Université du Québec INRS-Géoressources

Modélisation hydrogéologique régionale des aquifères libres de la MRC de Portneuf

Par

Daniel Larose-Charette

Mémoire présenté pour l'obtention du grade de Maître ès sciences (M. Sc.) en Sciences de la Terre

14 avril 2000

© droits réservés de Daniel Larose-Charette 2000

<u>RÉSUMÉ</u>

Ce projet de recherche s'intègre dans un programme de cartographie régionale des aquifères du piémont laurentien dans la MRC de Portneuf. Ce programme a permis la caractérisation géologique et hydrogéologique des aquifères granulaires de surface dans cette MRC à partir des données existantes et de la modélisation numérique.

La géologie de la MRC est caractérisée par une couverture de sédiments marins et glaciaires sur le socle rocheux. L'étude reconnaît plusieurs contextes hydrogéologiques, mais uniquement les contextes à plus fort potentiel aquifère, les sables et graviers deltaïques, ont été modélisés.

Le modèle conceptuel développé a permis de déterminer les paramètres hydrologiques et hydrogéologiques moyens des sables et graviers de surface. La recharge des aquifères a été déterminée à partir du bilan hydrologique et des hydrogrammes de puits mesurés à quatre endroits dans la MRC. Les résultats obtenus montrent une variation annuelle de la recharge des aquifères. L'étude de sensibilité réalisée sur le calcul du bilan hydrologique démontre que l'évaluation de la recharge varie de façon significative en fonction des paramètres utilisés pour le calcul du bilan, particulièrement le coefficient de ruissellement et la réserve en eau facilement accessible dans le sol. Par conséquent, le calcul de la recharge à partir du bilan hydrologique devrait être utilisé uniquement qu'en première approximation. À l'opposé, les hydrogrammes de puits mesurent directement la variation de l'élévation de la nappe phréatique dans le sol et seulement un paramètre est estimé (porosité de drainage) pour permettre le calcul de la recharge. Cette méthode est plus précise mais il faut cependant plusieurs années de compilation de données pour connaître plus exactement la variation moyenne du niveau de la nappe phréatique et de la recharge. La valeur moyenne de la recharge estimée pour les aquifères libres dans la MRC de Portneuf est de 0,25 m/an.

Les valeurs de conductivité hydraulique représentatives qui ont été compilées ont été analysées afin de connaître les valeurs pour chaque unité quaternaire présente dans la MRC. Les valeurs de conductivité hydraulique ont été estimées avec de la formule empirique de Hazen à partir de leur courbe granulométrique, en utilisant leur diamètre effectif (d_{10}). La valeur moyenne de conductivité hydraulique pour les sables et graviers de la zone modélisée est de 3,00x10⁻⁴ m/s. Cette valeur de conductivité hydraulique se rapproche des valeurs obtenues à partir d'essais de perméabilité réalisés dans les sables deltaïques.

La modélisation numérique a été réalisée en utilisant une combinaison des logiciels Groundwater Modeling System (GMS), FEMWATER et FRAC3DVS. Les résultats de la modélisation permettent de préciser les valeurs moyennes de recharge et de conductivité hydraulique déterminées dans le modèle conceptuel ainsi que d'évaluer les vitesses et directions d'écoulement de l'eau souterraine dans les grands aquifères libres localisés dans les sables et graviers deltaïques. Les valeurs de recharges calibrées confirment les valeurs obtenues à partir des hydrogrammes de puits. Également, les valeurs de conductivité hydraulique calibrées représentent biens les valeurs de conductivité hydraulique de référence. Les vitesses moyennes de l'eau souterraine sont de 150 m/an. Les vitesses maximales se retrouvent en bordures des rivières alors que les vitesses minimales sont identifiées au centre des bassins modélisés.

La modélisation permet donc de représenter quantitativement la dynamique de l'écoulement dans les aquifères libres de la MRC de Portneuf.

Daniel Larose-Charette, étudiant

Yves Michaud Co-directeur de recherche

René Lefebvre Directeur de recherche

René Therrien Co-directeur de recherche

SUMMARY

Our hydrogeological modeling study is part of a regional hydrogeological mapping project of the Laurentian Piedmont surficial aquifers in the Portneuf area. This area is representative of the general hydrogeological context prevailing on the North shore of the St.Lawrence River. The regional mapping project provides a good geological and hydrogeological characterization of the large unconfined granular aquifers present in the study area. Our hydrogeological modeling work provides a quantitative understanding or the hydrodynamics of groundwater flow in the area and focuses on the estimation of groundwater recharge in these aquifers.

The regional geology consists mainly of surficial quaternary sediments of marine and continental origin covering bedrock. Using the geological description of the sediments, five distinct hydrogeological contexts are defined. We used these contexts to focus the numerical modeling of groundwater flow only on the hydrogeological contexts having a high aquifer potential, namely the large unconfined aquifers within the sand and gravel formed by the deltaic system related to the Jacques-Cartier and Sainte-Anne rivers.

The regional piezometric map, as well as other hydrologic and hydrogeologic parameters, were used to define the conceptual hydrogeological model underlying the numerical model. The aquifer recharge rate was first estimated from a regional hydrologic mass balance and with a record water level fluctuation from three wells hydrograph. Sensitivity analyses of the hydrologic mass balance indicate that this method cannot provide a precise estimate of groundwater recharge. Therefore, recharge should not be estimated solely from hydrologic mass balance. Well hydrographs provide a more direct indication of recharge and only requires specific yield to be known in order to calculate recharge. A drawback of well hydrographs is that recharge varies significantly from year to year, thus requiring long records to provide a representative mean value of recharge. Estimated mean recharge in the sand and gravel aquifers of the study area is 250 mm/year.

Data from grain size distributions of sediments were used to derive estimates of hydraulic conductivity for each hydrogeological context of the study area using the Hazen formula. The mean hydraulic conductivity in the modeled sand and gravel aquifers is 3.00×10^{-4} m/s. This value is consistent with other data obtained from hydraulic tests within the same material in the area.

The hydrogeological data was integrated in a numerical model to simulate groundwater flow at the regional scale. Numerical modeling has performed with two softwares: GMS and FRAC3VDS. GMS is used as an interface to generate the finite element grid, prepare the input files and graphically present the results. The input files generated by GMS are formated for FEMWATER but the files are converted for their use with FRAC3VDS which is used to perform the simulations. The model is run under steady state and saturated conditions. The saturated thickness of these unconfined aguifers was estimated in order to use saturated conditions which allowed much more efficient numerical calculcations. The calibrated modeling results provide another estimate of the mean groundwater recharge as well as a representative global hydraulic conductivity. Modeling also shows groundwater flow directions and velocities within the sand and gravel aquifers. Sensitivity analyses show that the model is much more sensitive to changes in hydraulic conductivity than modifications of groundwater recharge. The model provides a quantitative understanding of groundwater flow conditions in the unconfined aquifers of the Portneuf area and can be used to help manage and protect groundwater resources.

REMERCIEMENTS

Je tiens tout d'abord à remercier mon directeur de recherche René Lefebvre, professeur à l'INRS-Géoressources, pour m'avoir permis de réaliser cette maîtrise. Sa disponibilité et ses conseils m'ont permis d'améliorer mes connaissances en hydrogéologie et de faciliter l'avancement de mes travaux de recherche. Je tiens également à remercier mes deux codirecteurs. Premièrement, Yves Michaud, chercheur à la Commission géologique du Canada, qui a facilité mon intégration au projet de cartographie des aquifères du piémont laurentien. De plus, son expérience de terrain, sa connaissance de la géologie de la MRC de Portneuf et sa disponibilité m'ont aidé dans l'apprentissage du contexte géologique de la MRC de Portneuf et dans mon cheminement de recherche. Deuxièmement, René Therrien, professeur au département de géologie et de génie géologique de l'Université Laval, pour son soutien et sa patience lors de mon apprentissage du logiciel FRAC3DVS et ses réponses à mes interrogations au sujet de la modélisation.

S'intégrer à un projet de recherche déjà existant nécessite le support des personnes déjà impliquées. Les connaissances géologiques et hydrogéologiques de la MRC de Portneuf acquises par Nathalie Fagnan, professionnelle de recherche à la Commission géologique du Canada, ont permis de construire les bases de mon projet de recherche. Je tiens également à remercier Éric Boisvert, professionnel de recherche à la Commission géologique du Canada, pour le support informatique qu'il m'a fourni, spécialement en début de projet. Puisque le projet de cartographie des aquifères du piémont laurentien implique d'autres étudiants (Daniel Paradis, Valérie Murat et Frédéric Girard) à l'INRS-Géoressources, il a été possible d'échanger nos connaissances afin de faire avancer nos projets de recherche respectifs. Finalement, je tiens à remercier Marc Hinton, chercheur à la Commission géologique du Canada à Ottawa et Pierre Gélinas, professeur à l'Université Laval, qui ont bien voulu réviser ce mémoire.

Je dédie ce mémoire de maîtrise à la femme de ma vie, Aude, depuis les 9 dernières années, pour son support et sa complicité. Je t'aime.

TABLE DES MATIÈRES

CHAPITRE 1: INTRODUCTION 1	L
1.1 PROBLÉMATIQUE	2
1.2 OBJECTIFS DU MÉMOIRE	7
1.3 TRAVAUX ANTÉRIEURS	3
1.3.1 Géologie du Quaternaire	3
1.3.2 Informatique)
1.3.3 Hydrogéologie et cartographie10)
1.3.4 Qualité de l'eau11	
1.3.5 Modélisation 12)
1.4 MÉTHODOLOGIE 12)
1.4.1 Modélisation 14	ŀ
CHAPITRE 2: CONTEXTE RÉGIONAL DE LA MRC DE PORTNEUF 17	,
2.1 LOCALISATION	,
2.2 PHYSIOGRAPHIE ET HYDROGRAPHIE)
2.2.1 Bassin de la rivière Jacques-Cartier	
2.2.2 Bassin de la rivière Portneuf	
2.2.3 Bassin de la rivière Sainte-Anne	
2.2.4 Bassin du fleuve Saint-Laurent	,
2.3 GÉOLOGIE	1
2.3.1 Roche en place	•
2.3.2 Formations superficielles	1
2.3.2.1 Sédiments organiques	,
2.3.2.2 Sédiments alluviaux	;
2.3.2.3 Sédiments du Lac Lampsilis	,
2.3.2.4 Sediments marins	2
2.3.2.5 Sediments fluviogracianes	,)
2.4 HYDROGÉOLOGIE)

CHAPITRE 3: MODÈLE CONCEPTUEL ET PROPRIÉTÉS INITIALES	35
3.1 MODÈLE CONCEPTUEL	35
3.2 PIÉZOMÉTRIE DE LA MRC DE PORTNEUF	37
3.3 DONNÉES CLIMATIQUES	39
3.3.1 Précipitations	39
3.3.2 Évapotranspiration potentielle	48
3.3.3 Ruissellement	53
3.3.4 Évapotranspiration réelle	57
3.3.5 Évaluation de la recharge	61
3.3.5.1 Valeurs du bilan modifiées	65
3.3.5.2 Bilan hydrologique	66
3.3.6 Sensibilité des parametres	66
3.4 EVALUATION DE LA RECHARGE	71
3.4.1 Bilan hydrologique	72
3.4.2 Hydrogrammes de puits	73
3.4.3 Modélisation hydrométrique et hydrogéologique	79
3.4.4 Comparaison des méthodes	80
3.5 CONDUCTIVITÉ HYDRAULIQUE	82
3.5.1 Représentation spatiale de la conductivité hydraulique	84
3.5.1.1 Méthodologie	84
CHAPITRE 4: MODELE NUMERIQUE	93
4.1 FRAC3DVS	95
4.1.1 Modèle mathématique	95
4.1.2 Méthode numérique	98
4.2 DISCRÉTISATION SPATIALE	101
4.2.1 Limites	107
4.2.1.1 Aquifères libres de la rivière Jacques-Cartier	109
4.2.1.2 Aquifères libres du nord de la rivière Sainte-Anne 4.2.1.3 Aquifères libres du sud de la rivière Sainte-Anne	112

CHAPITRE	5: RÉSULTATS ET DISCUSSION	119
5.1 PARAMÈ	TRES CALIBRÉS	119
5.2 PIÉZOMÉ	ÉTRIE SIMULÉE	123
5.2.1 Aqı	lifères libres de la rivière Jacques-Cartier	124
5.2.2 Aqı	lifères libres du nord de la rivière Sainte-Anne	129
5.2.3 Aqı	lifères libres du sud de la rivière Sainte-Anne	133
5.3 DISTRIB	UTION DE L'ERREUR	136
5.3.1 Aqu	afères libres de la rivière Jacques-Cartier	138
5.3.2 Aqu	lifères libres du nord de la rivière Sainte-Anne	145
5.3.3 Aqu	aifères libres du sud de la rivière Sainte-Anne	152
5.4 ÉTUDE D	DE SENSIBILITÉ DES PARAMÈTRES CALIBRÉS	159
5.4.1 Aqu	ufères libres de la rivière Jacques-Cartier	159
5.4.2 Aqu	lifères libres au nord de la rivière Sainte-Anne	163
5.4.3 Aqu	afères libres au sud de la rivière Sainte-Anne	167
5.5 BILAN V	OLUMÉTRIQUE	170
5.6 DISCUSS	ION	172
CHAPITRE	6: CONCLUSION ET RECOMMANDATIONS	179
CHAPITRE	7: BIBLIOGRAPHIE	189
ANNEXE A:	CARTE PIÉZOMÉTRIQUE DE RÉFÉRENCE	201
ANNEXE B:	DONNÉES MOYENNES MENSUELLES CLIMATIQUES	227
ANNEXE C:	PARAMÈTRES POUR L'ÉVALUATION DE LA RECHARGE À PARTIR DU BILAN HYDROLOGIQUE	233
ANNEXE D:	DONNÉES DE L'ÉTUDE DE SENSIBILITÉ POUR LE BILAN HYDROLOGIQUE	249
ANNEXE E:	DONNÉES DÉTAILLÉES POUR LES HYDROGRAMMES	257
ANNEXE F:	DONNÉES DÉTAILLÉES POUR LA CONDUCTIVITÉ HYDRAULIQUE	295

LISTE DES TABLEAUX

Tableau 1.1 :	Types d'applications de la modélisation de l'écoulement de l'eau
	souterraine
Tableau 1.2 :	Informations requises lors du développement d'un modèle
	d'écoulement des eaux souterraines adapté aux aquifères granulaires13
Tableau 2.1 :	Formations géologiques de la MRC de Portneuf25
Tableau 2.2 :	Unités hydrogéologiques de la MRC de Portneuf
Tableau 3.1 :	Stations météorologiques de la région étudiée41
Tableau 3.2 :	Moyenne des précipitations (pluie, neige, totale) et de la température
	de chaque station
Tableau 3.3 :	Évaluation de l'évapotranspiration potentielle (mm/an)50
Tableau 3.4 :	Estimation du coefficient de ruissellement54
Tableau 3.5 :	Évaluation du taux de ruissellement55
Tableau 3.6 :	Évaluation de l'évapotranspiration réelle (ETr)58
Tableau 3.7 :	Évaluation du déficit en humidité dans les sols62
Tableau 3.8 :	Évaluation moyenne de la recharge pour chaque station (C _R moyen
	$= 0,4 \text{ et } RAS_{max} = 100 \text{ mm}$)
Tableau 3.9 :	Différences entre les moyennes calculées et interpolées des données
	climatiques. (M.C. moyenne calculées, M.I. moyenne interpolée,
	E.T. écart-type)65
Tableau 3.10 :	Données climatiques moyennes interpolées pour chaque bassin (3)65
Tableau 3.11 :	Bilan hydrologique annuel moyen pour la région modélisée
Tableau 3.12 :	Sensibilité des paramètres à la station météorologique de
	Deschambault
Tableau 3.13 :	Caractéristiques des hydrogrammes de puits
Tableau 3.14 :	Evaluation de la recharge à partir des hydrogrammes de puits
Tableau 3.15 :	Comparaison des différentes moyennes de la recharge
Tableau 3.16 :	Evaluation de la conductivité hydraulique
Tableau 4.1 :	Caracteristiques du maillage
Tableau 5.1 :	Parametres calibres des modeles numeriques
Tableau 5.2 :	Parametres numeriques de FRAC3DVS pour la simulation des
Tableau 5 2 .	aquiferes fibres de la rivière Jacques-Cartier
Tableau 5.5 :	Parametres numeriques de FRACSDVS pour la simulation des
Tablaan 5 1 ·	Paramètres numériques de EPAC3DVS pour la simulation des
1 abicau 3.4 .	aquifères libres du sud de la rivière Sainte-Anne
Tableau 5 5 ·	Sensibilité des paramètres de la conductivité hydraulique et de la
1 ubicuu 3.5 ;	recharge pour les aquifères libres de la rivière Jacques-Cartier 161
Tableau 56 ·	Sensibilité des paramètres de la conductivité hydraulique et de la
	recharge pour les aquifères libres du nord de la rivière Sainte-Anne 164
Tableau 5.7 :	Sensibilité des paramètres de la conductivité hydraulique et de la
	recharge pour les aquifères libres du sud de la rivière Sainte-Anne
Tableau 5.8 :	Bilan volumétrique des sources et des pertes pour les trois bassins
	(m ³ /s)

Tableau	A.1 :	Données piézométriques utilisées pour la piézométrie de référence	. 204
Tableau	B.1 :	Température moyenne (°C)	. 229
Tableau	B.2 :	Température minimale (°C)	. 229
Tableau	B.3 :	Température maximale (°C)	. 230
Tableau	B.4 :	Précipitations Pluie (mm)	. 230
Tableau	B.5 :	Précipitations Neige (cm)	. 231
Tableau	B.6 :	Précipitations totales (mm)	. 231
Tableau	B.7 :	Neige au sol (cm)	. 232
Tableau	C.1 :	Estimation de la recharge à partir du bilan hydrologique à la station	
		de Deschambault	. 235
Tableau	C.2 :	Estimation de la recharge à partir du bilan hydrologique à la station	
		Saint-Alban	. 236
Tableau	C.3 :	Estimation de la recharge à partir du bilan hydrologique à la station	
		Chute-Panet	. 237
Tableau	C.4 :	Estimation de la recharge à partir du bilan hydrologique à la station	
		Donaconna-2	. 238
Tableau	C.5 :	Estimation de la recharge à partir du bilan hydrologique à la station	
		Sainte-Catherine	. 239
Tableau	C.6 :	Estimation de la recharge à partir du bilan hydrologique à la station	
		Sainte-Christine	. 240
Tableau	C.7 :	Estimation de la recharge à partir du bilan hydrologique à la station	
	~ ~	Lac-Aux-Sables	. 241
Tableau	C.8 :	Estimation de la recharge à partir du bilan hydrologique à la station	
	C 0	Rivière-à-Pierre	. 242
Tableau	C.9 :	Estimation de la recharge à partir du bilan hydrologique à la station	0.40
	C 10	Riviere-verte-ouest	. 243
I ableau	C.10	Estimation de la recharge a partir du bilan hydrologique a la station	044
Tableau	C 11	Sainte-Anne-de-la-Perade	. 244
1 ableau	U.11	Estimation de la recharge à partir du blian hydrologique à la station	245
Tablaan	C 12	Estimation de la recharge à nortir du hilen hydrologique à la station	. 243
Tableau	U.12	Duchesnay	246
Tablaan	C 13	•Estimation de la recharge à partir du bilan hydrologique à la station	. 240
1 abicau	C.15	Saint Augustin	247
Tahlean	D1.	Station météorologique de Donaconna 2	251
Tableau	D.1. D.2.	Station météorologique de Sainte-Catherine	251
Tableau	D.2.	Station météorologique de Sainte-Cathorne	251
Tableau	D.5. D.4.	Station météorologique de Deschambault	251
Tableau	$D.5 \cdot$	Station météorologique de Saint-Alban	252
Tableau	D.6 ·	Station météorologique de Chute-Panet	2.52
Tablean	D.7 :	Station météorologique de Lac-Aux-Sables	253
Tableau	D.8 :	Station météorologique de Rivière-à-Pierre	. 253
Tableau	D.9 :	Station météorologique de Rivière-verte-ouest	. 253
Tableau	D.10	:Station météorologique de Sainte-Anne-de-la-Pérade	. 254
Tableau	D.11	:Station météorologique de Sainte-Croix	. 254
		0-1	

Tableau	D.12	:Station météorologique de Duchesnay	254
Tableau	D.13	:Station météorologique de Saint-Augustin	255
Tableau	E.1 :	Variation du niveau de la nappe phréatique pour l'hydrogramme de	
		puits de Sainte-Christine	259
Tableau	E.2 :	Variation du niveau de la nappe phréatique pour l'hydrogramme de	
		puits de Saint-Raymond	267
Tableau	E.3 :	Variation du niveau de la nappe phréatique pour l'hydrogramme de	
		puits de Pont-Rouge	276
Tableau	E.4:	Variation du niveau de la nappe phréatique pour l'hydrogramme de	
	2	puits de St-Léonard	285
Tableau	F.1 :	Conductivité hydraulique pour les sédiments de la moraine	
Tableau	F.2 :	Conductivité hydraulique pour les sédiments littoraux prélittoraux	
1 001000		et d'exondation du Lac Lampsillis	297
Tableau	F3.	Conductivité hydraulique pour les sédiments fins d'eau profonde	298
Tableau	F 4 ·	Conductivité hydraulique pour les sédiments littoraux prélittoraux	
Iabicau	1.4.	et d'exondation de la Mer de Champlain	200
Tableau	F.C.	Conduction de la Mer de Champian	201
Tableau	F.5 :	Conductivite hydraulique pour les sediments deltaiques	301
Tableau	F.6 :	Conductivité hydraulique pour les rythmites	306
Tableau	F.7 :	Conductivité hydraulique pour le till rencontré dans le Grenville	307
Tableau	F.8 :	Conductivité hydraulique pour le till rencontré dans les Basses-	
		Terres	308

LISTE DES FIGURES

Figure 1.1 :	Localisation de la MRC de Portneuf	4
Figure 1.2 :	Étapes du protocole d'application d'un modèle d'écoulement	. 15
Figure 2.1 :	Limites de la région à l'étude	. 19
Figure 2.2 :	Physiographie et hydrographie de la MRC de Portneuf	. 20
Figure 2.3 :	Géologie du socle rocheux	. 23
Figure 2.4 :	Carte des contextes hydrogéologiques	. 32
Figure 3.1 :	Localisation des stations météorologiques	. 40
Figure 3.2 :	Carte isocontour des précipitations totales	. 45
Figure 3.3 :	Moyennes climatiques mensuelles (précipitations et température)	. 47
Figure 3.4 :	Carte isocontour de l'évapotranspiration potentielle	. 52
Figure 3.5 :	Carte isocontour du ruissellement	. 56
Figure 3.6 :	Carte isocontour de l'évapotranspiration réelle (ETr)	. 59
Figure 3.7 :	Carte isocontour de la différence de l'évapotranspiration potentielle et	
	réelle	. 60
Figure 3.8 :	Carte isocontour de la recharge annuelle dans les sables	. 64
Figure 3.9 :	Sensibilité de la recharge	. 70
Figure 3.10 :	Localisation des sites de mesure des hydrogrammes de puits	. 74
Figure 3.11 :	Hydrogrammes de puits montrant la variation des niveaux de l'eau	
	souterraine	. 77
Figure 3.12 :	Localisation des données pour l'estimation de la conductivité	
	hydraulique	. 86
Figure 3.13 :	Plage des valeurs de conductivité hydraulique obtenues des données	
	granulométriques	. 90
Figure 4.1 :	Zone modélisée subdivisée en secteurs	102
Figure 4.2 :	Épaisseur saturée de sédiments dans la zone modélisée	104
Figure 4.3 :	Technique de projection pour le modèle tridimensionnel	105
Figure 4.4 :	Limites et discrétisation des aquifères libres de la rivière Jacques-	
	Cartier	111
Figure 4.5 :	Limites et discrétisation des aquifères libres du nord de la rivière	
	Sainte-Anne	114
Figure 4.6 :	Limites et discrétisation des aquifères libres du sud de la rivière	
	Sainte-Anne	117
Figure 5.1 :	Piézométrie et vitesses d'écoulement simulées des aquifères libres de la rivière Jacques-Cartier	126
Figure 5.2 :	Histogramme du logarithme des vitesses d'écoulement des aquifères	
	libres de la rivière Jacques-Cartier	128
Figure 5.3 :	Piézométrie et vitesses d'écoulement simulées des aquifères libres du	
	nord de la rivière Sainte-Anne	130
Figure 5.4 :	Histogramme du logarithme des vitesses d'écoulement des aquifères	
	libres du nord de la rivière Sainte-Anne	132
Figure 5.5 :	Piézométrie et vitesses d'écoulement simulées des aquifères libres du	
	sud de la rivière Sainte-Anne	134
		· - ·

Figure 5.6 :	Histogramme du logarithme des vitesses d'écoulement pour les	
	aquifères libres du sud de la rivière Sainte-Anne	.135
Figure 5.7 :	Points de contrôle pour la représentation numérique de la piézométrie	
	de référence	137
Figure 5.8 :	Comparaison entre la piézométrie simulée et de référence des	
	aquifères libres de la rivière Jacques-Cartier	.139
Figure 5.9 :	Distribution de l'erreur absolue de la piézométrie simulée des	
	aquifères libres de la rivière Jacques-Cartier	141
Figure 5.10 :	Distribution du signe de l'erreur de la piézométrie simulée des	
	aquifères libres de la rivière Jacques-Cartier	142
Figure 5.11a :	Graphique des charges hydrauliques observées et simulées des	
	aquifères libres de la rivière Jacques-Cartier (incluant tous les	
	noeuds du domaine modélisé)	.143
Figure 5.11b	Graphique des charges hydrauliques observées et simulées des	
	aquifères libres de la rivière Jacques-Cartier (pour les puits les plus	
	représentatifs du domaine)	.144
Figure 5.12 :	Comparaison entre la piézométrie simulée et de référence des	
	aquifères libres du nord de la rivière Sainte-Anne	.146
Figure 5.13 :	Distribution de l'erreur absolue de la piézométrie simulée des	
	aquifères libres du nord de la rivière Sainte-Anne.	147
Figure 5.14 :	Distribution du signe de l'erreur de la piézométrie simulée des	
	aquifères libres du nord de la rivière Sainte-Anne.	148
Figure 5.15a :	Graphique des charges hydrauliques observées et simulées des	
	aquifères libres du nord de la rivière Sainte-Anne (incluant tous les	
	nœuds du domaine modélisé).	150
Figure 5.15b	Graphique des charges hydrauliques observées et simulées des	
	aquifères libres du nord de la rivière Sainte-Anne (pour les puits les	1 - 1
	plus représentatifs du domaine)	.151
Figure 5.16 :	Comparaison entre la piezometrie simulee et de reference (Fagnan,	150
Element 5 17	1998) des aquiferes libres du sud de la riviere Sainte-Anne.	.153
Figure 5.17 :	Distribution de l'erreur absolue de la plezometrie simulee des	154
Figure 5 19 .	aquiferes fibres du sud de la rivière Sainte-Anne.	.154
rigure 5.18 :	Distribution du signe de l'effeur de la plezometrie simulée des	155
Figure 5 10c	Graphiques des charges hydrouliques charge/os et simulées des	.155
Figure 5.19a :	aquifàrea librea du sud de la rivière Seinte. Anne (incluent tous les	
	aquiteres notes du sud de la inviere Sainte-Anne (incluant tous les	157
Figure 5 10b	Graphiques des charges hydrouliques observées et simulées des	.157
Figure 5.170	aquifères libres du sud de la rivière Sainte-Anne (nour les nuits les	
	nlus représentatifs du domaine)	158
Figure 5.20 ·	Graphique de l'erreur absolue movenne en fonction de la	
- 15ur - 0120 1	conductivité hydraulique pour les aquifères libres de la rivière	
	Jacques-Cartier.	
Figure 5.21 :	Graphique de l'erreur absolue movenne en fonction de la recharge	
	pour les aquifères libres de la rivière Jacques-Cartier	
	1 1	

Figure 5.22 :	Graphique de l'erreur absolue moyenne en fonction de la	
	conductivité hydraulique pour les aquifères libres du nord de la	
	rivière Sainte-Anne.	165
Figure 5.23 :	Graphique de l'erreur absolue moyenne en fonction de la recharge	
-	pour les aquifères libres du nord de la rivière Sainte-Anne.	165
Figure 5.24 :	Graphique de l'erreur absolue moyenne en fonction de la	
	conductivité hydraulique pour les aquifères libres du sud de la	
	rivière Sainte-Anne.	169
Figure 5.25 :	Graphique de l'erreur absolue moyenne en fonction de la recharge	
	pour les aquifères libres du sud de la rivière Sainte-Anne.	169
Figure A.1 :	Carte piézométrique de référence	203
Figure E.1 :	Hydrogramme de puits à Sainte-Christine	266
Figure E.2 :	Hydrogramme de puits à Saint-Raymond	275
Figure E.3 :	Hydrogramme de puits à Pont-Rouge	284
Figure E.4 :	Hydrogramme de puits à Saint-Léonard	293
-		

.

.

CHAPITRE 1

INTRODUCTION

L'eau souterraine est une ressource naturelle importante pour le Québec. Les activités agricoles, industrielles et domestiques utilisent l'eau souterraine à cause de son coût abordable ainsi que de sa qualité constante. Les eaux souterraines constituent la quasitotalité des réserves disponibles d'eau douce (Banton et Bangoy, 1997). En fait, elles constituent plus de 90% de l'eau douce disponible sur la terre. Au Québec, environ 21 % de la population utilise l'eau souterraine comme source d'alimentation en eau potable (MEF, 1996a et 1996b). En région rurale, cette proportion est encore plus élevée puisqu'elle représente environ 90 % de la population (Gouvernement du Québec, 1997).

Toutefois, depuis plusieurs années, il est devenu apparent que les activités humaines ont un impact négatif sur la qualité et sur la quantité de la ressource en eau souterraine. Plusieurs activités domestiques (mal fonctionnement de fosses septiques, etc.), agricoles (épandages excessifs de fumier, d'engrais chimiques et de pesticides) et industrielles (fuites de réservoirs, enfouissement sanitaire, etc.) contribuent à cette détérioration.

La modélisation numérique de l'écoulement de l'eau souterraine est utilisée fréquemment par les hydrogéologues pour représenter la dynamique de l'écoulement des aquifères et son impact sur la quantité et la qualité de la ressource (Anderson et Woessner, 1992; Istok, 1989). Par le passé, cette spécialisation de l'hydrogéologie était réservée uniquement aux chercheurs à cause de sa complexité et des ressources informatiques nécessaires à son application. Par exemple, un problème simulant l'écoulement saturé en une dimension représentait un énorme défi de résolution numérique. Aujourd'hui, avec la puissance des ordinateurs et le développement de logiciels facilitant l'approche mathématique de la modélisation, des problèmes complexes peuvent être modélisés plus facilement. Ainsi, l'écoulement à trois dimensions et à saturation variable peut facilement être modélisé (Therrien et Sudicky, 1996; Panday et al., 1993; Aubertin et al., 1996; Martin et Frind, 1998; Mergia et Kelly, 1994). La construction du maillage est également facilitée. Autrefois, le maillage était construit manuellement (Istok, 1989), limitant la discrétisation et augmentant le temps nécessaire à la modélisation. Maintenant, la construction du maillage se fait automatiquement (Brigham Young University, 1998), permettant un gain de temps lors de la modélisation.

Puisque la modélisation hydrogéologique de l'eau souterraine s'est beaucoup développée au cours des dernières années, plusieurs publications (livres, articles, logiciels, etc.) sont maintenant disponibles. Ces publications nous renseignent sur l'application de la modélisation. *L'Environmental Protection Agency* (EPA) présente les principes fondamentaux de la modélisation de l'eau souterraine (Bear et al., 1992). Plus récemment *l'American Society for Testing Materials* (ASTM) nous présentait des guides pour la standardisation de la modélisation (ASTM, 1995a; ASTM, 1995b; ASTM, 1995c). Des publications récentes nous renseignent également sur le rôle qu'occupe maintenant la modélisation pour les hydrogéologues dans la protection de la ressource en eau souterraine (Martin et Frind, 1998; Mukhopadhyay et al., 1994; Er-Rouane et al. 1996; Hamdan et Mukhopadhyay, 1990).

1.1 PROBLÉMATIQUE

Depuis janvier 1995, un projet pilote de cartographie hydrogéologique régionale a été entrepris par le Centre géoscientifique de Québec (Commission géologique du Canada et Institut National de la Recherche Scientifique, INRS-Géoressources) en partenariat avec le ministère de l'Environnement et de la Faune (MEF) du Québec ainsi que la municipalité régionale de comté (MRC) de Portneuf. Ce projet a été mis sur pied afin de développer une méthodologie pour la cartographie hydrogéologique dans les aquifères granulaires. Les principaux objectifs de ce projet pilote, tels que décrits par Michaud et al. (1997a), sont:

- le développement des procédures de caractérisation régionale et d'évaluation des ressources en eaux souterraines;
- la rédaction d'un guide méthodologique sur la marche à suivre pour la production de cartes hydrogéologiques régionales (formats de carte, informations nécessaires, etc.);
- la caractérisation d'une région représentative des aquifères granulaires de la rive nord du fleuve Saint-Laurent;
- le développement d'une structure de base de données et des outils informatiques pour aider à la compilation et le traitement des informations pertinentes (géologiques, hydrogéologiques, qualité de l'eau, etc.).

La région à l'étude, la MRC de Portneuf, qui se situe à mi-chemin entre Trois-Rivières et Québec (figure 1.1), a été choisie car elle représente une grande diversité de types et d'usages de la ressource en eau souterraine. En effet, la région étudiée est représentative des aquifères qui se retrouvent de l'Outaouais jusqu'à Charlevoix, sur la rive nord du fleuve Saint-Laurent (Fagnan, 1998). On retrouve dans cette région de grands complexes deltaïques qui constituent d'importants aquifères libres.

Figure 1.1 : Localisation de la MRC de Portneuf

Depuis plusieurs années et bien que la situation s'améliore, il y a dégradation générale de la qualité des eaux souterraines dans la MRC sur de vastes étendues (Bourque et al., 1996). La présence de nitrates due à une agriculture intensive de la pomme de terre constitue la principale source de contamination sur le territoire (Paradis et al., 1991; Paradis, 1997). Comme cette culture s'étend sur l'ensemble des grandes surfaces deltaïques de la région, les risques de contamination des aquifères granulaires de surface sont très élevés. Dans une optique de développement durable, la MRC devra assurer une saine gestion de la ressource qui est utilisée présentement par 85 % de la population.

Depuis le début de ce projet pilote, plusieurs travaux ont permis de comprendre qualitativement la ressource en eau souterraine dans la MRC de Portneuf. Un outil comme la modélisation devrait permettre de quantifier la dynamique de l'écoulement et de déterminer les directions et les vitesses d'écoulement de l'eau souterraine. Également, la production d'un modèle d'écoulement régional des eaux souterraines permettra de quantifier la recharge et de valider les valeurs de conductivité hydraulique. Les résultats de la modélisation permettront ultérieurement de prédire l'impact de l'exploitation des nappes et la possible migration de contamination future. Le tableau 1.1 identifie les diverses applications de la modélisation.

La méthodologie utilisée dans le projet Portneuf comprend plusieurs étapes: (1) la compilation des données existantes; (2) l'acquisition de données, (3) leur analyse et (4) la production de modèles et de cartes thématiques aidant à la gestion de la ressource. Les sources d'information ont été classées en 4 groupes distincts (Fagnan, 1998):

- 1- Informations géologiques et stratigraphiques
- 2- Informations hydrologiques
- 3- Informations sur les propriétés hydrauliques et géochimiques
- 4- Informations sur l'utilisation de la ressource et sur les activités humaines

(adapté d'Anderson et Woessner, 1992)			
Applications	Description		
Prédiction	Utilisé pour prédire l'effet d'activités futures (calibration		
	requise). (Eberts et Bair, 1990; Ghassemi et al., 1989)		
Interprétation	Utilisé pour interpréter des études de systèmes dynamiques et/ou		
	faire la description et l'interprétation de données de terrains		
	(calibration non-essentielle).		
	(Aubertin et al., 1996; Mergia et Kelly, 1994; Cey et al., 1998;		

Tableau 1.1 : Types d'applications de la modélisation de l'écoulement de l'eau souterraine (adapté d'Anderson et Woessner, 1992)

Ophori et Tòth, 1989)

CompréhensionUtilisé pour analyser l'écoulement dans un système
hydrogéologique hypothétique (calibration non-essentielle).
(Huyakorn et al., 1986; Nitao et Buscheck, 1991)

Suite au tri et à l'analyse des données hydrogéologiques, une carte piézométrique des aquifères granulaires de surfaces a été produite en utilisant les niveaux d'eau mesurés ou disponibles dans les différents puits, ruisseaux, fossés et rivières (Fagnan et al., 1998). Cependant, cette carte ne permet pas de savoir si les différents paramètres obtenus par la compilation des données concordent bien ensemble. Donc, il est important de produire une nouvelle carte piézométrique synthèse des aquifères de surface. Cette carte doit inclure tous les paramètres hydrologiques (précipitations, recharge, etc.) et hydrogéologiques (conductivités hydrauliques, porosité, etc.). Évidemment, l'analyse de ces données doit être réalisée au préalable. C'est une étape indispensable, car il n'existe aucune étude comparative validant la carte piézométrique déjà réalisée.

De tous les paramètres utiles à la mise en place du modèle d'écoulement régional, deux paramètres semblent influencer d'avantage l'écoulement. Le premier, la conductivité hydraulique, est mal définie. Malgré la disponibilité de plus de 500 analyses granulométriques permettant d'estimer ce paramètre, aucune étude n'a analysé ces données par rapport aux types de dépôts quaternaires rencontrés. Le deuxième paramètre, le taux de recharge des aquifères de surface, est beaucoup plus difficile à quantifier. Ce paramètre pourra être précisé grâce à la mise en place d'équipements spécialisés pour mesurer les variations de niveaux d'eau de la nappe, ainsi qu'avec l'établissement d'un bilan hydrologique à partir des données météorologiques. Cette évaluation de la recharge est importante puisqu'il n'existe aucune étude, pour la région, qui compare la qualité des valeurs de recharge obtenues par différentes méthodes.

1.2 OBJECTIFS DU MÉMOIRE

Les objectifs devront permettre d'aborder les divers points de la problématique. De plus, nos travaux supportent les objectifs du projet du piémont laurentien au niveau de la caractérisation des aquifères granulaires.

De façon plus spécifique, les objectifs visés sont les suivants:

1) Caractériser et analyser les paramètres hydrogéologiques et hydrologiques recueillis par le projet piémont laurentien. Cette première étape permet de faire un tri sélectif des données nécessaires à la modélisation hydrogéologique en plus de nous familiariser avec les conditions existantes de la région. Les principaux paramètres à caractériser et à analyser sont la recharge et la conductivité hydraulique des formations superficielles.

2) Intégrer les données hydrogéologiques et hydrologiques dans un modèle conceptuel afin de bien définir l'écoulement régional à l'aide de la modélisation numérique.

3) Obtenir une compréhension quantitative de la dynamique de l'écoulement de l'eau souterraine dans la MRC de Portneuf grâce à la modélisation numérique.

1.3 TRAVAUX ANTÉRIEURS

Depuis le début du projet sur le piémont laurentien en 1995, une série de travaux ont été réalisés (Béland-Pelletier, 1996; Boisvert et Michaud, 1998; Bourque et al., 1998; Cloutier et al., 1997; Fagnan, 1998; Fagnan et al., 1998; Girard, en préparation; Michaud et al., 1997a et 1997b; Murat, en préparation; Paradis et al., 1997; Paradis, en préparation; Parent et al., 1998; Vitali et al., 1997, etc.). Les thématiques abordées sont celles de la géologie du Quaternaire, de la gestion des données à référence spatiale et de la caractérisation hydrogéologique régionale.

1.3.1 Géologie du Quaternaire

L'élément nouveau le plus important issu du projet est la carte de la géologie des formations superficielles (Cloutier et al., 1997). Cette carte, qui couvre la majeure partie de la MRC, nous indique la distribution des dépôts quaternaires de la région. Cette carte est un outil intéressant pour délimiter les formations aquifères. De plus, elle fournit une bonne description de la nature et de la genèse des matériaux qui est utile pour l'estimation de la conductivité hydraulique. La légende de cette carte fournit une description de chaque unité cartographiée (puissance, environnement de sédimentation, composition granulométrique, etc.). L'ensemble de ces informations se retrouvent aussi sur la planche hydrogéologique présentant le contexte géologique à l'échelle régionale (Parent et al., 1998).

Plusieurs autres rapports internes de la Commission géologique du Canada aident également à bien connaître la stratigraphie. Les travaux de Doiron (1996a) décrivent les unités hydrostratigraphiques présentes dans la MRC de Portneuf. En plus de décrire chacune des unités, ces rapports présentent leurs modes de mise en place ainsi qu'une coupe générale de chaque unité. Un second rapport de Doiron (1996b) fait une description plus locale de diverses coupes dans les sédiments quaternaires. Ces travaux permettent de mieux connaître localement la stratigraphie.

Pour les endroits où il n'y a pas de coupes disponibles, l'utilisation de d'autres méthodes permet de connaître la stratigraphie. Une de ces méthodes est la géophysique, plus précisément l'utilisation du géoradar et de méthodes électriques. Les résultats de Michaud et al. (1997b) démontrent que certaines méthodes géophysiques s'appliquent bien aux études de caractérisation hydrogéologique. Elles permettent d'établir l'étendue latérale ainsi que de visualiser l'architecture des différentes unités stratigraphiques. Ces méthodes permettent également d'identifier par endroit la profondeur de la nappe phréatique.

L'étude du contexte hydrostratigraphique (Girard, en préparation), devrait également présenter un modèle géologique en trois dimensions des dépôts meubles, dans la région de Saint-Raymond-de-Portneuf.

1.3.2 Informatique

Depuis le début du projet de cartographie des aquifères du piémont laurentien, des milliers de données (forages, analyses chimiques, analyses granulométriques, etc.) ont été compilées. Pour bien gérer et avoir accès à ces données facilement, une base de données relationnelle a été crée. Les informations ont été compilées à l'aide du logiciel de base de données ACCESS version 2.0 (Microsoft, 1994).

Parmi l'ensemble des paramètres compilés dans la base de données, ce sont les données de forages qui comptent la majorité des entrées. Puisque les forages sont généralement coûteux et que leurs informations sont très utiles, les données doivent être conservées de façon à en faciliter l'accès. La Commission géologique du Canada (Boisvert et Michaud, 1998) a développé une nouvelle structure de base de données faisant appel à la logique des systèmes d'informations géographiques (SIG) en permettant de mieux gérer la complexité et l'hétérogénéité des données de forages.

De plus, depuis le début du projet pilote, d'autres logiciels ont été développés pour aider à mieux analyser les données recueillies. La Commission géologique du Canada (Boisvert, 1997) a développé un logiciel permettant de mettre en graphique les analyses granulométriques des échantillons de matériels granulaires. Ce logiciel permet d'estimer la conductivité hydraulique du matériel recueilli grâce à des corrélations avec les paramètres granulométriques.

1.3.3 Hydrogéologie et cartographie

Le projet pilote sur le piémont laurentien démontre que la cartographie hydrogéologique est essentielle à la caractérisation des ressources en eau souterraine. Effectivement, plusieurs travaux impliquent les deux domaines (cartographie et hydrogéologie). Un article (Michaud et al., 1997a) résume les différents objectifs du projet. Cet article trace également un portrait des différentes cartes thématiques réalisées.

Les travaux de Fagnan (1998) sur la cartographie hydrogéologique régionale et l'évaluation de la vulnérabilité des aquifères identifies de façon spécifique la source des données compilées, les travaux de terrain réalisés, la description géologique de la MRC de Portneuf, la cartographie hydrogéologique de la MRC et l'évaluation de la vulnérabilité des aquifères. Deux autres projets de recherche sont basés sur les travaux de Fagnan (1998). Le premier est une étude comparative des méthodes permettant d'évaluer la vulnérabilité (Murat, en préparation). Cette étude permettra d'identifier la meilleure méthode pour évaluer la vulnérabilité des aquifères granulaires dans le contexte du sud du Québec. Le second projet est la présente étude qui vise à quantifier la connaissance de l'écoulement de l'eau souterraine décrite qualitativement par Fagnan (1998).

La Planche hydrogéologique de Fagnan et al. (1998) présente des cartes thématiques regroupant les informations hydrogéologiques de la MRC de Portneuf. On y retrouve les séquences sédimentaires regroupées en terme de systèmes aquifère-aquitard, l'épaisseur des sédiments de surface, la piézométrie, les directions d'écoulement, le modèle numérique de terrain (MNT), des coupes géologiques à l'échelle des bassins versants, les points de contrôles piézométriques ainsi que les limites des bassins versants. Cette Planche synthétise une partie du projet de recherche de Fagnan (1998) et constitue un

excellent outil de base pour la gestion et la protection de la ressource en eaux souterraines.

Un élément majeur à connaître lors d'une étude hydrogéologique est la recharge des aquifères. Les travaux de Paradis et al. (1997) ont permis d'évaluer de façon préliminaire la recharge en eau souterraine dans le bassin versant de la rivière Portneuf. Cette étude est basée sur les données météorologiques et hydrométriques de 1973 à 1992. Les données ont été interprétées par modélisation hydrologique avec le modèle matriciel à bilan hydrologique CEQUEAU (Morin et Paquet, 1995).

D'autres travaux de recherche se font à l'échelle locale. Paradis (en préparation) effectue présentement l'évaluation des méthodes de calculs des périmètres de protection pour des puits municipaux situés à St-Alban, à Ste-Christine et à Pont-Rouge.

1.3.4 Qualité de l'eau

La Commission géologique du Canada a également entrepris des études sur la qualité des eaux souterraines dans la MRC à partir d'une caractérisation hydrogéochimique (Bourque et al., 1996). L'étude présente des résultats d'analyse d'échantillons d'eau souterraine couvrant une grande partie de la MRC. Les analyses ont été faites pour des paramètres inorganiques ainsi que microbiologiques.

Une Planche hydrogéologique sur la qualité de l'eau présente les résultats de la caractérisation hydrogéochimique des eaux souterraines (Bourque et al., 1998). Cette Planche présente la qualité des eaux souterraines dans les aquifères rocheux, ainsi que dans les aquifères granulaires. Les résultats sont présentés sous forme de diagrammes circulaires. Cette planche répond au besoin de connaître la qualité naturelle et la contamination des différentes formations dans le but de protéger la ressource.

En plus de connaître la composition géochimique de l'eau, d'autres études nous renseignent sur la caractérisation isotopique des eaux souterraines de la région de Portneuf (Vitali et al., 1997). Cette recherche porte sur la composition isotopique du carbone inorganique et l'oxygène dissous dans l'eau souterraine. Les premiers résultats indiquent l'existence d'aquifères variés dans cette région. Des nappes libres, des nappes à recharge lente et une nappe stagnante ont pu être identifiées.

1.3.5 Modélisation

Jusqu'à ce jour, aucune modélisation de l'écoulement à l'échelle régionale n'a été réalisée dans la MRC de Portneuf. Cependant, plusieurs études de modélisation à l'échelle régionale ont déjà été réalisées pour d'autres régions (ex : Hamdan et Mukhopadhyay, 1990 ; Mukhopadhyay et al., 1994 ; Er-Rouane et al., 1996 ; Lepage, 1996 ; Martin et Frind, 1998). Trois de ces études sont impliquées dans la protection de la ressource en eau souterraine.

1.4 MÉTHODOLOGIE

Une des premières étapes du développement d'un modèle d'écoulement de l'eau souterraine est l'établissement d'une liste des principaux processus ou paramètres, autant physiques (géologie), hydrogéologiques et chimiques qui peuvent influencer les composantes ou la structure du système à l'étude. On y retrouve deux types de données. Des données qui représentent le cadre physique ou le cadre hydrogéologique du domaine. La liste des principaux éléments à compiler est présentée au tableau 1.2.

Tableau 1.2 : Informations requises lors du développement d'un modèle d'écoulement
des eaux souterraines adapté aux aquifères granulaires
(modifié d'Anderson et Woessner, 1992)

A. Éléments physiques

- Cartes et coupes géologiques montrant l'extension latérale et verticale ainsi que les limites du domaine.
- 2. Carte topographique montrant l'élévation du terrain ainsi que le réseau hydrographique.
- 3. Carte de contours indiquant la base des aquifères.
- 4. Carte isopaque indiquant la puissance des aquifères.

B. Éléments hydrogéologiques

- 1. Carte identifiant le niveau de la nappe phréatique de l'aquifère.
- 2. Carte indiquant les divers bassins versants.
- 3. Cartes et coupes identifiant la distribution des valeurs de conductivité hydraulique.
- 4. Distribution spatiale et temporelle des précipitations, de l'évapotranspiration et de la recharge sur le domaine étudié.
- 5. Connaissance du coefficient d'emmagasinement et des propriétés du milieu en condition non-saturée.

En général, l'acquisition, le traitement et la mise en carte de toutes ces informations constituent la très grande partie consacrée à la recherche. Dans le cadre de ce mémoire, puisque le projet est en marche depuis quelques années, la majorité des informations requises pour la modélisation est déjà disponible. Les données sont sous forme de cartes ou compilées dans une base de données relationnelle.

