.162	7300	1.267
5100	1.164	7400	1.268
5200	1.164	7500	1.278
5300	1.170	7600	1.283
5400	1.173	7700	1.294
5500	1.183	7800	1.299
5600	1.189	7900	1.301
5700	1.191	8000	1.300
5800	1.191	8100	1.306
5900	1.195	8200	1.308
6000	1.200	8300	1.318
6100	1.204	8400	1.303
6200	1.214	8500	1.290
6300	1.221	8600	1.279
6400	1.227	8700	1.273
6500	1.229	8800	1.268

Puits	Hamel (GK_00-012)
UTM X - NAD 83 (Zone 18)	584 578.50
UTM Y - NAD 83 (Zone 18)	5 061 786.50
Distance du puits P8 (m)	57.6
Durée de l'essai (heure)	148
Rayon du puits (cm)	15.24
Élévation du sol (m)	69.798
Profondeur de la nappe p/r au sol (m)	10.05
Section ouverte du puits (m)	57.93
Prof. de la base du puits p/r au niv. initial de la nappe (m)	66.17

Temps	Remontée	Temps	Remontée
(min)	(m)	(min)	(m)
1	0.022	1100	0.804
2	0.024	1200	0.840
3	0.030	1300	0.871
4	0.031	1400	0.899
5	0.038	1500	0.922
6	0.036	1600	0.942
7	0.040	1700	0.961
8	0.042	1800	0.989
9	0.044	1900	1.009
10	0.051	2000	1.020
20	0.063	2100	1.026
30	0.078	2200	1.046
40	0.090	2300	1.063
50	0.102	2400	1.077
60	0.113	2500	1.085
70	0.126	2600	1.097
80	0.137	2700	1.114
90	0.145	2800	1.118
100	0.160	2900	1.133
120	0.173	3000	1.126
140	0.191	3100	1.130
160	0.212	3200	1.141
180	0.226	3300	1.148
200	0.249	3400	1.156
300	0.337	3500	1.148
400	0.417	3600	1.151
500	0.484	3700	1.155
600	0.551	3800	1.148
700	0.609	3900	1.153
800	0.665	4000	1.159
900	0.712	4100	1.153
1000	0.755	4200	1.155

Temps	Remontée	Temps	Remontée
(min)	(m)	(min)	(m)
4300	1.149	6600	1.242
4400	1.151	6700	1.242
4500	1.149	6800	1.254
4600	1.148	6900	1.266
4700	1.155	7000	1.269
4800	1.163	7100	1.278
4900	1.171	7200	1.276
5000	1.172	7300	1.284
5100	1.180	7400	1.277
5200	1.176	7500	1.290
5300	1.173	7600	1.297
5400	1.184	7700	1.308
5500	1.195	7800	1.312
5600	1.202	7900	1.316
5700	1.206	8000	1.315
5800	1.202	8100	1.315
5900	1.204	8200	1.321
6000	1.212	8300	1.323
6100	1.215	8400	1.317
6200	1.227	8500	1.300
6300	1.233	8600	1.293
6400	1.237	8700	1.284
6500	1.243	8800	1.280

Puits	GK_00-014
UTM X - NAD 83 (Zone 18)	584 599.90
UTM Y - NAD 83 (Zone 18)	5 061 330.60
Distance du puits P8 (m)	450
Durée de l'essai (heure)	148
Rayon du puits (cm)	7.62
Élévation du sol (m)	70.194
Profondeur de la nappe p/r au sol (m)	10.88
Section ouverte du puits (m)	10.49
Prof. de la base du puits p/r au niv. initial de la nappe (m)	19.61

Temps	Remontée	Temps	Remontée
(min)	(m)	(min)	(m)
2	0.000	1100	0.493
4	0.000	1200	0.517
6	0.000	1300	0.538
8	0.003	1400	0.561
10	0.001	1500	0.577
12	0.003	1600	0.597
14	0.007	1700	0.613
16	0.005	1800	0.626
18	0.008	1900	0.646
20	0.008	2000	0.665
30	0.017	2100	0.677
40	0.024	2200	0.682
50	0.029	2300	0.694
60	0.037	2400	0.705
70	0.045	2500	0.714
80	0.051	2600	0.724
90	0.053	2700	0.737
100	0.064	2800	0.748
120	0.072	2900	0.754
140	0.083	3000	0.756
160	0.095	3100	0.752
180	0.111	3200	0.756
200	0.122	3300	0.765
200	0.249	3400	0.769
300	0.179	3500	0.771
400	0.236	3600	0.769
500	0.283	3700	0.773
600	0.326	3800	0.765
700	0.359	3900	0.766
800	0.393	4000	0.762
900	0.426	4100	0.765
1000	0.454	4200	0.764

Temps	Remontée	Temps	Remontée
(min)	(m)	(min)	(m)
4300	0.762	6600	0.863
4400	0.764	6700	0.869
4500	0.764	6800	0.865
4600	0.762	6900	0.876
4700	0.769	7000	0.885
4800	0.779	7100	0.885
4900	0.785	7200	0.887
5000	0.787	7300	0.891
5100	0.788	7400	0.891
5200	0.787	7500	0.895
5300	0.797	7600	0.900
5400	0.796	7700	0.913
5500	0.803	7800	0.925
5600	0.811	7900	0.925
5700	0.813	8000	0.921
5800	0.820	8100	0.927
5900	0.825	8200	0.924
6000	0.828	8300	0.932
6100	0.833	8400	0.928
6200	0.844	8500	0.917
6300	0.855	8600	0.911
6400	0.856	8700	0.904
6500	0.861		

Graphique des courbes de remontée vs t/r² au site de St-Janvier

<u>ANNEXE J</u>

Analyse physico-chimique de l'eau souterraine au puits de pompage STJA1 : Site de Saint-Janvier

Puits STJA-1

Prélèvement de 3 échantillons de l'eau souterraine au puits de pompage de Saint-Janvier

Date of	ut	pompage	:	05/07/00
---------	----	---------	---	----------

Heure : 16h04				
Échantillons	EB_00-021	EB_00-025	EB_00-030	NORMES
Date	06/07/00	10/07/00	12/07/00	
Heure	14h00	14h00	15h30	
Température (°C)	8.52	8.48	8.51	
SpC-conduct. Spécifique (mS/cm)	0.794	0.792	0.779	
Cnd-conductivité (mS/cm)	0.544	0.541	0.532	
TDS-solides dissous totaux (mg/L)	0.516	0.515	0.506	
Salinité (ppt)	1.04	0.39	0.38	
DO (%)	18.9	12.1	21.8	
DO (mg/L)	1.99	1.3	2.31	
pH	7.73	7.62	7.63	6.5 à 8.5
Redox	-23	-56	-74	
Alcalinité totale CaCO3 (mg/L)	260	270	270	30 à 500
Dureté (mg/L)	184	188	188	20 à 180
Argent	< 0.0001	0.0002	< 0.0002	0.05
Aluminium	< 0.007	< 0.007	0.1	
Arsenic	< 0.001	< 0.001	< 0.001	0.05
Bore	0.34	0.33	0.19	5
Baryum	0.52	0.56	0.55	1
Bromures (mg/L)	0.034	0.033	0.037	
Calcium	31	36	48	200
Cadmium	0.0009	0.001	0.0012	0.005
Carbone inorganique dissous	63	65	66	
Chlorures (mg/L)	86	84	82	250
Cvanures totaux	< 0.003	< 0.003	< 0.003	0.2
Carbone organique dissous	3	3.2	4.2	
Chrome	0.002	0.002	0.002	0.05
Cuivre	< 0.001	< 0.001	< 0.001	
Fluorures	0.68	0.72	0.64	1.5
Fer (mg/L)	0.13	0.12	0.112	0.3
Mercure	< 0.0001	0.0001	< 0.0001	0.001
lodures	< 0.1	< 0.1	< 0.1	
Potassium	13	14	14	
Lithium	0.013	0.006	0.013	
Magnésium	26	27	27	150
Manganèse (mg/L)	0.003	0.005	0.013	0.05
Azote total		0.82	0.98	
Sodium	86	89	89	270
Azote ammoniacal	0.7	0.66	0.7	0.5
Nickel	< 0.0008	0.002	0.001	
Nitrates et nitrites (mg/L)	< 0.02	< 0.02	0.04	10
Phosphore inorganique total	0.29	0.3	0.29	
Phosphore total dissous	0.29	0.3	0.32	
Plomb	< 0.0040	< 0.004	< 0.004	0.05
Sélénium	< 0.001	< 0.001	< 0.001	0.01
silice	11.7	11.6	11.8	
Sulfates	39	37	36	500
Strontium	1.26	0.18	1.24	
Sulfures	0.05	0.05	0.05	0.05
Uranium	< 0.005	< 0.005	< 0.005	0.02
Zinc	0.006	0.039	0.27	

ANNEXE K

Paramètres de calcul et dimensions des périmètres de protection rapprochés et éloignés : Sites de Saint-Janvier et de Sainte-Anne-des-Plaines

1. Calcul des périmètres de protection

L'annexe K présente l'application des sept méthodes de détermination des périmètres de protection. Les valeurs des paramètres hydrauliques utilisées dans les calculs des PDP sont présentées pour chacune des méthodes ainsi que les dimensions des périmètres de protection, pour les sites de Sainte-Anne-des-Plaines et de Saint-Janvier. Les méthodes plus complexes, le modèle analytique CAPZONE et la modélisation numérique MODFLOW, font l'objet d'une description détaillée qui inclut le modèle conceptuel, les conditions aux limites ainsi que le calage du modèle. Pour MODFLOW, l'étude comprend aussi le bilan de masse, l'analyse de l'influence des puits sur le rabattement, l'analyse d'incertitude de la porosité ainsi que l'analyse de sensibilité des paramètres de conductivité hydraulique et de recharge. La forme et l'emplacement des périmètres de protection sont illustrés sur les cartes synthèse à l'annexe M. Pour la description des méthodes, se référer à la section 3.3.2 du présent ouvrage.

1.1 Équation du cylindre

L'équation du cylindre est donnée au chapitre 3 du mémoire par l'équation 1. Les valeurs des paramètres utilisées pour le calcul du rayon et les dimensions des périmètres de protection définies par l'équation du cylindre pour chaque puits sont exposées au tableau 1.1. La porosité efficace moyenne a été déterminée à partir de la stratigraphie à chacun des puits (Annexes B et G) où la valeur de la zone de till/roc fracturé est 19.5 % et le roc sain, 0.14 % (Sainte-Anne-des-Plaines) et 0.11 % (Saint-Janvier). La zone de captage est un cercle dont le rayon calculé est centré sur le puits.

Paramètre	Valeur			
Puits	P8	Barrette	STJA1	Charles
Débit de pompage (m³/jour)	1987.2	3815.3	504	2106.7
Temps de transport (jour)	60	60	60	60
Longueur de la crépine/section ouverte (m)	4.87	2.79	57.62	71.3
Porosité efficace	0.088	0.1207	0.0051	0.0051
Rayon du périmètre (m)	297.51	465.09	180.16	331.97
Aire totale (m²)	278 075	679 556	101 967	346 210

 Tableau 1.1 : Valeurs des paramètres hydrogéologiques utlisées dans le calcul des PDP rapprochés et dimensions des PDP issus de l'équation du cylindre.

