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génie (CRSNG) d’avoir financé cette thèse. Ceci m’a permis de me concentrer er de m’épanouir
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lorsque φD = 0 pour différentes valeurs de K et R/λ. . . . . . . . . . . . . . . . 18

2.1 System model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 The average beampatterns of wBD and wM for σθ = 10, 17 (deg), R/λ = 1, 3, and

K = 20 when the scattering distribution is Uniform and Gaussian. . . . . . . . . 45

2.3 The analytical and the empirical ASANRs achieved by wBD and wM as well as

their empirical ASNRs versus σθ for K = 20 when the scattering distribution is

Uniform and Gaussian (compared to the empirical ASANR achieved by wP). . . 46

2.4 The empirical ASANRs and ASNRs achieved by wBD and wB versus σθ for K =

5, 10, 20 when the scattering distribution is Uniform and Gaussian. . . . . . . . . 47

2.5 The ASANRs ξ̃wBD
and ξ̃wM

versus the actual σ†
θ for K = 20, and different AS

estimation errors when the scattering distribution is Uniform and Gaussian. . . 48

3.1 Rx and Tx system configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2 Υ̃IDL
M (σθ) and Υ̃M(σθ) for K = 20 and different values of B = Ba = Bs. . . . . . . 78

3.3 Υ̃IDL
O (σθ) and Υ̃O(σθ) for K = 20, f̄D = 0, and different values of B = Ba = Bs = Bc. 78

3.4 Υ̃IDL
O (σθ) and Υ̃O(σθ) for K = 20, B = Ba = Bs = Bc = 8 bits and different values

of f̄D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.5 GO (σθ) for f̄D = 10−4, K = 20, and different values of Bc. . . . . . . . . . . . . . 80

3.6 GO (σθ) for f̄D = 10−2, K = 20, and different values of Bc. . . . . . . . . . . . . . 81

3.7 GO (σθ) for K = 20 and different values of f̄D. . . . . . . . . . . . . . . . . . . . 82

vi



3.8 GO (σθ) for f̄D = 10−4 and different values of K. . . . . . . . . . . . . . . . . . . 83

4.1 System model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2 The analytical and the empirical ASAINRs achieved, under ideal conditions, by

MCB, OCB, and the proposed B-DCB as well as their empirical ASINRs versus σ

for K = 20 when the scattering distributions are (a) : Uniform and (b) : Gaussian. 113

4.3 The analytical and the empirical ASAINR gains achieved, under real-world condi-

tions, by MCB and OCB against the proposed B-DCB vs. (a) : Ba and (b) : f̄D

for K = 20 and different values of σ. . . . . . . . . . . . . . . . . . . . . . . . . 114
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Résumé

Cette thèse s’intéresse à la conception de nouvelles techniques de formation de voies collabo-

rative distribués (”distributed collaborative beamforming (DCB)”) pour des applications dans des

environnements réels. Jusqu’ici, tous les DCBs existants dans la littérature ignorent le phénomène

de diffusion présent dans la plupart des milieux de propagation. Cette hypothèse, qui permet de

remplacer le canal réel par un canal monochromatique (c.-à-d., à raie unique (”single-ray”)) et,

de ce fait, simplifier la conception de ces DCBs monochromatiques (”monochromatic DCBs (M-

DCBs)”), entrâıne la détérioration de leurs performances. Ceci est en fait dû à la non-concordance

(”mismatch”) du canal monochromatique avec le canal réel polychromatique (c.-à-d., à plusieurs

raies ”multi-ray”) induit par la diffusion.

En exploitant le fait que pour de faibles étalements angulaires (”angular spreads (ASs)”) ce

canal est équivalent à un canal bichromatique (c.-à-d., à deux raies), une technique novatrice

de DCB dont l’overhead est négligeable est proposée dans cette thèse. Ce DCB bichromatique

(”bichromatic DCB (B-DCB)”) est capable de réaliser un rapport signal à bruit (RSB) optimal

dans les environments où le AS est faible à modéré. En plus, il surpasse en termes de RSB

M-DCB dont la conception ne tient pas en compte la diffusion. Le gain en RSB offert par

B-DCB contre ce dernier peut même atteindre 3 dB. Les performances de B-DCB sont ensuite

comparées, dans des conditions réelles, à celles de M-DCB et du CB optimal qui se base sur l’état

du canal réel (”optimal CSI-based CB (OCB)”). En tenant compte des erreurs d’estimation et

de quantification induites par chaque technique, les expressions exactes de leurs RSBs ont été

obtenues pour la première fois sous des formes compactes. Il est prouvé que B-DCB surpasse OCB

dans les environnements à ASs faibles ou modérés où les deux solutions réalisent nominalement

le même RSB dans les conditions idéales (c.-à-d., sans tenir compte des erreurs d’estimation et

de quantification). Il est aussi prouvé que B-DCB surpasse toujours M-DCB sauf pour des bas

niveaux de quantification injustifiés en pratique. En plus, on est les premiers à étendre, dans

1



cette thèse, la comparaison des CBs au niveau throughput où l’overhead de chaque technique

est aussi pris en compte. Dans ce cas, il est prouvé que B-DCB est capable de réaliser un

throughput supérieur à celui de OCB même dans les environnements à ASs élevés. Afin d’élargir

encore plus les domaines d’application des DCBs, on propose, dans cette thèse, un nouveau

DCB qui prend en compte non seulement le phénomène de diffusion mais aussi les interférences.

Une approche qui consiste en la minimisation des puissances de bruit et des interférences tout

en maintenant constante la puissance utile est utilisée pour la conception des poids. Dû à la

complexité des canaux polychromatiques, le calcul de ces derniers sous des formes compactes

s’avère malheureusement impossible. En recourant d’abord au canal bichromatique valide pour

des faibles ASs puis à une approximation efficace de certains termes de la fonction objective, on

réussi à obtenir les expressions des poids sous des formes compactes. Il est montré que ce B-DCB

est capable de surpasser non seulement M-DCB mais aussi OCB qui est pénalisé par son overhead

excessif. Bien qu’elles soient extrêmement efficace dans les environnements où les ASs sont faibles

à modérés, les performances des B-DCBs développés jusqu’ici se détériorent significativement

dans les environnements à ASs élevés. Dans cette thèse, on propose alors une nouvelle technique

DCB capable non seulement d’approcher, pour toute valeurs de AS, le RSB optimal réalisé par

OCB mais, aussi, de s’implémenter moyennant une quantité minimale d’overhead. La conception

de ce DCB polychromatique (”polychromatic DCB (P-DCB)”) est rendu possible grâce à une

approximation efficace des poids de OCB.
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Introduction

L’émergence durant les dernière décennies des nouveaux réseaux sans fils distribués a marqué

une nouvelle ère dans les communications sans fils. N’ayant pas une infrastructure ou topologie

prédéfinie, ces réseaux se déploient facilement et à faible coût ou peuvent se former de manière

temporaire, à partir de dispositifs déjà déployés, pour assurer des fonctions momentanées et par-

fois urgentes telles que les opérations de recherche et de sauvetage, reprise des communications

après sinistre (”disaster recovery”), partage de données entre conférenciers, ou encore assistance

de la communication entre deux entités lorsque les conditions de propagation sont hostiles. Grâce

à leurs innombrables mérites, ces réseaux ont suscité un grand intérêt chez la communauté scien-

tifique. Plusieurs réseaux sans fils distribués destinés à de différentes applications ont alors vu

le jour, notamment les réseaux de capteurs sans fils (”wireless sensor networks (WSNs)”), les

réseaux ad-hoc de mobiles (”mobile ad hoc networks (MANETS)”) et les réseaux ad-hoc de

véhicules (”vehicular ad-hoc networks (VANETs)”). Avec l’apparition du nouveau concept de

l’accès radio virtuel (”radio access virtualization”), les réseaux sans fils distribués ont trouvé

récemment application dans les communication cellulaires puisqu’ils permettent de virtualiser

non seulement la station de base mais, aussi, l’usager lui-même, ouvrant ainsi la porte devant

la connectivité massive et omniprésente promis dans les futures système de communications de

cinquième génération (5G). Vu qu’ils sont généralement formés par des terminaux complètement

indépendants, autonomes et alimentés par de petites batteries, dont la rechargement n’est pas

toujours évident, ces réseaux requièrent impérativement de nouveaux paradigmes de communi-

cation capables d’assurer une grande efficacité énergétique et spectrale. C’est dans ce contexte

que le concept de formation de voies collaborative (”collaborative beamforming (CB)”) a fait

son apparition comme un moyen permettant d’établir des communications efficace, fiable et de

longue distance dans les réseaux sans fils distribués. Le beamforming a été originalement proposé

pour améliorer les performances des dispositifs munis de plusieurs antennes (multi-antenne). En
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utilisant cette technique, le signal transmis ou reçu par l’une des antennes d’un tel dispositif est

multiplié par un poids judicieusement choisi de façon à ce que tous les signaux se combinent

de manière constructive à la destination. Il a été démontré que, si le dispositif est muni de K

antennes, le beamforming permet de non seulement réaliser un rapport signal sur bruit (RSB) K

fois supérieur à celui obtenu avec des dispositifs munis d’une seule antenne mais, aussi, diminuer

K fois la puissance transmise par chaque antenne. Afin de bénéficier de ces nombreux avan-

tages, les terminaux d’un réseau distribué qui sont souvent munis d’une seule antenne, peuvent

collaborer pour émuler le beamforming en agissant exactement comme les antennes d’un même

dispositif multi-antenne, d’où l’appellation CB.

Une des techniques CB les plus utilisées dans les environments réels est incontestablement

le CB optimal qui se base sur l’état réel du canal (”channel state information (CSI)”). Il a

malheureusement été prouvé que le poids de ce (”optimal CSI-based CB (OCB)”) associé avec

chaque terminal dépend non seulement du CSI de ce dernier mais, aussi, des CSIs de tous les

autres terminaux dans le réseau. Étant donnée la nature distribuée des réseaux concernés, les

terminaux sont des entités totalement indépendantes situées dans de différentes positions et,

de ce fait, n’ont aucune connaissance des CSIs des uns des autres. Afin de calculer leurs poids

respectifs, ils sont alors contraints d’échanger leurs CSIs causant inévitablement de l’overhead

(signalisation), qui augmente linéairement avec non seulement le nombre de terminaux K mais

aussi la fréquence de Doppler. Lorsque le réseau est dense et/ou la fréquence de Doppler est

élevée, cet overhead peut devenir excessif ce qui entrâıne d’une part une dégradation substantielle

des performances et, d’autre part, un épuisement sévère des batteries des terminaux. Ce défi

majeur a motivé beaucoup de rechercher visant a développer les meilleures stratégies capables

de réduire l’overhead de OCB.

Visant à atteindre cet objectif, plusieurs techniques de quantification optimale des CSIs ou

des poids ont été développées. Cependant, ces dernières nécessitent généralement une énorme

capacité de stockage des données au niveau de chaque terminal ; ce qui se traduit par une hausse

significative des coûts des réseaux sans fils distribués. En plus, la quantification elle-même intro-

duit des erreurs dans ces poids causant, ainsi, la dégradation des performances des communica-

tions. Par ailleurs, malgré qu’elles soient plus ou moins optimales, ces techniques ne réduisent pas

considérablement l’overhead car ce dernier reste linéairement dépendant de K et de la fréquence

de Doppler. Il existe toutefois une deuxième stratégie capable de résoudre ce problème. En igno-
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rant le phénomène de diffusion (”scattering”) pour remplacer, lors de la conception des poids, le

canal réel par un canal monochromatique (c.-à-d., à raie unique (”single-ray”)), cette stratégie

permet d’éviter l’estimation des CSIs, puisque ce genre de canaux dépend uniquement des po-

sitions des terminaux et de la direction de la source et/ou du récepteur. Il a été prouvé que

dans plusieurs cas cette stratégie rend l’overhead négligeable et, de ce fait, l’implémentation du

CB distribuée. Se basant sur cette stratégie, plusieurs CB monochromatiques distribués (”mo-

nochromatic distributed CBs (M-DCBs)”) ont été développés mais leurs performances ont été,

malheureusement, très médiocre surtout dans les environnement réelles où la diffusion existe.

En effet, il a été observé qu’ à faible étalement angulaire (”angular spread (AS)”), les perfor-

mances de ces M-DCBs se détériorent légèrement mais deviennent rapidement insatisfaisantes

pour des ASs modérés à élevés. Ceci est en fait dû à la non-concordance (”mismatch”) du canal

monochromatique, utilisé lors de la conception des M-DCBs, avec le canal réel polychromatique

(c.-à-d., à plusieurs raies ”multi-ray”) induit par le phénomène de diffusion. En d’autres termes,

tout gain en overhead offert par les M-DCBs par rapport à OCB a été malheureusement réalisé

au détriment de leurs performances.

L’objective de cette thèse est donc :

– Fournir de nouvelles techniques novatrices de DCB qui combinent les avantages de OCB

(c.-à-d., des performances optimales) et M-DCB (c.-à-d., un overhead négligeable) tout en

évitant leurs inconvénients respectifs (c.-à-d., l’énorme overhead et la la non-concordance

du canal).

– Prouver l’efficacité des DCBs développés dans des conditions d’implémentation réelles.

Structure de la Thèse et Contributions

Le reste de cette thèse est organisé comme suit. Chapitre 1 introduit les réseaux sans fils

distribués et le concept du CB. Les défis à surmonter pour garantir une implémentation distribuée

du CB dans des conditions réelles sont aussi détaillés et discutés dans ce chapitre.

Chapitre 2 considère une technique CB permettant d’établir une communication en deux

sauts entre une source et un récepteur via un réseau sans fils distribué formé deK terminaux. Un

canal polychromatique induit par la diffusion est considéré entre la source et chaque terminal.

En exploitant le fait que ce canal est équivalent à un canal bichromatique (c.-à-d., à deux
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raies) pour de faibles ASs, on a réussi à concevoir un nouveau DCB qui tient en compte la

diffusion et, en plus, dont l’overhead est négligeable. Il a été prouvé que ce DCB bichromatique

(”bichromatic DCB (B-DCB)”) est capable de réaliser un rapport signal à bruit (RSB) optimal

dans les environments où le AS est faible à modéré. Il a été aussi prouvé que le B-DCB proposé

surpasse en termes de RSB le M-DCB dont la conception ne tient pas en compte la diffusion. Le

gain en RSB offert par B-DCB contre ce dernier peut même atteindre 3 dB.

Chapitre 3 compare B-DCB avec M-DCB et OCB dans des conditions réalistes. En tenant

compte des erreurs d’estimation et de quantification induites par chaque solution, dans ce cha-

pitre, les expressions exactes de leurs RSBs ont été calculées pour la première fois sous des

formes compactes. Il a été démontré que B-DCB surpasse OCB dans les environnements à ASs

faibles ou modérés où les deux solutions réalisent nominalement le même RSB dans les conditions

idéales (c.-à-d., sans tenir compte des erreurs d’estimation et de quantification). Il a été aussi

démontré que B-DCB surpasse toujours M-DCB sauf pour des bas niveaux de quantification

injustifiés en pratique. En plus, ce travail était le premier à étendre la comparaison des CBs au

niveau throughput où l’overhead de chaque solution est aussi pris en compte. Dans ce cas, il a

été prouvé que B-DCB est capable de réaliser un throughput supérieur à celui de OCB même

dans les environnements à ASs élevés.

Chapitre 4 élargit encore plus les domaines d’application des DCBs en proposant un nou-

veau DCB qui prend en compte non seulement le phénomène de diffusion mais aussi les in-

terférences. Un système comprenant une source entourée de MI interférences qui communique

avec un récepteur à travers un réseaux sans fils distribué formé par K terminaux est alors

considéré dans ce chapitre. Une approche qui consiste en la minimisation des puissances de bruit

et des interférences tout en maintenant constante la puissance utile a été utilisée pour la concep-

tion des poids. Dû à la complexité des canaux polychromatiques, le calcul de ces derniers sous

des formes compactes s’est malheureusement avéré impossible. En recourant d’abord au canal

bichromatique valide pour des faibles ASs puis à une approximation efficace de certains termes

de la fonction objective, on a obtenu les expressions des poids sous des formes compactes. Il a

été montré que ces derniers peuvent être calculés au niveau de chaque terminal se conformant,

ainsi, au caractère distribué du réseau concerné. Il a été aussi montré que ce B-DCB est capable

de surpasser non seulement M-DCB mais aussi OCB qui est pénalisé par son overhead excessif

surtout pour des grandes valeurs de MI , K et/ou de la fréquence de Doppler.
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Chapitre 5 propose une solution DCB novatrice capable non seulement d’approcher pour

toute valeurs de AS le RSB optimal réalisé par OCB mais, aussi, de s’implémenter moyennant

une quantité minimale d’overhead. La conception de ce DCB a été rendu possible grâce à une

approximation efficace à grandes valeurs de K des poids de OCB. Il a été prouvé que ce DCB

polychromatique (”polychromatic DCB (P-DCB)”) surpasse en termes de RSB M-DCB et B-

DCB surtout dans les environments à ASs élevés. Il a été aussi prouvé que le RSB de P-DCB

perd une fraction de dB lorsque K est aussi peu que 5 alors qu’il est pratiquement le même que

celui réalisé par OCB lorsque K s’approche de 20.
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Chapitre 1

La formation de voies collaborative :

concept, applications et défis

1.1 Les réseaux sans fils distribués

Contrairement aux réseaux centralisés où tous les noeuds sont connectés à un/e proces-

seur/unité central/e (un super noeud muni d’une grande capacité de calcul), un réseau distribué

est un réseau sans infrastructure ou topologie prédéfinie (”ad-hoc”) formé par un ensemble

de dispositifs (terminaux) complètement indépendants et autonomes capables de s’organiser

afin d’échanger des information dans le cadre d’une application donnée [1] [2]. Ce genre de

réseaux présente plusieurs avantages par rapport aux réseaux centralisés. D’abord, ils peuvent

être déployés facilement et à faible coût puisqu’ils ne nécessitent, au préalable, aucune infra-

structure, qui est extrêmement coûteuse et indispensable pour les réseaux centralisés. Cette

caractéristique permet aux réseaux distribués de se former de manière temporaire pour assurer

des fonctions parfois urgentes telles que les opérations de recherche et de sauvetage, reprise des

communications après sinistre (”disaster recovery”), partage de données entre conférenciers, ou

encore assistance de la communication entre deux entités lorsque les conditions de propagation

sont hostiles. Puis, étant auto-configurables et auto-ajustables, le dysfonctionnement d’un ou

plusieurs terminaux ne pourra en aucun cas entrâıner l’interruption des communications dans

les réseaux sans fils distribués. Ceci n’est évidemment pas le cas des réseaux centralisés dont le

bon fonctionnement est étroitement lié à leurs unités centrales qui gèrent toutes les communica-

tions et fonctions de ces réseaux. Enfin, la flexibilité des réseaux sans fils distribués leurs permet

8



de facilement s’ajuster au déplacement des terminaux, offrant ainsi un un meilleur support de

la mobilité.

Grâce à leurs mérites, ces réseaux ont suscité un grand intérêt chez la communauté scien-

tifique. Plusieurs réseaux sans fils distribués destinés à de différentes applications ont été alors

développés au cours des deux dernières décennies tels que les réseaux de capteurs sans fils (”wi-

reless sensor networks (WSNs)”), les réseaux ad-hoc de mobiles (”mobile ad hoc networks (MA-

NETS)”) et les réseaux ad-hoc de véhicules (”vehicular ad-hoc networks (VANETs)”) [1]- [4].

Avec l’emergence du nouveau concept de l’accès radio virtuel (”radio access virtualization”), les

réseaux sans fils distribués ont pris récemment encore plus d’importance puisqu’ils permettent

de virtualiser à la fois la station de base et l’usager lui-même, ouvrant ainsi la porte devant

la connectivité massive et omniprésente promis dans les futures système de communications de

cinquième génération (5G).

1.2 Modes de transmission dans les réseaux sans fils dis-

tribués

Selon l’application considérée, les terminaux d’un réseau distribué peuvent communiquer soit

entre eux soit avec un point d’accès dans ce même réseau ou à une distance plus ou moins loin-

taine. Plus longue est la distance entre les deux dispositifs en communication, plus importante est

l’énergie consommée lors d’une transmission directe des données. D’un autre côté, cette énergie

est une ressource très précieuse dans les réseaux sans fils distribué, puisque les terminaux sont

généralement équipés avec des petites batteries qui s’épuisent rapidement et dont le recharge-

ment n’est pas toujours possible (Ex : un réseau de capteurs sans fils déployé dans des régions

inaccessibles). D’autres modes de communication non conventionnel doivent alors être envisagés

pour les réseaux sans fils distribués, notamment la communication multi-saut et la formation

de voies collaborative (”collaborative beamforming (CB)”) qui sont deux formes distinctes de

communication coopérative.
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(a) Communication directe

(b) Communication multi-saut

(c) Formation de voies collaborative (CB)

Figure 1.1 – Modes de communication dans les réseaux sans fils distribués.
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1.2.1 Communication multi-saut

Afin d’économiser de l’énergie, il est évident que les terminaux d’un réseau sans fils distribué

doivent limiter la portée de leur transmission pour ne communiquer qu’avec leurs voisins les

plus proches. Se basant sur cette idée, la communication multi-saut consiste en un transfert

d’information entre la source et la destination à travers plusieurs terminaux qui, en recevant et

retransmettant les données, jouent le rôle des relais [2]. Il est claire que ce mode communication

nécessite des algorithmes de routage capables de définir efficacement le chemin le plus court entre

la source et la destination. Ces algorithmes s’avèrent malheureusement très complexe surtout

pour des densité élevées de terminaux. En plus, ils requièrent généralement une grande quan-

tité de signalisation (”overhead”) qui peut entrâıner l’épuisement des batteries des terminaux,

réduisant ainsi la durée de vie des réseaux sans fils distribués. La communication multi-saut

pose aussi un problème d’équité entre les terminaux. En effet, certains terminaux situés près

d’un point d’accès seront beaucoup plus sollicités que les autres, vu que la plupart des che-

mins vers ce dernier passent nécessairement par eux. Les batteries de ces terminaux s’épuiseront

inévitablement plus vite que celles des autres terminaux dans le réseau. Par ailleurs, la commu-

nication multi-saut cause non seulement un énorme délais de communication surtout lorsque le

nombres des sauts est grand, mais aussi, des interférences sévères au niveau de chaque terminal

ce qui entrâıne la dégradation des performances des réseaux sans fils distribué.

1.2.2 Formation de voies collaborative (CB)

La formation de voies collaborative ou simplement CB est apparue comme une solution

alternative à la communication multi-saut dans les réseaux sans fils distribué. Commençons

d’abord par définir le concept de la formation de voies (”beamforming”). Le beamforming a

été originalement proposé pour améliorer les performances des dispositifs munis de plusieurs

antennes (multi-antenne). En utilisant cette technique, le signal transmis ou reçu par l’une des

antennes d’un tel dispositif est multiplié par un poids judicieusement choisi de façon à ce que

tous les signaux se combinent de manière constructive à la destination [5]. Il a été démontré que,

si le dispositif est muni de K antennes, le beamforming permet non seulement de réaliser un

rapport signal sur bruit (RSB) K fois supérieur à celui obtenu avec des dispositifs munis d’une

seule antenne mais, aussi, de diminuer K fois la puissance transmise par chaque antenne [5]- [9].
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Ces gains peuvent aussi s’interpréter de la manière suivante : en utilisant le même budget de

puissance, le beamforming permet d’étendre considérablement la portée de la communication.

Afin de bénéficier de ses nombreux avantages, les terminaux d’un réseau distribué qui sont

souvent munis d’une seule antenne, peuvent collaborer pour émuler le beamforming en agissant

exactement comme les antennes d’un même dispositif multi-antenne, d’où l’appellation CB. Ce

mode de communication présente plusieurs avantages par rapport à la communication multi-

saut. En effet, en réduisant le nombre de sauts à deux peu importe la distance entre la source

et la destination, CB permet d’éviter l’énorme délais introduit par la communication multi-

saut. Il permet aussi une distribution équitable de l’énergie consommée sur tout les terminaux

qui collaborent dans la communication [6]. Par conséquent, contrairement à la communication

multi-saut, il bénéficie de la forte densité de certains réseaux distribués tel que les WSNs puisque

non seulement l’énergie consommée au niveau de chaque terminal est diminuée mais, aussi, les

performances en terms de RSB ou de portée de communication sont améliorées. En plus, en

utilisant CB, la puissance est focalisée dans une direction donnée et, en même temps, diminué

dans les autres directions, réduisant ainsi, par rapport à la communication multi-saut, le niveau

des interférences au niveau de chaque terminal [5]- [8]. Tous ces avantages seront mieux détaillés

et expliqués dans la suite de cette thèse.

1.3 Fonctionnement du CB

Selon l’application, le CB peut être effectué à l’émission (”transmit CB (TxCB)”) et/ou à la

réception (”receive CB (RxCB)”). Les systèmes correspondants aux TxCB et RxCB sont illustrés

dans les Figures 1.2(a) et 1.2(b), respectivement. D’après ces figures, dans les deux cas, le modèle

comprend une source S, une destination D et K terminaux équipés chacun d’une seule antenne

isotopique. Ces terminaux sont aléatoirement distribués dans un disque de rayon R, formant

ainsi un réseau d’antennes distribué. La difference fondamentale entre TxCB et RxCB est que

le premier focalise la puissance dans la direction de S tout en diminuant la puissance rayonnée

dans les autres directions, alors que le deuxième agit comme un filtre spatial en privilégiant la

réception des signaux provenant de la direction de S tout en atténuant les signaux reçus des

autres directions. Grâce à CB, la communication omnidirectionnelle du mode multi-saut est

remplacée par une communication directive beaucoup plus efficace qui se traduit, comme sera
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(a) TxCB
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(b) RxCB

Figure 1.2 – CB à l’émission (TxCB) et la réception (RxCB).
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démontré dans la section suivante, par une augmentation substantielle du RSB à la réception et

une diminution considérable du niveau des interférences dans le réseau. Ceci est rendu possible,

par la multiplication par un coefficient complexe, appelé poids ou pondération, du signal reçu au

niveau de chaque terminal. Avec TxCB et RxCB, la communication entre S et D s’établie alors

en deux étapes. Dans la première, S transmet son message vers les K terminaux tandis que,

dans la deuxième, chaque terminal multiplie son signal reçu par un poids judicieusement choisi

et transmet le tout vers D. Plusieurs approches peuvent être utilisées pour sélectionner ces poids

telles que celle qui compense l’effet du canal (”matched CB”) ou celle qui maximise le RSB à la

réception tout en satisfaisant une contrainte sur la puissance totale émise (”power-constrained

SNR-optimal CB”) ou celle qui minimise la puissance transmise en gardant le RSB au-dessus

d’un seuil donné. Certaines de ces approches seront mieux détaillées dans la section suivante qui

servira à démontré l’efficacité du CB.

1.4 Les performances du CB

Afin d’étudier les performances du CB, on se limite dans cette section au TxCB. Notons que

le RxCB a été largement abordé dans les articles publiés dans le cadre de cette thèse. Par souci

de simplicité et de clarté, dans la suite on ignore le premier saut et on suppose que l’information

à transmettre par S a été correctement partagée avec les K terminaux qui vont collaborer dans

la communication. Dans un tel cas, le signal reçu par D est donné par

r = mwHg + n, (1.1)

où m est le message à transmettre de puissance unitaire, w = [w1 . . . wK ] est le vecteur des poids

avec wk le poids correspondant au k-ième terminal, n est un bruit Gaussien à la réception et

g = [[g]1 . . . [g]K ] avec [g]k étant la réponse du canal entre le k-ième terminal et D. Lorsqu’il

n’y a ni réflection ni diffusion (”scattering”) du signal pendant sa propagation entre ces deux

dispositifs, le canal qui les sépare s’exprime comme suit [7]- [9] :

[g]k = cD [a(φD)]k , (1.2)

où cD traduit les effets de l’atténuation subit par le signal pendant sa propagation vers D, φD

est la direction de ce dernier et

[a(φD)]k = e−j
2π
λ
rk cos(φD−ψk), (1.3)
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Figure 1.3 – Système considéré.

où λ est la longueur d’onde et (rk, ψk) sont les coordonnées polaires du k-ième terminal. Pour

étudier les performances du CB, on considère dans la suite différentes approches de conception

du vecteur des poids w.

1.4.1 CB à RSB optimal

Le CB à RSB optimal vise à maximiser le RSB reçu en D sous contrainte d’un budget

maximal de puissance Pmax à l’émission. D’après (1.1), mathématiquement on doit résoudre le

problème d’optimisation suivant :

wRSB−opt = argmax
{
wHa(φD)a(φD)

Hw
}

PT ≤ Pmax, (1.4)

où PT = ‖w‖2 est la puissance totale émise par tous les terminaux qui collaborent dans la

communication. On peut facilement prouver que wRSB−opt s’exprime comme suit :

wRSB−opt =

√

Pmax

K
a(φD). (1.5)

Il s’ensuit de (1.5) que le poids [wRSB−opt]k associé avec le k-ième terminal dépend de ses co-

ordonnées (rk, ψk), λ, Pmax et K. (rk, ψk) peuvent être facilement obtenues localement au ni-

veau de ce terminal alors que les autres paramètres sont soit stockés dans sa mémoire avant

le déploiement du réseau soit diffusés dans ce dernier moyennant quelques bits de signalisation.

L’implémentation du CB à RSB optimal ne nécessite donc aucun un échange d’information entre
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les terminaux. Par conséquent, il est adapté à la nature distribué du réseau concerné. On parle

dans ce cas d’un CB distribué (”distributed CB (DCB)”). On démontrera dans la suite que

certains types de CB ne possède pas cette caractéristique vitale qui permet d’assurer l’efficacité

énergétique et spectrale des communications dans les réseaux distribués.

Revenons maintenant aux performances de ce DCB à RSB optimal. D’après (1.5), en utilisant

ce dernier, le RSB reçu au niveau de D est donnée par

RSB = K
|cD|2Pmax

σ2
n

, (1.6)

où σ2
n est la puissance du bruit n. D’un autre côté, il peut être facilement démontré que le RSB

obtenu si un seul terminal transmet le message m avec une puissance Pmax (c.-à-d., communica-

tion directe sans CB) est |cD|2Pmax/σ
2
n. Par conséquent, ce DCB permet de réaliser un RSB K

fois supérieure au cas d’une communication directe avec un seul terminal, ce qui se traduit par

un gain substantiel surtout si les réseaux sont denses comme dans les applications des WSNs.

En plus, en utilisant [wRSB−opt]k, la puissance émise par le k-ième terminal est

Pk =
∣
∣[wRSB−opt]k

∣
∣
2
=
Pmax

K
. (1.7)

Il s’ensuit de (1.7) que le DCB à RSB optimal distribue équitablement la puissance de transmis-

sion entre tous les terminaux qui collaborent dans la communication. Plus leur nombre est grand,

moins de puissance est consommée au niveau de chaque terminal. Ceci prouve une fois de plus

que ce DCB profiterait pleinement d’une densification des réseaux distribués. Afin de démontrer

encore plus l’efficacité du DCB à RSB optimal, on examine dans ce qui suit son diagramme de

rayonnement (”beampattern”) moyen. Ce dernier est défini comme étant la courbe qui décrit la

variation de la puissance rayonnée en fonction de la direction. En utilisant wRSB−opt, la puissance

reçue au niveau d’un récepteur (autre que D) dont la direction est φ⋆ est définie selon (1.1) par

P (φ⋆) = |c⋆|2wH
RSB−opta(φ⋆)a

H(φ⋆)wRSB−opt. (1.8)

Il a été prouvé que si les terminaux sont uniformément distribués, la puissance moyenne reçue

par ce récepteur est [7]

P̄ (φ⋆) = E
{
aH(φD)a(φ⋆)a

H(φ⋆)a(φD)
}

= |c⋆|2Pmax

(

1 + (K − 1)

(

2
J1(γ(φ⋆ − φD))

γ(φ⋆ − φD)

)2
)

, (1.9)
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où E{·} est l’espérance par rapport aux variables aléatoires (rk, ψk), k = 1, . . . , K, J1(·) est la
fonction bessel du premier ordre et

γ(φ) =
4πR

λ
sin

(
φ

2

)

. (1.10)

La Figure 1.4 illustre le diagramme de rayonnement moyen normalisé relatif au DCB à RSB

optimal lorsque φD = 0 pour différentes valeurs de K et R/λ. Ce diagramme comprend un lobe

principale centré sur φD ainsi que des lobes secondaires. D’après cette figure, on peut remarquer

que la puissance rayonnée atteint son maximum dans la direction désirée (c.-à-d., celle de D).