Les travaux de terrain et la compilation des données réalisés par Fagnan (1998) constituent une source importante d'information. Le détail des sources d'informations compilées y sont disponibles. Les données recueillies servent essentiellement à la mise en place du cadre physique du modèle d'écoulement. Effectivement, les cartes identifiant les principaux aquifères granulaires de surface, les bassins versants et l'épaisseur des dépôts

granulaires servent à la construction tridimensionnelle de la zone à modéliser. Pour ce qui est du cadre hydrogéologique, la carte hydrogéologique déjà réalisée sert de guide en début de modélisation et sert également d'élément comparatif avec les données modélisées.

L'utilisation des données déjà compilées et analysées constitue seulement une partie du travail à réaliser. Plusieurs données ont été recueillies et calculées sans avoir été traitées et analysées. Pour ce qui est des valeurs de conductivité hydraulique, elles sont estimées à partir des données granulométriques en utilisant la formule de Hazen et ensuite regroupées en fonction du type d'environnement Quaternaire où elles se trouvent. Les données relatives aux valeurs de recharge sont, quant à elle, traitées de façon individuelle, selon les différentes méthodes, pour être ensuite comparées. Plusieurs éléments (travaux de terrain et méthodes analytiques) permettent de calculer la recharge des aquifères. L'utilisation de capteurs de pression dans le sol permet de mesurer les fluctuations du niveau de la nappe et de produire des hydrogrammes de puits. L'installation de câbles à thermistances dans le sol identifie la température dans le sol et permet de calculer le débit d'eau alimentant la nappe (Tanaguchi, 1993 et 1994). Finalement, le calcul du bilan hydrologique global aide à identifier le taux d'infiltration dans le sol.

Suite à l'analyse des valeurs de conductivité hydraulique et du taux de recharge des aquifères, ces éléments sont intégrés dans le cadre hydrogéologique de la modélisation. Ces paramètres sont indispensables car ils gouvernent, de façon presque globale, le modèle d'écoulement. Ensuite, l'intégration du cadre physique et hydrogéologique permet l'établissement du modèle conceptuel, modèle qui représente une forme simplifiée des conditions réelles que l'on retrouve sur le terrain.

1.4.1 Modélisation

À la suite de la compilation des données recueillies et analysées, l'étape finale, qui vise la description quantitative de l'écoulement régional, peut être entreprise. Cette étape vise à intégrer toutes les données qui ont été traitées depuis le début du projet pilote et qui ont

un impact sur l'écoulement. La figure 1.2 schématise les principales étapes de l'application d'un modèle d'écoulement.

L'identification des objectifs guide l'orientation de la recherche. Les objectifs sont définis dans le but de répondre aux problématiques soulevées.

Comme mentionné précédemment, le modèle conceptuel constitue une représentation simplifiée des conditions réelles rencontrées sur le terrain. Cette étape sert à intégrer les différents paramètres analysés préalablement, tant pour le cadre physique (épaisseur des aquifères, limites, etc.) que pour le cadre hydrogéologique (conductivité hydraulique, recharge, etc.).

Figure 1.2 : Étapes du protocole d'application d'un modèle d'écoulement (adapté d'Anderson et Woessner, 1992)

Une des étapes sert à traduire le modèle conceptuel en termes mathématiques. Cela se traduit par l'élaboration du modèle mathématique, qui consiste en une ou plusieurs équations différentielles partielles. Les équations représentent un écoulement en régime permanent ou transitoire et un écoulement en milieu saturé ou non-saturé. À la suite de cette étape, le choix de logiciels capables de répondre aux objectifs est critique. L'utilisation d'un modèle par différences finies ou éléments finis élimine certains logiciels. La décision de modéliser un domaine en milieu saturé ou en milieu non-saturé, en milieu poreux ou fracturé et avec ou sans considérer le transport limite également le choix. Le type d'ordinateur disponible limite également le type de logiciel à utiliser.

Après avoir fait un choix adéquat de logiciel(s), la configuration du modèle peut être entreprise. Le modèle conceptuel est transformé pour être modélisé. En effet, cette étape inclut la configuration du maillage, la sélection des pas de temps (en régime transitoire, s'il y a lieu), la mise en place des limites (flux nuls, flux imposés, charges imposées) et le choix des conditions initiales. De plus, les paramètres propres à l'aquifère (conductivité hydraulique, recharge, etc.) sont inclus.

La calibration sert à vérifier l'exactitude des résultats obtenus. En fait, cette étape nous permet de vérifier si les charges simulées reproduisent adéquatement les charges observées. La calibration sert à déterminer une approximation des valeurs de terrain. Cette calibration est effectuée en utilisant un jeu d'essais et d'erreurs jusqu'au moment d'obtenir la plus faible marge d'erreur manuellement, ou par des méthodes automatiques. Si cette étape ne répond pas aux critères de précision fixés, il faut d'abord déterminer les points à modifier et ensuite refaire à nouveau des simulations. Souvent, lors de cette étape, une étude de sensibilité des paramètres est effectuée. Cette étude permet de connaître les paramètres les plus sensibles et ayant le plus d'impact sur les résultats finaux.

CHAPITRE 2

CONTEXTE RÉGIONAL DE LA MRC DE PORTNEUF

Ce chapitre constitue une description sommaire des contextes physiographique, géologique, hydrologique et hydrogéologique de la région à l'étude. La caractérisation de ces divers éléments a été réalisée dans le cadre du projet de cartographie régionale des aquifères du piémont laurentien (Cloutier et al., 1997; Fagnan, 1998; Fagnan et al., 1998; Parent et al., 1998) ainsi que par les travaux de Clark et Globensky (1973, 1975).

2.1 LOCALISATION

La MRC de Portneuf, d'une superficie de 4096 km², se situe à mi-chemin entre les villes de Québec et de Trois-Rivières. Son territoire est limité au sud par le fleuve Saint-Laurent et au nord par la latitude 47°41' et respectivement à l'ouest et à l'est par les longitudes 71°50' et 72°54'. La figure 2.1 présente les limites de la région. Puisque l'autoroute Félix Leclerc (40) traverse d'est en ouest la MRC et qu'il y a plusieurs routes principales, l'accès à cette région est facile.

La plus grande partie de la population demeure dans le sud de la MRC, sur un territoire couvrant environ 1500 km², soit environ 35% de sa superficie. Ce territoire se situe sous la latitude 47°00' N. Au total, plus de 25 municipalités se retrouvent dans la MRC de

Portneuf. Les principales municipalités sont Deschambault, Donnaconna, Pont-Rouge, Neuville, Saint-Marc-des-Carrières et Saint-Raymond-de-Portneuf.

2.2 PHYSIOGRAPHIE ET HYDROGRAPHIE

La MRC de Portneuf se divise en 2 régions physiographiques distinctes. Au nord, il y a les Laurentides et, plus au sud, il y a les Basses-Terres du Saint-Laurent. Ces régions exhibent des différences marquées autant du point de vue géologique, topographique que de l'utilisation du sol. La figure 2.2 présente le territoire couvert par ces 2 régions physiographiques.

La topographie des Basses-Terres du Saint-Laurent est relativement plane ou ondulée à l'échelle de la MRC. Les roches du Paléozoïque constituent cette plate-forme sédimentaire. De plus, une grande partie des sols de la plaine des Basses-Terres sont utilisés pour l'activité agricole. Pour ce qui est des Laurentides, la topographie est représentée par des collines ondulées avec quelques reliefs plats localisés à l'intérieur de vallées glaciaires. Les roches formant ces reliefs sont d'âge Précambrien. Contrairement à ce qui se passe au sud de la MRC, l'activité agricole est restreinte dû aux conditions de terrain difficiles. Ce sont essentiellement des secteurs boisés où on y pratique des activités reliées à l'exploitation des ressources naturelles.

Figure 2.1: Limites de la région à l'étude (modifiée de Fagnan, 1998)

Figure 2.2 : Physiographie et hydrographie de la MRC de Portneuf (adaptée de Fagnan, 1998)

La MRC de Portneuf occupe 5 bassins hydrologiques différents. Il y a d'ouest en est les bassins de la rivière Batiscan, de la rivière Sainte-Anne, du fleuve Saint-Laurent, de la rivière Portneuf et de la rivière Jacques-Cartier. Les rivières s'écoulent principalement vers le sud, en direction du fleuve Saint-Laurent. La superficie ainsi que les principaux bassins hydrologiques sont présentés à la figure 2.2. Puisque le bassin de la rivière Batiscan se trouve majoritairement à l'extérieur de la MRC de Portneuf, aucune description n'en est faite.

2.2.1 Bassin de la rivière Jacques-Cartier

Ce bassin se situe dans le coin sud-est de la MRC. Les eaux drainées par la rivière Jacques-Cartier proviennent en partie du lac Saint-Joseph au nord et des rivières aux Pommes et Noire à l'est. Les eaux de la rivière Jacques-Cartier s'écoulent majoritairement au roc et ont entaillé les sédiments deltaïques mis en place pendant l'épisode de la Mer de Champlain.

2.2.2 Bassin de la rivière Portneuf

Le bassin se situe dans la partie centre-sud de la MRC. Les eaux drainées par la rivière Portneuf ont comme principales sources les lacs Sept-îles et Sergent. Dans sa partie nord, le lit de la rivière est majoritairement constitué de roc, tandis que dans sa partie sud, la rivière s'écoule dans les argiles marines provenant de la Mer de Champlain (Paradis et al., 1997).

2.2.3 Bassin de la rivière Sainte-Anne

Le bassin couvre entièrement la partie ouest de la MRC et se prolonge au nord à l'extérieur des limites de la MRC. Il s'étend sur plus de la moitié de la MRC. Son réseau hydrographique est constitué des rivières Blanche, Jacquot, Mauvaise, du Bras-du-nord de la rivière Sainte-Anne et de la Sainte-Anne. Dans la partie nord du bassin versant, la rivière Sainte-Anne a fortement entaillé les sédiments deltaïques en systèmes de talus et

de terrasses. Dans sa partie aval, la rivière s'écoule sur des silts et même sur la roche en place (Fagnan, 1998).

2.2.4 Bassin du fleuve Saint-Laurent

Ce bassin est situé dans le sud-ouest du territoire à l'étude. Contrairement aux autres bassins versants, celui du fleuve Saint-Laurent ne possède pas de rivières principales. L'ensemble des cours d'eau dont la rivière Bélisle et le grand Bras se déverse directement dans le fleuve Saint-Laurent.

2.3 GÉOLOGIE

Parallèlement aux ensembles physiographiques, la MRC de Portneuf recoupe deux provinces géologiques. Au nord, il y a les roches de la province géologique du Grenville et au sud il y a les roches, d'âge paléozoïque, de la province géologique des Basses-Terres du Saint-Laurent. La présence de plusieurs failles normales en échelons délimite les deux ensembles. À partir du pied des Laurentides jusqu'au fleuve Saint-Laurent, la majorité du socle rocheux est recouvert par des formations superficielles mises en place au Quaternaire. Dans les prochaines sections, une brève description du substrat rocheux sera présentée ainsi qu'une description plus détaillée des dépôts quaternaires de surfaces.

2.3.1 Roche en place

La figure 2.3 ainsi que le tableau 2.1 présentent respectivement la carte géologique de la MRC de Portneuf ainsi qu'un résumé des principales formations rocheuses.

Figure 2.3 : Géologie du socle rocheux (modifiée de Fagnan, 1998)

Les roches sédimentaires que l'on retrouve dans la MRC appartiennent toutes à la période Ordovicienne. Elles sont constituées principalement des calcaires du Groupe de Trenton ainsi que des schistes argileux (*shales*) du Groupe d'Utica. On retrouve par endroit les calcaires des groupes de Black River et Chazy. L'orogène taconique qui est à l'origine des Appalaches n'a presque pas déformé les roches sédimentaires des Basses-Terres du St-Laurent. Malgré tout, certaines déformations mineures ont créé des plis ouverts tels que le synclinal de Portneuf et l'anticlinal de Cap-Santé. Ailleurs dans la MRC, les roches sont légèrement inclinées vers le sud avec un pendage de 1° à 2° vers le sud (Clark et Globensky, 1973 et 1975). Un relief de type karstique est présent dans les secteurs de Saint-Casimir et de Saint-Marc-des-Carrières. Les roches dans ce secteur présentent une grande densité de fissuration, une grande friabilité et un grand taux de dissolution.

Les roches ignées et métamorphiques de la province du Grenville sont d'âge Précambrien. Les roches caractérisant cette province géologique sont principalement des gneiss, des granites et des migmatites avec la présence de gabbro et de calcaire cristallin. Contrairement aux roches de la plate-forme sédimentaire, les roches ignées et métamorphiques sont peu fissurées et massives.

Âge	Groupe	Formation	Lithologie	Épaisseur					
		Membre		(en mètre)					
	Utica	Lobinière	Siltstone et schiste argileux	122-137					
		Delisle	Schiste argileux / calcaire	??					
		Neuville		122-132					
		Grondines	Calcaire	65-78					
		Saint-Casimir	Calcaire	54-56					
	Trenton	Deschambault	Calcaire cristallin	26-28					
Ordovicien		Sainte-Anne	Calcaire	1.5					
		Pont-Rouge	Calcaire	30-40					
		Saint-Marc	Calcaire	11					
	Black	Leray	Calcaire	1.5					
	River	Lowville	Calcaire	7					
	Chazy		Calcaire	77					
Précambrien	Grenville	Orthogneiss							
		Paragneiss							
		Gneiss à biotite-ho	orblende						

Tableau 2.1 : Formations géologiques de la MRC de Portneuf
(adapté de Clark et Globensky, 1975)

2.3.2 Formations superficielles

Depuis plus de 200 000 ans, c'est la période Quaternaire qui façonne et construit le paysage géologique québécois. Malgré cette longue période d'activité, ce sont les événements de la dernière déglaciation et du bref épisode marin qui a suivi qui ont mis en place l'essentiel des dépôts meubles. Ces dépôts recouvrent une grande partie du socle rocheux. Puisque la région du piémont laurentien présente de grands aquifères de surface et que leur distribution est contrôlée par la stratigraphie et l'architecture des formations superficielles, une carte des formations superficielles a été réalisée (Cloutier et al., 1997). Cette carte expose les différentes formations quaternaires ainsi que leur distribution au niveau de la MRC. On distingue trois grands types d'environnements sédimentaires: les

environnements glaciaires et fluvioglaciaires, les environnements marins ainsi que les environnements lacustres. Les prochaines sections décrivent brièvement les différents types de sédiments identifiés dans la MRC de Portneuf.

2.3.2.1 Sédiments organiques

Les dépôts organiques (O) sont constitués principalement de tourbe, débris végétaux et d'humus. Leur épaisseur varie généralement de 0,3 à 4,0 mètres. Leur distribution est aléatoire sur le territoire mais, en général ils se retrouvent dans des dépressions qu'occupaient d'anciens cours d'eau (lacs, rivières ou ruisseaux).

2.3.2.2 Sédiments alluviaux

On distingue 2 types d'alluvions, les alluvions actuelles (Ap) qui sont mises en place le long des cours d'eau du système fluvial actuel, et les alluvions de terrasses fluviatiles (At) qui prennent leur origine de l'incision dans les formations quaternaires antérieures. La présence d'alluvions des terrasses est beaucoup plus importante que les alluvions récentes.

Les alluvions des terrasses fluviatiles se composent de sable, silt sableux, sable graveleux, gravier et fréquemment de matière organique. L'épaisseur varie généralement de 0,5 à 5,0 mètres. La grande majorité des alluvions est adjacente à de grandes rivières de la région (Batiscan, Sainte-Anne et Jacques-Cartier) ainsi que du fleuve Saint-Laurent. Ces dépôts se retrouvent également, mais en plus faible proportion, en bordure des petits cours d'eau. Pour ce qui est des rivières Sainte-Anne et Jacques-Cartier, la superficie qu'occupent les alluvions diminue généralement du nord vers le sud. Toujours pour ces deux rivières, les alluvions recouvrent les sédiments deltaïques dans la partie nord pour recouvrir ensuite les argiles ou le roc en se dirigeant vers le sud.

Les alluvions actuelles se composent de sable, silt sableux, sable graveleux et gravier ainsi que de matière organique à l'occasion. L'épaisseur varie de 0,5 à 3,0 mètres. Ces alluvions se retrouvent majoritairement dans le nord de la rivière Sainte-Anne et le long du fleuve du Saint-Laurent.

2.3.2.3 Sédiments du Lac Lampsilis

Les sédiments du Lac Lampsilis ont été mis en place suite au passage de la Mer de Champlain et de l'épisode lacustre subséquente. La présence de sédiments deltaïques (Ld) ainsi que de sédiments littoraux, prélittoraux et d'exondations (Lb) a été cartographiée. Ces alluvions se retrouvent principalement dans la partie sud de la rivière Sainte-Anne ainsi que le long du fleuve Saint-Laurent.

La mise en place des sédiments deltaïques s'est faite à l'embouchure des cours d'eau se déversant dans le Lac Lampsilis à environ 60 m d'altitude. Les sédiments se composent de sable, sable graveleux et gravier et ils sont stratifiés et biens triés. Leur épaisseur varie de 1 à 20 mètres. Pour ce qui est des sédiments littoraux, prélittoraux et d'exondations ils ont été mis en place dans des eaux peu profondes. Les sédiments forment des dépôts de 0,5 à 5 mètres d'épaisseur, mais ils forment le plus souvent une mince couverture de sédiments lacustres sur les sédiments marins d'eau profonde.

2.3.2.4 Sédiments marins

Durant l'épisode de la Mer de Champlain, qui a atteint 210 m d'altitude dans la région à l'étude, divers processus se sont succédés pour former des dépôts marins. Trois types de sédiments ont été identifiés: des sédiments deltaïques (Md), des sédiments littoraux, prélittoraux et d'exondations (Mb) ainsi que des sédiments d'eau profonde (Ma). Ces sédiments se retrouvent sur une grande partie de la région étudiée.

La mise en place des sédiments deltaïques s'est produite à l'embouchure des cours d'eaux qui se déversaient dans la Mer de Champlain. Elle a formé de grandes surfaces planes marquées par des chenaux orphelins. L'épaisseur des dépôts cartographiés varie de 1 à 40 mètres et ils se composent de sable, sable graveleux et gravier. De plus, ils sont généralement stratifiés et biens triés. Ils reposent principalement sur l'argile ou directement sur le roc. Les principaux dépôts deltaïques se retrouvent en bordure des rivières Jacques-Cartier et Sainte-Anne. La superficie des dépôts est de plusieurs dizaines de km² au nord des bassins pour disparaître graduellement en direction du fleuve.

Les sédiments littoraux, prélittoraux et d'exondations ont été mis en place dans des eaux peu profondes. Ils se composent de sable, silt sableux, sables graveleux et gravier généralement bien trié ainsi que stratifié. Leur épaisseur est beaucoup moins importante que les sédiments deltaïques. Effectivement, l'épaisseur des dépôts varie de 0,5 à 5,0 mètres environ. Leur mise en place s'est effectuée sur les argiles marines. En général, ces sédiments se retrouvent sur et en périphérie des sédiments deltaïques témoignant d'un remaniement en surface des sédiments marins lors du retrait de la Mer de Champlain.

La décantation des sédiments durant la phase d'inondation marine de la Mer de Champlain est à l'origine des sédiments fins d'eau profonde. Ces sédiments se composent de silt argileux et d'argile silteuse de couleurs gris moyen à gris foncé. Ils sont massifs et présentent une structure laminée ou stratifiée. À l'occasion, il y a des rythmites en bordure des grands complexes deltaïques. Leur mise en place s'est produite directement sur la roche en place ou sur le till. L'épaisseur des dépôts d'argile varie de moins de 1 mètre à certains endroits à plus de 40 mètres. En surface, on retrouve principalement les sédiments fins dans le bassin versant de la rivière Portneuf et au sud-ouest de la rivière Sainte-Anne. En profondeur, les argiles se retrouvent sous les sédiments deltaïques, littoraux et alluvionnaires. En fait, l'argile marine constitue une des unités quaternaires les plus fréquentes dans la MRC de Portneuf.

2.3.2.5 <u>Sédiments fluvioglaciaires</u>

Les eaux de fonte au contact ou à proximité du glacier ont formé les sédiments fluvioglaciaires. Trois types de sédiments ont été cartographiés dans la MRC: les sédiments d'épandages proglaciaires subaériens (Go), les sédiments d'épandages proglaciaires subaquatiques (Gs) et les sédiments juxtaglaciaires (Gx). Ils se retrouvent en bordure de la moraine de Saint-Narcisse et dans le fond des vallées.

Les sédiments d'épandages proglaciaires subaériens se composent de sable, gravier et blocs. Ils montrent une décroissance granulométrique générale vers l'aval, indiquant une perte d'énergie des courants des cours d'eau qui les transportaient. Leur épaisseur peut varier de 1 à 20 mètres. Pour ce qui est des sédiments d'épandages proglaciaires subaquatiques ils ont été mis en place en eaux peu profondes à l'embouchure de tunnels sous / ou intraglaciaires. Les tunnels débouchaient dans un lac proglaciaire ou dans la Mer de Champlain. Les sédiments sont constitués de sable, de sable et gravier et à l'occasion il peut y avoir une présence de sable silteux. Les dépôts peuvent avoir une épaisseur variant de 1 à 20 mètres. Les sédiments juxtaglaciaires forment des eskers, des kames et des crêtes morainiques. Ils sont constitués d'un amalgame de sable et gravier, de blocs et avec un peu de diamicton. Leur épaisseur peut atteindre jusqu'à 40 mètres.

2.3.2.6 Sédiments glaciaires

Les sédiments se sont formés directement au contact du glacier. Leur composition se traduit par un till à matrice sablo-silteuse à silto-argileuse. Quatre types de sédiments glaciaires ont été cartographiés: les sédiments de la Moraine frontale de Saint-Narcisse (GxT), le till remanié (Tr/Tvr), le till de couverture généralement continue (T) et le till de couverture discontinue (Tv).

Les sédiments de la Moraine de Saint-Narcisse ont été mis en place lors d'une réavancée du front du glaciaire. La moraine est constituée par endroit de deux crêtes qui sont partiellement enfouies sous les sables deltaïques ou sous les silts morainiques argileux. Les crêtes de la moraine traversent la MRC à partir du sud-ouest jusqu'au nord-est. Les principaux éléments constituant la moraine sont le till, des diamictons, des blocs et les sables et graviers. Ces dépôts peuvent atteindre jusqu'à 40 mètres d'épaisseur. Le till remanié est un diamicton résultant du remaniement par des vagues et des courants sous le niveau maximum de la Mer de Champlain. Ce till inclut des niveaux de stratifications sablo-graveleux.

Puisque les roches sous-jacentes au glacier ont une influence sur la composition des tills, les unités de till formées dans le nord de la région (Grenville) sont composées principalement de sédiments de roches ignées et métamorphiques alors que les unités de till formées dans le sud (Basses-Terres du Saint-Laurent) sont composées de sédiments calcaireux. Le till en couverture généralement continue atteint des épaisseurs généralement supérieure à 1 mètre. C'est principalement sur la plate-forme paléozoïque ou dans les vallées du Bouclier que l'on retrouve cette unité. Le till de couverture discontinue atteint moins de 1 mètre d'épaisseur. La surface est généralement ponctuée d'affleurement rocheux. C'est sur le Bouclier que se retrouve ce type de dépôt.

2.4 HYDROGÉOLOGIE

Le piémont laurentien possède de grands aquifères granulaires. Les principales unités hydrostratigraphiques ont été décrites et cartographiées dans la MRC de Portneuf (Fagnan, 1998). Le tableau 2.2 présente la division des unités hydrogéologiques. De plus, à la figure 2.4 est présentée la distribution des contextes hydrogéologiques de la région étudiée. Les formations ont été divisées en six unités hydrogéologiques selon leur texture et la nature de la roche en place. Premièrement, les unités ont été subdivisées selon le type d'aquifère. Il y a les aquifères dans les dépôts meubles (libres ou semi-captifs), les aquifères au roc et les aquifères confinés. Ensuite, les aquifères ont été identifiés à six unités hydrostratigraphiques: les sables, la Moraine de Saint-Narcisse, les sables de hautes terrasses, les alluvions des plaines d'inondation, les roches affleurantes et les roches recouvertes par l'argile marine. Finalement, les unités de sables et de roches affleurantes ont été, à leur tour, divisées selon leur potentiel aquifère. Dans les sables, on retrouve les sables et graviers deltaïques, les sables des hautes terrasses sur sables et graviers deltaïques, les sables des hautes terrasses sur sables et graviers deltaïques, les roches affleurantes), les roches

sédimentaires recouvertes de till, les roches ignées/métamorphiques recouvertes par un couvert continu de till et les roches ignées/métamorphiques (affleurantes).

Évidemment, les unités ne possèdent pas toutes le même potentiel aquifère à cause de leur étendue, à leur épaisseur, à leur perméabilité et à leur influence sur la composition chimique de l'eau. Les aquifères dans les dépôts meubles ont été les plus étudiés (Fagnan, 1998; Fagnan et al., 1998; Bourque et al., 1998). L'ensemble de ces dépôts se retrouve en bordure des rivières Sainte-Anne et Jacques-Cartier.

Parmi les 4 unités de sables, les sables et graviers deltaïques possèdent le potentiel aquifère le plus important de la région. La combinaison de leur perméabilité élevée, de leur grande étendue (plusieurs dizaines de km²) et de leur grande épaisseur (jusqu'à 40 mètres) contribue à leur potentiel aquifère. Ce potentiel est démontré par l'utilisation de cette unité hydrogéologique comme source d'alimentation en eau souterraine pour la majeure partie des systèmes d'approvisionnement de la MRC. Pour ce qui est des sables et graviers fluvioglaciaires, leur perméabilité leur confère un bon potentiel aquifère, mais leur faible étendue et épaisseur restreint la quantité d'eau disponible. Cependant, à l'échelle locale, pour une petite population, cette unité peut être utilisée comme source d'approvisionnement en eau.

Figuge. 2.4 : Carte des contextes hydrogéologiques (adaptée de Fagnan, 1998)

Type d'aquifère	Unités hydrogéologiques
	Aquifères libres ou semi-captifs
	1- Sable
Dans les dépôts meubles	 A- Sables et graviers deltaïques B- Sables des hautes terrasses sur sables et graviers deltaïques
	C- Sables et graviers fluvioglaciaires D- Sables littoraux
	2- Moraine de Saint-Narcisse
	3- Sables de hautes terrasses
	4- Alluvions des plaines d'inondation
	5- Roche en place
	 A- Roches sédimentaires (affleurantes) B- Roches ignées/métamorphiques (affleurantes)
Au roc	C- Roches sédimentaires recouvertes par du till
	D- Roches ignées/ métamorphiques recouvertes par une couverture continue de till
	Aquifères confinés
	6- Roches sédimentaires et ignées recouvertes par
	des argiles marines

Tableau 2.2 : Unités hydrogéologiques de la MRC de Portneuf
(adapté de Fagnan et al., 1998)

Tout comme les dépôts de sables et graviers fluvioglaciaires, les sables littoraux présentent une épaisseur trop faible pour satisfaire les besoins en eau souterraine d'une population régionale. Leur exploitation est limitée à l'échelle locale. Les sables des hautes terrasses présentent une bonne perméabilité mais leur faible épaisseur de 1 à 2 mètres limite leur potentiel de production. Composée de sable et gravier ainsi que de blocs dans une matrice silto-sableuse, la Moraine de Saint-Narcisse présente un bon potentiel aquifère.

CHAPITRE 3

MODÈLE CONCEPTUEL ET PROPRIÉTÉS INITIALES

L'établissement du modèle conceptuel constitue la deuxième étape de la mise en place du modèle d'écoulement des eaux souterraines de la MRC de Portneuf (voir figure 1.2). Suite à la définition des objectifs de la modélisation, le modèle conceptuel peut-être mis en application. Le modèle conceptuel intègre les valeurs initiales des propriétés du système d'écoulement modélisé, la piézométrie de la MRC de Portneuf, et les paramètres hydrogéologiques et hydrologiques. Ces propriétés devront être validées subséquemment lors de la calibration du modèle. Les résultats de la modélisation pourront servir de base à la gestion de la ressource en plus de fournir des données sur l'hydrogéologie de la région.

3.1 MODÈLE CONCEPTUEL

Le modèle conceptuel est défini comme une représentation physique et/ou chimique des processus qui influencent ou qui gouvernent un système aquifère réel (Istok, 1989; Anderson et Woessner, 1992; ASTM, 1995a, 1995b et 1995c). L'objectif premier de l'établissement du modèle conceptuel est de simplifier les problèmes de terrain en y intégrant, de façon organisée, les données recueillies en permettant une analyse plus rapide et moins complexe des résultats. Cette simplification s'impose puisque la reconstruction complète du système aquifère est impossible (Anderson et Woessner, 1992).

La définition du modèle conceptuel de la MRC de Portneuf est la suivante:

- Division du domaine modélisé en trois sous-secteurs: les aquifères libres de la rivière Jacques-Cartier, les aquifères libres du nord de la rivière Sainte-Anne et les aquifères libre du sud de la rivière Sainte-Anne.

- Le domaine modélisé est discrétisé en 5 couches. Les couches représentent les unités quaternaires principalement des sables et graviers deltaïques. L'épaisseur de chaque couche est variable et dépend de l'épaisseur totale saturée des dépôts meubles. La région modélisée couvre uniquement les dépôts de sables et graviers de surfaces les plus importants de la région, même si on retrouve plusieurs autres types d'aquifères ailleurs dans la MRC.

- Des conditions de charges constantes sont assignées pour les 2 principales rivières (Sainte-Anne et Jacques-Cartier), ainsi que les rivières secondaires de la région modélisée. En général, ces rivières servent de limites à la zone modélisée. Aux endroits où il n'y a pas d'écoulement aux limites, ce sont des conditions à flux nul qui sont imposées.

- La piézométrie initiale utilisée est celle réalisée par Fagnan (1998).

- Le seul élément dont nous tiendront compte dans la variation de la nappe phréatique sera la recharge. Une recharge annuelle moyenne sera calculée et imposée comme flux au sommet de la première couche du modèle. Cette recharge sera déterminée de plusieurs façons. La première façon tiendra compte du bilan hydrologique de la région avec le calcul des précipitations, de l'évapotranspiration et du ruissellement. La seconde méthode utilisera la variation du niveau de la nappe phréatique mesurée à l'aide de capteurs de pression. D'autres méthodes utilisées dans le projet pilote serviront également de comparaison. Le pompage dans les carrières, dans les puits domestiques et industriels ainsi que dans les puits municipaux ne sont pas considérés dans le modèle conceptuel, car

leur influence est faible par rapport à la quantité d'eau fournie par les précipitations. Le pompage dans ces puits n'est pas assez important pour influencer l'écoulement régional. La faible densité des puits en région rurale affecte peu le bilan comparativement aux régions urbaines (Lepage, 1996).

- La conductivité hydraulique a une influence sur la circulation du fluide dans la nappe. La conductivité hydraulique moyenne de chaque unité de dépôts meubles sera calculée à partir d'analyses granulométriques d'environ 200 échantillons. Ces échantillons proviennent de travaux réalisés (forages, coupes, etc.) durant le projet de cartographie hydrogéologique. Ces valeurs estimées sont comparées à des valeurs mesurées à l'aide d'essais hydrauliques.

3.2 PIÉZOMÉTRIE DE LA MRC DE PORTNEUF

Lors de la construction d'un modèle d'écoulement régional, l'absence de données piézométriques satisfaisantes et accessibles peut limiter la précision du travail. Souvent, nous avons seulement accès à quelques données recueillies pour différents travaux à l'échelle locale et nous utilisons une carte hydrogéologique déjà réalisée sans connaître l'origine des données et leur exactitude. Ceci a comme conséquence une calibration difficile et des résultats peu fiables.

Heureusement, la carte piézométrique réalisée par Fagnan (1998) présente des données exceptionnelles et accessibles. La région couverte par la carte piézométrique regroupe les dépôts de sables et graviers d'origines deltaïques, littorales et alluvionnaires puisqu'ils constituent la majorité des aquifères granulaires de surfaces de la MRC (Fagnan, 1998). Plusieurs autres aquifères ont été identifiés dans la région (aquifères captifs, roc fracturé), mais ils ne sont pas considérés dans cette étude.

La détermination de la piézométrie dans les dépôts de surface s'est effectuée en utilisant les niveaux d'eau des aquifères dans des puits existants. Plus de 400 points de mesure ont été utilisés pour la construction de la carte. Plusieurs des puits serviront à la calibration du modèle puisque les données du niveau de la nappe associées sont considérées comme fiables (professionnels qui ont pris les données, positionnement à l'aide d'une station totale, etc.). La comparaison des résultats mesurés (terrain) et calculés (modélisation) sera efficace puisque les données de bases proviennent de la même source. En plus d'utiliser les puits d'observation lors de la calibration, il sera nécessaire de comparer les charges calculées et observées à chaque nœud du maillage. Cette étape est plus représentative car elle couvre entièrement le domaine, évitant que les résultats soient biaisés par la concentration de puits dans un secteur donné. Puisque les données ont été recueillies récemment (1995-1998), nous pouvons considérer que le niveau de la nappe n'a pas changé et que les précipitations (recharge) sont également demeurées constantes.

À l'annexe A, nous présentons une carte piézométrique simplifiée de celle produite par Fagnan (1998). Les équipotentielles, les lignes de courant et les lignes de partage des eaux sont présentées sur la carte originale ainsi que sur la Planche cartographique publiée par la Commission géologique du Canada (Fagnan et al., 1998). Il y a 7 principales lignes de partage des eaux dans la région dont trois dans le bassin de la rivière Jacques-Cartier et de la rivière Sainte-Anne (nord) et une dans le bassin de la rivière Sainte-Anne (sud). Les lignes se situent en général aux endroits où l'épaisseur de sables et graviers est maximale. Ces endroits constituent les principales zones de recharge des dépôts granulaires de surface de la région. Donc, l'écoulement régional est contrôlé par la topographie des sables et graviers. Une grande partie de l'eau est drainée par les rivières Sainte-Anne et Jacques-Cartier.

L'eau souterraine s'écoule généralement vers le sud en direction du fleuve Saint-Laurent. Le niveau de la surface libre dans les aquifères granulaires se situe entre le niveau moyen de la mer près du fleuve et à une élévation maximale de 195 mètres au nord de la rivière Sainte-Anne. La surface libre se retrouve le plus souvent entre 1 et 6 mètres de profondeur sous la surface du sol. Un élément important de la carte piézométrique de référence est le type de liens hydrauliques entre les formations aquifères de sables et graviers de surfaces et les deux principales rivières qui incisent les dépôts (lien direct d'écoulement sur le roc ou sur l'argile). Effectivement sur cette carte, différentes couleurs permettent de qualifier le type de lien entre les rivières et les aquifères de surface. Cette information permet de bien choisir le type de limite lors de la modélisation (modèle conceptuel). Deux types de liens sont identifiés. Les liens directs indiquent que le lit de la rivière s'écoule sur les sables et graviers alors que les liens indirects indiquent des suintements de l'eau souterraine le long des berges, constituées de silt, d'argile ou de roc. Avec ce type de liens, le lit de la rivière s'écoule sur l'argile ou sur le roc.

3.3 DONNÉES CLIMATIQUES

3.3.1 Précipitations

Aucune étude disponible ne décrit les caractéristiques climatiques de la MRC de Portneuf. Pourtant, depuis les années soixante et soixante-dix, plusieurs statistiques ont été calculées et compilées (MEF, 1997). Pour établir une moyenne représentative des données climatiques (température, précipitations, évapotranspiration) les données de 13 stations météorologiques ont été utilisées. Nous retrouvons 7 stations directement sur le territoire de la MRC et 6 autres stations en périphérie. L'utilisation de ces stations supplémentaires est nécessaire afin d'avoir une meilleure représentativité des résultats, puisque ce type de données n'a pas de limite territoriale. Les caractéristiques de chaque station sont présentées dans le tableau 3.1. La localisation des stations météorologiques est illustrée à la figure 3.1, on y remarque également les limites de la zone qui sera modélisée.

Stations	Identification	Local	isation	Altitude	Enregist	trement
		UTM X	UTM Y	mètre	Début	Fin
Lac-aux-Sables	701leeh	698184,0	5192670,4	160	1964	1990
Rivière-à-Pierre	7016560	715913,2	5208860,7	221	1975	1990
Rivière-Vertes-Ouest	7016675	741090,0	5207601,6	213	1966	1990
Sainte-Anne de la Pérade	7016840	712237,4	5162002,2	16	1961	1990
Sainte-Croix	7027088	746578,3	5166645,7	70	1973	1990
Duchesnay	7012240	755348,7	5194838,2	166	1963	1990
Saint-Augustin	7016900	767708,8	5181263,3	58	1964	1990
Donnaconna	7012071	750083,8	5174581,0	46	1961	1990
Deschambault	7011982	735870,2	5173352,6	15	1971	1990
Saint-Alban	7016800	723152,9	5177972,6	76	1961	1990
Sainte-Christine	7017000	735205,6	5190673,3	152	1961	1990
Sainte-Catherine	7016932	757988,1	5193858,4	152	1964	1990
Chute Panet	7011600	731183,9	5194597,2	152	1961	1982

Tableau 3.1 : Stations météorologiques de la région étudiée (tiré de MEF, 1997)

Tableau 3.2 : Moyenne des précipitations (pluie, neige, totale) et de la température de chaque station (tiré de MEF, 1998)

Les abréviations suivantes sont utilisées : Lac-aux-Sables (L-S), Rivière-à-Pierre (R-P), Rivière Vertes-Ouest (R-V-O), Sainte-Anne de la Pérade (S-A-P), Sainte-Croix (S-CR), Duchesney (DU), Saint-Augustin (S-AU), Donnaconna (DO), Deschambault (DE), Saint-Alban (S-AL), Sainte-Christine (S-CH), Sainte-Catherine (S-CA), Chute Panet (CP). Moyenne annuelle (M.A.).

Précipitations sous forme de pluie (mm)

Stations	Jan.	Fev.	Mars	Avril	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov.	Déc.	M.A.
L-S	13,1	14,2	36,9	56,9	99,2	108,3	113,5	115,0	100,0	97,8	62,7	27,6	849,6
R-P	9,6	8,6	29,7	62,7	100,7	115,6	126,0	113,9	122,3	101,9	57,9	19,8	864,1
R-V-O	18,2	19,7	43,6	72,8	121,3	142,4	146,9	139,8	140,8	126,0	83,0	28,2	1085,0
S-A-P	13,0	11,5	34,2	60,4	94,5	98,4	100,0	115,0	109,8	91,0	68,5	27,0	831,9
S-CR	13,5	7,7	30,2	42,4	101,1	106,7	105,5	106,4	127,8	90,3	55,4	23,0	906,6
DU	23,7	16,3	43,8	64,1	110,8	118,2	127,1	126,5	132,5	108,3	69,9	35,5	990,7
S-AU	16,8	16,2	35,3	55,3	103,9	107,6	120,5	113,0	123,0	93,4	60,2	33,0	878,9
DO	15,5	12,4	30,4	56,7	100,1	102,6	109,9	112,8	109,4	89,7	65,0	25,9	784,9
DE	17,0	17,7	36,7	70,6	104,6	108,2	120,7	107,5	123,6	95,5	80,4	28,8	937,0
S-AL	12,8	13,2	29,9	59,8	101,3	103,9	115,5	116,1	113,5	94,3	65,5	26,4	843,4
S-CH	19,6	17,9	33,0	66,5	117,4	110,6	122,0	124,4	118,4	103,0	80,0	32,8	956,3
S-CA	24,2	20,2	42,0	67,7	113,7	122,4	126,5	126,0	128,6	110,4	73,8	36,2	993,9
СР	18,1	13,8	31,3	54,9	96,5	116,6	127,3	126,7	119,4	100,5	61,1	28,6	928,8

Tableau 3.2 (suite)

Stations	Jan.	Fév.	Mars	Avril	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov.	Déc.	M.A.
L-S	60,6	50,4	39,1	12,3	0,6	0,0	0,0	0,0	0,0	1,7	33,6	69,6	267,7
R-P	58,4	44,8	31,1	14,1	0,2	0,0	0,0	0,0	0,0	2,3	29,9	68,1	246,2
R-V-O	80,9	63,4	48,2	18,2	0,8	0,0	0,0	0,0	0,0	2,9	42,2	86,7	343,3
S-A-P	59,2	46,3	33,7	12,0	0,9	0,0	0,0	0,0	0,0	0,9	24,7	63,9	240,9
S-CR	56,1	39,6	33,8	15,3	0,4	0,0	0,0	0,0	0,0	1,1	23,5	57,2	231,2
DU	75,8	65,0	45,0	17,2	0,9	0,0	0,0	0,0	0,0	2,8	40,4	86,6	349,9
S-AU	76,6	65,9	49,6	18,3	0,5	0,0	0,0	0,0	0,0	2,5	36,3	80,5	320,7
DO	56,5	49,6	35,6	11,8	0,5	0,0	0,0	0,0	0,0	1,6	25,3	60,8	240,1
DE	50,8	35,2	27,3	7,0	0,2	0,0	0,0	0,0	0,0	0,7	21,4	52,4	188,9
S-AL	51,6	47,1	33,5	10,6	0,5	0,0	0,0	0,0	0,0	1,4	22,9	59,8	228,7
S-CH	66,0	66,0	43,7	13,8	0,7	0,0	0,0	0,0	0,0	3,0	32,0	73,3	301,4
S-CA	63,0	53,9	38,4	15,4	1,0	0,0	0,0	0,0	0,0	2,3	35,0	70,6	275,4
CP	60,8	51,6	44,1	16,4	1,1	0,0	0,0	0,0	0,0	2,3	29,5	73,8	280,2

Précipitations sous forme de neige (mm)

Précipitations totales (mm)

Station	Jan.	Fév.	Mars	Avril	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov.	Déc.	M.A.
L-S	73,7	64,6	75,9	68,9	99,8	108,3	113,5	115,0	100,0	99,6	96,2	97,2	1112,2
R-P	67,5	53,2	60,6	76,7	100,8	115,6	126,0	113,9	122,3	104,2	87,8	86,8	1115,4
R-V-O	98,1	83,0	91,8	90,9	122,1	142,4	146,9	139,8	140,8	128,9	125,2	114,9	1424,8
S-A-P	72,2	57,8	67,9	72,4	95,4	98,4	100,0	115,0	109,8	92,0	93,1	90,9	1064,7
S-CR	69,5	48,3	61,6	57,7	101,4	106,7	105,5	106,4	127,8	91,4	81,5	80,2	1037,9
DU	100,1	81,5	90,7	81,0	111,7	118,2	127,1	126,5	132,5	111,0	110,8	125,0	1316,1
S-AU	92,6	83,0	85,3	74,9	104,4	107,6	120,5	113,0	123,0	96,0	97,3	113,8	1211,3
DO	71,8	61,9	65,9	68,5	100,6	102,6	109,9	112,8	109,4	91,3	90,6	88,5	1073,7
DE	67,7	52,8	64,0	77,6	104,8	108,2	120,7	107,5	123,6	96,1	101,8	80,9	1105,7
S-AL	64,4	60,2	70,0	70,4	101,7	103,9	115,5	116,1	113,5	95,8	89,0	86,01	1086,5
S-CH	84,6	83,9	76,6	80,1	118,1	110,6	122,0	124,4	118,4	105,9	111,9	105,1	1241,5
S-CA	87,3	74,7	80,0	83,1	114,7	122,4	126,5	126,0	128,6	112,6	108,7	106,8	1271,3
СР	79,9	65,4	75,3	71,2	97,7	116,6	127,3	126,7	119,4	102,7	90,6	102,6	1175,4

Température moyenne (°C)

Station	Jan.	Fév.	Mars	Avril	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov.	Déc.	M.A.
L-S	-14,0	-12,0	-5,1	3,2	10,6	15,9	18,6	17,2	11,9	5,8	-1,3	-10,3	3,5
R-P	-15,1	-12,4	-6,0	2,8	10,2	14,7	17,7	16,2	10,9	4,9	-2,1	-11,8	2,6
R-V-O	-13,3	-11,6	-5,1	2,6	9,9	15,1	17,8	16,6	11,4	5,4	-1,4	-9,9	3,2
S-A-P	-12,9	-11,5	-4,5	3,7	11,2	16,6	19,2	17,9	12,8	6,8	-0,3	-9,2	4,3
S-CR	-12,9	-11,4	-4,4	3,8	11,2	16,2	19,0	17,8	12,5	6,3	-0,8	-9,1	4,2
DU	-13,1	-11,5	-5,1	3,1	10,5	15,6	18,4	16,9	11,7	5,7	-1,0	-10,4	3,5
S-AU	-12,3	-10,5	-4,4	3,5	11,0	16,4	19,4	17,9	12,8	6,7	-0,2	-8,4	4,4
DO	-12,3	-10,8	-4,0	3,8	11,2	16,6	19,2	18,0	13,0	7,1	0,0	-8,3	4,5
DE	-12,4	-10,3	-4,6	4,3	11,5	16,4	19,3	18,1	12,8	6,7	-0,2	-8,9	4,6
S-AL	-13,3	-11,7	-4,6	3,7	11,0	16,2	18,9	17,5	12,5	6,4	-0,5	-9,5	4,0
S-CH	-13,0	-11,6	-6,2	3,7	10,4	15,1	18,0	16,9	12,0	5,7	-1,6	-10,6	3,3
S-CA	-13,2	-11,4	-4,8	3,1	10,5	15,7	18,4	17,1	12,0	5,9	-1,1	-9,6	3,8
СР	-14,1	-12,3	-4,4	3,1	10,5	15,7	18,1	16,7	11,7	5,8	-1,0	-10,0	3,4

Les données recueillies auprès du MEF (MEF, 1997) représentent les données mensuelles pour l'ensemble des périodes d'enregistrement. Donc, nous ne connaissons pas les variations annuelles pour chaque mois. Les précipitations sous forme de neige ont été converties en millimètres d'eau équivalent (10 cm de neige = 10 mm d'eau). On retrouve à l'annexe B les moyennes mensuelles des données climatiques détaillées (température moyenne, température moyenne minimale, température moyenne maximale, précipitations en pluie, précipitations en neige, précipitations totales, neige au sol et l'évapotranspiration potentielle) pour chaque station.

Le tableau 3.2 présente un résumé des moyennes mensuelles des précipitations (pluie, neige et totale) et de la température pour les 13 stations météorologiques. La précipitation totale moyenne annuelle pour les 13 stations est de 1172 mm. Évidemment cette moyenne arithmétique n'est pas réellement représentative des conditions de terrain. Selon Llamas (1993), lorsque le nombre de station météorologique est petit, la méthode de la moyenne arithmétique est à déconseiller puisqu'une station qui est située plus loin de la zone modélisée devrait avoir un impact moins important sur la valeur moyenne. C'est pour cette raison qu'il est préférable d'utiliser la valeur moyenne après interpolation dans la zone modélisée. De façon générale, l'écart est faible mais peut être significatif lors du calcul du bilan hydrologique global. À la section 3.3.5.1, les différences entre les valeurs moyennes interpolées et les valeurs moyennes calculées à partir des 13 stations météorologiques sont présentées. La moyenne des précipitations totales pour les données interpolées est de 1227 mm.

Les différences de précipitations totales sont importantes entre les stations. La moyenne maximale de précipitation se trouve à la station Rivière-Verte-Ouest avec une valeur de 1424,8 mm et la moyenne minimale se trouve à Sainte-Croix avec une valeur de 1037,9 mm. Donc, la variation est d'environ 400 mm et l'écart-type est de 114,8 mm (9,7%). Cette variabilité pourrait s'expliquer par 3 phénomènes distincts. Le premier serait l'équipement utilisé pour la prise des données. En effet, nous n'avons aucune information sur les instruments utilisés, leur précision, la manipulation des données par les techniciens, l'entretien des instruments, etc. Le deuxième serait la distance entre les

différentes stations. Généralement, elles sont espacées de plusieurs dizaines de kilomètres, mais la variabilité entre les stations serait normale. Le troisième, qui serait le plus influent, est la localisation géographique par rapport aux régions physiographiques des Laurentides et des Basses-Terres du Saint-Laurent. Les différences topographiques entre ces deux régions pourraient causer des perturbations atmosphériques qui influencent le taux de précipitation. De façon générale, les stations qui se situent dans les Laurentides ou en bordure ont des précipitations totales supérieures aux stations localisées dans les Basses-Terres du Saint-Laurent.

Une carte isocontour des précipitations totales est illustrée à la figure 3.2. Cette carte présente la distribution typique des précipitations totales pour une année. Elle a été réalisée à partir des données compilées au tableau 3.2. La région au nord reçoit plus de précipitations par rapport à la région au sud. C'est le krigeage ordinaire qui a été utilisé pour l'interpolation des données de précipitations totales ainsi que pour l'interpolation des autres résultats associés aux données climatiques (recharge, évapotranspiration potentielle, évapotranspiration réelle). Le krigeage assume que les valeurs sont distribuées normalement à travers le domaine et fournit l'estimation la plus probable des valeurs dans toutes les parties du domaine modélisées (Isaaks et Srivastava, 1989).