1.2 Équation de l'écoulement uniforme

L'équation générale représentant la limite de la zone de captage est donnée par l'équation 2 (Todd, 1980). Pour permettre le calcul de la distance à la limite aval, la largeur maximale de la zone de contribution en amont et sa largeur au niveau du puits, les équations suivantes sont dérivées de l'équation 2 :

Distance à la limite aval (A) :

$$A = \frac{Q}{2\pi Kbi} \tag{1.1}$$

Largeur maximale de la zone de contribution en amont (L) :

$$L = \frac{Q}{Kbi} \tag{1.2}$$

Largeur de la zone de contribution au niveau du puits (B) :

$$B = \frac{L}{2} \tag{1.3}$$

Les valeurs de la forme de la zone de contribution pour chaque puits est donnée au tableau 1.2. Elle constitue une parabole, définie par les trois équations précédentes, qui se prolonge en amont jusqu'à la limite de partage des eaux souterraines.

Paramètre	Valeur			
Puits	P8	Barrette	STJA1	Charles
Débit de pompage (m³/jour)	1987.2	3815.3	504	2106.7
Transmissivité = Kxb (m²/jour)	1174.9	1174.9	100.6	100.6
Gradient hydraulique régional	0.0029	0.0029	0.00356	0.00356
Distance à la limite aval (m)	92.82	178.21	223.97	936.2
Largeur maximale du périmètre en amont (m)	583.22	1119.74	1407.2	5882.34
Largeur du périmètre au puits (m)	291.61	559.87	703.6	2941.17
Aire totale (m ²)	4 573 385	8 005 399	5 341 528	16 649 867

Tableau 1.2 : Valeurs des paramètres hydrogéologiques utlisées dans le calcul des PDP éloignés et dimensions des PDP issus de l'équation de l'écoulement uniforme.

1.3 Équation du temps de transport (Bear et Jacob, 1965)

Le temps de transport est représenté à la section 3.3.2.3 par l'équation 3. Les valeurs des paramètres employées pour définir l'arc de cercle de rayon r (distance à la limite amont, Tableau 1.3) sont basées sur les essais de pompage et les données recueillies sur le terrain. Les limites latérales de la zone de captage sont définies par l'équation de l'écoulement uniforme dont les dimensions sont également présentées au tableau 1.3.

Tableau 1.3 : Valeurs des paramètres hydrogéologiques utlisées dans le calcul des PDP
rapprochés et dimensions des PDP issus de l'équation de Bear et Jacob associée
à l'équation de l'écoulement uniforme.

Paramètre	Paramètre Valeur			
Puits	P8	Barrette	STJA1	Charles
Débit de pompage (m³/jour)	1987.2	3815.3	504	2106.7
Temps de transport (jour)	60	60	60	60
Longueur de la crépine/section ouverte (m)	4.87	2.79	57.62	71.3
Conductivité hydraulique (m/jour)	241.3	421.2	1.75	1.41
Gradient hydraulique régional	0.0029	0.0029	0.00356	0.00356
Porosité efficace	0.088	0.1207	0.0051	0.0051
Distance à la limite amont (m)	672.95	933.36	232.72	373.2
Distance à la limite aval (m)	92.82	178.21	223.97	936.2
Largeur du périmètre au puits (m)	291.61	559.87	470	750
Aire totale (m ²)	372 592	841 804	170 033	438 151

1.3 Méthode hybride

La procédure de l'application de la méthode hybride est décrite à la section 3.3.2.4. Pour les périmètres rapprochés, la limite aval est déterminée par l'équation de l'écoulement uniforme, la limite amont par l'équation du temps de transport (Bear et Jacob, 1965), sauf pour le puits Charles dont l'équation de la loi de Darcy est utilisée, et la superficie totale du PDP par l'équation du cylindre. Les valeurs des paramètres hydrogéologiques utilisées aux fins de calcul des périmètres de protection rapprochés sont présentées au tableau 1.4. Pour les périmètres éloignés, les limites aval et amont sont fixées par la cartographie hydrogéologique et la superficie (cercle de rayon r) par l'équation d'infiltration suivante :

$$r^2 = \frac{Q}{\pi R} \tag{1.4}$$

Les valeurs des paramètres hydrogéologiques utilisées pour la détermination des PDP éloignés ainsi que les dimensions de ces derniers sont présentées au tableau 1.5.

Tableau 1.4 : Valeurs des paramètres hydrogéologiques utlisées dans le calcul des PDPrapprochés et dimensions des PDP issus de la méthode hybride.

Paramètre	Valeur			
Puits	P8	Barrette	STJA1	Charles
Débit de pompage (m³/jour)	1987.2	3815.3	504	2106.7
Temps de transport (jour)	60	60	60	60
Longueur de la crépine/section ouverte (m)	4.87	2.79	57.62	71.3
Conductivité hydraulique (m/jour)	241.3	421.2	1.75	1.41
Gradient hydraulique régional	0.0029	0.0029	0.00356	0.00356
Porosité efficace	0.088	0.1207	0.0051	0.0051
Distance à la limite amont (m)	672.95	933.36	232.72	373.2
Largeur du périmètre au puits (m)	305.7	563.7	282	660
Distance à la limite aval (m)	92.82	178.21	223.97	289.89
Aire totale (m ²)	278 075	679 556	101 967	346 210

Tableau 1.5 : Valeurs des paramètres hydrogéologiques utlisées dans le calcul des PDPéloignés et dimensions des PDP issus de la méthode hybride.

Paramètre	Valeur			
Puits	P8	Barrette	STJA1	Charles
Débit de pompage (m³/jour)	1987.2	3815.3	504	2106.7
Recharge (mm/an)	46.14	58.95	58.11	78.94
Distance à la limite aval (m)	177.4	298.2	130	520
Distance à la limite amont (m)	7790	7430	3700	3300
Largeur du périmètre au puits (m)	760	1410	450	2250
Aire totale (m ²)	15 752 728	23 666 433	3 171 365	9 751 978

1.5 Cartographie hydrogéologique

Les périmètres de protection issus de la cartographie hydrogéologique sont déterminés à l'aide de la carte piézométrique dynamique. Cette dernière est tracée à partir d'un relevé de la piézométrie lors du pompage des puits dans chaque site à l'étude. La méthode est expliquée en détail à la section 3.3.2.5. Le tableau 1.6 rapporte les dimensions des périmètres de protection qui incluent les limites aval et amont ainsi que la largeur de l'aire d'alimentation au niveau du puits.

 Tableau 1.6 : Valeurs des paramètres hydrogéologiques utlisées dans le calcul des PDP
 éloignés et dimensions des PDP issus de la cartographie hydrogéologique.

Paramètre	Valeur			
Puits	P8	Barrette	STJA1	Charles
Distance à la limite aval (m)	177.4	298.2	130	520
Distance à la limite amont (m)	7790	7430	3700	3870
Largeur du périmètre au puits (m)	630.5	1120	500	1990
Aire totale (m ²)	7 532 782	11 956 162	1 791 591	7 434 367

1.6 Modèle analytique CAPZONE/GWPATH

La présente section fait une description détaillée du modèle analytique CAPZONE. Elle divisée en deux sous-sections pour traiter individuellement de chaque site d'étude : Sainte-Anne-des-Plaines (1.6.1) et Saint-Janvier (1.6.2).

CAPZONE est un modèle analytique qui permet la représentation bidimensionnelle de systèmes d'écoulement de l'eau souterraine. Le modèle convient particulièrement aux aquifères homogènes et isotropes dont l'écoulement est en régime permanent, dans des conditions d'aquifères confinés, fuyants ou non confinés. CAPZONE calcule le rabattement à l'intersection des lignes d'un maillage (la discrétisation est limitée à 75 rangées et 75 colonnes à espacement régulier) défini par l'utilisateur en se servant de l'équation de Theis (1935) pour les aquifères à nappe libre et confinés. Pour les aquifères fuyants, l'équation de Hantush-Jacob (1954) est employée. La distribution calculée du rabattement à l'intérieur du domaine modélisé peut se superposer soit à une carte

piézométrique de la région d'étude, pour inclure l'effet de non uniformité de l'écoulement, soit à une surface piézométrique à champ uniforme où le gradient hydraulique, la direction de l'écoulement et une charge hydraulique au point d'origine du maillage (0,0) sont connus. En vue de circonscrire les zones d'alimentation des puits, le programme de traçage de particules GWPATH est nécessaire. Ce dernier sert à l'estimation des lignes d'écoulement et du temps de transport dans des conditions d'aquifères saturés.

1.6.1 Sainte-Anne-des-Plaines

L'utilisation de modèles analytiques implique nécessairement une simplification des conditions hydrogéologiques du domaine d'étude. L'aquifère de roc de Sainte-Anne-des-Plaines a une épaisseur estimée de 75 mètres au-dessus duquel reposent du till, de l'argile et du sable. Toutes ces unités stratigraphiques ne peuvent être incluses dans le modèle. Elles sont substituées par une couche confinante dont la conductivité hydraulique verticale et l'épaisseur sont connues. L'équation sélectionnée dans le modèle CAPZONE pour la résolution du modèle est celle de Hantush-Jacob. La conductivité hydraulique verticale (9x10⁻⁵ m/jour) employée est celle de l'argile dont la valeur provient de la littérature. L'épaisseur de la couche confinante, quant à elle, a été déterminée par la stratigraphie du sol en périphérie du puits de pompage P8 (9.4 m). L'aquifère de roc constitue la couche principale dont sa base est imperméable. L'aquifère a une transmissivité de 1175 m²/jour avec un emmagasinement de 9.59x10⁻⁴. Ces valeurs proviennent des résultats de l'essai de pompage longue durée au puits P8 de Sainte-Annedes-Plaines. La zone de recharge, pour sa part, est remplacée par une série de puits (43) dont le flux d'injection total (205.06 m3/jour par puits équivalent à une recharge de 270 mm/an) est équivalent à la recharge au roc, sur une base annuelle (Tableau 1.7).

Puits		Coordonnée X	Coordonnée Y	Débit	Puits		Coordonnée X	Coordonnée Y	Débit
		mètres	mètres	m³/jour			mètres	mètres	m³/jour
P8		6600	1350	1987.2	Recharge	22	3150	7650	205.06
Barrette		4800	1725	3816	Recharge	23	3300	7650	205.06
Recharge	1	0	7650	205.06	Recharge	24	3450	7650	205.06
Recharge	2	150	7650	205.06	Recharge	25	3600	7650	205.06
Recharge	3	300	7650	205.06	Recharge	26	3750	7650	205.06
Recharge	4	450	7650	205.06	Recharge	27	3900	7650	205.06
Recharge	5	600	7650	205.06	Recharge	28	4050	7650	205.06
Recharge	6	750	7650	205.06	Recharge	29	4200	7650	205.06
Recharge	7	900	7650	205.06	Recharge	30	4350	7650	205.06
Recharge	8	1050	7650	205.06	Recharge	31	4500	7650	205.06
Recharge	9	1200	7650	205.06	Recharge	32	4650	7650	205.06
Recharge	10	1350	7650	205.06	Recharge	33	4800	7650	205.06
Recharge	11	1500	7650	205.06	Recharge	34	4950	7650	205.06
Recharge	12	1650	7650	205.06	Recharge	35	5100	7650	205.06
Recharge	13	1800	7650	205.06	Recharge	36	5250	7650	205.06
Recharge	14	1950	7650	205.06	Recharge	37	5400	7650	205.06
Recharge	15	2100	7650	205.06	Recharge	38	5550	7650	205.06
Recharge	16	2250	7650	205.06	Recharge	39	5700	7650	205.06
Recharge	17	2400	7650	205.06	Recharge	40	5850	7650	205.06
Recharge	18	2550	7650	205.06	Recharge	41	6000	7650	205.06
Recharge	19	2700	7650	205.06	Recharge	42	6150	7650	205.06
Recharge	20	2850	7650	205.06	Recharge	43	6300	7650	205.06
Recharge	21	3000	7650	205.06					

 Tableau 1.7 : Paramètres des puits intégrés dans le modèle analytique CAPZONE de Sainte-Anne-des-Plaines.