Ceci prouve que grâce à ce DCB la puissance est focalisée dans cette direction et diminuée dans

les autres directions, réalisant ainsi une transmission directionnelle. Cette dernière permet de

diminuer le niveau des interférences subi par un récepteur situé sur une direction φ⋆ 6= φD.

En plus, d’après Figure 1.4, la puissance normalisée reçue sur φ⋆ 6= φD décrôıt inversement

proportionnellement à K. Ceci prouve une fois de plus que ce DCB est capable de tirer avantage

de la densité élevée des terminaux dans certaines applications. On peut aussi observer de cette

figure que l’augmentation de R/λ permet de rétrécir la largeur du lobe principale. Lorsqu’il

existe un récepteur très proche de D, un diagramme de rayonnement avec un lobe principale est

certainement très utile pour diminuer la puissance reçue par ce récepteur.

1.4.2 Matched CB

Le matched CB vise à compenser les effets du canal et, ainsi, doit satisfaire la condition

wH
Matchg = 1. Par conséquent, wH

Match est donnée par

wH
Matchg = a(φD)/K. (1.11)

D’après (1.11), le matched CB est aussi un DCB puisque son implémentation ne nécessite aucun

échange d’information entre les terminaux qui collaborent dans la transmission. En utilisant

wH
Match, le RSB reçu au niveau de D est

RSB =
|cD|2
σ2
n

. (1.12)

Contrairement au DCB à RSB optimal, le matched DCB n’offre aucun gain en terme de RSB

par rapport à une communication directe avec un seul terminal. Il permet cependant un gain
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Figure 1.4 – Diagramme de rayonnement moyen normalisé relatif au DCB à RSB optimal

lorsque φD = 0 pour différentes valeurs de K et R/λ.

beaucoup plus important en terme de puissance consommée au niveau de chaque terminal. En

effet, la puissance émise par le k-ième terminal s’exprime comme suit :

Pk = |[wMatch]k|
2 =

1

K2
. (1.13)

Par conséquent, une puissance K2 fois moins inférieure est nécessaire au niveau de chaque ter-

minal pour réaliser le même RSB que celui d’une communication directe entre un seul terminal

et D. Cette caractéristique peut être très intéressante dans toute application nécessitant une

grande efficacité énergétique. Concernant le diagramme de rayonnement moyen normalisé du

matched DCB, on peut facilement déduire de d’après (1.5), (1.9) et (1.11) qu’il est exactement

le même que celui illustré dans la Figure 1.3. Par conséquent, le matched DCB offre les mêmes

avantages en termes de puissance rayonnée que le DCB à RSB optimal.

1.4.3 Null-steering CB

Le null-steering CB est une technique visant à annuler la puissance reçue dans certaines

directions. Ce type de CB s’avère être extrêmement utile pour les applications à niveau de sécurité

très élevé où le message ne doit parvenir en aucun cas à certains récepteur. Le null-steering
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CB est aussi utile pour supprimer totalement les interférences subis par certains récepteurs

afin d’améliorer leur qualité de service. Notons que l’implémentation du null-steering CB à la

reception permet de supprimer totalement les interférences subi par D lui-même. Le vecteur de

poids wNS associé à ce type de CB doit donc satisfaire les conditions suivantes :







wH
NSa(φD) = 1

wH
NSa(φl) = 0, l = 1, . . . , L

. (1.14)

où L est le nombre des récepteurs indésirables et φl, l = 1, . . . , L leurs directions. Afin de dériver

l’expression de wNS, on commence par définir la matrice suivante :

A = [a(φ1), . . . , a(φL)] . (1.15)

En utilisant (1.15), on peut montrer que wNS obéit à

wH
nsA = eT1 (1.16)

où e1 est un vecteur de dimension (L+1)×1 dont tous les élements sont nuls excepté le premier

qui est égal à 1. Si K = L + 1, alors A est une matrice carrée. Dans ce cas, puisque toutes ces

colonnes sont linéairement indépendantes, A est une matrice inversible et wNS est alors donné

par

wNS =
(
AH
)−1

e1. (1.17)

Cependant, lorsque K > L + 1 ce qui est généralement le cas dans la plupart des applications,

(1.17) n’est plus valide. Dans un tel cas, l’utilisation du pseudo-inverse de A s’avère être une

bonne alternative. Ainsi, le vecteur des poids wNS est donné par :

wNS = A(AHA)−1e1. (1.18)

Bien que wNS vérifie (1.16) et ainsi capable d’annuler la puissance reçue par les L récepteurs

indésirables, le null-steering CB présente de sérieux inconvénients. En effet, la connaissance

des directions φl, l = 1, . . . , L de ces récepteur est indispensable au niveau de chaque ter-

minal. Cependant, dans plusieurs applications tel que les communications militaires haute-

ment sécurisées, ses informations ne sont pas toujours disponibles. En plus, d’après (1.17) et

(1.18), le poids [wNS]k associé au k-ième terminal dépend non seulement de ses coordonnées

mais aussi de ceux de tous les autres terminaux qui collaborent dans la transmission (c.-à-d.,
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(rp, ψp), p = 1, . . . , K | p 6= k). Malheureusement, ces informations ne sont pas disponible au

niveau du k-ième terminal. L’implémentation du Null-steering CB requière alors un échange

d’information entre les terminaux dégradant ainsi l’efficacité énergétique et spectrale de la com-

munication. Plus le nombre de terminaux est grand, plus cette dégradation est importante. Par

conséquent, contrairement aux DCB mentionnées ci-dessus, le Null-steering CB n’est pas une

solution distribué adapté au réseau concerné.

Après avoir analysé les performances du CB et étudié certaines approches de conception de

ses poids, on présente, dans la section suivante, les défis que doivent être surmontés afin d’assurer

son implémentation distribué dans des conditions réelles.

1.5 Défis du CB

Á la lumière des informations présentés dans les sections précédentes, le CB doit inévitablement

faire face aux défis suivants :

1.5.1 Synchronisation

D’après les solutions de CB définies en (1.5), (1.11), (1.17) et (1.18), l’implémentation de

CB nécessite que tous les terminaux transmettent sur une même porteuse. Cependant, dans les

réseaux distribués, chaque terminal possède son propre oscillateur et, ainsi, génère sa propre

porteuse. Il est malheureusement fort probable que ces porteuses aient de différentes fréquences

et/ou phases initiales. Ceci cause généralement un déphasage important entre les signaux (ou

sinusöıdes) reçus au niveau de D ce qui entrâıne leur combinaison d’une manière destructive [6].

Plus grand est le déphasage, moins est la puissance utile reçue et, par conséquent, plus faible

est le RSB au niveau de D. Notons que ce dernier peut même recevoir une puissance nulle si le

déphasage entre chaque paire de signaux est égale à π. Ce déphasage destructive peut aussi se

produire même si toutes les fréquences et phases des porteuses sont parfaitement synchronisées.

En effet, avec CB, tous les signaux doivent être transmis simultanément. Si un ou plusieurs

terminaux transmettent leurs signaux en avance ou en retard, un déphasage se produit à la

réception, causant ainsi une dégradation notable des performances de la communication. Ce

phénomène est aussi courant dans le contexte des réseaux distribué, puisque chaque terminal

possède sa propre horloge indépendante des autres horloges dans le réseau. Par conséquent, CB

20



requiert en plus de la synchronisation de fréquences et de phases une synchronisation en temps.

1.5.2 Auto-localisation

Comme il a été discuté dans la Section 1.4, afin d’implémenter le CB dans les réseaux dis-

tribués, chaque terminal doit être en mesure de calculer sa position. Un GPS (”global positioning

system”) pourrait être intégré à cette fin au niveau de chaque terminal. Bien qu’elle soit très

efficace, cette technologie est d’une part très coûteuse et donc pourrait augmenter significa-

tivement le coût des réseaux distribués surtout lorsque leurs densités sont élevés, et d’autre

part complètement inutile dans les endroits confinés, tels que les tunnels, les mines souterraines

etc., où aucun signal GPS est détectable. Des algorithmes d’auto-localisation doivent être alors

implémentés au niveau de chaque terminal pour lui permettre de calculer sa position et, ainsi,

de collaborer dans la transmission des données.

Dans le cadre de mon doctorat, je me suis intéressé à cette axe de recherche sur lequel

j’ai eu l’opportunité de superviser un autre étudiant en doctorat Mr. Ahmad EL Assaf. On

a réussi à développer plusieurs algorithmes d’auto-localisation adaptés aux réseaux sans fils

distribués et dont la précision dépasse largement les algorithmes existants dans la littérature.

Cette supervision a été très fructueuse puisqu’on a réussis à publier et soumettre jusqu’ici trois

articles de revues et huit articles de conférence tous listés dans ma liste de publications. Notons

que, par souci de clarté et de cohérence, ces travaux ne sont pas mentionnés dans cette thèse.

1.5.3 Non-concordance du canal (”channel mismatch”)

Dans la Section 1.4, lors de la conception des CBs, on a ignoré le phénomène de diffusion

(”scattering”) présent, en pratique, dans tous les milieux de propagation. Ceci nous a permis

de considérer un canal monochromatique (c.-à-d., à raie unique (”single-ray”)) qui simplifie

considérablement la conception et l’étude des performances de ces CBs. Cependant, à cause de

ce phénomène, plusieurs raies de puissances et de déviations différentes sont générés du signal

émis formant, ainsi, un canal polychromatique (”multi-ray”). Il a été prouvé qu’en présence

de la diffusion, les performances des CBs monochromatiques (”monochromatic CBs (MCBs)”)

présentés dans la Section 1.4 se détériorent significativement [9]. Ceci est naturellement causé

par la non-concordance (”mismatch”) entre le canal polychromatique réel et le canal monochro-
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matique utilisé lors de leurs conception. L’implémentation du CB dans les environments réels

requière donc la prise en compte du phénomène de la diffusion.

1.5.4 Échanges d’information (”overhead”)

Comme discuté dans la Section 1.4, l’implémentation de certains CBs nécessitent un énorme

échange d’information entre les terminaux d’un réseau sans fils distribué. Cette overhead entrâıne

non seulement des délais de communication mais, aussi, l’épuisement rapide des batteries de ces

terminaux. En plus, il détériore sévèrement l’efficacité spectrale de ce genre de réseau. Il est donc

crucial de diminuer considérablement l’overhead de ces CBs pour leur permettre de s’implémenter

de manière distribuée (c.-à-d., les rendre DCB).

Notons que cette thèse s’intéresse particulièrement aux deux derniers défis. Dans les prochains

chapitres, on développe des solutions DCB novatrices qui prennent en compte le phénomène de

diffusion et dont l’overhead est négligeable.
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Chapitre 2

Distributed Collaborative Beamforming

in the Presence of Angular Scattering

Slim Zaidi and Sofiène Affes

IEEE Transactions on Communications, vol. 62, pp. 1668-1680, May 2014.

Résumé : Ce chapitre considère une technique CB permettant d’établir une commu-

nication en deux sauts entre une source et un récepteur via un réseau composé de K

terminaux indépendants uniformément distribués sur un disque de rayon R. Alors

que la plupart des travaux traitant le CB dans la littérature ignorent le phénomène

de diffusion, présent dans tout environnement réel de propagation, pour supposer

un canal monochromatique, dans ce chapitre un canal polychromatique induit par

ce phénomène est supposé entre la source et chaque terminal. En exploitant le fait

que ce canal est équivalent à un canal bichromatique (c.-à-d., à deux raies) pour de

faibles ASs, on réussi à concevoir un nouveau DCB qui tient compte de la diffusion

et, en plus, dont l’overhead est négligeable. Il est prouvé que ce DCB bichromatique

(”bichromatic DCB (B-DCB)”) est capable de réaliser un RSB optimal dans les

environments où le AS est faible à modéré. Il est aussi prouvé que le B-DCB proposé

surpasse en termes de RSB le M-DCB dont la conception ne tient pas compte de la

diffusion. Le gain en RSB offert par B-DCB contre ce dernier peut même atteindre

3 dB.
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Abstract

In this paper, a collaborative beamformer (CB) is considered to achieve a dual-hop commu-

nication from a source to a receiver, through a wireless network comprised of K independent

terminals. Whereas previous works neglect the scattering effect to assume a plane-wave single-ray

propagation channel termed here as monochromatic (with reference to its angular distribution),

a multi-ray channel termed as polychromatic due to the presence of scattering is considered,

thereby broadening the range of applications in real-world environments. Taking into account

the scattering effects, the weights of the so-called polychromatic CB (P-CB) are designed so as

to minimize the received noise power while maintaining the desired power equal to unity. Unfor-

tunately, their derivation in closed-form is analytically intractable due to the complex nature of

polychromatic channels. However, when the angular spread (AS) is relatively small to moderate,

it is proven that a polychromatic channel may be properly approximated by two rays and hence

considered as bichromatic. Exploiting this fact, we introduce a new bichromatic CB (B-CB)

whose weights can be derived in closed-form and, further, accurately approximate the P-CB’s

weights. Yet these weights, which turn out to be locally uncomputable at every terminal, are

unsuitable for a distributed implementation. In order to circumvent this shortcoming, we exploit

the asymptotic expression at large K of the B-CB whose weights could be locally computed

at every terminal and, further, well-approximate their original counterparts. The performances

of the so-obtained bichromatic distributed CB (B-DCB) and its advantages against the mono-

chromatic DCB (M-DCB), which is designed without accounting for scattering, are analytically

proved and further verified by simulations at practical values of K.

2.1 Introduction

Collaborative beamforming (CB) stands out today to be a strong means to increase the

transmission coverage, the link reliability, and the capacity of wireless networks [1]-[12]. Using

CB, a set of K independent terminals (sensor nodes, mobile users, soldiers in battlefield, relays,

etc.) play a central role in the data transmission between a pair source-receiver. These sensors,

terminals, devices or machines, called all terminals here for simplicity, multiply their received

signals from the source with the complex conjugates of properly selected beamforming weights,

and forward the resulting signals to the receiver. When the beamforming response in the desired

25



direction is fixed, it has been shown that the transmit power is inversely proportional to K

while the achieved signal-to-noise ratio (SNR) increases with K [6], [9], [11]. Since the number

of terminals K is typically large in many practical cases, using CB in wireless networks results

in both a substantial improvement in the signal reception quality and a considerable increase in

the terminals’ battery lifetime [11], [12].

Due to its practical potential, CB has garnered the attention of the research community.

Assuming that the terminals are uniformly distributed, the CB concept was presented in [1]

and the characteristics of its resultant beampattern were analyzed. Beampattern characteristics

of the CB were also evaluated in [2] when the terminals are Gaussian distributed. In [3], a

unified method to analyze the beampattern properties for various terminal distributions was

proposed. To achieve improved beampattern properties, terminal selection algorithms aiming to

narrow down the mainbeam and minimize the effect of sidelobes were, respectively, presented

in [4] and [5]. In [6], the applicability of CB in wireless networks was investigated and several

deployment solutions were explored in [7]. New CB techniques that improve the network energy

efficiency and reduce the collaboration time were, respectively, presented in [8] and [9]. A review

of the different CB techniques wherein properly selected weights achieve a given design’s objective

while satisfying its constraints was made in [10].

These selected weights must often comply with the restrictions dictated by the network

structure. For instance, when a CB technique is used in a wireless network that lacks a master

terminal (MT) with a global knowledge of all network parameters, the terminals are typically

required to locally compute their weights based solely on their limited knowledge about the

network. This is also the case when the MT is available to compute all weights but the overhead

associated with sending them to all terminals is prohibitive. This impediment motivates further

investigation in this direction. Lending themselves to a distributed implementation, a variety of

so-called distributed CB (DCB) techniques, wherein the selected weights solely depend on the

information commonly available at every terminal and, hence, each is able to locally compute

its own weight, were proposed in [11] and [12].

In spite of their significant contributions, all the above works neglect the scattering and

reflection effects to assume plane-wave or single-ray propagation channels termed here as mo-

nochromatic (with reference to their angular distribution). Although this assumption is useful

for analytical purposes, it is often not valid in practice. Indeed, in real-world environments, the
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very likely presence of scattering causes an angular spread (AS) of the transmit or receive si-

gnal. Several rays or ”spatial chromatics” (with reference to their angular distribution) are then

generated to form a multi-ray or polychromatic channel [4]-[3]. The scattering effect on CB was

investigated in [14] where the author analyzed, in the presence of scattering, the performance

of a monochromatic DCB (M-DCB) technique whose design accounts for single-ray propagation

channels. It was shown that the performance of the M-DCB technique deteriorates in areas where

the AS is very small and becomes unsatisfactory when the AS substantially increases [14]. The

aim of this work is to design a DCB technique which accounts for the scattering effect, thereby

pushing farther the frontier of the DCB’s real-world applicability range to include scattered

environments with small to moderate angular spreads.

In this paper, we consider a CB technique to achieve a dual-hop communication from a

source to a receiver, through a wireless network comprised of K independent terminals. In the

first time slot, the source sends its signal to the network while, in the second time slot, each

terminal multiplies its received signal by a properly selected beamforming weight and forwards

the resulting signal to the receiver. These weights aim to minimize the received noise power while

maintaining the desired power equal to unity. Due to the presence of scattering, we assume

a polychromatic channel when designing the so-called polychromatic CB (P-CB) technique.

Due to the complex nature of such a channel, derivation of closed-form expressions for the P-

CB’s weights turns out to be analytically intractable. However, when the AS is relatively small

to moderate, the polychromatic channel, owing to a Taylor series expansion of its correlation

matrix, can be properly approximated by two angular rays and hence considered as bichromatic.

Exploiting this fact, we introduce a new bichromatic CB (B-CB) technique whose weights can

be derived in closed-form and, further, accurately approximate those of the P-CB technique.

Nevertheless, the distributed feature of our wireless network dictates every terminal to compute

its beamforming weight based only on its limited locally-available information. Unfortunately,

the B-CB’s weights turn out to be locally uncomputable at every terminal, and, hence, this

beamformer cannot be implemented in a distributed fashion. To circumvent this problem, we

exploit the asymptotic expression at largeK of the B-CB whose weights can be locally computed

at every terminal and, further, well-approximate their original counterparts. The performances

of the so-obtained B-DCB (i.e., distributed B-CB) technique are analyzed and compared to

those of the M-DCB and B-CB techniques. We show that the proposed B-DCB technique is
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able to achieve its maximum achievable average SNR (ASNR) in scattered environments with

small to moderate angular spreads while the achieved ASNR using the M-DCB technique, which

is designed without accounting for scattering, decreases when the latter is small and becomes

unsatisfactory at moderate values. We also show that using the proposed B-DCB technique

instead of the M-DCB results in an ASNR gain that may reach as much as 3 dB, when K is

large enough. Moreover, we prove that for K typically in the range of 10, the achieved ASNR

using the B-DCB technique loses only a fraction of a dB against the B-CB technique, which is

unsuitable for a distributed implementation.

The rest of this paper is organized as follows. The system model is described in Section 2.2.

Section 2.3 investigates the CB in the presence of scattering. The novel DCB solution that

takes into account the scattering effect is proposed in Section 2.4. Section 2.5 analyzes the

performances of the proposed technique while Section 2.6 verifies by computer simulations the

theoretical results. Concluding remarks are given in Section 2.7.

Notation : Uppercase and lowercase bold letters denote matrices and column vectors, res-

pectively. [·]il and [·]i are the (i, l)-th entry of a matrix and i-th entry of a vector, respectively.

IN is the N -by-N identity matrix and en is a vector with one in the n-th position and zeros

elsewhere. (·)T and (·)H denote the transpose and the Hermitian transpose, respectively. ‖ · ‖ is

the 2-norm of a vector and | · | is the absolute value. E{·} stands for the statistical expectation

and (
ep1−→)

p1−→ denotes (element-wise) convergence with probability one. J1(·) is the first-order

Bessel function of the first kind and ⊙ is the element-wise product.

2.2 System model

As illustrated in Fig. 2.1, the system of interest consists of a wireless network or subnetwork

comprised of K terminals equipped each with a single isotropic antenna and uniformly and

independently distributed on D(O,R), the disc with center at O and radius R, a receiver Rx,

and a source S both located in the same plane containing D(O,R) [1]-[12], [14]. We assume that

there is no direct link from the source to the receiver due to high pathloss attenuation. Moreover,

let (rk, ψk) denote the polar coordinates of the k-th terminal and (As, φs) denote those of the

source. Without loss of generality, the latter is assumed to be at φs = 0 and to be located far

from the terminals, i.e., As ≫ R.
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Figure 2.1 – System model.

The following assumptions are further considered :

A1) The source is scattered by a given number of scatterers located in the same plane

containing D(O,R). The latters generate from the transmit signal L rays or ”spatial chromatics”

(with reference to their angular distribution) that form a polychromatic propagation channel

[4]- [3]. The l-th ray or chromatic is characterized by its angle deviation θl from the source

direction φs and its complex amplitude αl = ρle
jϕl where the amplitudes ρl, l = 1, . . . , L

and the phases ϕl, l = 1, . . . , L are independent and identically distributed (i.i.d.) random

variables, and each phase is uniformly distributed over [−π, π]. The θl, l = 1, . . . , L are i.i.d. zero-

mean random variables with a symmetric probability density function (pdf) p(θ) and variance

σ2
θ [14], [17], [3]. All θls, ϕls, and ρls are mutually independent. All rays have equal power 1/L

(i.e., E {|αl|2} = 1/L). Note that the standard deviation σθ is commonly known as the angular

spread (AS) while p(θ) is called the scattering or angular distribution.

A2) The channel gain [f ]k from the k-th terminal to the receiver is a zero-mean unit-variance

circular Gaussian random variable [9], [11].

A3) The source signal s is narrow-band 1 with unit power and noises at terminals and the

receiver are zero-mean Gaussian random variables with variances σv
2 and σn

2, respectively. The

source signal, noises, and the terminals’ forward channel gains are mutually independent [9],

[11], [12], [8].

1. In this paper, we assume that the signal bandwith’s reciprocal is large with respect to the time delays of

all rays. For this reason, the time notion is ignored when denoting the source signal [4].
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A4) All nodes’ local oscillator frequencies and phases are assumed to be synchronized by any

phase/frequency adjustment techniques such as [20]-[22].

A5) The k-th terminal is aware of its own coordinates (rk, ψk), its forward channel [f ]k, the

direction of the source φs, the number of terminals K, the normalized radius R/λ where λ is

the wavelength, and the AS σθ while being oblivious to the locations and the forward channels

of all other terminals in the network [1]-[5], [11], [12].

A1 is frequently adopted in the context of scattering environments [4]-[3] while A2-A4 are

common assumptions in the array processing literature [1]-[12]. A5 which guarantees that the

proposed CB technique is suitable for a distributed implementation, is commonly considered in

the topic of CB [1]-[5]. Note that all parameters (position, channel, source direction, angular

spread) invoked in A5 may be easily estimated using any of the existing parameters’ estimation

techniques, thereby inducing some estimation errors. The latters could be implicitly included in

the additive Gaussian noise considered at the terminals making our scenario sufficiently realistic.

Due to A1 and the fact that As ≫ R, it can be shown that the channel gain from the source

to the k-th terminal can be represented as [4], [14], [3]

[g]k =

L∑

l=1

αle
−j 2π

λ
rk cos(θl−ψk). (2.1)

Obviously, in the conventional scenario where the scattering effect is neglected (i.e., σθ −→ 0) to

assume a monochromatic plane-wave propagation channel, we have θl = 0 and, hence, [g]k can

be reduced to [g1]k = e−j(2π/λ)rk cos(ψk), the well-known steering vector in the array-processing

literature [1]-[5].

As can be observed from (2.1), the summation of L chromatics causes a variation, with a

particular channel realization, of the received power at the k-th terminal. The channel is then

said to experience a form of fading. When L is large, according to the Central Limit Theorem, the

distribution of the channel gain [g]k approaches a Gaussian. Since, according to A1, E{αl} = 0

for l = 1, . . . , L, then [g]k is a zero-mean Gaussian random variable and, hence, its magnitude

is Rayleigh distributed. Therefore, when L is large enough (practically in the range of 10), the

channel from the source to the k-th terminal is nothing but a Rayleigh channel. It can also be

observed from (2.1) that we did not take into account any line-of-sight (LOS) component in

our channel model. If this were the case, [g]k’s distribution would approach a non-zero mean

Gaussian distribution and the channel would become Rician.
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2.3 CB in the presence of scattering

A dual-hop communication is established from the source S to the receiver Rx. In the first

time slot, the source sends its signal s to the wireless network. Let y denotes the received signal

vector at the terminals given by

y = gs+ v, (2.2)

where g , [[g]1 . . . [g]K ]
T and v is the terminals’ noise vector. In the second time slot, the k-th

terminal multiplies its received signal with the complex conjugate of the beamforming weight wk

and forwards the resulting signal to the receiver. It follows from (2.2) that the received signal at

O is

r = fT (w∗ ⊙ y) + n = wH (f ⊙ y) + n

= wH (f ⊙ gs+ f ⊙ v) + n

= swHh+wH(f ⊙ v) + n, (2.3)

where w , [w1 . . . wK ] is the beamforming vector, h , f ⊙ g, f , [[f ]1 . . . [f ]K ]
T , and n is the

receiver noise. Let Pw,s and Pw,n denote the received power from the source, and the aggregate

noise power due to the thermal noise at the receiver and the forwarded noises from the terminals,

respectively. It holds from (2.3) that

Pw,s = wHE
{
hhH

}
w (2.4)

Pw,n = σ2
vw

HΛw + σ2
n, (2.5)

where Λ , diag{|[f ]1|2 . . . |[f ]K |2} and the expectation is taken with respect to the chromatics’

angles θls and their complex amplitudes αls. Although several approaches can be adopted to

properly design the beamforming weights [8], we are only concerned in this paper with minimizing

the aggregate noise power while maintaining the average received power from the source equal to

unity. In fact, this approach is nothing else but the well-known minimum variance distortionless

response (MVDR) beamformer [23], [24] with a relaxed distortionless response constraint. The

latter is imposed here to the average received power from the source (i.e., Pw,s = 1) instead of the

instantaneous beamforming response on the source direction (i.e., wHh = 1). Mathematically,

we have to solve the following optimization problem :

wP = argminPw,n s.t. Pw,s = 1, (2.6)
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where wP denotes the beamforming vector associated with the polychromatic CB 2 (P-CB). We

refer to it as polychromatic since, in contrast with previous works, the channel, is assumed here

to be polychromatic due to the presence of scattering. The optimization problem in (2.6) can be

rewritten as

wP = argminwHΛw s.t. wHE
{
hhH

}
w = 1 (2.7)

or, equivalently as

wP = argmax
wHE

{
hhH

}
w

wHΛw
s.t. wHE

{
hhH

}
w = 1. (2.8)

It can be readily shown that wP is a scaled version of the principal eigenvector of the matrix

Λ−1E
{
hhH

}
so as to satisfy the constraint in (2.8) [8]. To the best of our knowledge, this eigen-

vector cannot be directly derived using the actual form of the matrix E
{
hhH

}
, thereby making

impossible the derivation of wP in closed-form expression. Actually, wP may be numerically eva-

luated, but this task is computationally demanding, especially when high precision is required.

There is yet another problem in that it follows from (2.8) that this numerical evaluation must be

performed by a master terminal (MT) with a global knowledge of all network parameters and,

unfortunately, according to A5, the considered network lacks such a terminal. This motivates

us to derive a closed-form approximation of wP. To this end, a useful approximation of the

matrix E
{
hhH

}
may be developed which requires, however, a more in-depth analytical study

beforehand. Based on assumption A1, one can deduce the following property :

E {α∗
l αm} =







0 l 6= m

1
L

l = m
. (2.9)

It follows from (2.9) that E
{
hhH

}
is given by

E
{
hhH

}
= E

{
L∑

l=1

αla (θl)

L∑

m=1

α∗
ma

H (θm)

}

=
L∑

l=1

E {αlα∗
l }E

{

a (θl) a (θl)
H
}

=

∫

Θ

p(θ)a(θ)aH(θ)dθ, (2.10)

2. For brevity, in this paper, we use the term CB to refer to the collaborative beamforming as well as to the

collaborative beamformer.
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where a(θ) , [[a(θ)]1 . . . [a(θ)]K ]
T with [a (θ)]k = [f ]ke

−j(2π/λ)rk cos(θ−ψk) and Θ is the span of the

pdf p(θ) over which the integral is calculated 3. Nevertheless, if the AS σθ is relatively small 4,

small angular deviations of θls occur and, hence, the relationship between a(θ) and θ can be

accurately described by the first three non-zero terms of the Taylor series of a(θ) at 0. Therefore,

the following approximation holds

a(θ) ≃ a+ a′θ + a′′ θ
2

2
, (2.11)

where a = a(0), and a′ and a′′ are, respectively, the first and the second derivatives of a(θ) at

0. Finally, using (2.11) in (2.10) and performing some mathematical manipulations yields

E
{
hhH

}
≃ aaH +

1

2

∫

Θ

p(θ)
(
aa′′H + a′′aH + 2a′a′H) θ2dθ

≃ aaH +
(
aa′′H + a′′aH + 2a′a′H) σ

2
θ

2

≃ 1

2

((

a+a′σθ+a′′σ
2
θ

2

)(

a+a′σθ+a′′σ
2
θ

2

)H

+

(

a−a′σθ+a′′σ
2
θ

2

)(

a−a′σθ+a′′σ
2
θ

2

)H
)

≃ 1

2

(

a (σθ)a (σθ)
H + a (−σθ) a (−σθ)H

)

. (2.12)

It is noteworthy that the approximation in (2.12) is independent of the scattering distribution

p(θ). Rather, it explicitly depends on the AS σθ. More importantly, it can be easily proven

that the result in (2.12) also holds in the case of bichromatic channels (i.e., L = 2) with rays

located at angles σθ and −σθ where the channel gain from the source to the k-th terminal is

[g2]k = α1e
−j(2π/λ)rk cos(σθ−ψk) + α2e

−j(2π/λ)rk cos(σθ+ψk). Consequently, when the AS is typically

small to moderate, g could be substituted with g2 and, hence, polychromatic channels could

be considered as bichromatic. This bichromatic approach is notable since it can be exploited in

AS and direction of arrival estimation in scattering environments such as in [4], [17] and [3].

Furthermore, it turns out to be crucial for our new design of a CB technique that accounts for

scattering. Indeed, according to the approximation in (2.12), when σθ is relatively small, we have

wP ≃ wB the beamforming vector associated with the bichromatic CB (B-CB) technique that

satisfies

wB = argmax
wHΞw

wHΛw
s.t wHΞw = 2, (2.13)

3. In the Gaussian and Uniform distribution cases, Θ = [− inf,+ inf] and Θ = [−
√
3σθ,+

√
3σθ], respectively.