Figure 3.2 : Carte isocontour des précipitations totales

45

La figure 3.3 présente les précipitations sous forme de neige et sous forme de pluie ainsi que la température moyenne mensuelle pour l'ensemble des stations (13). La température moyenne durant l'année est de 3,8 °C et les maxima sont enregistrés habituellement au mois de juillet avec une moyenne de 18,6 °C. C'est la station de Rivière-à-Pierre qui présente la température moyenne annuelle la plus basse avec 2,6 °C et la station de Deschambault présente la moyenne la plus élevée avec 4,6°C. Les stations localisées dans les Laurentides ou en bordure ont toutes des moyennes annuelles de température inférieures à 4,0 °C et les stations situées sur les Basses-Terres du Saint-Laurent ont des moyennes annuelles supérieures ou égales à 4,0°C. Fait à remarquer, les 7 stations situées dans les Laurentides ou en bordure ont une altitude au-dessus du niveau de la mer supérieure à 150 mètres tandis que les 6 autres stations ont une altitude variant de 15 à 76 mètres au-dessus du niveau marin.

Donc, on constate que les variations de précipitations et de températures semblent directement influencées par la localisation géographique des stations météorologiques situées dans les Laurentides ou dans les Basses-Terres du Saint-Laurent.

Figure 3.3 : Moyennes climatiques mensuelles (précipitations et température)

3.3.2 Évapotranspiration potentielle

L'évapotranspiration caractérise les pertes totales en eau des sols par les mécanismes d'évaporation et de transpiration. Elle combine donc la perte d'eau par l'activité solaire et par l'activité des plantes. Les méthodes utilisées pour le calcul de l'évapotranspiration peuvent être divisées en trois catégories (Llamas, 1993) : il y a les méthodes directes (basées sur des mesures de terrain), les méthodes analytiques (basées sur le bilan énergétique ou le bilan hydrique) et les méthodes empiriques (basées sur l'analyse statistique des observations).

Pour le calcul de l'évapotranspiration potentielle de la MRC, c'est la méthode analytique de Thornthwaite qui est utilisée. Cette méthode est appliquée sur les données des 13 stations météorologiques et les seuls facteurs nécessaires sont les températures mensuelles et la latitude des stations. Même si cette méthode néglige les effets liés à la végétation (eau retenue par la couverture végétale), elle est habituellement précise pour déterminer les valeurs d'évapotranspiration potentielle annuelle dans un bassin versant (Fetter, 1992). D'autres méthodes analytiques peuvent être utilisées (méthode de Hamon, méthode de Blaney et Criddle et méthode de Turc) (Llamas, 1993), mais en général les informations requises (vitesses des vents, radiations solaires, etc.) sont rarement disponibles.

La formule empirique de Thornthwaite permet d'obtenir le taux mensuel d'évapotranspiration potentielle (ETp). La relation suivante est utilisée (Gélinas et Lefebvre, 1992; Llamas, 1993 et Thornthwaite, 1948):

$$ETp = 16 \left[\frac{10\theta}{I} \right]^{a} F(\lambda)$$
(3.1)

où

- ETp = Évapotranspiration potentielle mensuelle (en mm/mois)
- θ = Température moyenne de l'air; seulement si $\theta > 0$ °C

 $F(\lambda)$ = Coefficient de correction; fonction de la latitude et du mois

I = Indice thermique annuel,; somme des indices mensuels i

$$i = \left(\frac{\theta}{5}\right)^{1.514} \tag{3.2a}$$

$$I = \sum_{n=1}^{12} i_n$$
 (3.2b)

et

$$a = 6.75x10^{-7}I^{3} - 7.71x10^{-5}I^{2} + 1.79x10^{-2}I + 0.49239$$
(3.3)

Le tableau 3.3 présente les résultats du calcul de l'ETp pour les 13 stations météorologiques de la région étudiée.

	Stations	Param	ètres
		Ι	А
1-	Lac-aux-Sables	28,169	0,950
2-	Rivière-à-Pierre	25,426	0,909
3-	Rivière-Vertes-Ouest	26,109	0,919
4-	Sainte-Anne de la	30,415	0,984
	Pérade		
5-	Sainte-Croix	29,784	0,975
6-	Duchesnay	27,521	0,940
7-	Saint-Augustin	30,291	0,983
8-	Donnaconna	30,747	0,989
9-	Deschambault	30,794	0,990
10-	Saint-Alban	29,482	0,970
11-	Sainte-Christine	27,225	0,936
12-	Sainte-Catherine	27,905	0,947
13-	Chute Panet	27,303	0,937

Tableau 3.3 : Évaluation de l'évapotranspiration potentielle (mm/an)

 $F(\lambda)$

Stations	Jan.	Fév.	Mars	Avril	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov.	Déc.
1; 4-13	0,79	0,81	1,02	1,13	1,29	1,31	1,32	1,22	1,04	0,94	0,79	0,74
2-3	0,77	0,80	1,02	1,14	1,30	1,32	1,33	1,22	1,04	0,93	0,78	0,73

Évapotranspiration potentielle (mm/an)

Stations	Janv.	Fév.	Mars	Avril	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov	Déc.	Totale
1	0,0	0,0	0,0	18,8	70,2	106,6	125,1	107,3	63,5	28,2	0,0	0,0	519,8
2	0,0	0,0	0,0	16,4	68,1	99,6	120,2	101,3	58,1	23,5	0,0	0,0	487,1
3	0,0	0,0	0,0	15,5	66,2	102,2	121,0	103,3	60,6	26,0	0,0	0,0	494,8
4	0,0	0,0	0,0	21,7	73,8	110,9	129,5	111,3	68,2	32,7	0,0	0,0	548,1
5	0,0	0,0	0,0	22,2	74,3	108,6	128,1	111,0	66,4	30,4	0,0	0,0	540,9
6	0,0	0,0	0,0	18,2	69,8	104,2	124,1	105,2	62,4	27,9	0,0	0,0	511,9
7	0,0	0,0	0,0	20,3	72,8	109,6	130,5	111,7	68,4	32,3	0,0	0,0	545,6
8	0,0	0,0	0,0	22,4	74,1	111,4	129,1	111,9	69,4	34,2	0,0	0,0	552,4
9	0,0	0,0	0,0	25,1	76,2	110,0	130,1	112,5	68,0	32,5	0,0	0,0	554,3
10	0,0	0,0	0,0	21,5	72,7	108,5	127,5	109,1	66,5	31,2	0,0	0,0	537,1
11	0,0	0,0	0,0	21,6	68,7	101,2	121,6	105,1	63,8	27,8	0,0	0,0	509,8
12	0,0	0,0	0,0	18,3	69,4	104,9	124,1	106,7	64,1	28,7	0,0	0,0	516,4
13	0,0	0,0	0,0	18,2	69,6	105,3	122,0	104,0	62,4	28,0	0,0	0,0	509,5
Moyenne	0,0	0,0	0,0	20,0	71,2	106,4	125,6	107,7	64,8	29,5	0,0	0,0	525,2

Nous observons une variation entre les différentes stations. La moyenne annuelle de l'évapotranspiration potentielle pour les 13 stations météorologiques est de 525,2 mm. La moyenne à partir de l'interpolation est légèrement inférieure avec une valeur de 519,4 mm. La valeur maximale se trouve à la station météorologique de Deschambault avec 554,3 mm et la valeur minimale est à la station de Rivière-à-Pierre avec une valeur de 487,1 mm. La figure 3.4 illustre la carte isocontour de l'évapotranspiration potentielle. Le taux d'évapotranspiration calculé est plus important au sud et diminue progressivement vers le nord de la région. Cette diminution concorde exactement avec les données de température de la région. Puisque la température est moins élevée dans le nord, l'évapotranspiration est plus faible

Figure 3.4 : Carte isocontour de l'évapotranspiraiton potentielle

52

3.3.3 Ruissellement

Suite aux précipitations (P), une partie des eaux disparaît sous forme d'évapotranspiration (ETp) mais également sous forme de ruissellement à la surface du sol. La détermination du volume d'eau qui ruisselle est importante puisqu'elle a une influence directe sur la quantité d'eau qui s'infiltrera dans le sol (Llamas, 1993). Le ruissellement est fonction de quatre principaux paramètres: la topographie du sol, les composantes du sol (type de matériau géologique), les composantes de la couverture végétale et l'intensité des précipitations. En général, ces informations sont mal connues et non calculées.

La détermination du coefficient de ruissellement (C_R), qui est le rapport entre le volume de ruissellement (R) et le volume de précipitations (P), nous indique le pourcentage d'eau qui ruisselle. Une des méthodes pour calculer ce coefficient est l'utilisation des hydrogrammes des averses de pluies (Llamas, 1993), puisque le ruissellement est grandement influencé par l'intensité des précipitations. Bien que le ruissellement varie en fonction de l'intensité des averses, le coefficient de ruissellement peut être considéré comme constant pour un bassin versant donné (Gélinas et Lefebvre, 1992).

D'autres approches peuvent être utilisées pour identifier le coefficient de ruissellement. Le coefficient peut être déterminé en utilisant des équations empiriques basées sur la densité de la population (Lepage, 1996). Cette méthode s'applique surtout pour les régions urbaines. Llamas (1993) décrit plusieurs autres méthodes empiriques utilisées pour déterminer le coefficient de ruissellement.

Avec la supposition mentionnée plus haut, un coefficient de ruissellement moyen a été déterminé selon le type de sol. À l'aide d'une méthode rationnelle (tiré de Llamas, 1993) et d'une étude de sensibilité du coefficient de ruissellement (section 3.3.6), le coefficient de ruissellement moyen (C_R moyen) estimé pour les sables et graviers de surfaces dans la MRC de Portneuf est de 0,4. Le tableau 3.4 présente les détails de la méthode rationnelle de Llamas (1993). L'équation 3.4 est ensuite utilisée pour calculer le coefficient de ruissellement moyen.

$$C_R \text{ moyen} = 1 - (C_t + C_s + C_c)$$
 (3.4)

Tableau 3.4 : Estimation du coefficient de ruissellement
(tiré de Llamas, 1993)

Composantes	Caractéristiques	Coefficient
		Ct
Topographie	Terrain à pente douce	0,30
	Terrain dont la pente varie entre 3 et 40 mètres / Km	0,20
	Terrain dont la pente varie entre 30 et 45 mètres / Km	0,10
		Cs
	Argile	0,10
Type de sol	Argile et gravier	0,20
	Sable et gravier	0,40
		Cc
Couverture	Terrain pour la culture	0,10
végétale	Forêt	0,10

Pour la MRC de Portneuf, comme il y a plusieurs ondulations du relief (terrasses, moraine) le coefficient associé à la topographie a été fixé à 0,2 (C_t). Pour le type de sol le coefficient a été déterminé à 0,3 (C_s), car à certains endroits la couche de sable et gravier est mince et l'argile se situe directement au-dessous. Pour ce qui est de la couverture végétale, dans la MRC elle se compose de forêts et de terres agricoles, donc le coefficient est de 0,1 (C_c). Avec cette compilation nous obtenons un C_R moyen de 0,4. Les détails inclus dans l'étude de sensibilité (section 3.3.6) permettent également de comprendre le choix du coefficient de ruissellement moyen.

En connaissant déjà les précipitations et le coefficient de ruissellement moyen, nous pouvons maintenant calculer le ruissellement. Le tableau 3.5 présente le ruissellement pour chaque station. La moyenne du ruissellement est de 468,8 mm. À partir de l'interpolation la moyenne annuelle est de 490,9 mm. La figure 3.5 présente une carte isocontour du ruissellement. C'est à la station météorologique de Rivière-Vertes-Ouest que le ruissellement est le plus élevé avec 570,0 mm et le plus faible se trouve à la station de Sainte-Croix avec 415,1 mm.
Station	Précipitations	Coefficient de	Ruissellement
	totales	ruissellement	
		moyen	
	(mm/an)		(mm/an)
Lac-aux-Sables	1112,7	0,4	445,1
Rivière-à-Pierre	1115,4	0,4	446,2
Rivière-Vertes-Ouest	1424,9	0,4	570,0
Sainte-Anne de la Pérade	1064,7	0,4	425,9
Sainte-Croix	1037,9	0,4	415,1
Duchesnay	1316,1	0,4	526,4
Saint-Augustin	1211,3	0,4	484,5
Donnaconna	1073,7	0,4	429,5
Deschambault	1105,7	0,4	442,3
Saint-Alban	1086,5	0,4	434,6
Sainte-Christine	1241,5	0,4	496,6
Sainte-Catherine	1271,3	0,4	508,5
Chute Panet	1175,4	0,4	470,0

Tableau 3.5 : Évaluation du taux de ruissellement

Figure 3.5 : Carte isocontour du ruissellement

3.3.4 Évapotranspiration réelle

Le calcul de l'évapotranspiration potentielle (ETp) a été réalisé par la méthode empirique de Thornthwaite. En général, il faut procéder à une correction, puisque pour les mois d'été l'ETp dépasse la somme d'eau disponible dans le sol. Si la correction de l'ETp n'est pas réalisée, la quantité d'eau évapotranspirée est surestimée. Le tableau 3.7 de la section 3.3.5 présente la démarche appliquée pour le calcul de l'évapotranspiration réelle (ETr).

Le tableau 3.6 présente les résultats de l'ETr ainsi que la différence entre les valeurs. La figure 3.6 illustre la distribution de l'ETr avec une carte d'isocontour. La distribution des valeurs se trouve inversée par rapport à la carte isocontour de l'ETp. Ceci est dû au fait que les stations situées au sud de la région ont des précipitations plus faibles et une température plus élevée ce qui a comme conséquence qu'il y a moins d'eau disponible dans le sol (l'ETp dans les stations du sud est souvent trop élevée pour la quantité d'eau disponible dans le sol durant l'été). Cela implique un taux d'évapotranspiration réelle plus faible. L'effet inverse est remarqué aux stations au nord du territoire. Donc, l'évapotranspiration réelle est plus faible dans le sud de la MRC et elle augmente progressivement vers le nord. La moyenne de l'ETr pour les 13 stations est de 490,0 mm. Suite à l'interpolation la moyenne est légèrement supérieure avec une valeur de 493,0 mm.

La figure 3.7 présente la carte isocontour de la différence entre l'ETp et l'ETr. Comme mentionné précédemment, l'écart le plus significatif se retrouve au sud de la région avec un maximum de 82,6 mm et l'écart est nul plus nord à la station météorologique de Rivière-Verte-Ouest. La moyenne de la différence entre l'ETp et l'ETr pour le territoire étudié est de 40,0 mm, comparativement à 26,4 mm lorsque les valeurs sont interpolées.

Station	ETp	ETr	Différence
	(mm/an)	(mm/an)	(mm/an)
Lac-aux-Sables	519,8	469,0	50,8
Rivière-à-Pierre	487,1	471,7	15,4
Rivière-Vertes-Ouest	494,8	494,8	0,0
Sainte-Anne de la Pérade	548,1	465,5	82,6
Sainte-Croix	540,9	471,0	69,9
Duchesnay	511,9	498,6	13,3
Saint-Augustin	545,6	488,3	57,3
Donnaconna	552,4	477,7	74,7
Deschambault	554,3	490,3	64,0
Saint-Alban	537,1	481,5	55,6
Sainte-Christine	509,8	496,0	13,8
Sainte-Catherine	516,4	504,9	11,5
Chute Panet	509,5	489,6	19,9

Tableau 3.6 : Évaluation de l'évapotranspiration réelle (ETr)

Figure 3.6 : Carte isocontour de l'évapotranspiration réelle (ETr)

59

Figure 3.7 : Carte isocontour de la différence de l'évapotranspiration potentielle et réelle

60

3.3.5 Évaluation de la recharge

Pour déterminer la recharge d'un aquifère, il faut établir un bilan hydrologique. Ce bilan englobe tous les paramètres qui influencent la quantité d'eau qui se rend jusqu'à la nappe phréatique. Les principaux paramètres qui ont été définis sont les précipitations, le ruissellement et l'évapotranspiration réelle. L'addition de ces trois paramètres implique un changement dans les réserves en eau dans le sol. Ensuite, la réserve en eau se divise en 2 composantes, l'eau disponible pour les végétaux dans le sol ainsi que l'infiltration nette jusqu'à la nappe. Le pompage des différents puits n'est pas inclus dans le bilan étant donné que la quantité d'eau pompée est faible par rapport au volume global de l'eau disponible. L'équation du bilan hydrologique, pour une période annuelle, prend l'expression suivante (Freeze et Cherry, 1979; Gélinas et Lefebvre, 1992; Banton et Bangoy, 1997) :

$$\Delta S_{g} = P - R - ETr \tag{3.5}$$

où

L'équation 3.5 peut-être simplifiée en utilisant la différence entre les précipitations et le ruissellement. Cette différence se définie comme étant la quantité d'eau disponible pour l'infiltration (I = P - R).

$$\Delta S_{g} = I - ETr \tag{3.5a}$$

La première étape pour quantifier le bilan hydrologique est la compilation des précipitations (section 3.3.1). La seconde étape est de calculer l'évapotranspiration potentielle. Avec les données disponibles (la température et la latitude des stations), la méthode de Thornthwaite a été utilisée (équation 3.1). Puisqu'une partie des

précipitations ruisselle à la surface du sol un coefficient de ruissellement a été déterminé (section 3.3.3). Ce coefficient indique le pourcentage des précipitations qui ruisselle.

Maintenant que nous pouvons estimer la quantité d'eau qui peut s'infiltrer (I = P - R), il faut déterminer l'infiltration nette (ΔS_g) jusqu'à la nappe. Cette infiltration est fonction de trois paramètres: l'évapotranspiration réelle (ETr), la réserve en eau facilement accessible dans le sol (RAS) et le déficit en humidité dans le sol (D). Pour déterminer les quantités de ΔS_g , RAS et de ETr, il faut d'abord calculer le paramètre D. Le tableau 3.7 nous indique les différentes combinaisons possibles. Ensuite, avec l'équation 3.6, il est possible de déterminer le paramètre D pour finalement évaluer ΔS_g , RAS et de ETr.

(tiré de Gélinas et Lefebvre, 1992) D ETr RAS ΔS_g D < 0 $RAS_{i-1} + I$ 0 0 D = 00 0 ETP $0 < D < RAS_{max}$ ET_P D 0 $D - RAS_{max}$ $D > RAS_{max}$ **RAS**_{max} ET_P

Tableau 3.7 : Évaluation du déficit en humidité dans les sols

$D = RAS_{i-1}$	+I-ETp	(3.6)

où

D = Déficit en humidité des sols
 RAS = Réserve en eau facilement accessible dans le sol
 I = Infiltration possible (P - R)
 ETp = Évapotranspiration potentielle

À l'aide de cette démarche, nous pouvons calculer l'évapotranspiration réelle. La RAS_{max} n'est généralement pas connue puisqu'elle dépend de paramètres rarement évalués (épaisseur de la zone racinaire, capacité de rétention du sol et le point de flétrissement). Par conséquent, une valeur de RAS_{max} de l'ordre de 100 mm devrait être utilisée lorsque les propriétés moyennes des sols dans le bassin étudié ne sont pas connues assez précisément pour estimer ce paramètre (Gélinas et Lefebvre, 1992). Enfin, l'infiltration

nette survient lorsque le déficit en humidité des sols est supérieur à la réserve maximale facilement accessible dans les sols.

Le tableau 3.8 présente un résumé des différents paramètres nécessaires à la détermination de l'infiltration nette de la région modélisée. Nous retrouvons à l'annexe C la description complète de tous les calculs nécessaires à l'évaluation de la recharge (ETp, ETr, Température, Précipitations, Ruissellement, D, RAS et ΔS_g) pour chaque station.

Station	Précipitations	Ruissellement	ETp	ETr	Recharge
	(mm/an)	(mm/an)	(mm/an)	(mm/an)	(mm/an)
Lac-aux-Sables	1112,7	445,1	519,8	469,0	198,6
Rivière-à-Pierre	1115,4	446,2	487,1	471,7	197,5
Rivière-Vertes-Ouest	1424,9	570,0	494,8	494,8	360,2
Sainte-Anne de la	1064,7	425,9	548,1	465,5	173,3
Pérade					
Sainte-Croix	1037,9	415,1	540,9	471,0	151,7
Duchesnay	1316,1	526,5	511,9	498,6	291,1
Saint-Augustin	1211,3	484,5	545,6	488,3	238,5
Donnaconna	1073,7	429,5	552,4	477,7	166,5
Deschambault	1105,7	442,3	554,3	490,3	173,1
Saint-Alban	1086,5	434,6	537,1	481,5	170,4
Sainte-Christine	1241,5	496,6	509,8	496,0	248,8
Sainte-Catherine	1271,3	508,5	516,4	504,9	257,9
Chute Panet	1175,4	470,1	509,5	489,6	215,7
				Moyenne	218,7
				Écart-Type	59,6

Tableau 3.8 : Évaluation moyenne de la recharge pour chaque station (C_R moyen = 0,4 et RAS_{max} = 100 mm)

La moyenne de l'infiltration pour la région des sables et graviers de la MRC de Portneuf est de 218,7 mm avec un écart-type de 59,6 mm. Cependant lorsque les valeurs sont interpolées, la recharge augmente légèrement pour se situer à 243,6 mm. C'est à la station située la plus au nord (Rivière-Verte-Ouest) que la recharge est la plus importante avec une valeur de 360,2 mm et c'est dans les stations le plus au sud qu'il y a le moins d'infiltration. La figure 3.8 présente la carte isocontour de l'infiltration annuelle dans les sables.

Figure 3.8 : Carte isocontour de la recharge annuelle dans les sables

3.3.5.1 Valeurs du bilan modifiées

Comme mentionné précédemment, les valeurs moyennes calculées à partir des 13 stations météorologiques ne peuvent représenter directement la moyenne de la zone modélisée. Puisque les stations ne sont pas réparties uniformément sur le territoire modélisé, les résultats pourraient être biaisés. C'est pour cette raison qu'il est important d'utiliser les valeurs moyennes après l'interpolation. Le tableau 3.9 présente les différences entre les divers paramètres pour les précipitations totales, l'évapotranspiration potentielle, l'évapotranspiration réelle, le ruissellement et la recharge.

Tableau 3.9 : Différences entre les moyennes calculées et interpolées des données
climatiques. (M.C. moyenne calculées, M.I. moyenne interpolée, É.T.
écart-type)

	Précipitations Totales	ЕТр	ETp réelle	Ruissellement	Recharge
	(mm/an)	(mm/an)	(mm/an)	(mm/an)	(mm/an)
M. C.	1172,0	525,2	484,5	468,8	218,7
É.T.	114,8	22,5	12,7	46,0	59,6
M.I.	1227,0	519,4	493,0	490,9	243,6
É.T.	83,0	13,0	5,3	33,3	45,66

Il est également important de connaître les résultats des moyennes climatiques pour chacun des trois sous domaines utilisés lors de la modélisation. Le tableau 3.10 présente les moyennes interpolées pour les trois secteurs. Les valeurs de recharge serviront de valeurs initiales pour la modélisation

 Tableau 3.10 :
 Données climatiques moyennes interpolées pour chaque bassin (3)

	Jacques-Cartier	Sainte-Anne (nord)	Sainte-Anne (sud)
Précipitations (mm/an)	1227,0	1305,0	1143,0
Ruissellement (mm/an)	491,0	522,0	457,0
ETp (mm/an)	528,0	506,0	527,0
ETc (mm/an)	495,0	496,0	487,0
Recharge (mm/an)	241,0	287,0	199,0

3.3.5.2 Bilan hydrologique

Suite à la quantification des divers paramètres (précipitations, ruissellement, ETr et la recharge), il est possible de connaître le volume d'eau qui circule dans le cycle hydrologique. Le volume d'eau est estimé en multipliant la hauteur des lames d'eau moyennes obtenues lors du calcul des 4 paramètres, par la superficie couverte par la région modélisée. La superficie est estimée à environ 333,7 km². Le tableau 3.11 présente le bilan hydrologique annuel moyen du territoire modélisé.

	Lame d'eau	Volume d'eau
	mm/an	m^3/an
	11111/ a 11	111. / d 11
Précipitation Totales	1227,0	409,4x10 ⁶
Coefficient de Ruissellement 0,	4	
Ruissellement	490,9	163,8x10⁶ (40,0%)
Évapotranspiration Potentielle	519,4	
Évapotranspiration Réelle	493,0	164,5x10⁶ (40,1%)
Recharge	243,6	81,3x10⁶ (19,9%)

Tableau 3.11 : Bilan hydrologique annuel moyen pour la région modélisée(Superficie de la région modélisée 333,7 x 10⁶ m²)

Donc, la recharge annuelle moyenne pour cette région est d'environ 81 millions de mètres cubes d'eau. Cette recharge correspond à environ 20 % des précipitations totales.

3.3.6 Sensibilité des paramètres

La production d'un bilan hydrologique, à l'aide des données climatiques, nécessite l'intégration de plusieurs paramètres. Le calcul des précipitations provient de plusieurs stations météorologiques du MEF. Même si les procédures de compilation ne sont pas connues, nous devons considérer ces données comme précises. Pour ce qui est du calcul de l'évapotranspiration potentielle, la méthode de Thornthwaite a été utilisée. Même si cette méthode ne nécessite pas de connaître plusieurs paramètres (seulement la température moyenne mensuelle et la latitude des stations), elle est habituellement précise pour déterminer les valeurs de l'ETp annuelle dans un basin versant (Gélinas et Lefebvre, 1992; Fetter, 1992).

Il y a deux autres paramètres qui influencent davantage les résultats du bilan. Le premier est la réserve en eau facilement accessible dans le sol (RAS) et le second est le coefficient de ruissellement moyen (C_R moyen). Ces deux paramètres ont été approximés. Par conséquent, une valeur de RAS_{max} de l'ordre de 100 mm a été utilisée puisque les propriétés moyennes des sols dans le bassin étudié n'étaient pas connues assez précisément pour estimer ce paramètre. Le C_R moyen a été établi à 0,4 à l'aide d'une approche rationnelle (Llamas, 1993). Cette méthode utilise les composantes topographiques, de composition du sol et la couverture végétale pour approximer une valeur de C_R moyen.

Une étude de la sensibilité de ces deux paramètres a été réalisée afin de comprendre leur importance dans l'évaluation de la recharge à l'aide du bilan hydrologique. La station météorologique de Deschambault a été choisie pour cette étude de sensibilité. Le tableau 3.12 présente la plage des données calculées pour cette station. La même procédure qu'à la section 3.3.5, pour estimer l'infiltration (calculée à partir des valeurs des 13 stations météorologiques), a été utilisée.

Pour l'étude de sensibilité, la valeur du C_R moyen a été variée de 0,2 à 0,4 et la valeur du RAS_{max} de 0 à 150 mm. La différence entre les 2 extrêmes est très importante (environ 280 mm). L'infiltration maximale calculée est de 413,7 mm (C_R moyen = 0,2 et RAS_{max} = 0) et l'infiltration minimale est de 132,2 mm (C_R moyen = 0,4 et RAS_{max} = 150) donc, elle peut varier de 300 %. Notons que la variation maximale pour le bilan global est à peu près égale à la recharge estimée avec cette méthode. De plus, l'écart-type est élevé avec une valeur de 82,7 mm (30 % de la valeur moyenne).

Avec un coefficient de ruissellement faible ($C_R = 0,2$), il y a moins d'eau qui ruisselle à la surface du sol donc, la recharge est plus élevée. De plus, s'il n'y a pas de réserve en eau

67

facilement accessible dans le sol à combler, la recharge est également augmentée. À l'opposé, si le ruissellement est augmenté ($C_R = 0,4$) et que le sol doit combler sa réserve en eau facilement accessible avec un RAS_{max} de 150 mm, la quantité d'eau qui s'infiltre jusqu'à la nappe est diminuée.

C _R moyen	RAS _{max}	Recharge
	mm	mm/an
0,2	0	413,7
0,2	50	363,7
0,2	100	330,2
0,2	150	330,2
0,3	0	339,6
0,3	50	289,6
0,3	100	239,6
0,3	150	219,7
0,4	0	273,1
0,4	50	223,1
0,4	100	173,1 ^a
0,4	150	133,2
	Moyenne	277,3
	Écart-Type	82,7
	Minimun	132,2
	Maximun	413,7

Tableau 3.12 :Sensibilité des paramètres à la stationmétéorologique de Deschambault

a : valeur utilisée pour la modélisation

Si nous comparons la variation du C_R (avec une même valeur de RAS) nous remarquons une différence du taux d'infiltration de 15 à 30 %. Pour ce qui est du RAS_{max} la variation en pourcentage est moins importante (avec une même valeur de C_R), la différence de la valeur de la recharge oscille entre 6 et 25 %. De façon générale, la variation du RAS_{max} a un impact direct sur la quantité d'eau qui s'infiltre. Si l'augmentation du RAS_{max} passe de 50 à 100 mm, il y a 50 mm d'eau de moins qui s'infiltre. Un autre élément à remarquer est que plus la recharge est importante, moins le choix du RAS_{max} influence le taux d'infiltration (en pourcentage). Les deux paramètres influencent la quantité d'eau qui s'infiltre. La variation du coefficient de ruissellement influence d'avantage l'infiltration (15 à 30 %) comparativement à la réserve en eau facilement accessible dans le sol (6 à 25%). Cependant, la détermination de chaque paramètre est difficile. Pour le calcul du bilan hydrologique, nous avons utilisé un RAS_{max} de 100 mm. Puisque nous n'avions aucun instrument de mesure pour déterminer les caractéristiques du sol, nous avons choisi une valeur suggérée dans la littérature (Gélinas et Lefebvre, 1992), mais il est difficile de prétendre qu'elle est précise. Pour le choix du coefficient de ruissellement nous avons choisi une valeur de 0,4. Ce choix est représentatif car, en général, on utilise un coefficient de 0,3 pour un terrain sableux. Même si dans la région de Portneuf (la zone modélisée comprend des sables et graviers, il y a certains éléments qui peuvent faire augmenter le C_R moyen. Premièrement, à plusieurs endroits la couche de sédiments de surface est très mince et à la base se trouve une surface imperméable (argile ou roc), ce qui augmente le ruissellement. Deuxièmement, sur le territoire, il y a plusieurs ondulations (terrasses, moraines, buttons, etc.) ce qui augmente la quantité d'eau qui ruisselle.

La figure 3.9 illustre la variation de la quantité d'eau qui s'infiltre selon la combinaison des divers paramètres pour chaque station (RAS _{max} de 0 à 150 mm et C_R moyen de 0,2 à 0,4). La moyenne de la recharge calculée pour la variation des paramètres est présentée ainsi que la moyenne utilisée pour le calcul du bilan hydrologique. À l'annexe D, on retrouve tous les résultats de l'étude de sensibilité.

Figure 3.9 : Sensibilité de la recharge. (Les chiffres de la légende indiquent les combinaisons des valeurs du coefficient de ruissellement (C_R de 0.2 à 0.4) et de l'eau disponible dans les sols (RAS de 0 à 150 mm) utilisées pour calculer la recharge. Les numéros des stations météorologiques sont données au tableau 3.3)

Il est évident que l'estimation de la recharge varie grandement selon les paramètres, mais pour une première approximation cette approche est utile. Cependant, pour une estimation plus précise de la recharge à l'aide des données climatiques il est préférable d'évaluer correctement le RAS_{max} et le C_R moyen à l'aide d'instruments sur le terrain plutôt que d'utiliser des valeurs par défaut ou une approche rationnelle simpliste. L'utilisation de plusieurs approches aide à estimer la recharge avec plus de précision. Le chapitre suivant présente diverses méthodes qui ont été utilisées pour estimer, de façon plus précise que le bilan hydrologique, la recharge des aquifères dans la MRC de Portneuf.

3.4 ÉVALUATION DE LA RECHARGE

Dans un modèle d'écoulement, la recharge est un des principaux paramètres qui influencent le niveau de la nappe phréatique. Il existe plusieurs approches pour calculer la recharge des aquifères. Une des méthodes les plus utilisées et la plus rapide est le calcul du bilan hydrologique (Lepage, 1996 ; Liu et Zhang, 1993). Cette méthode donne des résultats approximatifs et est utilisée seulement pour des études à l'échelle régionale (de Marsily, 1981). Cependant, le calcul de la recharge à partir du bilan sert souvent de base de comparaison à d'autres méthodes. Une méthode d'évaluation de la recharge qui demande peu de paramètres est la mesure de la variation du niveau de la nappe phréatique (Heath et Trainer, 1968). Liu et Zhang (1993) présentent une étude comparative d'estimation de la recharge. Cette étude démontre que l'évaluation de la recharge est plus précise par la mesure directe de la variation du niveau de la nappe phréatique que par le calcul du bilan, car il y a moins de paramètres impliqués.

La modélisation est également utile pour estimer la recharge des eaux souterraines. La compilation de données météorologiques et hydrométriques peut servir à la modélisation hydrologique (Paradis et al., 1997). Aussi, la combinaison d'un modèle d'écoulement de l'eau souterraine et d'un SIG (système d'information géographique) peut être utilisée pour produire une carte de la distribution spatiale de la recharge des aquifères de surface

(Fayer et al., 1996). L'application d'un modèle d'écoulement de l'eau souterraine, connaissant les caractéristiques de l'aquifères, peut être utile pour cartographier les zones de recharge et de résurgence d'une région (Stoertz et Bradbury, 1989). Finalement, la détermination des changements saisonniers de température dans le sol (profils verticaux) aident à calculer la recharge de la nappe (Lefebvre et al., 1993 ; Taniguchi, 1993 et 1994).

Pour déterminer la recharge dans la MRC de Portneuf, différentes approches ont été appliquées. Nous avons utilisé le bilan hydrologique, le calcul direct de la variation du niveau de la nappe (hydrogrammes de puits) et la modélisation numérique de l'eau souterraine. Les sections suivantes décrivent chaque approche.

3.4.1 Bilan hydrologique

Le bilan hydrologique est basé sur l'hypothèse qu'il existe un équilibre entre la quantité d'eau qui entre dans le système, la quantité d'eau qui en sort et la quantité emmagasinée. Pour établir cet équilibre, plusieurs paramètres météorologiques (température, précipitations, etc.) et physiques (type de sol, topographie, etc.) doivent être déterminés.

Au chapitre 3.3, les informations nécessaires à la réalisation du bilan hydrologique pour la MRC de Portneuf ont été présentées. Les équations utilisées pour le calcul impliquent plusieurs paramètres (ruissellement, évapotranspiration, recharge). L'erreur associée au calcul de la recharge varie beaucoup puisqu'il y a plusieurs paramètres imprécis impliqués. La moyenne régionale de la recharge calculée à l'aide du bilan hydrologique est de 243,6 mm/an avec un écart-type de 45,7 mm/an (C_R moyen = 0,4 et RAS_{max} = 100 mm). La valeur maximale possible de la recharge est de 360 mm/an tandis que la valeur minimale est de 151 mm/an pour les différentes stations (en utilisant les paramètres C_R moyen = 0,4 et RAS_{max} = 100 mm).

3.4.2 Hydrogrammes de puits

La variation du niveau de la nappe phréatique (provoquée par la recharge) peut être déterminée en mesurant périodiquement le niveau d'eau dans un puits par rapport à un point de référence (Heath et Trainer, 1968). Dans la MRC de Portneuf, il y a 4 installations qui mesurent des hydrogrammes de puits et qui sont en fonction depuis 1996. Le tableau 3.12 présente les caractéristiques de chaque installation. Les 4 sites de mesure se situent tous dans les sables et graviers deltaïques. Ils sont tous localisés dans des régions planes de la région, ainsi qu'en bordure ou complètement dans la forêt (figure 3.10).

Les mouvements du niveau d'eau dans les puits sont mesurés à l'aide d'une sonde submersible de type Troll SP-4000. Cette sonde mesure la pression exercée par la colonne d'eau au-dessus d'elle. Ensuite, la pression est convertie en colonne d'eau équivalente. L'enregistrement quotidien de données de pression se fait à l'aide d'un enregistreur de type Bendix XL-800T. La récupération des données est généralement faite deux fois par année.

Undro gromme og	Forega	Localization		Profondeur du
nydrogrammes	Forage	Locan	Isation	niveau d'eau initial
		UTMX	UTMY	(P/R au sol en m.)
Saint-Léonard	96BZA0004	735594,063	5193372,50	2,15
Sainte-Christine	96BZA0002	729639,125	5182918,50	7,04
Pont-Rouge	96BZA0003	754309,180	5185102,98	9,45
Saint-Raymond	96BZA0001	740781,500	5193108,00	14,58

Tableau 3.13 : Caractéristiques des hydrogrammes de puits

Figure 3.10 : Localisation des sites de mesure des hydrogrammes de puits

L'équation 3.6 permet le calcul de la recharge à partir de la variation du niveau d'eau.

$$\mathbf{R} = \mathbf{n}_{\mathrm{d}} \bullet \Delta \mathbf{h} \tag{3.6}$$

où

R = Recharge(m)

 n_d = Porosité de drainage

 $\Delta h = Variation du niveau d'eau (m)$

Plusieurs facteurs influencent la variation du niveau d'eau dans un puits. Pour que le résultat du calcul de la recharge soit valide, l'écoulement horizontal doit être considéré comme nul durant la période de recharge, sinon la recharge sera sous-estimée. Au Québec, cette supposition est valide puisque la recharge se produit presque exclusivement à la fonte de la neige, dans un intervalle de quelques semaines. Le choix des sites est primordial car les hydrogrammes doivent être localisés dans une zone où il n'y a pas de perturbation de la nappe (pompage, etc.). Dans la région de Portneuf, aucun captage important n'affecte les aquifères de sables près du site de mesure des hydrogrammes.

La composition du matériau dans lequel se trouve l'installation de mesure de l'hydrogramme influence également la recharge. Pour être représentatifs de la région à l'étude, les sites de mesure des hydrogrammes sont positionnés dans les aquifères importants. La profondeur de la nappe joue également un rôle dans l'évaluation de la recharge. Le temps requis pour que l'eau de surface (fonte de la neige, précipitations) atteigne la nappe est de quelques jours si le niveau d'eau est près de la surface. À l'opposé, si le niveau d'eau est plus profond, le temps requis pour que l'eau de surface atteigne la nappe sera de quelques mois ou même des années.

La figure 3.11 illustre la variation du niveau de la nappe phréatique pour les 4 hydrogrammes. La période d'enregistrement s'est effectuée du mois de novembre 1996 au mois de septembre 1998. Un changement de batteries et l'utilisation lors d'un essai de pompage des enregistreurs ont interrompu la prise de données pour les hydrogrammes de

Saint-Raymond et de Sainte-Christine. Cette interruption n'a eu aucun effet sur les mesures.

C'est principalement à partir du mois d'avril et jusqu'à la fin du mois de mai que les aquifères se rechargent dans la MRC de Portneuf. Cette période correspond à la fonte des neiges. Durant cette période, un volume important d'eau s'infiltre verticalement dans le sol. Puisque la vitesse d'infiltration verticale est plus importante que la vitesse d'écoulement horizontale, le niveau de la nappe augmente rapidement. Lorsque la fonte des neiges est terminée et que l'infiltration cesse, le niveau d'eau décline graduellement jusqu'au printemps suivant.

En général, les précipitations sous forme de pluies n'affectent pas le niveau de la nappe de façon significative. Cependant, l'hydrogramme de Saint-Léonard semble plus affecté par les précipitations que les trois autres parce que le niveau d'eau est près de la surface du sol (2,15 m). Durant l'été, les précipitations sous forme de pluies ne sont généralement pas suffisantes pour permettre une recharge car l'évapotranspiration élimine l'eau qui serait disponible à la recharge. Cependant, durant l'été 98 un important épisode de pluie semble avoir affecté le niveau de la nappe pour 3 puits.

L'influence de la profondeur de la nappe est également visible pour les 4 hydrogrammes. Le niveau de la nappe augmente à partir du début du mois d'avril 1997 pour l'hydrogramme de Saint-Léonard (nappe moins profonde) comparativement au début du mois de mai 97 pour celui de Saint-Raymond (nappe plus profonde). Pour l'année 98, le phénomène est identique mais la nappe augmente à partir du mois de mars. Donc, comme mentionné précédemment, le temps requis pour que l'eau de surface parvienne à la nappe est moindre lorsque la nappe est plus près de la surface.

La recharge peut être calculée à partir de l'équation 3.6. La variation du niveau d'eau dans les puits est déterminée par la différence entre les courbes de récession avant et après la période de recharge. Pour la période avant la recharge, il est nécessaire de prolonger la courbe pour calculer la différence. En principe, les courbes doivent être parallèles. La hauteur d'eau est déterminée pour chaque épisode significatif de recharge. La porosité de drainage, qui est l'espace à travers lequel l'eau peut circuler dans un milieu granulaire partiellement saturé, est estimée à partir de données disponibles dans la littérature. Pour un sable et gravier, la porosité de drainage est estimée à une valeur moyenne de 0,25 (Banton et Bangoy, 1997 ; Lefebvre et Gélinas, 1992).

Le tableau 3.14 présente les recharges calculées à partir des hydrogrammes. Malheureusement, il est très difficile d'analyser l'hydrogramme de Saint-Léonard puisqu'il n'est pas symétrique. Ce site est également dans une localisation moins représentative des aquifères deltaïques.

		97			98		Moyenne
Hydrogrammes	Δh	n _d	R	Δh	n _d	R	
	(m)	(%)	(m)	(m)	(%)	(m)	(m)
Sainte-Christine	1,21	0,25	0,303	1,12	0,25	0,280	0,291
Pont-Rouge	1,07	0,25	0,268	0,80	0,25	0,201	0,234
Saint-Raymond	1,03	0,25	0,258	0,71	0,25	0,178	0,218
	М	oyenne :	0,276	Ν	Ioyenne :	0,220	0,248

Tableau 3.14 : Évaluation de la recharge à partir des hydrogrammes de puits

De façon générale, la recharge pour l'année 98 est moindre que pour l'année 97. Cela est probablement dû à une quantité de neige accumulée plus faible pour l'année 98 par rapport à l'année 97. Il est également important de remarquer que l'hydrogramme avec le niveau d'eau mois profond (Sainte-Christine) possède la plus importante recharge tandis que pour l'hydrogramme ayant le niveau d'eau le plus profond (Saint-Raymond) la recharge est moindre. Pour l'année 1997, en faisant varier la porosité de drainage entre

0,20 et 0,30, la valeur de recharge oscille entre 0,22 et 0,33 m/an, soit une différence d'environ \pm 0,05 m/an de la valeur moyenne.

Le principal désavantage de cette méthode est qu'à court terme il est difficile de déterminer une moyenne généralement représentative de la recharge. Des conditions climatiques extraordinaires pour les premières années d'enregistrement pourraient fausser la valeur obtenue. Cependant, après plusieurs années d'enregistrement, les moyennes obtenues devraient mieux représenter la recharge. L'annexe E contient les données détaillées enregistrées pour chaque hydrogramme.

3.4.3 Modélisation hydrométrique et hydrogéologique

La modélisation est maintenant souvent utilisée pour estimer la recharge (Stoertz et Bradbury, 1989; Fayer et al., 1996; Paradis et al., 1997). La modélisation est utile puisqu'elle intègre plusieurs paramètres de la région étudiée. En connaissant les données météorologiques, hydrométriques, la conductivité hydraulique, les conditions limites, les niveaux piézométriques, etc., nous sommes capables d'imposer une recharge et de calibrer le modèle pour reproduire les conditions de terrain.

Paradis et al. (1997) ont estimé la recharge pour le bassin versant de la rivière Portneuf. Ils ont utilisé les données météorologiques et hydrométriques disponibles pour les interpréter par modélisation hydrologique. Le modèle déterministe matriciel CEQUEAU (Morin et Paquet, 1995) a été utilisé pour simuler la quantité d'eau qui s'écoule dans la rivière quotidiennement. Les caractéristiques physiques du bassin de la rivière Portneuf ainsi que les variations dans le temps et dans l'espace sont prises en considération dans ce modèle à bilan. L'avantage principal de ce modèle est que les composantes du bilan hydrologique sont validées par la comparaison des hydrogrammes établis en rivière et par la reproduction d'hydrogrammes de cours d'eau. La recharge annuelle moyenne calculée par Paradis et al. (1997) est de 0,299 m/an. Cette valeur est difficilement comparable avec les autres valeurs de recharge car le bassin de la rivière Portneuf se situe dans les dépôts marins fins comparativement à des sables et graviers pour la région qui a été modélisée.

Nous avons également estimé la recharge en produisant un modèle d'écoulement régional (Chapitre 5). La recharge est un des deux principaux paramètres qu'il est nécessaire d'ajuster lors de la calibration. Le domaine a été caractérisé en lui imposant différents types de limites (flux nuls, charges imposées). La calibration est guidée par la carte piézométrique de Fagnan (1998) afin de reproduire les conditions de terrain. La recharge et les conductivités hydrauliques ainsi calibrées reproduisent de façon satisfaisante la piézométrie déjà décrite. Les valeurs de conductivités hydrauliques calibrées se retrouvent dans les moyennes calculées (section 3.5) et la recharge est estimée à une moyenne de 0.25 m/an pour les sables et graviers deltaïques de la MRC de Portneuf.

3.4.4 Comparaison des méthodes

Quatre approches ont été suivies pour estimer la recharge moyenne pour la région à l'étude: le bilan hydrologique, les hydrogrammes de puits, la modélisation hydrologique et la modélisation de l'écoulement régional. Le tableau 3.15 présente les différentes estimations de la recharge moyenne obtenues pour chaque méthode.

Méthode	Recharge moyenne (mm/an)	Commentaires
Bilan hydrologique	243,6	- Plusieurs paramètres estimés
		- Grande variabilité des résultats
Modélisation hydrométrique	299,0	- Calibré à partir de cours d'eau
(Paradis et al. (1997))		dans un bassin argileux
Hydrogrammes	247,8	- Représente seulement 2 ans de
		prise de données
		- Excellente méthode à long terme
Modélisation	250,0	- Calibré à partir de la conductivité
hydrogéologique		hydraulique et de la recharge

 Tableau 3.15 : Comparaison des différentes moyennes de la recharge

Le calcul de la recharge à l'aide du bilan hydrologique est l'approche la moins précise. Puisque l'estimation du C_R moyen et du RAS_{max} est difficile, plusieurs valeurs de recharge sont possibles. Une des suppositions qui a été appliquée est que pour les 13 stations un même C_R moyen et RAS_{max} ont été imposés. Cependant, il est probable que pour chaque station ces paramètres soient différents.

La recharge moyenne calculée par modélisation hydrométrique présente la valeur la plus élevée (Paradis et al., 1997). Pourtant le bassin versant où la recharge a été déterminée est composé en majeure partie de dépôts marins fins (argile). Donc, la recharge aurait dû être inférieure comparativement aux valeurs calculées dans les sables et graviers. Puisque pour les argiles la conductivité hydraulique est plus faible, il devrait y avoir moins d'eau qui s'infiltre (plus de ruissellement) par rapport aux sédiments avec une conductivité plus grande (sables deltaïques). Nous ne sommes pas en mesure d'expliquer ces disparités.

La recharge moyenne obtenue à partir des hydrogrammes est précise si la valeur de la porosité de drainage (n_d) représente bien les sédiments et que l'infiltration moyenne est calculée sur plusieurs années. Il peut y avoir une erreur associée à la porosité de drainage puisqu'elle est estimée à partir de la littérature. Cependant, la variation de la valeur de n_d n'a pas un effet aussi important que les estimations des paramètres utilisés dans le bilan hydrologique. Avec cette méthode, la moyenne de la recharge est plus représentative après plusieurs années d'enregistrement car les perturbations climatiques ponctuelles n'auront plus un effet important sur la variation du niveau de la nappe.

La moyenne de la recharge obtenue à partir de la modélisation de l'écoulement régional de l'eau souterraine devient précise si l'étude de sensibilité démontre que la piézométrie est sensible aux différentes valeurs de recharge. La piézométrie obtenue par modélisation est représentative des observations de terrain et les valeurs de conductivités hydrauliques correspondent aux valeurs calculées. Par conséquent, la recharge moyenne calibrée devrait être régionalement représentative pour les aquifères de sable et gravier.

3.5 CONDUCTIVITÉ HYDRAULIQUE

Plusieurs méthodes existent pour estimer la conductivité hydraulique horizontale saturée. Une des meilleures méthodes est la réalisation d'essais de pompage, mais cette approche procure une valeur uniquement pour la zone de l'essai (Paradis, en préparation). De plus, la mise en œuvre d'un essai de pompage demande beaucoup de temps et d'efforts. L'utilisation d'un perméamètre permet également de déterminer la conductivité hydraulique en laboratoire (Girard, en préparation). Puisque les échantillons sont analysés en laboratoire, cette approche fournit des valeurs de conductivité à plusieurs endroits sur le territoire comparativement aux essais de pompage. Cependant, pour connaître plus facilement et plus rapidement la distribution spatiale des valeurs de conductivité hydraulique, l'utilisation de relations empiriques basées sur la dimension des grains est la méthode la plus largement appliquée (Freeze et Cherry, 1979).