La contribution en eau souterraine du Bouclier Canadien à l'aquifère des Basse-Terres étant inconnue, cette limite physiographique n'a pas été ajoutée au modèle, l'extension de l'aquifère étant considérée infinie. Le débit du pompage au puits P8 est de 1987.2 m³/jour et de 3816 m³/jour au puits Barrette. Les dimensions des cellules du maillage pour le modèle de Sainte-Anne-des-Plaines sont les mêmes : 63 rangées et 70 colonnes avec un espacement de 150 m dans les directions x et y (Figure 1.1). Puisque le modèle ne peut tenir compte de limites hydrogéologiques non rectilignes, le domaine discrétisé a une forme rectangulaire. La modélisation a été effectuée en régime permanent pour déterminer l'aire d'alimentation des puits pour un temps de 60 jours (périmètres rapprochés) et éloignés (20 ans). Le rabattement calculé sur tout le domaine a été superposé à une surface piézométrique uniforme avec un gradient hydraulique de 0.0018, une charge de 49.5 mètres à l'origine du maillage, située à l'extrême sud du modèle, et une direction de l'écoulement à 275° (à partir de l'est).

Figure 1.1 : Localisation des puits, des points de contrôle et délimitation des périmètres rapprochés et éloignés par la méthode CAPZONE/GWPATH (Sainte-Anne-des-Plaines).

Duite	Coordonnée X	Coordonnée Y	Charge mesurée	Charge calculée
Puits	(m)	(m)	(m)	(m)
GK_99-010	6600	2550	52.096	52.367
GK_99-004	6150	2550	52.241	52.362
GK_99-028	6600	1200	51.243	49.308
GK_99-029	6450	1350	51.365	49.559
GK_99-016	6600	5250	56.230	58.008
GK_99-003	9900	2250	51.030	51.822
GK_99-027	5250	750	51.271	48.805
GK_99-043	5100	2550	52.283	52.350
GK_99-026	4500	2550	52.349	52.508
GK 00-008	1650	3000	55.253	54.562

 Tableau 1.8 : Charges hydrauliques mesurées et calculées aux points de contrôle du modèle de Sainte-Anne-des-Plaines.

Figure 1.2 : Graphique des charges simulées avec CAPZONE en fonction des charges mesurées sur le terrain à Sainte-Anne-des-Plaines.

Le calage du modèle de Sainte-Anne-des-Plaines a été réalisé par l'ajustement de la recharge parce qu'il n'y avait pas de valeur précise de ce paramètre. La valeur de ce dernier a varié entre 200 mm/an (151.9 m³/jour) et 400 mm/an (303.79 m³/jour) lors du calage. Les valeurs de transmissivité et d'emmagasinement sont demeurées les mêmes.

Les points de contrôle utilisés pour le calage sont décrits au tableau 1.8. La figure 1.2 de la charge simulée en fonction de la charge observée montre une distribution assez régulière de part et d'autre du segment de proportionnalité. L'erreur moyenne absolue est de 1.0086 m et l'erreur sur la racine carrée de la moyenne est de 0.418, ce qui représente moins de 5 % d'erreur. Donc, le modèle analytique représente adéquatement la distribution de la charge hydraulique sur le domaine. L'utilisation du programme de traçage de particules GWPATH a permis de délimiter les périmètres de protection rapprochés et éloignés pour les puits P8 et Barrette (Figure 1.1). Le tableau 1.9 rapporte les dimensions des périmètres de protection qui incluent les limites aval et amont ainsi que la largeur de l'aire d'alimentation au niveau du puits. Les paramètres hydrogéologiques nécessaires aux programmes CAPZONE et GWPATH pour effectuer les calculs figurent aussi sur le même tableau.

Tableau 1.9 : Valeurs des paramètres hydrogéologiques utlisées dans le calcul	des PDP et
dimensions des PDP rapprochés et éloignés obtenus par CAPZONE/GW	PATH.

Paramètre	Valeur			
Puits	P8	Barrette		
Type d'aquifère	infini-	fuyant		
Équation	Hantush-Ja	acob (1954)		
Débit de pompage (m³/jour)	1987.2	3816		
Transmissivité (m²/jour)	11	75		
Emmagasinement	9.59	x10 ⁻⁴		
K verticale de la couche confinante (m/jour)	9x1	0 ⁻⁵		
Épaisseur de la couche confinante (m)	9	.4		
Porosité effective (%)	1	9		
Gradient hydraulique	0.0018			
Charge hydraulique à l'origine (m)	49.5			
Direction de l'écoulement (°)	275			
Nombre de rangées	63			
Nombre de colonnes	70			
Incréments (m)	15	50		
Périmètres rapproche	és			
Distance à la limite amont (m)	520	430		
Distance à la limite aval (m)	290	310		
Largeur du périmètre au puits (m)	620	680		
Aire totale (m²)	379449 366567			
Périmètres éloignés	6			
Distance à la limite amont (m)	7810	7400		
Distance à la limite aval (m)	380	380 380		
Largeur du périmètre au puits (m)	650	930		
Aire totale (m ²)	6 884 448	10 267 132		

La stratigraphie générale à partir du sol va comme suit : sable, argile et till reposent sur l'aquifère de roc dolomitique fracturé. Ces unités stratigraphiques ont été substituées par une couche confinante dont la conductivité hydraulique verticale est de 9x10⁻⁵ m/jour et 13.1 m d'épaisseur (paramètres de l'argile). L'aquifère est donc de type fuyant et l'équation de Hantush-Jacob est utilisée. L'aquifère de roc constitue la couche principale du modèle avec une base imperméable. La transmissivité de l'aquifère est de 103.7 m²/jour et l'emmagasinement est de 2.69x10⁻³. Ces valeurs proviennent des résultats de l'essai de pompage longue durée au puits STJA1 de Saint-Janvier. La zone de recharge dans la région de Saint-Janvier correspond à une limite de partage des eaux souterraines. C'est une limite à flux nul où un flux vertical (recharge) est présent. Puisque l'utilisation de l'équation de Hantush-Jacob implique que l'aquifère est infini, cette limite agit comme une recharge pour l'aquifère. Il n'a donc pas été nécessaire d'ajouter des puits virtuels pour reproduire la recharge. Au tableau 1.10, on retrouve les coordonnées des puits qui ont été intégrés au modèle de Saint-Janvier et leur débit correspondant.

Tableau 1.10 : Paramètres des puits intégrés dans le modèle analytique CAPZONEde Saint-Janvier.

Puits		Coordonnée X	Coordonnée Y	Débit
		mètres	mètres	m³/jour
STJA1	1	6000	3600	504
Charles	2	4575	2775	2102.4

Le débit du pompage au puits STJA1 est de 504 m³/jour et de 2102 m³/jour au puits municipal Charles. Les dimensions des cellules du maillage pour le modèle de Saint-Janvier sont identiques : 43 rangées et 47 colonnes avec un espacement de 150 m dans les directions x et y (Figure 1.3). Le domaine discrétisé a une forme rectangulaire et est orienté dans le sens de l'écoulement (ouest-est en périphérie des puits). La modélisation a été effectuée en régime permanent pour les fins de délimitation des périmètres rapprochés (60 jours) et éloignés (20 ans). Le rabattement calculé sur tout le domaine a été superposé à une surface piézométrique uniforme avec les caractéristiques suivantes : un gradient hydraulique de 0.002, une charge de 69.5 mètres à l'origine du maillage (au sud-ouest du modèle) et une direction de l'écoulement à 350° (à partir de l'est).

Figure 1.3 : Localisation des puits de pompage, des points de contrôle et délimitation des périmètres rapprochés et éloignés par la méthode CAPZONE/GWPATH (St-Janvier).

Le calage du modèle de Saint-Janvier s'est effectué par l'ajustement des valeurs de transmissivité et d'emmagasinement. Par conséquent, les valeurs initiales de ces deux paramètres, citées au début de la section 1.6.2, ont été modifiées. La valeur de transmissivité a été doublée pour atteindre 208 m²/jour. La valeur de l'emmagasinement, pour sa part, est passée de 2.69x10⁻³ à 8x10⁻⁴. Les points de contrôle utilisés pour le calage sont décrits au tableau 1.11. La figure 1.4 de la charge simulée en fonction de la charge observée montre une distribution régulière de part et d'autre du segment de proportionnalité. L'erreur moyenne absolue est de 0.9073 m et l'erreur sur la racine carrée de la moyenne est de 0.504 m, ce qui représente moins de 5 % d'erreur. Donc, le modèle analytique représente adéquatement la distribution de la charge hydraulique sur le domaine. Le programme de traçage de particules GWPATH a permis de délimiter les périmètres de protection rapprochés et éloignés pour les puits STJA1 et Charles (Figure 1.3).

Figure 1.4 : Graphique des charges simulées avec CAPZONE en fonction des charges mesurées sur le terrrain à Saint-Janvier.

Le tableau 1.12 rapporte les dimensions des périmètres de protection qui incluent les limites aval et amont ainsi que la largeur de l'aire d'alimentation au niveau du puits. Les paramètres hydrogéologiques nécessaires aux programmes CAPZONE et GWPATH pour effectuer les calculs figurent aussi sur le même tableau.

Puits	Coordonnée X (m)	Coordonnée Y (m)	Charge mesurée (m)	Charge calculée (m)
GK_00-001	4050	4950	62.603	62.883
GK_00-006	4650	5700	61.000	62.143
VT_00-008a	2100	1350	66.311	65.692
MB_99-003	2850	1650	64.639	64.080
VT_00-010	3300	1500	62.678	63.008
MB_99-005	4950	3450	60.123	59.075
GK_00-014	6000	3300	57.364	57.409
STJA_00-002	6150	3600	57.488	57.133
GK_00-015	6150	4200	52.977	57.671

Tableau 1.11 : Charges hydrauliques mesurées et calculées aux points de contrôle du modèle de Sainte-Anne-des-Plaines

Tableau 1.12 : Valeurs des paramètres hydrogéologiques utlisées dans le calcul des PDP et dimensions des PDP rapprochés et éloignés obtenus par CAPZONE/GWPATH.