4. This condition is assumed for the sole sake of mathematical rigor, without imposing any limitation on AS

values in absolute terms. Simulations in Section 2.6 suggest that practical AS values as high as 20 degrees still

keep the following developments valid.
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where Ξ =
(
a(σθ)a(σθ)

H + a(−σθ)a(−σθ)H
)
. It can be shown that the optimal solution of (2.13)

is given by [8]

wB =
µ

K
ρmax

(
Λ−1Ξ

)
, (2.14)

where ρmax (Λ
−1Ξ) is the principal eigenvector of the matrix Λ−1Ξ and µ is a factor chosen such

that the constraint in (2.13) is satisfied. Now, we have to derive the expression of the eigenvector

ρmax (Λ
−1Ξ). Since Λ−1 is a full-rank matrix, the rank of Λ−1Ξ is the same as the rank of Ξ that

is inferior or equal to two, which means that Λ−1Ξ has at most two eigenvectors. In addition, it

can be proven that

Λ−1ΞΛ−1 (a (σθ)+a (−σθ)) = Λ−1a (σθ)K (1+Z (σθ))+Λ−1a (−σθ)K
(

1+Z (σθ)
H
)

, (2.15)

and

Λ−1ΞΛ−1(a (σθ)−a (−σθ)) = Λ−1a (σθ)K (1−Z (σθ))−Λ−1a (−σθ)K
(

1−Z (σθ)
H
)

, (2.16)

where Z (σθ) =
(

a(σθ)
H Λ−1a(−σθ)

)

/K. It can be shown from the definition of a(θ) that for

small σθ we have |Im {Z (σθ)} | ≤ sin (4πRσθ/λ) and, further, Re {Z (σθ)} ≥ 0. If σθ is small

enough4, the imaginary part of Z (σθ) approaches 0 and, hence, the latter could be considered as

positive real. Therefore, from (2.15) and (2.16),Λ−1 (a (σθ) + a (−σθ)) andΛ−1 (a (σθ)− a (−σθ))
are both eigenvectors of Λ−1Ξ and, additionally, ρmax (Λ

−1Ξ) ≃ Λ−1 (a (σθ) + a (−σθ)), when
σθ is relatively small. Consequently, wB can be expressed as

wB =
µ

K
Λ−1 (a (σθ) + a (−σθ)) , (2.17)

where

µ ≃
√
2K

∥
∥
∥Λ− 1

2 (a (σθ) + a (−σθ))
∥
∥
∥ (1 + Re {Z (σθ)})

1
2

≃ (1 + Re {Z (σθ)})−1 . (2.18)

As it can be observed from (2.17), wB is independent of the scattering distribution p(θ). Rather,

it explicitly depends on σθ that can be estimated using an AS estimator such as in [17] or [3].

Nevertheless, since the terminals are independent entities and there is no MT with global

knowledge of all network parameters, the B-CB technique is implementable only if the k-th

terminal can locally compute its corresponding beamforming weight [wB]k that depends on µ
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and the k-th entry of Λ−1 (a (σθ) + a (−σθ)) /K. According to A5, the latter depends solely

on the information locally available at the k-th terminal while µ is function of all terminals’

locations and forward channels and, hence, cannot be computed at every terminal. Therefore,

although the B-CB is an optimal solution of (2.6) that takes into account the scattering effect

for relatively small σθ, it turns out to be unsuitable for a distributed implementation in our

considered network. In Section 2.4, a bichromatic distributed CB (B-DCB) is proposed, that

not only can be implemented in a distributed fashion, but also well-approximates its B-CB

counterpart.

2.4 Proposed B-DCB technique

In order to circumvent the aforementioned problem, we resort to substituting µ with a quan-

tity that can be computed at every individual terminal and, in addition, well-approximates its

original counterpart. It has been shown in [6], [9] and [11] that, when the received power is

fixed as in the design of the B-CB technique, the transmit power from each terminal is inversely

proportional to K while the SNR linearly increases with K. This suggests the use of a large

number of terminals as a means to considerably increase the terminals’ battery lifetime and

substantially improve the signal reception quality. Thus, when K is large enough, µ could be

substituted with µD = limK→∞ µ in (2.17). Although µD seems to be a good approximation of

the constraint factor µ, it must also solely depend on the information commonly available at all

the terminals. This will be proved in the following lines.

It is direct to show from (2.18) that

µD =
(

1 + Re
{

lim
K→∞

Z (σθ)
})−1

. (2.19)

From the definition of a(φ), we have

Z (σθ) =

∑K
k=1 e

j 2π
λ
rk(cos(ψk+σθ)−cos(ψk−σθ))

K
. (2.20)

Using the strong law of large numbers and the fact that rk, ψk and [f ]k are all mutually statis-

tically independent, we obtain [25], [26]

lim
K→∞

Z (σθ)
p1−→ E

{

ej
2π
λ
rk(cos(ψk+σθ)−cos(ψk−σθ))

}

= 2
J1 (γ (2σθ))

γ (2σθ)
(2.21)
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where the equality in the second line is due to the fact that the terminals are uniformly distributed

on D(O,R) [1] and γ(φ) , (4πR/λ) sin(φ/2). Therefore, it follows from (2.19)-(2.21) that

µD
p1−→

(

1 + 2
J1(γ(2σθ))

γ(2σθ)

)−1

, (2.22)

when the number of terminals K is large enough. As can be observed from (2.22), µD does not

depend on the locations and the forward channels of any terminal and, therefore, it is locally

computable at all terminals. Substituting µ with µD in (2.17), we introduce a new B-DCB whose

beamforming vector

wBD =
µD

K
Λ−1 (a (σθ) + a (−σθ)) (2.23)

not only can be implemented in a distributed fashion, but also well-approximates its counterpart

wB, when K is large enough 5. Moreover, it is valid for any given scattering distribution p(θ).

It is worth mentioning that in the conventional scenario, where the scattering phenomenon

is neglected (i.e., σθ → 0) to assume monochromatic plane-wave propagation channels, (2.23)

reduces to

wM =
1

K
Λ−1a, (2.24)

the beamforming vector associated with the monochromatic DCB (M-DCB) also known as

conventional DCB [1]- [10], [14]. Note that the main shortcoming of wM is its obliviousness

to the presence of scattering that can cause a substantial system performance degradation, as

will be unambiguously illustrated later both by analysis and simulations in Sections 2.5 and 2.6,

respectively.

2.5 Performance analysis of the proposed B-DCB tech-

nique

In this section, we analyze the performance of the proposed B-DCB technique and compare

it with those of the M-DCB and B-CB techniques. The comparison with the M-DCB technique,

which is designed without taking into account the scattering effect, highlights the performance

gain if this phenomenon is considered in the design of DCB techniques. In turn, the comparison

with the B-CB technique, which cannot be implemented in a distributed fashion, emphasizes

the cost of using practical values of K in the design of the proposed B-DCB technique.

5. We will actually see in Section 2.6 that K in the range of 10 readily offers an acceptable approximation.
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2.5.1 CB performance metrics and beampatterns

One way to prove the efficiency of the proposed B-DCB technique is undoubtedly comparing

its achieved SNR with the SNR performed when either the M-DCB or B-CB technique is im-

plemented in the network. Let ξw denote the achieved SNR using the beamforming vector w. It

follows from (2.4) and (2.5) that ξw can be expressed as

ξw =
Pw(φs)

Pw,n
. (2.25)

In (2.25), commonly known as the beampattern, Pw(φ⋆) = p⋆

∣
∣
∣wH

∑L
l=1 αla(φ⋆ + θl)

∣
∣
∣

2

is the

received power from a transmitter at direction φ⋆ with power p⋆. Note that ξw is an excessively

complex function of the random variables rk, ψk and [f ]k for k = 1, . . . , K and αl and θl for

l = 1, . . . , L and, hence, a random quantity of its own. Therefore, it is practically more appealing

to investigate the behavior and the properties of the achieved average-signal-to-average-noise

ratio (ASANR) ξ̃w given by [11], [20], [21]

ξ̃w =
P̃w(φs)

P̃w,n

, (2.26)

where P̃w(φ⋆) = E {Pw(φ⋆)} is called the average beampattern and P̃w,n = E {Pw,n} is the

average noise power where the expectations are taken with respect to rk, ψk and [f ]k for k =

1, . . . , K and αl and θl for l = 1, . . . , L. Note that it is also interesting to study the behavior of

a more practical performance measure, the average SNR (ASNR) ξ̄w = E {Pw(φs)/Pw,n} where

the expectation is taken with respect to the random variables rk, ψk and [f ]k for k = 1, . . . , K

and αl and θl for l = 1, . . . , L. Since Pw(φs) and Pw,n are very complicated functions of the latter

random variables, deriving a closed-form expression for ξ̄w appears, however, to be extremely

difficult if not impossible. This also suggests that it is more practical to analyze the behavior of

the achieved ASANR. Yet in what follows, we will show that the achieved ASANR and ASNR

using w ∈ {wBD,wB,wM} have the same asymptotic behaviors when K grows large 6.

Let us start by deriving the expression of the achieved ASANR ξ̃wBD
when the proposed

B-DCB technique is used in the network. To this end, we first introduce the following theorem

that derives both P̃wBD,n and P̃wBD
(φ⋆).

Theorem 1 : We have

6. We will actually verify by simulations in Section 2.6 that when K is in the range of 10, the ASANR and

ASNR curves almost coincide.
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P̃wBD,n =
2σ2

v

K

(

1 + 2
J1(γ(2σθ))

γ(2σθ)

)−1

+ σ2
n (2.27)

and

P̃wBD
(φ⋆) =

2p⋆

K
(

1 + 2J1(γ(2σθ))
γ(2σθ)

)



1 +
2(K − 1)Ω (φ⋆)
(

1 + 2J1(γ(2σθ))
γ(2σθ)

)



 , (2.28)

where

Ω(φ⋆) =

∫

Θ

p(θ)

(
J1(γ(φ⋆ + θ + σθ))

γ(φ⋆ + θ + σθ)
+
J1(γ(φ⋆ + θ − σθ))

γ(φ⋆ + θ − σθ)

)2

dθ, (2.29)

at any arbitrary φ⋆ and p⋆ and for any arbitrary sets of rk, ψk and [f ]k, k = 1, . . . , K and αl and

θl, l = 1, . . . , L.

Proof : See Appendix A.

It is noteworthy that the integrals in (2.29) can be computed numerically with any desired

accuracy by using the most popular mathematical software packages such as Matlab or Ma-

thematica, after properly choosing the scattering distribution p(θ). In fact, several statistical

distributions for θl have been proposed so far such as the Laplace, Gaussian or Uniform dis-

tribution [4]- [3]. Moreover, it is straightforward to show that Ω(φ) ≤ Ω(φs = 0) and, hence,

P̃wBD
(φ⋆) ≤ P̃wBD

(φs = 0). The average receive beampattern has then a peak at the source

direction. This proves that the proposed B-DCB promotes the signal received from the desired

direction by decreasing the received signal power from the other directions. Furthermore, it can

be shown that J1(γ(2σθ))/γ(2σθ) → 1/2 if σθ → 0 [11], [12]. It follows then from (2.28) that

the average received power from the source P̃wBD
(0) reaches its maximum value 1 when σθ → 0

(i.e., there is no scattering and, hence, the channel is monochromatic). In Section 2.6, it will

be verified by simulations that for a relatively small to moderate σθ, P̃wBD
(0) remains equal to

unity when σθ increases. Therefore, the proposed B-DCB is robust against the scattering effect

in terms of average received power from the desired direction, when σθ is relatively small to

moderate. On the other hand, using (2.27) and (2.28), the achieved ASANR ξ̃wBD
is given by

ξ̃wBD
=

1 + 2(K − 1)Ω (0)
(

1 + 2J1(γ(2σθ))
γ(2σθ)

)−1

σ2
v + σ2

n
K
2

(

1 + 2J1(γ(2σθ))
γ(2σθ)

) . (2.30)

As can be observed from (2.30), the proposed B-DCB achieves its maximum achievable ASANR

ξ̃max =
1

σ2v
K

+ σ2
n

, (2.31)
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when σθ → 0. Simulations in Section 2.6 will also show that, when σθ is relatively small to

moderate, the proposed B-DCB is able to achieve ξ̃max. This further proves the robustness of the

proposed beamformer against the scattering effect. However, when σθ is relatively large, one can

easily show that J1 (γ (2σθ)) /γ (2σθ) ≃ 0 [1], [12]. In such a case, it can then be inferred from

(2.30) that ξ̃wBD
is an affine function of Ω (0) with a positive slope. Since Ω (0) decreases if σθ

increases, the achieved ASANR ξ̃wBD
turns out to be a decreasing function of σθ when the latter

is large. In the following, we will show that even though in such highly-scattered environments

the ASANR achieved using the proposed B-DCB technique deteriorates, it remains much higher

than that achieved using the M-DCB technique. Now, let us focus on the latter technique. When

the M-DCB technique is implemented, the following theorem holds.

Theorem 2 : We have

P̃wM,n =
σ2
v

K
+ σ2

n (2.32)

and

P̃wM
(φ⋆) =

p⋆
K

(1 + (K − 1)Γ (φ⋆)) , (2.33)

where

Γ(φ⋆) =

∫

Θ

p(θ⋆)

(

2
J1(γ(φ⋆ + θ))

γ(φ⋆ + θ)

)2

dθ, (2.34)

at any arbitrary φ⋆ and p⋆ and for any arbitrary sets of rk, ψk and [f ]k, k = 1, . . . , K and αl and

θl, l = 1, . . . , L.

Proof : See Appendix B.

Note that the discussion involving the integral in (2.29) also holds for the integral in (2.34).

Nevertheless, assuming that the scattering distribution is Uniform over [−∆,∆] (i.e., p(θ) =

1/2∆) such as in [4], an approximation of Γ(φs = 0) expressed in terms of an infinite sum

is proposed in [14] for a relatively small σθ. Here, a much more simpler approximation is de-

veloped. Indeed, under these conditions, γ(θ) ≃ 2π(R/λ)θ and, hence, after performing some

39



mathematical manipulations, we obtain [10]

Γ(0) ≃ 1

2(πR)2∆

∫ ∆

−∆

(

J1
(
2πR

λ
θ
)

θ

)2

dθ

≃ 1

2∆

∫ ∆

−∆
2F3

(

2,
3

2
; 2, 2, 3,−4π2

(
R

λ

)2

θ2

)

≃ 1

2

∫ 1

0

2F3

(

2, 3
2
; 2, 2, 3,−12π2

(
R
λ

)2
σ2
θθ
)

√
θ

dθ

≃ 3F4

(

1

2
, 2,

3

2
;
3

2
, 2, 2, 3,−12π2

(
R

λ

)2

σ2
θ

)

, (2.35)

where 3F4

(
1
2
, 2, 3

2
; 3
2
, 2, 2, 3,−12π2(R/λ)2x2

)
is the hypergeometric function. Since the latter de-

creases with x, it follows from (2.33) and (2.35) that when σθ is relatively small to moderate,

the average received power at the desired direction P̃wM
(0) decreases when σθ increases. This is

in contrast with our proposed B-DCB technique whose average received power P̃wBD
(0) remains

constant even though σθ increases in such lightly- to moderately-scattered environments. There-

fore, the proposed B-DCB is more robust against the scattering effect than its M-DCB vis-a-vis,

which is designed without taking into account this phenomenon. In addition, from (2.32) and

(2.33), the achieved ASANR using the M-DCB technique is given by

ξ̃wM
=

1 + (K − 1)Γ (0)

σ2
v +Kσ2

n

. (2.36)

Using (2.35) in (2.36), we readily show that when σθ is relatively small to moderate, in contrast

to ξ̃wBD
, ξ̃wM

is a decreasing function of σθ. This further proves the advantage of using the

proposed B-DCB instead of the M-DCB, which is designed without taking into account the

scattering effect.

Concerning the achieved ASANR using the B-CB technique wB, it turns out that both the

beampattern PwB
(φ⋆) and the received noise power PwB,n are ratios of the random variables rk,

ψk and [f ]k for k = 1, . . . , K and αl and θl for l = 1, . . . , L. Therefore, deriving a closed-form

expression of the average beampattern P̃wB
(φ⋆) and the average noise power P̃wB,n appears to

be extremely difficult if not impossible. While this fact hampers a rigorous analytical study of

the achieved ASANR ξ̃wB
, some important properties of ξ̃wB

are derived in Section 2.5.3 and

2.5.4, in the asymptotic regime when K → ∞.
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2.5.2 Asymptotic ASANR performance of B-DCB vs. M-DCB

In this section, we carry out an analytical comparison between the achieved ASANR using

the proposed B-DCB technique and that achieved using the M-DCB technique. Using the fact

that J1(γ(2σθ))/γ(2σθ) → 1/2 if σθ → 0 [11], [12], it is straightforward to show from (2.30) and

(2.36) that ξ̃wBD
= ξ̃wM

= ξ̃max if σθ → 0. This is expected since wBD boils down to wM in such

a case where the channel is monochromatic and, hence, the assumption made when designing

wM is valid. Moreover, it is direct to show from (2.30) and (2.36) that

lim
K→∞

ξ̃wM

ξ̃wBD

=
Γ (0)

(

1 + 2J1(γ(2σθ))
γ(2σθ)

)2

4Ω (0)
. (2.37)

When the AS σθ is relatively small to moderate, the relationship between σθ and either J1(γ(θ+

σθ))/γ(θ+σθ) or J1 (γ (θ − σθ)) /γ (θ − σθ) can be accurately described by the first two non-zero

terms of the Taylor series of the latter functions at θ as follows

J1 (γ (θ + σθ))

γ (θ + σθ)
=

J1 (γ (θ))

γ (θ)
+ σθ

(
J1 (γ (x))

γ (x)

)′ ∣
∣
∣
x=θ

(2.38)

J1 (γ (θ − σθ))

γ (θ + σθ)
=

J1 (γ (θ))

γ (θ)
− σθ

(
J1 (γ (x))

γ (x)

)′ ∣
∣
∣
x=θ

, (2.39)

where (J1 (γ (x)) /γ (x))
′ is the first derivative of J1 (γ (x)) /γ (x). If we substitute (2.38) and

(2.39) in (2.29) we obtain that Ω (0) = Γ (0) when the AS is relatively small to moderate.

Therefore, using the fact that sin (σθ) ≃ σθ for small σθ, it directly follows from (2.37) that

lim
K→∞

ξ̃wM

ξ̃wBD

≃ 1

4

(

1 +0 F1

(

; 2;−4π2

(
R

λ

)2

σ2
θ

))2

. (2.40)

Since the hypergeometric function 0F1 (; 2;−4π2x2) decreases inversely proportional to x when

the latter is small, the above approximation establishes that for large K, the ASANR gain

achieved using wBD instead of wM in lightly- to moderately-scattered environments increases

proportionally to σθ and R/λ. This proves the advantage of taking into account the scattering

effect in the design of the DCB techniques.

Furthermore, when σθ is large in highly-scattered environments, assuming that the scattering

distribution p(θ) is Uniform on [−∆,∆] and using the fact that J1(γ(2σθ))/γ(2σθ) ≃ 0 for large
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σθ, we show that

Ω(0) ≃ 1√
3σθ

∫ √
3σθ

0

(
J1(γ(θ − σθ))

γ(θ − σθ)

)2

dθ

≃ Γ(0)

2
− 1√

3σθ

(
∫ −σθ

−
√
3σθ

(
J1(γ(θ))

γ(θ)

)2

dθ

︸ ︷︷ ︸

≃0

+

∫ √
3σθ

(
√
3−1)σθ

(
J1(γ(θ))

γ(θ)

)2

dθ

︸ ︷︷ ︸

≃0

)

. (2.41)

Thus, using (2.41) in (2.37) yields

lim
K→∞

ξ̃wM

ξ̃wBD

≃ 1

2
. (2.42)

Therefore, when σθ is large in highly-scattered environments, the ASANR gain achieved using

wBD instead of wM is approximatively as much as 3 dB. This further proves the advantage of

using the proposed B-DCB technique instead of the M-DCB, which is designed without taking

into account the scattering effect.

Recall that both the B-DCB and the M-DCB are designed assuming perfect knowledge of

the terminals’ parameters (forward and backward channels, source direction, angular spread,

etc.) and, hence, the comparison made above does not account for any parameter estimation

error. Note that, in [6] and [7], we have already analyzed the impact of these errors on the

performance of both the B-DCB and M-DCB. It has been shown that in practical conditions

(including feedback quantization errors and Doppler effect), the proposed B-DCB outperforms

not only the M-DCB, but also the optimal CSI-based CB for almost the entire range of practical

angular spread values.

2.5.3 Asymptotic ASANR performance of B-DCB vs. B-CB

Since the proposed B-DCB wBD approximates its B-CB wB counterpart, it is expected that

ξ̃wBD
≤ ξ̃wB

and, hence, an ASANR deterioration may occur due to the approach developed in

Section 2.4. However, when the number of terminals K is large enough, the following theorem

holds.

Theorem 3 : Regardless of σθ, we have

lim
K→∞

ξ̃wBD
= lim

K→∞
ξ̃wB

, (2.43)

for any arbitrary sets of rk, ψk and [f ]k, k = 1, . . . , K and αl and θl, l = 1, . . . , L and for any

scattering distribution p(θ).
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Proof : See Appendix C.

It follows from Theorem 3 that the B-DCB and the B-CB which cannot be implemented in

a distributed fashion, achieve the same ASANR for large K. Consequently, there is no ASANR

degradation due to the approach used in Section 2.4, when the number of terminals K is large

enough, actually typically in the range of 10 as will be shown by simulations.

To summarize, thus far, we showed that using the proposed B-DCB wBD instead of the

M-DCB wM, which is designed without taking into account the scattering effect, results in an

ASANR gain that may reach as much as 3 dB for large σθ. We also showed that the proposed

B-DCB wBD which approximates the B-CB wB, unsuitable for a distributed implementation,

achieves the same ASANR as wB when K is large enough. These results highlight the efficiency,

in terms of achieved ASANR, of the proposed beamformer that takes into account the scattering

effect and, further, could be implemented in a distributed fashion.

2.5.4 Asymptotic equivalence between ASANR and ASNR metrics

Although the ASANR is a meaningful performance measure, the ASNR remains a more

revealing metric that may provide practical system information. This fact motivates us to claim

the following important theorem.

Theorem 4 : Using any CB version w ∈ {wBD,wB,wM} in the network, we have

lim
K→∞

ξ̃w = lim
K→∞

ξ̄w, (2.44)

for any arbitrary sets of rk, ψk and [f ]k, k = 1, . . . , K and αl and θl, l = 1, . . . , L and for any

scattering distribution p(θ).

Proof : See Appendix D.

Theorem 4 establishes that the achieved ASANR ξ̃w and ASNR ξ̄w using w ∈ {wBD,wB,wM}
have the same behaviors when K is large enough, typically in the range of 10 as will be shown by

simulations. Consequently, the proposed B-DCB is also much more efficient in terms of achieved

ASNR than the M-DCB, which is designed without taking into account the scattering effect,

and able to perform as much as 3 dB of ASNR gain. Furthermore, the proposed beamformer

and the B-CB, which cannot be implemented in a distributed fashion achieves the same ASNR,

for large K. Simulations results, in the next section, further verify and validate the efficiency of
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the proposed B-DCB.

Note that we have only focused in this work on the receive CB configuration, but all the

derivations, solutions and results provided herein easily extend to the transmit CB configuration

as well (where the source and the receiver switch positions) [25], [26]. It is also noteworthy that

we have been able in [32] to extend the novel B-DCB designs to the case wherein the propagation

model not only accounts for scattering, but also for the presence of interfering sources.

2.6 Simulation Results

Computer simulations are provided to support the theoretical results. All the empirical

average quantities are obtained by averaging over 106 random realizations of rk, ψk, [f ]k for

k = 1, . . . , K and αl, θl for l = 1, . . . , L. In all simulations, we assume that the number of rays

or chromatics is L = 6, the noises’ powers σ2
n and σ2

v are 10 dB below the source transmit power

ps = 1. All curves are plotted for R/λ = 1 except those in Figs. 2.2(b) and 2.2(d).

Fig. 2.2 plots the average beampatterns P̃wBD
(φ⋆) and P̃wM

(φ⋆) for K = 20 and different

values of R/λ and σθ. In this figure, two scattering distributions p(θ) are assumed : Uniform

and Gaussian. As can be observed from this figure, when the AS σθ is small, regardless of the

scattering distribution, P̃wM
(0) decreases if σθ and or R/λ increases while P̃wBD

(0) remains equal

to unity. Therefore, when the AS is relatively small to moderate, the proposed B-DCB is more

robust than its M-DCB vis-a-vis against the scattering effect, in terms of average received power

from the desired direction. This observation holds if the scattering distribution is Uniform or

Gaussian and can be easily verified for any other distribution.

Fig. 2.3 displays the analytical and the empirical ASANRs of wBD and wM as well as their

empirical ASNRs versus the AS σθ for K = 20. The empirical ASANR of wP is also shown in

this figure. The scattering distribution is assumed to be Uniform in Fig. 2.3(a) and Gaussian

in Fig. 2.3(b). From these figures, we confirm that analytical ξ̃wBD
and ξ̃wM

match perfectly

their empirical counterparts. Both figures show that the P-CB is able to achieve the maximum

achievable ASNR for any given σθ even in highly-scattered environments. This is due to the

optimality of the polychromatic solution. Furthermore, form these figures, we observe that the

proposed B-DCB technique is able to obtain the maximum achievable ASANR ξ̃max even in

moderately-scattered environments where σθ is in the range of 20 degrees, while the ASANR
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Figure 2.2 – The average beampatterns of wBD and wM for σθ = 10, 17 (deg), R/λ = 1, 3, and

K = 20 when the scattering distribution is Uniform and Gaussian.

45



0 5 10 15 20 25 30 35 40 45 50
3

4

5

6

7

8

9

10

σθ (deg)

A
S
A

N
R

s
a
n
d

A
S
N

R
s

(d
B

)

 

 

ξ̃wP
Empirical

ξ̃wBD
Analytical

ξ̃wBD
Empirical

ξ̄wB
Empirical

ξ̃wM
Analytical

ξ̃wM
Empirical

ξ̄wM
Empirical

ξ̃max

Moderate HighLow

(a) Uniform distribution

0 5 10 15 20 25 30 35 40 45 50
3

4

5

6

7

8

9

10

σθ (deg)

A
S
A

N
R

s
a
n
d

A
S
N

R
s

(d
B

)

 

 

ξ̃wP
Empirical

ξ̃wBD
Analytical

ξ̃wBD
Empirical

ξ̄wB
Empirical

ξ̃wM
Analytical

ξ̃wM
Empirical

ξ̄wM
Empirical

ξ̃max

Moderate HighLow

(b) Gaussian distribution

Figure 2.3 – The analytical and the empirical ASANRs achieved by wBD and wM as well as

their empirical ASNRs versus σθ for K = 20 when the scattering distribution is Uniform and

Gaussian (compared to the empirical ASANR achieved by wP).

performed by its M-DCB vis-a-vis decreases by 0.5 dB in lightly-scattered environments where

σθ is around 5 degrees and becomes soon unsatisfactory in moderately- to highly-scattered

environments. Furthermore, in highly-scattered environments, the proposed technique is able to

achieve as much as 3 dB of ASANR gain. This corroborates the analytical result in Section 2.5.2.

Moreover, it can be observed from Figs. 2.3(a) and 2.3(b) that the curves of ξ̃wBD
and ξ̃wM

are

indistinguishable from ξ̄wBD
and ξ̄wM

, respectively, when K = 20. This is due to the fact that the

achieved ASANRs and ASNRs have the same behaviors when K is large as claimed in Theorem

4.

Fig. 2.4 shows the ASANRs ξ̃wBD
and ξ̃wB

and the ASNRs ξ̄wBD
and ξ̄wB

versus the AS σθ for

K = 5, 10, 20, when the scattering distribution is Uniform and Gaussian. It can be verified from

this figure that the proposed B-DCB and the B-CB techniques always achieve the same ASANR

when σθ is relatively small to moderate, even for small K. This is due to the fact that, regardless

of the number of terminals K, µD ≃ µ for relatively small σθ and, hence, wBD ≃ wB. Moreover,

as can be observed from Figs. 2.4(a) and 2.4(b), the curves ξ̃wBD
and ξ̄wBD

as well as ξ̃wB
and ξ̄wB

always coincide when σθ is relatively small. This is expected since PwB,n ≃ PwBD,n ≃ σ2
v/K + σ2

n

for relatively small σθ and, therefore, ξ̄w = E {Pw(φs)/Pw,n} ≃ E {Pw(φs)} /Pw,n = ξ̃w for

w ∈ {wBD,wB}. This further proves that the ASANR is a meaningful performance measure.
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Figure 2.4 – The empirical ASANRs and ASNRs achieved by wBD and wB versus σθ for

K = 5, 10, 20 when the scattering distribution is Uniform and Gaussian.

Furthermore, if σθ is large in highly-scattered environments, the achieved ASANR using the

proposed beamformer fits perfectly with that achieved using the B-CB, which is unsuitable for a

distributed implementation, when K is in the range of 20 while it looses only a fraction of a dB

when K is in the range of 10. It can also be observed from Figs. 2.4(a) and 2.4(b) that ξ̃wBD
and

ξ̃wB
perfectly match ξ̄wBD

and ξ̄wB
, respectively, for K = 20. All these observations corroborate

the results in Theorems 3 and 4.

Fig. 2.5 plots the ASANRs ξ̃wM
and ξ̃wBD

for K = 20 when the estimated AS is corrupted

by a deterministic estimation error ∆σθ ∈ {−2.5,−1.2, 0, 1.6, 3}. In such a case σθ = σ†
θ +∆σθ

where σ†
θ is the actual AS. The scattering distribution is assumed to be Uniform in Fig. 2.5(a)

and Gaussian in Fig. 2.5(b). These figures show that the proposed B-DCB technique is sensitive

to AS estimation errors when the actual AS σ†
θ is relatively small to moderate. Nevertheless,

the ASANR degradation caused by such an error remains acceptable provided that ∆σθ is kept

reasonable. Fig. 2.5 shows on the other hand that, regardless of the scattering distribution, the

proposed technique is quite robust to AS estimation errors when σ†
θ is large in highly-scattered

environments. This is expected since, in such areas, ∆σθ is negligible compared to σ†
θ and, hence,

σθ ≃ σ†
θ.
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Figure 2.5 – The ASANRs ξ̃wBD
and ξ̃wM

versus the actual σ†
θ for K = 20, and different AS

estimation errors when the scattering distribution is Uniform and Gaussian.

2.7 Conclusion

Whereas previous works neglected the scattering effect to assume a monochromatic chan-

nel, in this paper, a polychromatic channel due to the presence of scattering was assumed. We

considered a P-CB technique to achieve a dual-hop communication from a source to a receiver,

through a wireless network comprised of K independent terminals. Due to the complex nature

of polychromatic channels, the design of this technique both in closed-form and in distributed

fashion is impossible. Using the fact that, for a relatively small to moderate AS, a polychromatic

channel may be considered as bichromatic, we introduced a new B-CB technique that can be

easily designed in closed-form and, further, accurately approximates the P-CB technique. Un-

fortunately, this technique is unsuitable for a distributed implementation. To circumvent this

problem, we exploited the asymptotic expression at large K of the B-CB whose weights could be

locally computed at every terminal and, further, well-approximate their original counterparts.

The performances of the so-obtained B-DCB technique were analyzed and compared to those

of the M-DCB and B-CB techniques. We showed that the proposed B-DCB technique is able to

reach its maximum achievable ASNR in lightly- to moderately-scattered environments while the

achieved ASNR using the M-DCB technique, which is designed without taking into account the

scattering effect, decreases in lightly-scattered environments and becomes soon unsatisfactory
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from moderately- to highly-scattered environments. We also showed that the proposed B-DCB

technique achieves as much as 3 dB of ASNR gain in high scattering, when K is large enough.

Moreover, we proved that for largeK the achieved ASNR using the B-DCB technique approaches

that achieved using the B-CB technique, which cannot be implemented in a distributed fashion.