Parce que la conductivité hydraulique est très importante dans plusieurs domaines de recherche (hydrogéologie, recherche en eau, pétrole, etc.), plusieurs travaux ont permis de développer des relations empiriques entre la conductivité hydraulique et les propriétés du milieu. Des études ont montré la relation qui existe entre la dimension des grains et la conductivité hydraulique (K). La relation empirique présentée par Hazen (Freeze et Cherry, 1979) est la plus connue et la plus utilisée. La formule de Hazen permet d'estimer la valeur de K en utilisant le diamètre effectif (d_{10}) correspondant à la courbe granulométrique de l'échantillon. Le d_{10} est défini comme le diamètre pour lequel 10% des grains sont plus petits et 90% sont plus gros. Une autre approche qui est souvent utilisée est la méthode de Masch et Denny (1966). En plus d'utiliser la dimension des grains, cette méthode utilise l'étendue de la courbe granulométrique. En calculant l'écart-type de la courbe granulométrique et le d_{50} , il est possible de déterminer K graphiquement. D'autres approches moins connues permettent de déterminer la conductivité hydraulique. Shepherd (1989) explique qu'il est possible d'estimer rapidement une valeur de perméabilité (par régression) à partir du d_{50} de la courbe

granulométrique et que cette démarche est une bonne alternative aux méthodes empiriques déjà disponibles.

La majorité des méthodes utilisées pour estimer K dans les matériaux non-consolidés à partir de la courbe granulométrique utilise souvent un seul paramètre de cette courbe (ex. Hazen). Selon Alyamani et Sen (1993), un seul paramètre ne peut décrire entièrement la distribution de la courbe granulométrique. Ces auteurs proposent plutôt d'inclure dans le calcul de K la pente initiale de la courbe granulométrique (entre d_{10} et d_{50}) et le point d'interception sur l'abscisse (dimension de grains). Cette méthode permet de mieux considérer la partie fine des sédiments, puisque les petites particules influencent davantage l'écoulement dans un milieu poreux.

Puisqu'il existe plusieurs méthodes pour déterminer la valeur de conductivité hydraulique à partir de la distribution granulométrique des sédiments, différents résultats sont également obtenus pour un même échantillon. Plusieurs études permettent de comparer ces résultats. Vukovic et Soro (1992) présentent 10 méthodes pour déterminer K d'un milieu poreux à partir de la courbe granulométrique. Chaque méthode y est décrite en plus d'identifier leur champ d'application. Des comparaisons déterminent les valeurs de K en fonction de divers paramètres (porosité, coefficient d'uniformité). Une autre étude (Egboka et Uma, 1989) présente une comparaison de la valeur de K entre un essai de pompage et des courbes granulométriques (pour Hazen ainsi que Masch et Denny). Il est démontré qu'en général les valeurs de K obtenues par les formules empiriques sont supérieures aux valeurs des essais de pompage.

La plupart des études supposent que la dimension des grains est le seul paramètre qui influence la conductivité hydraulique. Cependant, Sperry et Pierce (1995) démontrent que la forme des grains ainsi que la porosité ont une grande importance. Néanmoins, la dimension des grains est responsable à 69% de la variation de K. Pour un sable plus uniforme, cette valeur peut augmenter. Cette étude présente également une comparaison des différentes formules empiriques (Hazen, Kozeny-Carman ainsi que Alyamani et Sen) par rapport à la valeur mesurée de K. Selon ces auteurs la méthode de Hazen fournit une

bonne première approximation de la conductivité hydraulique pour un sable moyen. Suite à ces considérations et de la simplicité de la méthode, nous avons décidé de l'utiliser pour produire des valeurs initiales de conductivité hydrauliques pour le modèle numérique.

3.5.1 <u>Représentation spatiale de la conductivité hydraulique</u>

Même si K est difficile à déterminer régionalement, une étude préliminaire a déjà eu lieu dans la MRC de Portneuf pour les dépôts de surface (Béland-Pelletier, 1996). Cette étude couvrait les principaux secteurs hydrostratigraphiques. La compilation de divers rapports hydrogéologiques ainsi que des travaux de terrain fournissent les données qui ont été analysées. La conductivité hydraulique a été estimée à partir de valeurs d'essai de pompage, de perméamètres et d'analyses granulométriques (Hazen). En tout, une cinquantaine de données a été utilisée pour représenter la distribution spatiale de K.

Même si K est un des paramètres qui devront être calibrés, il est nécessaire de connaître une approximation de cette valeur. Effectivement, une valeur de K est nécessaire pour l'imposer initialement lors de la modélisation.

3.5.1.1 Méthodologie

Afin de bien représenter la distribution spatiale de la conductivité hydraulique, environ 200 données ont été utilisées. Les données proviennent de trois sources différentes:

- de Béland-Pelletier (1996) où il y a des essais de pompage, des essais au perméamètre et des courbes granulométriques;
- de Paradis (en préparation) où il y a des analyses granulométriques et des essais de perméabilité *in situ*;
- de la banque de données du projet Portneuf, où il y a uniquement des analyses granulométriques.

La figure 3.12 illustre la répartition des échantillons et leur localisation. Il y a 52 échantillons qui proviennent des travaux de Béland-Pelletier (1996), 63 de la base de données du projet Portneuf et 76 des travaux de Paradis (en préparation).

À l'aide de la carte des dépôts meubles de surface (Cloutier et al., 1997) et de la description de chaque échantillon, il est possible d'associer un échantillon à un type de sédiment. Huit types de dépôts contiennent des échantillons (les chiffres entre parenthèses indiquent le nombre d'échantillon):

- Sédiments de la Moraine de Saint-Narcisse (Gxt) (5)
- Sédiments littoraux, prélittoraux et d'exondation du Lac Lampsilis (Lb) (2)
- Sédiments fins d'eau profonde (Ma) (8)
- Sédiments littoraux, prélittoraux et d'exondation de la Mer de Champlain (Mb)
 (44)
- Sédiments deltaïques (Md) (99)
- Rythmites (Mdp) (13)
- Till rencontré dans les Basses-Terres du Saint-Laurent (Tp) (10)
- Till rencontré dans les Laurentides (Tg) (10)

Le nombre d'échantillon est plus important pour les sables deltaïques et les sédiments littoraux de la Mer de Champlain, puisque c'est dans ces sables que les aquifères sont les plus productifs. De plus, c'est dans cette zone que se trouve la région modélisée.

Figure 3.12 : Localisation des données pour l'estimation de la conductivité hydraulique

98

Les valeurs de conductivité hydraulique de Béland-Pelletier (1996) sont utilisées directement. Un bon triage des données a été réalisé lors de ces travaux, ce qui élimine les risques d'erreur. Pour les autres échantillons, K a été estimée à partir de la formule empirique de Hazen. Plusieurs avantages ont permis de choisir cette méthode:

- 1- C'est la méthode la plus simple d'application (Freeze et Cherry, 1979)
- 2- Puisque les échantillons n'existent plus, nous avons uniquement la courbe granulométrique (essai au perméamètre impossible)
- 3- Logiciel disponible pour le calcul direct de K à partir de la distribution granulométrique
- 4- La grande majorité des sédiments sont des sables et graviers (généralement uniforme)

La formule de Hazen est la suivante (Freeze et Cherry, 1979):

$$\mathbf{K} = \mathbf{A} \cdot \mathbf{d_{10}}^2 \tag{3.7}$$

où

K =conductivité hydraulique (cm/s)

- d_{10} = diamètre pour lequel 10% des grains sont plus petits et 90% plus gros, déterminé sur la courbe granulométrique (mm)
- A = Constante

Pour un K exprimé en cm/s et un d_{10} en mm, la valeur du coefficient A est égale à 1. La formule empirique de Hazen est habituellement utilisée pour des valeurs de diamètre effectif (d_{10}) compris entre 0,1 et 3,0 mm et pour un coefficient d'uniformité (d_{10} / d_{50}) inférieur à 5. Cette méthode pour estimer K était dédiée originalement aux sables uniformes parce qu'elle donne d'excellents résultats. Cependant, elle peut également fournir des résultats approximatifs pour des sables fins jusqu'au gravier (Freeze et Cherry, 1979).

Pour les sédiments échantillonnés dans la région de Portneuf, les valeurs de conductivité hydraulique pour les sables et graviers deltaïques (Md) ainsi que les sédiments littoraux, prélittoraux et d'exondations (Mb) sont considérés comme respectant les conditions d'application de la formule de Hazen. La zone modélisée est représentée en majeure partie par ces 2 types de sédiments. Toutefois les valeurs de K des autres types de sédiments ne sont que des approximations très sommaires, car les dépôts ne sont pas uniquement constitués de sables.

Lorsque K a été déterminée pour chaque échantillon, il reste à calculer la moyenne pour chaque type de sédiments (8). La moyenne est calculée à partir d'une moyenne géométrique puisque les résultats sont plus représentatifs que la moyenne arithmétique, chaque valeur ayant un poids proportionnel à son exposant. La valeur moyenne serait surestimée si la moyenne arithmétique était utilisée puisqu'elle serait guidée uniquement par les valeurs de K élevées alors que la fraction la plus fine influence davantage K (Alyamani et Sen, 1993). La moyenne géométrique est la somme des logarithmes, en base 10, des valeurs divisées par le nombre de valeurs augmenté à la puissance 10.

$$M_g = 10^{\sum \log x_i / n}$$
(3.8)

où

M_g = moyenne géométrique

 $x_i = valeur de chaque élément$

n = nombre total d'élément

3.5.1.2 Résultats

Pour chaque échantillon, une valeur de conductivité hydraulique a été estimée et pour les huit types de sédiments une moyenne a été déterminée. Le tableau 3.16 présente les caractéristiques de chaque type de sédiments. La figure 3.13 illustre l'étendue des valeurs de K. Comme mentionné précédemment, la moyenne arithmétique est toujours supérieure à la moyenne géométrique. L'annexe F donne les valeurs de conductivité hydraulique de chaque échantillon.

	Gxt	Lb	Ma	Mb	Md	Mdp	Τg	Тр
Échantillons (n)	5	2	8	44	99	13	10	10
M. géométrique (m/s)	7,9X10 ⁻⁶	1,2X10 ⁻⁴	5,3X10 ⁻⁸	7,3X10 ⁻⁵	3,0X10 ⁻⁴	1,7X10 ⁻⁶	9,0X10 ⁻⁷	7,5X10 ⁻⁸
M. logarithmique	-5,1	-3,9	-7,3	-4,1	-3,5	-5,8	-6,0	-7,1
Écart-type (log)	1,7	0,1	0,4	0,7	0,5	0,7	0,8	0,6
M. arithmétique (m/s)	1,2X10 ⁻⁴	1,3X10 ⁻⁴	7,8X10 ⁻⁸	1,6X10 ⁻⁴	5,7X10 ⁻⁴	3.,X10 ⁻⁶	3,4X10 ⁻⁶	1,7X10 ⁻⁷
Minimum (m/s)	9,8X10 ⁻⁸	1,1X10 ⁻⁴	2,4X10 ⁻⁸	9,3X10 ⁻⁷	1,1X10 ⁻⁵	6,9X10 ⁻⁸	4,0X10 ⁻⁸	1,2X10 ⁻⁸
Maximum (m/s)	3,2X10 ⁻⁴	1,4X10 ⁻⁴	2,3X10 ⁻⁷	6,6X10 ⁻⁴	6,8X10 ⁻³	1,6X10 ⁻⁵	2,0X10 ⁻⁵	1,0X10 ⁻⁶

Tableau 3.16 : Évaluation de la conductivité hydraulique

Sédiments de la moraine (Gxt), sédiments littoraux, prélittoraux et d'exondation du Lac Lampsilis (Lb), sédiments fins d'eau profonde (Ma), sédiments littoraux, prélittoraux et d'exondation de la Mer de Champlain (Mb), sédiments deltaïques (Md), rythmites (Mdp), till rencontré dans les Basses-Terres (Tp) et till rencontré dans le Grenville (Tg).

La zone modélisée contient presque uniquement les unités Md et Mb, soit les sédiments littoraux, prélittoraux et d'exondation de la Mer de Champlain (Mb) et les sédiments deltaïques (Md). Ces échantillons comptent pour 70% de tous les échantillons analysés. Les Md ont une moyenne de $3,0x10^{-4}$ m/s, ce qui est représentatif des sables selon Freeze et Cherry (1979). Les K se trouvent dans un intervalle variant de $1,0x10^{-5}$ à $7,0x10^{-3}$ m/s. Pour les Mb, la moyenne est de $7,0x10^{-5}$ m/s donc un ordre de grandeur plus faible que les Md. Cela est normal puisque le débit des cours d'eau était probablement supérieur lors de la mise en place des Md permettant ainsi une mobilité des sédiments les plus grossiers. Puisque la dimension des sédiments est plus grande, K est automatiquement plus élevée (Brayshaw et al., 1996). Les moyennes obtenues de conductivité hydraulique pour les unités Md et Mb, à partir des analyses granulométriques, ont été confirmées par des essais de perméabilité *in situ* réalisés par Paradis (en préparation). Les valeurs de conductivité hydraulique variaient entre $2,8x10^{-4}$ à $7,5x10^{-4}$.

Figure 3.13 : Plage des valeurs de conductivité hydraulique obtenues des données granulométriques. (Les abréviations des unités sont indiquées au tableau 3.16)
Pour les sédiments de la Moraine de Saint-Narcisse (GxT), les valeurs de K varient de plusieurs ordres de grandeur. Ceci est normal puisque les sédiments sont composés de matériaux hétérogènes (bloc, till, diamicton, ainsi que de gravier et de sable). Il est difficile de tirer une conclusion pour les sédiments du Lac Lampsilis car il n'y a pas suffisamment d'échantillons. Pour ce qui est des valeurs de K des argiles marines (Ma), elles sont toutes regroupées. Malgré la faible précision de la formule de Hazen pour les matériaux plus fins, nous pouvons conclure que K ne varie pas beaucoup dans ces dépôts. Les rythmites ne sont pas une unité mais elles se retrouvent entre les unités Mb et Ma. La moyenne des valeurs de K des rythmites se retrouve également entre les valeurs moyennes des unités Mb et Ma. Girard (en préparation) a caractérisé la conductivité des rythmites prodeltaïques plus précisément. L'analyse granulométrique des tills s'est effectuée uniquement à partir de la matrice. La moyenne des K des tills localisés dans les Basses-Terres du Saint-Laurent est inférieure aux valeurs des tills localisés dans le Greenville. Cela confirme ce qui avait déjà été identifié (Fagnan et al., 1998).

Comme nous venons de la constater, K est un paramètre très variable et qui couvre généralement 2 à 3 ordres de grandeur pour le même type d'unité lorsqu'on l'analyse à partir de la courbe granulométrique des échantillons. Par conséquent, cette propriété est difficile à représenter régionalement. C'est pour cette raison que les valeurs calculées pour les sables et graviers (Md et Mb) servent de paramètres initiaux à la modélisation. Les valeurs seront ensuite raffinées (avec la recharge) pour représenter le mieux possible la piézométrie du terrain.

CHAPITRE 4

MODÈLE NUMÉRIQUE

Maintenant que le modèle conceptuel pour la MRC de Portneuf est bien défini (chapitre 3), nous pouvons présenter le modèle numérique. Cette étape consiste à traduire le modèle conceptuel en termes mathématiques. Les modèles numériques utilisés pour l'écoulement de l'eau souterraine sont grandement simplifiés par rapport à la réalité. Le mouvement de l'eau de la surface jusqu'à l'aquifère ainsi que le mouvement à travers l'aquifère sont des phénomènes extrêmement complexes et plusieurs processus physiques et chimiques sont encore mal compris (Istok, 1989). C'est pour cette raison qu'il est difficile de traduire tous les processus dans une simple série d'équations qui s'appliqueraient à toutes les situations rencontrées dans la pratique.

Le choix du modèle numérique devra répondre aux diverses caractéristiques de l'écoulement dans les aquifères de surface de la MRC de Portneuf. Pour ce faire, le modèle doit satisfaire aux critères suivants:

- 1- Capable d'intégrer facilement et rapidement les données déjà compilées;
- 2- Simuler l'écoulement dans un milieu poreux à trois dimensions;
- 3- Simuler l'écoulement à saturation variable ainsi qu'en régime permanent et transitoire;

4- La manipulation du modèle devra être simple et rapide (fichiers d'entrées, temps d'exécution)

Le modèle choisi permettra de reproduire adéquatement la piézométrie observée par Fagnan (1998). Une combinaison de plusieurs logiciels permet de répondre à nos attentes. Les logiciels Groundwater Modeling System (Brigham Young University, 1998) FEMWATER (Lin et al., 1997) et FRAC3DVS (Therrien et Sudicky, 1996) seront utilisés. Chaque logiciel apporte ses avantages.

Nous avons choisi d'utiliser un modèle basé sur une solution numérique avec éléments finis triangulaires plutôt que par différence finie étant donné la symétrie de la zone à modéliser. Il est préférable d'utiliser les éléments finis lorsque le milieu à modéliser est à symétrie plus ou moins complexe (Diaw et al., 1995; Istok, 1989). En plus d'avoir une géométrie complexe, on retrouve à l'intérieur du domaine deux rivières ayant une symétrie complexe (spécialement la rivière Sainte-Anne). Pour avoir la même discrétisation spatiale, la solution numérique par différence finie demande un nombre de cellules de beaucoup supérieur à la solution numérique par éléments finis lorsque le domaine est complexe. Il y a quelques années les méthodes de solution par éléments finis étaient moins utilisées car la manipulation était plus difficile (Lin et al., 1997). Maintenant, avec le logiciel GMS, il est beaucoup plus facile d'utiliser une technique par élément finis (comme FEMWATER).

Le logiciel GMS est utilisé pour accomplir plusieurs tâches. Nous l'utilisons pour importer les données nécessaires, à partir des travaux de Fagnan (1998) et pour la construction du modèle en 3D (construction du maillage). De plus, il sert d'interface pour visualiser tous les résultats. FEMWATER (module de GMS) qui est un modèle simulant l'écoulement et le transport tridimensionnels pour des saturations variables par les éléments finis sert à imposer les diverses limites au modèle. Ensuite, FRAC3DVS, qui est un modèle représentant l'écoulement et le transport de masse dans un milieu poreux ou fracturé à saturation variable, est utilisé. Nous devons utiliser le préprocesseur NP (Therrien et al., 1998) afin de convertir les fichiers générés dans GMS pour qu'ils soient utilisables comme fichiers d'entrés dans FRAC3DVS. Finalement, FRAC3DVS résout les équations d'écoulement et les fichiers de sorties sont visualisés dans GMS.

Malgré l'utilisation de quatre logiciels différents, le domaine est modélisé de façon simple, efficace et avec une bonne rapidité. Puisque le logiciel FRAC3DVS utilise les logiciels GMS et NP comme préprocesseur et uniquement GMS comme post-processeur, un gain très appréciable de temps est réalisé en utilisant cette combinaison, car la création du maillage et l'administration des divers paramètres directement dans FRAC3DVS est lourde. Même si FRAC3DVS peut s'appliquer pour des problèmes beaucoup plus complexes (transport de masse, écoulement dans des fractures, etc.) par rapport au domaine rencontré dans la MRC de Portneuf, il permet un gain appréciable de temps lors des simulations. Le modèle FEMWATER permet également de simuler l'écoulement dans un milieu poreux, mais en plus d'être moins rapide, il est moins solide numériquement que FRAC3DVS.

La prochaine section présente une description sommaire des bases mathématiques et numériques de FRAC3DVS.

4.1 FRAC3DVS

4.1.1 Modèle mathématique

La description complète du modèle comprend l'écoulement et le transport de masse dans un milieu fracturé ou poreux à saturation variable. Cependant, nous présentons uniquement les relations décrivant la matrice poreuse. Pour avoir la description complète des relations utilisées dans FRAC3DVS, les travaux de Therrien et Sudicky (1996) et Therrien et al. (1998) peuvent être consultés. Les relations capillaires décrites ici sont tirées des notes de cours de Lefebvre (1997).

Une forme modifiée de l'équation de Richard est utilisée pour décrire l'écoulement tridimensionnel de l'eau souterraine dans un milieu poreux à saturation variable (Huyakorn et al., 1984):

$$\frac{\partial}{\partial x_i} \left(K_{ij} k_{rw} \frac{\partial (\Psi + z)}{\partial x_i} \right) \pm Q = \frac{\partial}{\partial t} \left(\theta_s S_w \right)$$
(4.1)

où

- K_{ij} = Tenseur de la conductivité hydraulique saturée
- k_{rw} = La perméabilité relative du milieu (fonction de la saturation en eau)
- Ψ = La charge de pression
- z = La charge d'élévation
- θ_s = La teneur en eau à saturation (porosité)
- Q = Pertes et accumulations dans le système

La saturation (S_w) est reliée à la teneur en eau (θ) par:

$$S_{w} = \frac{\theta}{\theta_{s}} \tag{4.2}$$

Où θ_s est la teneur en eau à saturation (égale à la porosité)

Le côté droit de l'équation 4.1, qui exprime un terme d'accumulation dans le domaine, est défini comme étant fonction principalement de la charge de pression (Ψ) (Cooley, 1971):

$$\frac{\partial}{\partial t}\theta_s S_w = S_w S_s \frac{\partial \Psi}{\partial t} + \theta_s \frac{\partial S_w}{\partial t}$$
(4.3)

où

 S_s = Coefficient d'emmagasinement du milieu poreux (Freeze et Cherry, 1979)

L'équation non linéaire décrivant l'écoulement dans des conditions à saturation variable (relation 4.1) doit être résolue à l'aide de relations entre les variables primaires (Ψ et S_w). Puisque la relation 4.1 est résolue en terme de charge de pression, nous utilisons le modèle de van Genuchten (1980) qui exprime la saturation (S_w) en fonction de la charge de pression (Ψ). Ce modèle permet de représenter, à partir d'une expression analytique simple, des courbes capillaires en appliquant une relation entre la pression capillaire (P_c) et la saturation effective en eau (S_{we}) à l'aide de 2 paramètres empiriques α (Pa⁻¹) et m (sans dimension). Ces deux paramètres sont déterminés à partir de graphiques entre la pression capillaire et la saturation. L'expression analytique est la suivante:

$$S_{we} = \left[1 + (\alpha \cdot P_c)^n\right]^m$$

$$m = 1 - \frac{1}{n}$$
(4.4)

La saturation effective (S_{we}) est exprimée en fonction de la saturation en eau (S_w), de la saturation en eau résiduelle (S_{wr}) et de la saturation maximale en eau (S_m). La valeur de la saturation effective en eau indique l'intervalle de saturation en eau qui demeure toujours mobile. Si la saturation maximale en eau (S_m) est équivalente à 1, alors S_{we} est définie comme:

$$S_{we} = \frac{S_w - S_{wr}}{1 - S_{wr}}$$
(4.5)

Basé sur les travaux de Mualem (1976), van Genuchten a obtenu une formule qui associe la perméabilité relative (k_{rw}) à l'eau avec la saturation effective en eau (S_{we}) à l'aide du paramètre empirique m.

$$k_{rw} = \sqrt{S_{we}} \left[1 - \left(1 - S_{we}^{1/m} \right)^m \right]^2$$
(4.6)

4.1.2 Méthode numérique

La méthode utilisée pour résoudre numériquement l'équation modifiée de Richard est basée sur le volume de contrôle élémentaire (Forsyth, 1991; Kropinski, 1990). L'approche itérative de type Newton-Raphson est appliquée pour linéariser l'équation. Puisque cette approche utilise un second ordre de convergence, la robustesse du modèle est supérieure à une approche utilisant des itérations de Picard (Lin et al., 1997; Therrien et Sudicky, 1996). Lorsque la matrice est linéarisée, le solveur préconditionné ORTHOMIN est utilisé pour solutionner l'équation.

L'approche par volume de contrôle élémentaire permet d'obtenir une forme discrétisée de l'équation d'écoulement, basée sur la conservation de masse locale. De plus, un volume d'influence (associé au volume de contrôle) est déterminé pour chaque nœud. À partir de chacun des nœuds, la discrétisation de l'équation est exprimée en terme de changement de l'accumulation de masse pour le volume déterminé et un autre terme représentant la divergence du flux de masse dans le volume. Le flux de masse dépendra alors de 2 phénomènes. Le premier dépend des propriétés associées au volume d'influence et le second de la différence de charge de pression (variable primaire) entre les nœuds et ses voisins.

L'équation modifiée de Richard, représentant l'écoulement, est discrétisée à l'aide de la méthode standard de Galerkin, pour un domaine V:

$$\int_{V} \left(\frac{\partial}{\partial x_{i}} \left[K_{ij} k_{rw} \frac{\partial (\Psi + z)}{\partial x_{j}} \right] + Q - S_{s} S_{w} \frac{\partial \Psi}{\partial t} - \theta_{s} \frac{\partial S_{w}}{\partial t} \right] N_{I} dV = 0$$

$$(4.7)$$

où

 X_i (i =1,2,3) = Les coordonnées spatiales pour les 3 dimensions

I et J = Des indices nodaux variant de 1à n, représentant le nombre total de nœuds

Le temps est représenté par une différence finie, le terme d'accumulation de l'équation 4.7 peut maintenant s'écrire sous la forme:

$$\int_{V} \left(S_{s} S_{w} \frac{\partial \Psi}{\partial t} - \theta_{s} \frac{\partial S_{w}}{\partial t} \right) N_{I} dV = \left(S_{s} S_{w}^{L+1} \frac{\left(\Psi^{L+1} - \Psi^{L} \right)}{\Delta t} + \theta_{s} \frac{\left(S_{w}^{L+1} - S_{w}^{L} \right)}{\Delta t} \right) \int_{V} N_{I} dv$$

$$\tag{4.8}$$

où

v = Le volume d'influence associé au nœud I

L = Le temps

 Δt = Les pas de temps

Pour l'expression de gauche de la relation 4.7, le théorème de la divergence peut être appliqué dans le but d'avoir une relation entre la différence de charge au noeud I et celle de ses voisins :

$$\int_{v} \left(\frac{\partial}{\partial x_{i}} \left[K_{ij} k_{rw} \frac{\partial (\Psi + z)}{\partial x_{j}} \right] \right) N_{I} dv = -\int_{v} K_{ij} k_{rw} \frac{\partial (\Psi + z)}{\partial x_{j}} \frac{\partial N_{I}}{\partial x_{i}} dv + \int_{B} q \cdot N_{I} dB$$
(4.9)

où le dernier terme de cette équation représente le flux normal à la limite B du volume v. Cependant, pour une approche facile ce terme est égal à zéro.

Finalement, la forme finale de l'équation discrétisée (écoulement à saturation variable dans un milieu poreux) pour un nœud I est donnée par:

$$\left(S_s S_w^{L+1} \frac{\left(\Psi^{L+1} - \Psi^L\right)}{\Delta t} + \theta_s \frac{\left(S_w^{L+1} - S_w^L\right)}{\Delta t}\right)_I v_I = \sum_{J \in \eta_I} \left(\gamma_{IJ} \lambda_{IJ} \Gamma_{IJ}\right)^{L+1} + Q_I^{L+1}$$
(4.10)

Cette équation dépend de certaines relations obtenues d'une fonction d'approximation et en modifiant l'équation 4.9. La fonction d'approximation utilisée se définit comme suit:

$$\Psi(x_i, t) = \sum_J N_J \Psi_J(t)$$
(4.11)

Les termes de la partie de droite de l'équation 4.10 se définissent comme, v_I est égale au volume d'influence au noeud I :

$$v_I = \int_{v} N_I dv \tag{4.12}$$

et le terme γ_{IJ} est une quantité nodale :

$$\gamma_{IJ} = \left(\Psi_J + Z_J\right) - \left(\Psi_I + Z_I\right) \tag{4.13}$$

 λ_{IJ} représente une valeur pondérée de la perméabilité relative aux noeuds I et J. Une pondération vers l'amont est appliquée pour une meilleure stabilité.

$$\lambda_{IJ} = k_{rwJ} \quad si \quad \Gamma_{IJ} (\Psi_J + z_J - \Psi_I + z_I)$$

$$\lambda_{IJ} = k_{rwJ} \quad si \quad \Gamma_{IJ} (\Psi_J + z_J - \Psi_I + z_I)$$
(4.14)

$$\Gamma_{IJ} = K_{ij} \int_{v} \frac{\partial N_{J}}{\partial N_{j}} \frac{\partial N_{I}}{\partial N_{i}} dv$$
(4.15)

Pour terminer, le terme des sources / pertes Qi est défini comme:

$$Q_I = \int_{v} Q N_I dv \tag{4.16}$$

La méthode de Newton-Raphson est utilisée pour linéariser l'équation 4.10. Cette équation prend alors la forme suivante :

$$f_I^r = \left(S_s S_w^r \frac{\left(\Psi^r - \Psi^L\right)}{\Delta t} + \theta_s \frac{\left(S_w^r - S_w^L\right)}{\Delta t}\right)_I v_I - \sum_{J \in \eta_I} (\gamma_{IJ} \lambda_{IJ} \Gamma_{IJ})^r + Q_I^r$$
(4.17)

où r représente le niveau de l'itération.

La méthode de Newton-Raphson est directement appliquée à l'équation 4.17 :

$$F_{IJ}^r \Delta \Psi_J^{r+1} = -f_I^r \tag{4.18}$$

où F^r_{IJ} est une matrice Jacobienne:

$$F_{IJ}^{r} = \frac{\partial f_{I}^{r}}{\partial \Psi_{J}^{r}}$$
(4.19)

Les itérations se répètent jusqu'à ce que le changement de la charge de pression $\Delta \Psi_j^{r+1}$ soit inférieur au critère de tolérance fixé. L'évolution du résidu (f_1^r) est également calculée pour assurer la convergence.

La différentiation numérique est utilisée afin d'évaluer le Jacobien. La technique des coefficients d'influence (Huyakorn et al., 1984) est appliquée, à partir des éléments à géométrie simple, pour évaluer les intégrales de l'équation 4.9 analytiquement. Finalement, le solveur préconditionné ORTHOMIN solutionne le système d'équation obtenu.

4.2 DISCRÉTISATION SPATIALE

La zone à modéliser (figure 4.1) a été établie à partir des travaux de Fagnan (1998). Ces travaux ont porté principalement sur les sables et graviers de la MRC de Portneuf. La carte piézométrique des sables et graviers déjà réalisée nous permet de limiter le domaine modélisé (en plan) alors que la carte de l'épaisseur des sables de surface est utile pour connaître la puissance des sédiments.

Figure 4.1 : Zone modélisée subdivisée en secteurs

A l'aide du logiciel GMS, il est possible d'importer les différents fichiers déjà produits pour les utiliser facilement et rapidement. L'image de la carte piézométrique nous aide à limiter le périmètre de la zone à modéliser. Après que le domaine ait été bien identifié, la création du maillage s'effectue automatiquement selon les dimensions voulues. Le maillage est obtenu avec des éléments triangulaires en 2D. Cette couche (*2D mesh*) sert de projection pour la création du maillage en 3D.

Pour obtenir la base et le sommet de l'aquifère de sable, nous devons modifier la carte de l'épaisseur des sables de surface. Effectivement, le sommet de l'aquifère (surface du sol) est directement connu à partir du modèle numérique de terrain (MNT). Pour déterminer sa base, il faut faire une soustraction de l'épaisseur des sédiments à la surface du sol. La figure 4.2 présente la puissance des sédiments de sable et gravier dans la zone modélisée. Lorsque la base et le sommet sont biens identifiés, nous utilisons une technique de projection (Brigham Young University, 1998) pour créer le modèle tridimensionnel (*3D mesh*). Chaque élément triangulaire de la couche bidimensionnelle est projeté sur la couche du sommet et de la base pour produire des prismes triangulaires représentant ainsi le modèle 3D. La figure 4.3 schématise la technique de projection pour la création du modèle. Lorsque le bloc 3D est bien défini, il est alors possible de caractériser la zone modélisée.

L'épaisseur saturée des sédiments a été utilisée dans le modèle numérique puisque la taille et la complexité des maillages n'ont pas permis l'utilisation de conditions non saturées dans FRAC3DVS. En utilisant l'épaisseur saturée plutôt que l'épaisseur totale, la transmissivité de l'aquifère est respectée.

Figure 4.2 : Épaisseur saturée de sédiments dans la zone modélisée

Figure 4.3 : Technique de projection pour le modèle tridimensionnel

Nous avons réalisé la modélisation régionale des sables et graviers de la MRC de Portneuf en régime permanent afin de pouvoir la comparer avec la carte piézométrique de Fagnan (1998). En utilisant le régime permanent, nous supposons que les conditions d'équilibre sont atteintes à long terme. Cette hypothèse se base sur plusieurs faits : un faible taux d'exploitation de la nappe (voir section du bilan hydrologique), la recharge annuelle moyenne demeure constante au fil des années et influence de façon presque constante le niveau de la nappe (hydrogrammes de puits) et il ne semble pas y avoir d'emmagasinement important dans l'aquifère. Donc, il est convenable de supposer que la nappe est à l'équilibre.

Pour représenter les aquifères de surface, le domaine a été défini en 3 dimensions avec une épaisseur variable. Le domaine a été discrétisé en une grande couche puisque les sables et graviers modélisés ont généralement toutes les mêmes caractéristiques du sommet à la base. Cependant, avec des épaisseurs de sables de plus de 50 mètres il est préférable de sous-diviser le domaine en 5 couches pour obtenir une plus grande flexibilité lors de l'imposition des limites. Ce nombre de couches est un bon compromis entre la précision désirée et la dimension des fichiers (temps d'exécution).

Lorsqu'on détermine la dimension du maillage, un compromis doit être fait entre une bonne résolution et un temps de calcul raisonnable (Anderson et Woessner, 1992). La dimension des éléments doit être plus fine aux endroits où les conditions varient rapidement (ex. près des rivières) (Anderson et Woessner, 1992; Istok, 1989).

Le domaine modélisé contient des cellules avec une moyenne de 200 m de largeur (arête des triangles) alors qu'en bordure des rivières Sainte-Anne et Jacques-Cartier les cellules ont une dimension de 100 m. Pour diminuer le temps de calcul, la région modélisée a été séparée en 3 bassins : (1) aquifères libres de la rivière Jacques-Cartier, (2) aquifères libres du nord de la rivière Sainte-Anne et (3) aquifères libres du sud de la rivière Sainte-Anne (figure 4.1). La dimension des cellules permet d'obtenir une bonne résolution près des rivières et une bonne résolution à l'échelle régionale (figures 4.4, 4.5 et 4.6). Le tableau 4.1 résume les caractéristiques des trois maillages. La dimension des cellules se compare

avantageusement par rapport à d'autres études de modélisation régionale (Martin et Frind, 1998; Er-Rouane et al., 1996; Mukhopadhyay et al., 1994; Hamdam et Mukhopadhyay, 1990) qui utilisent une dimension de cellule pouvant atteindre le kilomètre. Le temps de calcul demeure très négligeable, seulement quelques dizaines de secondes, et la dimension des fichiers d'entrées et de sorties est raisonnable (moins de 1 meg). Les simulations ont été réalisées sur un ordinateur Intergraph TD 410, avec 2 processeurs Intel Pentium Pro et 132 Mo de mémoire vive.

Aquifères libres	Éléments	Éléments au	Noeuds	Noeuds au
	par couche	total	par couche	total
Jacques-Cartier	8480	42 400	4459	26 754
Sainte-Anne (nord)	12 954	64 770	6802	40 812
Sainte-Anne (sud)	11 999	59 995 [°]	6311	37 866
		167 165		105 432

Tableau 4.1 : Caractéristiques du maillage

4.2.1 Limites

Le choix des limites doit être réalisé d'une façon minutieuse car elles ont une grande influence sur les résultats de la modélisation. En effet, pour des simulations en régime permanent, les limites déterminent largement les résultats des modèles d'écoulement (Anderson et Woessner, 1992 ; Franke et Reilly, 1987). Lors de simulations, si le choix des limites est inadéquat, ne représentant pas les conditions de terrain observées, l'exercice de la modélisation n'atteindra pas ses objectifs et les résultats ne pourront être utilisés. L'imposition des limites compte parmi les plus grandes sources d'erreur associées à la modélisation (Anderson et Woessner, 1992).

Deux types de limite existent. Il y a les limites physiques et les limites hydrauliques (Anderson et Woessner, 1992). La présence du roc, de grandes surfaces d'eau et des cours d'eau (rivières, ruisseaux, etc.) représentent le type de limite physique. Les lignes

de partage des eaux ainsi que les lignes de courant sont identifiées comme limites hydrauliques (limites «invisibles»). Lorsque les conditions le permettront, il est préférable de choisir des limites physiques puisqu'elles ne varient pas dans le temps (ou très peu). Les limites physiques aident à définir le système d'écoulement avec une plus grande précision (Anderson et Woessner, 1992). Cependant, les conditions de terrain ne sont pas toujours associée à des limites physiques (Mukhopadhyay et al., 1994).

Le choix des limites de la zone modélisée a été basé sur l'observation de 2 éléments. Le premier est la présence de cours d'eau et d'une limite imperméable à la base. Lorsque cela a été possible, nous avons déterminé les limites du domaine à partir de rivières et de plus petits cours d'eau. De plus, une des suppositions est que la base de l'aquifère est limitée par l'argile ou le roc, ce qui représente une limite imperméable. Le second élément est l'utilisation de la carte piézométrique réalisée par Fagnan (1998). Cet outil nous aide à déterminer les limites hydrauliques, spécialement les lignes de partage des eaux lorsque cela est nécessaire.

Les limites hydrogéologiques sont représentées par trois types de conditions mathématiques. Il y a les limites à charges imposées (conditions de Diriclet), les limites avec flux (conditions de Neumann) et les conditions mixtes (conditions de Cauchy) (Banton et Bangoy, 1997). Seulement les deux premières conditions limites sont appliquées pour la zone modélisée. Les limites à charges imposées sont appliquées aux contacts de la nappe phréatique et d'un plan d'eau libre (rivières, lacs, etc.) et au contact d'une zone d'émergence entre 2 matériaux de conductivité hydraulique différente. Les limites avec l'imposition d'un flux regroupent trois parties du domaine. Un flux constant est imposé à la surface du domaine pour représenter la recharge. À la base de l'aquifère, il y a un flux nul puisque la limite est imperméable (argile et/ou roc) et à quelques autres endroits (en périphérie) où il y a des flux nul.

Puisque les limites jouent un rôle très important dans le résultat de l'écoulement régional, il est primordial de connaître leur distribution dans les trois bassins décrit précédemment. Les prochaines sections présentent une description détaillée de l'ensemble des domaines.

4.2.1.1 Aquifères libres de la rivière Jacques-Cartier

Comme mentionné précédemment, la base de l'aquifère est représentée par un flux nul (surface imperméable) et le sommet par un flux imposé (la recharge). La figure 4.4 présente le positionnement de chaque limite. Ce bassin est limité en majeure partie par des charges imposées. Les cotés est et ouest du domaine sont représentés par des cours d'eau. Les charges imposées dans les cours d'eau (carrés vides) sont égales au niveau du sol. Dans le secteur nord-est, il y a une zone qui n'est pas modélisée. Cette partie du domaine est constituée d'argile et par conséquent les limites qui entourent cette zone sont à flux nul.

Dans le sud-ouest, il y a une zone d'émergence (triangles), c'est-à-dire que l'eau s'écoule à l'extérieur de l'aquifère de sable au contact des unités de sables et d'argile (présence de sources sur le terrain). Ces zones se situent en général dans la partie aval des domaines. Il est primordial de localiser ces endroits puisque si nous imposons un flux nul plutôt qu'une charge imposée, le patron d'écoulement sera modifié et ne représentera pas les conditions de terrain. Maintenant que nous choisissons d'imposer des charges, il faut identifier leur élévation verticale. Si la charge imposée est trop élevée, elle agira alors comme un puits d'injection (accumulation d'eau dans le domaine) alors que si elle est trop faible elle agira comme un drain (perte d'eau). Lorsque la charge est bien imposée et qu'elle représente les conditions de terrain, le bilan total sera représentatif. Pour arriver à une charge qui est juste, il faut faire plusieurs simulations afin de choisir la meilleure valeur possible. Heureusement, à plusieurs endroits l'épaisseur des sédiments aux limites est de quelques mètres (ou moins) ce qui réduit la marge d'erreur. De plus, des puits d'observation situés en bordure de cette zone nous indiquent la valeur des charges à imposer.

Lorsque les limites extérieures sont fixées, nous devons identifier les limites à l'intérieur du domaine. Habituellement, il y a plusieurs petits cours d'eau qui se rattachent aux grandes rivières. Pour la rivière Jacques-Cartier, les cours d'eau qui s'écoulent en sa direction ont une charge imposée équivalente à l'élévation de la surface du sol (carrés vides).

Pour ce qui est de la rivière Jacques-Cartier, les charges ont été imposées au centre de la rivière (carrés pleins). Pour la rivière ainsi que pour tous les autres cours d'eau de la MRC de Portneuf, l'élévation des charges imposées diminue progressivement vers le sud, car l'écoulement régional s'effectue dans cette direction.

Figure 4.4 : Limites et discrétisation des aquifères libres de la rivière Jacques-Cartier

La base et le sommet de l'aquifère sont limités respectivement par une limite à flux nul (couche imperméable) et par une limite à flux imposé (recharge). La distribution des limites est généralement la même que pour le bassin de la Jacques-Cartier. Cependant les limites en périphérie sont plus complexes. Les mêmes symboles sont utilisés pour identifier les types de limites que pour le bassin de la rivière Jacques-Cartier. La figure 4.5 illustre les limites de ces aquifères.

Les limites en périphérie comprennent plusieurs types de limites. Directement au nord, les limites sont à flux nul puisque l'écoulement se fait parallèlement à la limite. Pour le côte est, nous retrouvons une alternance de flux nul, de limites à charges imposées représentant des zone d'émergence (triangles) et des limites à charges imposées représentant des cours d'eau (carrés vides). Le type de limite est nettement influencé par la présence de collines ainsi que d'étendues d'argile. Les cours d'eau contournent les obstacles. Ils alternent entre l'extérieur et l'intérieur de la zone modélisée. La partie la plus au sud-est est une limite à charge imposée directement sur un cours d'eau. Ce cours d'eau a servi à diviser les domaines entre les aquifères libres de la Jacques-Cartier et les aquifères libres du nord de la rivière Sainte-Anne. Au sud (à l'exception de la rivière Sainte-Anne) les limites sont imposées pour représenter des zones d'émergences caractérisées par des sources sur le terrain (triangles). Ce phénomène demande une imposition exacte des charges pour ne pas inverser la direction d'écoulement.

Comme nous avons séparé le bassin de la rivière Sainte-Anne en deux sections, il a fallu déterminer un endroit de division qui n'affectera pas l'écoulement. Puisqu'une partie de la rivière s'écoule en direction est-ouest dans cette région de la MRC, nous avons jugé que c'était le meilleur endroit pour séparer les bassins. Donc, tout au long de la rivière (au sud) nous avons imposé des charges (carrés pleins). Pour la limite à l'ouest, nous avons imposé un flux nul (principalement une ligne de partage des eaux, observée par Fagnan (1998)) pour ensuite utiliser au nord-ouest un des bras de la rivière Sainte-Anne comme limite à charge imposée.

À l'intérieur du domaine, nous retrouvons des cours d'eau importants qui régissent l'écoulement. Au sud-est, se retrouve une partie de la rivière Portneuf. Nous avons imposé des charges (carrés vides) à cette rivière encaissée dans les sédiments. Ensuite, un peu plus à l'ouest, se retrouve un cours d'eau moins important mais qui traverse une bonne partie du domaine. Tout comme les autres cours d'eau, des charges imposées ont été fixées. Donc, l'est du territoire est guidé par ces deux cours d'eau. Pour le reste du domaine, nous retrouvons uniquement des petits cours d'eau qui se rattachent à la rivière principale. Il y a deux zones qui représentent des marécages (concentration de charges imposées), où nous avons imposé des charges.

La rivière Sainte-Anne est représentée par des charges imposées (carrés pleins). Contrairement aux charges imposées à la rivière Jacques-Cartier, les charges imposées de la rivière Sainte-Anne ne sont pas situées au centre de la rivière. Les charges sont plutôt imposées de chaque côté de la rivière. Nous avons dû utiliser cette approche puisque la rivière Sainte-Anne est passablement encaissée et ne s'écoule pas en lien hydraulique avec les aquifères de sables et graviers. Les détails de cette approche sont discutés dans la section suivante.

Figure 4.5 : Limites et discrétisation des aquifères libres du nord de la rivière Sainte-Anne

4.2.1.3 Aquifères libres du sud de la rivière Sainte-Anne

Les mêmes limites que pour les aquifères libres du nord de la rivière Sainte-Anne sont imposées au sommet et à la base. La distribution des limites en périphérie est cependant moins complexe. La figure 4.6 illustre l'imposition de chaque limite.

Pour la partie au nord, la limite est la zone de séparation entre les 2 bassins de la rivière Sainte-Anne (charges imposées). Pour ce qui est de la limite est, nous remarquons une alternance de charges imposées pour les cours d'eau (carrés vides) et des charges imposées associées à des zones d'émergences (triangles). Dans cette région, l'écoulement se dirige vers l'extérieur (vers l'est), dans une zone plus argileuse. Dans les meilleures conditions, l'épaisseur de sable à la limite entre l'unité de sable et l'unité d'argile devrait être très faible. Cependant à cause de certains inconvénients (épaisseur de sable interpolée, emplacement de limites), l'épaisseur de sable apparente peut être plus importante. C'est alors que nous devons effectuer plusieurs simulations pour arriver à reproduire les conditions de terrain, spécialement pour cette région, car les limites occupent un grand espace. La partie la plus au sud représente une section type d'une zone d'émergence, à l'aval d'un aquifère. Nous avons imposé des limites (triangles) pour simuler l'eau qui s'écoule vers l'extérieur du domaine. La présence de plusieurs petits cours d'eau à la limite de l'unité de sable et l'unité d'argile (non-présenté) témoigne du phénomène d'émergence.

À l'ouest du domaine, il y a alternance du type de limites. Dans la partie sud, l'aquifère suit parallèlement une rivière localisée dans l'argile, sans jamais être en contact. L'écoulement se dirige vers l'ouest, donc on impose des charges pour identifier une zone d'émergence (triangles). Pour la seule fois dans la zone modélisée, la rivière Sainte-Anne quitte le domaine car elle ne recoupe plus une unité de sable (au centre de la figure 4.6). Cependant l'écoulement se dirige toujours dans sa direction. La partie restante, au nord-ouest, représente un cours d'eau dont nous avons imposé des charges.

Tout comme les autres domaines à l'intérieur de l'aquifère, nous avons imposé des charges aux petits cours d'eau qui se rattachent à la rivière et à ceux qui quittent le domaine (carrés vides). De plus, une zone de marécage est identifiée (également charges imposées à la surface) dans la partie sud du domaine.

Comparativement à la rivière Jacques-Cartier, la rivière Sainte-Anne ne coule pas en continuité hydraulique avec les aquifères de sable. Elle se trouve encaissée de plusieurs mètres sous les sédiments de sable. En conséquence, il est impossible d'imposer les limites au centre de la rivière car le niveau d'eau de la nappe serait trop bas par rapport au niveau réel. De plus, la carte d'épaisseur de sédiments (Fagnan, 1998) a été réalisée à partir de forages (épaisseur de sédiments) et utilisant ensuite une méthode d'interpolation pour obtenir une puissance de sédiment sur tout le territoire. Malheureusement, à certains endroits, plusieurs mètres de sable sont indiqués de façon erronée sous la rivière. Afin de ne pas tenir compte du sable apparent sous la rivière, nous avons imposé une limite à charge imposée aux cellules adjacentes au centre de la rivière. Cette simplification permet de réduire l'impact de l'écoulement dans les sables faussement indiqués au centre de la rivière.

Cette approche ne représente pas exactement les conditions de terrain car les pentes en bordure de la rivière Sainte-Anne sont beaucoup plus abruptes. Les cellules entre les deux charges imposées adjacentes au centre de la rivière ne doivent plus être considérées significatives dans le résultat global de la modélisation. C'est seulement à partir de cette modification que nous avons été capables de représenter des conditions de terrain plus réalistes.

Figure 4.6 : Limites et discrétisation des aquifères libres du sud de la rivière Sainte-Anne

CHAPITRE 5

RÉSULTATS ET DISCUSSION

Dans ce chapitre, les résultats de la modélisation de l'écoulement régional de l'eau souterraine dans les aquifères libres de la MRC de Portneuf sont présentés. Premièrement, nous discuterons des différents paramètres qui ont été calibrés (recharge et conductivité hydraulique). Par la suite, nous présenterons la piézométrie régionale simulée ainsi que la distribution de l'erreur entre les charges calculées et les charges mesurées (piézométrie de référence). La présentation de ces résultats s'effectuera pour chacun des trois secteurs. Ensuite, nous traiterons de la sensibilité des paramètres afin d'identifier leur influence sur la modélisation. Finalement, nous traiterons du bilan volumétrique.

5.1 PARAMÈTRES CALIBRÉS

Étant donné que le modèle conceptuel est une simplification du système aquifère réel dans les sables et graviers de la MRC de Portneuf, il est normal d'avoir une différence entre les paramètres mesurés sur le terrain et ceux simulés. La calibration représente un outil qui permet un ajustement des paramètres hydrogéologiques, des propriétés hydrauliques et des conditions aux limites, afin d'obtenir le plus faible écart entre les valeurs simulées et les valeurs observées (ASTM, 1995c; Anderson et Woessner, 1992; Bear et al., 1992; et Istok, 1989). Deux techniques de calibration peuvent être appliquées.