Paramètre	Valeur	
Puits	STJA1	Charles
Type d'aquifère	infini-fuyant	
Équation	Hantush-Jacob (1954)	
Débit de pompage (m³/jour)	504	2102.4
Transmissivité (m²/jour)	208	
Emmagasinement	8x10 ⁻⁴	
K verticale de la couche confinante (m/jour)	9x10 ⁻⁵	
Épaisseur de la couche confinante (m)	13.1	
Porosité effective (%)	19	
Gradient hydraulique	0.002	
Charge hydraulique à l'origine (m)	69.5	
Direction de l'écoulement (°)	350	
Nombre de rangées	43	
Nombre de colonnes	47	
Incréments (m)	150	
Périmètres rapprochés		
Distance à la limite amont (m)	277.9	353.2
Distance à la limite aval (m)	260.3	170.5
Largeur du périmètre au puits (m)	500	390
Aire totale (m ²)	151709	175265
Périmètres éloignés		
Distance à la limite amont (m)	4200	3310
Distance à la limite aval (m)	260	630
Largeur du périmètre au puits (m)	850	2140
Aire totale (m ²)	4 033 993	10 858 004

1.7 MODFLOW/MODPATH

La modélisation numérique sert à simuler les conditions géologiques et hydrogéologiques du terrain et à reproduire les diverses sollicitations imposées aux aquifères. Elle permet, entre autres, de prédire le comportement des systèmes hydrogéologiques en présence de pompage. Elle permet aussi de valider les propriétés hydrauliques des matériaux et les limites du système d'écoulement provenant de données recueillies sur le terrain. La modélisation constitue le meilleur outil de prédiction qui tient compte de la complexité des aquifères. Dans le cadre de cette étude, la modélisation numérique a été réalisée en utilisant le modèle MODFLOW (McDonald et Harbaugh, 1988) qui est un modèle par différences finies qui permet de simuler divers types d'aquifères. MODPATH (Pollack, 1989) effectue le traçage de particules afin de déterminer le champ d'écoulement de l'eau souterraine et permet de circonscrire l'aire d'alimentation d'un puits en pompage. Dans la présente étude, la modélisation numérique est l'une des sept méthodes qui a été appliquée aux sites de Sainte-Anne-des-Plaines (section 1.7.1) et de Saint-Janvier (section 1.7.2) en vue de l'étude comparative des PDP. Pour les périmètres rapprochés, la modélisation numérique sert de base de comparaison pour valider les méthodes. Il est supposé que cette méthode est la plus précise et c'est pourquoi elle constitue la méthode étalon.

1.7.1 Cas de Sainte-Anne-des-Plaines

Modèle conceptuel

Le modèle conceptuel de l'aquifère de Sainte-Anne-des-Plaines est séparé en trois couches divisées en deux zones (Figure 1.5). Cette division en deux zones est la représentation du contraste de perméabilité entre la formation Carillon (Groupe de Beekmantown) en association avec les roches calcaires du Chazy, et celle des roches dolomitiques de la formation de Beauharnois du Groupe de Beekmantown. Les essais Lugeon ont permis d'identifier trois couches dans le roc ayant des transmissivités

différentes. La première couche, d'une épaisseur de 3 mètres, intègre les unités stratigraphiques les plus transmissives : le till perméable et le sommet très fracturé du roc. La seconde couche possède une épaisseur de 50 m et sa perméabilité est nettement inférieure à la première couche, alors que la dernière est la moins perméable et possède une épaisseur de 25 m. Enfin, sous la dernière couche se trouve la présumée base imperméable de l'aquifère (l'aquitard). Les valeurs de conductivité hydraulique et d'emmagasinement sont basées sur les essais de pompage et Lugeon. Les couches de sable et d'argile saturées en eau sur le terrain n'ont pas été ajoutées au modèle. Elles ont plutôt été substituées par une recharge équivalente imposée à la surface de la première couche.

Figure 1.5 : Modèle conceptuel de l'aquifère de Ste-Anne-des-Plaines.

Conditions aux limites, sollicitations et paramètres hydrauliques

La région de Sainte-Anne-des-Plaines a été modélisée sur une superficie de 102.6 km². Le maillage utilisé est orienté selon le nord géographique. Il est composé de 57 colonnes et de 51 rangées. Les deux plus petites cellules du maillage sont centrées sur les puits de pompage P8 et Barrette. Ces deux cellules ont une dimension de 100 m par 100 m. Le pas d'accroissement des cellules est de 10 % et la taille maximale des cellules du maillage atteint 500 m par 500 m. Les limites du modèle ont été déterminées à partir des cartes piézométrique et géologique du site d'étude. Cinq limites cernent la région (Figure 1.6) : deux limites à flux nul parallèles à l'écoulement situées au nord-est et au sud-ouest

(limites 1 et 2); une limite à charge constante au sud qui est concordante avec une isopièze (limite 3), une limite à charge imposée dont la valeur est variable sur une ligne d'écoulement (limite 4); et une limite à flux imposé au nord-ouest qui correspond à la frontière entre les roches sédimentaires des Basses-Terres et les roches ignées/métamorphiques du Bouclier Canadien (limite 5). Ce flux est imposé sous forme de recharge (536 mm/an) à chacune des cellules composant la limite 5. Les valeurs de recharge imposées au modèle, pour simuler l'apport en eau provenant des précipitations ainsi que des couches de sable et d'argile, sont estimées à partir de l'évaluation faite par Hamel (2002). Une valeur élevée de recharge se trouve au nord-ouest du modèle (420 mm/an), là où l'aquifère est non confiné (zone de recharge), alors que pour le reste de la région, couvert par l'argile, la valeur est moindre (8 mm/an).

Figure 1.6 : Discrétisation et conditions limites du modèle de Ste-Anne-des-Plaines.
Le débit du pompage (Q_{TOT}) aux puits P8 et Barrette est distribué sur les trois couches du modèle (Q_x) selon la valeur de transmissivité (T_x) de chacune d'entre elles qui provient de l'essai Lugeon réalisé au puits P9 (Tableau 1.13). L'équation 1.5 suivante permet d'obtenir les débits respectifs imposés aux couches du modèle et elle est basée sur la valeur de transmissivité $(T_{TOT} = 1.4 \times 10^{-2} \text{ m}^2/\text{s})$ obtenue par l'essai de pompage :

$$Q_x = (Q_{TOT} * T_x) / T_{TOT} \tag{1.5}$$

La valeur de porosité pour la couche 1 est tirée de la littérature et a été déterminée à partir de la conductivité hydraulique qui a une valeur comparable à ce qui est retrouvé dans un gravier. Les valeurs de porosité pour un aquifère de gravier se situent entre 14 % et 25 % pour une moyenne de 19.5 % (Landry et Mercier, 1992). Pour les couches 2 et 3, la porosité est déterminée à partir de l'équation 1.6 d'ouverture d'une fracture (*2b*) équivalente à la transmissivité (*T*) de l'aquifère (1.34x10⁻² m²/s) (IAH, 1998) :

$$2b = \sqrt[3]{\left(\frac{12\mu T}{\rho g}\right)^{1/3}}$$
(1.6)

Devery àtree	unitá	unité couche 1 couche 2 couche		couche 2		che 3	
Parametres	Zone 1 Zone 2		Zone 1	Zone 2	Zone 1	Zone 2	
Conductivité hydraulique (K)	m/sec	4.7x10 ⁻³	1.4x10 ⁻³	2x10 ⁻⁷	6.9x10 ⁻⁸	4.0x10 ⁻⁹	1.4x10 ⁻⁹
Transmissivité (T)	m²/sec	1.4x10 ⁻²	4.2x10 ⁻³	1.0x10 ⁻⁵	3.5x10 ⁻⁶	1.0x10 ⁻⁷	3.5x10 ⁻⁸
Emmagasinement spécifique (Ss)	m ⁻¹	3.2x10 ⁻⁵	3.2x10 ⁻⁵	1.6x10 ⁻⁵	1.6x10 ⁻⁵	3.2x10 ⁻⁶	3.2x10 ⁻⁶
Débit du puits P8 (Q)	m³/s	2.3>	2.3x10 ⁻² 1.7x10 ⁻⁵		1.7)	(10 ⁻⁷	
Débit du puits Barrette (Q)							
pas de temps 1 (0-900 min.)	m³/s	4.4>	(10 ⁻²	3.2x10 ⁻⁵		3.2x10 ⁻⁷	
pas de temps 2 (900-1350 min.)	m³/s	/s 3.3x10 ⁻² 2.4		2.4>	<10 ⁻⁵	2.4>	(10 ⁻⁷
pas de temps 3 (1350-5700 min.)	m³/s	m³/s 5.1x10 ⁻² 3.7x10 ⁻⁵		<10 ⁻⁵	3.7>	(10 ⁻⁷	
pas de temps 4 (5700-10080 min.) m³/s		4.4x10 ⁻²		3.2x10 ⁻⁵		3.2x10 ⁻⁷	
Porosité (n) %		19	9.5	0.	14	0.	14
Recharge mm/an Zone		Zone d	e till (zone	de recha	rge) : 420	; Zone d'a	rgile : 8
Flux à la limite 5	mm/an	Flux imposé à la couche 1 du modèle numérique : 5			ue : 536		

Tableau 1.13 : Paramètres hydrauliques calés du modèle numériquede Ste-Anne-des-Plaines.

La viscosité de l'eau est représentée par μ (1.5x10⁻³ kg/ms), la densité de l'eau par ρ (1000 kg/m³) et la gravité par g (9.81 m/s²). Connaissant l'ouverture de la fracture équivalente et la densité des fractures pour un bloc d'aquifère de 100 m x 100 m x 100 m, il est possible de faire le rapport entre le volume de vides et le volume de solides. La porosité résultante est de 0.14 %.

La modélisation de la région d'étude s'est faite en trois étapes. Le calage de la première modélisation s'est faite en régime permanent en utilisant une charge initiale sur tout le domaine et en incorporant le pompage du puits Barrette. La deuxième modélisation a été calée en régime transitoire pour un temps équivalent à la durée de l'essai de pompage sur le terrain (7 jours) et inclut les puits P8 et Barrette. Puisque le débit du puits Barrette a varié lors de l'essai de pompage, le temps de la modélisation en régime transitoire a été divisé en quatre pas de temps avec des débits différents (Tableau 1.13). La troisième modélisation a été réalisée en régime permanent en incorporant le puits P8 afin de délimiter les périmètres rapprochés et éloignés des puits.

Calage du modèle

Afin de caler la première modélisation en régime permanent, les paramètres de conductivité hydraulique, de recharge ainsi que du flux au nord-ouest ont fait l'objet d'ajustements. Toutefois, les deux premiers paramètres sont demeurés sensiblement les mêmes. Puisque le flux au nord-ouest ne peut être évalué sur le terrain, c'est ce paramètre qui a varié le plus et qui a permis de caler le modèle. La charge simulée des puits de contrôle (Tableau 1.14) interpolée avec GMS 2.1 en fonction de la charge observée montre une distribution assez régulière des valeurs de part et d'autre du segment de droite (Figure 1.7). L'erreur moyenne est de -0.57 m; l'erreur moyenne absolue est de 1.15 m; et l'erreur sur la racine carrée de la moyenne est de 1.45 m, ce qui représente moins de 5 % d'erreur entre les charges simulées et les charges observées. Il n'y a donc pas d'erreur systématique, ce qui confirme que la modélisation représente adéquatement les conditions du terrain.