Appendix A : Proof of Theorem 1

It follows from (2.23) that

P̃wBD
(φ⋆) =

(µD

K

)2

(E {x1}+ E {x2}+ E {x∗2}+ E {x3}) , (2.45)

where

x1 = aH (σθ)Λ
−1

L∑

l=1

αla(φ⋆ + θl)
L∑

m=1

α∗
ma

H(φ⋆ + θm)Λ
−1a (σθ) (2.46)

x2 = aH (σθ)Λ
−1

L∑

l=1

αla(φ⋆ + θl)

L∑

m=1

α∗
ma

H(φ⋆ + θm)Λ
−1a (−σθ) (2.47)

x3 = aH (−σθ)Λ−1
L∑

l=1

αla(φ⋆ + θl)

L∑

m=1

α∗
ma

H(φ⋆ + θm)Λ
−1a (−σθ) . (2.48)

First, we derive the expression of x1 as follows

x1 =

(

aH (σθ)Λ
−1

L∑

l=1

αla(φ⋆ + θl)

)

·
(

L∑

m=1

α∗
ma

H(φ⋆ + θm)Λ
−1a (σθ)

)

=
K∑

k=1

K∑

s=1

(
L∑

l=1

|αl|2 ej
2π
λ
rk(cos(σθ−ψk)−cos(φ⋆+θl−ψk)) × e−j

2π
λ
rs(cos(σθ−ψs)−cos(φ⋆+θl−ψs)) +

L∑

l=1

αle
j 2π

λ
rk(cos(σθ−ψk)−cos(φ⋆+θl−ψk))×

L∑

m=1,m6=l
α∗
me

−j 2π
λ
rs(cos(σθ−ψs)−cos(φ⋆+θm−ψs))

)

. (2.49)

Using (2.9) in (2.49) yields

Eαl
{x1}=

L∑

l=1

1

L

(

K+
K∑

k=1

ej
2π
λ
rk(cos(σθ−ψk)−cos(φ⋆+θl−ψk))×

K∑

s=1,s 6=k
e−j

2π
λ
rs(cos(σθ−ψs)−cos(φ⋆+θl−ψs))

)

. (2.50)

However, we know that

Erk ,ψk

{

ej
2π
λ
rk(cos(σθ−ψk)−cos(φ⋆+θl−ψk))

}

= 2
J1 (γ (φ⋆ + θl − σθ))

γ (φ⋆ + θl − σθ)
, (2.51)

and, therefore,

E{x1} = K + 4K(K − 1)

∫

Θ

p(θ)

(
J1(γ(φ⋆ + θ − σθ))

γ(φ⋆ + θ − σθ)

)2

dθ. (2.52)
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Following similar steps as above, it can be shown that

E{x2}=2K
J1(γ(2σθ))

γ(2σθ)
+4K(K − 1)

∫

Θ

p(θ)
J1(γ(φ⋆+ θ− σθ))

γ(φ⋆+θ−σθ)
J1(γ(φ⋆ + θ + σθ))

γ(φ⋆ + θ + σθ)
dθ. (2.53)

As E{x2} is real, E{x2} = E{x∗2}. In turn, x3 is obtained by substituting σθ with −σθ in (2.49)

and, hence,

E{x3} = K + 4K(K − 1)

∫

Θ

p(θ)

(
J1(γ(φ⋆ + θ + σθ))

γ(φ⋆ + θ + σθ)

)2

dθ. (2.54)

Finally, using (2.52), (2.53) and (2.54) in (2.45), (2.28) is obtained.

On the other hand, from (2.5) the received noise power using wBD is given by

PwBD,n =
(µD

K

)2 (
aH (σθ) + aH (−σθ)

)
Λ−1 (a (σθ) + a (−σθ)) + σ2

n

=
(µD

K

)2(

2+
K∑

k=1

ej
2π
λ
rk(cos(ψk+σθ)−cos(ψk−σθ))+

K∑

k=1

e−j
2π
λ
rk(cos(ψk+σθ)−cos(ψk−σθ))

)

+σ2
n.(2.55)

Applying the expectation operator over both sides of (2.55) and using (2.21) in the resulting

equation, (2.27) is obtained.

Appendix B : Proof of Theorem 2

Using (2.24), the achieved beampattern by the M-DCB technique can be expressed as

PwM
(φ⋆) =

1

K2

(

aHΛ−1
L∑

l=1

αla(φ⋆ + θl)

)

·
(

L∑

m=1

α∗
ma

H(φ⋆ + θm)Λ
−1a

)

=
1

K2

K∑

k=1

K∑

s=1

(
L∑

l=1

|αl|2 ej
2π
λ
rk(cos(ψk)−cos(φ⋆+θl−ψk)) × e−j

2π
λ
rs(cos(ψs)−cos(φ⋆+θl−ψs)) +

L∑

l=1

αle
j 2π

λ
rk(cos(ψk)−cos(φ⋆+θl−ψk)) ×

L∑

m=1,m6=l
α∗
me

−j 2π
λ
rs(cos(ψs)−cos(φ⋆+θm−ψs))

)

. (2.56)

Thus, using (2.9) and the fact that

Erk,ψk

{

ej
2π
λ
rk(cos(ψk)−cos(φ⋆+θl−ψk))

}

= 2
J1 (γ (φ⋆ + θl))

γ (φ⋆ + θl)
, (2.57)

in (2.56), (2.33) is obtained.

In turn, from (2.5) the received noise power PwM,n is given by

PwM,n =
σ2
v

K2
aHΛ−1a+ σ2

n

=
σ2
v

K
+ σ2

n. (2.58)

It follows from (2.58) that P̃wM,n = PwM,n and, therefore, (2.32) is verified.
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Appendix C : Proof of Theorem 3

Using (2.17) we show that

P̃wB
(φ⋆) = E

{( µ

K

)2

(x1 + x2 + x∗2 + x3)

}

, (2.59)

and

P̃wB,n= E

{
(µ

K

)2(

2+
K∑

k=1

ej
2π
λ
rk(cos(ψk+σθ)−cos(ψk−σθ))+

K∑

k=1

e−j
2π
λ
rk(cos(ψk+σθ)−cos(ψk−σθ))

)
}

+σ2
n. (2.60)

It is direct to show from (2.59) that

lim
K→∞

P̃wB
(φ⋆) = E

{
(

lim
K→∞

µ
)2 (

lim
K→∞

x1
K2

+ lim
K→∞

x2
K2

+ lim
K→∞

x∗2
K2

+ lim
K→∞

x3
K2

)
}

. (2.61)

Using the strong law of large numbers and (2.51) we can obtain

lim
K→∞

x1
K2

=4

(
L∑

l=1

|αl|2
(
J1(γ(φ⋆+θl−σθ))
γ(φ⋆+θl−σθ)

)2

+

L∑

l=1

αl
J1(γ(φ⋆+θl−σθ))
γ(φ⋆+θl−σθ)

×
L∑

m=1,m6=l
α∗
m

J1(γ(φ⋆+θm−σθ))
γ(φ⋆+θm−σθ)

)

,

(2.62)

lim
K→∞

x2
K2

= 4

(
L∑

l=1

|αl|2
J1 (γ (φ⋆ + θl − σθ))

γ (φ⋆ + θl − σθ)
× J1 (γ (φ⋆ + θl + σθ))

γ (φ⋆ + θl + σθ)
+

L∑

l=1

αl
J1 (γ (φ⋆ + θl − σθ))

γ (φ⋆ + θl − σθ)
×

L∑

m=1,m6=l
α∗
m

J1 (γ (φ⋆ + θm + σθ))

γ (φ⋆ + θm + σθ)

)

, (2.63)

and

lim
K→∞

x3
K2

=4

(
L∑

l=1

|αl|2
(
J1(γ(φ⋆+θl+σθ))

γ(φ⋆+θl+σθ)

)2

+

L∑

l=1

αl
J1(γ(φ⋆+θl+σθ))

γ(φ⋆+θl+σθ)
×

L∑

m=1,m6=l
α∗
m

J1(γ(φ⋆+θm+σθ))

γ(φ⋆+θm+σθ)

)

.

(2.64)

Moreover, we can easily prove that limK→∞ x∗2/K
2 = limK→∞ x2/K

2. Substituting (2.62), (2.63)

and (2.64) in (2.61) and using (2.22) and the property in (2.9) yields

lim
K→∞

P̃wB
(φ⋆) = lim

K→∞
P̃wBD

(φ⋆) . (2.65)

Furthermore, we can show that

lim
K→∞

P̃wB,n = lim
K→∞

P̃wBD,n. (2.66)

(2.43) can then be inferred from (2.65) and (2.66).
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Appendix D : Proof of Theorem 4

To prove (2.44), we first focus on the achieved ASNR ξ̄wBD
given by

ξ̄wBD
= E

{
PwBD

(φs)

PwBD,n

}

. (2.67)

From (2.67), we have

lim
K→∞

ξ̄wBD
= E

{
limK→∞ PwBD

(φs)

limK→∞ PwBD,n

}

. (2.68)

It is direct to show from (2.55) that

lim
K→∞

PwBD,n = σ2
n, (2.69)

and, hence,

lim
K→∞

ξ̄wBD
=

E {limK→∞ PwBD
(φs)}

σ2
n

. (2.70)

Moreover, we have

E
{

lim
K→∞

PwBD
(φ⋆)

}

= µ2
DE

{
(

lim
K→∞

x1
K2

+ 2 lim
K→∞

x2
K2

+ lim
K→∞

x3
K2

)
}

. (2.71)

Substituting (2.62), (2.63) and (2.64) in (2.71), we show that E {limK→∞ PwBD
(φ⋆)} = limK→∞

P̃wBD
(φ⋆). Using this result in (2.70), (2.44) is obtained for w = wBD.

Using the same method as above, (2.44) can be also proved for w = wM and w = wB.
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Chapitre 3

SNR and Throughput Analysis of

Distributed Collaborative Beamforming

in Locally-Scattered Environments

Slim Zaidi and Sofiène Affes

Wiley Journal of Wireless Communications and Mobile Computing, vol. 12, pp. 1620-1633,

December 2012. Invited Paper.

Résumé : Ce chapitre compare dans des conditions réalistes B-DCB avec M-DCB

et OCB en terms de RSB et du throughput. En tenant compte des erreurs d’es-

timation et de quantification induites par chaque solution, les expressions exactes

de leurs RSBs sont calculées pour la première fois en closed-form. Il est démontré

que B-DCB surpasse OCB dans les environnements à ASs faibles ou modérés où

les deux solutions réalisent nominalement le même RSB dans les conditions idéales

(c.-à-d., sans tenir compte des erreurs d’estimation et de quantification). Il est aussi

démontré que B-DCB surpasse toujours M-DCB sauf pour des bas niveaux de quan-

tification injustifiés en pratique. En plus, ce travail est le premier à étendre la com-

paraison des CBs au niveau throughput où l’overhead de chaque solution est aussi

pris en compte. Dans ce cas, il est prouvé que B-DCB est capable de réaliser un

throughput supérieur à celui de OCB même dans les environnements à ASs élevés.

Ceci se traduit par un plus grand interval d’opération en terme de valeurs de AS

sur lequel B-DCB est favorisé au dépend de OCB.
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Abstract

Three main collaborative beamforming (CB) solutions based on different channel models

exist : the optimal CSI-based CB (OCB), the conventional or monochromatic (i.e., single-ray)

distributed CB (M-DCB), and the recently developed bichromatic (i.e., two-ray) distributed CB

(B-DCB). In this paper, we perform an analytical comparison, under practical constraints, bet-

ween these CB solutions in terms of achieved signal-to-noise ratio (SNR) as well as achieved

throughput. Assuming the presence of local scattering in the source vicinity and accounting for

implementation errors incurred by each CB solution, we derive for the first time closed-form

expressions of their true achieved SNRs. For low angular spread (AS), where both solutions no-

minally achieve the same SNR in ideal conditions, we show that the B-DCB always outperforms

OCB, more so and at larger regions of AS values when errors increase. Excluding exceptional

circumstances of unrealistic low quantization levels (i.e., very large quantization errors) hard

to justify in practice, we also show that the new B-DCB always outperforms the M-DCB as

recently found nominally in ideal conditions. This work is also the first to push the performance

analysis of CB to the throughput level by taking into account the feedback overhead cost incur-

red by each solution. We prove both by concordant analysis and simulations that the B-DCB

is able to outperform, even for high AS values, the OCB which is penalized by its prohibitive

implementation overhead, especially for a large number of collaborating terminals and/or high

Doppler frequencies. Indeed, it is shown that the operational regions in terms of AS values over

which the new B-DCB is favored against OCB in terms of achieved throughput can reach up to

40 deg.

3.1 Introduction and Background

In wireless communication, transmit (Tx) or receive (Rx) beamforming refers to a technique

in which a multiple-antenna transceiver transmits or receives a message through its K antennas

[1]-[14]. Each antenna multiplies its Tx or Rx signal by a beamforming weight so that signals

are constructively combined at the destination. Several approaches can be adopted to properly

select these weights such as minimizing the total transmit power subject to the received quality

of service constraint, maximizing the received signal-to-noise ratio (SNR) subject to the total

transmit power constraint, or simply matching the channel between the source or receiver and
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each antenna [1], [2]. In this work, we are particularly interested in minimizing the noise power

while keeping the beamformer response in the desired direction equal to unity (i.e., distortionless

response). When the beamforming response in the desired direction is fixed, it has been shown

that the Tx or Rx beamforming technique is able to achieve a K-fold gain against single-antenna

communication schemes in both received SNR and power efficiency (i.e., a K-fold decrease in

the antennas power consumption) [1]-[5]. However, when practical constraints (size constraint,

etc.) rule out the use of multiple-antenna units, a collaborative communication scheme among

K single-antenna small-battery powered terminals called Tx or Rx collaborative beamforming

(CB) can alternatively be used to emulate conventional beamforming [6]-[14]. Due to the very-

often stringent limitation in battery power available at each collaborative terminal, it is of utmost

importance that CB techniques be power efficient. A distinguishing feature of CB with respect to

conventional beamforming is that terminals are often located at different physical locations, are

wireless connected, and have independent local clocks and oscillators. Hence, any collaborative

scheme to be devised and implemented among the CB terminals would necessarily require some

degree of communication between them, an inevitable overhead that has to be minimized to

avoid depleting battery power and useful throughput.

One such collaborative scheme is prerequisite synchronization in frequency, phase and time

between terminals prior to CB itself to allow them operate virtually as a single physical entity.

Indeed, in order to avoid destructive combining of signals at the destination, which would be

catastrophic for CB, terminals must synchronize their carrier frequencies and transmit their

corresponding signal at the same time. To address this challenge, different research groups deve-

loped power-, cost- and spectrum-efficient synchronization approaches such as in [7]-[10]. Another

equally important challenge is the CB design itself once prerequisite synchronization is achieved

as assumed in this work. An important issue in CB design is that terminals are autonomous units

which have limited knowledge about each other in the network. In the very likely event where

the designed weights would depend on the locally unavailable information at every terminal, the

latter would not be able to compute its own weight without severely depleting throughput and

power from the huge overhead potentially requested [11]-[14]. To get around this problem, a mas-

ter terminal (MT) with global knowledge of the network is envisaged to compute as appropriate

all weights or all required channel state information (CSI) and broadcast them to the termi-

nals [11], [12]. Commonly known as centralized CB, the implementation overhead of this scheme
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increases proportionally to K and becomes prohibitive especially when the number of terminals

is typically large such as in wireless sensor networks (WSN)s. This impediment motivates further

investigation of more power- and spectrum-efficient CB techniques.

Lending themselves to a distributed implementation, a variety of so-called distributed CB

(DCB) techniques wherein the designed weights solely depend on the information commonly

available at every terminal and, hence, each terminal is able to locally compute its own weight,

were proposed in [4] and [14]. So far, however, such works neglected the scattering and reflection

effects and assumed plane-wave (single-ray) propagation channels termed here as monochro-

matic (with reference to their angular distribution). By fitting the true channel into an array

manifold that is mainly parameterized by the source position, this assumption allows a dis-

tributed implementation by ridding each CB weight at large K from any information locally

unavailable [4], [14]. However, this assumption is only valid in far-field line-of-sight (LOS) envi-

ronments with very low scattering that, apart from rural areas, are not valid in urban or even

suburban macrocell areas. Indeed, in such environments, the presence of local scattering in the

receiver (source) vicinity causes an angular spread (AS) of the Rx or Tx signal. Hence L inde-

pendent and identically distributed (i.i.d.) rays or ”spatial chromatics” (with reference to their

angular distribution) arise to form a multi-ray (L-ray) channel [15]- [3]. Due to the resulting

mismatch in the expected distortionless response between the nominal single-ray and the true

multi-ray channels, it was shown in [16] that the performance of monochromatic DCB (M-DCB)

techniques degrades in rural areas where the AS is still very small and becomes unsatisfactory

when the AS increases such as in suburban and urban areas. This impediment unfortunately

limits the DCB’s real-world applicability range. It is noteworthy that the CSI-based centralized

CB schemes discussed earlier could properly handle multi-ray channel environments and imple-

ment optimal distortionless CB (OCB), but again the overhead associated with the K channel

estimations would be prohibitive, especially when K is large and/or when estimates have to be

frequently updated at high Doppler [8]-[6]. In [24] and [25], we have recently developed a new

CB design that combines the benefits of M-DCB (i.e., small-overhead distributed implementa-

tion) and OCB (i.e., better match with the true channel in scattered environments) and which

avoids their respective drawbacks (channel mismatch and large overhead). Exploiting the fact

that for low AS a multi-ray channel - owing to a Taylor series expansion of its correlation matrix

- can be properly approximated by two angular rays and hence considered as bichromatic, we
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developed a new bichromatic distributed CB (B-DCB). In [25], we analyzed and compared the

B-DCB against M-DCB in terms of SNR performance without accounting for implementation

errors (i.e., in ideal conditions). We showed that the B-DCB solution always outperforms its M-

DCB vis-a-vis and is able to achieve until 3 dB of average-signal-to-average-noise ratio (ASANR)

gains.

In this work, we consider for analysis not only the M-DCB and the B-DCB but also the OCB

solution to achieve a dual-hop communication from a source to a receiver, through a wireless

network comprised of K independent terminals. Assuming the presence of local scattering in

the source vicinity and accounting for estimation and quantization errors incurred by each CB

solution, we compare their achieved SNRs in practical conditions. To this end, we derive for the

first time their true achieved SNRs in closed-form taking into account estimation and feedback

quantization errors. For low AS, where both solutions nominally achieve the same SNR in ideal

conditions, we show that B-DCB always outperforms OCB, more so at larger regions of AS

values when errors increase. Excluding exceptional circumstances of unrealistic low quantization

levels (i.e., very large quantization errors) hard to justify in practice, we also show that the

new B-DCB always outperforms the M-DCB as recently found nominally in ideal conditions.

This work is also the first to push the performance analysis of CB to the throughput level by

taking into account the feedback overhead cost incurred by each solution. We prove both by

concordant analysis and simulations that the B-DCB is able to outperform, even for high AS

values, the OCB which is penalized by its prohibitive implementation overhead, especially for

a large number of collaborating terminals and/or high Doppler frequencies. Indeed, it is shown

that the operational regions in terms of AS values over which the new B-DCB is favored against

OCB in terms of achieved throughput can reach up to 40 deg.

The rest of this paper is organized as follows. The system model is described in Section 3.2.

The CB techniques in the presence of local scattering are presented in Section 3.3. Section 3.4

compares the performance of these techniques in terms of ASANR while Section 3.5 compares

them in terms of the link-level throughput. Simulations results are shown in Section 3.6 and

concluding remarks are given in Section 3.7.

Notation : Uppercase and lowercase bold letters denote matrices and vectors, respectively.

[·]il and [·]i are the (i, l)-th entry of a matrix and i-th entry of a vector, respectively. I is the

identity matrix and el is a vector with one in the l-th position and zeros elsewhere. (·)T and (·)H
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denote the transpose and the Hermitian transpose, respectively. ‖ · ‖ is the 2-norm of a vector

and | · | is the absolute value. E{·} stands for the statistical expectation and (
ep1−→)

p1−→ denotes

(element-wise) convergence with probability one. J1(·) is the first-order Bessel function of the

first kind and ⊙ is the element-wise product.

3.2 System model

As can be observed form Fig. 3.1, in this work, both Rx and Tx CB schemes are of concern. As

illustrated in Fig. 3.1-a, the system of interest in the Rx CB configuration consists of a wireless

network or subnetwork comprised of K uniformly and independently distributed terminals on

D(O,R), the disc with center at O and radius R, a receiver at O, and a source S located in the

same plane containing D(O,R) [4], [5], [4]. We assume that there is no direct link from the source

to the receiver due to pathloss attenuation. Moreover, let (rk, ψk) denote the polar coordinates

of the k-th terminal and (As, φs) denote those of the source. Without loss of generality, latter

is assumed to be at φs = 0 and to be located in the far-field region ; hence, As ≫ R. In a

dual-hop communication scheme, each terminal receives the desired signal from the source in

the first hop, then multiplies it by a properly designed CB weight and forwards the resulting

signal to the receiver in the second hop. Description of the Tx CB configuration in Fig. 3.1-b is

straightforward from the previous, where only the source and receiver switch positions.

The following assumptions are further considered with respect to the Rx CB configuration

in Fig. 3.1-a or the Tx CB configuration in Fig. 3.1-b :

A1) The far-field source or receiver is scattered by a large number of scatterers within its

vicinity. The latters generate from the Tx or Rx signal L equal-power rays or ”spatial chromatics”

(with reference to their angular distribution) that form an L-ray propagation channel [15]-[3]. The

l-th ray or chromatic is characterized by its angle θl and its complex amplitude αl = ρle
jξl where

the amplitudes ρl, l = 1, . . . , L and the phases ξl, l = 1, . . . , L are independent and identically

distributed (i.i.d.) random variables, and each phase is uniformly distributed over [−π, π]. The
angles θl, l = 1, . . . , L are also i.i.d. random variables with variance σ2

θ and probability density

function (pdf) p(θ) [16]-[3]. All θls, ξls, and ρls are mutually independent. Note that the standard

deviation σθ is commonly known as the angular spread (AS) while p(θ) is called the scattering

or angular distribution.
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Figure 3.1 – Rx and Tx system configurations.
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A2) The channel gain [f ]k between the k-th terminal and the receiver or the source is a

zero-mean unit-variance circular Gaussian random variable [4].

A3) The source signal s is a zero-mean random variable with power ps while noises at ter-

minals and the receiver are zero-mean Gaussian random variables with variances σv
2 and σn

2,

respectively. The source signal, noises, and the terminals forward or backward channel gains are

mutually independent.

A4) The k-th terminal is aware of its own coordinates (rk, ψk), its forward or backward

channel [f ]k, the directions of the source φs, K, and σ2
θ while being oblivious to the locations

and the forward and backward channels of all other terminals in the network.

Using A1 and the fact that As ≫ R, the channel gain between the k-th terminal and the

source or the receiver can be represented as

[g]k =

L∑

l=1

αle
−j 2π

λ
rk cos(θl−ψk) (3.1)

where λ is the wavelength.

3.3 CB techniques in the presence of local scattering

3.3.1 Rx CB Configuration

In this scheme, a dual-hop communication is established from the source S to the receiver.

In the first time slot, the source sends its signal s to the wireless network. Let y denotes the

received signal vector at the terminals given by

y = gs+ v, (3.2)

where v is the terminals’ noise vector. In the second time slot, the k-th terminal multiplies its

received signal with the complex conjugate of the beamforming weight wk and forwards the

resulting signal to the receiver. It follows from (3.2) that the received signal at O is

r = fT (w∗ ⊙ y) + n = wH (f ⊙ y) + n

= wH (f ⊙ gs+ f ⊙ v) + n

= swHh+wH(f ⊙ v) + n, (3.3)
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where w , [w1 . . . wK ] is the beamforming vector, h , f ⊙ g, f , [[f ]1 . . . [f ]K ]
T , and n is the

receiver noise. As mentioned above, several approaches can be adopted to properly select the

beamforming weights. In this paper, we are only concerned with the approach that aims to

minimize the noise power while fixing the beamforming response in the desired direction equal

to 1. Several beamformers based on different channel models exist in the literature to perform

these tasks. If w⋆ denotes the beamforming vector associated with one of these beamformers, it

is then the solution of the following optimization problem :

w⋆ = argminP r
w,n s.t. wHh⋆ = 1, (3.4)

where h⋆ is the considered nominal channel when designing w⋆ and P
r
w,n is the aggregate noise

power due to the thermal noise at the receiver and the forwarded noises from the terminals given

by

P r
w,n = σ2

vw
HΛw + σ2

n, (3.5)

where Λ , diag{|[f ]1|2 . . . |[f ]K |2}. Using (3.5) in (3.4), we obtain the following optimization

problem

w⋆ = argminwHΛw s.t. wHh⋆ = 1. (3.6)

It can be readily proven that w⋆ is given by

w⋆ = µ⋆Λ
−1h⋆, (3.7)

where µ⋆ is the factor chosen such that the constraint in (3.6) is satisfied. In the sequel, we will

explore the main existing beamforming solutions and compare their performances.

Rx optimal CB (OCB)

The Rx optimal CB (OCB) is the well known CSI-based solution and, hence, its beamforming

vector is given by [8]-[6]

wO = µOΛ
−1hO, (3.8)

where hO = h and µO =
(
hHOΛ

−1hO

)−1
. From (3.8), in order to implement the Rx OCB tech-

nique, the source must estimate and quantize the channels [h]k, k = 1 . . .K before sending them

back to all K terminals. This process unfortunately results in both estimation and quantiza-

tion errors as well as an important overhead. Let us denote the resulting channel vector by
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ĥO = hO + eO where eO = f ⊙ ec + f ⊙ ecq and ec and ecq are the channel identification and

quantization errors, respectively. Let us denote the variance of eO by σ2
eO

= σ2
ec
+ σ2

ecq
where σ2

ec

and σ2
ecq

are the variances of ec and ecq, respectively. It can be shown that σ2
ec

is given by [29]

σ2
ec

=
3K

2

(
πσ2

v f̄D
) 2

3 , (3.9)

where f̄D is the normalized Doppler frequency while σ2
ecq

is assumed to be incurred by (Bc+1)-bit

uniform quantization and, hence, is given by [30]

σ2
ecq

= 2−2Bc
h2Max

12
, (3.10)

where hMax is the peak amplitude of all channels’ realizations [h]k for k = 1, . . . , K. Taking into

account these definitions, the OCB’s beamforming vector is now given by

ŵO = µ̂OΛ
−1ĥO, (3.11)

where µ̂O =
(

ĥHOΛ
−1ĥO

)−1

.

Rx monochromatic DCB (M-DCB)

Alternatively, when designing the Rx CB solution, we intentionally neglect the local scattering

effect (i.e., assume that σθ → 0) to nominally assume a monochromatic single-ray propagation

channel and, hence, the beamforming vector associated with the Rx monochromatic DCB (M-

DCB) is given by [4]

wM = µMΛ
−1hM, (3.12)

where hM = a(0), [a(θ)]k = [f ]ke
−j(2π/λ)rk cos(θ+φs−ψk) and µM =

(
a(0)HΛ−1a(0)

)−1
= 1/K.

Also known as conventional Rx DCB, this beamformer implementation requires that the source

estimates, quantizes and sends its direction φs only [1]. This process results in both localization

and quantization errors and, hence, the channel hM should be substituted by

ĥM = hMe
−j(ea+eaq), (3.13)

where ea and eaq are the angle localization and quantization errors, respectively. Assuming that

these errors are relatively small and using Taylor’s series expansion, one can easily prove that

ĥM ≃ hM + eM, (3.14)
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where eM = −jhM (ea + eaq) with variance σ2
eM

= σ2
ea

+ σ2
eaq

. Using a (Ba + 1)-bit uniform

quantization, it can be shown that [30]

σ2
eaq

= 2−2Ba
4π2

12
. (3.15)

Furthermore, we use the CRLB developed in [31] to define σ2
ea

as

σ2
ea

=
4 sin2

(
π
K

)
σ2
v

NKπ2
, (3.16)

where N is the number of samples used to estimate φs. Taking into account the aforementioned

definitions, the practical M-DCB beamforming vector is now given by

ŵM = µ̂MΛ
−1ĥM, (3.17)

where µ̂M =
(

ĥHMΛ
−1ĥM

)−1

.

Rx bichromatic distributed CB (B-DCB)

Exploiting the fact that for low AS a multi-ray channel - owing to a Taylor series expansion of

its correlation matrix - can be properly approximated by two angular rays and hence considered

as bichromatic, a bichromatic distributed CB (B-DCB) was recently proposed in [24] and [25].

Its beamforming vector is given by

wB = µBΛ
−1hB, (3.18)

where

hB =
1

2
(a (σθ) + a (−σθ)) , (3.19)

and

µB =
2

K
lim
K→∞

(

‖a (σθ) ‖2
K

+ Re

{

a (σθ)
H Λ−1a (−σθ)
K

})−1

=
2

K

(

1 + 2
J1(γ(2σθ))

γ(2σθ)

)−1

. (3.20)

Note that in the conventional Rx scenario where the local scattering effect is neglected (i.e.,

σθ → 0) to assume monochromatic propagation channels, (3.18) is reduced to (3.12). It is also

noteworthy that the Rx B-DCB’s implementation requires that the source estimates, quantizes

and sends its direction φs and the AS σθ, thereby resulting in both estimation and quantization

errors. The channel hB should be then substituted by

ĥB = hBe
−j(ea+eaq+es+esq), (3.21)
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where es and esq are the AS estimation and quantization errors, respectively. Using the same

approach as above, one can easily show for relatively small errors that

ĥB = hB + eB, (3.22)

where eB = −jhB (ea + eaq + es + esq) with variance σ2
eB

= σ2
ea

+ σ2
eaq

+ σ2
es

+ σ2
esq

. Using a

(Bs + 1)-bit uniform quantization, it can be shown that [30]

σ2
esq

= 2−2Bs
π2

12
. (3.23)

Since AS estimation can be modeled as a DoA estimation of two point sources, we also use for

simplicity the CRLB developed in [31] to define σ2
es
and, hence, σ2

es
= σ2

ea
. Therefore, the B-DCB

beamforming weight is now

ŵB = µ̂BΛ
−1ĥB, (3.24)

where

µ̂B =
2

K
(1 + σ2

eB
)−1

(

1 + 2
J1(γ(2σθ))

γ(2σθ)

)−1

. (3.25)

In the sequel, we will analyze and compare the performances of all the aforementioned Rx

CB designs. Before doing so, let us turn our attention to the Tx CB configuration.

3.3.2 Tx CB configuration

In this scheme (cf. Fig. 3.1-b), a dual-hop communication is also considered from the source

S to the receiver. In the first time slot, the source sends its signal s to the terminals while, in the

second time slot, the k-th terminal multiplies its received signal with the complex conjugate of

the beamforming weight wk and forwards the resulting signal to the far-field receiver. In order

to select wk for k = 1 . . .K, the same criterion as above is used and, hence, any beamforming

solution with beamforming vector wt
⋆ satisfies

wt
⋆ = argminP t

w,n s.t. wHh⋆ = 1, (3.26)

where P t
w,n is the aggregate noise power given by [24]

P t
w,n = σ2

vw
Hw + σ2

n. (3.27)

It can be easily shown that wt
⋆ is given by

wt
⋆ = µt

⋆h⋆, (3.28)

where µt
⋆ is chosen such that wt

⋆ satisfies the constraint in (3.26).
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Tx optimal CB (OCB)

The Tx optimal CB (OCB) is a CSI-based solution and, hence, its beamforming vector is

given by

wt
O = µt

OhO, (3.29)

where hO = h and µt
O = 1/‖hO‖2. Similarly to wO, the Tx OCB’s implementation requires that

the source estimates and quantizes the channels [h]k, k = 1 . . .K before sending them back to

all K terminals. This process obviously results in estimation and quantization errors and, hence,

the considered channel hO must be substituted by ĥO. Therefore, w
t
O becomes

ŵt
O = µ̂t

OĥO, (3.30)

where µ̂t
O = 1/‖ĥO‖2.

Tx monochromatic DCB (M-DCB)

If we neglect the local scattering effect (i.e., assume that σθ → 0) to assume monochromatic

single-ray propagation channels, the optimal solution of (3.26) becomes

wt
M = µt

MhM, (3.31)

the beamforming vector associated with the Tx M-DCB also known as the conventional Tx

DCB [3]. In (3.31), µt
M = 1/‖hM‖2. It is noteworthy that the implementation of this beamformer

requires that the source estimates, quantizes and sends its direction φs only, thereby resulting

in estimation and quantization errors which affect the considered channel hM. Substituting hM

by ĥM when designing the Tx M-DCB, we obtain a new beamforming vector

ŵt
M = µ̂t

MĥM, (3.32)

where µ̂t
M = 1/‖ĥM‖2.

Tx bichromatic DCB (B-DCB)

In [24], we also propose a Tx bichromatic DCB (B-DCB) whose beamforming vector is

wt
B = µBhB. (3.33)
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Please note that the implementation of wt
B is similar to that of wB and, hence, the channel

hB should be substituted by ĥB when designing the Tx B-DCB. Using similar steps as in Sec-

tion 3.3.1, it can be shown that the beamforming vector associated with the Tx B-DCB is

wt
B = µ̂BĥB. (3.34)

3.4 Performance analysis in terms of ASANR

For the sake of simplicity, in what follows, we only focus on the Rx CB configuration, but it is

straightforward to show that all the results and deductions also hold for the Tx CB configuration.