La première, qui est la plus simple d'utilisation et la plus appliquée, est une technique d'essais et d'erreurs (ASTM, 1995c; Anderson et Woessner, 1992). Cette approche permet l'ajustement manuel des paramètres à calibrer. Différentes structures sont développées afin de rendre moins pénible l'utilisation de cette méthode (Yeh et Mock, 1996; Tsang, 1991). La seconde technique, qui est la plus sophistiquée, permet une calibration automatique des paramètres (ASTM, 1995c; Anderson et Woessner, 1992). Également, divers paramètres d'optimisation peuvent être utilisés afin de calibrer un modèle (Olsthoorn, 1995).

Lors de la calibration des systèmes d'écoulement de l'eau souterraine dans la MRC de Portneuf, nous avons utilisé uniquement une technique d'essais et d'erreurs. Les deux paramètres calibrés sont la conductivité hydraulique horizontale des sables et graviers deltaïques ainsi que la recharge des aquifères. Dans les simulations, nous avons modifié diverses limites afin qu'elles représentent bien les conditions de terrain, mais leur ajustement n'est pas discuté ici.

La recharge et la conductivité hydraulique ont été calibrées car ce sont les deux paramètres qui influencent le plus l'écoulement. Les valeurs initiales de la recharge ont été bien définies au chapitre 3, à l'aide du bilan hydrogéologique et des hydrogrammes de puits. Une seule valeur de recharge a été appliquée pour chaque domaine modélisé. Ceci peut limiter la qualité de l'ajustement lors de la calibration car la recharge varie normalement en fonction des caractéristiques du territoire (topographie du sol, type de sol, végétation, etc.). Une valeur de recharge spécifique pour chaque cellule aurait permis une meilleure calibration mais la représentativitéde cette valeur au niveau régional aurait pu être mise en doute.

Pour ce qui est de la conductivité hydraulique, plus de 200 échantillons granulométriques, localisés dans la MRC, nous permettent de connaître sa distribution régionale. Cependant, ce sont uniquement les échantillons regroupés dans les sables et graviers deltaïques (Md) qui servent de base à la calibration. Une valeur de conductivité hydraulique uniforme a été utilisée pour chaque zone modélisée. L'utilisation de plusieurs valeurs de conductivité hydraulique dans chaque bassin n'aurait pas été justifiable puisque seuls les sables et graviers deltaïques ont été modélisés. Même si la conductivité hydraulique de ces matériaux est surement variable, l'usage d'une valeur unique par domaine nous donne des valeurs calibrées très représentative de l'ensemble de l'aquifère.

Le tableau 5.1 présente les valeurs de recharge et de conductivité hydraulique initiales et calibrées pour chaque bassin. Les valeurs initiales de la recharge proviennent du calcul du bilan hydrogéologique et les valeurs initiales de conductivité hydraulique indiquent la moyenne géométrique des 99 échantillons dans les sables et graviers deltaïques. La conductivité hydraulique horizontale est considérée dix fois plus grande que la conductivité hydraulique verticale.

Valeurs initiales	Valeurs calibrées				
Conductivité hydraulique horizontale (m/s)					
3,00X10 ⁻⁴ 1,50X10 ⁻⁴					
3,00X10 ⁻⁴	1,25X10 ⁻⁴				
3,00X10 ⁻⁴	1,35X10 ⁻⁴				
Recharge (mm/an)					
242	250				
284	250				
199	250				
	Valeurs initiales tivité hydraulique horizo 3,00X10 ⁻⁴ 3,00X10 ⁻⁴ 3,00X10 ⁻⁴ Recharge (mm/an) 242 284 199				

Tableau 5.1 : Paramètres calibrés des modèles numériques

Les valeurs de conductivité hydraulique calibrées sont toutes plus faibles que la moyenne géométrique des conductivités hydrauliques dans les sables et graviers. Cependant, elles se situent toutes dans la plage des données de conductivité hydraulique compilées à la figure 3.16. Les valeurs de conductivité hydraulique calibrées devraient être à l'intérieur d'un ordre de grandeur de la valeur moyenne de l'unité considérée (ASTM, 1995c). Cette précision est satisfaisante puisque les valeurs de conductivité hydraulique, calculées à partir des courbes granulométriques, présentent seulement une approximation de la

conductivité hydraulique réelle. Les valeurs de conductivité hydraulique pour les aquifères libres de la rivière Sainte-Anne (nord et sud) sont inférieures à la valeur de la conductivité hydraulique des aquifères libres de la rivière Jacques-Cartier.

La recharge estimée à partir du bilan hydrologique implique une diminution progressive en direction du sud. Étant donné qu'il y a plus de précipitations (pluie et neige) au nord de la région et que la recharge exprimée à partir du bilan hydrologique est majoritairement influencé par ces précipitations, il est normal de constater que la recharge est maximale dans le nord. Cependant, la recharge calculée à partir des hydrogrammes de puits ne donne pas la même distribution de la recharge. C'est à partir des ces différences que nous avons conclu, dans la mesure où cela était possible, d'utiliser une même valeur de recharge pour les trois secteurs modélisés. Le choix de cette approche est justifié par deux éléments:

1- Le fait d'avoir utilisé le même coefficient de ruissellement pour les trois secteurs peut influencer le taux de recharge. Puisque la topographie dans la partie nord de la rivière Sainte-Anne est plus sinueuse, le coefficient de ruissellement pourrait être plus grand ce qui diminuerait la recharge. À l'opposé, dans le sud de la rivière Sainte-Anne, la topographie est plus plane, ce qui pourrait induire une augmentation de la recharge si on utilisait un coefficient de ruissellement plus faible.

2- Il est difficile de prétendre que dans la partie nord de la rivière Sainte-Anne la recharge doit être plus grande car l'hydrogramme de puits situé dans cette partie indique une recharge plus faible que les deux autres hydrogrammes situés plus au sud.

Les valeurs calibrées de la recharge se retrouvent toutes près des valeurs de recharges moyennes calculées à partir du bilan hydrologique et des hydrogrammes de puits.

Évidemment, le choix d'utiliser une seule valeur de conductivité hydraulique et une seule valeur de recharge pour chaque aquifère libre limite la précision locale des résultats de la modélisation. La calibration du modèle demeure donc très générale. Tel que présenté précédemment, la calibration pourrait être beaucoup plus raffinée si on assignait plusieurs valeurs de conductivité hydraulique dans certaines régions de la zone modélisée et différentes valeurs de recharge pour chaque bassin. Cependant, cette approche serait difficilement justifiable pour la conductivité hydraulique et dépasserait le cadre des objectifs de cette modélisation régionale.

De façon générale, le modèle régional d'écoulement des eaux souterraines dans les aquifères libres de la MRC de Portneuf est considéré comme satisfaisant. Toutefois, il est évident que dans certains secteurs (ex. nord de la rivière Sainte-Anne), l'erreur est grande et que les paramètres utilisés ne sont pas nécessairement représentatifs. Par contre, en tenant compte des informations disponibles et de la résolution numérique employée (maillage), il serait difficile d'arriver à une meilleure calibration sans renoncer au concept de régionalisation des propriétés hydrogéologiques calibrées (conductivité hydraulique et recharge).

5.2 PIÉZOMÉTRIE SIMULÉE

Afin de vérifier la validité de notre modèle, nous devons utiliser des paramètres de référence (ASTM, 1995c; Anderson et Woessner, 1992). La carte piézométrique des aquifères de surface de la MRC de Portneuf, réalisée par Fagnan (1998), sert de référence. Puisque cette carte n'est pas compatible avec les outils informatiques utilisés pour la modélisation, nous avons reproduit la carte. Les détails seront présentés à la section suivante. Les résultats obtenus présentent la meilleure calibration entre les charges simulées et les charges de référence. La calibration s'est effectuée à partir de chaque nœud du maillage. Cette approche évite de biaiser la calibration à cause de la distribution inégale des points de mesure de la charge dans le domaine modélisé.

Malheureusement, il a été impossible de produire les simulations de l'écoulement de l'eau souterraine à saturation variable pour les trois modèles régionaux. Des problèmes de convergence numérique ont empêché d'obtenir des résultats satisfaisants. Par

conséquent, un modèle complètement saturé pour les trois bassins a été modélisé. Cette simplification est possible si nous utilisons comme sommet de l'aquifère le niveau de la nappe interpolé à partir de la piézométrie de référence (Fagnan, 1998). L'épaisseur de sable est maintenant plus faible et représente uniquement la zone saturée. En utilisant ce modèle, nous représentons adéquatement les conditions en zone saturée des vitesses d'écoulement. Également, les directions et le comportement de l'écoulement sont biens représentés.

Pour chaque bassin, nous présentons la piézométrie qui a été simulée, les directions et les vitesses d'écoulement et les lignes de partages des eaux souterraines. La piézométrie est grandement influencée par les deux grandes rivières. De plus, les vitesses d'écoulement en bordure des rivières sont plus grandes. Puisqu'en bordure des rivières le maillage est raffiné et que les vitesses à cet endroit sont élevées, la vitesse moyenne calculée peut être surestimée. Cependant, aucune perturbation n'est apparente dans les histogrammes. La direction générale d'écoulement de l'eau souterraine se dirige vers le sud, en direction du fleuve Saint-Laurent.

5.2.1 <u>Aquifères libres de la rivière Jacques-Cartier</u>

La figure 5.1 présente la carte piézométrique simulée des aquifères libres de la rivière Jacques-Cartier. Cette région a été la moins difficile à modéliser car les limites en périphérie sont bien définies, la rivière est majoritairement en contact hydraulique avec les aquifères et la topographie contient peu d'ondulations.

Pour arriver à reproduire adéquatement la distribution des charges, nous avons effectué plusieurs dizaines de simulations. Ces simulations ont permis de choisir correctement les limites (spécialement dans le sud-ouest) et de connaître l'influence des paramètres de recharge et de conductivité hydraulique (section 5.4). Toutefois, si on avait à utiliser la distribution des charges actuelle pour une modélisation plus locale, il faudrait recalibrer le domaine afin de porter une attention particulière au secteur modélisé (Lepage, 1996).

Le domaine se divise en 2 parties différentes, de chaque coté de la rivière Jacques-Cartier. Les charges hydrauliques se situent à une élévation maximale de 150 mètres audessus du niveau moyen de la mer pour se retrouver à un minimum de 80 mètres. À l'ouest de la rivière, la ligne de partage des eaux est très près du cours d'eau (au nord) pour ensuite revenir au centre du domaine (au sud). L'eau qui s'écoule à l'extérieur de la zone modélisée au sud-ouest représente des zones d'émergence (sources) au contact du sable sus-jacent à l'argile. Un peu plus au centre, au niveau de l'isopièze à 140 mètres, l'écoulement est fortement influencé par la topographie. À cet endroit, on retrouve un bris de pente important et plusieurs petits cours d'eau s'y rattachent. À l'est de la rivière, aucun élément perturbateur n'influence l'écoulement et la ligne de partage des eaux se retrouvent au centre de cette partie. Un peu plus au nord, une partie de l'eau s'écoule vers l'extérieur, ce qui représente encore une zone d'émergence entre l'argile et le sable.

Les vitesses d'écoulement varient grandement à l'intérieur de la zone modélisée. La figure 5.2 illustre l'histogramme du logarithme des vitesses pour les aquifères libres de la rivière Jacques-Cartier.

Figure 5.1 : Piézométrie et vitesses d'écoulement simulées des aquifères libres de la rivière Jacques-Cartier
Les vitesses sont obtenues à partir de chaque nœud du maillage. La moyenne géométrique est de 156 m/an avec des valeurs minimales autour de 100 m/an et des maximums de 1000 m/an. Les vitesses minimales se retrouvent principalement au centre des bassins, le long des lignes de partages des eaux, alors que les vitesses maximales se retrouvent en grande majorité en bordure de la rivière Jacques-Cartier.

Le tableau 5.2 présente une série de paramètres numériques calculés par FRAC3DVS suite à la convergence du modèle. Le bilan de masse des flux est de l'ordre de $-2,60 \times 10^{-9}$ m/s et le résiduel de l'ordre de $3,96 \times 10^{-10}$ m/s. Trente-six (36) itérations ont été nécessaires pour obtenir la convergence. La charge initiale uniforme de départ était de 100 mètres. Seulement quelques dizaines de secondes ont été nécessaires pour simuler l'écoulement.

Tableau 5.2 : Paramètres numériques de FRAC3DVS pour la simulationdes aquifères libres de la rivière Jacques-Cartier

Nombre d'itérations	36
Temps CPU	dizaines de secondes
Charge initiale	100 m
Bilan (intrants-extrants)	-2,60x10 ⁻⁹ m/s

Figure 5.2 : Histogramme du logarithme des vitesses d'écoulement des aquifères libres de la rivière Jacques-Cartier

5.2.2 Aquifères libres du nord de la rivière Sainte-Anne

La figure 5.3 présente la carte piézométrique simulée des aquifères libres du nord de la rivière Sainte-Anne. Cette région a présenté certaines difficultés lors de la modélisation puisque la rivière est encaissée au roc, sans lien hydraulique avec les aquifères de sables et que sa topographie est passablement sinueuse. Ces deux éléments influencent la piézométrie et jouent un rôle important dans la précision obtenue.

Puisque la zone modélisée contient peu de charges imposées en périphérie, nous avons simulé plusieurs dizaines de situations pour déterminer les charges imposées représentant des zones d'émergences (sud et est du domaine). Le choix des limites en bordure de la rivière Sainte-Anne (de chaque côté) représente le plus fidèlement les conditions de terrain. De plus, les deux hauts topographiques présents dans cette région n'ont pas été considérés.

L'élévation maximale des charges par rapport au niveau marin moyen est de 190 mètres dans le nord-ouest pour atteindre un minimum de 110 dans le sud-est de la région. Dans la partie nord, entre les 2 bras de la rivière Sainte-Anne, l'écoulement de l'eau souterraine se divise en deux directions différentes afin d'alimenter chaque secteur de la rivière. À l'ouest de la rivière, la limite du domaine est principalement une ligne de partage des eaux, indiquant une zone de recharge pour l'aquifère. La partie à l'est peut se diviser en deux secteurs; le centre et l'extrême-est. Au centre, il y a un plateau illustrant que l'eau circule lentement. Dans le sud, l'eau s'écoule vers l'intérieur du domaine. Ce phénomène est causé par la présence d'un haut topographique important au sud juste à l'extérieur de la zone modélisée. L'eau s'écoulement est grandement influencé par une partie de la rivière. Dans l'extrême est, l'écoulement est grandement influencé par une partie de la rivière Portneuf.

Tout comme les aquifères de la rivière Jacques-Cartier, les vitesses d'écoulement de l'eau souterraine dans les aquifères du nord de la rivière Sainte-Anne varient grandement. La figure 5.4 illustre l'histogramme du logarithme des vitesses.

Figure 5.3 : Piézométrie et vitesses d'écoulement simulées des aquifères libres du nord de la rivière Sainte-Anne

La distribution logarithmique des vitesses suit approximativement une courbe normale. La moyenne géométrique est de 125 m/an avec des valeurs minimales de 100 m/an et des maximums de 1000 m/an. Les vitesses minimales se retrouvent près des lignes de partage des eaux et les vitesses maximales sont situées en bordure de la rivière Sainte-Anne et des autres cours d'eau. Deux éléments influencent la valeur moyenne de la vitesse pour ce secteur. Étant donné que la rivière n'est pas en lien hydraulique avec les aquifères (modifications de limites à la rivière), les vitesses sont plus faibles. De plus, le plateau piézométrique au centre du domaine aide à diminuer la moyenne des vitesses car l'écoulement est lent.

Le tableau 5.3 présente une série de paramètres numériques calculés par FRAC3DVS suite à la convergence du modèle. Le bilan de masse des flux est de l'ordre de $-6,40 \times 10^{-9}$ m/s et le résiduel de l'ordre de $5,90 \times 10^{-10}$ m/s. Vingt-neuf (29) itérations ont été nécessaires pour obtenir la convergence. La charge initiale uniforme de départ était de 130 mètres. Seulement quelques dizaines de secondes ont été nécessaires pour simuler l'écoulement.

Tableau 5.3 : Paramètres numériques de FRAC3DVS pour la simulation des aquifères libres du nord de la rivière Sainte-Anne

Nombre d'itérations	29
Temps CPU	dizaines de secondes
Charge initiale	130 m
Bilan (intrants-extrants)	-6,40x10 ⁻⁹ m/s

Figure 5.4 : Histogramme du logarithme des vitesses d'écoulement des aquifères libres du nord de la rivière Sainte-Anne

5.2.3 Aquifères libres du sud de la rivière Sainte-Anne

La figure 5.5 présente la carte piézométrique simulée des aquifères libres du sud de la rivière Sainte-Anne. C'est la région qui a présenté le plus de difficulté à modéliser puisque la rivière est très encaissée (sans lien hydraulique avec les aquifères de sable) et a une faible épaisseur de sable au sud de la région.

Les limites en périphérie sont assignées en majorité comme des charges imposées représentant des zones d'émergences (est et sud-ouest). Plusieurs dizaines de simulations nous ont été nécessaires afin d'imposer les conditions permettant de simuler adéquatement l'écoulement le long des limites. Même si les modifications apportées aux limites en bordure de la rivière améliorent le patron d'écoulement, la piézométrie entourant la rivière demeure difficile à simuler.

Les charges hydrauliques varient de 150 mètres au-dessus du niveau moyen marin dans le nord de la région pour diminuer à 40 mètres dans le sud de la zone modélisée. L'écoulement est influencé par la rivière Sainte-Anne. Étant donné que le bassin est étroit, on retrouve principalement une grande ligne de partage des eaux à l'est de la rivière. L'eau s'écoule en direction de la rivière ou vers l'extérieur en direction de cours d'eau s'écoulant près de la zone modélisée. Au sud-ouest de la rivière Sainte-Anne, on retrouve également une ligne de partage des eaux divisant l'écoulement vers la rivière Sainte-Anne et vers une rivière située à l'extérieur du domaine. À l'extrémité sud, nous retrouvons une zone d'émergence entre une unité perméable (sable) au-dessus d'une unité imperméable (argile). À cet endroit, plusieurs résurgences sont identifiées sur le terrain.

Les vitesses d'écoulement varient grandement. La figure 5.6 illustre l'histogramme du logarithme des vitesses pour les aquifères libres du sud de la rivière Sainte-Anne.

Figure 5.5 : Piézométrie et vitesses d'écoulement simulées des aquifères libres du sud de la rivière Sainte-Anne

Figure 5.6 : Histogramme du logarithme des vitesses d'écoulement des aquifères libres du sud de la rivière Sainte-Anne

La distribution logarithmique des vitesses ressemble à une courbe normale. La moyenne géométrique est de 149 m/an avec des valeurs minimales de 100 m/an et des valeurs maximales de 1200 m/an. Les vitesses minimales se retrouvent au centre du domaine, près de la grande ligne de partage des eaux et les maximums près de la rivière Sainte-Anne.

Le tableau 5.4 présente une série de paramètres numériques calculés par FRAC3DVS suite à la convergence du modèle. Le bilan de masse des flux est de l'ordre de $-4,95 \times 10^{-9}$ m/s et le résiduel de l'ordre de $5,48 \times 10^{-10}$ m/s.Trente-quatre (34) itérations ont été nécessaires pour obtenir la convergence. La charge initiale uniforme de départ était de 80 mètres. Seulement quelques dizaines de secondes ont été nécessaires pour simuler l'écoulement

Tableau 5.4 : Paramètres numériques de FRAC3DVS pour la simulationdes aquifères libres du sud de la rivière Sainte-Anne

Nombre d'itérations	34 dizaines de secondes
Charge initiale	80 m
Bilan (intrants-extrants)	-4,95x10 ⁻⁹ m/s

5.3 DISTRIBUTION DE L'ERREUR

Comme mentionné précédemment, c'est la piézométrie décrite par Fagnan (1998) qui a été utilisée pour caler les 3 modèles. Afin de reproduire les résultats de Fagnan (1998), tous les points de référence pour reproduire adéquatement la piézométrie de la MRC de Portneuf ont été compilés. La figure 5.7 illustre l'ensemble des points de contrôle utilisés pour obtenir la piézométrie de base (représentation numérique) de la MRC de Portneuf.

À partir de la représentation numérique de la piézométrie des sables et graviers de la MRC de Portneuf, une valeur numérique de la charge à chaque nœud du modèle a été obtenue. La calibration du modèle est établie à partir des différences à chaque nœud.

Figure 5.7 : Points de contrôle pour la représentation numérique de la piézométrie de référence (Fagnan, 1998)

Avant de procéder à la calibration d'un modèle, il est essentiel de se fixer un objectif de précision (ASTM, 1995c; Anderson et Woessner, 1992). L'objectif fixé était d'obtenir une marge d'erreur (des charges hydrauliques) variant de -5 à 5 mètres à partir des charges observées. Pour chaque bassin, la différence entre les charges maximales et les charges minimales est d'environ 100 mètres, donc la marge d'erreur est de 5 %. Cet objectif a été fixé en analysant plusieurs sources d'erreur possibles associées à la modélisation:

1- La piézométrie numérique de référence peut présenter des erreurs (points de contrôle provenant de plusieurs sources, interpolation dans des secteurs à faible contrôle, etc.)

2- En utilisant uniquement une valeur de recharge et de conductivité hydraulique par bassin, il est difficile de corriger les erreurs plus locales.

Afin de représenter le plus adéquatement les différences avec la piézométrie de référence, une approche qualitative et quantitative a été appliquée (Anderson et Woessner, 1992). L'approche qualitative permet de visualiser plus facilement les zones d'erreur alors que l'approche quantitative permet de connaître davantage la marge d'erreur.

5.3.1 Aquifères libres de la rivière Jacques-Cartier

La figure 5.8 illustre la comparaison des piézométries simulées et observées (Fagnan, 1998). Nous remarquons que les courbes se superposent bien à l'exception des parties sud-ouest et du centre-est. Au sud-ouest, les charges simulées sont supérieures aux charges observées et au centre-est les charges simulées sont inférieures aux charges observées. Les zones de recharge (hauts topographiques) correspondent exactement à celles observées par Fagnan (1998). Cependant, il faut toujours savoir que la piézométrie de base peut ne pas être exacte partout dans le domaine modélisé.

Figure 5.8 : Comparaison entre la piézométrie simulée et de référence (Fagnan, 1998) des aquifères libres de la rivière Jacques-Cartier

La figure 5.9 présente la distribution de l'erreur absolue. La différence représente l'écart entre les valeurs de charges simulées et les valeurs de charges observées. L'erreur maximale est de 20 mètres et elle est observée dans le nord de la région. Le second endroit avec une erreur élevée est dans la partie sud-ouest, cette zone représente la zone de résurgence. L'erreur moyenne absolue est de 2,71 mètres avec un écart type de 3,6 mètres. La figure 5.10 illustre la distribution du signe de l'erreur. Une erreur positive signifie que les valeurs simulées sont supérieures aux valeurs observées. A l'ouest de la rivière Jacques-Cartier, les charges simulées sont surévaluées. À l'opposé les charges simulées à l'est de la rivière sont généralement sous-évaluées.

À la figure 5.11a, nous présentons le graphique illustrant les charges de référence (Fagnan, 1998) en abscisse et les charges simulées en ordonnée, pour les nœuds de la première couche du domaine. Nous pouvons utiliser seulement cette couche pour la comparaison car les charges varient peu verticalement (conditions saturées). Nous avons calculé une droite de régression passant par tous les points. Le coefficient de corrélation de 96 % est excellent. Nous avons également inclus la droite d'ajustement parfait (à 45°), ce qui représente une calibration parfaite entre les charges simulées et observées. Une grande concentration de points se superposent à cette ligne. Plus de 84% des points se retrouvent dans l'intervalle à moins de 5 mètres de la droite d'ajustement parfait. La figure 5.11b montre un graphique des charges de références (en abscisse) et des charges simulées (en ordonnée) utilisant seulement quelques puits. Puisque les puits ne sont pas distribués uniformément dans le domaine, la calibration aurait été biaisée par rapport à l'ensemble du territoire. C'est pour cette raison que nous avons utilisé tous les nœuds de la première couche pour calibrer le modèle numérique. La correspondance entre les niveaux piézométriques mesurés dans le puits et simulés est quand même très acceptable.

Figure 5.9 : Distribution de l'erreur absolue de la piézométrie des aquifères libres de la rivière Jacques-Cartier

Figure 5.10 :Distribution du signe de l'erreur de la piézométrie simulée des aquifères libres de la rivière Jacques-Cartier (une erreur positive indique que les valeurs simulées sont supérieures aux valeurs observées)

Figure 5.11a : Graphique des charges hydrauliques observées et simulées des aquifères libres de la rivière Jacques-Cartier (incluant tous les nœuds du domaine)

Figure 5.11b : Graphique des charges hydrauliques observées et simulées des aquifères libres de la rivière Jacques-Cartier (pour les puits les plus représentatifs du domaine)

5.3.2 Aquifères libres du nord de la rivière Sainte-Anne

À la figure 5.12 nous présentons la comparaison des piézométries simulée et observée (Fagnan, 1998). De façon générale, les courbes se superposent bien à l'exception de la partie nord de la zone modélisée. Cette partie se situe entre les 2 bras de la rivière Sainte-Anne et la topographie est très sinueuse, rendant la calibration difficile. Pour ce qui est des hauts piézométriques, ils se situent aux mêmes endroits que ceux observés par Fagnan (1998).

Nous présentons à la figure 5.13 la distribution de l'erreur absolue. La différence représente l'écart entre les valeurs de charges simulées et les valeurs de charges observées (Fagnan, 1998). L'erreur maximale est de 22,5 mètres et elle est observée dans le nord de la région. C'est également dans ces régions qu'il y a moins de données pour la construction de la piézométrie de référence (Fagnan, 1998). Il est normal de voir différentes zones avec des erreurs, car en utilisant une seule valeur de conductivité hydraulique la calibration est moins précise et les variations plus locales ne peuvent être corrigées. L'erreur moyenne absolue est de 2,39 mètres avec un écart type de 4,10 mètres. La figure 5.14 illustre la distribution du signe de l'erreur. L'erreur est positive près des cours d'eau et négative dans le milieu du domaine.

Figure 5.12 : Comparaison entre la piézométrie simulée et de référence (Fagnan, 1998) des aquifères libres au nord de la rivière Sainte-Anne

Figure 5.13 : Distribution de l'erreur absolue de la piézométrie simulée des aquifères libres du nord de la rivière Sainte-Anne

Figure 5.14 : Distribution du signe de l'erreur de la piézométrie simulées des aquifères libres du nord de la rivière Sainte-Anne (une erreu posotive indique que les valeurs simulées sont supérieures aux valeurs observées)

La figure 5.15a présente le graphique des charges observées en abscisse par rapport aux charges simulées en ordonnée pour chaque nœud du domaine. La droite de régression passe par une bonne majorité de points. Le coefficient de corrélation est de 94 %. La droite qui est tracé à 45° représente la calibration parfaite entre les valeurs simulées et les valeurs de référence. Une grande concentration de points se retrouvent près de cette ligne. Plus de 85 % des points se retrouvent dans un intervalle de 5 mètres de la ligne d'ajustement parfait. Ce sont uniquement les points de la première couche du domaine qui sont utilisés dans ce graphique. La figure 5.15b montre les charges de références (en abscisse) et les charges simulées (en ordonnée) en utilisant les données de seulement quelques puits. Puisque les puits ne sont pas distribués uniformément dans le domaine, la calibration aurait été biaisée. C'est pour cette raison que nous avons utilisé tous les nœuds de la première couche pour calibrer le modèle numérique. La correspondance entre les niveaux piézométriques mesurés dans les puits et simulés est encore une fois très acceptable.

Figure 5.15a : Graphique des charges hydrauliques observées et simulées des aquifères libres du nord de la rivière Sainte-Anne (incluant tous les nœuds du domaine modélisé)

Figure 5.15b : Graphique des charges hydrauliques observées et simulées des aquifères libres du nord de la rivière Sainte-Anne (pour les puits les plus représentatifs du domaine)

5.3.3 Aquifères libres du sud de la rivière Sainte-Anne

La figure 5.16 présente la comparaison des piézométries simulée et observée (Fagnan, 1998). Nous remarquons que les courbes se superposent généralement bien à l'exception de la partie adjacente à la rivière. Il a été difficile de représenter la piézométrie dans cette région car la rivière est très encaissée dans le roc. Une différence existe entre la localisation des hauts piézométriques entre les 2 cartes piézométriques. La ligne de partage des eaux de Fagnan (1998) (du côté est de la rivière) est beaucoup plus rapprochée de la rivière que la ligne de partage des eaux obtenue à partir des simulations.

La figure 5.17 présente la distribution de l'erreur absolue. La différence représente l'écart entre les valeurs de charges simulées et les valeurs de charges observées. L'erreur maximale est de 20 mètres. Nous retrouvons cette erreur dans le centre du domaine. L'erreur moyenne absolue est de 2,92 mètres avec un écart-type de 4,67 mètres. La figure 5.18 illustre la distribution du signe de l'erreur. Pour la région au centre, les charges simulées sont inférieures aux charges observées (erreur négative).

Figure 5.16 : Comparaison entre la piézométrie simulée et de référence (Fagnan, 1998) des aquifères libres du sud de la rivière Sainte-Anne

Figure 5.17 : Distribution de l'erreur absolue de la piézométrie simulée des aquifères libres du sud de la rivière Sainte-Anne

Figure 5.18 : Distribution du signe de l'erreur de la piézométrie simulée des aquifères libres du sud de la rivière Sainte- Anne (une erreur positive indique que les valeurs simulées sont supérieures aux valeurs observées)

À la figure 5.19a nous présentons le graphique illustrant les charges de référence (Fagnan, 1998) en abscisse et les charges simulées en ordonnée pour les noeuds de la première couche du domaine. Nous avons calculé une droite de régression pour tous les points. Le coefficient de corrélation est de 97 %. Nous avons également présenté la droite illustrant une calibration parfaite (ligne à 45°). Une bonne concentration de points suivent cette droite d'ajustement parfait. Plus de 80 % des points se situent dans l'intervalle, à moins de 5 mètres de la droite d'ajustement parfait. La figure 5.19b illustre les charges de références (en abscisse) et les charges simulées (en ordonnée) en utilisant seulement quelques puits. Puisque les puits ne sont pas distribués uniformément dans le domaine, la calibration aurait été biaisée. C'est pour cette raison que nous avons utilisé tous les nœuds de la première couche pour calibrer le modèle numérique. L'ajustement des valeurs simulées et observées dans les puits est moins satisfaisant pour ce secteur que pour les autres.

Figure 5.19b : Graphique des charges hydrauliques observées et simulées des aquifères libres du sud de la rivière Sainte-Anne (pour les puits les plus représentatifs du domaine)

5.4 ÉTUDE DE SENSIBILITÉ DES PARAMÈTRES CALIBRÉS

Les valeurs obtenues de conductivité hydraulique et de recharge lors de la calibration du modèle représentent le meilleur ajustement manuel du modèle avec la piézométrie de référence (Fagnan, 1998). Cependant, les valeurs déterminées ne représentent pas une solution unique. Pour cette raison, il est important de connaître l'influence (sensibilité) de chaque paramètre sur la piézométrie simulée finale. Cette influence est déterminée à partir d'une analyse de sensibilité, analyse qui quantifie la marge d'erreur du modèle calibré (Anderson et Woesser, 1992).

Avec l'analyse de sensibilité, nous allons varier les valeurs calibrées de conductivité hydraulique et de recharge. La variation de chaque paramètre est déterminée à partir des valeurs plausibles pour chaque paramètre. Pour la conductivité hydraulique, les valeurs maximales utilisées pour l'étude de sensibilité représentent un ordre de grandeur à partir de la valeur calibrée tandis que pour la recharge les valeurs maximales utilisées représentent un écart de 100 mm avec la valeur calibrée. Pour bien mesurer l'influence des deux paramètres, nous varions uniquement un paramètre à la fois afin de déterminer son impact sur les valeurs de charges hydrauliques. Les résultats sont présentés en tableaux et en graphiques. Les tableaux expriment l'ensemble des différences à partir de l'erreur moyenne, l'erreur moyenne absolue et l'écart-type des charges de références et des charges obtenues à partir de l'étude de sensibilité. Les graphiques expriment visuellement les différences à partir de la valeur calibrée. Nous avons choisi d'utiliser l'erreur moyenne absolue pour représenter les différences. Une étude de sensibilité est effectuée pour les trois bassins.

5.4.1 Aquifères libres de la rivière Jacques-Cartier

La valeur de la conductivité hydraulique calibrée est de $1,50 \times 10^{-4}$ m/s et la valeur de recharge est de 0,25 m/an. Étant donné la marge d'erreur obtenue à partir des analyses granulométriques pour le calcul de la moyenne de la conductivité hydraulique (chevauchement de trois ordres de grandeur), nous avons décidé de varier la conductivité

hydraulique d'un ordre de grandeur (inférieure et supérieure) à partir de la valeur calibrée. Puisque la valeur calibrée est de $1,50 \times 10^{-4}$ m/s, la valeur minimale de la conductivité hydraulique de l'analyse de sensibilité est de $1,50 \times 10^{-5}$ m/s et la valeur maximale est de $1,50 \times 10^{-3}$ m/s. Pour bien représenter l'évolution des différences, nous avons également utilisé des valeurs intermédiaires (2) entre les deux extrêmes.

Étant donné les variations observées à partir de l'hydrogramme de puits de Pont-Rouge (années 1997 et 1998) et des valeurs possibles calculées à partir du bilan hydrologique, nous avons décidé de faire varier la valeur calibrée de la recharge de plus ou moins 100 mm soit entre 150 et 350 mm.

Le tableau 5.5 représente les écarts obtenus à partir de la variation de la conductivité hydraulique et de la recharge. Lorsque les valeurs de conductivité hydraulique varient, la recharge demeure constante à 0,25 m/an et lorsque la recharge varie, la conductivité hydraulique demeure constante à $1,50 \times 10^{-4}$ m/s. Les figures 5.20 et 5.21 illustrent graphiquement la variation de l'erreur moyenne absolue suite aux changements des valeurs de recharge et de conductivité hydraulique.

Trois types de calculs d'erreur sont présentés. Premièrement, l'erreur moyenne (équation 5.1) représente uniquement la somme de la différence d'erreur entre les valeurs de référence et les valeurs simulées. L'erreur moyenne absolue (équation 5.2) représente la somme de la différence absolue entre les valeurs de références et les valeurs simulées. L'écart-type (équation 5.3) représente la moyenne de la différence au carré entre les valeurs de référence et les valeurs simulées. Les valeurs de référence utilisées sont les valeurs de charges hydrauliques interpolées sur la carte piézométrique de Fagnan (1998).

$$E.M. = \frac{1}{n} \sum_{i=1}^{n} \left(ch \arg es_{sim} - ch \arg es_{obs} \right)$$
5.1

$$E.M.A. = \frac{1}{n} \sum_{i=1}^{n} \left| \left(ch \arg es_{sim} - ch \arg es_{obs} \right) \right|$$
5.2

$$\dot{E}.T. = \left[\frac{1}{n} \sum_{i=n}^{n} \left(ch \arg es_{sim} - ch \arg es_{obs}\right)^{2}\right]^{0.5}$$
5.3

Tableau 5.5 : Sensibilité des paramètres de la conductivité hydraulique et de la recharge pour les aquifères libres de la rivière Jacques-Cartier

Conductivité hydraulique						
K	E.M.	E.M.A.	É.T.	Erreur ¹		
(m/s)	(m)	(m)	(m)	(%)		
1.50×10^{-3}	-4,88	5,02	6,94	85,43		
$6,00 \times 10^{-4}$	-4,15	4,39	6,20	61,85		
$3,00 \times 10^{-4}$	-2,92	3,46	4,93	27,50		
1,50X10 ⁻⁴	-0,48	2,71	3,60	0,00		
9,00X10 ⁻⁵	2,77	4,42	5,93	62,92		
$7,50 \times 10^{-5}$	4,40	5,91	7,85	117,91		
$1,50X10^{-5}$	43,49	44,32	61,65	1535,26		
Recharge						
R	E.M.	E.M.A.	É.T.	Erreur ¹		
(m/an)	(m)	(m)	(m)	(%)		
0,15	-2,44	3,17	4,49	17,12		
0,20	-1,46	2,81	3,87	3,54		
0,25	-0,48	2,71	3,60	0,00		
0,30	0,49	2,88	3,94	6,12		
0,35	1,47	3,37	4,64	24,30		

(E.M. : Erreur moyenne; E.M.A. ; Erreur moyenne absolue; É.T. :Écart-type)

¹ % d'erreur = (((E.M.A. référence - E.M.A. simulée)/ E.M.A. référence) x 100)

Figure 5.20 : Graphique de l'erreur absolue moyenne en fonction de la conductivité hydraulique pour les aquifères libres de la rivière Jacques-Cartier

Figure 5.21 : Graphique de l'erreur absolue moyenne en fonction de la recharge pour les aquifères libres de la rivière Jacques-Cartier

162
Le premier élément à remarquer aux figures 5.20 et 5.21 est que les simulations sont beaucoup plus sensibles aux variations de la conductivité hydraulique imposées qu'aux changements de la recharge. En doublant la valeur de conductivité hydraulique, l'erreur est de 27 %. De plus, en diminuant de moitié, l'erreur est supérieure à 100 %. Donc, les changements de valeur de la conductivité hydraulique ont un grand impact sur l'erreur moyenne absolue. La sensibilité des valeurs de conductivité hydraulique est plus importante lorsqu'on diminue les valeurs.

Même si la valeur de recharge affecte moins l'erreur moyenne absolue, on retrouve une marge d'erreur importante. Pour les valeurs extrêmes de recharge de 0,15 et de 0,35 m/an, l'erreur moyenne absolue varie d'environ 20 %. Pour une variation de \pm 50 mm/an, l'erreur est faible, indiquant que la recharge affecte moins les valeurs de charges hydrauliques simulées. La variation de 50 mm est celle observée entre les valeurs de recharge pour les années 1997 et 1998 dans les hydrogrammes de puits.

5.4.2 Aquifères libres au nord de la rivière Sainte-Anne

La valeur de la conductivité hydraulique calibrée est de $1,25\times10^{-4}$ m/s et la valeur de recharge est de 0,25 m/an. Tout comme le bassin de la rivière Jacques-Cartier, la marge d'erreur obtenue à partir des courbes granulométriques lors du calcul de la moyenne de la conductivité hydraulique (chevauchement de trois ordres de grandeur), nous permet de varier la conductivité hydraulique d'un ordre de grandeur (inférieure et supérieure) à partir de la valeur calibrée. Puisque la valeur calibrée est de $1,25\times10^{-4}$ m/s, la valeur minimale de conductivité hydraulique de l'analyse de sensibilité est de $1,25\times10^{-5}$ m/s et la valeur maximale de $1,25\times10^{-3}$ m/s. Pour bien représenter les différences, nous avons également utilisé des valeurs intermédiaires entre les deux extrêmes. Suite aux variations observées à partir de l'hydrogramme de puits localisé à Saint-Raymond (années 1997 et 1998) et des valeurs possibles calculées à partir du bilan hydrologique, nous avons décidé de varier la valeur de la recharge calibrée de plus ou moins 100 mm, soit entre 150 et 350 mm.

Le tableau 5.6 représente les écarts obtenus à partir de la variation de la conductivité hydraulique et de la recharge. Lorsque les valeurs de conductivité hydraulique varient, la recharge demeure constante à 0,25 m/an et lorsque la recharge varie, la conductivité hydraulique demeure constante à $1,25 \times 10^{-4}$ m/s. Les figures 5.22 et 5.23 illustrent graphiquement la variation de l'erreur moyenne absolue par rapport au changement des valeurs de recharge et de conductivité hydraulique.

Tableau 5.6 : Sensibilité des paramètres de la conductivité hydraulique et de la recharge pour les aquifères libres du nord de la rivière Sainte-Anne.

Conductivité hydraulique				
K	E.M.	E.M.A.	É.T.	Erreur
(m/s)	(m)	(m)	(m)	(%)
1,25X10 ⁻³	-2,77	3,19	5,56	32,92
5,00X10 ⁻⁴	-2,43	2,96	5,15	23,33
2,20X10 ⁻⁴	-1,46	2,51	4,25	4,58
1,25X10 ⁻⁴	-0,14	2,40	4,11	0,00
9,00X10 ⁻⁵	1,05	2,82	5,07	17,50
6,00X10 ⁻⁵	3,17	4,19	8,09	74,58
3,00X10 ⁻⁵	9,54	9,80	19,12	308,33
1,25x10 ⁻⁵	39,26	39,30	73,28	1537,50
		Recharge		
R	E.M.	E.M.A.	É.T.	Erreur
(m/an)	(m)	(m)	(m)	(%)
0,15	-1,36	2,48	4,20	3,33
0,20	-0,75	2,36	4,00	1,67
0,25	-0,14	2,40	4,10	0,00
0,30	0,47	2,57	4,50	7,08
0,35	1,08	2,84	5,12	18,33

(E.M. : Erreur moyenne; E.M.A. ; Erreur moyenne absolue; É.T. :Écart-type)

¹ % d'erreur = (((E.M.A. référence - E.M.A. simulée)/ E.M.A. référence) x 100)

Figure 5.22 : Graphique de l'erreur absolue moyenne en fonction de la conductivité hydraulique pour les aquifères libres du nord de la rivière Sainte-Anne

Figure 5.23 : Graphique de l'erreur absolue moyenne en fonction de la recharge pour les aquifères libres du nord de la rivière Sainte-Anne

165

Le premier élément à remarquer est que la conductivité hydraulique est encore une fois plus sensible que la recharge. Si nous la diminuons de moitié la valeur de la conductivité hydraulique, l'erreur est supérieure à 100 %. Cependant, si nous augmentons la conductivité hydraulique, l'erreur augmente moins rapidement que pour le bassin de la rivière Jacques-Cartier. Ce phénomène est dû principalement aux différences de charges au nord de la région (figures 5.13 et 5.14). Avec la valeur de conductivité hydraulique obtenue, nous représentons la distribution de charge la plus représentative pour la région. Cependant, certains endroits peuvent entraîner des erreurs importantes. Dans le nord du bassin, les charges calibrées simulées sont 15 à 20 mètres supérieures aux charges de références. Donc, en augmentant la conductivité hydraulique l'écart diminue dans ce secteur (E.M.A. et É.T.), influençant l'erreur pour l'ensemble du domaine. C'est pour cette raison que l'erreur ne varie pas aussi rapidement que pour le bassin de la rivière Jacques-Cartier. De plus, cette région est la moins précise pour la piézométrie de référence, car peu de données piézométriques ont été recueillies à cet endroit. Malgré cet inconvénient, les changements de la valeur de la conductivité hydraulique ont un grand impact sur l'erreur moyenne absolue. La sensibilité des valeurs de conductivité hydraulique est plus importante lorsqu'on diminue les valeurs.

Même si la valeur de recharge affecte moins l'erreur moyenne absolue, on retrouve une marge d'erreur importante. Pour une valeur extrême de recharge de 0,35 m/an l'erreur moyenne absolue est d'environ 20 %. Pour une valeur faible de recharge (0,15 m/an) l'erreur est beaucoup plus faible, tel que décrit au paragraphe précédent. C'est pour cette raison également que pour une recharge de 0,20 m/an l'erreur moyenne absolue est légèrement inférieure à celle calibrée. D'un point de vue régionale, une valeur de recharge de 0,25 m/an est plus représentative car elle permet de bonnes calibrations dans chaque secteur modélisé. Pour une variation de \pm 50 mm/an, l'erreur est faible, indiquant que la recharge affecte moins les valeurs des charges hydrauliques.

5.4.3 Aquifères libres au sud de la rivière Sainte-Anne

La valeur de la conductivité hydraulique calibrée est de $1,35 \times 10^{-4}$ m/s et la valeur de recharge est de 0,25 m/an. Tout comme le bassin de la rivière Sainte-Anne nord, la marge d'erreur obtenue à partir des courbes granulométriques lors du calcul de la moyenne de la conductivité hydraulique, nous permettent de varier la conductivité hydraulique d'un ordre de grandeur (inférieure et supérieure) à partir de la valeur calibrée. Puisque la valeur calibrée est de $1,35 \times 10^{-4}$ m/s, la valeur minimale de conductivité hydraulique de l'analyse de sensibilité est de $1,35 \times 10^{-5}$ m/s et la valeur maximale est de $1,35 \times 10^{-3}$ m/s. Pour bien représenter les différences nous avons également utilisé des valeurs intermédiaires entre les deux extrêmes. Suite aux variations observées à partir de l'hydrogramme de puits localisé à Sainte-Christine (années 1997 et 1998) et des valeurs possibles calculées à partir du bilan hydrologique, nous avons décidé de faire varier la valeur de la recharge calibrée de plus ou moins 100 mm soit entre 150 et 350 mm.

Le tableau 5.7 représente les écarts obtenus à partir de la variation de la conductivité hydraulique et de la recharge. Lorsque les valeurs de conductivité hydraulique varient, la recharge demeure constante à 0,25 m/an et lorsque la recharge varie, la conductivité hydraulique demeure constante à $1,25 \times 10^{-4}$ m/s. Les figures 5.24 et 5.25 illustrent graphiquement la variation de l'erreur moyenne absolue par rapport au changement des valeurs de recharge et de conductivité hydraulique.

Conductivité hydraulique				
K	E.M.	E.M.A.	É.T.	Erreur ¹
(m/s)	(m)	(m)	(m)	(%)
1,35X10 ⁻³	-3,18	3,74	6,53	28,08
$5,00 \times 10^{-4}$	-2,74	3,46	6,05	18,50
$2,50X10^{-4}$	-1,95	3,07	5,30	5,14
1,35X10 ⁻⁴	-0,59	2,92	4,67	0,00
$1,10X10^{-4}$	0,45	3,21	4,90	9,93
9,00X10 ⁻⁵	0,890	3,39	5,17	16,10
$6,00 \times 10^{-5}$	3,12	4,66	7,55	59,59
1,35X10 ⁻⁵	32,79	32,91	55,68	1027,05
		Recharge		
R	E.M.	E.M.A.	É.T.	Erreur
(m/an)	(m)	(m)	(m)	(%)
0,15	-1,77	3,01	5,16	3,08
0,20	-1,18	2,93	4,82	0,34
0,25	-0,59	2,92	4,67	0,00
0,30	0,01	3,05	4,73	4,45
0,35	0,60	3,26	4,98	11,64

Tableau 5.7 : Sensibilité des paramètres de la conductivité hydraulique et de la recharge
pour les aquifères libres du sud de la rivière Sainte-Anne.

(E.M. : Erreur moyenne; E.M.A. ; Erreur moyenne absolue; É.T. :Écart-type)

Figure 5.24 : Graphique de l'erreur absolue moyenne en fonction de la conductivité hydraulique pour les aquifères libres du sud de la rivière Sainte-Anne

Figure 5.25 : Graphique de l'erreur absolue moyenne en fonction de la recharge pour les aquifères du sud de la rivière Sainte-Anne

169

Encore une fois, la conductivité hydraulique est plus sensible que la recharge. En diminuant de moitié la valeur de la conductivité hydraulique, l'erreur est supérieure à 60 %. Cependant, en augmentant la conductivité hydraulique, l'erreur augmente moins rapidement que pour le bassin de la rivière Jacques-Cartier, mais suit la tendance des aquifères du nord de la rivière Sainte-Anne. Malgré ce phénomène, les changements de la valeur de la conductivité hydraulique ont un grand impact sur l'erreur moyenne absolue. La sensibilité des valeurs de conductivité hydraulique est plus importante lorsqu'on diminue leurs valeurs.

Même si la valeur de recharge affecte moins l'erreur moyenne absolue, on retrouve une marge d'erreur importante. Pour une valeur extrême de recharge de 0,35 m/an, l'erreur moyenne absolue est d'environ 10 % donc inférieure au deux précédents bassins. Pour une valeur faible de recharge (0,15 m/an) l'erreur est faible. De plus, pour une recharge de 0,20 m/an, l'erreur moyenne absolue est équivalente à celle calibrée. D'un point de vue régional, une valeur de recharge de 0,25 m/an est plus représentative. Pour une variation de \pm 50 mm/an, l'erreur est faible, indiquant que la recharge affecte moins les valeurs des charges hydrauliques simulées. La variation de 50 mm est celle observée entre les valeurs de recharge pour les années 1997 et 1998 dans l'hydrogrammes de puits de Sainte-Christine.

5.5 BILAN VOLUMÉTRIQUE

Le calcul du bilan volumétrique effectué par FRAC3DVS nous aide à déterminer si la convergence de la solution numérique est satisfaisante. Idéalement, une erreur de moins de 0,1% devrait être obtenue entre les sources et les pertes du domaine, mais une erreur près de 1% peut être considérée comme acceptable (Anderson et Woessner, 1992). Une erreur supérieure à 1% peut indiquer que le modèle conceptuel est inadéquat ou que le système ne converge pas (critère de convergence trop élevé). Si cette situation est rencontrée, il est préférable de calibrer le modèle de nouveau ou de modifier le modèle conceptuel.

Heureusement, pour les trois modèles, nous pouvons conclure que les modèles ont convergé car l'erreur des bilans de masse est inférieure à 1%. Les différences entre les intrants et les extrants se situent à $4x10^{-7}$ % pour les trois bassins. Le tableau 5.8 présente les éléments du bilan pour les trois bassins.