		204	

	Coordonnée X	Coordonnée Y	Régime permanent		Régime transitoire	
Puits	UTM NAD	83-Zone 18	Charge observée	Charge simulée	Charge observée	Charge simulée
	m	m	m	m	m	m
GK_99-001	587809.65	5067588.33	53.22	53.50	53.55	52.77
GK_99-003	592645.09	5071728.90	51.33	51.93	51.03	51.55
GK_99-004	589803.92	5069349.35	52.79	52.72	52.24	51.98
GK_99-005	585489.46	5066390.78	58.43	56.88	57.91	55.99
GK_99-006	588411.92	5068057.79	52.61	53.24	52.33	52.51
GK_99-008	592287.09	5073166.74	50.36	53.78	52.18	53.30
GK_99-010	590220.55	5069718.09	53.38	52.64	52.10	51.92
GK_99-013	594948.32	5070678.26	49.20	47.15	48.94	47.14
GK_99-014	594885.19	5070565.30	49.09	47.15	48.83	47.14
GK_99-016	588187.24	5071558.70	56.56	57.62	56.23	56.72
GK_99-017	591054.47	5070472.27	53.26	52.34	52.66	51.75
GK_99-018	590725.55	5070123.42	52.85	52.47	52.33	51.82
GK_99-019	592101.03	5069442.33	49.42	49.81	49.62	49.39
GK_99-020	593662.55	5070252.99	48.60	48.93	48.18	48.79
GK_99-021	590569.40	5069907.46	53.25	52.38	52.10	51.69
GK_99-022	587536.05	5067375.80	53.57	53.62	53.48	52.90
GK_99-023	591051.15	5067575.15	52.43	49.21	51.82	48.82
GK_99-025	591433.22	5067651.56	47.87	48.84	48.03	48.49
GK_99-026	588645.73	5068229.66	53.28	52.72	52.35	52.02
GK_99-027	590423.21	5067418.99	52.00	49.86	51.67	49.43
GK_99-028	591026.59	5068749.31	52.59	50.55	51.70	49.30
GK_99-041	590976.47	5068771.35	52.57	50.55	51.73	49.30
GK_99-042	591036.58	5068827.68	52.70	50.55	50.66	49.30
GK_99-040	591034.24	5068829.96	52.71	50.68	50.76	49.41
GK_99-029	590957.85	5068681.46	52.37	50.43	51.61	49.40
GK_99-030	592027.93	5069432.36	48.52	50.06	48.71	49.58
GK_99-032	590167.39	5067249.56	52.11	50.00	51.87	49.58
GK_99-036	593124.33	5068136.64	46.53	47.00	46.60	47.00
MB_99-010	586242.06	5064197.83	51.69	51.78	51.56	51.76
MB_99-019	589526.00	5065132.00	49.62	49.37	49.05	49.31
MB_99-022	590650.17	5065116.85	47.71	48.34	48.52	48.32
MB_99-030	592201.00	5064861.00	47.50	47.06	47.57	47.06
GK_99-043	589040.00	5068630.00	52.71	52.86	52.28	52.13
GK_00-008	586446.81	5066471.35	55.29	54.27	55.25	53.59
GK_00-024	589510.00	5067800.00	51.81	50.03	51.40	49.47
GK_00-025	589440.00	5067790.00	50.92	50.17	50.63	49.60

 Tableau 1.14 : Valeurs des charges simulées et observées pour la modélisation en régimes permanent et transitoire de Ste-Anne-des-Plaines.

Le calage de la deuxième modélisation, réalisé en régime transitoire, montre d'aussi bons résultats qu'en régime permanent. En effet, l'erreur sur les charges simulées est à peu près la même (Figure 1.8): l'erreur moyenne est de -0.76 m; l'erreur moyenne absolue est de 1.04 m; et l'erreur sur la racine carrée de la moyenne est de 1.32 m. Les figures 1.9 à 1.12 montrent les graphiques du rabattement simulé superposé au rabattement observé sur une période de 7 jours pour les puits de contrôle Vocelle (à 1210 m du puits de pompage), Lauzon (1970 m), AlarieF (1330 m) et P08 (3.2 m). Les changements brusques de rabattement l'effet direct de la variation du débit du puits Barrette sur la piézométrie régionale. Ces résultats confirment que la simulation avec MODFLOW représente adéquatement les conditions hydrauliques de l'aquifère Sainte-Anne-des-Plaines.

Figure 1.7 : Graphique des charges simulées du calage en régime permanent en fonction des charges observées à Ste-Anne-des-Plaines.

Figure 1.8 : Graphique des charges simulées du calage en régime transitoire en fonction des charges observées à Ste-Anne-des-Plaines.

205

Figure 1.9 : Graphique des rabattements observés et simulés au puits P08.

Figure 1.10 : Graphique des rabattements observés et simulés au puits Vocelle.

206

Figure 1.11 : Graphique des rabattements observés et simulés au puits AlarieF.

Figure 1.12 : Graphique des rabattements observés et simulés au puits Lauzon.

<u>Résultats</u>

Le bilan de masse du modèle numérique en régime transitoire (en pompage) est de 0 %. Cela signifie qu'il sort autant d'eau dans le système qu'il en entre. Le tableau 1.15 donne les détails du bilan de masse. La recharge comprend le flux de recharge imposé à la surface des cellules de la première couche du modèle ainsi que le flux imposé à la limite 5 du modèle numérique.

Flux entrant (m ³ /jour)				
Emmagasinement	5974			
Recharge	16553			
Total	22527			
Flux sortant (m³/jour)				
Emmagasinement	23			
Charges constantes	16494			
Puits	6009			
Total	22527			
différence (%)				
0				

Tableau 1.15 : Bilan de masse du modèle numérique MODFLOW de Ste-Anne-des-Plaines.

La figure 1.13 montre en plan le domaine de la modélisation à Sainte-Anne-des-Plaines. L'aire d'alimentation est tracée pour les deux puits en pompage à partir de la modélisation avec MODFLOW et du traçage de particules avec MODPATH en régime permanent. L'aire d'alimentation du puits P8 couvre une superficie de 6.5 km² alors que celle du puits Barrette est de 10.2 km², soit 58 % de plus que le puits P8. Puisque les paramètres de la modélisation sont les mêmes pour les deux puits, on constante bien l'effet du débit de pompage sur l'ampleur de la sollicitation au niveau de l'aquifère. Ce dernier ayant un champ de charge relativement uniforme, les deux aires d'alimentation ne se touchent pas. Les aires d'alimentation se dirigent vers le nord-ouest et s'arrêtent à la limite du Bouclier Canadien. Les dimensions des périmètres rapprochés et éloignés pour les puits P8 et Barrette sont données aux tableaux 1.16 et 1.17 respectivement. Plusieurs combinaisons de valeurs des paramètres sont possibles lors du calage du modèle, pouvant ainsi donner plusieurs résultats réalistes. Par contre, leurs variations doivent demeurer à l'intérieur d'une fourchette de valeurs déterminée à partir des données recueillies sur le terrain. Ce qui est présenté comme résultat est la représentation d'une réalisation possible.

Figure 1.13 : Périmètres de protection éloignés et rapprochées des puits P8 et Barrette de Ste-Anne-des-Plaines tracés par MODPATH et piézométrie simulée en régime permanent.

Tableau 1.16 : Dimensions des périmètres rapprochés des puits de Ste-Anne-des-Plaines délimités par MODFLOW/MODPATH.

Paramètre	Valeur		
Puits	P8	Barrette	
Distance à la limite amont (m)	400	500	
Distance à la limite aval (m)	140	240	
Largeur du périmètre au puits (m)	440	630	
Aire totale (m ²)	217 979	413 715	

Paramètre	Valeur	
Puits	P8	Barrette
Distance à la limite amont (m)	9030	7900
Distance à la limite aval (m)	140	250
Largeur du périmètre au puits (m)	500	930
Aire totale (m ²)	6 485 554	10 248 365

Tableau 1.17 : Dimensions des périmètres éloignés des puits de Ste-Anne-des-Plaines délimités par MODFLOW/MODPATH.

Afin d'examiner l'influence des pompages des puits P8 et Barrette l'un sur l'autre, deux cartes de rabattement ont été réalisés en utilisant les rabattements calculés par le modèle numérique MODFLOW. La première carte représente le pompage en régime permanent du puits Barrette (Figure 1.14). Le rabattement au puits est de 2.92 m et son pompage produit un rabattement de 0.59 m au puits municipal P8, situé à 1830 m du puits Barrette. La deuxième carte montre le rabattement sur le domaine causé les pompages en régime permanent des puits P8 et Barrette (Figure 1.15). Le rabattement au puits P8 est de 2.05 m alors que celui du puits Barrette est de 3.23 m. Le puits P8 influence donc le rabattement au puits Barrette de 0.31 m. Puisque le débit de ce dernier est deux fois plus important que celui du puits P8, il y produit un rabattement deux fois plus grand. L'influence du pompage d'un puits sur l'autre est alors directement proportionnelle au débit puisque les autres paramètres hydrauliques du modèle numérique demeurent constants.

Figure 1.14 : Carte de rabattement du modèle numérique de Ste-Anne-des-Plaines causé par le pompage au puits Barrette.

Figure 1.15 : Carte de rabattement du modèle numérique de Ste-Anne-des-Plaines causé par le pompage simultané des puits Barrette et P8.

Analyse d'incertitude

Cette partie présente l'analyse de l'incertitude du paramètre de porosité pour la détermination par la méthode MODFLOW/MODPATH des PDP rapprochés pour un temps de 60 jours aux puits P8 et Barrette. Comme expliqué précédemment, la valeur de porosité pour la couche 1 a été déterminée à partir de la conductivité hydraulique de l'aquifère de la région qui a une valeur comparable à ce qui est retrouvé dans un gravier. La valeur de porosité choisie est la moyenne (19.5 %) de l'intervalle de valeurs pour la porosité d'un gravier (14 % et 25 %). L'analyse de l'incertitude du paramètre de porosité permet de voir l'influence de la variabilité de celui-ci sur la forme et les dimensions des périmètres de protection rapprochés.

La figure 1.16 montre la forme du périmètre tracé pour chaque valeur de porosité pour les puits P8 et Barrette. Plus la porosité est faible, plus les vitesses d'écoulement de l'eau souterraine sont élevées. Il en résulte ainsi un périmètre de protection plus grand. Les tableaux 1.18 et 1.19 présentent les dimensions des périmètres de protection pour chaque valeur de porosité utilisée pour l'analyse faite aux puits P8 et Barrette respectivement. On peut noter que la variabilité de la porosité a un effet direct sur la forme et les dimensions des périmètres de protection. La figure 1.16 montre toutefois des périmètres sensiblement identiques pour des porosités de 15 %, 19.5 % et 25 %. L'effet de la variabilité de ce paramètre n'est important que pour des valeurs inférieures à 10 %. Puisque l'intervalle de valeurs pour un gravier est supérieur à 10 %, on peut ainsi conclure que le choix de la valeur de 19.5 % pour la porosité de l'aquifère de Sainte-Anne-des-Plaines est valide.

Figure 1.16 : Périmètres de protection rapprochés tracés par MODPATH pour différentes valeurs de porosité aux puits P8 et Barrette de Ste-Anne-des-Plaines.

Tableau 1.18 : Dimensions des périmètres rapprochés délimités par MODFLOW/-MODPATH pour différentes valeurs de porosité au puits P8 de Ste-Anne-des-Plaines.

Puits	P8				
Porosité n (%)	5	10	15	19.5	25
Distance à la limite amont (m)	1120	620	470	400	340
Distance à la limite aval (m)	140	140	140	140	140
Largeur du périmètre au puits (m)	586	535	502	440	429
Aire totale (m ²)	829 156	385 487	271 546	217 979	177 665

Tableau 1.19 : Dimensions des périmètres rapprochés délimités par MODFLOW/-MODPATH pour différentes valeurs de porosité au puits Barrette de Ste-Anne-des-Plaines.