In this section, we analyze and compare the performance of the Rx B-DCB against those of the

Rx M-DCB and OCB. To this end, we introduce the following performance measure :

Υ⋆ (σθ) =
ξŵ⋆

ξŵB

, (3.35)

where

ξw =
Pw(φs)

P r
w,n

, (3.36)

is the achieved SNR when the beamforming vector w is used. Υ⋆ (σθ) hence interprets as the SNR

gain achieved by the beamformer ŵ⋆ against the B-DCB design. In (3.36), commonly known as

the beampattern, Pw(φ⋆) = p⋆
∣
∣wHh

∣
∣2 = p⋆

∣
∣
∣wH

∑L
l=1 αla(φ⋆ + θl)

∣
∣
∣

2

is the received power from a

transmitter at direction φ⋆ with power p⋆. It is noteworthy that Υ⋆ (σθ) is an excessively complex

function of the random variables rk, ψk, [f ]k for k = 1, . . . , K and αl, θl for l = 1, . . . , L as well as

all the estimation and quantization errors and, hence, a random quantity of its own. Therefore,

it is practically more appealing to investigate the behavior and the properties of Υ̃⋆ (σθ) given

by [4], [25]

Υ̃⋆ (σθ) =
ξ̃ŵ⋆

ξ̃ŵB

, (3.37)

where ξ̃w = P̃w(φs)/P̃
r
w,n is the achieved average-signal-to-average-noise ratio (ASANR) when

w is implemented with P̃w(φ⋆) = E {Pw(φ⋆)}, called the average beampattern, and P̃ r
w,n =

E
{
P r
w,n

}
is the average noise power. In ideal conditions where all the estimation and quantization

errors are negligible, we define the following performance measure :

Υ̃IDL
⋆ (σθ) =

ξ̃w⋆

ξ̃wB

. (3.38)
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Before comparing the beamformers’ performances, we derive the expression of the ASANR ξ̃ŵ⋆

achieved using ŵ⋆. First, we have

ξŵ⋆
=

µ2
⋆‖
(
hH⋆ + eH⋆

)
Λ−1h‖2

σ2
vµ

2
⋆ (h

H
⋆ + eH⋆ )Λ

−1 (h⋆ + e⋆) + σ2
n

(
µ⋆
µ̂⋆

)2 . (3.39)

Using the fact that h and e⋆ are statistically independent, ξ̃ŵ⋆
can then be expressed as

ξ̃ŵ⋆
=

E
{
‖wH

⋆ h‖2
}
+ E

{
µ2
⋆‖hHΛ−1e⋆‖2

}

σ2
vE {wH

⋆ Λw⋆}+ σ2
vE {µ2

⋆e
H
⋆ Λ

−1e⋆}+ σ2
nE

{(
µ⋆
µ̂⋆

)2
}

=
P̃w⋆

(φs) + E
{
µ2
⋆‖hHΛ−1e⋆‖2

}

P̃ r
w⋆,n + σ2

vE {µ2
⋆e
H
⋆ Λ

−1e⋆}+ σ2
n

(

E

{(
µ⋆
µ̂⋆

)2
}

− 1

) . (3.40)

Note that both numerator and denominator decomposes each into two terms corresponding to

a channel mismatch contribution (i.e., P̃w⋆
(φs) or P̃

r
w⋆,n, respectively) and a channel quantiza-

tion/estimation errors contribution (i.e., the remainder of each term).

3.4.1 ASANR of B-DCB vs. OCB

In this section, we carry out a comparison between the B-DCB and its OCB vis-a-vis. When

the OCB technique is implemented in the network, it can be readily shown that

P̃ r
wO,n

= σ2
vE

{
1

‖g‖2
}

+ σn
2, (3.41)

and

P̃wO
(φ⋆) = 1. (3.42)

We can also show that

E
{
µ2
O‖hHΛ−1eO‖2

}
= σ2

eO
E

{
1

‖g‖2
}

, (3.43)

and

σ2
vE
{
µ2
Oe

H
⋆ Λ

−1e⋆
}
= Kσ2

eO
σ2
vE

{
1

‖g‖4
}

. (3.44)

Now let us introduce the following theorem :

Theorem 1 : Assuming that αl for l = 1, . . . , L are Gaussian random variables, we have
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E

{
1

‖g‖2
}

=
1

K
E

{

1
∑L

l=1 |αl|2

}

=
L

K(L− 1)
, (3.45)

and

E

{
1

‖g‖4
}

=
1

K2
E







1
(
∑L

l=1 |αl|2
)2







=
L2

K2(L− 1)(L− 2)
. (3.46)

Proof : See Appendix A.

In order to derive a closed-form expression for Υ̃O, we need to derive E
{
(µO/µ̂O)

2}. However,

the latter turns out to be intractable in closed-form and this unfortunately hampers a rigorous

analytical study of Υ̃O. Nevertheless, when K is large enough, we show that 1

ξ̃ŵO
=

(

σ2
nE

{

lim
K→∞

(
µO

µ̂O

)2
})−1

=

(

σ2
n

(

1 + 2
σ2
eO
L

L− 1
+

σ4
eO
L2

(L− 1)(L− 2)

))−1

. (3.47)

Therefore, it follows from (3.9), (3.10) and (3.47) that the ASANR achieved by the OCB tech-

nique decreases when the normalized Doppler spread f̄D increases while it increases if Bc in-

creases. However, we will see in Section 3.5.1 that we cannot indefinitely increase Bc since this

has a detrimental effect on the achieved throughput.

In turn, using the B-DCB technique, we have [24], [25]

P̃ r
wB,n

=
2σ2

v

K

(

1 + 2
J1(γ(2σθ))

γ(2σθ)

)−1

+ σn
2, (3.48)

and

P̃wB
(φ⋆) =

2

K
(

1 + 2J1(γ(2σθ))
γ(2σθ)

)



1 +
2(K − 1)Ω (φ⋆)
(

1 + 2J1(γ(2σθ))
γ(2σθ)

)



 , (3.49)

with

Ω(φ) =

∫

p(θ)

(
J1(γ(φ+ θ + σθ))

γ(φ+ θ + σθ)
+
J1(γ(φ+ θ − σθ))

γ(φ+ θ − σθ)

)2

dθ. (3.50)

1. Please note that L is in essence an artefact due to channel modeling by a limited number of rays. In practice

L tends to infinity and all terms in L asymptotically disappear.

72



Note that the integral in (3.50) can be computed numerically with any desired accuracy by

using the most popular mathematical software packages such as Matlab and Mathematica, after

properly choosing the pdf p(θ). In fact, several statistical distributions for θl have been proposed

so far such as the Laplace, Gaussian or Uniform distribution [15]- [3], but here we are only

concerned by the latter. Furthermore, we show that

E
{
µ2
B‖hHΛ−1eB‖2

}
= 2

σ2
eB

K

(

1 + 2
J1(γ(2σθ))

γ(2σθ)

)−1

, (3.51)

and

E
{
µ2
Be

H
BΛ

−1eB
}
=

2σ2
eB

K

(

1 + 2
J1(γ(2σθ))

γ(2σθ)

)−1

. (3.52)

Therefore, using (3.25) and (3.20) as well as (3.48)-(3.52), for large K we obtain

ξ̃ŵB
=

4Ω (0)
(

1 + 2J1(γ(2σθ))
γ(2σθ)

)−2

σ2
n

(
1 + σ2

eB

)2 . (3.53)

It follows from (3.53) that in contrast with the OCB which is a CSI-based beamforming solution,

the achieved ASANR using B-DCB remains constant when f̄D increases. Furthermore, it follows

also that increasing Ba and/or Bs results in improving the ASANR achieved using B-DCB. Using

(3.47) and (3.53), we obtain

Υ̃O (σθ) = Υ̃IDL
O (σθ)

(1 + σ2
eB
)2

1 + 2
σ2
eO
L

L−1
+

σ4
eO
L2

(L−1)(L−2)

, (3.54)

where

Υ̃IDL
O (σθ) =

(

1 + 2J1(γ(2σθ))
γ(2σθ)

)2

4Ω (0)
. (3.55)

Given the fact that when f̄D increases σ2
eO

increases, it can be inferred form (3.54) that Υ̃O (σθ)

decreases as expected. Moreover, it can be readily proven that Υ̃IDL
O (0) = 1. This is expected

since, when there is no local scattering in the source vicinity (i.e., σθ = 0), wO = wB. Simula-

tions results in Section 3.6 will also show that, in rural and suburban areas where σθ is small,

Υ̃IDL
O (σθ) = 1. Therefore, from (3.9) and (3.54), Υ̃O (σθ) < 1 for large f̄D and small AS. Conse-

quently, the B-DCB is able to outperform its OCB vis-a-vis when σθ is small such as in rural and

suburban areas. However, when σθ is relatively large such as in urban areas, one can easily show

that J1 (γ (2σθ)) /γ (2σθ) ≃ 0 [4] and, hence, it holds for large K that Υ̃IDL
O (σθ) ≃ (4Ω (0))−1.
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Since Ω (0) decreases if σθ increases, Υ̃O(σθ) turns out to be a decreasing function of σθ for high

AS. Consequently, in ideal conditions the OCB outperforms the B-DCB in terms of ASANR

at high AS. However, it follows from (3.54) that this ASANR gain decreases if f̄D increases.

Simulations in Section 3.6 will show that this results in a wider operational region in terms of

AS values over which the B-DCB is favored against OCB.

3.4.2 ASANR of B-DCB vs. M-DCB

Using the M-DCB technique, it can be shown that [24], [25]

P̃ r
wM,n

=
σ2
v

K
+ σn

2, (3.56)

and

P̃wM
(φ⋆) =

(1 + (K − 1)Γ (φ⋆))

K
, (3.57)

with

Γ(φ) =

∫

p(θ)

(

2
J1(γ(φ+ θ))

γ(φ+ θ)

)2

dθ. (3.58)

Note that the discussion involving the integral in (3.50) also holds for the integral in (3.58).

Moreover, using similar steps as above, we show for large K that

ξ̃ŵB
=

Γ (0)

σ2
n

(
1 + σ2

eM

)2 . (3.59)

and, hence,

Υ̃M(σθ) = Υ̃IDL
M (σθ)

(
1 + σ2

eB

1 + σ2
eM

)2

, (3.60)

where

Υ̃IDL
M (σθ) =

Γ(0)
(

1 + 2J1(γ(2σθ))
γ(2σθ)

)2

4Ω (0)
. (3.61)

In [25], we proved that Υ̃IDL
M (σθ) ≤ 1 and the ASANR gain achieved using wB instead of wM

can reach as much as 3 dB for high AS. However, from (3.60), Υ̃M(σθ) < Υ̃IDL
M (σθ) only when

σ2
eB

> σ2
eM

(i.e., small Ba and Bs). Therefore, the B-DCB always outperforms the M-DCB as

found in ideal conditions, excluding exceptional circumstances of unrealistic low quantization

levels (i.e., very large quantization errors) hard to justify in practice.
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3.5 Performance analysis in terms of link-level through-

put

The problem with the comparisons made above at the ASANR level is that they do not

factor in the different overhead costs incurred by each solution. It is therefore appropriate to

make comparisons in terms of the link-level throughput as well. Let Tŵ⋆
(σθ) denote the link-level

throughput achieved by any beamformer ŵ⋆ as follows [27]

Tŵ⋆
(σθ) =

1

2
E
{(
W −W oh

ŵ⋆

)
log2 (1 + ξŵ⋆

)
}
, (3.62)

where W is the channel bandwidth, W oh
ŵ⋆

is the bandwidth allocated to the implementation

overhead of ŵ⋆ and the expectation is taken with respect to the random variables rk, ψk and [f ]k

for k = 1, . . . , K, αl and θl for l = 1, . . . , L as well as any estimation and quantization errors.

Obliviously, Tŵ⋆
(σθ) is intractable in closed-form, which hampers its analytical study. However,

knowing that log2(x) is a concave function and using the Jensen’s inequality, we introduce the

following upper bound :

T bound
ŵ⋆

(σθ) =
1

2

(
W −W oh

ŵ⋆

)
log2 (1 + E {ξŵ⋆

}) , (3.63)

where it can be shown that when K is large enough for ŵ⋆ ∈ {ŵO, ŵB, ŵM}, we have [24], [25]

T bound
ŵ⋆

(σθ)
p1−→ T̃ŵ⋆

(σθ) , (3.64)

where

T̃ŵ⋆
(σθ) =

1

2

(
W −W oh

ŵ⋆

)
log2

(

1 + ξ̃ŵ⋆

)

. (3.65)

Without loss of generality, we assume for simplicity a BPSK-modulated transmission and, hence,

T̃ŵ⋆
(σθ) can be rewritten as

T̃ŵ⋆
(σθ) = 0.5

(
RT − Roh

ŵ⋆

)
log2

(

1 + ξ̃ŵ⋆

)

, (3.66)

where RT and Roh
ŵ⋆

are the transmission bit rate and the overhead bit rate, respectively. Since

the tightness of Jensens inequality has already been proved in [28], the throughput gain given

by

G⋆ (σθ) =
T̃ŵ⋆

(σθ)− T̃ŵB
(σθ)

T̃ŵB
(σθ)

, (3.67)

can be used to compare the CBs’ performances. Yet we will shortly see below, both by analysis

and simulations, that this simplifying assumption is still able to provide an analytical framework

that is extremely insightful qualitatively.
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3.5.1 Throughput of B-DCB vs. OCB

As discussed in Section 3.3.1, OCB’s implementation requires that the source broadcast all

[h]k, k = 1 . . .K for all K terminals. This process requires K time slots of Bc bits transmitted

at an identification refreshment rate fIR = 1/TIR where TIR denotes the refreshment period. It is

noteworthy that TIR should satisfy TIR ≥ Tc where Tc = 0.423/fD is the coherence time and fD

is the maximum Doppler frequency. For simplicity, we assume fIR = 2fD. Therefore, the OCB

implementation overhead rate is Roh
ŵO

= 2KBcfD and, hence, its achieved throughput is

T̃ŵO
(σθ) = 0.5RT

(
1− 2KBcf̄D

)
log2

(

1 + ξ̃ŵO

)

. (3.68)

As can be observed from (3.68), the achieved throughput using the OCB technique decreases

if the number of terminals K increases. Furthermore, since when f̄D increases, ec increases and

ξ̃ŵO
decreases, it follows then from the above result that T̃ŵO

also decreases if f̄D increases. Inter-

estingly, from (3.68), Bc has two contradictory effects on T̃ŵO
. Indeed, if Bc increases the OCB

overhead rate increases and, hence, T̃ŵO
is decreased. However, as discussed above, increasing Bc

improves the ASANR ξ̃ŵO
and, therefore, the achieved throughput T̃ŵO

is increased. The result

in (3.68) could then be exploited to find the optimum number of quantization bits Bopt
c that

maximizes the throughput achieved using the OCB technique.

On the other hand, the B-DCB implementation requires that the source estimates, quantizes

and broadcasts φs and σθ. Broadcasting the angular estimate requires only one time slot of Ba

bits transmitted at a localization refreshment rate fLR = 1/TLR where TLR is the refreshment

period. In turn, broadcasting the AS estimate requires one time slot of Bs bits transmitted at

an estimation refreshment rate fER = 1/TER where TER is the estimation refreshment period.

Consequently, the B-DCB implementation overhead is

Roh
ŵB

= BafLR +BsfER. (3.69)

Since TLR and TER are typically very large compared to TIR (i.e., TLR ≫ TIR and TER ≫ TIR),

we have both fLR and fER negligible compared to fIR (i.e., fLR ≃ 0 and fER ≃ 0), and hence we

have Roh
ŵB

≃ 0. Therefore, the throughput achieved using the B-DCB is

T̃ŵB
(σθ) ≃ 0.5RT log2

(

1 + ξ̃ŵB

)

. (3.70)

As can be shown from (3.70), in contrast to OCB, the B-DCB throughput is independent of

the number of terminals K and the normalized Doppler frequency f̄D and, therefore, GO (σθ)
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decreases ifK and/or f̄D increases. Furthermore, since we showed in Section 3.4.1 that ξ̃ŵB
≥ ξ̃ŵO

for high SNR and relatively large Ba and Bs, we have

GO (σθ) < 0, (3.71)

for large K and low AS. Consequently, the B-DCB outperforms, in rural and suburban areas, its

OCB vis-a-vis in terms of achieved throughput. Simulations in Section 3.6 will show that this

results in a wider operational region in terms of AS values over which the B-DCB is favored

against OCB. They will also establish that this operational region increases with K and f̄D and

reaches as much as 40 deg for large K and high f̄D , against about 17 deg in ideal conditions (i.e,

without accounting for any overhead cost or any quantization or estimation error). This further

proves the efficiency the B-DCB technique.

3.5.2 Throughput of B-DCB vs. M-DCB

As discussed in Section 3.3.1, the M-DCB implementation only requires that the source

estimates, quantizes and broadcasts its angle φs. Following similar steps as above, it can be

easily shown that Roh
ŵM

≃ 0 and, therefore,

T̃ŵM
(σθ) ≃ 0.5RT log2

(

1 + ξ̃ŵM

)

. (3.72)

Thus, from (3.70) and (3.72) we obtain

GM (σθ) ≃
log2

(

1 + ξ̃ŵM

)

log2

(

1 + ξ̃ŵB

) − 1. (3.73)

Since ξ̃ŵM
≤ ξ̃ŵB

for reasonable Bs and Ba, we have GM (σθ) ≤ 0. It follows from (3.73) that the

B-DCB is always more efficient than the M-DCB in terms of achieved throughput.

3.6 Simulation Results

Numerical experiments are performed to verify the analytical results. In all examples, we

assume that the noises’ powers σ2
n and σ2

v are 10 dB below the source transmit power ps and

K = 20 (except for Fig. 3.8 in which K varies). It is also assumed that φs and σθ are estimated

using N = 10 samples. Furthermore, we assume that the number of rays is L = 6 and that their
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Figure 3.2 – Υ̃IDL
M (σθ) and Υ̃M(σθ) for K = 20 and different values of B = Ba = Bs.
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Bc.
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Figure 3.4 – Υ̃IDL
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of f̄D.

phases are uniformly distributed. All the results are obtained by averaging over 106 random

realizations of rk, ψk, [f ]k for k = 1, . . . , K and αl, θl for l = 1, . . . , L as well as all the estimation

and quantization errors. For the sake of conciseness, we only report and discuss the simulation

results obtained in the Rx CB configuration since those obtained in the Tx CB configuration

are quite similar.

Fig. 3.2 displays Υ̃IDL
M (σθ) and Υ̃M(σθ) for different values of B = Ba = Bs. From this

figure, we confirm that analytical results match perfectly their empirical counterparts. As can

be observed from Fig. 3.2, for a practical value B = 8, Υ̃M(σθ) ≃ Υ̃IDL
M (σθ). This is expected

since for high quantization levels quantization errors are negligible. In such a case, we also show

that the B-DCB is much more efficient in terms of achieved ASANR than its M-DCB vis-a-vis.

However, from Fig. 3.2, the achieved ASANR gain using ŵB instead of ŵM decreases with B.

This is expected since ξ̃ŵB
is affected by both quantization errors eaq and esq while ξ̃ŵM

involves

only eaq. Furthermore, it follows from this figure that the M-DCB outperforms the B-DCB only

for unrealistic low quantization levels which are hard to justify in practice. This corroborates

the discussion made in Section-3.4.2.
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Fig. 3.3 shows Υ̃IDL
O (σθ) and Υ̃O(σθ) for f̄D = 0 and different values of B = Ba = Bs = Bc.

From this figure we confirm that analytical results match perfectly their empirical counterparts.

As can be seen from Fig. 3.3, when B = 8, Υ̃O(σθ) ≃ Υ̃IDL
O (σθ) as expected. In such a case, the

B-DCB is able to achieve the same ASANR as its OCB vis-a-vis when the AS σθ is small such as

in rural or suburban areas. We also show from Fig. 3.3 that the achieved ASANR gain using ŵO

instead of ŵB increases if B increases. This is expected since in contrast to ξ̃ŵB
, which involves

two quantization errors, ξ̃ŵO
involves only ecq.

Fig. 3.4 plots Υ̃O(σθ) for B = Ba = Bs = Bc = 8 and different values of f̄D. From this figure,

for low AS the B-DCB always outperforms the OCB solution even for small f̄D. Furthermore,

Fig. 3.4 establishes that the achieved ASANR gain using ŵO instead of ŵB decreases when f̄D

increases. This corroborates the discussion made in Section-3.4.1.

Figs. 3.5 and 3.6 plot the throughput gain GO (σθ) for different values of f̄D and Bc. They also

plot GIDL
O (σθ) the throughput gain in ideal conditions (i.e., without accounting for any overhead

cost or any quantization or estimation error). As can be observed from these figures, in rural

and suburban areas where the AS is relatively low, the B-DCB always outperforms the OCB

in terms of achieved throughput. Their performances become actually equal only in idealistic
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Figure 3.6 – GO (σθ) for f̄D = 10−2, K = 20, and different values of Bc.

conditions that ignore the practical effects of both overhead and estimation and quantization

errors. Figs. 3.5 and 3.6 also confirm and illustrate the existence of an optimum quantization

level Bopt
c that maximizes the throughput (i.e., level that best minimizes combined losses due

to errors and overhead) found to be equal to 6 and 5 at f̄D set to 10−4 and 10−2, respectively.

At these optimum quantization levels, OCB suffers from throughput losses against B-DCB of

about 3% and 10%, respectively. The B-DCB’s throughput gains against OCB indeed increase

with higher normalized Doppler frequencies. The operational region in terms of AS values over

which the B-DCB is favored against OCB also increases from a nominal low AS range of about

17 deg in ideal conditions to about 20 and 25 deg, respectively.

Figs. 3.7 and 3.8 plot GO (σθ) for different values of f̄D and K, respectively. In these figures,

curves are plotted after performing a numerical evaluation of the optimum quantization level

Bopt
c for each pair value of both f̄D and K. For instance, we find that Bopt

c = 2 bits when

f̄D = 0.002 and K = 20 while Bopt
c = 4 bits when f̄D = 10−4 and K = 200. As can be seen from

these figures, the B-DCB’s throughput gain against OCB increases if f̄D and/or K increase(s).

Furthermore, the B-DCB operational region also increases if f̄D and/or K increase(s) and can

reach as much as 40 deg when f̄D = 0.002 and K = 20. All these observations corroborate all
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the elements of our discussion in Section 3.5.1.

3.7 Conclusion

In this work, we considered the M-DCB and the B-DCB as well as the optimal CSI-based CB

(OCB) solution to achieve a dual-hop communication from a source to a receiver through a wi-

reless network comprised of K independent terminals. Assuming the presence of local scattering

in the source vicinity and accounting for estimation and quantization errors incurred by each CB

solution, we performed an ASANR comparison between all CB solutions and derived their true

achieved ASANR in closed-form. For low AS, where both solutions nominally achieve the same

ASANR in ideal conditions, we showed that the B-DCB always outperforms OCB, more so at

larger regions of AS values when errors increase. Excluding exceptional circumstances of unrea-

listic low quantization levels (i.e., very large quantization errors) hard to justify in practice, we

also showed that the new B-DCB always outperforms the M-DCB as recently found nominally

in ideal conditions. This work is also the first to push the performance analysis of CB to the

throughput level by taking into account the feedback overhead cost incurred by each solution.
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We proved both by concordant analysis and simulations that the B-DCB is able to outperform,

even for high AS values, the OCB which is penalized by its prohibitive implementation overhead,

especially for a large number of terminals K and/or high Doppler f̄D. Indeed, it was shown that

the operational regions in terms of AS values over which the new B-DCB is favored against OCB

in terms of achieved throughput can reach up to 40 deg.

Appendix A : Proof of Theorem 1

From (3.1), we have

‖g‖2 =
K∑

k=1

L∑

l=1

αle
−j 2πrk

λ
cos(θl−ψk)

L∑

m=1

α∗
me

−j 2πrk
λ

cos(θm−ψk)

=
K

2L

L∑

l=1

∣
∣
∣

√
2Lαl

∣
∣
∣

2

. (3.74)

Let us introduce X =
∑L

l=1

∣
∣
∣

√
2Lαl

∣
∣
∣

2

. Assuming that αl for l = 1, . . . , L are circular complex

Gaussian random variables, X could be considered to have a Chi-squared distribution with

2L degrees of freedom. Hence 1/‖g‖2 = (2L/K)(1/X) where 1/X has an inverse Chi-squared
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distribution with 2L degrees of freedom. Therefore, its average is given by

E

{
1

‖g‖2
}

=
2L

K
E

{
1

X

}

=
L

K(L− 1)
. (3.75)

On the other hand, its second-order moment is given by

E

{
1

‖g‖4
}

=
4L2

K2
E

{
1

X2

}

=
4L2

K2

(
2

(2L− 2)2 (2L− 4)
+

1

(2L− 2)2

)

=
L2

K2(L− 1)(L− 2)
. (3.76)
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Interfered and Scattered Environment

Slim Zaidi and Sofiène Affes

Accepted for publication in IEEE Transactions on Communications, October 2015.

Résumé : Afin d’élargir encore plus les domaines d’application des DCBs, ce cha-

pitre propose un nouveau DCB qui prend en compte non seulement le phénomène

de diffusion mais aussi les interférences. MI sources interférentes en plus de la source

désirée S sont alors considérées dans ce chapitre. Une approche qui consiste en la mi-

nimisation des puissances de bruit et des interférences tout en maintenant constante

la puissance utile est utilisée pour la conception des poids. Dû à la complexité des

canaux polychromatiques, le calcul de ces derniers en closed-form s’est malheureu-

sement avéré impossible. En recourant d’abord au canal bichromatique valide pour

des faibles ASs puis à une approximation efficace de certains termes de la fonction

objective, on est capable d’obtenir les expressions des poids en closed-form. Il est

montré que ces derniers peuvent être calculés au niveau de chaque terminal permet-

tant, ainsi, l’implémentation distibuée de ce B-DCB dans le réseau concerné. Il est

aussi montré que B-DCB est capable de surpasser non seulement M-DCB mais aussi

OCB qui est pénalisé par son overhead excessif surtout pour des grandes valeurs de

MI , K et/ou de la fréquence de Doppler.
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Abstract

In this paper, we consider a dual-hop communication from a source surrounded by MI in-

terferences to a receiver, through a wireless network comprised of K independent terminals. In

the first time slot, all sources send their signals to the network while, in the second time slot,

the terminals multiply the received signal by their respective beamforming weights and forward

the resulting signals to the receiver. We design these weights so as to minimize the interferences

plus noises’ powers while maintaining the received power from the source to a constant level.

We show, however, that they are intractable in closed-form due to the complexity of the poly-

chromatic channels arising from the presence of scattering. By resorting to a two-ray channel

approximation proved valid at relatively low angular spread (AS) values, we are able to derive the

new optimum weights and prove that they could be locally computed at each terminal, thereby

complying with the distributed feature of the network of interest. The so-obtained bichromatic

distributed collaborative beamforming (B-DCB) is then analyzed and compared in performance

to the monochromatic CB (MCB), whose design does not account for scattering, and the optimal

CSI-based CB (OCB). Comparisons are made under both ideal and real-world conditions where

we account for implementation errors and the overhead incurred by each CB solution. They

reveal that the proposed B-DCB always outperforms MCB in practice ; and that it approaches

OCB in lightly- to moderately-scattered environments under ideal conditions and outperforms

it under real-world conditions even in highly-scattered environments. In such conditions, indeed,

the B-DCB operational regions in terms of AS values over which it is favored against OCB could

reach until 50 degrees and, hence, cover about the entire span of AS values.

4.1 Introduction

As a strong means to establish a reliable communication over long distances while avoiding

coding and other high-cost signal processing techniques, beamforming has gained significant in-

terest in the research community [1]- [24]. Using this technique, a multiple-antenna transceiver

transmits or receives a message through its K antennas. Each antenna multiplies its signal by

a beamforming weight so that all signals are constructively combined at the destination. These

weights are properly selected to achieve a specific design objective while satisfying one or seve-

ral practical constraints. It has been shown that beamforming is able to not only substantially
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improve the received signal’s quality, but also significantly reduce the antennas power consump-

tion [6]-[8]. However, in several real-word scenarios, practical constraints such as size may rule

out the use of multiple-antenna units. In such a case, collaborative communication among K

small single-antenna battery-powered terminals (sensor nodes, mobile users, relays, etc.), called

collaborative beamforming (CB), can alternatively be used to emulate the conventional beam-

forming [9]-[24]. In fact, CB allows terminals to operate virtually as a single physical entity and,

hence, take advantage of beamforming benefits.

The widely used CB solution that is able to handle both scattering and interference, both

present in almost all real-world scenarios, is the optimal CSI-based CB (OCB) [1]-[4] [9]. When

the latter is implemented in the network, it has been shown that each collaborating terminal’s

weight then depends not only on that terminal’s CSI, but also on the other terminals’ CSI

[1]- [4] [9]- [11]. Since terminals are very often autonomous and located at different physical

locations, they have limited knowledge about each other’s CSI. To compute their respective

interdependent weights, they have to exchange their local information resulting inevitably in

an undesired overhead. The latter increases with the terminals’ number K, the interferences’

number MI as well as the channel Doppler frequencies [10] [11]. If one of these parameters is

large, this overhead becomes prohibitive and may cause substantial performance degradation

and severe terminals’ power depletion. This critical impediment motivates further investigation

of strategies able to reduce the overhead incurred by OCB.

As such, the optimized CSI or weights’ quantization schemes such as the Grassmannian

scheme in [25] appear to be efficient strategies to achieve this goal. Nevertheless, the latter

usually require a huge codebook that increases the overall cost of the network if integrated at

each terminal. Furthermore, the quantization itself introduces errors in weights, thereby causing

a CB’s performance degradation. More importantly, such schemes do not significantly reduce

overhead since the latter still keeps increasing with K, MI , and channel Doppler frequencies.

Another strategy to circumvent this problem consists in ignoring scattering and assuming ins-

tead monochromatic (i.e, single-ray) channels. This assumption allows terminals to avoid CSI

estimation since the latter will then only depend on each terminal’s location and the source and

interference DoAs [12], [4]. Several monochromatic CBs (MCB)s have been proposed [12]-[3],

but unfortunately shown [8]-[10] to perform poorly over polychromatic (i.e., multi-ray) chan-

nels due to mismatch. At very small values of the angular spread (AS), the latter results into
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slight deterioration that becomes, however, quickly unsatisfactory at moderate to large AS. In

other words, any overhead gain of MCB against OCB can be achieved only at the expense of

some performance loss. Furthermore, this gain is far from being sufficient since MCB’s overhead

remains linearly dependent on K and MI . Some attempts have actually been made to further

reduce MCB’s overhead [6], [24] but only to exacerbate, despite their relevance, the already-poor

MCB performance losses. To sum up, so far, only OCB and MCB solutions could be used to

handle environments wherein both interference and scattering exist. The first nominally (i.e.,

in ideal conditions) performs optimally but incurs a huge overhead, while the second relatively

reduces overhead but performs poorly. This work aims precisely to develop a new CB solution

that approaches the OCB’s high performance level at a very low overhead-cost.

In this paper, we consider a dual-hop communication from a source surrounded by MI in-

terferences to a receiver, through a wireless network comprised of K independent terminals. In

the first time slot, all sources send their signals to the network while, in the second time slot,

the terminals multiply the received signal by their respective beamforming weights and forward

the resulting signals to the receiver. We design these weights so as to minimize the interferences

plus noises’ powers while maintaining the received power from the source to a constant level.