La recharge totale simulée est d'environ 74 millions m³ alors que la recharge estimée à partir du bilan est de 81 millions m³. Cette différence est de 9 %. Toutefois, l'eau qui est calculée à partir des simulations et l'eau estimée à partir du bilan sont dans le même ordre de grandeur.

Tableau 5.8 : Bilan volumétrique des sources et des pertes pour les trois bassins
(m³/s)

Noeuds de second type Puits	$6,73X10^{-01}$	$0,00 \times 10^{+00}$	$6,73 \times 10^{-01}$ $0.00 \times 10^{+00}$
Drains	$0,00X10^{+00}$	$0,00 \times 10^{+00}$	$0,00X10^{+00}$
Totale	8,78X10 ⁻¹	8,78X10 ⁻¹	-2,63X10 ⁻⁰⁹

Aquifères au nord de la rivière Sainte-Anne

	Sources	Pertes	Différence
Noeuds de premier type	$1,93X10^{+01}$	$2,02X10^{+01}$	-8,68X10 ⁻⁰¹
Noeuds de second type	8,68X10 ⁻⁰¹	$0,00 \mathrm{X10}^{+00}$	8,68X10 ⁻⁰¹
Puits	$0,00 \mathrm{X10}^{+00}$	$0,00 \mathrm{X10}^{+00}$	$0,00 X 10^{+00}$
Drains	$0,00X10^{+00}$	0,00X10 ⁺⁰⁰	$0,00X10^{+00}$
Totale	$2,02X10^{+01}$	$2,02X10^{+01}$	-6,40X10 ⁻⁰⁹

Aquifères au sud de la rivière Sainte-Anne

	Sources	Pertes	Différence
Noeuds de premier type	$1,26X10^{+00}$	$2,05 \times 10^{+00}$	-7,98X10 ⁻⁰¹
Noeuds de second type	7,98X10 ⁻⁰¹	$0,00 \mathrm{X10}^{+00}$	7,98X10 ⁻⁰¹
Puits	$0,00X10^{+00}$	$0,00 \mathrm{X10}^{+00}$	$0,00 \times 10^{+00}$
Drains	$0,00X10^{+00}$	$0,00X10^{+00}$	$0,00 \times 10^{+00}$
Totale	$2,05X10^{+00}$	2,05X10 ⁺⁰⁰	-4,95X10 ⁻⁰⁹

5.6 **DISCUSSION**

Les résultats de la modélisation permettent de connaître quantitativement la dynamique de l'écoulement dans les aquifères granulaires de surface de la MRC de Portneuf. Nous comprenons maintenant les directions et les vitesses d'écoulement des eaux souterraines, les valeurs de recharge et de conductivité hydraulique pour les sables et graviers deltaïques. La compilation des données existantes (conductivité hydraulique) et l'acquisition de nouvelles données (hydrogrammes de puits) ont permis de construire un modèle conceptuel représentatif des aquifères granulaires de surface. De plus, nous possédons maintenant un outil capable de prédire le niveau de l'eau souterraine pour l'ensemble des aquifères libres. Le modèle définis pourrait être employé afin de déterminer les conditions limites lors d'une modélisation plus locale.

Les paramètres hydrologiques et hydrogéologiques moyens pour les sables et graviers de surface sont maintenant biens ciblés. Dans l'ensemble, les résultats obtenus lors de la modélisation peuvent être considérés comme satisfaisants à l'exception de quelques endroits, spécialement dans les aquifères du sud de la rivière Sainte-Anne.

Un des principaux avantages associés à la construction du modèle conceptuel est la qualité et la quantité des informations disponibles. La cueillette de données est l'étape la plus importante dans la méthodologie de la modélisation puisqu'elle à une influence directe sur le modèle conceptuel, et par conséquent sur la qualité des résultats. Les informations utilisées pour établir le cadre physique (limites, types de dépôts, etc.) et le cadre hydrogéologique (conductivité hydraulique, recharge, etc.) proviennent en grande partie de travaux de terrain effectués dans la MRC de Portneuf (Cloutier et al. 1997; Fagnan, 1998; Fagnan et al., 1998; Parent et al. 1998, etc.). Les informations utilisées peuvent être considérées comme précises. De plus, les ouvrages de référence permettent de bien limiter les aquifères, car ce sont principalement les types de limites qui influencent l'écoulement en régime permanent (Anderson et Woessner, 1992). Toutefois, les informations de ces travaux sont majoritairement qualitatives. Effectivement, les types d'aquifères sont bien connus ainsi que leurs limites et leurs liens hydrauliques avec les

cours d'eau. Par contre, peu d'informations quantitatives sont disponibles. Par exemple, en identifiant le type de limite et en déterminant qu'il y avait des sources à certains endroits (résurgences), il aurait été avantageux de calculer les débits à ces sources. Cette information aurait aidé à déterminer plus précisément le bilan hydrologique. De plus, cette information aurait permis une meilleure calibration du modèle d'écoulement.

Afin de démontrer que les types de limites appliquées représentent bien le système aquifère du terrain, par exemple les zones de résurgence, des travaux supplémentaires calculant le débit dans ces zones pourraient être faits afin d'appuyer le choix des diverses limites utilisées. Un travail de modélisation pourrait utiliser le même modèle que celui présenté dans ce travail mais en incluant les débits calculés. Les résultats démontreraient si le choix du type de limites utilisées dans la modélisation régionale étaient justifié. De même, la mesure des débits en rivière permettrait une meilleure calibration du modèle.

L'étendue régionale de la modélisation permet de connaître davantage l'hydrologie de la MRC de Portneuf. La détermination d'un bilan hydrologique sert à déterminer les variations spatiales des précipitations, du ruissellement et de l'évapotranspiration. À partir de ces paramètres, il est maintenant possible d'évaluer la recharge dans les aquifères granulaires de surface. Cette approche permet d'estimer rapidement une première valeur de recharge. Cette approximation est le fruit de plusieurs paramètres estimés, spécialement du coefficient de ruissellement et c'est pour cette raison qu'il est préférable d'utiliser d'autre(s) ressource(s) pour évaluer la recharge. Puisque le bilan hydrologique permet d'estimer une gamme importante de valeurs de recharge, les résultats ne sont pas précis. En faisant varier les paramètres estimés, l'erreur associée est aussi importante que la valeur de la recharge estimée.

Malgré le fait que la recharge soit un des paramètres importants dans l'évaluation de l'écoulement de l'eau souterraine, sa détermination est généralement estimée à partir du bilan hydrologique simple. Le temps associé au calcul de la recharge à partir du bilan hydrologique est important puisqu'il faut déterminer précisément plusieurs paramètres pour calculer la recharge. Effectivement, on doit calculer les précipitations totales, le

ruissellement, l'évapotranspiration, etc. Pour avoir une valeur précise de la recharge, ces paramètres doivent être calculés à partir de données de terrain, augmentant ainsi la difficulté d'obtenir facilement une valeur de recharge. C'est principalement pour cette raison qu'il serait préférable de ne pas passer beaucoup de temps pour le calcul de la recharge, lors d'une modélisation, avec cette approche. Cette affirmation est d'autant plus importante lorsqu'on dispose de d'autres méthodes pour estimer une valeur de recharge.

Selon les objectifs du projet il a été préférable d'utiliser une mesure directe de la recharge, tels les hydrogrammes de puits plutôt que d'utiliser uniquement le bilan hydrologique. La Commission géologique du Canada a fait l'acquisition de quatre hydrogrammes de puits afin de déterminer la variation du niveau de la nappe et d'évaluer la recharge. Cet outil permet de connaître efficacement la variation de la nappe dans les sables et graviers de surface. En plus de connaître la valeur moyenne de la recharge, il serait possible d'utiliser les variations enregistrées pour simuler l'écoulement en régime transitoire. La seule limitation des hydrogrammes de puits est qu'à court terme, il est difficile d'estimer une moyenne représentative. Néanmoins, les valeurs obtenues permettent de mieux cibler la variation temporelle de la recharge. De plus, en utilisant des thermistances à divers niveaux dans le zone non-saturée, il est possible de calculer une valeur de recharge (calcul du flux thermique). Cette approche n'a cependant pas été utilisée dans le cadre de ce mémoire.

À partir des hydrogrammes de puits, le seul paramètre estimé pour calculer la recharge est la porosité de drainage. Afin de rendre plus solides les valeurs de recharge obtenues à partir des hydrogrammes de puits, la porosité de drainage des sols à l'endroit des hydrogrammes de puits devrait être mesurée. De cette façon, la recharge serait calculée entièrement avec les paramètres connus.

Avec les hydrogrammes de puits, d'autres informations peuvent être compilées. Par exemple, l'enregistrement de données sur plusieurs années permet de connaître davantage les variations de la nappe phréatique des aquifères libres dans la MRC de Portneuf.

Également, le comportement et la quantité d'eau qui atteint la nappe phréatique lorsque le niveau de celle-ci se situe près de la surface ou plus en profondeur pourraient être étudiés.

Un autre élément important, suite à la compilation des travaux de Fagnan (1998) et Fagnan et al. (1998), est la disponibilité de plusieurs centaines d'analyses granulométriques pour l'évaluation de la conductivité hydraulique. La sélection de 200 analyses a permis de connaître davantage les valeurs de plusieurs unités quaternaires. Pour la région modélisée, les sables et graviers de surface, une centaine d'échantillons, biens distribués dans la région d'étude, ont permis d'estimer une valeur moyenne de conductivité hydraulique. Malgré le fait que les valeurs de conductivité hydraulique ont été estimées à partir de la formule de Hazen, les valeurs obtenues sont considérées comme représentatives car ce sont uniquement des analyses dans les sables et graviers. Puisque nous utilisons uniquement une valeur moyenne de conductivité hydraulique pour chaque bassin, leur distribution, à l'échelle régionale, est plus négligeable par rapport à une distribution non-uniforme de la conductivité hydraulique. Néanmoins, il aurait été préférable d'avoir des valeurs de conductivité hydraulique calculées à partir d'essais de perméabilité.

La recherche d'information lors du projet de cartographie a permis de compiler plusieurs rapports de consultants. Puisque plusieurs rapports contenaient des essais de perméabilité, nous aurions pu réinterpréter les essais de pompage, et par conséquent, avoir une meilleure représentativité des valeurs moyennes de conductivité hydraulique. De cette façon, les valeurs de conductivité hydraulique obtenues à partir de la courbe granulométrique (Formule de Hazen) auraient pu être confirmées, rendant ainsi les valeurs de conductivité hydraulique utilisée dans la modélisation plus fiables.

Les valeurs calibrées de la recharge et de la conductivité hydraulique rejoignent les valeurs estimées initialement de ces paramètres. Même si les valeurs de conductivité hydraulique sont différentes pour les trois bassins, leur différence est négligeable par rapport aux valeurs extrêmes déterminées pour les sables et graviers de surface de la région modélisée.

176

Une limitation courante lors de la modélisation est l'utilisation d'une piézométrie de référence dont on ne connaît que le niveau des courbes piézométriques. Il est alors difficile de juger de la qualité des données utilisées, de la précision du travail effectué et des zones avec les erreurs maximales. Cependant, pour ce travail de modélisation, toutes les données étaient disponibles et la qualité des données était connue. Cet avantage permet de connaître les zones qui sont les moins précises et de porter notre attention aux zones présentant un intérêt plus élevé. De plus, le jugement porté à la qualité de la piézométrie simulée pourra être meilleur si on peut juger les données de référence précises. La piézométrie simulée permet de conclure que les résultats sont satisfaisants et que l'erreur moyenne absolue correspond uniquement à un faible pourcentage de la variation maximale entre la charge la plus élevée et la plus basse pour chaque bassin.

Le fait d'avoir subdivisé la région des sables et graviers granulaires de surface a permis un gain appréciable de temps lors de l'exécution des simulations, sans compromettre la précision des résultats. Ceci est démontré par les faibles marges d'erreur entre les valeurs de conductivité hydraulique pour les trois bassins. L'utilisation de 5 couches différentes donne une plus grande flexibilité lors de l'imposition des limites. Cependant, deux éléments différents limitent la précision du modèle régional.

Le premier élément est l'utilisation de valeurs uniques, de recharge et de conductivité hydraulique, pour chaque bassin. Si nous avions utilisé des valeurs différentes, nous aurions pu obtenir une marge d'erreur encore plus faible. Cependant, il aurait été difficile de justifier chaque changement de conductivité hydraulique et de recharge. C'est pour cette raison que nous avons utilisé des valeurs moyennes représentant, de façon satisfaisante, la région de sable deltaïque. Le second élément est l'utilisation d'un modèle régional saturé. Puisque les sables et graviers de surface de la région de Portneuf sont des aquifères libres, nous perdons de l'information en utilisant uniquement une épaisseur de sable saturée. Donc, la modélisation ne représente pas les conditions dans la zone non-saturée. De plus, l'épaisseur saturée pour les simulations a été déterminée à partir de la

surface piézométrique de référence, déterminée par Fagnan (1998), ce qui peut introduire une source d'erreur.

Le modèle d'écoulement régional de l'eau souterraine a permis d'obtenir une représentation générale de l'écoulement dans les aquifères de sables et graviers de la MRC de Portneuf. Le modèle a permis de quantifier la dynamique de l'écoulement souterrain en présentant des valeurs de vitesses moyennes et de direction d'écoulement pour les régions étudiées. L'intégration des paramètres hydrogéologiques et hydrologiques a permis de connaître des valeurs moyennes à l'échelle de la région. Plus précisément, les valeurs moyennes représentatives de recharge et de conductivité hydraulique pour les sables deltaïques sont bien quantifiées.

Pour connaître plus précisément le système des aquifères libres, il faudrait un développement plus approfondi des systèmes définis précédemment. Puisque les objectifs de la modélisation à l'échelle régionale sont atteints de manière satisfaisante, un développement plus précis sortirait du cadre de ce travail.

CHAPITRE 6

CONCLUSION ET RECOMMANDATIONS

La modélisation des aquifères libres de la MRC de Portneuf a atteint deux des principaux objectifs du projet de cartographie hydrogéologique du piémont laurentien. La modélisation a permis la caractérisation régionale des aquifères granulaires de la rive nord du fleuve Saint-Laurent. Plus particulièrement, la modélisation régionale de l'écoulement nous procure une connaissance quantitative de la dynamique des eaux souterraines. Nous connaissons maintenant les caractéristiques quantitatives de la ressource, complétant les informations qualitatives déjà existantes. Plus spécifiquement, le développement du modèle d'écoulement régional des eaux souterraines nous a permis de quantifier la recharge et de valider les valeurs de conductivité hydraulique. Éventuellement, les résultats de la modélisation pourraient être utilisés afin de prédire l'impact de l'exploitation des nappes et la propagation de contaminants dans les aquifères granulaires de surface de la MRC de Portneuf. De plus, des modélisations à plus petites échelles pourraient utiliser, comme références et comme conditions initiales, les résultats de la présente étude.

Puisque le projet de cartographie hydrogéologique régionale dans la MRC de Portneuf a débuté depuis 4 années, les informations disponibles sont nombreuses et proviennent de plusieurs sources. La majorité des informations décrit la ressource de façon qualitative. Néanmoins, les informations de grandes qualités décrivant le contexte géologique et hydrogéologique aident à la construction du modèle conceptuel. Les données les plus

pertinentes proviennent de Fagnan (1998). Ces données décrivent principalement le contexte hydrogéologique des sables et graviers de surface de la MRC de Portneuf. À partir de ces données, nous avons pu déterminer les limites de nos modèles. De plus, les résultats de calibration ont été calés à partir de la piézométrie de Fagnan (1998).

Dans la réalisation de futurs projets de cartographie hydrogéologique régionale incluant une modélisation régionale, il serait important d'inclure plus de données quantitatives afin de mieux comprendre la dynamique d'écoulement de l'eau souterraine et ainsi augmenter la qualité des résultats de la modélisation. Ces types de données pourraient être associées au calcul du débit dans les principales rivières, le calcul du débit dans les zones de résurgence, la réalisation d'essais de pompage à plusieurs endroits dans la région à l'étude, etc.

Le modèle conceptuel représente une forme simplifiée des systèmes géologiques et hydrogéologiques des aquifères libres de la MRC de Portneuf. La mise sur pied du modèle conceptuel a permis de connaître les caractéristiques du bilan hydrologique régional des sables et graviers de surface de la MRC de Portneuf. Les informations compilées renseignent sur les précipitations totales, sur l'évapotranspiration, sur le ruissellement et sur la recharge. Les données climatiques ont été enregistrées pour 13 stations météorologiques, localisées dans la MRC de Portneuf et en périphérie. La moyenne de précipitations totales interpolée est de 1227 mm. Les précipitations diminuent progressivement du nord au sud, c'est-à-dire des Laurentides vers les Basses-Terres du Saint-Laurent.

À partir des précipitations totales nous avons identifié un taux de ruissellement. Puisque nous n'avions aucun instrument capable de mesurer le taux de ruissellement, nous avons utilisé une méthode empirique pour déterminer le coefficient de ruissellement. Le coefficient fixé est de 0,4 et est identique pour l'ensemble des stations météorologiques. La moyenne interpolée du taux de ruissellement est de 490,9 mm. L'approche analytique de Thornthwaite a été utilisée afin de déterminer l'ETp. Cette méthode est suffisamment précise afin de déterminer les valeurs d'ETp annuelles dans un bassin versant (Fetter, 1992). L'ETp moyenne interpolée est de 519,4 mm. Les valeurs d'ETp obtenues doivent être corrigées, pour les mois d'été, car leurs sommes dépassent l'eau disponible dans le sol. La moyenne interpolée de l'évapotranspiration réelle (ETr) est de 493 mm.

Le calcul du bilan hydrologique régional permet de déterminer une valeur de recharge des aquifères. La valeur moyenne interpolée de la recharge est de 244 mm. Puisque la recharge est un paramètre important dans la variation du niveau de la nappe phréatique, une étude de sensibilité de la valeur de la recharge à partir du bilan hydrologique a été effectuée. Les résultats ont démontré qu'il y a une grande variation du taux de recharge selon les paramètres utilisés pour son calcul. Des variations de 300% ont été calculées en utilisant les paramètres extrêmes. L'erreur associée correspond à la valeur de la recharge elle-même, illustrant la faible précision de cette méthode pour déterminer la recharge lorsqu'on doit estimer plusieurs paramètres. La recharge calculée à partir du bilan doit être utilisée seulement comme première approximation et la recharge devrait être calculée avec d'autres méthodes. Pour la modélisation, la recharge calculée à partir du bilan hydrologique est utilisée comme condition initiale, mais elle est validée par l'analyse des hydrogrammes de puits.

Avec les outils disponibles à la Commission géologique du Canada, le bilan hydrologique pourrait être implanté dans un système d'information géographique (SIG). Une telle approche permettrait une plus grande représentation et une manipulation plus efficace des différents paramètres nécessaires au calcul du bilan. Par conséquent, à l'aide des distributions des différents paramètres, le bilan hydrologique pour une sous-région de la MRC de Portneuf pourrait alors être aisément calculé. De plus, lors de modélisation de ce sous secteur, les informations sur le bilan hydrologique seraient disponibles rapidement. Également, à l'aide d'un tel outil, il serait facilement possible de voir l'effet d'un paramètre sur la distribution de la recharge. L'utilisation d'un SIG peut également servir à raffiner la définition entre le coefficient de ruissellement, qui est habituellement estimé et la pente du terrain, la nature du sol et le type de végétation. Parallèlement, l'utilisation d'images satellites pourrait également aider à la définition des zones plus ou moins propices pour le ruissellement ou à l'évapotranspiration. Avec les différentes caractéristiques marquées autant du point de vue géologique, topographique que de l'utilisation des sols, qu'exhibent les deux régions physiographiques distinctes, soit les Basses-Terres du Saint-Laurent et des Laurentides, l'utilisation d'un SIG et d'images satellites serait avantageux pour obtenir davantage de précision au bilan hydrologique.

Dans le cadre de ce travail de recherche, un des principaux objectifs était d'évaluer la recharge par d'autres méthodes que le simple bilan hydrologique afin d'identifier la meilleure approche. Par conséquent, la recharge a été déterminée à l'aide d'hydrogrammes de puits (4) et à l'aide de la modélisation. Les résultats obtenus à partir des hydrogrammes de puits nous indiquent une moyenne de 247 mm/an, alors que par la modélisation une valeur moyenne de 250 mm/an a été obtenue. Même si les valeurs sont semblables, la recharge calculée à partir des hydrogrammes de puits est la plus valable. Il y a moins d'incertitude car nous enregistrons directement les variations de la nappe phréatique et le seul paramètre à estimer est la porosité de drainage. Toutefois, afin d'améliorer la fiabilité des valeurs obtenues de la recharge, il serait préférable de mesurer directement la valeur de la porosité de drainage à chacun des sites. De cette façon, le calcul de la recharge sera déterminé rapidement pour chaque hydrogramme de puits.

La conductivité hydraulique est également un paramètre important dans l'écoulement des eaux souterraines. À l'échelle de la MRC de Portneuf, la conductivité hydraulique a principalement été estimée à partir d'analyses granulométriques. Les résultats proviennent de la compilation de rapports existants et de travaux de terrain effectués dans le cadre du projet pilote. C'est la formule empirique de Hazen qui a été appliquée pour évaluer les valeurs initiales de conductivité hydraulique des sédiments quaternaires de la MRC de Portneuf. Pour les sédiments échantillonnés dans la MRC de Portneuf, les valeurs de conductivité hydraulique pour les sables sont considérées comme respectant

les conditions d'application de la formule de Hazen. Ces sables constituent le matériau de la zone modélisée. La valeur moyenne géométrique pour les sables deltaïques est de $3,00x10^{-4}$ m/s. Cette valeur est utilisée comme valeur initiale lors de la calibration des aquifères libres.

Plusieurs choix de logiciels s'offraient à nous pour la modélisation des aquifères libres de la MRC de Portneuf. Nous avons convenu d'utiliser un modèle à trois dimensions avec une discrétisation triangulaire pour une solution numérique avec les éléments finis. Étant donné la géométrie des aquifères, l'utilisation des éléments finis diminue le nombre de cellules dans chaque domaine par rapport à une solution par différence finie avec des cellules rectangulaires. Une combinaison de plusieurs logiciels a permis de reproduire adéquatement la piézométrie dans la MRC de Portneuf. Les logiciels Groundwater Modeling System (GMS) et FRAC3DVS sont utilisés. GMS est appliqué comme pré et post processeur alors que FRAC3DVS est utilisé pour résoudre les équations numériques. Cette combinaison permet de réaliser les simulations selon les situations désirées.

Les connaissances hydrogéologiques et géologiques de la MRC de Portneuf nous permettent de bien limiter les trois aquifères libres. Les limites sont identifiées de façon minutieuse puisqu'elles ont une grande influence sur la piézométrie. La base de chaque aquifère est définie comme imperméable, puisqu'elle est représentée par une unité d'argile ou le roc. Au sommet des aquifères, nous avons imposé un flux qui représente la recharge. À plusieurs endroits nous avons identifié des cours d'eau directement aux limites, ils représentent alors des charges imposées en surface. Aux endroits où il n'y a pas d'écoulement aux limites, nous avons imposé des flux nuls. Au contact des sables et de la couche argileuse sous-jacente on retrouve un écoulement. Cet écoulement, dirigé à l'extérieur des domaines, représente des résurgences qui sont représentées comme des charges imposées dans le modèle. À l'intérieur de chaque aquifère, les cours d'eau attachés aux deux principales rivières sont identifiés comme des charges imposées. Pour la rivière Jacques-Cartier les charges sont imposées au centre de la rivière alors que pour la rivière Sainte-Anne les charges sont imposées en bordure du centre de la rivière afin de mieux représenter les conditions de terrain. Le choix des limites est judicieux puisque

l'identification de limites provient d'observations qualitatives réalisées directement sur le terrain et discuté dans Fagnan (1998) ainsi que Fagnan et al. (1998).

Les paramètres calibrés lors de la modélisation sont la recharge et la conductivité hydraulique. Ce sont ces deux paramètres qui influencent principalement l'écoulement dans les aquifères libres de la MRC de Portneuf. Nous avons utilisé une approche par essais et erreurs pour calibrer les modèles en variant successivement les valeurs de recharge et de conductivité hydraulique. Les valeurs de conductivité hydraulique initiales, calculées à partir de l'analyse granulométrique de plusieurs échantillons, étaient de $3,00x10^{-4}$ m/s alors que les valeurs calibrées se situent à une moyenne de $1,35x10^{-4}$ m/s.

Pour la recharge, les valeurs proviennent du bilan hydrologique avec une moyenne de 242 mm/an alors que les valeurs calibrées sont de 250 mm/an pour chaque aquifère. La précision des résultats de la modélisation est limitée car nous avons utilisé seulement une valeur de conductivité hydraulique et une valeur de recharge pour chaque aquifère. Donc, la calibration demeure très générale. Pour avoir une calibration plus raffinée nous aurions pu assigner plusieurs valeurs de conductivité hydraulique dans chaque aquifère. Cependant, cette approche est difficilement justifiable et dépasserait les objectifs de cette modélisation. Toutefois, la représentation de plusieurs valeurs de recharge pourrait être justifiable. En utilisant un SIG, des valeurs de recharge multiples en fonction du type de sol, de la pente du terrain, du type de végétation, etc. pourraient être utilisées. Cette approche permettrait une distribution représentative de la recharge et augmenterait le degré de précision du modèle. La calibration du modèle régional représenterait encore plus précisément la piézométrie des sables deltaïques dans la MRC de Portneuf.

L'écoulement à saturation variable n'a pu être simulé dû à des problèmes de convergence numérique du logiciel. Uniquement des simulations pour des conditions saturées ont été réalisées. Évidemment, cette simplification limite nos résultats de modélisation car nous n'avons aucune information sur les propriétés de la zone non-saturée. Afin d'obtenir une épaisseur de sable saturé représentative, le niveau de la nappe phréatique calculé par Fagnan (1998) a été utilisé comme sommet de nos aquifères.

Afin de vérifier la validité de nos résultats, nous avons utilisé la piézométrie de Fagnan (1998) comme référence. Nos résultats présentent la meilleure calibration entre les charges simulées et les charges de référence. Cependant, les différences entre les valeurs simulées et de références ne signifient pas nécessairement que les valeurs de charges simulées sont erronées, puisque des erreurs dans la piézométrie de Fagnan (1998) peuvent être présentes. Toutefois les valeurs utilisées par Fagnan (1998) sont considérées précises, de plus, leurs sources sont connues ce qui représentent un point fort du présent travail de recherche. Habituellement, la piézométrie de référence utilisée représente un des points faibles de la modélisation principalement parce que l'exactitude des contours de base n'est pas connue (points de contrôles et les critères de traçage des courbes piézométriques).

En général, les plus grandes différences entre les charges simulées et de référence se situent aux endroits les moins étudiés où il y a moins d'informations disponibles (ex. nord de la rivière Sainte-Anne). La piézométrie, présentée pour chaque aquifère, est grandement influencée par les deux principales rivières. La direction de l'écoulement se dirige vers le sud, en direction du fleuve Saint-Laurent.

Les aquifères libres de la rivière Jacques-Cartier ont été les plus faciles à modéliser car la rivière est peu encaissée et la topographie est relativement plane. Les aquifères libres du nord de la rivière Sainte-Anne ont présenté quelques difficultés dû à l'encaissement de la rivière et à son relief plus prononcé. Néanmoins, les isopièzes simulés suivent généralement biens les isopièzes de références à l'exception de la partie au nord de la rivière Sainte-Anne. Les aquifères libres du sud de la rivière Sainte-Anne ont présenté plus de difficultés dû à l'encaissement de la rivière Sainte-Anne. Les aquifères libres du sud de la rivière Sainte-Anne ont présenté plus de difficultés dû à l'encaissement de la rivière (au centre du domaine) et à sa faible épaisseur de sable dans la partie au sud de la région. Cet endroit correspond à une zone très encaissée de la rivière Sainte-Anne et c'est pour cette raison que la piézométrie est difficile à modéliser.

L'erreur moyenne absolue est de 2,71 mètres avec un écart-type de 3,60 mètres pour le bassin de la rivière Jacques-Cartier, pour le bassin au nord de la rivière Sainte-Anne

185

l'erreur moyenne absolue est de 2,39 mètres et l'écart-type est de 4,10 mètres et pour le bassin au sud de la rivière Sainte-Anne l'erreur moyenne absolue demeure faible avec une valeur de 2,97 mètres et un écart-type de 4,67 mètres. En comparant les charges simulées avec les charges de références nous avons identifié que 84 %, 85 % et 80% des valeurs de charges simulées ont une erreur inférieure à ± 5 mètres de la ligne d'ajustement parfait respectivement pour le bassin de la rivière Jacques-Cartier, pour le bassin au nord de la rivière Sainte-Anne et pour le bassin au sud de la rivière Sainte-Anne et pour le bassin au sud de la rivière Sainte-Anne. Finalement, la vitesse moyenne de l'écoulement de l'eau souterraine pour le bassin de la rivière Sainte-Anne et pour le bassin au sud de la rivière Sainte-Anne et pour le bassin au sud de la rivière Sainte-Anne et pour le bassin au sud de la rivière Sainte-Anne et pour le bassin au sud de la rivière Sainte-Anne et pour le bassin au sud de la rivière Sainte-Anne et pour le bassin au sud de la rivière Sainte-Anne et pour le bassin au sud de la rivière Sainte-Anne et pour le bassin au sud de la rivière Sainte-Anne et pour le bassin au sud de la rivière Sainte-Anne et pour le bassin au sud de la rivière Sainte-Anne et pour le bassin au sud de la rivière Sainte-Anne et pour le bassin au sud de la rivière Sainte-Anne et pour le bassin au sud de la rivière Sainte-Anne et pour le bassin au sud de la rivière Sainte-Anne et pour le bassin au sud de la rivière Sainte-Anne et pour le bassin au sud de la rivière Sainte-Anne et respectivement de 156 m/an, de 125 m/an et de 149 m/an dans la zone saturée.

Globalement, les résultats de la modélisation sont très satisfaisants. La piézométrie simulée décrit bien la piézométrie de référence à l'exception de quelques endroits. L'erreur moyenne absolue se situe entre 2 et 3 mètres ce qui représente moins de 5% des variations de charges pour chaque aquifère.

Une étude de sensibilité des paramètres calibrés de la conductivité hydraulique et de la recharge permet de connaître leur influence sur la piézométrie simulée. La conductivité hydraulique influence davantage la piézométrie. Une faible variation de la valeur calibrée engendre une importante variation de charges. Par contre, la variation de la recharge affecte moins les valeurs de charges. Cette situation limite notre interprétation des résultats, puisque la recharge influence peu la piézométrie. Toutefois, la valeur de recharge définie dans la calibration du modèle numérique correspond très bien avec les valeurs obtenues directement des hydrogrammes de puits.

Avec les résultats obtenus, nous pouvons quantifier la ressource en eau souterraine des sables et graviers deltaïques de la MRC de Portneuf. Cependant, les résultats nous fournissent uniquement des informations pour un système saturé en régime permanent. Pour pallier à cette situation une étude ultérieure pourrait utiliser une petite partie d'un des trois bassins afin d'effectuer des simulations à saturations variables. De plus, il serait

186

intéressant d'effectuer des simulations en régime transitoire car nous connaissons maintenant les variations annuelles de la nappe phréatique à partir des hydrogrammes de puits. Les limites de ce sous domaine pourraient utiliser celles définies par les modèles plus régionaux, décrits dans cette étude. Les problèmes de convergence ne seraient probablement pas alors rencontrés étant donné que le modèle serait plus petit et qu'il contiendrait un plus grand nombre de couches, limitant le nombre de cellules nonsaturées.

CHAPITRE 7

BIBLIOGRAPHIE

Alyamani, M.S., et Sen, Z. (1993). «Determination of hydraulic conductivity from complete grain-size distribution curves». <u>GROUNDWATER</u>. vol. 31, no. 4, p. 551-556.

American Society for Testing and Matérials. (1995a). <u>Standard guide for subsurface flow</u> and transport modeling. ASTM Designation D18.21.95, 12 p.

American Society for Testing and Matérials. (1995b). <u>Standard guide for application of a</u> <u>solute transport model to a site-speficic ground-water problem</u>. ASTM Designation D-1, 13 p.

American Society for Testing and Matérials. (1995c). <u>Standard guide for calibrating a</u> ground-water flow model application. ASTM Designation C-7, 14 p.

Anderson, M.P., et Woessner, W.W. (1992). <u>Applied groundwater modeling</u>. <u>Simulation</u> of flow and advective transport. Academic Press, San Diego, 381 p.

Aubertin, M., Bussière, B., Aachib, M., Chapuis, R.P., et Crespo, J.R. (1996). «Une modélisation numérique des écoulement non-saturés dans des couvertures multicouches en sols». <u>HYDROGÉOLOGIE</u>. no. 1, p. 3-13.

Banton, O., et Bangoy, L.M. (1997). <u>Hydrogéologie: Multiscience environnementale des</u> <u>eaux souterraines</u>. Presses de l'Université du Québec / AUPELF, Québec, 460 p.

Bear, J., Beljin, M.S., et Ross, R.R. (1992). «Fundamentals of Ground-Water Modeling». Ground Water Issue. United States Environmental Protection Agency (EPA), 11 p.

Béland-Pelletier, C., (1996). « Caractérisation du potentiel aquifère des dépôts de surface du piémont Laurentien dans la MRC de Portneuf». Rapport de Baccalauréat, Québec, Université Laval, 27 p.

Boisvert, É. (1997). Logiciel de Granulométrie. Version 1, Sainte-Foy (Québec), Commission géologique du Canada.

Boisvert, É., et Michaud, Y. (1998). <u>Gestion des données de forage à l'aide d'une approche topologique : application au projet de cartographie hydrogéologique du piémont laurentien, Québec</u>. dans Recherche en cours 1998-E, Commission géologique du Canada, p. 117-124.

Bourque, É., LaFlèche, M.R., Lefebvre, R., et Michaud, Y. (1996). <u>Résultats initiaux de</u> <u>la caractérisation géochimique des aquifères du piémont laurentien dans la municipalité</u> <u>régionale de comtés (MRC) de Portneuf (Québec</u>). dans Recherche en cours 1996-E, Commission géologique du Canada, p. 225-231.

Bourque, É., Michaud, Lefebvre, R., et Boisvert, É. (1998). <u>Cartographie</u> <u>hydrogéologique régionale du piémont laurentien dans la MRC de Portneuf:</u> <u>hydrogéochimie des eaux souterraines</u>. Commission géologique du Canada. Dossier public 3664-C. Brayshaw, A.C., Davies, G.W., et Corbett, P.W.M. (1996). «Depositional controls on primary permeability and porosity at the bedform scale in fluvial reservoir sandstones». Chap 11. In <u>Advances in fluviatile dynamics and stratigraphy</u>. Edited by P.A. Carling and M.R. Dawson. John Wiley and Son Ltd. p. 373-394.

Brigham Young University. (1998). GMS. Version 2.1, Salt Lake City (Utah).

Cey, E.E., Rudolph, D.L., Parkin, G.W., et Aravena, R. (1998). «Quantifying grounwater discharge to a small perennial stream in southern Ontario, Canada». <u>JOURNAL OF</u> HYDROLOGY. vol., 210, p. 21-37.

Clark, T.H. et Globensky, T. (1973). <u>Portneuf et parties de Saint-Raymond et de Lyster</u>. Ministère des Richesses Naturelles, Direction Générale des mines, Rapport géologique 148, 110 p.

Clark, T.H. et Globensky, T. (1975). <u>Région de Grondines</u>. Ministère des Richesses Naturelles, Direction Générale des mines, Rapport géologique 154, 159 p.

Cloutier, M., Parent, M., et Bolduc, A. (1997). <u>Géologie des formations superficielles</u>, <u>Région de Saint-Marc-des-Carrières</u>. Commission géologique du Canada. Dossier public 3544. échelle 1: 100 000.

Cooley, R.L. (1971). «A finite difference method for unsteady flow in variably saturates porous media : application to a single pumping well». <u>WATER RESOURCES</u> RECHEARCH, vol. 7, no.6, p 1607-1625.

Diaw, E.H.B., Siegel, P., Mose, R., et Ackerer, P. (1995). «Application de la méthode des éléments finis mixtes hybrides à la modélisation du transfert d'eau en milieu poreux saturé hétérogéne». <u>HYDROGÉOLOGIE</u>. no.4, p.31-39.

Doiron, A. (1996a). <u>Les unités hydrostratigraphiques du piémont laurentien de la région</u> <u>de Portneuf. Une contribution au projet de cartographie des aquifères du piémont</u> <u>laurentien</u>. Centre géoscientifique de Québec, Commission géologique du Canada, rapport interne.

Doiron, A. (1996b). <u>Coupes lithostratigraphiques des sédiments Quaternaires du piémont</u> laurentien de la région de Portneuf. Une contribution au projet de cartographie des <u>aquifères du piémont laurentien</u>. Centre géoscientifique de Québec, Commission géologique du Canada, rapport interne.

Eberts, S.M., et Bair, E.S. (1990). «Simulated effects of quarry dewatering near a municipal well field». GROUNDWATER. vol. 28, no 1, p. 37-47.

Egboka, B.C.E., et Uma, K.O. (1989). «Comparative analysis of transmissivity and hydraulic conductivity values from the Ajali aquifer system of Nigeria». JOURNAL OF <u>HYDROLOGY</u>. Elsevier Science Publishers, vol. 83, p. 185-196.

Er-Rouane, S., El Hebil. A., Aboufirassi, M., Bougadra, A., et Prost, J.P. (1996). «Modélisation des nappes souterraines de la Bahira Occidentale (Méséta Marocaine)». <u>HYDROGÉOLOGIE</u>. no. 3, p.13-20.

Fagnan, F. (1998). «Cartographie hydrogéologique régionale et vulnérabilité des aquifères de la MRC de Portneuf». Mémoire de maîtrise, Sainte-Foy, Institut National de la Recherche Scientifique (INRS-Géoressources). 215 p.

Fagnan, N., Michaud, Y., Lefebvre, R., Boisvert, É., Parent, M., Martel, R., Paradis, et D. Larose-Charette, D. (1998). <u>Cartographie hydrogéologique régionale du piémont</u> <u>laurentien dans la MRC de Portneuf: hydrostratigraphie et piézométrie des aquifères</u> <u>granulaires de surface</u>. Commission géologique du Canada. Dossier public 3664-B. Fayer, M.J., Gee, G.W., Rockhold, M.L., Freshlet, M.D. et Walters, T.B. (1996). «Estimating recharge rates for a groundwater model using a GIS». <u>JOURNAL</u> <u>ENVIRONMENTAL QUALITY</u>. vol. 25, p.510-518.

Fetter, C.W. (1992). <u>Applied hydrogeology</u>. Third edition. Prentice Hall. New Jerser, 691 p.

Forsyth, P.A. (1991). «A control volume finite element approach to NAPL groundwater contamination». SIAM J. Sci. Stat. Comput., vol. 12, no. 5, p. 1029-1057.

Franke, O.L., et Reilly, T.E. (1987). «The effects of boundary conditions on the steadystate response of three hypothetical ground-water systems - results and impications of numerical experiments». U.S. Geological Survey Water-Supply Paper 2315. U.S. Geological Survey. United States, 19 p.

Freeze, R.A., et Cherry, J.A. (1979). Groundwater. Prentice-Hall, New Jersey, 604 p.

Gélinas, P., et Lefebvre, R. (1992). <u>Hydrogéologie: Note de cours</u>, Québec, Université Laval.

Ghassemi, F., Jakeman, A.J., et Thomas, G.A. (1989). «Ground-water modeling for salinity management : an Australien case study». <u>GROUNWATER</u>. p. 384-392

Girard, F. (en préparation). «Architecture et hydrostratigraphie d'un complexe moraïnique et deltaïque dans la région de Saint-Raymond-de-Portneuf de la moraine de St-Narcisse, MRC de Portneuf, Québec». Mémoire de maîtrise, Sainte-Foy, Institut National de la Recherche Scientifique (INRS-Géoressources).

Gouvernement du Québec. (1997). «Symposium sur la gestion de l'eau au Québec». Document de référence, 59 p.

Hamdan, L. et Mukhopadhyay, A. (1990). «Numerical simulation of subsurface - water rise in Kuwait City». GROUNDWATER. p. 93-104.

Heath, R.C., et Trainer, F.W. (1968). Introduction to groundwater hydrology. John Wiley and Sons Inc., New York, 281 p.

Huyakorn, P.S., Thomas, S.D. et Thompson, B.M. (1984) «Techniques for making finite elements competitve in modeling flow in variably saturated porous media». <u>WATER</u> <u>RESOURCES RESEARCH</u>. vol. 2, no.8, p. 1099-1115.

Huyakorn, P.S., Springer, E.P., Guvanasen, V., et Wadsworth, T.D. (1986). «A threedimensional finite-element model for simulating water flow in variably saturated porous media». <u>WATER RESOURCES RESEARCH</u>. p. 1790-1808.

Isaaks, E.H., et Srivastava, R.M. (1989). <u>An introduction to applied geostatistics</u>. Oxford University Press. New York, 561 p.

Istok, J. (1989). <u>Groundwater modeling by the finite element method</u>, American Geophysical Union, Water Resources Monograph, Washington D.C., 495 p.

Kropinski, M.C.A. (1990). «Numerical techniques for saturated-unsaturated groundwater flow». Mémoire de maîtrise, Université de Waterloo.

Lefebvre, R., Gélinas, P., et Isabel, D. (1993). <u>Heat transfer during acid mine drainage</u> production in a waste rock dump, La Mine Doyon (Quebec). Rapport GREGI 93-03, Université Laval, 46p.

Lefebvre, R. (1997). Écoulement en milieux poreux : Notes de cours. Sainte-Foy, INRS-Géoressources. Lepage, N. (1996). «Modélisation tridimensionnelle régionale et locale de l'écoulement de l'eau souterraine sur l'île de Montréal et au Centre de Tri et d'Élimination des Déchets de la Ville de Montréal». Mémoire de maîtrise, Sainte-Foy, Institut National de la Recherche Scientifique (INRS-Géoressources). 354 p.

Llamas, J. (1993). <u>Hydrologie: Principes et applications</u>. Gaëtan Morin éditeur, Québec, 2e edition, 527 p.

Lin, H.C.J., Richards, D.R., Talbot, C.A., Yeh, G.T., Cheng, J.R., Cheng, H.P., Jones, N.L. (1997). Femwater : A Three-Dimensional finite element computer model for simulation density-dependent flow and transport in variably saturated media. Technical Report CHL-97-12, 143 p.

Liu, Y, et Zhang, C. (1993) «A comparative study of calculation methods for recharge of rainfall seepage to groundwater in plain area». <u>GROUNDWATER</u>. vol. 31, no. 1, p.12-18.

Marsily, G. de (1981). Quantitative Hydrogeology. Academic Press, San Diego, 440 p.

Martin, P.J., et Frind E.O. (1998) «Modeling a complex multi-aquifer system : The Waterloo Moraine». <u>GROUNDWATER</u>. vol.36, no.4, p. 679-690.

Masch, F.D., et Denny, K.J. (1966). «Grain size distribution and its effect on the permeability of unconsolidated sands». <u>WATER RESOURCES RESEARCH</u>. vol. 2, no. 4, p. 665-677.

Mergia, G., et Kelly, W.E. (1994). «Modeling Ground-Water remediation in the High Plains Aquifers». <u>GROUNDWATER</u>. vol.32, no.1, p. 129-139.

196

Michaud, Y., Lefebvre, R., Martel, R., Parent, M., Bolbuc, A., Boisvert, É., Bourque, É., Fagnan, N., et Paradis, D. (1997a). Le projet piémont laurentien - Application de la cartographie hydrogéologique régionale à la gestion de la ressource en eaux souterraines. <u>VECTEUR ENVIRONNMENT</u>. vol.30, no.4, p.21-23.

Michaud, Y., Fortier, R., Parent, M., et Pilon. J. (1997b). L'utilisation du Géoradar et des méthodes électriques pour la cartographie des formations aquifères du piémont laurentien, Québec. dans Recherche en cours 1997-E, Commission géologique du Canada, p. 73-82.

Microsoft Corporation. (1994). ACCESS. Version 2.0.

Ministère de l'Environnement et de la Faune (MEF). (1996a). <u>Projet de politique de</u> protection et de conservation des eaux souterraines (projet). Gouvernement du Québec, 36 p.

Ministère de l'Environnement et de la Faune(MEF). (1996b). La problématique des eaux souterraines du Québec (projet). Gouvernement du Québec, 73 p.

Ministère de l'Environnement et de la Faune (MEF). (1997). «Données climatiques». Direction du milieu atmosphérique, Gouvernement du Québec.

Morin, G. et Paquet, P. (1995). <u>Le modèle de simulation de quantité et de qualité</u> <u>CEQUEAU : Manuel de référence.</u> INRS-Eau, rapport de recherche no. 433, 318 p.

Mualem, Y.A. (1976). «A new model for predicting the hydraulic conductivity for unsaturated porous media». <u>WATER RESOURCES RESEARCH.</u>, vol. 12, no. 3, p. 513-522.

Mukhopadhyay, A., Al-sulaimi, J. et Barrat, J.M. (1994). «Numerical modeling of groundwater resource management options in Kuwait». <u>GROUNDWATER</u>. vol.32, no.6, p. 917-928.

Murat, V. (en préparation). «Étude comparative des méthodes d'évaluation de la vulnérabilité des aquifères à la pollution. Application aux aquifères granulaires du piémont laurentien». Mémoire de maîtrise, Sainte-Foy, Institut National de la Recherche Scientifique (INRS-Géoressources).

Nitao, J.J., et Buscheck, T.A. (1991). «Infiltration of liquid in a unsaturated, fractured porous medium». <u>WATER RESOURCES RESEARCH</u>. p. 2099-2112.

Olsthoorn, T.N. (1995). «Effective parameter optimization for ground-water model calibration». <u>GROUNDWATER</u>. vol. 33, no. 1, p.42-48.

Ophori, D.U., et Toth, J. (1989). «Characterization of ground-water flow by field mapping and numerical simulation, Ross Creek Basin, Alberta, Canada». <u>GROUNDWATER</u>. vol. 27, no 2, p. 193-201.

Panday, S », Huyakorn, P.S., Therrien, R., et Nichols, R. (1993). «Improved threedimensional finite-element techniques for field simulation of variably saturated flow and transport». <u>JOURNAL OF CONTAMINANT HYDROLOGY</u>. vol. 12, p. 3-33.

Paradis, D., Bernier, P.J., et Levallois, P. (1991). <u>Qualité de l'eau souterraine dans la</u> <u>MRC de Portneuf</u>. Ministère de l'Environnement. Gouvernement du Québec, 13 p.

Paradis, D. (1997). <u>Qualité de l'eau souterraine en zone de culture intensive de la pomme</u> <u>de terre dans la MRC de Portneuf</u>. Ministère de l'Environnement et de la Faune. direction régionale de Québec. Gouvernement du Québec, 14 p. Paradis, D., Lefebvre, R., et Michaud, Y. (1997). <u>Analyse hydrologique pour l'évaluation</u> <u>de la recharge en eau souterraine dans le bassin versant de la rivière Portneuf sur le</u> <u>piémont laurentien, Québec</u>. dans Recherche en cours 1997-E, Commission géologiqe du Canada, p. 83-88.

Paradis, D. (en préparation). «Comparaison des méthodes de délimitation des périmètres de protection des ouvrages de captage d'eau souterraine dans les aquifères granulaires du piémont laurentien». Mémoire de maîtrise, Québec, Institut National de la Recherche Scientifique (INRS-Géoressources).

Parent, M., Michaud, Y., Boisvert, É., Bolduc, A., Fagnan, N., Fortier, R., Cloutier, M. et Doiron, A. (1998). <u>Cartographie hydrogéologique régionale du piémont laurentien dans la MRC de Portneuf: géologie et stratigraphie des formations superficielles</u>. Commission géologique du Canada. Dossier public 3664-A.

Shepherd, R. (1989). «Correlations of permeability and grain size». <u>GROUNDWATER</u>. Vol 27, no.5, p. 633-638.

Sperry, J.M., et Pierce, J.J. (1995). «A model for estimating the hydraulic conductivity of granular material based on grain shape, grain size and porosity». <u>GROUNDWATER</u>. vol. 33, no. 6, p. 892-898.

Stoertz, M.W., et Bradbury, K.R. (1989). «Mapping recharge areas using a ground-water flow model - a case study». <u>GROUNDWATER</u>. vol. 27, no.2, p. 220-228.

Tanaguchi, M. (1993).«Evaluation of vertical groundwater fluxes and thermal properties of aquifers based on transient temperature depth profiles». <u>WATER RESOURCES</u> <u>RESEARCH</u>. vol.29, no7, p.2121-2026.

Tanaguchi, M. (1994). «Estimated recharge rates from groundwater temperatures in the Nara Basin, Japan». <u>APPLIED HYDROGEOLOGY</u>. vol. 4, p.7-13.
Therrien, R, Sudicky. E.A., et McLaren, R.G. (1998). <u>User's guide for NP 4.0, A</u> preprocessor for FRAC3DVS 4.0: An efficient simulator for three-dimensional, <u>saturated-unsaturated groundwater flow and chain-decay solute transport in porous or</u> <u>discretely-fractured porous formations</u>. Groundwater Simulation Group, 84 p.