Puits	Barrette				
Porosité n (%)	5	10	15	19.5	25
Distance à la limite amont (m)	1270	760	580	500	390
Distance à la limite aval (m)	280	280	280	240	220
Largeur du périmètre au puits (m)	960	840	730	630	610
Aire totale (m ²)	1 479 525	758 204	520 758	413 715	307 769

Analyse de sensibilité des paramètres de conductivité hydraulique et de recharge

Cette partie a pour but de vérifier la sensibilité du modèle numérique de Sainte-Anne-des-Plaines lorsqu'il fait l'objet de variations de certains de ses paramètres hydrauliques. L'analyse a été effectuée sur le modèle en régime permanent qui inclut le puits Barrette uniquement. L'analyse de sensibilité porte sur deux paramètres : la conductivité hydraulique et la recharge.

Les valeurs calées de la conductivité hydraulique provenant de la modélisation en régime permanent ont servi de base pour la détermination des valeurs minimales et maximales pour l'analyse de sensibilité. En effet, à partir de la valeur médiane (valeur calée) de la conductivité hydraulique de chacune des trois couches du modèle, le logarithme de cette valeur a été diminuée et augmentée de 20 %. Le tableau 1.20 résume les valeurs de ce paramètre pour les trois couches du modèle numérique de Sainte-Anne-des-Plaines. Les valeurs minimales et maximales pour le paramètre de la recharge varient de 20 % par rapport à la valeur médiane provenant du calage en régime permanent. Le tableau 1.21 résume ces valeurs qui ont été imposées à la surface de la première couche du modèle numérique.

 Tableau 1.20 : Valeurs minimales, médianes et maximales de la conductivité hydraulique des couches du modèle numérique de Ste-Anne-des-Plaines.

Conductivité	Coue	Couche 1		che 2	Cou	che 3
hydraulique	Zone 1	Zone 2	Zone 1	Zone 2	Zone 1	Zone 2
unité	m/s	m/s	m/s	m/s	m/s	m/s
Valeur minimale	1.6x10 ⁻³	3.83x10 ⁻⁴	9.15x10 ⁻⁹	2.54x10 ⁻⁹	8.37x10 ⁻¹¹	2.58x10 ⁻¹¹
Valeur médiane	4.67x10 ⁻³	1.42x10 ⁻³	2x10 ⁻⁷	6.87x10 ⁻⁸	4x10 ⁻⁹	1.38x10 ⁻⁹
Valeur maximale	1.37x10 ⁻²	5.27x10 ⁻³	4.4x10 ⁻⁶	1.9x10 ⁻⁶	2x10 ⁻⁷	9.04x10 ⁻⁸

Tableau 1.21 : Valeurs minimales, médianes et maximales de la rechar	ge du modèle
numérique de Ste-Anne-des-Plaines.	

Recharge	Couche 1
unité	mm/an
Valeur minimale	336
Valeur médiane	420
Valeur maximale	504

Les variations des paramètres de recharge et de conductivité hydraulique ont été conduites indépendamment. En fait, lorsque les valeurs de conductivité hydraulique varient, la valeur de recharge demeure constante à 420 mm/an et lorsque la recharge varie, la conductivité hydraulique pour chaque couche du modèle conserve la valeur médiane notée au tableau 1.20. Le tableau 1.22 présente les écarts obtenus entre les valeurs médianes et les valeurs extrêmes pour l'analyse de sensibilité effectuée sur les paramètres de recharge et de conductivité hydraulique. L'erreur (*) est le quotient de la différence entre l'erreur moyenne absolue de référence et simulée sur l'erreur moyenne absolue de référence. Les figures 1.17 et 1.18 illustrent la variation de l'erreur moyenne absolue en fonction des valeurs de conductivité hydraulique et de recharge respectivement. En comparant les figures 1.17 et 1.18 entre elles, il est clair que le paramètre de la conductivité hydraulique est beaucoup plus sensible que celui de la recharge. En effet, en faisant varier la conductivité hydraulique de 20 %, l'erreur est supérieure à 199 % par rapport à la valeur médiane, alors que la recharge n'enregistre que des erreurs de 45 % et moins. Dans les deux cas, c'est lorsqu'il y a une diminution de 20 % que l'erreur est plus importante. La baisse de la conductivité hydraulique a entraîné une hausse importante de la charge hydraulique sur le domaine, augmentant ainsi l'erreur par rapport à la valeur médiane. Enfin, la baisse de 20 % de la recharge a causé l'apparition de cellules sèches dans la zone de recharge. Cela a provoqué une baisse de la charge hydraulique, augmentant par conséquent l'erreur moyenne absolue.

Tableau 1.22 : Sensibilité des paramètres de conductivité hydraulique et de recharge pour le
modèle numérique en régime permanent de Ste-Anne-des-Plaines.

	Conductivité hydraulique					
к	Erreur moyenne	Erreur moyenne absolue	Erreur moyenne sur la racine carrée	Erreur*		
	(m)	(m)	(m)	(%)		
Valeur minimale	4.94	5.2	6.79	352		
Valeur médiane	-0.57	1.15	1.45	0		
Valeur maximale	-3.38	3.44	3.95	199		
D	Recharge					
	(m)	(m)	(m)	(%)		
Valeur minimale	-1.36	1.67	1.99	45		
Valeur médiane	-0.57	1.15	1.45	0		
Valeur maximale	-0.2	1.11	1.42	3		

Figure 1.17 : Graphique de l'erreur absolue moyenne en fonction de la conductivité hydraulique pour le modèle numérique de Ste-Anne-des-Plaines.

Figure 1.18 : Graphique de l'erreur absolue moyenne en fonction de la recharge pour le modèle numérique de Ste-Anne-des-Plaines.

1.7.2 Cas de Saint-Janvier

Modèle conceptuel

Le modèle conceptuel de l'aquifère de Saint-Janvier, semblable à celui de Sainte-Annedes-Plaines, est divisé en trois couches (Figure 1.19). La première couche, d'une épaisseur de trois mètres, intègre les unités stratigraphiques les plus transmissives : le till perméable et le sommet du roc (dolomie du Groupe de Beekmantown) qui est très fracturé. La seconde couche est épaisse de 50 mètres et sa perméabilité est nettement inférieure à la première, alors que la dernière, la moins perméable, a une épaisseur de 25 mètres. Enfin, sous la dernière couche se trouve la base imperméable de l'aquifère (l'aquitard). Les valeurs de conductivité hydraulique et d'emmagasinement assignées à chacune des couches du modèle proviennent des essais de pompage et Lugeon. Les couches de sable et d'argile saturées en eau sur le terrain ont été substituées par une recharge équivalente imposée à la surface de la première couche.

Figure 1.19 : Modèle conceptuel de l'aquifère de St-Janvier.

Conditions aux limites, sollicitations et paramètres hydrauliques

La région de Saint-Janvier a été modélisée sur une superficie de 62.3 km². Le maillage utilisé est orienté selon le nord géographique. Il est composé de 47 rangées et de 40 colonnes. Le modèle numérique a été discrétisé à partir des puits de pompage STJA1 et Charles dont leur emplacement forme les plus petites cellules du maillage. Elles ont toutes deux une dimension de 100 m par 100 m et le pas d'accroissement des cellules est de 10 % qui atteignent la taille maximale de 500 m par 500 m. Les limites du modèle ont été déterminées à partir des cartes piézométrique et géologique du site d'étude. Six limites cernent la région (Figure 1.20) : une limite à flux nul au nord correspond à la limite de partage des eaux (limite 1); une limite à flux nul au nord-est parallèle à l'écoulement (limite 2); une limite à charge constante au sud-est et qui suit une isopièze (limite 3); et trois limites à charge imposée au sud qui concordent avec une ligne d'écoulement (limites 4,5 et 6).

Figure 1.20 : Discrétisation et conditions limites du modèle de St-Janvier.

Les valeurs de recharge imposées au modèle, pour simuler l'apport en eau provenant des précipitations ainsi que des couches de sable et d'argile, proviennent de l'évaluation faite par Hamel (2002). Des valeurs de recharge plus importantes se trouvent dans la zone de recharge (7.9 à 194.5 mm/an), là où l'aquifère est non confiné, alors que la valeur pour la région couverte par l'argile, située à l'extérieur de la région circonscrite à la figure 1.20, est moindre (21.6 mm/an). Comme le montre le tableau 1.23, la zone de recharge est divisée en quatre parties pour tenir compte de la variabilité de ce paramètre hydraulique sur le territoire. Le débit du pompage au puits STJA1 est de 5.8x10⁻³ m³/s. Le modèle inclut aussi le puits Charles qui pompe en permanence à un débit de 2.4x10⁻² m³/s.

Le débit de pompage aux puits STJA1 et Charles est distribué sur les trois couches du modèle selon la transmissivité de chacune d'entre elles. L'équation 1.1 de la section précédente a été employée afin d'obtenir les débits imposés aux couches 1, 2 et 3. La valeur de porosité de la couche 1 est tirée de la littérature et a été obtenue en associant la valeur de la conductivité hydraulique de l'aquifère de Saint-Janvier avec un type de sol correspondant. La conductivité hydraulique obtenue par l'essai de pompage est élevée et elle est comparable à un aquifère de gravier dont la valeur de porosité se situe entre 14 % et 25 %, pour une moyenne de 19.5 % comme pour le cas de Sainte-Anne-des-Plaines. Pour les couches 2 et 3, la porosité a été déterminée par l'équation 1.2. La porosité trouvée est légèrement inférieure à celle de Sainte-Anne-des-Plaines avec une valeur de 0.11 %. Le tableau 1.23 résume les différents paramètres utilisés dans le modèle numérique de Saint-Janvier. Ce sont les valeurs calées qui sont représentées dans ce tableau.

La modélisation de la région d'étude s'est faite en trois étapes. Tout d'abord, le calage de la première modélisation s'est faite en régime permanent en utilisant une charge initiale sur tout le domaine et en incorporant le pompage du puits Charles. La deuxième modélisation a été calée en régime transitoire pour un temps de sept jours et inclut les puits STJA1 et Charles. La troisième modélisation a été réalisée en régime permanent en incorporant le puits STJA1 et Charles. La troisième modélisation a été réalisée en régime permanent en incorporant le puits STJA1 afin de délimiter les périmètres rapprochés et éloignés des puits de Saint-Janvier.

Paramètres	unité	couche 1	couche 2	couche 3
Conductivité hydraulique (K)	m/sec	6.7x10 ⁻⁴	2x10 ⁻⁸	4.0x10 ⁻¹⁰
Transmissivité (T)	m²/sec	2.0x10 ⁻³	1.0x10 ⁻⁶	1.0x10 ⁻⁸
Emmagasinement spécifique (Ss)	m⁻¹	1.0x10 ⁻⁴	5.0x10 ⁻⁵	1.0x10 ⁻⁵
Débit du puits STJA1 (Q)	m³/s	5.8x10 ⁻³	5.0x10 ⁻⁶	5.0x10 ⁻⁸
Débit du puits Charles (Q)	m³/s	2.4x10 ⁻²	2.1x10 ⁻⁵	2.1x10 ⁻⁷
Porosité (n)	%	19.5	0.11	0.11
Zone de Recharge				
Sud-ouest	mm/an		63	
Centre-sud	mm/an	194		
Centre-nord	mm/an	7.9		
Nord-est	mm/an	73.6		
Zone d'argile	mm/an		21.6	

Tableau 1.23 : Paramètres hydrauliques calés du modèle numérique de St-Janvier.