We show, however, that they are intractable in closed-form due to the complexity of the po-

lychromatic channels arising from the presence of scattering. By exploiting a two-ray channel

approximation proved valid at relatively low angular spread (AS) values, we are able to derive the

new optimum weights and prove that they could be locally computed at each terminal, thereby

complying with the distributed feature of the network of interest. The so-obtained bichromatic

distributed collaborative beamforming (B-DCB) is then analyzed and compared in performance

to the monochromatic CB (MCB), whose design does not account for scattering, and the optimal

CSI-based CB (OCB). Comparisons are made under both ideal and real-world conditions where

we account for implementation errors and the overhead incurred by each CB solution. They

reveal that the proposed B-DCB always outperforms MCB in practice ; and that it approaches

OCB in lightly- to moderately-scattered environments under ideal conditions and outperforms

it under real-world conditions even in highly-scattered environments. We show, indeed, that the

proposed B-DCB is able to approach OCB in terms of average signal-to-interference-plus-noise

ratio (ASINR) in lightly- to moderately-scattered environments where AS values do not exceed

17 degrees. Consequently, it can achieve until 6 dB of ASINR gain against MCB which does not
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account for scattering. We further compare the three CBs in terms of ASINR achieved under

real-word conditions (i.e., accounting for implementation errors). We hence prove that the pro-

posed B-DCB outperforms OCB in lightly- to moderately-scattered environments at relatively

high Doppler, thereby increasing its operational region in terms of AS values over which it is

favored against the latter. Under such conditions, B-DCB always outperforms MCB in practice.

Moreover, we push the comparisons to the throughput level that accounts for the overhead incur-

red by each solution. We show that B-DCB is able, even at high AS values, to outperform OCB

which is then further penalized by its increasingly huger overhead with larger K, MI , and/or

Doppler. In such a case, indeed, the B-DCB operational region could reach until 50 degrees and,

hence, cover about the entire span of AS values.

Notation : Uppercase and lowercase bold letters denote matrices and vectors, respectively.

[·]il and [·]i are the (i, l)-th entry of a matrix and i-th entry of a vector, respectively. I is the

identity matrix. (·)T and (·)H denote the transpose and the Hermitian transpose, respectively.

‖ · ‖ is the 2-norm of a vector and | · | is the absolute value. E{·} stands for the statistical

expectation and (
ep1−→)

p1−→ denotes (element-wise) convergence with probability one. J1(·) is the
first-order Bessel function of the first kind and ⊙ is the element-wise product.

4.2 System model

As illustrated in Fig. 4.1, the system of interest consists of a wireless network or subnetwork

comprised of K terminals equipped each with a single isotropic antenna and uniformly and

independently distributed on D(O,R), the disc with center at O and radius R, a receiver Rx,

and M far-field sources including a desired source Sd and MI interfering sources. All sources are

located in the same plane 1 containing D(O,R) [12] [4]. We assume that there is no direct link

from the latters to the receiver due to high pathloss attenuation. Moreover, let (rk, ψk) denote

the polar coordinates of the k-th terminal and (Am, φm) those of the m-th source. Without loss

of generality, (A1, φ1) is assumed to be the location of Sd with φ1 = 0. Since the sources are in

the far-field, we hence assume that Am ≫ R for m = 1, . . . ,M whereM =MI+1. The following

assumptions are further adopted throughout this paper :

1. Please note that this assumption is only made for the sake of simplicity. All the results in this paper could

be easily generalized to the case wherein sources are located in different planes.
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Figure 4.1 – System model.

A1) The m-th source is scattered by a given number of scatterers located in the same plane

containingD(O,R). The latter generate from the transmit signal Lm rays or ”spatial chromatics”

(with reference to their angular distribution) that form a polychromatic propagation channel [8],

[27]-[29]. The l-th ray or chromatic is characterized by its angle deviation θl,m from the m-th

source direction φm and its complex amplitude αl,m. The θl,m, l = 1, . . . , L are i.i.d. zero-mean

random variables with a symmetric probability density function (pdf) pm(θ) and variance σ2
m.

Note that the standard deviation σm is commonly known as the angular spread (AS) while pm(θ)

is called the scattering or angular distribution [27]-[29]. The αl,m l = 1, . . . , L are i.i.d zero-mean

random variables with E {|αl,m|2} = 1/Lm. All θl,m and αl,m for m = 1, . . . ,M and l = 1, . . . , Lm

are assumed to be mutually independent.

A2) The forward channel gain [f ]k from the k-th terminal to the receiver is a zero-mean

unit-variance circular Gaussian random variable [20]-[6].

A3) The m-th source’s signal sm is narrow-band zero-mean random variable with power

pm while noises at terminals and the receiver are zero-mean Gaussian random variables with

variances σ2
nt

and σ2
nr
, respectively. All signals, noises, and the terminals’ forward channel gains

are mutually independent [5], [6], [20].

A4) The k-th terminal is only aware of its own coordinates (rk, ψk), its forward channel [f ]k,

K, the wavelength λ while being oblivious to the locations and the forward channels of all other

terminals in the network [20], [6], [24].

Resorting to A1 and the fact that Am ≫ R for m = 1, . . . ,M , the backward channel gain
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from the m-th source to the k-th terminal can be represented as

[gm]k =

Lm∑

l=1

αl,me
−j 2π

λ
rk cos(φm+θl,m−ψk). (4.1)

Obviously, when the scattering effect is neglected (i.e., σm −→ 0) to assume a monochromatic

plane-wave propagation channel, we have θl,m = 0 and, hence, [gm]k could be reduced to
[

g
(1)
m

]

k
=

e−j(2π/λ)rk cos(φm−ψk), the well-known steering vector element in the array-processing literature

[12]-[24].

The communication link between the desired source Sd and the receiver is established using

the following dual-hop scheme. In the first time slot, all sources send their signals to the wireless

network. Let y denote the received signal vector at the terminals given by

y = Gs+ nt, (4.2)

where s , [s1s2 . . . sM ]T , G , [g1 . . .gM ], and nt is the terminals’ noise vector. In the second

time slot, the k-th terminal multiplies its received signal with the complex conjugate of its

beamforming weight wk and forwards the resulting signal to the receiver Rx. The received signal

r at the latter is given by

r = s1w
Hh1 +wHH1̄s1̄ +wH(f ⊙ nt) + nr, (4.3)

where nr is the noise at Rx, s1̄ , [s2 . . . sM ]T , h1 , f ⊙ g1 and H1̄ , [f ⊙ g2 . . . f ⊙ gM ] with

f , [[f ]1 . . . [f ]K ]
T . It follows from (4.3) that the desired power Pw,d received from Sd and the

undesired power Pw,u from both the interference and noise are, respectively, given at the receiver

by

Pw,d = p1w
HE
{
h1h

H
1

}
w, (4.4)

Pw,u = wHE
{
H1̄P1̄H

H
1̄

}
w + σ2

nt
wHΣw + σ2

nr
, (4.5)

where P1̄ , diag{p2 . . . pM}, and Σ , diag{|[f ]1|2 . . . |[f ]k|2}. Note that the expectations in (4.4)

and (4.5) are taken with respect to the rays’ directions θl,ms and their complex amplitudes αl,ms.

Although several approaches can be adopted to properly design the beamforming weights, we

are only concerned in this paper with the one which minimizes the undesired power Pw,u while

maintaining the desired power Pw,d equal to p1. In fact, this approach is nothing else but the

well-known minimum variance distortionless response (MVDR) beamformer [30], [31] with a
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relaxed distortionless response constraint. The latter is imposed here on the received power from

the desired source Sd (i.e., Pw,d = p1) instead of the beamforming response to Sd’s direction (i.e.,

wHh1 = 1). Mathematically speaking, we have to solve the following optimization problem :

min
w

wHE
{
H1̄P1̄H

H
1̄

}
w + σ2

nt
wHΣw+σ2

nr
s.t wHE

{
h1h

H
1

}
w = 1, (4.6)

or, equivalently,

max
w

wHE
{
h1h

H
1

}
w

wH
(
E
{
H1̄P1̄H

H
1̄

}
+ σ2

nt
Σ
)
w

s.t. wHE
{
h1h

H
1

}
w = 1. (4.7)

It is straightforward to show that the optimum solution of (4.7) is a scaled version of the principal

eigenvector of the matrix
(
E
{
H1̄P1̄H

H
1̄

}
+ σ2

nt
Σ
)−1

E
{
hhH

}
so as to satisfy the constraint in

(4.7) [5]. To the best of our knowledge, this eigenvector cannot be obtained in a closed-form but

could be numerically evaluated. However, besides being computationally demanding, this task

must be performed by a central processor with global knowledge of all network parameters. The

considered network lacks, unfortunately, such a processor.

4.3 Proposed CB solution

In this section, we prove under mild conditions that it is possible to derive an optimal solution

of (4.7) in closed-form. To this end, we exploit useful approximations of the matrices E
{
h1h

H
1

}

and E
{
H1̄P1̄H

H
1̄

}
that have the additional benefit of reducing by the same token the complexity

of our CB optimization problem. As such, from the assumption A1, we have

E
{
hmh

H
m

}
=

∫

Θm

pm(θ)a(φm + θ)aH(φm + θ)dθ, (4.8)

where a(θ) , [[a(θ)]1 . . . [a(θ)]K ]
T with [a (θ)]k = [f ]ke

−j(2π/λ)rk cos(θ−ψk) and Θm is the support

of the pdf pm(θ) over which the integral is calculated 2. When the AS σm is relatively small 3,

small angular deviations of θl,ms occur and, hence, the Taylor series expansion of a(φm + θ) at

φm yields

a(φm + θ) ≃ a(φm) + a′(φm)θ + a′′(φm)
θ2

2
, (4.9)

2. In the Gaussian and Uniform distribution cases, Θm = [− inf,+ inf] and Θm = [−
√
3σθm,+

√
3σθm],

respectively.

3. This condition is assumed for the sole sake of mathematical rigor, without imposing any limitation on AS

values in absolute terms. Simulations in Section 4.7 will later suggest that practical AS values as high as 17

degrees still keep the following developments valid.
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where a′(θ) and a′′(θ) are, respectively, the first and the second derivatives of a(θ). After sub-

stituting (4.9) in (4.8) and integrating in the latter, we have

E
{
hmh

H
m

}
≃ 1

2

(

a (φm + σm)a (φm + σm)
H + a (φm − σm) a (φm − σm)

H
)

. (4.10)

It is noteworthy that the result in (4.10) also holds with strict equality in the case of bichromatic

(i.e., two-ray) channels (i.e., Lm = 2) with rays located at angles σm and −σm where the channel

gain from the m-th source to the k-th terminal is

[
g(2)
m

]

k
= α1,me

−j 2π
λ
rk cos(φm+σm−ψk) + α2,me

−j 2π
λ
rk cos(φm−σm−ψk). (4.11)

Consequently, when the AS is typically small to moderate, the polychromatic channel gm could be

substituted with the bichormatic channel g
(2)
m . In what follows, we will show that this bichromatic

approach provides a closed-form optimal solution of (4.7) implementable in a distributed fashion.

It holds from (4.10) that

E
{
h1h

H
1

}
=

1

2
Ξ, (4.12)

and

E
{
H1̄P1̄H

H
1̄

}
≈ ΓΛΓH , (4.13)

where Ξ = a(σ1)a(σ1)
H+a(−σ1)a(−σ1)H , Γ =

[
a(φ̃3), a(φ̃4), . . . , a(φ̃2M)

]
with φ̃m = φm/2−σm/2

if m is even and φ̃m = φ(m−1)/2+1 + σ(m−1)/2+1 if m is odd, and Λ = (1/2) [p2, p2, . . . , pM , pM ].

Therefore, when σm, m = 1, . . . ,M are relatively small, (4.7) could be rewritten as

max
w

wHΞw

wH
(
ΓΛΓH + σ2

nt
Σ
)
w

s.t. wHΞw = 2, (4.14)

or, equivalently as,

max
γ

γ
HΞ̃γ

γHγ
s.t. γ

HΞ̃γ = 2, (4.15)

where γ = ∆
1
2w, ∆ = ΓΛΓH + σ2

nt
Σ, and Ξ̃ = ∆− 1

2Ξ∆− 1
2 . It is straightforward to show that

the optimum solution of (4.15) is the principal eigenvector of the matrix Ξ̃ scaled to satisfy the

constraint in (4.15). Since ∆− 1
2 is a full-rank matrix, Ξ̃ has the same rank as Ξ that is inferior

or equal to two. Therefore, Ξ̃ has at most two eigenvectors. In the sequel, we will prove that

both ∆− 1
2 (a(σ1) + a(−σ1)) and ∆− 1

2 (a(σ1)− a(−σ1)) are eigenvectors of Ξ̃. First, let us use
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the matrix inversion lemma to break ∆−1 into several terms and, hence, obtain

Ξ̃∆− 1
2 (a(σ1) + a(−σ1)) =

K

σ2
nt

×
(

∆− 1
2a(σ1)

(

1 + χ− χ(σ1)
HD−1

(

χ(σ1) + χ(−σ1)
))

+

∆− 1
2a(−σ1)

(

1 + χ∗− χ(−σ1)HD−1
(

χ(σ1) + χ(−σ1)
)))

, (4.16)

and

Ξ̃∆−1
2 (a(σ1)− a(−σ1))=

K

σ2
nt

(

∆− 1
2a(σ1)

(

1− χ− χ(σ1)
HD−1

(

χ(σ1)− χ(−σ1)
))

−

∆− 1
2a(−σ1)

(

1− χ∗ − χ(−σ1)HD−1
(

χ(σ1)− χ(−σ1)
)))

, (4.17)

where χ=
(
aH(σ1)Σ

−1a(−σ1)
)
/K, χ(θ) =

(
ΓHΣ−1a(θ)

)
/K, and D =

(
σ2
nt
Λ−1 + ΓHΣ−1Γ

)
/K.

Now, we introduce the important theorem below.

Theorem 1 : When K goes to infinity 4, we have

a(x)HΣ−1a(y)
p1−→ 2

J1(γ(x− y))

γ(x− y)
, (4.18)

where γ(φ) , 4π(R/λ) sin(φ/2).

Proof : It follows from the definition of a(θ) that (a(x)HΣ−1a(y))/K = (1/K)
∑K

k=1 e
jγ(x−y)zk

where zk, k = 1, . . . , K are i.i.d compound random variables with the pdf fzk(z) =
2
π

√
1− z2 for

−1 ≤ z ≤ 1. Using the strong law of large numbers and the fact that (2/π)
∫ 1

−1
ejγ(φ)z

√
1− z2dz =

2J1 (γ (φ)) /γ (φ), we obtain (4.18).

It can be then inferred from this theorem that for large K

χ
p1−→ 2

J1(γ(2σ1))

γ(2σ1)
, (4.19)

χ(θ)
p1−→ 2z(θ), (4.20)

D
p1−→ 2Q, (4.21)

where Q is a (2M − 2) × (2M − 2) matrix with [Q]mn = J1(γ(φ̃m+2 − φ̃n+2))/γ(φ̃m+2 − φ̃n+2)

if m 6= n and [Q]mn = 1/2 otherwise, and z(θ) is a (2M − 2) × 1 vector with [z(θ)]m =

J1(γ(θ− φ̃m+2))/γ(θ− φ̃m+2) if θ 6= φ̃m+2 and [z(θ)]m = 1/2 otherwise. When σm, m = 1, . . . ,M

4. We will actually see in Section 4.7 that practical values of K in the range of 20 already keep the following

developments valid.
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are relatively small, we have z(σ1) ≃ z(−σ1) and, hence, it holds from (4.16)-(4.21) that, for

large K, the eigenvalues associated with ∆− 1
2 (a(σ1) + a(−σ1)) and ∆− 1

2 (a(σ1)− a(−σ1)) are

ρ1(σ1) ≃
K

σ2
nt

(

1 + 2
J1(γ(2σ1))

γ(2σ1)
− 4z(σ1)

TQ−1z(σ1)

)

, (4.22)

and

ρ2(σ1) ≃
K

σ2
nt

(

1− 2
J1(γ(2σ1))

γ(2σ1)

)

, (4.23)

respectively. What remains to be done to find the principal eigenvector of Ξ̃ is then comparing

the eigenvalues ρ1 and ρ2. As such, we introduce the theorem below.

Theorem 2 : When K goes to infinity4, we have

2z(0)TQ−1z(0) ∈ [0, 1[. (4.24)

Proof : It follows from A2 and the results in (4.18)-(4.21) that

2z(0)TQ−1z(0) = lim
K→∞

1

K
‖Pa(0)‖2, (4.25)

where P = Γ(ΓHΓ)−1ΓH is the orthogonal projection matrix onto the subspace spanned by

the columns of Γ. Pa(0) is then the projection of a(0) into the latter subspace and, hence,

0 ≤ 2z(0)TQ−1 z(0) ≤ ‖a(0)‖ = 1. While the left-hand side (LHS) inequality holds with equality

if a(0) is orthogonal to the column span of Γ, the right-hand side (RHS) inequality holds with

equality if a(0) is in the column span of Γ. The latter event is, however, highly unlikely when K

is large and, hence, 2z(0)TQ−1z(0) is strictly inferior to 1.

Using Theorem 2, one can readily show that limσ1→0 (ρ1 − ρ2) (σ1) > 0. Therefore, there exists

a real κ such that if σ1 is small enough we have σ1 < κ then ρ1(σ1) > ρ2(σ1). Consequently,

for relatively small σm, m = 1, . . . ,M and large K, ∆− 1
2 (a(σ1) + a(−σ1)) is the principal

eigenvector of Ξ̃. Finally, scaling ∆−1(a(σ1)+a(−σ1)) to satisfy the constraint in (4.14) and

using (4.19)-(4.21) after breaking ∆−1 into several terms, we show for relatively small σm, m =

1, . . . ,M and large K that the optimal solution of (4.14) is given by

wBD =
Σ−1 (a (σ1) + a (−σ1)− ΓQ−1

ν(σ1))

K
(

1 + 2J1(γ(2σ1))
γ(2σ1)

− ν(σ1)TQ−1ν(σ1)
) , (4.26)

where ν(σ1) = z(σ1)+z(−σ1). Note that we denote this CB solution by wBD since it relies on the

bichromatic approximation in (4.10) and, further, lends itself to a distributed implementation,
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as we will shortly see below. It can be observed from (4.26) that the k-th terminal’s weight

[wBD]k depends, according to A4, on the information locally available at this node as well as

σm, m = 1, . . . ,M and φm, m = 1, . . . ,M , which could be estimated at the sources and

broadcasted to the network. Therefore, each terminal is able to autonomously compute its weight

without requiring any information exchange with the other terminals in the network. This is in

fact a very desired feature for any CB solution since it enables its distributed implementation

and, hence, avoids any additional overhead due to such an exchange. Furthermore, from (4.26),

wBD is independent of pm(θ), m = 1, . . . ,M . This is also an outstanding feature which allows the

proposed bichromatic distributed CB (B-DCB)’s implementation in any scattered environment

regardless of its scattering distribution.

In the sequel, we compare in performance the proposed B-DCB with the two main conven-

tional types of CB solutions disclosed so far in the literature, namely MCB and OCB (cf. Sec-

tion 4.1). But, let us first briefly explain in the next section these two CB benchmark types.

4.4 MCB- and OCB-type CB solutions

So far, two main CB solution types exist for the optimization problem in (4.6). The first,

MCB, simplifies the optimization by ignoring the presence of scattering and assuming instead

monochromatic environments (i.e., σm = 0, m = 1, . . . ,M). In such a case, indeed, E
{
hhH

}

is reduced to a(0)aH(0). Since the principal eigenvector of Xa(0)aH(0) is simply Xa(0) for any

given matrix X, the MCB solution is given by

wM =

(
A1̄P1̄A

H
1̄ + σ2

nt
Σ
)−1

a(0)

aH(0)
(
A1̄P1̄A

H
1̄
+ σ2

nt
Σ
)−1

a(0)
, (4.27)

where A1̄ , [a (φ2) . . .a (φM)]. A straightforward inspection of (4.27) reveals that the k-th

terminal’s weight [wM]k depends on all terminals’ locations and forward channels. In contrast

with the proposed B-DCB, the MCB is then a non-distributed solution whose implementation

requires an information exchange among terminals, thereby resulting in an inevitable additional

overhead cost.

The second conventional CB solution is the optimal CSI-based CB (OCB) which aims to

optimize the objective function in (4.6) without violating its constraint by acting on the instan-

taneous desired and undesired powers. One can readily show that its beamforming vector wO is
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given by

wO =

(
H1̄P1̄H

H
1̄ + σ2

nt
Σ
)−1

h1

hH1
(
H1̄P1̄H

H
1̄
+ σ2

nt
Σ
)−1

h1

. (4.28)

From (4.28), the OCB is implementable in the considered network if and only if each terminal is

aware of all terminal’s backward and forward channels. Consequently, like MCB, OCB is a non-

distributed solution since it also requires an information exchange among terminals. Note from

(4.26)-(4.28) that MCB and OCB have another drawback in contrast to the proposed B-DCB

in that they both require accurate knowledge of σ2
nt

at each terminal.

4.5 Performance analysis under ideal conditions

In this section, we analyze and compare in performance the proposed B-DCB with MCB

and OCB under ideal conditions (i.e., without accounting for implementation errors and the

overhead cost).

4.5.1 CB performance metrics

Let ξw denote the achieved signal-to-interference-plus-noise ratio (SINR) using w and given

by

ξw =

∣
∣wHh1s1

∣
∣
2

|wHH1̄s1̄ +wH(f ⊙ nt) + nr|2
. (4.29)

From (4.29), ξw is an excessively complex function of the random variables nr, [nt]k, rk, ψk and

[f ]k for k = 1, . . . , K and αl,m and θl,m l = 1, . . . , Lm for m = 1, . . .M and, hence, a random

quantity of its own. Therefore, it is more practical to compare the CB solutions in terms of

achieved average-signal-to-average-interference-plus-noise ratio (ASAINR) defined for any w as

ξ̃w =
p1E

{∣
∣wHh1

∣
∣
2
}

E
{
wHH1̄P1̄H

H
1̄
w + σ2

nt
wHΣw

}
+ σ2

nr

. (4.30)

Despite being a more adequate performance metric, please note that the ASINR ξ̄w = E {ξw}
cannot be adopted hereafter since, to the best of our knowledge, it appears to be untractable

in closed-form. Yet in what follows, we will show that the achieved ASAINR and ASINR using

any w ∈ {wBD,wM,wO} coincide asymptotically when K grows large 5. This nice feature is an

5. We will later verify by simulations in Section 4.7 that the ASAINR and ASINR almost coincide when K is

just in the range of 20.
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additional incentive for the adoption of the ASAINR gain Υ(w) = ξ̃w/ξ̃wBD
as the link-level

figure of merit to compare the proposed B-DCB with any benchmark w.

ASAINR gain of B-DCB vs. MCB

The theorem below establishes the B-DCB’s ASAINR expression.

Theorem 3 : For any given pm(θ) and σm, m = 1, . . . ,M , ξ̃wBD
can be expressed as

ξ̃wBD
=

p1

(

1+(2(K−1)Ψ (0))/
(

1+2J1(γ(2σ1))
γ(2σ1)

−ν(σ1)
TQ−1

ν(σ1)
))

M∑

m=2

pm

(

1+(2(K−1)Ψ(φm))/
(

1+2J1(γ(2σ1))
γ(2σ1)

−ν(σ1)TQ−1ν(σ1)
))

+σ2
nt
+
σ2nr

K

2

(

1+2J1(γ(2σ1))
γ(2σ1)

−ν(σ1)TQ−1ν(σ1)
) ,

(4.31)

where

Ψ(φm)=

∫

Θm

pm(θ)

(
J1(γ(φm+θ+σ1))

γ (φm+θ+σ1)
+
J1(γ(φm+θ−σ1))
γ (φm+θ−σ1)

− z (φm+θ)
T Q−1

ν(σ1)

)2

dθ, m = 1, . . . ,M.

(4.32)

Proof : See Appendix A.

Note that the integrals in (4.32) can be computed numerically with any desired accuracy by

using the most popular mathematical software packages such as Matlab or Mathematica, after

selecting the proper scattering distributions pm(θ), m = 1, . . . ,M . Moreover, when there is no

scattering (i.e., σm = 0, m = 1, . . . ,M), we have z(φn) = Qe2n−2 and, therefore,

z(φn)
TQ−1

ν(σ1) =
J1 (γ (φn + σ1))

γ (φn + σ1)
+
J1 (γ (φn − σ1))

γ (φn − σ1)
. (4.33)

Substituting (4.33) in (4.32), we obtain in such a case Ψ(φm) = 0 for m = 1, . . . ,M and, hence,

(4.31) boils down to

ξ̃wBD
=

p1
(
1 + 2z(0)TQ−1z(0)

(
1
K
− 1
))

∑M
m=2

pm
K

+
σ2nt

K
+ σ2

nr
(1− 2z(0)TQ−1z(0))

. (4.34)

As can be observed from (4.34), ξ̃wBD
is an increasing function of K that asymptotically ap-

proaches ξ̃max = p1/σ2
nr
. Note that ξ̃max is the maximum ASAINR ever achievable only when

the desired power is kept constant to p1 and the undesired one is reduced to its minimum level

ever, i.e., σ2
nr
, that is only by entirely nulling all the interferers. Simulations in Section 4.7 will

show that ξ̃wBD
≃ ξ̃max when σm m = 1, . . . ,M are relatively small to moderate in lightly- to
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moderately-scattered environments, respectively. This further proves the efficiency of the propo-

sed B-DCB.

Now, let us turn our attention to the ASAINR achieved by MCB ξ̃wM
. To the best of our

knowledge, ξ̃wM
is intractable in closed-form hampering thereby its rigorous analytical study.

Nevertheless, some interesting results could be obtained when K is large enough. As such, we

introduce the theorem below.

Theorem 4 : For any given pm(θ) and σm, m = 1, . . . ,M , when K is large enough we have

ξ̃wM
≃ p1ΨM(0)
∑M

m=2 pmΨM(φm) +
σ2nr

4

(
1− 2νTM(0)Q

−1
M νM(0)

)2
, (4.35)

where

ΨM(φm) =

∫

Θm

pm(θ)

(
J1(γ(φm + θ))

γ(φm + θ)
− ν

T
M (φm + θ)Q−1

MνM(0)

)2

dθ, (4.36)

QM is a (M −1)× (M −1) matrix with [QM]mn = J1(γ(φm+1−φn+1))/γ(φm+1−φn+1), and νM(θ)

is a (M−1)× 1 vector with [νM(θ)]m=J1(γ(θ − φm+1))/γ(θ − φm+1).

Proof : See Appendix B.

It follows from (4.31) and (4.35) that if there is no scattering (i.e., σm = 0, m = 1, . . . ,M),

we have Υ (wM) ≃ 1, when K is large enough. This means that, in such a case, MCB is also able

to achieve the maximum achievable ASAINR ξ̃max. This is expected since the monochromatic

assumption made to derive wM becomes valid when σm = 0, m = 1, . . . ,M . Note that even

though B-DCB and MCB achieve the same ASAINR in the absence of scattering, the former

still keeps a precious practical implementation advantage over the latter by its distributed nature.

Owing to this key feature, we will later prove in Section 4.6.2 that B-DCB turns out to be much

more efficient than MCB in terms of achieved throughput even when there is no scattering.

Additionally, if all sources are sufficiently far apart to satisfy

γ
(

φ̃m − φ̃n

)

≫ 3

4
m,n = 1, . . . , 2M, m 6= n, (4.37)

then we have

J1

(

γ
(

φ̃m − φ̃n

))

γ
(

φ̃m − φ̃n

) =

√

2

π

cos
(

γ
(

φ̃m − φ̃n

)

− 3π
4

)

γ
(

φ̃m − φ̃n

) , (4.38)
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and, hence, [ν(σ1)]m ≃ 0, m = 1, . . . , 2M and [νM(0)]m ≃ 1, m = 1, . . . ,M . Therefore, it holds

that ν(σ1)
TQ−1

ν(σ1) ≪ 1 and ν
T
M(0)Q

−1
M νM(0)≪1. Besides, if σm, m = 2, . . . ,M are relatively

small, i.e., in lightly- to moderately-scattered environments, one could easily show that both

Ψ(φm) ≃ 0 and ΨM(φm) ≃ 0, m = 1, . . . ,M . Consequently, the ASAINR gain of MCB against

B-DCB boils down to Υ (wM) ≃ ΨM(0) (1 + 2J1 (γ (2σ1)) /γ (2σ1))
2 /Ψ(0) for any σ1 and large

K. In particular, when σ1 is also small, the Taylor series expansion of J1 (γ (θ ± σ1)) /γ (θ ± σ1)

at θ yields

J1 (γ (θ ± σ1))

γ (θ ± σ1)
=

J1 (γ (θ))

γ (θ)
± σ1

(
J1 (γ (x))

γ (x)

)′ ∣
∣
∣
x=θ

, (4.39)

and, hence, Ψ(0) ≃ 4ΨM(0). Accordingly, it holds for large K that

Υ (wM) ≃
1

4

(

1 +0 F1

(

; 2;−4π2

(
R

λ

)2

σ2
1

))2

, (4.40)

where 0F1

(

; 2;−4π2
(
R
λ

)2
x2
)

is the hypergeometric function strictly decreasing at x near 0.

When σms are relatively small in lightly- to moderately-scattered environments, the ASAINR

gain of wBD against wM derived without accounting for scattering increases with σ1. This proves

the importance of accounting for scattering when designing the proposed B-DCB. Furthermore,

when σ1 is relatively large in highly-scattered environments, we easily prove using the approxi-

mation J1(γ(x)/γ(x) ≃ 0 for large x that Ψ(0) ≃ (1/
√
3σ1)

∫ (
√
3−1)σ1

−σ1 (J1(γ(θ))/γ(θ))
2 dθ if p1(θ)

is Uniform. In such a case, it holds then that Ψ(0) > ΨM(0) and, hence, Υ (wM) > 1 for any

large σ1. Consequently, the proposed B-DCB always outperforms its MCB counterpart when σ1

is relatively large in highly-scattered environments. We will later show in Section 4.7 that this

key result still holds when all σm, m = 1, . . . ,M are relatively large as well, thereby proving

even further B-DCB’s efficiency.

ASAINR gain of B-DCB vs. OCB

The theorem below establishes the OCB’s ASAINR.

Theorem 5 : For any given pm(θ) and σm, m = 1, . . . ,M , we have

ξ̃wO
=

p1
σ2nt

K
+ σ2

nr

, (4.41)
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when L1 is large enough 6.

Proof : See Appendix C.

It follows from (4.41) that ξ̃wO
≃ ξ̃max for large K regardless of pm(θ) and σm, m = 1, . . . ,M .

Therefore, OCB is able to achieve as expected the maximum achievable ASAINR in lightly-,

moderately-, and even highly-scattered environments. As discussed above, since the proposed

B-DCB also achieves ξ̃max when σm, m = 1, . . . ,M are small in lightly- to moderately-scattered

environments, then Υ (wO) ≃ 1 holds when K is large enough. However, for large σ1 in highly-

scattered environments, if (4.37) is satisfied, we have for large K

Υ (wO) ≃
1

Ψ (0)
≥ 1. (4.42)

The inequality in the RHS of (4.42) is due to the fact that J1(x)/(x) ≤ 1/2 for any real x. As can

be observed from (4.42), OCB outperforms B-DCB when σ1 is large in highly-scattered environ-

ments. Furthermore, the ASAINR gain of OCB against B-DCB increases with σ1, since Ψ (0) is a

decreasing function of the latter. Actually, we will later show numerically in Section 4.7 that these

observations hold as well when σm, m = 1, . . . ,M are large in highly-scattered environments.

Although OCB stands out to be the most efficient CB solution under ideal conditions, we will

prove in the next section that it severely deteriorates in performance under real-world conditions

to become less efficient than the proposed B-DCB even in highly-scattered environments.

4.5.2 Equivalence between ASAINR and ASINR

Since the ASINR is a more revealing metric than the ASAINR, we aim to investigate in this

section the relationship between ξ̃w and ξ̄w for w ∈ {wBD,wM,wO} for the sake of increasing

even more the high value of the results obtained so far.