Therrien, R., et Sudicky, E.A. (1996). «Three-dimensional analysis of saturated flow and solute transport in discretely-fracturated porous media». JOURNAL OF <u>CONTAMINANT HYDROLOGY</u>. vol. 23, p. 1-44.

Thornthwaite, C.W. (1948). «An approach toward a Rational classification of climate». Geophysical Revue, no 38(1). P. 55-94.

Tsang, C.F. (1996). «The modeling process and model validation». <u>GROUNDWATER</u>. vol. 29, no.6, p.825-831.

van Genuchten, M.T. (1980). «A closed form equation for predicting the hydraulic conductivity of unsaturated soils». Soil Sci. Soc. Am. J., vol. 44, no. 5, p. 892-898.

Vitali, F., Savard, M.M., et Bourque, É. (1997). <u>Premiers résultats de la caractérisation</u> <u>isotopique des aquifères de la région de Portneuf, Québec</u>. dans Recherche en cours 1997-E, Commission géologique du Canada, p. 89-95.

Vukovic, M., et Soro, A. (1992). <u>Determination of hydraulic conductivity of porous</u> <u>media from grain-size composition</u>. Water Resources Publications, Colorado, 69 p.

Yeh, T.C.J. et Mock, A. (1996). «A structured approach for calibrating steady-state groundwater flow models». <u>GROUNDWATER</u>. vol. 34, no.3, p. 444-450.

ANNEXE A

CARTE PIÉZOMÉTRIQUE DE RÉFÉRENCE

Figure A1 : Carte piézométrique de référence simplifiée (Fagnan, 1998)

iđ	UI	ГМ	Altitude	Sources des		id	UT	M	Altitude	Sources des
	x	Y	niveau d'eau (m)	Données	_		Х	Y	niveau d'eau (m)	Données
1	743941,21	5204406,53	156,54	a	-	32	735902,85	5193005,36	153,24	b
2	743618,77	5204230,75	155,13	а		33	751299,04	5185784,75	114,31	b
3	743347,25	5203795,60	152,87	а		34	749436,58	5184090,72	94,85	b
4	743094,25	5202926,06	148,34	а		35	749343,81	5184653,73	100,17	b
5	743109,67	5203354,38	150,01	а		36	746981,89	5188341,34	123,10	b
6	742667,49	5202184,41	147,96	а		37	746371,93	5188617,27	122,04	b
7	742413,90	5201708,28	147,01	а		38	745549,93	5188454,62	114,68	b
8	742074,49	5200418,55	144,58	а		39	743876,89	5192428,10	144,64	b
9	741853,88	5200164,00	143,98	а		40	746090,18	5190116,04	127,30	b
10	741633,27	5200028,24	143,50	а		41	745108,43	5191173,32	136,64	b
11	741802,97	5199773,69	142,90	а		42	744801,00	5191023,00	131,11	b
12	742057,52	5199417,31	142,10	а		43	744428,91	5190874,89	130,40	b
13	742176,31	5199010,03	141,33	а		44	745085,20	5191144,27	136,21	b
14	741684,18	5198653,66	140,40	а		45	743065,56	5194751,19	147,15	b
15	741395,69	5198195,46	139,83	а		46	742975,54	5193443,28	146,04	b
16	739206,54	5200350,67	140,80	а		47	744219,39	5192122,40	147,93	b
17	738765,32	5205068,36	158,53	а		48	744801,38	5192567,45	151,38	b
18	738646,53	5204711,99	158,49	а		49	745774,20	5194093,73	153,63	b
19	738918,05	5204355,62	158,41	а		50	743851,37	5195771,22	168,00	b
20	738561,68	5203642,87	152,97	а		51	742812,92	5196701,26	154,63	b
21	739002,90	5202726,49	150,47	а		52	741496,38	5191780,72	155,21	b
22	738697,44	5195089,95	134,00	а		53	739134,05	5193721,29	145,84	b
23	738459,86	5194275,37	130,00	а		54	738906,93	5195028,30	147,83	b
24	738324,10	5193528,70	128,86	а		55	738601,81	5198714,23	160,60	b
25	737906,99	5193352,05	126,26	а		56	738780,90	5198157,88	155,36	b
26	737666,84	5192223,35	121,56	a		57	737866,68	5200331,04	190,16	Ъ
27	736794,29	5191935,16	120,14	а		58	736622,80	5200382,16	190,90	b
28	734454,91	5191712,88	117,77	а		59	736663,70	5198514,65	185,37	b
29	733317,91	5191678,94	116,24	а		60	736676,49	5196154,25	174,26	b
30	735262,10	5193521,10	153,84	b		61	743028,50	5191746,09	138,44	b
31	736219,06	5192661,89	144,98	b		62	734174,61	5193366,91	146,14	b

Tableau A.1 : Données piézométriques utilisées pour la piézométrie de référence

 \mathcal{R}^{2}_{i}

id	UT	M	Altitude	Sources des	iđ	UT	M	Altitude	Sources des
	X	Y	niveau d'eau (m)	Données		Х	Y	niveau d'eau (m)	Données
63	732581,66	5192492,17	143,05	b	94	743989,24	5190765,46	127,93	b
64	732019,99	5191764,75	137,31	b	95	743314,41	5191959,40	132,15	b
65	731642,47	5191285,95	139,99	b	96	743307,03	5193008,62	138,00	b
66	731255,75	5190484,87	138,23	b	97	743604,36	5194979,52	145,73	b
67	729653,59	5189739,04	136,32	b	98	739777,19	5193811,58	146,53	b
68	730979,51	5189398,35	131,55	b	99	741913,60	5197408,71	147,92	b
69	731283,37	5188947,17	141,74	b	100	738219,89	5199207,85	173,64	b
70	730895,00	5188203,00	138,04	b	101	734151,50	5192244,85	139,16	b
71	731866,40	5187315,56	135,40	b	102	731280,33	5193031,75	128,29	b
72	729753,02	5186147,97	127,33	b	103	732412,21	5186758,28	121,44	b
73	722288,47	5178475,19	67,02	b	104	732996,53	5189647,84	144,09	b
74	721841,05	5176070,87	61,77	b	105	744124,07	5190833,16	130,25	b
75	721479,50	5175383,91	55,09	b	106	745039,00	5195124,00	155,35	b
76	720403,88	5175166,99	43,18	b	107	738316,33	5193095,83	129,97	b
77	724177,34	5179440,73	71,65	b	108	733771,00	5189677,00	146,87	b
78	723255,81	5180292,52	74,65	b	109	734336,37	5189497,68	146,73	b
79	724568,22	5183177,13	92,35	b	110	735037,81	5190826,11	145,98	b
80	724566,96	5183060,31	91,84	b	111	736073,39	5195798,67	159,45	b
81	723796,72	5181555,99	84,84	b	112	734541,78	5193920,56	148,42	b
82	729433,14	5184930,10	116,90	b	113	736567,74	5192387,40	127,14	b
83	729587,67	5184208,91	117,88	b	114	730138,72	5189743,43	134,50	b
84	730523,96	5183104,18	115,79	b	115	738250,01	5191150,91	123,49	b
85	728099,00	5181099,00	84,59	b	116	750399,00	5187750,00	120,58	b
86	727578,66	5181976,67	96,09	b	117	723919,00	5179499,00	74,38	b
87	726952,96	5181693,04	88,16	b	118	723449,00	5178599,00	72,60	b
88	725647,82	5180511,16	70,90	b	119	725848,73	5180768,42	74,26	b
89	724621,42	5178112,91	68,08	b	120	745248,97	5189847,52	119,36	b
90	723523,36	5176414,49	65,09	b	121	745331,62	5189825,15	121,16	b
91	722152,96	5175044,10	57,81	b	122	743505,55	5192835,89	138,78	b
92	730846,47	5187202,28	134,32	b	123	742109,73	5191670,10	150,50	b
93	744852,99	5189153,37	116,63	b	124	738686,93	5193702,19	143,24	Ъ

 Tableau A.1 : Données piézométriques utilisées pour la piézométrie de référence (suite 1)

id	UT	ГМ	Altitude	Sources des	id	UT	М	Altitude	Sources des
	X	Y	niveau d'eau (m)	Données		X	Y	niveau d'eau (m)	Données
125	737914,95	5199863,36	175,93	b	 156	734956,40	5188141,06	135,34	
126	737907,62	5197674,92	157,75	b	157	733671,84	5185251,49	133,86	с
127	721925,31	5176917,38	64,09	b	158	730887,35	5181257,33	103,73	с
128	722719,15	5178114,44	69,77	b	159	719949,00	5178399,00	74,87	d
129	724178,47	5180851,12	79,14	b	160	738534,00	5190994,00	127,27	d
130	720988,52	5174625,78	45,26	b	161	732462,00	5197600,00	135,80	d
131	727752,73	5181414,85	89,31	b	162	743138,00	5195058,00	151,29	d
132	749488,02	5184476,14	100,10	b	163	739928,00	5196367,00	146,40	d
133	737873,33	5195012,29	156,56	а	164	743031,00	5195150,00	153,96	d
134	737301,18	5195652,34	168,61	а	165	742836,16	5195362,43	158,23	d
135	743645,92	5199158,37	180,60	а	166	748910,89	5194347,24	153,99	d
136	744941,49	5198484,90	175,45	а	167	742080,05	5195128,07	157,22	d
137	737637,89	5197638,73	175,29	а	168	735629,00	5197492,00	162,09	d
138	728196,97	5189144,14	130,00	а	169	748500,00	5193814,00	170,24	d
139	727362,19	5187915,78	133,41	а	170	740433,00	5204831,00	191,52	d
140	723819,32	5185913,34	133,46	а	171	723899,00	5175699,00	60,44	e
141	725031,46	5184588,92	128,77	а	172	743065,00	5194049,02	143,95	e
142	730394,71	5185256,35	124,18	а	173	742332,00	5193793,00	155,63	e
143	725322,51	5180096,43	69,00	а	174	718749,00	5170449,00	18,51	e
144	745603,00	5191034,00	131,88	а	175	719899,00	5178399,00	68,35	e
145	734923,00	5190477,00	150,74	а	176	749094,00	5187026,00	95,73	f
146	739202,30	5196597,72	138,21	а	177	748290,79	5187378,04	106,34	f
147	739027,21	5199633,87	140,16	а	178	747930,29	5187500,93	109,73	f
148	741014,88	5190763,87	163,13	c	179	749965,00	5187564,00	117,38	f
149	741497,81	5190314,23	159,27	с	180	744555,00	5188782,00	118,08	f
150	742536,78	5190352,96	159,92	с	181	746273,00	5188254,00	124,84	f
151	743723,87	5189850,73	140,30	с	182	744132,00	5188896,00	129,85	f
152	743206,42	5188389,70	133,19	с	183	730191,00	5190731,00	143,30	f
153	749173,29	5189512,95	132,89	с	184	730620,00	5190330,00	138,12	f
154	748237,47	5192251,96	137,50	c	185	733232,00	5188356,00	139,05	f
155	738784,36	5190249,89	158,00	с	186	732897,00	5188201,00	141,45	f

Tableau A.1 : Données piézométriques utilisées pour la piézométrie de référence (suite 2)

id	UT	ſM	Altitude	Sources des	id	UT	М	Altitude	Sources des
	X	Y	niveau d'eau (m)	Données	 _	Х	Y	niveau d'eau (m)	Données
187	737469,00	5189656,00	152,93	f	 218	740842,91	5202463,79	190,00	с
188	736399,00	5189344,00	146,50	f	219	727133,57	5184032,21	78,16	а
189	737974,00	5189890,00	147,27	f	220	727303,51	5183726,33	76,75	а
190	722720,00	5173600,00	37,92	g	221	726598,28	5183641,35	74,18	а
191	722590,00	5173720,00	36,39	g	222	726759,71	5182961,62	70,88	а
192	724142,00	5175945,36	66,50	g	223	727966,25	5183335,47	63,38	a
193	725865,00	5181821,00	54,74	g	224	727864,29	5182613,25	59,70	а
194	726001,00	5182024,00	58,09	g	225	727362,99	5182315,86	62,88	a
195	726310,00	5182069,00	74,90	g	226	726870,18	5182196,91	62,25	a
196	744630,00	5188050,00	105,89	g	227	726538,80	5182698,22	61,37	a
197	727806,00	5183859,00	93,92	g	228	725782,59	5182332,86	60,24	а
198	727860,00	5184200,00	109,44	g	229	723628,75	5182143,53	61,22	a
199	727828,00	5184279,00	107,61	g	230	724374,21	5183516,76	78,02	a
200	743280,00	5193010,00	138,33	g	231	723724,80	5177399,62	58,20	a
201	743440,00	5192780,00	139,49	g	232	723498,19	5177041,36	58,10	а
202	743600,00	5194900,00	148,61	g	233	722940,93	5176529,29	57,90	a
203	740100,00	5196400,00	153,36	g	234	722458,98	5176062,41	57,50	a
204	735824,00	5197832,00	177,66	g	235	722067,40	5176047,34	57,40	а
205	719719,00	5170919,00	32,34	e	236	721818,90	5175098,51	48,00	a
206	722599,00	5174799,00	54,46	e	237	722022,22	5174496,07	43,00	а
207	745603,00	5191034,00	131,88	e	238	720864,03	5177993,12	44,27	а
208	734923,00	5190477,00	150,74	e	239	719773,30	5177364,24	57,00	а
209	746676,60	5191740,59	119,97	а	240	721688,95	5178107,48	48,97	а
210	747722,66	5189721,87	104,89	а	241	722141,10	5179222,73	51,66	а
211	731978,35	5190782,80	112,96	а	242	725703,11	5179648,24	77,00	с
212	730559,02	5189245,36	108,65	a	243	726468,98	5179735,76	82,00	с
213	729059,41	5188375,78	102,03	а	244	722212,90	5178718,24	55,50	а
214	728903,04	5186155,60	92,78	а	245	733042,63	5189414,75	146,90	с
215	731424,93	5190217,30	111,98	a	246	728570,95	5187854,68	99,60	а
216	731158,76	5189853,86	111,37	а	247	738005,34	5191874,06	122,27	а
217	740743,45	5201005,02	175,00	с	248	738511,18	5192199,86	124,13	a ⁻

 Tableau A.1 : Données piézométriques utilisées pour la piézométrie de référence (suite 3)

id	UT	M	Altitude	Sources des		id	UT	Μ	Altitude	Sources des
	Х	Y	niveau d'eau (m)	Données	_		Х	Y	niveau d'eau (m)	Données
249	738159,67	5192585,66	124,84	a		280	744219,39	5192122,40	147,93	b
250	736333,52	5190322,27	151,00	с		281	744801,38	5192567,45	151,38	b
251	724891,43	5177746,99	70,00	с		282	745774,20	5194093,73	153,63	Ъ
252	732309,89	5184644,37	123,00	с		283	743851,37	5195771,22	168,00	b
253	734654,72	5187537,71	120,90	а		284	741496,38	5191780,72	155,21	b
254	729056,82	5189233,84	120,00	а		285	739134,05	5193721,29	145,84	b
255	728657,62	5188844,87	115,00	а		286	738906,93	5195028,30	147,83	b
256	731738,17	5192198,09	141,63	с		287	738601,81	5198714,23	160,60	b
257	731841,02	5191352,70	113,70	а		288	738780,90	5198157,88	155,36	b
258	732035,51	5191506,24	114,07	a .		289	737866,68	5200331,04	190,16	b
259	730189,58	5190034,87	137,27	с		290	736622,80	5200382,16	190,90	b
260	730475,16	5191177,21	129,70	а		291	736663,70	5198514,65	185,37	b
261	730347,80	5190791,29	128,80	а		292	736676,49	5196154,25	174,26	b
262	730251,32	5190447,82	127,77	а		293	743028,50	5191746,09	138,44	b
263	729672,44	5190185,39	125,63	а		294	734174,61	5193366,91	146,14	b
264	735262,10	5193521,10	153,84	b		295	732581,66	5192492,17	143,05	b
265	736219,06	5192661,89	144,98	b		296	732019,99	5191764,75	137,31	b
266	735902,85	5193005,36	153,24	b		297	731642,47	5191285,95	139,99	b
267	751299,04	5185784,75	114,31	b		298	731255,75	5190484,87	138,23	b
268	749436,58	5184090,72	94,85	b		299	729653,59	5189739,04	136,32	b
269	749343,81	5184653,73	100,17	b		300	730979,51	5189398,35	131,55	b
270	746981,89	5188341,34	123,10	b		301	731283,37	5188947,17	141,74	b
271	746371,93	5188617,27	122,04	b		302	730895,00	5188203,00	138,04	b
272	743876,89	5192428,10	144,64	b		303	731866,40	5187315,56	135,40	b
273	746090,18	5190116,04	127,30	b		304	729753,02	5186147,97	127,33	b
274	745108,43	5191173,32	136,64	b		305	722288,47	5178475,19	67,02	b
275	744801,00	5191023,00	131,11	b		306	721841,05	5176070,87	61,77	b
276	744428,91	5190874,89	130,40	b		307	721479,50	5175383,91	55,09	b
277	745085,20	5191144,27	136,21	b		308	720403,88	5175166,99	43,18	b
278	743065,56	5194751,19	147,15	b		309	724177,34	5179440,73	71,65	b
279	742975,54	5193443,28	146,04	b		310	723255,81	5180292,52	74,65	b

Tableau A.1 : Données piézométriques utilisées pour la piézométrie de référence (suite 4)

id	UI	M	Altitude	Sources des	id	UT	М	Altitude	Sources des
	X	Y	niveau d'eau (m)	Données		Х	Y	niveau d'eau (m)	Données
311	724568,22	5183177,13	92,35	b	 342	730138,72	5189743,43	134,50	b
312	724566,96	5183060,31	91,84	b	343	738250,01	5191150,91	123,49	b
313	723796,72	5181555,99	84,84	b	344	750399,00	5187750,00	120,58	b
314	730523,96	5183104,18	115,79	Ъ	345	723919,00	5179499,00	74,38	Ъ
315	728099,00	5181099,00	84,59	b	346	723449,00	5178599,00	72,60	ь
316	727578,66	5181976,67	96,09	b	347	725848,73	5180768,42	74,26	b
317	726952,96	5181693,04	88,16	b	348	745248,97	5189847,52	119,36	b
318	725647,82	5180511,16	70,90	b	349	745331,62	5189825,15	121,16	b
319	724621,42	5178112,91	68,08	b	350	743505,55	5192835,89	138,78	b
320	723523,36	5176414,49	65,09	b	351	742109,73	5191670,10	150,50	b
321	722152,96	5175044,10	57,81	b	352	738686,93	5193702,19	143,24	b
322	744852,99	5189153,37	116,63	b	353	737914,95	5199863,36	175,93	b
323	743989,24	5190765,46	127,93	b	354	737907,62	5197674,92	157,75	b
324	743314,41	5191959,40	132,15	b	355	721925,31	5176917,38	64,09	b
325	743604,36	5194979,52	145,73	b	356	722719,15	5178114,44	69,77	b
326	739777,19	5193811,58	146,53	b	357	724178,47	5180851,12	79,14	b
327	741913,60	5197408,71	147,92	b	358	720988,52	5174625,78	45,26	b
328	738219,89	5199207,85	173,64	b	359	727752,73	5181414,85	89,31	b
329	734151,50	5192244,85	139,16	b	360	749488,02	5184476,14	100,10	b
330	731280,33	5193031,75	128,29	b	361	731416,82	5191682,79	140,65	с
331	732412,21	5186758,28	121,44	b	362	736001,61	5192053,27	119,30	а
332	732996,53	5189647,84	144,09	b	363	745742,35	5195650,09	156,00	c
333	744124,07	5190833,16	130,25	b	364	742988,43	5196094,43	148,04	а
334	745039,00	5195124,00	155,35	b	365	743187,25	5195967,86	158,00	с
335	738316,33	5193095,83	129,97	b	366	740972,99	5198773,08	153,00	с
336	733771,00	5189677,00	146,87	b	367	739784,39	5198127,10	139,06	а
337	734336,37	5189497,68	146,73	b	368	743711,93	5193389,94	138,96	а
338	735037,81	5190826,11	145,98	b	369	743188,48	5195387,36	146,73	а
339	736073,39	5195798,67	159,45	b	370	744378,59	5190563,72	125,98	а
340	734541,78	5193920,56	148,42	b	371	743827,53	5191696,73	130,63	а
341	736567,74	5192387,40	127,14	b	372	747968,18	5188591,26	101,45	а

Tableau A.1 : Données piézométriques utilisées pour la piézométrie de référence (suite 5)

id	UT	M	Altitude	Sources des		id	UT	М	Altitude	Sources des
	Х	Y	niveau d'eau (m)	Données			Х	Y	niveau d'eau (m)	Données
373	748555,27	5186510,64	85,00	a	-	404	742405,37	5192881,58	148,00	c
374	746649,76	5188972,36	130,00	с		405	743466,85	5193785,47	141,81	a
375	739771,67	5201485,99	143,10	а		406	743332,43	5194615,19	143,28	a
376	739926,67	5202211,68	144,63	а		407	743188,74	5194068,22	142,43	a
377	739926,67	5203219,17	146,39	a		408	743893,30	5194726,43	144,44	а
378	739581,44	5203353,03	147,13	a		409	741849,17	5197605,63	160,00	с
379	739227,59	5202252,02	149,56	a		410	742854,52	5198733,02	150,00	с
380	739398,26	5203092,35	147,70	a		411	745721,72	5198894,44	167,46	а
381	724230,71	5177240,23	66,50	с		412	745829,34	5197818,29	163,22	а
382	725826,95	5177412,37	68,00	с		413	745875,46	5198594,65	174,47	с
383	727399,71	5180127,55	79,82	a		414	744868,48	5199709,25	175,06	а
384	723017,88	5177349,77	69,60	с		415	744922,29	5199862,99	178,00	с
385	731515,51	5183280,90	109,85	а		416	741171,11	5196619,13	162,00	с
386	729363,71	5181989,83	98,00	с		417	743095,12	5196666,92	160,00	а
387	730560,89	5181755,08	99,65	а		418	740444,02	5194513,34	147,00	с
388	726828,51	5178601,73	72,55	а		419	740784,79	5195249,37	147,00	с
389	732731,77	5185330,57	121,00	с		420	740607,59	5196094,45	147,00	с
390	728159,64	5185968,37	89,66	а		421	739909,00	5197563,85	138,85	a
391	727499,07	5185888,46	86,74	a		422	738999,03	5193118,18	143,00	с
392	727365,90	5185366,40	84,49	а		423	742441,80	5198418,45	160,00	с
393	726881,12	5185147,99	82,56	а		424	744507,46	5196064,56	168,00	с
394	726891,77	5184625,92	80,66	а		425	744859,75	5196657,03	175,00	с
395	728484,58	5187174,94	97,20	а		426	744747,66	5197281,54	178,00	с
396	723730,55	5174869,19	55,00	с		427	744315,31	5197609,80	175,00	с
397	722833,46	5176951,98	66,00	с		428	743810,91	5197617,81	175,00	с
398	728576,54	5184011,74	108,00	с		429	743386,56	5197401,64	174,00	с
399	728179,24	5182945,35	61,50	а		430	744698,31	5193891,10	153,00	c
400	728385,63	5182511,94	100,00	с		431	742096,01	5198307,84	150,00	с
401	724257,92	5185102,09	91,37	а		432	741471,11	5197353,11	160,00	c
402	743035,77	5192603,46	136,26	а		433	743305,33	5197636,63	170,13	а
403	744106,53	5193966,24	139,80	а		434	742454,76	5197225,80	155,00	c

Tableau A.1 : Données piézométriques utilisées pour la piézométrie de référence (suite 6)

id	UI	ГM	Altitude	Sources des		id	UT	М	Altitude	Sources des
	X	<u>Y</u>	niveau d'eau (m)	Données			X	Y	niveau d'eau (m)	Données
435	745752,89	5198562,41	166,23	a		466	750510,00	5184588,00	103,38	d
436	742350,60	5197804,42	161,50	с		467	757895,00	5186407,00	124,34	d
437	742274,16	5190863,69	150,00	c	4	468	758466,00	5194677,00	130,87	d
438	739717,38	5193884,45	147,00	с		469	758458,00	5194777,00	143,91	d
439	739549,55	5193430,35	145,93	a	4	470	752986,00	5189593,00	134,71	d
440	741794,82	5197081,17	160,00	с		471	756117,84	5192591,81	141,37	đ
441	742956,87	5195643,59	147,34	с		472	761435,00	5189969,00	146,05	d
442	737086,34	5197630,82	179,00	с		473	760835,00	5189943,00	148,84	d
443	752828,37	5185287,96	102,01	а	4	474	758934,00	5195114,00	157,34	d
444	753158,36	5185819,62	104,91	а	4	475	758941,00	5195015,00	160,39	d ·
445	753470,02	5186314,60	106,96	а		476	759984,00	5191232,00	156,16	d
446	760418,17	5193867,72	136,69	а		477	759003,00	5195521,00	155,57	d
447	760876,48	5194179,38	140,69	a	4	478	759133,00	5195130,00	156,86	d
448	762609,59	5195129,17	150,00	а	4	479	764804,00	5196417,00	156,06	d
449	761114,80	5194326,04	140,90	a	4	480	763154,57	5196341,24	159,59	d
450	760224,37	5184363,98	120,98	а	4	481	765042,00	5197890,00	154,51	d
451	762854,43	5196869,83	164,79	а	4	482	764256,00	5198331,00	158,88	d
452	762560,86	5197005,99	167,86	а		483	764804,00	5198374,00	156,74	d
453	761482,45	5195379,44	164,16	a	4	484	765084,00	5197994,00	152,98	d
454	751565,00	5187448,00	129,77	а	2	485	765019,00	5198189,00	152,66	d
455	753508,00	5189984,00	135,99	a	4	486	765004,00	5198389,00	152,86	d
456	756094,42	5189733,78	119,84	a	4	487	765065,00	5198243,00	154,57	d
457	752298,44	5185149,64	99,07	a		488	765180,00	5198051,00	153,44	đ
458	754550,34	5194362,83	163,23	с	4	489	765169,01	5198201,00	155,43	d
459	753643,62	5192654,83	166,35	с	4	490	765222,00	5198155,00	155,22	d
460	759632,17	5196766,69	179,91	с	4	491	765334,00	5198013,00	159,88	d
461	761761,91	5197799,93	180,54	с	4	492	765219,00	5198205,00	156,46	đ
462	764355,54	5193645,89	159,79	с	4	493	766193,00	5198580,00	161,08	d
463	746626,00	5180279,00	60,62	d	4	494	765614,00	5198285,00	160,76	d
464	745573,00	5176336,00	78,19	d		495	765571,00	5197529,00	161,18	d
465	753002,00	5181518,00	89,58	d	2	496	764106,58	5198320,51	176,04	d

 Tableau A.1 : Données piézométriques utilisées pour la piézométrie de référence (suite 7)

id	UT	ГM	Altitude	Sources des		id	UT	М	Altitude	Sources des
	X	Y	niveau d'eau (m)	Données			Х	Y	niveau d'eau (m)	Données
497	762288,00	5189301,00	183,58	d	-	528	751949,84	5183404,79	87,95	a
498	749197,00	5174857,00	28,59	e		529	752341,57	5181854,10	79,00	a
499	750800,00	5174228,00	46,46	e		530	752725,65	5180392,85	64,00	а
500	754432,00	5180524,00	88,06	e		531	751288,13	5178316,43	46,00	а
501	755423,00	5182004,00	96,61	e		532	749827,79	5177266,81	28,76	а
502	757095,00	5182433,00	94,93	e		533	748546,68	5176220,60	22,75	а
503	754614,81	5183376,74	109,94	e		534	751965,41	5179671,87	53,00	a
504	753674,00	5184529,00	119,72	e		535	748080,69	5177705,21	51,27	а
505	749965,00	5187564,00	117,38	f		536	751259,18	5182436,66	83,00	а
506	754139,91	5186320,78	126,76	f		537	748312,90	5177313,34	51,26	a
507	744308,00	5180569,00	52,93	g		538	748603,17	5177081,12	51,10	a
508	743353,00	5180094,00	57,71	g		539	751320,67	5176285,76	44,57	a
509	743594,00	5180088,00	58,02	g		540	750094,04	5176262,35	40,52	a
510	753365,00	5178502,00	80,31	g		541	752596,41	5176568,68	48,65	a
511	754008,44	5178180,77	80,83	g		542	751371,73	5179466,10	50,00	a
512	753148,00	5180275,00	95,54	g		543	750940,89	5181925,46	90,00	с
513	753147,00	5180275,00	95,80	g		544	751597,70	5181737,64	82,00	a
514	753431,00	5180498,00	93,35	g		545	758777,98	5192431,07	149,45	b
515	753454,00	5180851,00	85,35	g		546	759928,92	5191440,18	157,72	b
516	753458,00	5180801,00	87,45	g		547	755959,90	5192236,54	147,60	b
517	754710,81	5183222,73	109,14	g		548	757207,13	5193566,11	128,86	b
518	754738,81	5183189,74	108,79	g		549	763677,51	5186893,54	144,26	b
519	754885,81	5183121,73	109,27	g		550	761813,19	5186720,21	134,76	b
520	754750,81	5183145,74	107,87	g		551	762328,75	5186730,91	142,01	b
521	754888,81	5183188,74	109,56	g		552	760214,94	5186826,29	127,24	b
522	754805,81	5183153,74	108,78	g		553	760438,56	5187766,47	132,62	b
523	754761,81	5183215,73	109,29	g		554	759889,27	5187147,38	130,83	b
524	759201,00	5190319,00	149,79	e		555	757062,40	5187227,11	133,43	b
525	756837,62	5192834,19	123,89	a		556	755415,49	5183951,34	119,40	b
526	754805,22	5188849,81	119,35	а		557	755496,14	5182807,86	102,33	b
527	754034,66	5187048,19	120,14	a		558	756177,86	5182175,29	96,17	b

Tableau A.1 : Données piézométriques utilisées pour la piézométrie de référence (suite 8)

id	UT	M	Altitude	Sources des	id	UT	М	Altitude	Sources des
	X	Y	niveau d'eau (m)	Données	 	Х	Y	niveau d'eau (m)	Données
559	754234,55	5182291,70	96,85	b	 590	760182,27	5189413,58	147,97	b
560	755304,23	5179742,24	89,14	b	591	761153,26	5191432,50	160,94	b
561	757298,22	5184132,75	115,80	b	592	756285,40	5193641,01	139,29	b
562	758799,58	5184246,75	116,75	b	593	758528,55	5195333,18	156,81	b
563	757125,71	5182534,18	97,92	b	594	757891,50	5190384,51	135,92	b
564	758619,64	5181312,48	91,46	b	595	757087,21	5189691,84	142,27	b
565	758944,02	5180730,91	86,33	b	596	752892,79	5186429,94	118,44	b
566	755603,39	5178321,75	74,96	b	597	757331,52	5193715,50	129,67	b
567	753531,00	5177857,47	72,42	b	598	756580,57	5188550,64	142,47	b
568	752894,84	5178575,26	81,77	b	599	756495,26	5188817,87	142,39	b
569	752801,17	5177610,45	67,05	b	600	755726,44	5187050,90	135,92	b
570	752536,64	5175928,03	65,77	b	601	755153,88	5183846,14	112,31	b
571	750949,89	5176792,90	60,32	b	602	755901,80	5183101,13	100,68	b
572	751299,04	5185784,75	114,31	b	603	756935,13	5180988,06	89,74	b
573	749436,58	5184090,72	94,85	b	604	757161,82	5182532,84	94,84	b
574	749343,81	5184653,73	100,17	b	605	757494,75	5182201,25	99,45	b
575	749460,95	5180945,56	86,98	b	606	757906,57	5181781,40	93,63	b
576	747087,03	5177949,65	58,27	b	607	758918,96	5180723,03	84,60	b
577	748856,20	5176946,91	49,08	b	608	759184,76	5180451,72	84,72	b
578	749524,29	5178256,13	70,30	b	609	759608,94	5180028,91	80,76	b
579	750617,60	5178816,30	78,19	b	610	751625,26	5186606,71	122,00	b
580	750327,85	5179542,60	80,66	b	611	751558,22	5186719,38	121,64	b
581	751340,03	5180280,48	91,73	b	612	753911,00	5191269,00	147,46	b
582	745826,73	5178482,14	70,34	b	613	750399,00	5187750,00	120,58	b
583	744633,35	5179458,55	62,87	b	614	753610,34	5187819,22	118,86	b
584	756732,01	5192039,14	138,68	b	615	757155,00	5185457,00	127,44	b
585	752477,02	5190028,64	141,29	b	616	746399,76	5177827,03	68,24	b
586	754976,33	5192980,00	142,80	ь	617	743947,49	5180136,97	58,58	b
587	753270,26	5188200,91	121,93	b	618	747346,21	5178380,38	50,44	b
588	751913,75	5190762,39	138,94	b	619	745804,14	5176472,55	63,99	b
589	755363,77	5187641,56	132,78	b	620	747129,78	5176606,11	63,99	b

Tableau A.1 : Données piézométriques utilisées pour la piézométrie de référence (suite 9)

id	UT	M	Altitude	Sources des		id	UT	М	Altitude	Sources des
	X	Y	niveau d'eau (m)	Données	_		Х	Y	niveau d'eau (m)	Données
621	756334,68	5178944,73	73,94	b	_	652	754518,14	5176718,63	52,78	a
622	753638,22	5181340,88	85,67	b		653	755310,76	5178658,04	70,13	а
623	757490,08	5177410,69	53,45	b		654	754594,03	5179796,39	79,86	а
624	754663,28	5177521,10	60,26	b		655	753908,38	5180768,33	87,45	a
625	751961,19	5190658,03	143,87	b		656	754282,04	5182941,59	96,00	а
626	759859,15	5194650,47	151,32	b		657	753782,51	5180190,00	91,28	а
627	759224,04	5192002,70	151,00	b		658	751905,30	5176237,96	46,88	а
628	760817,84	5191735,33	167,14	b		659	751392,47	5177603,19	67,00	с
629	762547,05	5192304,79	169,70	b		660	752985,82	5177127,56	60,00	с
630	761814,39	5192961,08	156,04	b		661	752105,91	5178899,27	81,00	с
631	761512,07	5189869,21	142,62	b		662	750530,40	5177805,33	32,23	а
632	760828,25	5189874,17	153,35	b		663	752777,74	5179957,53	60,00	а
633	758967,09	5190193,62	149,63	b		664	755875,24	5178768,47	76,00	с
634	757797,41	5191294,57	124,44	b		665	757742,08	5180540,18	90,29	с
635	756805,76	5189592,38	136,84	b		666	755494,74	5180730,43	91,00	c
636	754473,92	5184755,98	125,23	b		667	752474,52	5182728,06	95,00	с
637	757423,70	5183916,80	104,58	b		668	756110,24	5177640,31	59,91	а
638	753232,82	5176529,59	49,74	b		669	756493,11	5177517,65	65,00	с
639	760865,41	5179284,58	87,21	b		670	754694,00	5178636,52	81,00	с
640	750139,47	5181448,60	87,38	b	•	671	750107,72	5182920,22	90,00	с
641	748462,74	5179188,25	62,26	b		672	749459,54	5183010,66	86,00	с
642	758321,59	5186748,33	122,01	b		673	750182,72	5188739,03	127,00	с
643	753020,00	5189806,00	138,58	b		674	750557,90	5189604,82	128,30	а
644	749488,02	5184476,14	100,10	b		675	753322,70	5191740,47	140,50	а
645	748077,85	5174171,99	56,43	b		676	751729,62	5191030,51	147,29	с
646	754273,60	5180243,29	82,75	а		677	754350,12	5193529,79	167,55	с
647	755184,29	5179138,68	75,44	а		678	754777,25	5193627,91	150,00	с
648	754855,43	5178126,81	66,17	a		679	759366,00	5193166,16	149,50	с
649	749467,25	5176651,17	25,34	a		680	752123,33	5188413,41	138,00	с
650	748227,72	5174678,04	55,82	a		681	750955,11	5188864,76	138,00	с
651	748775,81	5174737,07	46,00	с		682	754069,06	5192431,92	141,00	а

Tableau A.1 : Données piézométriques utilisées pour la piézométrie de référence (suite 10)

-

id	UT	M	Altitude	Sources des		id	UT	М	Altitude	Sources des
	Х	Y	niveau d'eau (m)	Données	_		X	Y	niveau d'eau (m)	Données
683	758545,30	5188067,11	148,60	с		714	751062,71	5181032,08	87,80	<u>с</u>
684	753186,81	5190899,59	147,00	с		715	750480,66	5179177,63	79,00	с
685	755044,18	5192339,05	148,00	с		716	758559,47	5195311,67	150,00	с
686	751567,16	5189960,68	141,00	с		717	742966,17	5202541,82	147,62	а
687	757823,61	5188992,20	154,02	с		718	742213,69	5201365,08	146,30	а
688	758276,72	5183072,15	109,52	а		719	742181,68	5200756,70	145,22	a
689	752923,26	5179471,32	89,75	с		720	742013,57	5200812,73	145,19	а
690	756513,47	5178196,68	69,00	с		721	742109,64	5201245,00	146,00	a
691	752116,00	5176815,84	60,20	с		722	739371,92	5198923,55	139,68	а
692	753554,88	5180787,03	86,57	a		723	739836,21	5198675,39	139,41	а
693	753375,45	5181345,58	87,60	с		724	739459,97	5197002,34	138,47	a
694	754446,25	5179632,30	81,00	с		725	738971,66	5195953,68	137,80	a
695	756883,04	5179574,42	79,00	с		726	740796,81	5197418,60	139,30	a
696	751997,89	5182699,99	84,62	a		727	740324,51	5197538,68	139,06	a
697	755120,11	5182848,42	98,00	а		728	738403,31	5191582,95	123,13	a
698	756735,24	5183309,28	102,00	а		729	735185,28	5191775,07	118,80	a
699	744164,14	5176978,16	70,40	с		730	733888,47	5191462,87	117,00	a
700	746040,21	5179028,44	62,80	с		731	732607,66	5191014,59	115,03	a
701	746723,63	5179390,25	56,38	а		732	730206,16	5188869,24	106,83	a
702	745946,41	5174954,69	72,00	с		733	729749,87	5188949,29	105,24	a
703	746436,33	5177007,61	72,35	c		734	729541,74	5188661,11	103,99	a
704	747077,18	5177128,98	60,00	c		735	732951,88	5191326,78	115,62	a
705	757275,41	5178313,93	75,00	с		736	732287,46	5191310,77	114,44	а
706	758145,43	5179743,24	85,00	с		737	724306,46	5183025,56	65,16	a
707	751781,01	5183151,60	90,00	с		738	724026,28	5183073,59	63,81	а
708	751318,07	5184183,29	92,00	с		739	723986,25	5182769,40	63,79	a
709	751384,20	5181604,05	88,70	с		740	724146,36	5182481,22	62,11	a
710	753844,39	5179527,45	87,30	с		741	723890,19	5182281,09	60,44	a
711	751130,40	5182561,65	90,00	c		742	723722,09	5182080,96	59,75	a
712	751211,61	5183279,07	92,00	c		743	723537,97	5181848,82	59,03	а
713	749871,54	5183685,16	93,00	с		744	723337,84	5181568,64	58,63	a

 Tableau A.1 : Données piézométriques utilisées pour la piézométrie de référence (suite 11)

id	UT	ſM	Altitude	Sources des	ic	1	UT	М	Altitude	Sources des
	Х	Y	niveau d'eau (m)	Données			Х	Y	niveau d'eau (m)	Données
745	723249,79	5181312,49	58,15	a	77	'6	731847,17	5172450,93	38,10	a
746	722953,61	5181120,37	56,85	а	77	7	730862,56	5171946,62	33,77	а
747	722625,41	5180896,21	56,15	a	77	8	732527,59	5172514,97	44,73	а
748	722657,42	5180471,95	54,64	а	77	'9	752596,21	5181672,72	76,00	а
749	722433,27	5179927,62	53,22	а	78	80	752107,91	5183001,55	86,16	а
750	722417,27	5179439,31	54,75	а	78	31	752027,86	5184930,77	98,69	а
751	720391,99	5175917,10	50,74	а	78	32	751827,74	5184346,40	93,66	а
752	720183,86	5175628,92	46,00	а	78	33	758082,62	5193633,24	126,68	а
753	720063,79	5175228,67	41,00	а	78	4	759448,51	5193824,34	129,14	а
754	724810,77	5175636,93	57,00	а	78	5	763432,34	5195535,32	151,00	а
755	725146,98	5174740,37	45,00	а	78	6	764707,82	5196986,32	153,00	а
756	726972,12	5176893,72	65,00	а	78	37	764723,83	5198034,98	154,00	а
757	726876,06	5175973,13	61,20	а	78	88	764587,74	5195929,67	152,00	а
758	726587,88	5174820,42	45,00	а	78	39	761775,30	5194680,28	144,07	a
759	728260,93	5175981,14	45,45	а	79	00	745971,19	5194576,95	152,75	a
760	728597,14	5174980,51	43,44	a	79	91	746404,86	5193709,60	136,84	a
761	728645,16	5174051,93	39,90	а	79	2	746675,91	5192815,14	125,18	а
762	728989,37	5173067,32	36,05	а	79	93	745808,56	5191622,53	120,31	а
763	729197,50	5176029,17	59,54	а	79)4	746838,54	5190755,17	109,21	а
764	729453,68	5174756,37	49,86	а	79	95	745266,46	5189481,24	117,99	a
765	729677,81	5173907,84	48,60	а	- 79)6	744182,26	5188369,94	112,45	а
766	729589,75	5172819,16	37,15	а	79	07	751744,54	5190565,43	136,60	а
767	730038,03	5173211,41	39,68	а	79	8	758832,09	5193672,22	128,00	a
768	730934,59	5175829,05	58,46	а	79)9	759588,76	5194878,26	141,56	a
769	731038,66	5174956,50	51,82	а	80)0	759364,07	5194610,62	136,08	а
770	731486,93	5174220,04	45,03	а	80)1	758412,46	5195063,30	148,05	а
771	731735,09	5173219,41	40,26	а	80)2	757318,76	5193450,84	125,32	а
772	732687,70	5174716,35	59,30	а	80)3	757166,77	5191957,33	122,10	а
773	732471,55	5173403,53	49,20	а	80)4	757351,80	5191065,20	120,10	а
774	732391,51	5176389,40	70,87	а	80)5	752395,47	5191111,45	140,00	а
775	732423,53	5175476,83	65,01	а	80)6	755369,27	5193867,17	156,61	а

Tableau A.1 : Données piézométriques utilisées pour la piézométrie de référence (suite 12)

id	UT	M	Altitude	Sources des		id	UT	М	Altitude	Sources des
	Х	Y	niveau d'eau (m)	Données			Х	Y	niveau d'eau (m)	Données
807	755336,23	5193100,60	142,80	c		838	761081,20	5184257,79	125,00	c
808	750214,69	5189353,60	120,22	а	:	839	761128,09	5184158,16	125,00	с
809	749395,25	5188990,13	110,17	а	:	840	761192,57	5183994,05	125,00	с
810	749514,20	5188210,34	109,90	а		841	761227,73	5183906,13	125,00	с
811	748271,81	5188051,74	100,18	а		842	761274,62	5183794,76	125,00	с
812	751326,24	5186366,12	120,00	с	:	843	761333,23	5183718,57	125,00	с
813	751199,98	5186346,69	120,00	с	:	844	762291,75	5195159,55	148,82	a
814	751093,13	5186346,69	120,00	с	:	845	764603,41	5196433,33	152,50	а
815	750976,58	5186366,12	120,00	с	:	846	764477,61	5198957,30	159,00	а
816	750869,74	5186404,97	120,00	с	;	847	749165,14	5184802,36	95,00	с
817	750753,19	5186472,97	120,00	с	:	848	749199,14	5184986,90	95,00	с
818	750578,35	5186560,38	120,00	с	:	849	749237,98	5185152,02	95,00	с
819	750510,36	5186647,79	120,00	с	;	850	749257,41	5185292,86	95,00	с
820	750461,80	5186764,34	120,00	с	:	851	749267,13	5185351,13	95,00	с
821	750403,53	5186968,32	120,00	с		852	749281,70	5185433,69	95,00	с
822	750432,66	5187104,29	120,00	с		853	749301,12	5185516,25	95,00	с
823	750452,09	5187269,42	120,00	с		854	749305,97	5185613,38	95,00	с
824	750452,09	5187444,24	120,00	с		855	749310,83	5185710,51	95,00	с
825	751722,71	5190412,44	141,00	с		856	749335,11	5185880,48	95,00	с
826	760316,21	5194954,32	147,50	с		857	755555,33	5183439,81	110,09	а
827	759012,22	5185781,69	125,00	с		858	757976,12	5185049,76	120,00	с
828	759164,61	5185711,36	125,00	с		859	757935,38	5184937,71	120,00	с
829	759270,11	5185676,19	125,00	с		860	757935,38	5184815,48	120,00	c
830	759639,35	5185600,00	118,00	с		861	758699,34	5184387,66	117,00	с
831	760372,00	5185101,81	125,00	с		862	758719,71	5184255,24	120,00	с
832	760454,07	5185013,88	125,00	с		863	759605,90	5183857,99	120,00	с
833	760518,54	5184843,91	125,00	с		864	759636,46	5183715,38	120,00	с
834	760618,18	5184697,38	125,00	с		865	759687,39	5183633,90	120,00	с
835	760852,62	5184574,30	125,00	с		866	757469,78	5183727,29	110,00	с
836	760917,09	5184503,96	125,00	с		867	757448,68	5183663,97	110,00	с
837	761016,73	5184380,88	125,00	с		868	757427,58	5183611,22	110,00	с

Tableau A.1 : Données piézométriques utilisées pour la piézométrie de référence (suite 13)

id	UT	M	Altitude	Sources des	iđ	UT	М	Altitude	Sources des
	X	Y	niveau d'eau (m)	Données	 	Х	Y	niveau d'eau (m)	Données
869	757395,92	5183526,81	110,00	с	 900	756890,50	5187388,58	138,42	h
870	757353,72	5183452,94	110,00	с	901	756523,48	5187847,52	141,23	h
871	757332,62	5183384,37	110,00	с	902	753105,26	5182992,11	103,10	h
872	757295,68	5183315,78	110,00	с	903	753728,61	5183113,00	104,21	h
873	757258,76	5183241,92	110,00	c	904	724045,93	5179314,36	71,79	h
874	757279,86	5183183,89	110,00	с	905	757470,07	5186071,03	129,50	h
875	757332,62	5183136,41	110,00	с	906	724252,29	5179456,34	67,11	h
876	757395,92	5183094,20	110,00	c	907	724319,86	5179479,63	66,09	h
877	757443,40	5183057,28	110,00	с	908	724339,11	5179520,02	63,69	h
878	757501,44	5183046,72	110,00	с	909	724393,81	5179536,07	69,22	h
879	757591,12	5183046,72	110,00	с	910	724473,75	5179540,59	59,11	h
880	757723,01	5183057,28	110,00	с	911	753014,66	5185272,54	109,50	h
881	757833,80	5183104,76	110,00	с	912	726506,73	5180784,81	84,17	h
882	757934,04	5183136,41	110,00	с	913	730015,39	5184957,27	116,37	h
883	758023,72	5183162,79	110,00	с	914	724245,56	5179547,24	67,19	h
884	758129,24	5183173,33	110,00	с	915	724223,52	5179548,83	71,65	h
885	757691,36	5184423,67	110,00	с	916	724381,99	5179736,91	75,22	h
886	757712,46	5184344,54	110,00	с	917	724622,50	5180395,73	75,26	h
887	757712,46	5184270,67	110,00	с	918	724350,42	5180656,64	79,46	h
888	757691,36	5184202,09	110,00	с	919	724527,77	5181899,44	84,43	h
889	757675,53	5184144,06	110,00	с	920	754014,44	5183405,93	106,53	h
890	757712,46	5184117,68	110,00	с	921	753859,57	5183555,39	114,12	h
891	757781,05	5184170,43	110,00	с	922	753283,77	5184178,72	111,96	h
892	757844,35	5184217,91	110,00	с	923	754090,61	5184174,85	111,44	h
893	757891,83	5184217,91	110,00	с	924	753713,90	5184576,13	115,93	h
894	758894,20	5181917,73	100,00	с	925	754990,84	5184727,47	125,42	h
895	758751,76	5181843,87	100,00	с	926	755950,00	5185283,46	130,23	h
896	758530,19	5181770,01	100,00	с	927	755592,17	5184777,97	127,45	h
897	757749,39	5182060,18	100,00	с	928	755121,01	5185306,09	129,25	h
898	749646,00	5185225,56	100,00	с	929	755400,75	5186037,58	134,34	h
899	757350,11	5186904,88	130,12	h	930	756684,42	5185424,76	128,46	h