Calage du modèle

Afin de caler le modèle de la première modélisation en régime permanent, les paramètres de conductivité hydraulique et de recharge ont fait l'objet d'ajustements. Ces trois paramètres sont demeurés malgré tout sensiblement les mêmes que les valeurs initiales estimées. Le graphique de la figure 1.21 montre une distribution des points des charges simulées des puits de contrôle (Tableau 1.24) en fonction des charges observées qui est décalée vers le haut, ce qui signifie que les charges simulées sont plus élevées que les charges observées. Par contre, les points qui se trouvent en périphérie du puits de pompage STJA1 ont été bien calés, car ils se situent sur la droite de proportionnalité. Les charges hydrauliques observées près du puits en question ont plus de poids sur le calage que les points de mesure plus éloignés, car ils ont fait l'objet d'un suivi continu tout le long de l'essai de pompage. Par conséquent, les données sont plus précises. En résumé, on obtient un très bon calage en périphérie du puits STJA1. L'erreur moyenne sur tous les points est de 0.73 m; l'erreur moyenne absolue est de 1.35 m; et l'erreur sur la racine carrée de la moyenne est de 1.88, ce qui représente moins de 8 % d'erreur entre les charges simulées et les charges observées. Il n'y a donc pas d'erreur systématique et confirme que la modélisation représente adéquatement les conditions du terrain.

	Coordonnée X	Coordonnée Y	Régime p	ermanent	Régime tr	ransitoire
Puits	UTM NAD	83/Zone 18	Charge observée	Charge simulée	Charge observée	Charge simulée
	m	m	m	m	m	m
NF_99-084	587809.65	5067588.33	53.17	54.07	52.55	54.07
MB_99-001	592645.09	5071728.90	66.02	67.96	64.41	67.12
MB_99-002	589803.92	5069349.35	64.97	65.24	63.64	64.75
MB_99-003	585489.46	5066390.78	65.19	66.30	64.64	65.95
MB_99-005	588411.92	5068057.79	61.09	60.89	60.12	59.97
MB_99-006	592287.09	5073166.74	63.68	63.05	62.69	62.65
MB_99-017	590220.55	5069718.09	67.00	68.81	66.60	68.71
GK_00-005	594948.32	5070678.26	65.85	67.59	65.44	66.81
GK_00-002	594885.19	5070565.30	62.88	66.66	62.46	65.76
GK_00-004	588187.24	5071558.70	59.93	62.70	59.54	62.52
VT_00-006	591054.47	5070472.27	55.25	60.64	54.80	59.71
GK_00-014	590725,55	5070123.42	59.31	58.79	57.36	57.99
GK_00-012	592101.03	5069442.33	59.75	58.94	57.45	57.14
GK_00-013	593662.55	5070252,99	60.51	59.81	59.35	58.99
GK_00-016	590569.40	5069907.46	59.69	57.06	58.51	56.35
GK 00-018	587536.05	5067375.80	66.45	68.89	65.75	68.61
VT_00-008a	591051.15	5067575.15	67.17	67.28	66.31	67.02
VT_00-010	591433.22	5067651.56	63.54	65.14	62.68	64.83
GK_00-021	588645.73	5068229.66	61.92	61.56	61.26	60.57
STJA 00-004	590423.21	5067418.99	59.18	58.94	57.60	57.14
STJA 00-003	591026.59	5068749.31	59.38	59.18	57.63	57.35
STJA_00-002	590976.47	5068771.35	59.21	58.98	57.49	57.19
VT_00-007	591036.58	5068827.68	63.62	63.04	62.69	63.04

 Tableau 1.24 : Valeurs des charges simulées et observées pour la modélisation en régimes permanent et transitoire de St-Janvier.

La deuxième modélisation réalisée en régime transitoire montre des résultats de calage comparables à la première modélisation. La figure 1.22 montre le graphique des charges simulées en fonction des charges observées et comprend les points de contrôle utilisés lors du calage. L'erreur entre les charges simulées et observées est de 8 % : l'erreur moyenne est de 1.01 m; l'erreur moyenne absolue est de 1.43 m; et l'erreur sur la racine carrée de la movenne est de 1.89. Les figures 1.23 à 1.26 montrent les graphiques du rabattement simulé superposé au rabattement observé sur une période de 7 jours pour les puits de contrôle STJA2 (situé à 45.7 m du puits de pompage), STJA4 (101.4 m), Hamel (57.6 m) et GK_00-013 (750 m). On remarque que les valeurs simulées du rabattement sont supérieures aux valeurs observées dans les premières heures du pompage. Toutefois, au fur et à mesure que les pompages progressent, les valeurs simulées et observées se rejoignent. L'aquifère de Saint-Janvier semble donc réagir comme un milieu fracturé dans les premiers instants du pompage, mais se comporte comme un milieu poreux équivalent à moyen terme. Les résultats de calage du modèle numérique permettent donc de supposer que MODFLOW représente bien les conditions hydrauliques de l'aquifère de Saint-Janvier pour des temps de pompage à plus longue échéance.

Figure 1.21 : Graphique des charges simulées du calage en régime permanent en fonction des charges observées à St-Janvier.

Figure 1.22 : Graphique des charges simulées du calage en régime transitoire en fonction des charges observées à St-Janvier.

Figure 1.23 : Graphique des rabattements observés et simulés au puits STJA2.

Figure 1.24 : Graphique des rabattements observés et simulés au puits Hamel.

223

Figure 1.25 : Graphique des rabattements observés et simulés au puits STJA4.

Figure 1.26 : Graphique des rabattements observés et simulés au puits GK_00-013.

224

Le bilan de masse du modèle numérique en régime transitoire, avec les puits STJA1 et Charles en pompage, est très bien balancé avec une différence de 0.02 % entre le flux entrant et le flux sortant. Cela signifie qu'il sort un peu plus d'eau dans le système qu'il en entre. Le tableau 1.25 dresse en détail le bilan de masse du modèle numérique de Saint-Janvier.

Flux entrant (m³/jour)	
Emmagasinement	927
Charges constantes	487
Recharge	6899
Total	8313
Flux sortant (m³/jour)	
Emmagasinement	0
Charges constantes	5708
Puits	2607
Total	8316
différence (%)	
0.02	

Tableau 1.25 : Bilan de masse du modèle numérique MODFLOW de St-Janvier.

La figure 1.27 montre en plan le domaine de la modélisation à Saint-Janvier. L'aire d'alimentation est tracée pour les deux puits en pompage à partir de la modélisation avec MODFLOW/MODPATH en régime permanent. L'aire d'alimentation du puits STJA1 couvre une superficie de 2.4 km² alors que celle du puits Charles est de 9.2 km². Puisque les paramètres d'entrée pour la modélisation sont les mêmes pour les deux puits, on constante bien l'effet du débit de pompage sur l'ampleur de la sollicitation au niveau de l'aquifère. Les aires d'alimentation se dirigent vers l'ouest et s'arrêtent à la limite de partage des eaux qui représente la limite 5 du modèle. Les dimensions des périmètres rapprochés et éloignés pour les puits STJA1 et Charles sont présentées aux tableaux 1.26 et 1.27 respectivement. Plusieurs combinaisons de valeurs des paramètres sont possibles lors du calage du modèle, pouvant ainsi donner plusieurs résultats réalistes. Ce qui est présenté comme résultat est la représentation d'une réalisation possible.

Figure 1.27 : Périmètres de protection éloignés et rapprochées des puits STJA1 et Charles de St-Janvier tracés par MODPATH et piézométrie simulée en régime permanent.

Tableau 1.26 : Dimensions des périmètres rapprochés des puits de St-Janvier	délimités j	par
MODFLOW/MODPATH.		

Paramètre	Valeur		
Puits	STJA1	Charles	
Distance à la limite amont (m)	212.2	313.8	
Distance à la limite aval (m)	111.5	227.5	
Largeur du périmètre au puits (m)	288.4	520.1	
Aire totale (m ²)	75057	226361	

Paramètre	Valeur		
Puits	STJA1	Charles	
Distance à la limite amont (m)	3960	3310	
Distance à la limite aval (m)	160	630	
Largeur du périmètre au puits (m)	600	2030	
Aire totale (m ²)	2 371 014	9 200 778	

Tableau 1.27 : Dimensions des périmètres éloignés des puits de St-Janvier délimités par MODFLOW/MODPATH.

Le pompage du puits STJA1 où a eu lieu l'essai de pompage et celui du puits municipal Charles influencent non seulement la piézométrie régionale de l'aquifère, mais s'influencent aussi mutuellement, malgré la distance de 1830 m qui les sépare. Deux cartes de rabattement calculées par le modèle numérique MODFLOW ont été réalisées afin d'examiner l'impact des pompages en régime permanent. La première carte représente les rabattements calculés suite à la sollicitation du modèle par le pompage du puits Charles uniquement (Figure 1.28). La rabattement simulé en régime permanent au puits Charles est de 9.62 m et le pompage de celui-ci fait rabattre le niveau d'eau au puits STJA1 de 1.43 m. La deuxième carte montre le résultat du pompage simultané des puits Charles et STJA1 (Figure 1.29). Le rabattement au puits STJA1 est de 3.7 m alors que celui du puits Charles est de 9.97 m. L'influence du puits STJA1 sur le puits Charles n'est que de 0.35 m, ce qui est quatre fois moindre que l'inverse. Le pompage au puits Charles étant quatre fois plus élevé qu'au puits STJA1, on peut constater que le rabattement est directement proportionnel au pompage dans l'aquifère puisque les autres paramètres hydrauliques du modèle numérique de Saint-Janvier sont demeurés constants.

Figure 1.28 : Carte de rabattement du modèle numérique de St-Janvier causé par le pompage au puits Charles.

Figure 1.29 : Carte de rabattement du modèle numérique de St-Janvier causé par le pompage des puits STJA1 et Charles.

Analyse d'incertitude

L'analyse d'incertitude est faite sur le paramètre de porosité dont la valeur choisie pour la détermination par la méthode MODFLOW/MODPATH des PDP rapprochés aux puits STJA1 et Charles est en effet une moyenne. L'analyse de l'incertitude du paramètre de porosité permet de mieux cerner l'influence de la variabilité de celui-ci sur la forme et les dimensions des périmètres de protection rapprochés pour un temps de 60 jours. Les valeurs de porosité choisies pour l'analyse varie de 5 % à 25 %, ce qui englobe l'intervalle de valeurs de porosité d'un gravier (14 % et 25 %) sur lequel est basée la moyenne (19.5 %).

La figure 1.30 présente la forme des périmètres tracés aux puits STJA1 et Charles pour chaque valeur de porosité. Les tableaux 1.28 et 1.29 présentent les dimensions des PDP pour chaque valeur de porosité aux puits STJA1 et Charles respectivement. Des périmètres plus restreints sont notés pour des valeurs de porosité élevées. Cela s'explique par des vitesses d'écoulement de l'eau souterraine qui diminuent lorsque la porosité du milieu augmente. L'effet de la porosité sur les dimensions des PDP est direct, quoique plus important lorsque la valeur est inférieure à 10 %. Puisque les dimensions des PDP pour les porosités de 15 %, 19.5 % et 25 % sont à peu près similaires, on peut ainsi conclure que la valeur moyenne choisie pour la porosité dans les calculs des PDP est valide pour l'aquifère de Saint-Janvier.

229

Figure 1.30 : Périmètres de protection rapprochés tracés par MODPATH pour différentes valeurs de porosité aux puits STJA1 et Charles de St-Janvier.