As far as wBD is concerned, resorting to Theorem 1 and (4.19)-(4.21), we show for large K

that

∣
∣wH

BDhm
∣
∣
2p1−→

∣
∣
∣
∣
∣
∣
∣
∣

2
∑Lm

l=1 αl,m

(
J1(γ(φm+θl,m+σ1))
γ(φm+θl,m+σ1)

+
J1(γ(φm+θl,m−σ1))
γ(φm+θl,m−σ1)

− ν(σ1)
TQ−1z(φm + θl,m)

)

(

1 + 2J1(γ(2σ1))
γ(2σ1)

− ν(σ1)TQ−1ν(σ1)
)

∣
∣
∣
∣
∣
∣
∣
∣

2

,

(4.43)

6. Please note that Lm, m = 1, . . . ,M is in essence an artifact due to channel modeling by a limited number

of rays. Lm tends actually to infinity in practice.
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for m = 1, . . . ,M . Since limK→∞wH
BDΣwBD = 0, it follows from (4.43) that for large K ξwBD

converges with probability one to a ratio whose numerator and denominator are statistically

independent. To derive ξ̄wBD
, one must then apply the expectation operator to the RHS of

(4.43) which yields to the following expression :

4Ψ(φm)
(

1 + 2J1(γ(2σ1))
γ(2σ1)

− ν(σ1)TQ−1ν(σ1)
) . (4.44)

Using (4.31) and (4.44), we show that

ξ̄wBD

p1−→ ξ̃wBD
, (4.45)

when K is large enough. From (4.45), ξ̄wBD
and ξ̃wBD

have the same asymptotic behaviors thereby

making the ASAINR an equally meaningful performance measure. Furthermore, following similar

steps as above, one could show for large K that both ξ̄wM

p1−→ ξ̃wM
and ξ̄wO

p1−→ ξ̃wO
. As such, all

the results of the analytical comparisons between the three CB solutions previously established

in terms of ASAINR equally hold in terms of ASINR.

4.6 Performance analysis under real-world conditions

Accounting for the implementation errors and overhead incurred by each CB solution, we

compare herein the proposed B-DCB with its MCB and OCB benchmarks in terms of ASAINR

and throughput in Sections 4.6.1 and 4.6.2, respectively.

4.6.1 ASAINR CB comparisons

ASAINR gain of B-DCB vs. MCB

From (4.26), the B-DCB’s implementation requires that the m-th source estimates, quantizes

and sends φ̃2m and φ̃2m−1, thereby resulting in both angle estimation and quantization errors.

In such a case, [a(φ̃m)]k should be substituted by

[

â
(

φ̃m

)]

k
=
[

a
(

φ̃m

)]

k
e−j([eal(φ̃m)]k+[eaq(φ̃m)]k), (4.46)

where
[

eal(φ̃m)
]

k
and

[

eaq(φ̃m)
]

k
are the angle’s localization and quantization errors, respecti-

vely. Assuming that these errors are relatively small and resorting to the Taylor’s series expan-
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sion, one can readily prove that

[

â
(

φ̃m

)]

k
≃
[

a
(

φ̃m

)]

k
+
[

ea

(

φ̃m

)]

k
, (4.47)

where
[

ea(φ̃m)
]

k
=−j

[

a(φ̃m)
]

k

([

eal(φ̃m)
]

k
+
[

eaq(φ̃m)
]

k

)

with variance σ2
ea = σ2

al + σ2
aq. Using a

(Ba + 1)-bit uniform quantization, one can easily show that σ2
aq = 2−2Bs π

2

12
[32]. On the other

hand, to define σ2
al, we exploit the CRLB developed in [33] and, hence, σ2

al =
4 sin2( π

K )σ
2
nt

NKπ2 where

N is the number of samples used to estimate the angle. Using (4.47), Theorem 1, and the fact

that
[

eal(φ̃m)
]

k
s and

[

eaq(φ̃m)
]

k
s are zero-mean i.i.d random variables, we obtain for large K

that

χ̂
p1−→ 1 + 2

J1(γ(2σ1))

γ(2σ1)
+ 2σ2

ea , (4.48)

χ̂(±σ1)
p1−→ 2z(±σ1), (4.49)

D̂
p1−→ 2Q̂, (4.50)

where χ̂=
(

(â(σ1)+ â(−σ1))HΣ−1â(σ1)
)

/K, Q̂=Q+
σ2ea
2
I2M−2, χ̂(θ)=

(

Γ̂HΣ−1â(θ)
)

/K, and D̂ =
(

Λ−1+ Γ̂HΣ−1Γ̂
)

/K with Γ̂ =
[
â(φ̃3), â(φ̃4), . . . , â(φ̃2M−1), â(φ̃2M)

]
. It follows then from (4.48)-

(4.50) that the proposed B-DCB is given under real-word conditions by

ŵBD =
Σ−1

(

â (σ1) + â (−σ1)− Γ̂Ê−1
ν(σ1)

)

K
(

1 + 2J1(γ(2σ1))
γ(2σ1)

+ 2σ2
ea − ν(σ1)T Ê−1ν(σ1)

) . (4.51)

Using the fact that Q̂−1 ≃ Q−1− (σ2
ea/2)Q

−2 for small σ2
ea and following the derivation steps

similar to those in Appendix A, we prove that the achieved ASIANR using ŵBD is given as

ξ̃ŵBD
=

p1

(

1 +
(2σ2eaν(σ1)T Q̂−1

ν(σ1)+2(K−1)(Ψ(0)+σ2
e
Ψ̂(0)))

1+2
J1(γ(2σ1))

γ(2σ1)
+2σ2ea−ν(σ1)T Q̂−1ν(σ1)

)

M∑

m=2

pm

(

1+
2σ2eaν(σ1)

TQ̂−1ν(σ1)+2(K−1)(Ψ(φm)+σ2eΨ̂(φm))
1+2

J1(γ(2σ1))
γ(2σ1)

+2σ2ea−ν(σ1)T Q̂−1ν(σ1)

)

+σ2
nt
+
Kσ2nr

2

(

1+2J1(γ(2σ1))
γ(2σ1)

+2σ2
ea−ν(σ1)T Q̂−1ν(σ1)

) ,

(4.52)

where Ψ̂(φm)=
∫

Θm
pm(θ)z (φm+θ)

TQ−2
ν(σ1)

(
J1(γ(φm+θ+σ1))
γ(φm+θ+σ1)

+ J1(γ(φm+θ−σ1))
γ(φm+θ−σ1) − z (φm+θ)

TQ−1
ν(σ1)

)

dθ.

As can be observed from (4.52) and (4.31), ξ̃ŵBD
is reduced to ξ̃wBD

, when σ2
ea = 0. This is ex-

pected since, in such a case, wBD = ŵBD. Furthermore, from (4.52), if the condition in (4.37) is

satisfied, we have for small σm, m = 2 . . .M that

ξ̃ŵBD
=
p1
(

1 + 2(K − 1)Ψ(0)/
(

1 + 2J1(γ(2σ1))
γ(2σ1)

+ 2σ2
ea

))

∑M
m=2 pm + σ2

nt
+

Kσ2nr

2

(

1 + 2J1(γ(2σ1))
γ(2σ1)

+ 2σ2
ea

) . (4.53)
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It follows from (4.53) that the ASAINR achieved by the proposed B-DCB under real-world

conditions decreases with σ2
ea , as expected.

As far as MCB’s implementation is concerned, (4.27) implies that the m-th source must only

estimate, quantize, and send its direction φm. This process unfortunately results in both angle’s

estimation and quantization errors and, hence, the MCB solution becomes

ŵM =

(

Â1̄P1̄Â
H
1̄ +Σ

)−1

â(0)

âH(0)
(

Â1̄P1̄Â
H
1̄
+Σ

)−1

â(0)
, (4.54)

where Â1̄ , [â (φ2) . . . â (φM)]. Using (4.53) and following the same approach as in Appendix B

to derive ξ̃ŵM
, we show if the condition in (4.37) is satisfied that

Υ̂ (ŵM) ≃
ΨM(0)

(

1 + 2J1(γ(2σ1))
γ(2σ1)

+ 2σ2
ea

)2

Ψ(0)
(
1+ σ2

ea

)2 , (4.55)

holds for large K and small σm, m = 2, . . . ,M . In (4.55), Υ̂ (w) = ξ̃w/ξ̃ŵBD
and, hence,

Υ̂ (ŵM) ≃ 1 holds when there is no scattering. This is expected since both B-DCB and MCB’s

implementations require M quantized angle estimates and, therefore, equally suffer from their

estimation and quantization errors. Besides, since 1 + 2J1(γ(2σ1))/γ(2σ1) ≤ 2, Υ̂ (ŵM) is an

increasing function of σ2
ea . This implies that Υ̂ (ŵM) > Υ (wM) for any σ2

ea 6= 0. Therefore,

the ASAINR gain of B-DCB against MCB decreases under real-world conditions. This is ex-

pected since the B-DCB’s implementation requires more angular information than MCB and,

hence, is more affected by their estimation and quantization errors. Furthermore, from (4.55),

the ASAINR gain of B-DCB gainst MCB may turn into losses under exceptional circumstances

hard to justify in practice (e.g., low quantization level or very small Ba which results in large

quantization errors and, consequently, in a large σ2
ea).

ASAINR gain of B-DCB vs. OCB

From (4.28), the OCB’s implementation requires that them-th source estimates and quantizes

the channels [gm]k, k = 1 . . .K before sending them back to all K terminals, thereby resulting in

both estimation and quantization errors. Let us denote the resulting channel between the m-th

source and the k-th terminal by [ĝm]k = [gm]k + [ec,m]k where ec,m = eci,m + ecq,m and eci,m and

ecq,m are the channel identification and quantization errors, respectively. Let σ2
ec = σ2

ci + σ2
cq be

the variance of [ec,m]k where σ2
ci and σ

2
cq are those of [eci,m]k and [ecq,m]k, respectively. Assuming
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a (Bc+1)-bit uniform quantization 7, we have σ2
cq = 2−2Bc

g2Max

12
where gMax is the peak amplitude

of all channels’ realizations [gm]k for k = 1, . . . , K [32]. Based on [34], we have σ2
ci =

3
2

(
πσ2

nt
f̄D
) 2

3

where f̄D is the normalized Doppler frequency. Substituting hm by ĥm = f ⊙ ĝm in (4.28), we

obtain the OCB’s beamforming vector ŵO. Using the fact that [ec,m]ks are i.i.d random variables

independent from the channels [gm]ks and following the same derivations steps as in Appendix

C, we prove that

ξ̃ŵO
≃ p1
(
1 + σ2

ec

)
σ2
nr

, (4.56)

when K and Lm, m = 2, . . . ,M are large enough. It can be inferred from (4.52) and (4.56)

that the ASAINR gain Υ̂ (ŵO) achieved by OCB against the proposed B-DCB decreases when

f̄D increases (i.e., σ2
ec increases). Therefore, from (4.52) and (4.56), if σ2

ea is sufficiently small,

Υ̂ (ŵO) < 1 holds in lightly- to moderately-scattered environments. In such environments, the

proposed B-DCB is then able to outperform OCB. Simulations in Section 4.7 will later show that

this gain translates into a larger operational region in terms of AS values over which B-DCB is

favored against OCB. Furthermore, when f̄D is large enough to satisfy

f̄D >

(

2
3

((

σ2
nr
ξ̃ŵBD

)−1

− 1

)

− σ2
cq

) 3
2

πσ2
nt

, (4.57)

then we have from (4.52) and (4.56) that Υ̂ (ŵO) < 1 holds for any pm(θ) and σm, m = 1, . . . ,M .

Consequently, under real-world conditions and even in highly-scattered environments, the propo-

sed B-DCB is able to outperform OCB whose performance severely deteriorates at high Doppler.

This further proves once again the efficiency of the proposed CB solution.

For the sake of simplicity in the above comparisons, we have restricted the implementation

errors incurred by each CB solution to the extrinsic parameters from the network perspective

(i.e., φm, φ̃m, and gm). Indeed, we have assumed that the intrinsic parameters such as [f ]k and

(rk, ψk) are perfectly known at the k-th terminal. This simplification actually favors both MCB

and OCB at the expense of the proposed B-DCB which is oblivious to the intrinsic parameters

due to its distributed nature and, hence, the least affected by their estimation and quantization

errors. In fact, from the discussions made in Sections 4.3 and 4.4, [wBD]k is corrupted by the

estimation errors of [f ]k and (rk, ψk), like [wM]k and [wO]k, which are, however, additionally

7. For both the sake of simplicity and tractability, we resort here to the Uniform quantization of channel

estimates which is far from optimal in contrast for instance to the Grassmannian quantization scheme in [25].
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corrupted by estimation and quantization errors of all [f ]k′ and (rk′, ψk′), k
′ = 1, . . . , K, k′ 6= k.

If such errors were accounted for, the ASAINR advantage of the proposed B-DCB over both

MCB and OCB would have been far greater.

4.6.2 Link-level throughput CB comparisons

The ASAINR comparisons above, despite their valuable insights, face a major weakness in

that they do not factor in the different overhead costs incurred by each CB solution. Hence,

comparisons in terms of the link-level throughput become crucial. Assuming without loss of

generality BPSK-modulated transmissions using a Gaussian codebook, the link-level throughput

achieved by w is given by [35]

Tw = 0.5
(
RT − Roh

w

)
E {log2 (1 + ξw)} , (4.58)

where RT and Roh
w are the transmission bit rate and the overhead bit rate allocated to w’s

implementation. Obviously, Tw is intractable in closed-form, thereby hampering its analytical

study. However, exploiting the fact that log2(X) is a concave function, the Jensen’s inequality,

and the results in Section 4.5.2, we show that Tw is upper bounded by

T̃w = 0.5
(
RT−Roh

w

)
log2

(

1 + ξ̃w

)

, (4.59)

when K is large enough. In what follows, we propose, for the sake of analytical tractability, to

use (4.59) as an alternative to (4.58) when comparing the proposed B-DCB with its benchmarks.

The throughput gain achieved by any given beamformer w over the proposed B-DCB solution

is therefore given by

G (w) =
T̃w − T̃wBD

T̃wBD

. (4.60)

We will shortly see below, both by analysis and simulations, that this performance metric,

despite the simplifying assumptions above, is still able to provide a comparative framework that

is extremely insightful qualitatively.

Throughput gain of B-DCB vs. OCB

As discussed in Section 4.4, the proposed B-DCB implementation requires that the m-th

source broadcasts φ̃2m and φ̃2m−1. Each angle’s broadcast requires one time slot of Ba bits

transmitted at a localization refreshment rate fLR = 1/TLR where TLR is the refreshment period.

109



Since the latter is typically very large, we assume that fLR ≃ 0 and, hence, we have Roh
wBD

≃ 0.

The throughput achieved by the proposed B-DCB is then given by

T̃ŵBD
≃ 0.5RT log2

(

1 + ξ̃ŵBD

)

. (4.61)

On the other hand, the OCB’s implementation requires that the m-th source broadcasts all

[gm]k, k = 1 . . .K for all K terminals. This process requires K time slots of Bc bits transmitted

at an identification refreshment rate fIR = 1/TIR where TIR denotes the refreshment period. It is

noteworthy that TIR should satisfy TIR ≥ Tc where Tc = 0.423/fD is the coherence time and fD

is the maximum Doppler frequency. For simplicity, we assume fIR = 2fD. The overhead rate of

such process is then 2KMBcfD. Furthermore, from (4.28), the OCB’s implementation requires

also that the k-th terminal broadcasts [f ]k in the network. This is in contrast to the proposed

B-DCB whose implementation avoids such information exchange among terminals, thanks to

its distributed nature. Assuming that Bc bits are allocated to [f ]k and refreshed every TIR, the

OCB’s implementation overhead rate is then Roh
ŵO

= 2K(M + 1)BcfD and, hence, its achieved

throughput is

T̃ŵO
= 0.5RT

(
1− 2K(MI + 2)Bcf̄D

)
log2

(

1 + ξ̃ŵO

)

. (4.62)

As can be observed from (4.62), the throughput achieved by OCB decreases with the number of

terminals K as well as the number of interfering sources MI . Furthermore, since ξ̃ŵO
decreases

when f̄D increases, it follows then from the above result that T̃ŵO
also decreases if f̄D increases.

Interestingly, from (4.62), Bc has two contradictory effects on T̃ŵO
. Indeed, if Bc increases, the

OCB overhead rate increases and, hence, T̃ŵO
decreases. However, from (4.56), increasing Bc (i.e.,

decreasing σ2
ec) improves ξ̃ŵO

and, therefore, the achieved throughput T̃ŵO
. The result in (4.62)

could then be exploited to find the optimum number of quantization bits Bopt
c that maximizes the

OCB’s throughput. Moreover, since B-DCB’s throughput is, in contrast to OCB, independent

of K, MI , and f̄D, from (4.62) and (4.61), then G (ŵO) decreases if one of these parameters

increases. Furthermore, if (4.57) is satisfied, we easily show that G (ŵO) < 0. Simulations in

Section 4.7 will later show that this result translates into a wider operational region in terms of

AS values over which B-DCB is favored against OCB, reaching actually as much as 50 degrees

thereby covering about the entire span of AS values.
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Throughput gain of B-DCB vs. MCB

From (4.27), in order to properly implement MCB, the m-th source must only broadcast its

direction φm to the network and, additionally, terminals must exchange their positions as well as

their forward channels. This is in contrast to the proposed B-DCB whose implementation avoids

such an exchange due to its distributed nature. Assuming that each position should be refreshed

every TLR, which is typically large, it can be readily shown that MCB’s implementation overhead

rate is Roh
wM

= 2KfD and, therefore,

T̃ŵM
≃ 0.5RT

(
1− 2Kf̄D

)
log2

(

1 + ξ̃ŵM

)

. (4.63)

As can be observed from (4.63), in contrast to the proposed B-DCB, the throughput achieved

by MCB decreases when K and/or f̄D increase/s. Since ξ̃ŵM
≤ ξ̃ŵBD

for any pm and σm, m =

1, . . . ,M for practical values of Ba, then G (ŵO) ≤ 0 holds. From (4.61) and (4.63), this gain

decreases withK and fD. Consequently, under real-world conditions, the proposed B-DCB always

outperforms MCB in terms of throughput. This also holds true in scattering-free environments

(i.e., σm = 0 for m = 1, . . . ,M) where MCB and B-DCB achieves the same ASAINR, as proved

in Section 4.5.1.

4.7 Simulation Results

Computer simulations are provided to support the theoretical results. All empirical average

quantities are calculated over 106 random realizations of rk, ψk, [f ]k for k = 1, . . . , K and αl,m,

θl,m for l = 1, . . . , Lm. In all simulations, all sources have the same power p = 1 and σ2
nr

= σ2
nt

= 1.

The number of rays is Lm = 6, σm = σ and the scattering distribution pm(θ) is Uniform for

m = 1, . . . ,M , except in Fig. 4.2(b) where we consider a Gaussian distribution. Unless otherwise

stated, K = 20 and MI = 3 with [φ2, φ3, φ4] = [10, 15, 20] degrees.

Fig. 4.2 plots, under ideal conditions, the ASAINRs ξ̃wBD
, ξ̃wM

, and ξ̃wO
and the ASINRs

ξ̄wBD
, ξ̄wM

, and ξ̄wO
versus σ. The scattering distributions pm(θ), m = 1, . . . ,M are assumed

to be Uniform in Fig. 4.2(a) and Gaussian in Fig. 4.2(b). From these figures, we confirm that

the analytical ξ̃wBD
and ξ̃wO

match perfectly their empirical counterparts while (4.35) closely

approaches the empirical ξ̃wBD
for K = 20. Both figures show that, under ideal conditions, OCB

is able to reach the maximum achievable ASAINR ξ̃max, regardless of σ. This is due to the opti-
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mality of such a CB solution. Figs. 4.2(a) and 4.2(b) also show that the ASAINR ξ̃wBD
achieved

by the proposed B-DCB approaches ξ̃max in lightly to moderately-scattered environments where

σ is in the range of 17 degrees. When the scattering distributions are Uniform, this means that

the angle deviations θl,ms vary from approximately −30 to 30 degrees (i.e., an angular interval of

almost 60 degrees). Consequently, in lightly to moderately-scattered environments, the proposed

B-DCB is also optimal. However, the ASAINR ξ̃wBD
achieved by B-DCB severely deteriorates

in highly-scattered environments where σ > 20 degrees. Furthermore, we see from Figs. 4.2(a)

and 4.2(b) that the ASAINR performed by MCB, which is designed without accounting for

scattering, slightly decreases in lightly-scattered environments where σ is around 5 degrees, and

becomes soon unsatisfactory in moderately- to highly-scattered environments. In such settings,

the proposed B-DCB is able to achieve until 6 dB of ASAINR gain against MCB. All these

observations corroborate the analytical results of Section 4.5.1. Moreover, from these figures, the

curves of ξ̃wO
, ξ̃wBD

, and ξ̃wM
are almost indistinguishable from ξ̄wO

, ξ̄wBD
, and ξ̄wM

, respectively,

when K = 20. Indeed, as claimed in Section 4.5.2, the achieved ASAINRs and ASINRs become

equivalent when K is large.

Fig. 4.3 displays the analytical and the empirical ASAINR gains achieved by ŵM and ŵO

against ŵBD for different values of σ. Fig. 4.3(a) plots Υ̂(ŵM) versus Ba for σ ∈ {0, 5, 10, 15}
degrees while Fig. 4.3(b) plots Υ̂(ŵO) versus f̄D for σ ∈ {0, 17, 20, 25} degrees when Ba = Bc = 8

bits. From both figures, the analytical results of Section 4.6.1 closely approach the empirical

Υ̂(ŵM) and Υ̂(ŵO), respectively, forK = 20. It can be observed from Fig. 4.3(a) that Υ̂(ŵM) ≃ 1

holds regardless Ba when σ = 0 (i.e., there is no scattering). However, when σ 6= 0, Υ̂(ŵM)

increases if the quantization level Ba decreases and even slightly exceeds 1 when Ba becomes

very small (i.e., Ba ≤ 3). Therefore, under real-world conditions, the proposed B-DCB always

outperforms MCB except at unrealistic low quantization levels which are hard to justify in

practice. This corroborates the discussions made in Section 4.6.1. As discussed in Section 4.6.1,

from Fig. 4.3(b), the ASAINR gain Υ̂(ŵO) achieved by OCB against the proposed B-DCB

decreases with f̄D. This figure confirms and illustrates the existence of a threshold value of f̄D

beyond which the ASAINR gain achieved by OCB turns into losses. As expected, this threshold

whose expression is given by (4.57) increases with σ, since ξ̃ŵBD
decreases with the latter. For

instance, we find that Υ̂(ŵO) ≤ 1 when σ = 20 degrees if f̄D ≥ 0.025 or when σ = 25 degrees if

f̄D ≥ 0.087.
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Figure 4.2 – The analytical and the empirical ASAINRs achieved, under ideal conditions, by

MCB, OCB, and the proposed B-DCB as well as their empirical ASINRs versus σ for K = 20

when the scattering distributions are (a) : Uniform and (b) : Gaussian.
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Figure 4.3 – The analytical and the empirical ASAINR gains achieved, under real-world condi-

tions, by MCB and OCB against the proposed B-DCB vs. (a) : Ba and (b) : f̄D for K = 20 and

different values of σ.
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Fig. 4.4 plots G (ŵO) versus σ for different values of f̄D, MI , and Bc. It also plots GIDL (ŵO),

the throughput gain achieved by OCB against the proposed B-DCB under ideal conditions

(i.e, without accounting for any overhead cost or any quantization or estimation error). From

Figs. 4.4(a)-4.4(d), the OCB’s throughput gain decreases, as discussed in Section 4.6.2, not

only with f̄D but also with the number of interfering sources MI . From these figures, when

σ is relatively small in lightly- to moderately-scattered environments, the proposed B-DCB

always outperforms OCB in terms of achieved throughput. Actually, in such environments, their

performances are almost equal only under idealistic conditions that ignore the practical effects

of both overhead and estimation and quantization errors. Furthermore, we see from these figures

that there exists an optimum quantization level Bopt
c which maximizes the throughput (i.e.,

level that best minimizes combined losses due to errors and overhead) found to be equal to 3

and 1 at
(
f̄D,MI

)
set to (0.0001, 3) and (0.0002, 5), respectively. At these levels, OCB suffers

from throughput losses against the proposed B-DCB of about 6% and 22%, respectively, when

σ is relatively small in lightly- to moderately-scattered environments. As can be observed from

Fig. 4.4, these results translate into a larger operational region in terms of AS values over which

the proposed B-DCB is favored against OCB. This operational region increases from about 15

degrees under ideal conditions to about 17 and 22 degrees, respectively in the two examples

discussed above.

Fig. 4.5 displays G(ŵO) for different values of f̄D and K. In this figure, curves are plotted

after performing a numerical evaluation of the optimum quantization level Bopt
c for each pair of

values of f̄D and K. For instance, we find that Bopt
c = 2 bits when f̄D = 0.0005 and K = 20 while

Bopt
c = 1 bit when f̄D = 10−3 and K = 200. From this figure, the OCB’s throughput gain against

the proposed B-DCB decreases when f̄D and/or K increase/s. This gain may turn into losses for

sufficiently large K and/or high f̄D, even when σ is large. As can be observed from Fig. 4.5, this

result translates into a larger operational region of up to 50 degrees for large K and/or high f̄D

that amounts to angle deviations from almost −90 to 90 degrees (i.e., the entire angular span).

Besides, G(ŵO) which is nominally an increasing function of σ under ideal conditions, becomes

constant at −100% when K = 20 and f̄D = 0.005 or when K = 100 and f̄D = 0.001, and even a

decreasing function of σ, when K and/or f̄D are/is large. All these observations corroborate all

the elements of our discussion in Section 4.6.2.
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(ŵ
O
)

(%
)

 

 

G̃IDL (ŵO)
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Figure 4.4 – The throughput gain G(ŵO) achieved by OCB versus σ for different values of f̄D,

MI , and Bc.
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Figure 4.5 – The throughput gain G(ŵO) achieved by OCB versus σ for different values of f̄D
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4.8 Conclusion

In this paper, a dual-hop communication from a source surrounded by MI interferences to a

receiver was considered. In the first time slot, all sources send their signals to the network while, in

the second time slot, the terminals multiply the received signal by their respective beamforming

weights and forward the resulting signals to the receiver. These weights were designed so as to

minimize the interferences plus noises’ powers while maintaining the received power from the

source to a constant level. We showed, however, that they are intractable in closed-form due to

the complexity of the polychromatic channels arising from the presence of scattering. By resorting

to a two-ray channel approximation proved valid at relatively low AS values, we were able to

derive the new optimum weights and prove that they could be locally computed at each terminal,

thereby complying with the distributed feature of the network of interest. The so-obtained B-

DCB was then analyzed and compared in performance to both MCB, whose design does not

account for scattering, and OCB. Comparisons were made under both ideal and real-world

conditions where we accounted for implementation errors and the overhead incurred by each CB

solution. They revealed that the proposed B-DCB always outperforms MCB in practice ; and

that it approaches OCB in lightly- to moderately-scattered environments under ideal conditions

and outperforms it under real-world conditions even in highly-scattered environments. In such

conditions, indeed, the B-DCB operational regions in terms of AS values over which it is favored

against OCB could reach until 50 degrees and, hence, cover about the entire span of AS values.

Appendix A : Proof of Theorem 3

From (4.26), we have

E
{∣
∣wH

BDhm
∣
∣
2
}

=
E {η1}+ E {η2}+ E {η∗2}+ E {η3}

K2
(

1 + 2J1(γ(2σ1))
γ(2σ1)

− ν(σ1)TQ−1ν(σ1)
)2 , (4.64)

where η1 = ν(σ1)
TQ−1ΓHΣ−1hmh

H
mΣ

−1ΓQ−1
ν(σ1), η2 = (a (σθ) + a (−σθ))H Σ−1hmh

H
mΣ

−1Γ

Q−1
ν(σ1), and η3 = (a (σθ) + a (−σθ))H Σ−1hmh

H
mΣ

−1 (a (σθ) + a (−σθ)). Let us first focus on
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E {η3}. From assumption A1, we have

Eαl,m
{η1}=

L∑

l=1

1

L

(

ν (σ1)
T Q−1ΓHΣ−1a (φm + θl,m)

) (
a(φm + θl,m)

HΣ−1ΓQ−1
ν(σ1)

)

=
L∑

l=1

1

L

(
2M−2∑

p=1

[
ν(σ1)

TQ−1]

p

[
Q−1

ν(σ1)
]

p
ζp+

2M−2∑

p=1

2M−2∑

n=1,n 6=p

[
ν(σ1)

TQ−1]

p

[
Q−1

ν(σ1)
]

p
δn,p

)

,

(4.65)

where ζp =
[
ΓHΣ−1a(φm + θl,m)

]

p

[
a(φm + θl,m)

HΣ−1Γ
]

p
and δp,n =

[
ΓHΣ−1a(φm+θl,m)

]

p

[
a(φm+

θl,m)
HΣ−1Γ

]

n
. ζp could be equivalently rewritten as

ζp =

(
K∑

k=1

[
ΓH
]

pk
[a(φm + θl,m)]k

[Σ]kk

)(
K∑

s=1

[
a(φm + θl,m)

H
]

s
[Γ]sp

[Σ]ss

)

= K+

K∑

k=1

e
−jγ(φm+θl,m−φ̃p) sin

(

ψk−
φm+θl,m+φ̃p

2

)

×
K∑

s=1,s 6=k
e
jγ(φm+θl,m−φ̃p) sin

(

ψk−
φm+θl,m+φ̃p

2

)

. (4.66)

Using the fact that rks and ψks are i.i.d random variables and 2
π

∫ 1

−1
ejγ(φ)z

√
1− z2dz = 2J1(γ(φ))

γ(φ)
,

we show that

Erk ,ψk
{ζp} = K + 2K(K − 1) [z (φm + θl,m)]p

[
zT (φm + θl,m)

]

p
. (4.67)

We also show that

Eαl,m,rk,ψk
{δp,n} = 2K [Q]pq + 2K(K − 1) [z (φm + θl,m)]p

[
zT (φm + θl,m)

]

n
. (4.68)

It follows then from (4.67) and (4.68) that

Eαl,m,rk,ψk
{η1} =

L∑

l=1

1

L

(

2Kν(σ1)
TQ−1

ν(σ1) + 4K(K − 1)
(
zT (φm+θl,m)Q

−1
ν(σ1)

)2
)

, (4.69)

since [Q]pp = 1/2. Furthermore, following the same approach above, we prove that

Eαl,m,rk,ψk
{η2} =

L∑

l=1

1

L

(

2Kν(σ1)
TQ−1

ν(σ1) + 4K(K−1)zT (φm + θl,m)Q
−1
ν(σ1)

(
J1(γ(φm+θl,m+σ1))

γ (φm+θl,m+σ1)
+
J1(γ(φm+θl,m−σ1))
γ (φm+θl,m−σ1)

))

, (4.70)

and

Eαl,m,rk,ψk
{η3}=

L∑

l=1

1

L

(

2Kν(σ1)
TQ−1

ν(σ1)+4K(K−1)
(
J1(γ(φm+θl,m+σ1))

γ (φm+θl,m+σ1)
+
J1(γ(φm+θl,m−σ1))
γ (φm+θl,m−σ1)

)2
)

.

(4.71)
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Note that Eαl,m,rk,ψk
{η2} = Eαl,m,rk,ψk

{η∗2} since Erk,ψk
{η2} is real. Finally, applying the ex-

pectation with respect to θl,ms over both sides of (4.69)-(4.71) and substituting the resulting

equations in (4.64), E
{∣
∣wH

BDhm
∣
∣2
}

is obtained for m = 1, . . . ,M . On the other hand, it can be

shown that

E
{
wH

BDΣwBD

}
=

2

K
(

1 + 2J1(γ(2σ1))
γ(2σ1)

− ν(σ1)TQ−1ν(σ1)
) . (4.72)

Using E
{∣
∣wH

BDhm
∣
∣2
}

along with the latter result, we obtain the expression of ξ̃wBD
.

Appendix B : Proof of Theorem 4

It follows from (4.30) that

lim
K→∞

ξ̃wM
=

p1E
{

lim
K→∞

∣
∣wH

Mh1

∣
∣
2
}

∑M
m=2 pmE

{

lim
K→∞

|wH
Mhm|

2
}

+ σ2
nt
E
{

lim
K→∞

wH
MΣwM

}

+σ2
nr

. (4.73)

Using the matrix inversion lemma to break the matrix
(
A1̄P1̄A

H
1̄ + σ2

nt
Σ
)−1

into several terms

yields

wH
Mhm =

(

a(0)HΣ−1hm − a(0)HΣ−1A1̄

(
A1̄P1̄A

H
1̄

)−1
AH

1̄ Σ
−1hm

)

K − a(0)HΣ−1A1̄

(
A1̄P1̄A

H
1̄

)−1
AH

1̄
Σ−1a(0)H

, (4.74)

for m = 1, . . . ,M . It follows from Theorem 1 that a(0)HΣ−1hm

K

p1−→ 2
∑L

l=1αl,m
J1(γ(φm+θl,m))
γ(φm+θl,m)

,

AH
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Σ−1a(0)

K

p1−→ 2νM(0),
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H
1̄

K

p1−→ 2QM, and
AH

1̄
Σ−1hm

K

p1−→ 2
∑L

l=1αl,mνM(φm + θm,l) when

K → ∞. Using these results in (4.74), we obtain for large K

∣
∣wH

Mhm
∣
∣
2 p1−→

4

∣
∣
∣
∣

∑L
l=1αl,m

(
J1(γ(φm+θl,m))
γ(φm+θl,m)

− ν
T
M(0)Q

−1
M νM(φm + θl,m)

)∣
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1− 2νTM(0)Q
−1
M νM(0)

. (4.75)

On the other hand, following similar steps as above, one could easily show that limK→∞wH
MΣwM =

0. Furthermore, it can be inferred from (4.75) that

Eαl,m

{∣
∣wH

Mhm
∣
∣
2
}

=

4

(
J1(γ(φm+θl,m))
γ(φm+θl,m)

− ν
T
M(0)Q

−1
M νM(φm + θl,m)

)2

1− 2νTM(0)Q
−1
M νM(0)

. (4.76)

Note that we resort to assumption A1 in (4.76). Applying the expectation with respect to θl,ms

over both sides of (4.76) yields E
{∣
∣wH

Mhm
∣
∣2
}

= 4ΨM(φm)/(1−2νTM(0)Q
−1
M νM(0)). On the other

hand, following similar steps as above, one could easily show that limK→∞wH
MΣwM = 0 and,

therefore, (4.35) is obtained.
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Appendix C : Proof of Theorem 5

It is straightforward to show from (4.28) that wH
Oh1 = 1. However, wH

Ohm is given by

wH
Ohm =

hH1 Σ
−1hm − hH1 Σ

−1H1̄

(
H1̄P1̄H

H
1̄ + σ2

nt
Σ
)−1

HH
1̄ Σ

−1hm

hH1 Σ
−1h1 − hH1 Σ

−1H1̄

(
H1̄P1̄H

H
1̄
+ σ2

nt
Σ
)−1

HH
1̄
Σ−1h1

, (4.77)

form = 2, . . . ,M . On the other hand, exploiting the strong law of large numbers and assumption

A1, we show for large L1 that
hH
1 Σ−1h1

L1

p1−→ K
L1
,

hH
1 Σ−1hm

L1

p1−→ 0, and
HH

1̄
Σ−1h1

L1

p1−→ 0. It follows

from these results that wH
Ohm

p1−→ 0 for m = 2, . . . ,M . Furthermore, using the latter results, we

prove for large L1 that wH
OΣwO

p1−→ K and, therefore, (4.41) is obtained.
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[22] S. Zaidi and S. Affes, “Distributed collaborative beamforming with minimum overhead

for local scattering environments,” Proc. IEEE IWCMC’2012, Cyprus, Aug. 27-31, 2012.

Invited Paper.

[23] K. Zarifi, S. Zaidi, S. Affes, and A. Ghrayeb, “A distributed amplify-and-forward beamfor-

ming technique in wireless sensor networks,” IEEE Trans. Signal Process., vol. 59, pp. 3657-

3674, Aug. 2011.

[24] K. Zarifi, S. Affes, and A. Ghrayeb, “Collaborative null-steering beamforming for uniformly

distrubuted wireless sensor networks,” IEEE Trans. Signal Process., vol. 58, pp. 1889-1903,

Mar. 2010.

[25] D. J. Love, R. W. Heath, and T. Strohmer, “Grassmannian beamforming for multiple-

input multiple-output wireless systems,” IEEE Trans. Inf. Theory, vol. 49, pp. 2735-2747,

Oct. 2003.

[26] S. Zaidi and S. Affes, “Spectrum-Efficient Distributed Collaborative Beamforming in the

Presence of Local Scattering and Interference,” Proc. IEEE GLOBECOM’2012, Anaheim,

USA, Dec. 3-7, 2012.

[27] D. Astly and B. Ottersten, “The effects of local scattering on direction of arrival estimation

with MUSIC,” IEEE Trans. Signal Process., vol. 47, pp. 3220-3234, Dec. 1999.

[28] M. Bengtsson and B. Ottersten, “Low-complexity estimators for distributed sources,” IEEE

Trans. Signal Process., vol. 48, pp. 2185-2194, Aug. 2000.

[29] M. Souden, S. Affes, and J. Benesty, “A two-stage approach to estimate the angles of arrival

and the angular spreads of locally scattered sources,” IEEE Trans. Signal Process., vol. 56,

pp. 1968-1983, May 2008.

[30] B. D. Van Veen and K. M. Buckley, “Beamforming : A versatile approach to spatial filte-

ring,” IEEE ASSP Mag., vol. 5, pp. 4-24, Apr. 1988.

[31] S. Affes, S. Gazor, and Y. Grenier, “An algorithm for multisource beamforming and multi-

target tracking,” IEEE Trans. Signal Process., vol. 44, pp. 1512-1522, June 1996.

124



[32] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing, 2nd

edition, Prentice Hall, New Jersey, USA, 1999.

[33] F. Bellili, S. B. Hassen, S. Affes, and A. Stéphenne, “Cramer-Rao lower bounds of DOA esti-
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Chapitre 5

Power-Constrained Distributed

Implementation of SNR-Optimal

Collaborative Beamforming in

Highly-Scattered Environments

Slim Zaidi, Bouthaina Hmidet, and Sofiène Affes

IEEE Wireless Communications Letter, vol. 4, pp. 457-460, May 2015.

Résumé : Ce chapitre propose une solution DCB novatrice capable non seulement

d’approcher pour toute valeurs de AS le RSB optimal réalisé par OCB mais, aussi,

de s’implémenter moyennant une quantité minimale d’overhead. La conception de

ce DCB est rendu possible grâce à une approximation efficace à grandes valeurs de

K des poids de OCB. Il est prouvé que ce DCB polychromatique (”polychromatic

DCB (P-DCB)”) surpasse en termes de RSB M-DCB et B-DCB surtout dans les

environments à ASs élevés. Il est aussi prouvé que le RSB de P-DCB perd une

fraction de dB lorsque K est aussi peu que 5 alors qu’il est pratiquement le même

que celui réalisé par OCB lorsque K s’approche de 20.
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Abstract

In this paper, we consider a power-constrained signal-to-noise ratio (SNR)-optimal collabo-

rative beamformer (OCB) design in highly-scattered environments. We show that its weights

depend on non-local CSI (NLCSI), thereby hampering its implementation in a distributed fa-

shion. Exploiting, the polychromatic (i.e., multi-ray) structure of scattered channels, we propose

a novel distributed CB (DCB) design whose weights depends solely on local CSI (LCSI) and

prove that it performs nearly as well as its NLCSI-based counterpart. Furthermore, we prove

that the proposed LCSI-based DCB outperforms two other distributed-implementation bench-

marks : the monochromatic (i.e., single-ray) DCB (M-DCB) whose design ignores the presence

of scattering and the bichromatic (i.e., two-ray) DCB (B-DCB) which relies on an efficient

polychromatic-channel approximation by two rays when the angular spread is relatively small.

5.1 Introduction

Due to its strong potential in increasing link reliability, transmission coverage, and wireless

networks capacity, collaborative beamforming (CB) has garnered the attention of the research

community [1], [2], [4]-[8]. Depending on their implementation modes, the CB techniques pro-

posed so far could be broadly categorized either as local CSI (LCSI)-based (i.e., distributed)

CB, namely the monochromatic DCB (M-DCB) and the bichromatic DCB (B-DCB), or non-

local CSI (NLCSI)-based (i.e., non-distributed) CB, namely the optimal CB. When designing

M-DCB, authors in [1], [2] ignored scattering present in almost all real-world scenarios but very

few ones, still offering both practical and investigation values, in which they have consequently

assumed a simple monochromatic (i.e., single-ray) channel. In scattered channels, however, said

to be polychromatic (i.e., multi-ray) and characterized by the angular spread (AS) [3]-[7] due

to channel mismatch, the performance of M-DCB slightly deteriorates in areas where the AS is

small and becomes unsatisfactory when it grows large [4]-[7]. In contrast, B-DCB in [5] which

accounts for scattering by an efficient two-ray approximation of the polychromatic channel at

relatively low AS not only outperforms M-DCB, but also achieves optimal performance at small

to moderate AS values in lightly- to moderately-scattered environments. Nevertheless, its per-

formance substantially deteriorates in highly-scattered environments [5]. OCB which is able to

achieve optimal performance even in highly-scattered environments is NLCSI-based and cannot
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be implemented in a truly distributed fashion over a network of independent wireless termi-

nals [6]. Indeed, the latter must estimate and broadcast their own channels at the expense of an

overhead that becomes prohibitive for a large number of terminals and/or high Doppler [6], [7].

The aim of this work is then to design a novel DCB implementation that requires a minimum

overhead cost and, further, is able to achieve optimal performance for any AS values, thereby pu-

shing farther the frontier of the DCB’s real-world applicability range to include highly-scattered

environments.

In this paper, we consider a power-constrained OCB design that maximizes, in highly-

scattered environments, the received SNR. We verify that its direct implementation is NLCSI-

based. Exploiting the polychromatic structure of scattered channels, we propose a novel LCSI-

based DCB implementation that requires a minimum overhead cost and, further, performs nearly

as well as its NLCSI-based OCB counterpart. Furthermore, we prove that the proposed LCSI-

based DCB always outperforms both M-DCB and B-DCB.

5.2 System model

Consider a wireless network comprised of K single-antenna terminals uniformly and inde-

pendently distributed on the disc D(O,R). A source S and a receiver Rx are located in the

same plane containing D(O,R), as illustrated in Fig. 5.1. Due to high pathloss attenuation, we

assume that there is no direct link from S to Rx. Let (rk, ψk) and (As, φs) denote the polar

coordinates of the k-th terminal and the source, respectively. The latter is assumed, without loss

of generality, to be at φs = 0 and to be located relatively far from the terminals, i.e., As ≫ R.

Furthermore, the following assumptions are considered throughout the paper : A1) The

backward channel gain [g]k from the source to the k-th terminal is polychromatic due to the

presence of scattering [3]-[7]. Exploiting the fact that As ≫ R, [g]k could be represented as [g]k =
∑L

l=1 αle
−j 2π

λ
rk cos(θl−ψk) where λ is the wavelength, L is the number of impinging chromatics (i.e.,

rays), and αl and θl are the l-th chromatic’s complex amplitude and angle deviation from φs,

respectively. The αl, l = 1, . . . , L and θl, l = 1, . . . , L are i.i.d zero-mean random variables. The

αls have a variance 1/L while the θls have a probability density function (pdf) (i.e., scattering or

angular distribution) p(θ) and a standard deviation (i.e., angular spread (AS)) σθ. All θls and αls

are mutually independent. A2) The terminals’ forward channels to the receiver [f ]k, k = 1, . . . , K
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Figure 5.1 – System model.

are zero-mean unit-variance circular Gaussian random variables [5]-[8]. A3) The source signal

s is narrow-band with unit power while noises at the terminals and the receiver are zero-mean

Gaussian random variables with variances σv
2 and σn

2, respectively [5]-[9]. A4) The k-th terminal

is aware of its own coordinates (rk, ψk), its forward channel [f ]k, its backward channel [g]k, and

the wavelength λ while being oblivious to the locations and the forward channels of all other

terminals in the network [1], [2], [5].

A dual-hop communication, where the k-th terminal multiplies the signal received from S by

its weight wk and forwards it to Rx, is established. The received signal at Rx is given by

r = swHh+wH(f ⊙ v) + n, (5.1)

where w , [w1 . . . wK ] is the beamforming vector, h , f ⊙ g with f , [[f ]1 . . . [f ]K ]
T , g ,

[[g]1 . . . [g]K ]
T , and ⊙ is the element-wise product, and v and n are the terminals’ noise vector

and the receiver noise, respectively. Several CB designs exist in the literature, but we are only

concerned herein by the power-Constrained SNR-optimal design [8].

5.3 Power-Constrained SNR-optimal CB

Let wO denote the power-constrained SNR-optimal CB (OCB) which satisfies the following

optimization problem :

wO = argmax ξw s.t. PT ≤ Pmax, (5.2)

where, from (5.1), ξw = Pw,s/Pw,n is the achieved SNR using w with Pw,s = |wHh|2 is the

received power from S, Pw,n = σ2
vw

HΛw + σ2
n is the noises’ power, Λ , diag{|[f ]1|2 . . . |[f ]K |2},
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and PT = wHDw is the terminals’ total transmit power where D , diag{|[g]1|2 . . . |[g]K |2}+σ2
vI.

Note that wO should satisfy the constraint in (5.2) with equality 1. Otherwise, one could find

ǫ > 1 such that wǫ = ǫwO verifies PT = Pmax. In such a case, since dξwǫ
/dǫ > 0 for any ǫ > 0,

the SNR achieved by wǫ would be higher than that achieved by wO contradicting thereby the

optimality of the latter. It is straightforward to show that the optimal solution of (5.2) is

wO =

(
Pmax

Kη

) 1
2

Λ̃−1h, (5.3)

where η =
(

hHΛ̃−1DΛ̃−1h
)

/K with Λ̃ = Λ + βI and β = σ2
n/ (σ

2
vPmax). Nevertheless, the

implementation of OCB according to (5.3) is NLCSI-based since the computation of its beam-

forming weight [wO]k at the k-th terminal depends on information unavailable locally, namely

[g]k, k = 1, . . . , K and [f ]k, k = 1, . . . , K as well as Pmax/K and σ2
n/Pmax. In order to implement

wO in the considered network, each terminal should then estimate its backward channel and

broadcast it over the network along with its forward channel. This process results in an undesi-

red overhead which becomes prohibitive especially for large K and/or high backward channel’s

Doppler, resulting thereby in substantial throughput losses [6]. Therefore, OCB is unsuitable for

implementation in the network of interest, unless relatively exhaustive overhead exchange over

the air were acceptable or if wO were to be implemented in conventional beamforming, i.e., over

a unique physical terminal that connects to a K-dimensional distributed antenna system (DAS).

5.4 Proposed DCB implementation

In order to reduce the excessively large implementation overhead incurred by the NLCSI-

based OCB, we resort to substitute η with a quantity that could be locally computed by all

terminals at a negligible overhead cost. This quantity must also well-approximate η to preserve

the optimality of the solution in (5.3). In this paper, we propose to use ηD = limK→∞ η in lieu

of η. First, we show that

η =
1

K

K∑

k=1

|[f ]k|2
(|[f ]k|2 + β)2

L∑

l=1

L∑

m=1

αlα
∗
me

j4π sin
(

θl−θm
2

)

zk , (5.4)

1. The power budget at each terminal is assumed here greater than Pmax.
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where zk = (rk/λ) sin ((θl + θm) /2− ψk). Using the strong law of large numbers and the fact

that rk, ψk and [f ]k are all mutually statistically independent, we have

ηD = lim
K→∞

η
p1−→ ρ1

L∑

l=1

L∑

m=1

αlα
∗
m∆(θl − θm) , (5.5)

where
p1−→ stands for the convergence with probability one, ρ1 = E

{

|f |2/(|f |2+β)2
}

=−(1+

β)eβEi(−β) −1, Ei(x) is the exponential integral function, and ∆ (φ) = E
{
ej4π sin(φ/2)z

}
. To

derive the closed-form expression of ∆ (φ), note that we require the zk’s pdf fzk(z) which is

closely related to the terminals’ spatial distribution. In this paper, we are only concerned by the

main distributions frequently used in the context of collaborative beamforming, i.e., the Uniform

and Gaussian distributions. It can be shown that [1], [2]

fzk(z) =







2λ
Rπ

√

1−
(
λ
R
z
)2
, −R

λ
≤ z ≤ R

λ
Uniform

λ√
2πσ

e−
(λz)2

2σ2 , −∞ ≤ z ≤ ∞ Gaussian
, (5.6)

where σ2 is the variance of the Gaussian random variables corresponding to the terminals’

cartesian coordinates. Using (5.6) we obtain

∆ (φ) =







2
J1(4πR

λ
sin(φ/2))

4πR
λ
sin(φ/2)

, φ 6= 0

1, φ = 0
Uniform

e−8(π σ
λ
sin(φ/2))

2

, Gaussian

, (5.7)

where J1(x) is the first-order Bessel function of the first kind. Substituting η with ηD in (5.3),

we introduce

[wP]k =

(
Pmax

KηD

) 1
2 [f ]k[g]k

(|[f ]k|2 + β)2
, (5.8)

the k-th terminal’s beamforming weight of our proposed DCB. From (5.8), in contrast with

[wO]k, [wP]k solely depends on the forward and backward channels [f ]k and [g]k, respectively,

which can be locally estimated. Therefore, according to (5.8), the proposed beamformer’s im-

plementation is LCSI-based and requires only a negligible overhead that does not grow neither

with K nor with the Doppler, namely Pmax/K, σ2
n/Pmax, and R or σ depending on the ter-

minals’ spatial distribution. Consequently, the proposed LCSI-based DCB is much more sui-

table for a distributed implementation over the considered network than its NLCSI-based OCB

counterpart. Furthermore, we will prove in the sequel that it performs nearly as well as the

latter even for a relatively small number of terminals. We will also compare it with two other
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LCSI-based DCB benchmarks, namely M-DCB and the recently developed B-DCB. The for-

mer’s design ignores scattering and assumes a monochromatic channel and, hence, its CB so-

lution reduces from (5.8) to wM =
(
Pmax

Kρ1

) 1
2
Λ̃−1a(0) where a(φ) , [[a(θ)]1 . . . [a(θ)]K ]

T with

[a (θ)]k = [f ]ke
−j(2π/λ)rk cos(θ−ψk). In turn, the B-DCB design whose CB solution reduces from

(5.8) to wBD =
(
Pmax

Kρ1

) 1
2 Λ̃−1(a(σθ)+a(−σθ))

(1+∆(2σθ))
relies on a polychromatic channel’s approximation by

two chromatics at ±σθ when the latter is relatively small.

5.5 Performance analysis of the proposed DCB

Let ξ̄w = E {Pw,s/Pw,n} be the achieved average SNR (ASNR) using the CB vector w. Note

that the expectation is taken with respect to rk, ψk and [f ]k for k = 1, . . . , K and αl and θl for

l = 1, . . . , L. Since to the best of our knowledge, ξ̄w for w ∈ {wP,wO,wM} is untractable in

closed-form thereby hampering its study rigorously, we propose to adopt instead the average-

signal-to-average-noise ratio (ASANR) ξ̃w = E {Pw,s} /E {Pw,n} as a performance measure to

gauge the proposed DCB against its benchmarks [5]-[7].

5.5.1 Proposed DCB vs M-DCB

Following derivation steps similar to those in [5, Appendix A] and exploiting the fact that,

according to A1, we have

E {α∗
l αm} =







0 l 6= m

1
L

l = m
, (5.9)

we obtain E {PwP,s} = Pmax

ρ1
(ρ2 + (K − 1)ρ23) where ρ2 = E{|[f ]k|4/(|[f ]k|2 + β)2} = 1 + β +

β(2 + β)eβEi(−β) and ρ3 = E {|[f ]k|2/ (|[f ]k|2 + β)} = 1 + βeβEi(−β). Furthermore, to de-

rive E {PwP,n}, one must first take the expectation only over the rks, ψks and [f ]ks yielding to

Erk ,ψk,[f ]k {PwP,n} = σ2
v

Pmaxρ2
∑L

l,m=1αlα
∗

m∆(θl−θm)

ηD
+ σ2

n= σ2
v
Pmaxρ2
ρ1

+ σ2
n. It directly follows from the

latter results that the achieved ASANR using the proposed DCB is

ξ̃wP
=
ρ2 + (K − 1)ρ23
σ2
v (ρ2 + βρ1)

. (5.10)

As can be observed from (5.10), ξ̃wP
linearly increases with the number of terminals K. More

importantly, from the latter result, ξ̃wP
does not depend on the AS σθ meaning that the propo-
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sed DCB’s performance is not affected by the scattering phenomenon even in highly-scattered

environments where σθ is large.

Now, let us focus on the achieved ASANR ξ̃wM
using M-DCB. Following the same approach

above, one can prove that

ξ̃wM
=
ρ2 + (K − 1)ρ23

∫

Θ
p(θ)∆2 (θ) dθ

σ2
v (ρ2 + βρ1)

, (5.11)

where Θ is the span of the pdf p(θ) over which the integral is calculated 2. Since ∆ (0) = 1 regard-

less of the terminals spatial distribution, it follows from (5.10) and (5.11) that when there is no

scattering (i.e., σθ = 0), ξ̃wM
= ξ̃wP

. In such a case, indeed,wP = wM

∑

l=1 αl/
√∑

l=1 αl
∑

m=1 α
∗
m

and, hence, PwP,s = PwM,s

∑

l=1 αl
∑

m=1 α
∗
m. Since according to (5.9) E {

∑

l=1 αl
∑

m=1 α
∗
m} = 1,

we have E {PwP,s} = E {PwM,s}. Furthermore, it is straightforward to show that PwP,n = PwM,n

when σθ = 0 and, therefore, M-DCB achieves the same ASANR as the proposed DCB when

there is no scattering. This is in fact expected since the assumption of monochromatic channel

made when designing the monochromatic solution is valid in such a case. Nevertheless, assuming

that the terminals’s spatial distribution and the scattering distribution p(θ) are both Uniform,

it can be shown for relatively small AS that [10]

ξ̃wM
≃
ρ2 + (K − 1)ρ233F4

(
1
2
, 2, 3

2
; 3
2
, 2, 2, 3,−12π2

(
R
λ

)2
σ2
θ

)

σ2
v (ρ2 + βρ1)

, (5.12)

where 3F4

(
1
2
, 2, 3

2
; 3
2
, 2, 2, 3,−12π2(R/λ)2x2

)
is a decreasing function of x whose peak is reached at

0 known as hypergeometric function. It can be inferred from (5.12), that the ASANR achieved by

the M-DCB decreases when the AS σθ and/orR/λ increases. This is in contrast with the proposed

DCB whose ASANR remains constant for any σθ and R/λ. Therefore, the proposed DCB is more

robust against scattering than M-DCB whose design ignores the presence of scattering thereby

resulting in a channel mismatch that causes severe ASANR deterioration.

5.5.2 Proposed DCB vs OCB

As Pw
O
,s and Pw

O
,n are a very complicated functions of several random valuables, it turns

out that it is impossible to derive the ASANR ξ̃wO
in closed-form. However, a very interesting

2. In the Gaussian and Uniform distribution cases, Θ = [− inf,+ inf] and Θ = [−
√
3σθ,+

√
3σθ], respectively.
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result could be obtained for large K. Indeed, one can show that

lim
K→∞

ξ̃wO

ξ̃wP

=

(ρ2+βρ1) E

{

1
ηD

(

limK→∞
hHΛ̃−1h

K

)2
}

ρ23

(

E
{

1
ηD

limK→∞
hHΛ̃−1ΛΛ̃−1h

K

}

+ β
)

p1−→
(ρ2+βρ1)

ρ1
E
{(
∑L

l,m=1αlα
∗
m∆(θl−θm)

)}

ρ2
ρ1

+ β

= 1, (5.13)

where we exploit (5.9) as well as the law of large numbers by which one can prove that

limK→∞ hHΛ̃−1 h/K = ρ3
∑L

l,m=1αlα
∗
m∆(θl−θm) and limK→∞ hHΛ̃−1ΛΛ̃−1h/K = ρ2

∑L
l,m=1αlα

∗
m

∆(θl−θm). For large K, the latter result proves that the proposed LCSI-based DCB is able to

achieve the same ASANR as the NLCSI-based OCB and, therefore, is able to reach optimality

for any AS value. This further proves the efficiency of the proposed DCB.

Using the same method as in (5.13), one can easily show that limK→∞ ξ̃w/ξ̄w
p1−→ 1 for

w ∈ {wP,wO,wM}. Therefore, all the above results hold also for the ASNR as K grows large.

Please note that analytical comparison of the proposed DCB with B-DCB is not disclosed

here due to space limitation. However, it has been shown in [5] that the latter’s performance is

optimal for small to moderate AS while it severely deteriorates when the AS is large. In such a

case, indeed, the channels’ two-ray approximation over which relies B-DCB is no longer valid.

Consequently, the proposed DCB is more robust to scattering than B-DCB as illustrated by

simulations in Fig. 5.3.

5.6 Simulation Results

All the empirical average quantities, in this section, are obtained by averaging over 106

random realizations of all random variables. In all simulations, the number of rays or chromatics

is L = 10 and the noises’ powers σ2
n and σ2

v are 10 dB below the source transmit power ps = 1

power unit on a relative scale. We also assume that the scattering distribution is uniform (i.e.,

p(θ) = 1/(2
√
3σθ)) and that αls are circular Gaussian random variables. For fair comparisons

between the Uniform and Gaussian spatial distributions, we choose σ = R/3 to guarantee in the

Gaussian distribution case that more than 99% of terminals are located in D(O,R).

Fig. 5.2 plots the empirical ASNRs and ASANRs achieved by w ∈ {wO,wP,wM} as well as

the analytical ASANRs achieved by wP and wM versus K for σθ = 20 (deg) and R/λ = 1, 4.

The terminals’ spatial distribution is assumed to be Uniform in Fig. 5.2(a) and Gaussian in
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Fig. 5.2(b). From these figures, we confirm that the analytical ξ̃wP
and ξ̃wM

match perfectly

their empirical counterparts. As can be observed from these figures, the proposed DCB outper-

forms M-DCB in terms of achieved ASANR. Furthermore, the ASANR gain achieved using the

proposed DCB instead of the latter substantially increases when R/λ grows large. Moreover,

from Figs. 5.2(a) and 5.2(b), the achieved ASANR using the proposed LCSI-based DCB fits

perfectly with that achieved using NLCSI-based OCB, which is unsuitable for a distributed im-

plementation, when K is in the range of 20 while it looses only a fraction of a dB when K is in

the range of 5. This proves that the proposed DCB is able to reach optimality when K is large

enough. It can be also verified from these figures that ξ̃wP
and ξ̃wB

perfectly match ξ̄wP
and ξ̄wM

,

respectively, for K = 20. All these observations corroborate the theoretical results obtained in

Section 5.5.

Fig. 5.3 displays the empirical ASNRs and ASANRs achieved by w ∈ {wO,wBD,wP,wM} as

well as the analytical ASANRs achieved by wP and wM versus the AS for K = 20 and R/λ = 1.

It can be observed from this figure that the ASANR achieved by M-DCB decreases with the AS

while that achieved by the proposed beamformer remains constant. This corroborates again the

theoretical results obtained in Section 5.5. Furthermore, we observe from Fig. 5.3 that B-DCB

achieves the same ASNR as the proposed DCB when the AS is relatively small such as in lightly-

to moderately-scattered environments. Nevertheless, in highly-scattered environments where the

AS is large (i.e., σθ ≥ 20 deg), the proposed DCB outperforms B-DCB whose performance further

deteriorates as σθ grows large. This is expected since the two-ray channel approximation made

when designing B-DCB is only valid for small σθ. Moreover, it can be noticed from Figs. 5.3(a)

and 5.3(b), that the ASNR gain achieved using the proposed DCB instead of M-DCB and B-

DCB can reach until about 6.5 (dB) and 4 (dB), respectively. From these figures, we also observe

that the curves of ξ̄wP
and ξ̄wO

are indistinguishable. As pointed out above, this is due to the

fact that both OCB and the proposed DCB constantly reach optimality.

5.7 Conclusion

In this paper, we considered a power-constrained SNR-optimal CB design. We verified that

the direct implementation of this CB design is NLCSI-based. Exploiting, the polychromatic struc-

ture of scattered channels, we proposed a novel LCSI-based DCB implementation that requires
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Figure 5.2 – The empirical ASNRs and ASANRs achieved by w ∈ {wO,wP,wM} as well as the

analytical ASANRs achieved by wP and wM versus K for σθ = 20 (deg) and R/λ = 1, 4 when

the terminals’ spatial distribution is (a) : Uniform and (b) : Gaussian.
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Figure 5.3 – The empirical ASNRs and ASANRs achieved by w ∈ {wO,wBD,wP,wM} as well

as the analytical ASANRs achieved by wP and wM versus σθ for K = 20 and R/λ = 1 when the
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a minimum overhead cost and, further, performs nearly as well as its NLCSI-based OCB coun-

terpart. Furthermore, we proved that the proposed DCB implementation always outperforms

both M-DCB and B-DCB.
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Conclusions

Cette thèse a été consacrée à la conception de solutions DCB alternatives qui combinent

les avantages de OCB (c.-à-d., des performances optimales) et M-DCB (c.-à-d., un overhead

négligeable) tout en évitant leurs inconvénients respectifs (c.-à-d., l’énorme overhead et la non-

concordance du canal). Au Chapitre 2, on a considéré une communication en deux sauts entre une

source S et un récepteur via un réseau sans fils distribué formé par K terminaux. Contrairement

à la plupart des travaux qui supposent des canaux monochromatiques, des canaux polychroma-

tiques induits par la diffusion ont été considérés dans ce chapitre. En exploitant le fait que tout

canal polychromatique est équivalent à un canal bichromatique pour de faibles ASs, une nou-

velle solution DCB novatrice, non seulement qui tient en compte la diffusion mais, aussi, dont

l’overhead est négligeable, a été développée. On a prouvé que ce B-DCB est capable de réaliser

un RSB optimal dans les environments où le AS est faible à modéré. On a aussi prouvé qu’il

surpasse en termes de RSB le M-DCB dont la conception ne tient pas compte de la diffusion.

La comparaison de B-DCB avec OCB et M-DCB a été effectuée dans des conditions réelles au

Chapitre 3. En tenant compte des erreurs d’estimation et de quantification induites par chaque

solution, on était les premiers à calculer les expressions exactes de leurs RSBs en closed-form.

Grâce à ces dernières, on a été en mesure de prouver que B-DCB surpasse OCB dans les envi-

ronnements à ASs faibles ou modérés où les deux solutions réalisent nominalement le même RSB

dans les conditions idéales (c.-à-d., sans tenir compte des erreurs d’estimation). En plus, dans

ce chapitre, on a comparé pour la première fois les solutions CBs en termes du throughput où

l’overhead de chaque solution est aussi pris en compte. Dans ce cas, il a été prouvé que B-DCB

est capable de réaliser un throughput supérieur à celui de OCB même dans les environnements

à ASs élevés. Afin d’élargir encore plus les domaines d’application des DCBs, on a proposé au

Chapitre 4, un nouveau DCB dont la conception tient compte non seulement du phénomène de

diffusion mais aussi des interférences. Une approche qui consiste en la minimisation des puis-
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sances de bruit et des interférences tout en maintenant constante la puissance utile a été utilisée

pour la conception des poids. Dû à la complexité des canaux polychromatiques, le calcul de ces

derniers en closed-form s’est malheureusement avèré impossible. En recourant d’abord au canal

bichromatique valide pour des faibles ASs puis à une approximation efficace de certains termes

de la fonction objective, on a réussi à obtenir les expressions des poids en closed-form. Il a été

montré que ces derniers peuvent être calculés au niveau de chaque terminal se conformant, ainsi,

au caractère distribué du réseau concerné. Il a été aussi montré que ce B-DCB est capable de

surpasser non seulement M-DCB mais aussi OCB qui est pénalisé par son overhead excessif. Bien

qu’elles soient extrêmement efficace dans les environnements où les ASs sont faibles à modérés,

les performances des B-DCBs développés jusqu’ici se détériorent significativement dans les envi-

ronnements à ASs élevés. Au Chapitre 5, on a alors proposé une nouvelle solution DCB capable

non seulement d’approcher, pour toute valeurs de AS, le RSB optimal réalisé par OCB mais,

aussi, de s’implémenter moyennant une quantité minimale d’overhead.
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