Puits	STJA1				
Porosité n (%)	5	10	15	19.5	25
Distance à la limite amont (m)	353	277	246	212	166
Distance à la limite aval (m)	214	167	146	112	111
Largeur du périmètre au puits (m)	527	408	335	288	254
Aire totale (m ²)	235 120	136 952	101 969	75 057	54 897

Tableau 1.28 : Dimensions des périmètres rapprochés délimités par MODFLOW/-MODPATH pour différentes valeurs de porosité au puits STJA1 de St-Janvier.

 Tableau 1.29 : Dimensions des périmètres rapprochés délimités par MODFLOW/

 MODPATH pour différentes valeurs de porosité au puits Charles de St-Janvier.

Puits	Charles				
Porosité n (%)	5	10	15	19.5	25
Distance à la limite amont (m)	627	437	349	314	252
Distance à la limite aval (m)	459	337	288	228	228
Largeur du périmètre au puits (m)	1060	780	650	520	550
Aire totale (m ²)	1 479 525	758 204	520 758	226 361	307 769

Analyse de sensibilité des paramètres de conductivité hydraulique et de recharge

Dans le but de vérifier la sensibilité du modèle numérique de Saint-Janvier, une analyse a été effectuée sur le modèle en régime permanent en faisant varier deux de ses paramètres hydrauliques, soit la conductivité hydraulique et la recharge.

Les valeurs calées de la conductivité hydraulique et de la recharge provenant de la modélisation en régime permanent ont servi de base pour la détermination des valeurs minimales et maximales pour l'analyse de sensibilité. L'approche utilisée pour la détermination de ces valeurs est la même que pour le cas de Sainte-Anne-des-Plaines et elle est expliquée à la section 1.7.1. Les tableaux 1.30 et 1.31 résument respectivement les valeurs de la conductivité hydraulique pour les trois couches du modèle numérique et celles de la recharge imposée à la couche 1.

Tableau 1.30 : Valeurs minimales, médianes et maximales de la conductivité hydrauliquedes couches du modèle numérique de St-Janvier.

Conductivité hydraulique	Couche 1	Couche 2	Couche 3
unité	m/s	m/s	m/s
Valeur minimale	1.55x10 ⁻⁴	5.77x10 ⁻¹⁰	5.28x10 ⁻¹²
Valeur médiane	6.67x10 ⁻⁴	2x10 ⁻⁸	4x10 ⁻¹⁰
Valeur maximale	2.88x10 ⁻³	7x10 ⁻⁷	3.03x10 ⁻⁸

Tableau 1.31 : Valeurs minimales, médianes et maximales de la recharge du modèlenumérique de St-Janvier.

Deebarro	Couche 1					
Recharge	Sud-Ouest	Centre-Sud	Centre-Nord	Nord-Est		
unité	mm/an	mm/an	mm/an	mm/an		
Valeur minimale	50	115	6	59		
Valeur médiane	63	194	8	74		
Valeur maximale	76	233	9	88		

Lorsqu'un paramètre faisait l'objet de l'analyse de sensibilité, l'autre demeurait constant, c'est-à-dire qu'il conservait la valeur médiane du modèle numérique. Le tableau 1.32 présente les écarts obtenus entre les valeurs médianes et les valeurs extrêmes. Les figures 1.31 et 1.32 présentent la variation de l'erreur moyenne absolue en fonction des valeurs de conductivité hydraulique et de recharge respectivement. Comme dans le cas de Sainte-Anne-des-Plaines, c'est le paramètre de la conductivité hydraulique qui est beaucoup plus sensible que la recharge. En diminuant la conductivité hydraulique de 20 %, les couches laissent passer moins bien l'eau dans le modèle, ce qui provoque une hausse très importante de la charge hydraulique sur tout le domaine. L'erreur exprime très bien cet effet avec une valeur de 1508 % par rapport à la valeur médiane. Pour ce qui est de la recharge, l'erreur moyenne absolue demeure à peu près constante comparativement à la valeur de la conductivité hydraulique, variant entre 1.35 m et 1.88 m. La valeur de la conductivité hydraulique est basée sur des essais de terrain alors que la valeur de la recharge est interpolée des résultats de l'évaluation de la recharge effectuée sur une échelle régionale (Hamel, 2002). La valeur médiane du paramètre de la recharge est donc moins précise. Toutefois, l'analyse de sensibilité montre bien que l'influence de la variation du paramètre de la recharge sur le modèle numérique de Saint-Janvier est minime, ce qui valide l'utilisation de sa valeur.

	Conductivité hydraulique					
к	Erreur moyenne	Erreur moyenne absolue	Erreur moyenne sur la racine carrée	Erreur*		
	(m)	(m)	(m)	(%)		
Valeur minimale	21.66	21.71	25.51	1508		
Valeur médiane	0.73	1.35	1.88	0		
Valeur maximale	-2.2	2.42	2.83	79		
D		Rec	harge			
	(m)	(m)	(m)	(%)		
Valeur minimale	-0.92	1.65	2	22		
Valeur médiane	0.73	1.35	1.88	0		
Valeur maximale	1.63	1.88	2.65	39		

 Tableau 1.32 : Sensibilité des paramètres de conductivité hydraulique et de recharge pour le modèle numérique en régime permanent de Ste-Anne-des-Plaines.

Figure 1.31 : Graphique de l'erreur absolue moyenne en fonction de la conductivité hydraulique pour le modèle numérique de St-Janvier.

Figure 1.32 : Graphique de l'erreur absolue moyenne en fonction de la recharge pour le modèle numérique de St-Janvier.

ANNEXE L

Tableaux des résultats des rapports d'aires de l'étude comparative des méthodes appliquées aux sites de Saint-Janvier et de Sainte-Anne-des-Plaines

PÉRIMÈTRES RAPPROCHÉS SAINTE-ANNE-DES-PLAINES

Méthodes Aire tot	+-1-			ietre rappr	ocue		
	lale	Aire coi	mmune	Aire non-	-protégée	Aire trop	protégée
111		m²	%	m^2	%	m^2	%
Modflow/Modpath 21797	79	217979	100	0	0	0	0
Méthode hybride 27859	93	175418	80	42561	20	103175	47
TOT (Bear & Jacob) 37259	92	187183	86	30796	14	185410	85
Équation du cylindre 27859	93	167614	77	50365	23	110979	51
Capzone/Gwpath 37944	49	217979	100	0	0	161470	74

Puits Barette			Périn	nètre rappr	oché		
Máthadac	Aire totale	Aire co	mmune	Aire non	-protégée	Aire trop	protégée
INTUMO	m^2	m^2	%	m²	%	m^2	%
Modflow/Modpath	413715	413715	100	0	0	0	0
Méthode hybride	680926	356423	86	57291	14	324503	78
TOT (Bear & Jacob)	841804	352104	85	61610	15	489699	118
Équation du cylindre	680926	395949	96	17765	4	284977	69
Capzone/Gwpath	366567	325164	62	88551	21	41404	10

*Base de comparaison en gras et meilleure méthode sélectionnée en italique

PÉRIMÈTRES ÉLOIGNÉS SAINTE-ANNE-DES-PLAINES

Puits P8				Péri	mètre éloi	gné			
Máthodac	Aire totale	Aire co	mmune	Aire non-	protégée	Aire trop	protégée	Aire zone	vulnérable
INTCHINGES	m²	m²	%	m²	%	m ²	%	m²	%
Cartographie hydrogéologique	7532782	7532782	100	0	0	0	0	950829	100
Méthode hybride	15752728	7292948	26	239835	3	8459780	112	940837	66
Modflow/Modpath	6485554	4785412	64	2747370	36	1700143	23	258774	27
Équation de l'écoulement uniforme	4573385	2340450	31	5192333	69	2232935	30	0	0
Capzone/Gwpath	6884448	6248827	83	1283956	17	635622	8	573343	60

Puits Barrette				Périi	mètre éloi	gné			
Máthodac	Aire totale	Aire con	nmune	Aire non-	protégée	Aire trop	protégée	Aire zone v	/ulnérable
INTCHIORCS	m²	, m²	%	m ²	%	m²	%	m²	%
Cartographie hydrogéologique	11956162	11956162	100	0	0	0	0	2360518	100
Méthode hybride	23666433	11742334	86	213828	7	11924099	100	2360518	100
Modflow/Modpath	10248365	8341729	70	3614434	30	1906637	16	1265616	54
Équation de l'écoulement uniforme	8005399	4494411	38	7461751	62	3510988	29	166752	7
Capzone/Gwpath	10267132	9873570	83	2082593	17	393563	3	1733539	73

*Base de comparaison en gras et meilleure méthode sélectionnée en italique

PÉRIMÈTRES RAPPROCHÉS SAINT-JANVIER

TTCC		

IAI	Aire totale	Aire co	Périn	iètre rappr Aire non	oché - protégée	Aire trop	protégée
es	m^2	m^2	%	m²	%	m ²	%
odpath	75057	75057	100	0	0	0	0
bride	102195	71710	96	3347	4	30485	41
Jacob)	170033	75057	100	0	0	94976	127
sylindre	102083	69370	92	5687	8	32713	44
wpath	151709	75057	100	0	0	76652	102

Puits Charles			Périn	iètre rappr	oché		
Máthadac	Aire totale	Aire co	mmune	Aire non	-protégée	Aire trop	protégée
INTOULO	m^2	m^2	%	m^2	%	m^2	%
Modflow/Modpath	226361	226361	100	0	0	0	0
Méthode hybride	346591	226361	100	0	0	120230	53
TOT (Bear & Jacob)	438151	226361	100	0	0	211790	94
Équation du cylindre	346708	226361	100	0	0	120347	53
Capzone/Gwpath	175265	162621	72	63739	28	12644	9

*Base de comparaison en gras et meilleure méthode sélectionnée en italique
IGNÉS	
ES ÉLC	R
IMÈTR	-JANVIE
PÉRI	SAINT

Puits STJA1				Péri	mètre éloi	gné			
Máthadac	Aire totale	Aire co	mmune	Aire non-	protégée	Aire trop	protégée	Aire zone	vulnérable
INTELLORS	m²	m²	%	m ²	%	m²	%	m²	%
Cartographie hydrogéologique	1791591	1791591	100	0	0	0	0	491908	100
Méthode hybride	3171365	1735473	67	56118	3	1435892	80	468957	95
Modflow/Modpath	2371014	1102669	62	688922	38	1268344	11	5106	1
Équation de l'écoulement uniforme	5341528	1621079	60	170513	10	3720450	208	360773	73
Capzone/Gwpath	4033993	943383	53	848208	47	3090610	173	0	0

Puits Charles				Péri	mètre éloi	gné			
Máthodac	Aire totale	Aire cor	nmune	Aire non-	-protégée	Aire trop	protégée	Aire zone v	/ulnérable
INTERIORES	m ²	m²	%	m²	%	m²	%	m²	%
Cartographie hydrogéologique	7434367	7434367	100	0	0	0	0	3093575	100
Méthode hybride	9751978	7277080	98	157287	2	2474898	33	2928885	95
Modflow/Modpath	9200778	7367929	66	66439	1	1832849	25	3044824	98
Équation de l'écoulement uniforme	16649867	7434367	100	0	0	9215500	124	3093575	100
Capzone/Gwpath	10858004	7434367	100	0	0	3423637	46	3093575	100

*Base de comparaison en gras et meilleure méthode sélectionnée en italique

ANNEXE M

Cartes synthèse des PDP rapprochés et éloignés et de l'utilisation du sol : Puits municipaux de Saint-Janvier et de Sainte-Anne-des-Plaines