Tableau A.1 : Données piézométriques utilisées pour la piézométrie de référence (suite 14)

id	UT	M	Altitude	Sources des	id	UT	Μ	Altitude	Sources des
	X	Y	niveau d'eau (m)	Données		Х	Y	niveau d'eau (m)	Données
931	756247,77	5186486,96	136,33	h	962	724304,67	5179646,41	71,18	h
932	753862,59	5185635,77	127,92	h	963	724436,69	5179595,90	69,65	h
933	728837,27	5182425,86	110,68	h	964	724387,80	5179641,99	71,96	h
934	729260,83	5182823,10	111,82	h	965	724393,11	5179573,07	69,77	h
935	729362,32	5183533,28	111,15	h	966	724382,42	5179608,88	69,88	h
936	730044,78	5185513,03	120,54	h	967	724323,76	5179589,74	69,04	h
937	730890,11	5186140,39	131,87	h	968	754737,14	5183261,97	99,17	h
938	730299,22	5187171,49	133,76	h	969	754717,94	5183229,81	98,88	h
939	729790,32	5182912,23	114,69	h	970	754705,24	5183224,07	98,76	h
940	731574,97	5186998,79	134,22	b	971	754692,05	5183244,36	98,20	h
941	729466,06	5186430,32	123,11	h	972	754669,28	5183257,09	99,36	h
942	730259,59	5186626,53	132,33	h	973	754997,57	5183386,12	102,97	h
943	729542,70	5185350,38	114,00	h	974	754614,36	5183760,97	108,67	h
944	730491,97	5185772,66	131,36	h	975	754666,23	5183572,55	105,16	h
945	724175,80	5180843,37	80,18	h	976	725973,69	5181720,97	74,71	h
946	728268,17	5180847,44	82,87	h	977	726457,31	5181278,04	83,14	h
947	753177,53	5182535,33	97,20	h	978	726422,73	5181516,46	81,21	h
948	730777,78	5184793,76	118,17	h	979	726313,60	5181731,46	80,47	h
949	727757,55	5181341,86	87,82	h	980	726106,84	5181767,52	79,63	h
950	756839,98	5184598,98	123,97	h	981	726737,68	5181473,45	83,41	h
951	757064,83	5186462,65	135,00	h	982	757132,12	5185498,53	127,51	h
952	754639,49	5183252,38	100,20	h	983	756740,87	5185961,09	130,31	h
953	757445,18	5184005,35	108,71	h	984	723933,26	5179504,27	75,72	h
954	724179,14	5179514,97	71,48	h	985	723540,70	5178635,49	73,06	h
955	724348,50	5179603,22	69,87	h	986	731043,69	5188155,07	138,20	h
956	724368,20	5179567,60	69,25	h	987	727999,02	5181112,40	85,45	h
957	724276,14	5179726,89	73,36	h	988	755666,56	5187098,96	135,75	h
958	724333,85	5179532,92	64,75	h	989	755506,61	5182773,98	100,64	h
959	724350,46	5179553,25	66,44	h	990	724346,04	5179523,15	61,51	h
960	724252,06	5179573,38	78,70	h	991	724349,85	5179533,22	62,26	h
961	724277,50	5179550,86	68,11	h	992	726431,27	5180860,41	84,38	h

Tableau A.1 : Données piézométriques utilisées pour la piézométrie de référence (suite 15)

id	UT	M	Altitude	Sources des		id	UT	М	Altitude	Sources des
	Х	Y	niveau d'eau (m)	Données	_		Х	Y	niveau d'eau (m)	Données
993	754413,63	5184972,95	127,84	h	-	1024	724148,91	5178793,13	58,47	h
994	754584,18	5183308,31	105,03	h		1025	724225,86	5179268,77	58,51	h
995	754442,90	5183465,56	111,99	h		1026	724600,27	5179568,02	58,55	h
996	754434,29	5183476,09	111,79	h		1027	724934,57	5179925,52	58,60	h
997	754457,03	5183446,34	111,98	h		1028	725119,50	5180352,20	58,64	h
998	729683,08	5182975,21	114,11	h		1029	725035,99	5180901,80	58,68	h
999	755517,25	5184127,34	119,98	h		1030	730927,68	5189619,40	110,48	h
1000	757073,88	5185081,34	125,13	h		1031	728887,69	5186700,37	95,03	h
1001	730677,56	5186845,60	134,11	h		1032	727697,23	5182510,14	63,37	h
1002	752583,82	5183908,15	104,48	h		1033	723292,10	5180392,35	75,65	h
1003	730608,15	5185137,65	120,75	h		1034	723599,94	5179200,81	74,86	h
1004	723759,11	5181186,52	78,98	h		1035	755222,12	5187597,55	131,64	h
1005	729729,57	5186042,20	127,85	h		1036	757908,32	5186624,23	124,64	h
1006	755878,07	5183093,87	100,84	h		1037	756763,26	5183716,77	110,59	h
1007	753760,89	5181395,37	86,75	h		1038	724689,08	5181257,30	72,85	h
1008	757442,92	5183992,20	105,50	b		1039	724580,29	5181244,22	73,93	h
1009	752238,61	5183654,89	91,02	b		1040	724556,75	5181481,85	76,26	h
1010	757595,09	5191264,88	120,55	b		1041	724507,25	5181611,94	77,62	h
1011	724403,92	5179425,23	58,97	h		1042	724524,47	5181129,12	76,56	h
1012	723670,84	5177896,71	58,34	h		1043	723704,68	5182098,81	60,00	а
1013	725312,01	5181325,20	58,73	h		1044	754832,75	5183009,94	98,35	а
1014	725656,36	5181679,90	58,77	h		1045	754894,29	5183072,56	98,50	h
1015	725024,09	5180686,50	58,67	h		1046	755066,29	5182833,94	98,96	h
1016	725054,01	5180534,01	58,65	h		1047	755210,80	5183022,57	99,38	h
1017	725079,24	5180155,36	58,62	h		1048	755211,15	5182946,45	99,76	h
1018	724961,54	5180032,08	58,60	h		1049	755345,99	5182919,10	99,91	h
1019	724814,33	5179726,15	58,57	h		1050	755445,63	5182998,95	100,17	h
1020	724356,47	5179448,33	58,53	h		1051	755637,74	5182898,73	100,45	h
1021	724136,27	5179088,00	54,49	h		1052	756249,38	5183311,55	102,05	h
1022	724015,25	5178195,39	58,38	h		1053	756942,34	5183337,23	103,75	h
1023	724356,81	5178328,95	58,43	h		1054	753779,55	5181576,80	87,52	h

Tableau A.1 : Données piézométriques utilisées pour la piézométrie de référence (suite 16)

id	UT	M	Altitude	Sources des	id	UT	М	Altitude	Sources des
	X	Y	niveau d'eau (m)	Données		Х	Y	niveau d'eau (m)	Données
1055	757300,20	5183859,77	105,21	h	 1086	722600,12	5179434,81	70,00	h
1056	757560,77	5184698,39	110,26	h	1087	722471,00	5179439,35	60,00	h
1057	758275,81	5185545,03	112,78	h	1088	722648,17	5178961,57	70,00	h
1058	758464,88	5186180,17	116,40	h	1089	722327,94	5179072,50	60,00	h
1059	753775,65	5181837,12	88,74	h	1090	722584,53	5178888,33	60,00	h
1060	753636,42	5182675,85	93,56	h	1091	722002,90	5178072,96	60,00	h
1061	758578,25	5184883,97	120,00	a	1092	724480,21	5181823,52	79,00	h
1062	757985,80	5184188,65	110,00	h	1093	723646,80	5181672,56	70,00	h
1063	757638,97	5184557,58	110,00	h	1094	724730,54	5181129,05	72,50	h
1064	753511,20	5182150,63	91,15	h	1095	723574,85	5181826,24	60,00	h
1065	754218,30	5186422,72	126,17	h	1096	723470,95	5181661,20	60,00	h
1066	754435,31	5187181,69	124,10	h	1097	723206,24	5181169,98	60,00	а
1067	752725,46	5184601,64	111,42	h	1098	723081,53	5181046,55	60,00	а
1068	753502,75	5182385,62	92,20	h	1099	723263,52	5180369,80	70,00	h
1069	753989,10	5182729,13	95,38	h	1100	722898,34	5180267,80	65,00	h
1070	754401,06	5182919,07	97,44	h	1101	724366,71	5181219,14	80,00	h
1071	754675,46	5182991,90	97,87	h	1102	724805,81	5181011,44	70,00	h
1072	754763,29	5183033,00	98,25	h	1103	724993,71	5181021,03	60,00	h
1073	724588,63	5179601,80	60,00	h	1104	724627,70	5179703,59	70,00	h
1074	723658,43	5177970,50	60,00	h	1105	723707,92	5181771,76	70,00	h
1075	724485,35	5181973,66	80,00	h	1106	753398,72	5185424,81	120,00	h
1076	724197,33	5182231,26	70,00	h	1107	757913,18	5187290,90	140,00	h
1077	723788,57	5181740,29	80,00	h	1108	758145,76	5187044,70	130,00	h
1078	723717,67	5181575,88	80,00	h	1109	752630,16	5184708,41	110,00	h
1079	723429,32	5181065,19	70,00	h	1110	755094,98	5187543,16	130,00	h
1080	723212,72	5180988,05	70,00	h	1111	753196,52	5184791,97	115,00	h
1081	723111,71	5180776,05	70,00	h	1112	753822,82	5186818,90	120,00	h
1082	722591,19	5180374,97	60,00	h	1113	753962,49	5186987,23	120,00	h
1083	722655,83	5179975,07	70,00	h	1114	752136,63	5184665,10	100,00	h
1084	722572,10	5179959,47	60,00	h	1115	752677,36	5185003,71	108,24	h
1085	722330,68	5179610,75	60,00	h	1116	724158,91	5181938,42	83,83	h

Tableau A.1 : Données piézométriques utilisées pour la piézométrie de référence (suite 17)

id	UT	M	Altitude	Sources des		id	UT	М	Altitude	Sources des
	Х	Y	niveau d'eau (m)	Données	_		Х	Y	niveau d'eau (m)	Données
1117	722882,44	5178741,98	70,38	h	-	1148	723257,15	5179969,54	77,27	h
1118	723236,82	5178937,79	73,32	h		1149	723716,38	5180280,40	79,05	h
1119	752882,57	5184587,60	112,95	h		1150	723868,38	5180126,26	78,81	h
1120	756401,14	5188023,88	140,00	h		1151	724077,49	5179914,17	77,97	h
1121	754339,28	5186322,44	127,87	h		1152	723481,68	5179316,60	75,69	h
1122	755047,34	5186678,68	129,79	h		1153	723794,42	5179021,45	74,06	h
1123	758688,47	5186579,78	117,51	h		1154	723563,80	5179836,34	77,69	h
1124	754141,10	5182944,25	96,97	h		1155	723986,42	5181488,97	83,03	h
1125	754742,86	5183127,02	98,11	h		1156	752358,28	5183542,51	98,97	h
1126	727089,32	5181656,23	88,17	h		1157	752779,46	5183064,63	104,03	h
1127	729442,72	5184928,32	108,31	h		1158	756303,73	5184199,48	119,01	h
1128	752800,18	5183559,81	105,91	h		1159	753395,84	5183237,22	105,29	h
1129	727562,81	5182267,48	66,75	h		1160	756107,88	5182860,55	102,29	h
1130	727689,58	5182387,95	66,75	h		1161	754677,49	5182431,88	96,35	h
1131	727998,18	5182571,91	75,90	h		1162	757070,78	5184435,83	118,53	h
1132	728263,55	5182976,12	78,94	h		1163	755914,20	5183057,86	101,88	h
1133	723555,49	5177964,53	66,44	h		1164	755559,20	5183447,36	108,11	h
1134	723983,31	5178874,00	67,86	h		1165	755220,74	5183810,75	113,54	h
1135	729568,29	5186943,46	128,87	h		1166	726990,37	5181337,23	87,28	h
1136	724759,68	5179864,16	65,75	h		1167	727411,96	5181995,51	99,12	h
1137	724303,92	5180105,55	78,84	h		1168	728146,96	5181747,44	95,25	h
1138	724620,94	5179900,52	74,46	h		1169	728897,23	5181956,83	100,77	h
1139	723990,83	5180314,66	79,57	h		1170	730500,37	5183132,86	115,60	h
1140	724982,05	5180373,58	70,78	h		1171	731546,32	5187608,47	136,25	h
1141	724460,49	5180968,84	72,24	h		1172	731860,88	5187323,37	135,62	h
1142	723957,97	5181774,53	85,17	h		1173	731585,59	5185657,50	127,73	h
1143	724388,69	5181586,69	81,80	h		1174	730799,86	5187199,06	134,86	h
1144	723735,63	5181474,18	82,48	h		1175	730136,49	5183487,04	118,95	h
1145	723075,58	5178528,58	72,16	h		1176	748910,72	5174260,86	14,85	a
1146	723445,60	5178166,51	71,53	h		1177	749061,62	5175306,35	18,92	а
1147	723791,00	5178519,23	71,70	h		1178	752069,59	5179941,82	55,00	а

 Tableau A.1 : Données piézométriques utilisées pour la piézométrie de référence (suite 18)

id	UT	ГM	Altitude	Sources des		id	UT	M	Altitude	Sources des
	X	Y	niveau d'eau (m)	Données	_		Х	Y	niveau d'eau (m)	Données
1179	752777,75	5179957,53	62,00	a	-	1210	736768,41	5175009,25	31,02	b
1180	757691,36	5184423,67	110,00	с		1211	737809,26	5176024,77	15,32	b
1181	757469,78	5183727,29	110,00	с		1212	737864,33	5176605,59	17,91	b
1182	758719,71	5184255,24	120,00	с		1213	740456,52	5178018,59	68,10	b
1183	757469,78	5183727,29	114,50	с		1214	741368,81	5178630,08	72,99	b
1184	757976,12	5185049,76	120,00	с		1215	742917,25	5179320,47	65,00	b
1185	758342,83	5184530,27	120,00	с		1216	744633,35	5179458,55	62,87	b
1186	756837,62	5192834,19	123,16	а		1217	745826,73	5178482,14	70,34	b
1187	726972,12	5176893,72	70,00	а		1218	739966,81	5177481,98	54,27	b
1188	727133,57	5184032,21	65,00	с		1219	735913,18	5176357,40	46,95	b
1189	726759,71	5182961,62	68,45	а		1220	735027,21	5175267,22	44,54	b
1190	728179,24	5182945,35	60,00	а		1221	741550,94	5178703,86	70,43	b
1191	726891,77	5184625,92	79,53	а		1222	743947,49	5180136,97	58,58	b
1192	727133,57	5184032,21	75,00	с		1223	745804,14	5176472,55	63,99	b
1193	727966,25	5183335,47	62,44	а		1224	734211,12	5173275,23	44,89	b
1194	728887,69	5186700,37	88,89	b		1225	735411,54	5173741,18	17,26	b
1195	741794,82	5197081,17	160,00	c		1226	735565,42	5172755,09	2,58	b
1196	741849,17	5197605,63	146,00	c		1227	733646,88	5172603,26	43,45	b
1197	741132,67	5195097,14	160,00	c		1228	732109,74	5174324,95	64,29	b
1198	745742,35	5195650,09	155,35	с		1229	730770,14	5175657,17	58,27	b
1199	741794,82	5197081,17	160,00	с		1230	738389,00	5175461,00	5,76	d
1200	739784,39	5198127,10	138,77	a		1231	735299,24	5176113,91	51,86	с
1201	739771,67	5201485,99	143,61	a		1232	736755,53	5177643,54	59,74	с
1202	739371,92	5198923,55	139,80	а		1233	739475,80	5177720,77	42,00	с
1203	731416,82	5191682,79	140,00	с		1234	738693,75	5175946,28	20,00	а
1204	724306,46	5183025,56	65,16	а		1235	736587,91	5176652,76	49,21	b
1205	738511,18	5192199,86	124,40	a		1236	734754,64	5172347,79	20,66	b
1206	728385,63	5182511,94	100,00	с		1237	736141,40	5175442,18	41,09	b
1207	736587,91	5176652,76	49,21	b		1238	736768,41	5175009,25	31,02	b
1208	734754,64	5172347,79	20,66	b		1239	737809,26	5176024,77	15,32	b
1209	736141,40	5175442,18	41,09	b		1240	737864,33	5176605,59	17,91	b

 Tableau A.1 : Données piézométriques utilisées pour la piézométrie de référence (suite 19)

id	UT	ſM	Altitude	Sources des		id	UT	M	Altitude	Sources des
	X	Y	niveau d'eau (m)	Données	_		Х	Y	niveau d'eau (m)	Données
1241	740456,52	5178018,59	68,10	b	-	1272	725322,51	5180096,43	80,00	с
1242	741368,81	5178630,08	72,99	b		1273	726468,98	5179735,76	80,00	с
1243	742917,25	5179320,47	65,00	b		1274	720183,86	5175628,92	52,00	с
1244	744633,35	5179458,55	62,87	b		1275	720391,99	5175917,10	50,74	а
1245	745826,73	5178482,14	70,34	b		1276	720063,79	5175228,67	41,00	а
1246	739966,81	5177481,98	54,27	b		1277	721818,90	5175098,51	48,00	а
1247	735913,18	5176357,40	46,95	b		1278	720183,86	5175628,92	59,50	с
1248	735027,21	5175267,22	44,54	b		1279	726468,98	5179735,76	70,00	с
1249	741550,94	5178703,86	70,43	b		1280	727399,71	5180127,55	47,50	а
1250	743947,49	5180136,97	58,58	b		1281	728260,93	5175981,14	60,00	а
1251	745804,14	5176472,55	63,99	b		1282	732391,51	5176389,40	65,00	с
1252	734211,12	5173275,23	44,89	b		1283	729197,50	5176029,17	55,00	а
1253	735411,54	5173741,18	17,26	b		1284	723730,55	5174869,19	38,00	с
1254	735565,42	5172755,09	2,58	b		1285	732309,89	5184644,37	120,00	с
1255	733646,88	5172603,26	43,45	b		1286	733042,63	5189414,75	130,00	с
1256	730770,14	5175657,17	58,27	b		1287	736333,52	5190322,27	146,00	с
1257	732391,51	5176389,40	80,00	ç		1288	733042,63	5189414,75	146,90	с
1258	731486,93	5174220,04	48,00	а		1289	736333,52	5190322,27	146,00	с
1259	732391,51	5176389,40	60,00	с		1290	737666,84	5192223,35	120,30	а
1260	732687,70	5174716,35	59,30	а		1291	733042,63	5189414,75	144,00	с
1261	732391,51	5176389,40	64,00	c		1292	730189,58	5190034,87	137,27	с
1262	729453,68	5174756,37	55,00	а		1293	730475,16	5191177,21	130,00	а
1263	732391,51	5176389,40	80,00	с		1294	731738,17	5192198,09	135,00	с
1264	729197,50	5176029,17	62,66	а		1295	734454,91	5191712,88	118,30	a
1265	736755,53	5177643,54	30,00	с		1296	736333,52	5190322,27	147,00	с
1266	732391,51	5176389,40	65,00	с		1297	742854,52	5198733,02	189,00	с
1267	727133,57	5184032,21	107,00	с		1298	744922,29	5199862,99	178,00	C
1268	725782,59	5182332,86	60,76	а		1299	742854,52	5198733,02	180,00	с
1269	728385,63	5182511,94	95,00	с		1300	746838,54	5190755,17	102,50	а
1270	727133,57	5184032,21	95,00	c		1301	746649,76	5188972,36	122,00	с
1271	726759,71	5182961,62	73,30	а		1302	744182,26	5188369,94	110,37	а

Tableau A.1 : Données piézométriques utilisées pour la piézométrie de référence (suite 20)

id	UT	M	Altitude	Sources des		id	UT	Μ	Altitude	Sources des
	X	Y	niveau d'eau (m)	Données	_		Χ	Y	niveau d'eau (m)	Données
1303	724230,71	5177240,23	58,39	с	-	1334	755336,23	5193100,60	137,00	
1304	720183,86	5175628,92	59,50	с		1335	756837,62	5192834,19	124,50	a
1305	724230,71	5177240,23	68,00	с		1336	758559,47	5195311,67	129,80	с
1306	725703,11	5179648,24	77,00	с		1337	758719,71	5184255,24	123,00	с
1307	725322,51	5180096,43	77,50	с		1338	744182,26	5188369,94	114,50	a
1308	723017,88	5177349,77	70,88	с		1339	746649,76	5188972,36	122,00	с
1309	725703,11	5179648,24	77,00	с		1340	745742,35	5195650,09	154,00	с
1310	725826,95	5177412,37	59,00	с		1341	742274,16	5190863,69	145,00	c
1311	723730,55	5174869,19	57,50	с		1342	738765,32	5205068,36	205,00	с
1312	726972,12	5176893,72	59,70	а		1343	740842,91	5202463,79	193,00	с
1313	725826,95	5177412,37	62,30	с		1344	740972,99	5198773,08	169,00	с
1314	720183,86	5175628,92	61,00	с		1345	740743,45	5201005,02	155,00	с
1315	725826,95	5177412,37	59,00	с		1346	740972,99	5198773,08	149,00	с
1316	725703,11	5179648,24	75,00	с		1347	741849,17	5197605,63	143,00	с
1317	724230,71	5177240,23	58,38	с		1348	740743,45	5201005,02	158,00	с
1318	725826,95	5177412,37	61,80	с						
1319	724230,71	5177240,23	68,00	с						
1320	725826,95	5177412,37	61,90	c	5	Sources	des données u	itilisées pour	la piézométrie de	référence
1321	726972,12	5176893,72	59,30	а						
1322	720183,86	5175628,92	53,00	с	a	a =	Approximation	du niveau d'eau	u dans les rivière / co	urs d'eau
1323	729056,82	5189233,84	137,00	а	t	b =	Campagne piéz	zométrique de N	athalie Fagnan, été 1	996
1324	730189,58	5190034,87	150,00	с	c	c =	Approximation	1 / ajout de point	ts de contrôles pour p	procéder à
1325	729056,82	5189233,84	124,00	а			l'interpolation			
1326	730189,58	5190034,87	132,00	с	ć	d =	Annuaire des p	uits et forages		
1327	729541,74	5188661,11	103,01	а	e	e =	Ministère des l	Ressources Natu	relles / Ministère de	l'Environnement
1328	729056,82	5189233,84	117,50	a			/ Ministère des	transports		
1329	730189,58	5190034,87	135,00	с	f	f =	Hydro-Québec	-		
1330	730251,32	5190447,82	128,30	a	£	g =	Firmes de cons	sultants		
1331	740842,91	5202463,79	184,56	с	ł	h =	Campagne pié:	zométrique de L	aniel Paradis, été 19	97
1332	764355,54	5193645,89	169,00	с				-	·	
1333	763432,34	5195535,32	157,00	с						
			•							

Tableau A.1 : Données piézométriques utilisées pour la piézométrie de référence (suite 21)

ANNEXE B

DONNÉES MOYENNES MENSUELLES CLIMATIQUES

.

Tableau B.1 : Température Moyenne (°C)

Stations	Jan.	Fév.	Mars	Avril	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov.	Déc.	Moyenne
Lac-aux-Sables	-14,0	-12,0	-5,1	3,2	10,6	15,9	18,6	17,2	11,9	5,8	-1,3	-10,3	3,5
Rivière-à-Pierre	-15,1	-12,4	-6,0	2,8	10,2	14,7	17,7	16,2	10,9	4,9	-2,1	-11,8	2,6
Rivière-Verte-Ouest	-13,3	-11,6	-5,1	2,6	9,9	15,1	17,8	16,6	11,4	5,4	-1,4	-9,9	3,2
Sainte-Anne de la Pérade	-12,9	-11,5	-4,5	3,7	11,2	16,6	19,2	17,9	12,8	6,8	-0,3	-9,2	4,3
Sainte-Croix	-12,9	-11,4	-4,4	3,8	11,2	16,2	19,0	17,8	12,5	6,3	-0,8	-9,1	4,2
Duchesnay	-13,1	-11,5	-5,1	3,1	10,5	15,6	18,4	16,9	11,7	5,7	-1,0	-10,4	3,5
Saint-Augustin	-12,3	-10,5	-4,4	3,5	11,0	16,4	19,4	17,9	12,8	6,7	-0,2	-8,4	4,4
Donnaconna	-12,3	-10,8	-4,0	3,8	11,2	16,6	19,2	18,0	13,0	7,1	0,0	-8,3	4,5
Deschambault	-12,4	-10,3	-4,6	4,3	11,5	16,4	19,3	18,1	12,8	6,7	-0,2	-8,9	4,6
Saint-Alban	-13,3	-11,7	-4,6	3,7	11,0	16,2	18,9	17,5	12,5	6,4	-0,5	-9,5	4,0
Sainte-Christine	-13,0	-11,6	-6,2	3,7	10,4	15,1	18,0	16,9	12,0	5,7	-1,6	-10,6	3,3
Sainte-Catherine	-13,2	-11,4	-4,8	3,1	10,5	15,7	18,4	17,1	12,0	5,9	-1,1	-9,6	3,7
Chute Panet	-14,1	-12,3	-4,4	3,1	10,5	15,7	18,1	16,7	11,7	5,8	-1,0	-10,0	3,4

Tableau B.2 : Température Minimale (°C)

Stations	Jan.	Fév.	Mars	Avril	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov.	Déc.	Moyenne
Lac-aux-Sables	-19,9	-18,5	-11,1	-2,4	3,9	9,6	12,2	11,2	6,2	1,0	-5,0	-15,0	-2,2
Rivière-à-Pierre	-21,6	-19,2	-12,8	-3,2	3,4	8,3	11,4	10,3	5,4	0,3	-6,1	-17,5	-3,4
Rivière-Verte-Ouest	-18,9	-17,4	-10,6	-2,6	3,7	9,2	11,9	10,9	6,1	0,9	-5,0	-14,7	-2,1
Sainte-Anne de la Pérade	-18,5	-17,7	-10,0	-1,6	4,8	10,3	13,1	11,9	7,1	1,9	-4,1	-13,9	-1,2
Sainte-Croix	-17,6	-16,0	-9,0	-1,0	5,5	10,3	12,9	11,8	7,2	1,9	-4,0	-13,1	-0,8
Duchesnay	-18,8	-17,6	-10,8	-2,3	4,3	9,5	12,6	11,4	6,4	1,2	-4,7	15,3	-1,8
Saint-Augustin	-16,7	-15,1	-8,8	-1,2	5,4	10,8	13,8	12,8	8,0	2,7	-3,3	-12,2	-0,2
Donnaconna	-16,9	-15,9	-8,9	-1,1	5,4	10,9	13,6	12,7	7,9	2,9	-3,2	-12,2	-0,5
Deschambault	-17,4	-15,5	-9,6	-0,5	5,7	10,7	13,5	12,5	7,6	2,5	-3,7	-13,3	-0,5
Saint-Alban	-18,8	-17,8	-10,2	-1,7	4,5	9,8	12,8	11,6	6,9	1,7	-4,2	-14,1	-1,5
Sainte-Christine	-18,8	-18,0	-12,3	-1,7	4,2	8,7	11,6	10,5	6,2	0,8	-5,5	-15,8	-2,5
Sainte-Catherine	-18,4	-17,2	-10,4	-2,2	4,2	9,5	12,4	11,4	6,6	1,5	-4,7	-14,1	-1,6
Chute Panet	-20,2	-18,9	-10,3	-2,7	3,5	8,8	11,4	10,4	5,7	0,8	-4,9	-14,7	-2,5

Tableau B.3	: Température	Maximale (°C)
-------------	---------------	---------------

Stations	Jan.	Fév.	Mars	Avril	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov.	Déc.	Moyenne
Lac-aux-Sables	-8,2	-5,6	0,9	8,9	17,3	22,2	24,9	23,3	17,7	10,6	2,5	-5,5	9,2
Rivière-à-Pierre	-8,5	-5,6	0,9	8,7	17,0	21,1	24,0	22,2	16,4	9,5	1,9	-6,2	8,6
Rivière-Verte-Ouest	-7,7	-5,8	0,5	7,9	16,1	21,0	23,8	22,1	16,6	9,9	2,3	-5,1	8,5
Sainte-Anne de la Pérade	-7,3	-5,3	0,9	9,0	17,5	22,8	25,5	23,8	18,5	11,6	3,4	-4,4	9,7
Sainte-Croix	-8,1	-6,3	0,4	8,4	16,9	22,1	25,1	23,8	17,7	10,7	2,6	-4,7	9,2
Duchesnay	-7,4	-5,4	0,7	8,5	16,8	21,6	24,2	22,4	16,9	10,3	2,8	-5,4	8,9
Saint-Augustin	-7,9	-5,9	0,0	8,1	16,6	21,9	25,0	23,1	17,6	10,7	2,9	-4,6	9,0
Donnaconna	-7,6	-5,6	0,9	8,7	17,0	22,3	24,7	23,3	18,1	11,3	3,2	-4,4	9,5
Deschambault	-7,3	-5,1	0,5	9,1	17,3	22,2	25,1	23,6	17,9	11,0	3,4	-4,5	9,5
Saint-Alban	-7,7	-5,6	1,0	9,1	17,4	22,6	25,1	23,4	18,1	11,2	3,2	-4,9	9,5
Sainte-Christine	-7,2	-5,1	0,1	9,0	16,5	21,4	24,4	23,2	17,7	10,6	2,3	-5,3	9,0
Sainte-Catherine	-7,9	-5,6	0,7	8,5	16,8	21,8	24,5	22,9	17,4	10,4	2,5	-5,1	9,0
Chute Panet	-8,1	-5,7	1,5	9,0	17,5	22,6	24,8	22,9	17,7	10,8	2,8	-5,2	9,3

Tableau B.4 : Précipitations Pluie (mm)

Stations	Jan.	Fév.	Mars	Avril	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov.	Déc.	Moyenne
Lac-aux-Sables	13,1	14,2	36,9	56,9	99,2	108,3	113,5	115,0	100,0	97,8	62,7	27,6	849,6
Rivière-à-Pierre	9,6	8,6	29,7	62,7	100,7	115,6	126,0	113,9	122,3	101,9	57,9	19,8	864,1
Rivière-Verte-Ouest	18,2	19,7	43,6	72,8	121,3	142,4	146,9	139,8	140,8	126,0	83,0	28,2	1085,2
Sainte-Anne de la Pérade	13,0	11,5	34,2	60,4	94,5	98,4	100,0	115,0	109,8	91,0	68,5	27,0	831,9
Sainte-Croix	13,5	7,7	30,2	42,4	101,1	106,7	105,5	106,4	127,8	90,3	55,4	23,0	906,6
Duchesnay	23,7	16,3	43,8	64,1	110,8	118,2	127,1	126,5	132,5	108,3	69,9	35,5	99 0,7
Saint-Augustin	16,8	16,2	35,3	55,3	103,9	107,6	120,5	113,0	123,0	93,4	60,2	33,0	878,9
Donnaconna	15,5	12,4	30,4	56,7	100,1	102,6	109,9	112,8	109,4	89,7	65,0	25,9	785,0
Deschambault	17,0	17,7	36,7	70,6	104,6	108,2	120,7	107,5	123,6	95,5	80,4	28,8	937,0
Saint-Alban	12,8	13,2	29,9	59,8	101,3	103,9	115,5	116,1	113,5	94,3	65,5	26,4	853,4
Sainte-Christine	19,6	17,9	33,0	66,5	117,4	110,6	122,0	124,4	118,4	103,0	80,0	32,8	956,3
Sainte-Catherine	24,2	20,2	42,0	67,7	113,7	122,4	126,5	126,0	128,6	110,4	73,8	36,2	993,9
Chute Panet	18,1	13,8	31,3	54,9	96,5	116,6	127,3	126,7	119,4	100,5	61,1	28,6	928,8

Tal	bleau	B.5 :	Préci	pitations	Neige ((cm)	
-----	-------	--------------	-------	-----------	---------	------	--

Stations	Jan.	Fév.	Mars	Avril	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov.	Déc.	Moyenne
Lac-aux-Sables	60,6	50,4	39,1	12,3	0,6	0,0	0,0	0,0	0,0	1,7	33,6	69,6	267,7
Rivière-à-Pierre	58,4	44,8	31,1	14,1	0,2	0,0	0,0	0,0	0,0	2,3	29,9	68,1	246,2
Rivière-Verte-Ouest	80,9	63,4	48,2	18,2	0,8	0,0	0,0	0,0	0,0	2,9	42,2	86,7	343,3
Sainte-Anne de la Pérade	59,2	46,3	33,7	12,0	0,9	0,0	0,0	0,0	0,0	0,9	24,7	63,9	240,9
Sainte-Croix	56,1	39,6	33,8	15,3	0,4	0,0	0,0	0,0	0,0	1,1	23,5	57,2	231,2
Duchesnay	75,8	65,0	45,0	17,2	0,9	0,0	0,0	0,0	0,0	2,8	40,4	86,6	349,9
Saint-Augustin	76,6	65,9	49,6	18,3	0,5	0,0	0,0	0,0	0,0	2,5	36,3	80,5	320,7
Donnaconna	56,5	49,6	35,6	11,8	0,5	0,0	0,0	0,0	0,0	1,6	25,3	60,8	240,1
Deschambault	50,8	35,2	27,3	7,0	0,2	0,0	0,0	0,0	0,0	0,7	21,4	52,4	188,9
Saint-Alban	51,6	47,1	33,5	10,6	0,5	0,0	0,0	0,0	0,0	1,4	22,9	59,8	228,7
Sainte-Christine	66,0	66,0	43,7	13,8	0,7	0,0	0,0	0,0	0,0	3,0	32,0	73,3	301,4
Sainte-Catherine	63,0	53,9	38,4	15,4	1,0	0,0	0,0	0,0	0,0	2,3	35,0	70,6	275,4
Chute Panet	61,8	51,6	44,1	16,4	1,1	0,0	0,0	0,0	0,0	2,3	29,5	73,8	280,2

Tableau B.6 : Précipitations totales (mm)

Stations	Jan.	Fév.	Mars	Avril	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov.	Déc.	Moyenne
Lac-aux-Sables	73,7	64,6	75,9	68,9	99,8	108,3	113,5	115,0	100,0	99,6	96,2	97,2	1117,2
Rivière-à-Pierre	67,5	53,2	60,6	76,7	100,8	115,6	126,0	113,9	122,3	104,2	87,8	86,8	1108,3
Rivière-Verte-Ouest	98,1	83,0	91,8	90,9	122,1	142,4	146,9	139,8	140,8	128,9	125,2	114,9	1431,6
Sainte-Anne de la Pérade	72,2	57,8	67,9	72,4	95,4	98,4	100,0	115,0	109,8	92,0	93,1	90,9	1072,6
Sainte-Croix	69,5	48,3	61,6	57,7	101,4	106,7	105,5	106,4	127,8	91,4	81,5	80,2	1205,0
Duchesnay	100,1	81,5	90,7	81,0	111,7	118,2	127,1	126,5	132,5	111,0	110,8	125,0	1343,7
Saint-Augustin	92,6	83,0	85,3	7489,0	104,4	107,6	120,5	113,0	123,0	96,0	97,3	113,8	1202,9
Donnaconna	71,8	61,9	65,9	68,5	100,6	102,6	109,9	112,8	109,4	91,3	90,6	88,5	1038,4
Deschambault	67,7	52,8	64,0	77,6	104,8	108,2	120,7	107,5	123,6	96,1	101,8	80,9	1125,6
Saint-Alban	64,4	60,2	70,0	70,4	101,7	103,9	115,5	116,1	113,5	95,8	89,0	86,0	1084,3
Sainte-Christine	84,6	83,9	76,6	80,1	118,1	110,6	122,0	124,4	118,4	105,9	111,9	105,1	1256,1
Sainte-Catherine	87,3	74,7	80,0	83,1	114,7	122,4	126,5	126,0	128,6	112,6	108,7	106,8	1273,2
Chute Panet	79,9	65,4	75,3	71,2	97,7	116,6	127,3	126,7	119,4	102,7	90,6	102,6	1209,2

Tableau	B.7	:	Neige	au	sol	(cm)	

Stations	Jan.	Fév.	Mars	Avril	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov.	Déc.	Moyenne
Lac-aux-Sables	67,9	75,2	51,3	3,0	0,0	0,0	0,0	0,0	0,0	0,0	13,9	42,4	253,7
Rivière-à-Pierre	54,6	58,4	22,5	0,4	0,0	0,0	0,0	0,0	0,0	0,0	10,8	35,8	182,3
Rivière-Verte-Ouest	69,3	86,0	61,3	6,2	0,0	0,0	0,0	0,0	0,0	0,1	14,7	47,6	285,1
Sainte-Anne de la Pérade	40,4	48,6	24,2	0,4	0,0	0,0	0,0	0,0	0,0	0,0	6,7	28,9	149,2
Sainte-Croix	39,1	44,1	21,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	8,1	30,6	142,9
Duchesnay	65,6	82,9	55,5	3,5	0,0	0,0	0,0	0,0	0,0	0,0	13,9	46,2	267,7
Saint-Augustin	59,9	78,8	56,6	1,3	0,0	0,0	0,0	0,0	0,0	0,0	8,9	33,8	239,3
Donnaconna	46,7	60,3	32,5	0,0	0,0	0,0	0,0	0,0	0,0	0,0	10,5	32,5	182,5
Deschambault	38,4	47,5	22,2	0,0	0,0	0,0	0,0	0,0	0,0	0,0	5,8	20,6	134,5
Saint-Alban	58,0	72,7	48,8	0,2	0,0	0,0	0,0	0,0	0,0	0,0	9,6	33,4	222,7
Sainte-Christine	68,5	86,4	58,0	2,3	0,0	0,0	0,0	0,0	0,0	0,7	10,5	44,6	270,9
Sainte-Catherine	69,0	82,7	60,6	1,0	0,0	0,0	0,0	0,0	0,0	0,1	14,5	45,5	273,4
Chute Panet	70,4	84,6	56,8	1,8	0,0	0,0	0,0	0,0	0,0	0,0	11,5	49,9	275,0

ANNEXE C

PARAMÈTRES POUR L'ÉVALUATION DE LA RECHARGE À PARTIR DU BILAN HYDROLOGIQUE
Mois	Température	F (lamda)	i	Etp
	(°C)			(mm)
Janvier	-12,40	0,79	0,00	0,00
Février	-10,30	0,81	0,00	0,00
Mars	-4,58	1,02	0,00	0,00
Avril	4,29	1,13	0,79	25,11
Mai	11,52	1,29	3,54	76,22
Juin	16,43	1,31	6,06	110,01
Juillet	19,31	1,32	7,73	130,08
Août	18,05	1,22	6,98	112,45
Septembre	12,76	1,04	4,13	68,00
Octobre	6,70	0,94	1,56	32,47
Novembre	-0,18	0,79	0,00	0,00
Décembre	-8,91	0,74	0,00	0,00
			l= 30,79	554,34
			a = 0,99	

 Tableau C.1 : Estimation de la recharge à partir du bilan hydrologique à la station de Deschambault (CR=0,4 et RAS max=100 mm)

Mois	Précipitations T. (mm)	Ruissellement (mm)	Recharge (mm)	ETp (mm)	ETr (mm)	D (mm)	RAS (mm)	Delta Sg (mm)
Janvier	67,73	27,09	40,64	0,00	0,00	140,64	100,00	40,64
Février	52,81	21,12	31,69	0,00	0,00	131,69	100,00	31,69
Mars	63,97	25,59	38,38	0,00	0,00	138,38	100,00	38,38
Avril	77,59	31,04	46,55	25,11	25,11	121,45	100,00	21,45
Mai	104,80	41,92	62,88	76,22	76,22	86,66	86,66	0,00
Juin	108,20	43,28	64,92	110,01	110,01	41,57	41,57	0,00
Juillet	120,70	48,28	72,42	130,08	113,99	-16,09	0,00	0,00
Août	107,50	43,00	64,50	112,45	64,50	-47,95	0,00	0,00
Septembr	123,60	49,44	74,16	68,00	68,00	6,16	6,16	0,00
Octobre	96,14	38,46	57,68	32,47	32,47	31,37	31,37	0,00
Novembre	101,80	40,72	61,08	0,00	0,00	92,45	92,45	0,00
Décembre	80,87	32,35	48,52	0,00	0,00	140,97	100,00	40,97
Total	1105.71	442.28	663,43	554,34	490,30	_	-	173,13

Mois	Température	F (lamda)	i	Etp
	(°C)			(mm)
Janvier	-13,30	0,79	0,00	0,00
Février	-11,70	0,81	0,00	0,00
Mars	-4,61	1,02	0,00	0,00
A∨ril	3,67	1,13	0,63	21,51
Mai	10,99	1,29	3,29	72,75
Juin	16,20	1,31	5,93	108,49
Juillet	18,93	1,32	7,51	127,54
Août	17,51	1,22	6,67	109,12
Septembr	12,48	1,04	3,99	66,52
Octobre	6,43	0,94	1,46	31,18
Novembre	-0,53	0,79	0,00	0,00
Décembre	-9,50	0,74	0,00	0,00
			l = 29,48	3 537,10
			a = 0.97	

Tableau C.2 : Estimation de la recharge à partir du bilan hydrologique à la station de Saint-Alban(CR=0,4 et RAS max=100 mm)

Mois	Précipitations T	. Ruissellement	Recharge	ETp	ETr	D	RAS	Delta Sg
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	<u>(m</u> m)	(mm) [–]
Janvier	64,43	25,77	38,66	0,00	0,00	138,66	100,00	38,66
Février	60,23	24,09	36,14	0,00	0,00	136,14	100,00	36,14
Mars	69,97	27,99	41,98	0,00	0,00	141,98	100,00	41,98
Avril	70,37	28,15	42,22	21,51	21,51	120,71	100,00	20,71
Mai	101,70	40,68	61,02	72,75	72,75	88,27	88,27	0,00
Juin	103,90	41,56	62,34	108,49	108,49	42,12	42,12	0,00
Juillet	115,50	46,20	69,30	127,54	111,42	-16,12	0,00	0,00
Août	116,10	46,44	69,66	109,12	69,66	-39,46	0,00	0,00
Septembr	113,50	45,40	68,10	66,52	66,52	1,58	1,58	0,00
Octobre	95,77	38,31	57,46	31,18	31,18	27,86	27,86	0,00
Novembre	: 89,00	35,60	53,40	0,00	0,00	81,26	81,26	0,00
Décembre	86,01	34,40	51,61	0,00	0,00	132,87	100,00	32,87
Total	1086,48	434,59	651,89	537,10	481,53	-	-	170,36

Mois	Température	F (lamda)	i	Etp
	<u>(°C)</u>				<u>(mm)</u>
Janvier	-14,10	0,79		0,00	0,00
Février	-12,30	0,81		0,00	0,00
Mars	-4,41	1,02		0,00	0,00
Avril	3,10	1,13		0,48	18,20
Mai	10,51	1,29		3,08	69,60
Juin	15,72	1,31		5,66	105,30
Juillet	18,10	1,32		7,01	122,00
Août	16,68	1,22		6,20	104,00
Septembr	11,70	1,04		3,62	62,40
Octobre	5,77	0,94		1,24	28,01
Novembre	-1,03	0,79		0,00	0,00
Décembre	-9,96	0,74		0,00	0,00
			=	27,30	509,51
			a =	0,94	

Tableau C.3 : Estimation de la recharge à partir du bilan hydrologique à la station de Chute-Panet (CR=0,4 et RAS max=100 mm)

Mois	Précipitations T.	Ruissellement	Recharge	ЕТр	ETr	D	RAS	Delta Sg
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	<u>(mm)</u>
Janvier	79,89	31,96	47,93	0,00	0,00	147,93	100,00	47,93
Février	65,41	26,16	39,25	0,00	0,00	139,25	100,00	39,25
Mars	75,31	30,12	45,19	0,00	0,00	145,19	100,00	45,19
Avril	71,21	28,48	42,73	18,20	18,20	124,53	100,00	24,53
Mai	97,67	39,07	58,60	69,60	69,60	89,00	89,00	0,00
Juin	116,60	46,64	69,96	105,30	105,30	53,66	53,66	0,00
Juillet	127,30	50,92	76,38	122,00	122,00	8,03	8,03	0,00
Août	126,70	50,68	76,02	104,00	84,05	-19,94	0,00	0,00
Septembr	119,40	47,76	71,64	62,40	62,40	9,24	9,24	0,00
Octobre	102,70	41,08	61,62	28,01	28,01	42,85	42,85	0,00
Novembre	90,58	36,23	54,35	0,00	0,00	97,20	97,20	0,00
Décembre	102,60	41,04	61,56	0,00	0,00	158,76	100,00	58,76
Total	1175.37	470.15	705.22	509.51	489.57	-		215.65

Mois	Température	F (lamda)		1	Etp
	(°C)				<u>(mm)</u>
Janvier	-12,30	0,79		0,00	0,00
Février	-10,80	0,81		0,00	0,00
Mars	-3,98	1,02		0,00	0,00
Avril	3,82	1,13		0,67	22,38
Mai	11,19	1,29		3,39	74,06
Juin	16,64	1,31		6,17	111,40
Juillet	19,16	1,32		7,64	129,08
Août	17,97	1,22		6,94	111,96
Septembre	13,02	1,04		4,26	69,37
Octobre	7,05	0,94		1,68	34,15
Novembre	0,01	0,79		0,00	0,00
Décembre	-8,29	0,74		0,00	0,00
			=	30,75	552,40
			a =	0.99	

Tableau C.4 : Estimation de la recharge à partir du bilan hydrologique à la station de Donaconna-2(CR=0,4 et RAS max=100 mm)

Mois	Précipitations T	. Ruissellement	Recharge	ЕТр	ETr	D	RAS	Delta Sg
	(mm)	(mm)	(mm)	<u>(mm)</u>	(mm)	(mm)	<u>(m</u> m)	(mm)
Janvier	71,78	28,71	43,07	0,00	0,00	143,07	100,00	43,07
Février	61,87	24,75	37,12	0,00	0,00	137,12	100,00	37,12
Mars	65,87	26,35	39,52	0,00	0,00	139,52	100,00	39,52
Avril	68,48	27,39	41,09	22,38	22,38	118,71	100,00	18,71
Mai	100,60	40,24	60,36	74,06	74,06	86,30	86,30	0,00
Juin	102,60	41,04	61,56	111,40	111,40	36,46	36,46	0,00
Juillet	109,90	43,96	65,94	129,08	102,40	-26,68	0,00	0,00
Août	112,80	45,12	67,68	111,96	67,68	-44,28	0,00	0,00
Septembr	109,40	43,76	65,64	69,37	65,64	-3,73	0,00	0,00
Octobre	91,31	36,52	54,79	34,15	34,15	20,63	20,63	0,00
Novembre	90,59	36,24	54,35	0,00	0,00	74,99	74,99	0,00
Décembre	88,50	35,40	53,10	0,00	0,00	128,09	100,00	28,09
Total	1073,70	429,48	644,22	552,40	477,72	-	-	166,50

Mois	Température	F (lamda)	i	Etp
<u> </u>	(°C)				<u>(mm)</u>
Janvier	-13,20	0,79		0,00	0,00
Février	-11,40	0,81		0,00	0,00
Mars	-4,82	1,02		0,00	0,00
Avril	3,12	1,13		0,49	18,32
Mai	10,48	1,29		3,07	69,41
Juin	15,67	1,31		5,64	104,97
Juillet	18,42	1,32		7,20	124,14
Août	17,12	1,22		6,45	106,71
Septembr	12,02	1,04		3,77	64,09
Octobre	5,92	0,94		1,29	28,73
Novembre	-1,09	0,79		0,00	0,00
Décembre	-9,63	0,74		0,00	0,00
· ·			=	27,91	516,36
			a =	0,95	

 Tableau C.5 : Estimation de la recharge à partir du bilan hydrologique à la station de Sainte-Catherine (CR=0,4 et RAS max=100 mm)

Mois	Précipitations T.	Ruissellement	Recharge	ЕТр	ETr	D	RAS	Delta Sg
	(mm)	(mm)	(mm)	(mm)	(mm)	<u>(mm)</u>	(mm)	(mm)
Janvier	87,26	34,90	52,36	0,00	0,00	152,36	100,00	52,36
Février	74,65	29,86	44,79	0,00	0,00	144,79	100,00	44,79
Mars	80,02	32,01	48,01	0,00	0,00	148,01	100,00	48,01
Avril	83,10	33,24	49,86	18,32	18,32	131,54	100,00	31,54
Mai	114,70	45,88	68,82	69,41	69,41	99,41	99,41	0,00
Juin	122,40	48,96	73,44	104,97	104,97	67,88	67,88	0,00
Juillet	126,50	50,60	75,90	124,14	124,14	19,65	19,65	0,00
Août	126,00	50,40	75,60	106,71	95,25	-11,47	0,00	0,00
Septembr	128,60	51,44	77,16	64,09	64,09	13,07	13,07	0,00
Octobre	112,60	45,04	67,56	28,73	28,73	51,90	51,90	0,00
Novembre	108,70	43,48	65,22	0,00	0,00	117,12	100,00	17,12
Décembre	106,80	42,72	64,08	0,00	0,00	164,08	100,00	64,08
Total	1271,33	508,53	762,80	516,36	504,90	-	-	257,90

Mois	Température	F (lamda)	į	Etp
	(°C)			<u>(mm)</u>
Janvier	-13,00	0,79	0,00	0,00
Février	-11,60	0,81	0,00	0,00
Mars	-6,16	1,02	0,00	0,00
Avril	3,69	1,13	0,63	21,63
Mai	10,37	1,29	3,02	68,68
Juin	15,10	1,31	5,33	101,19
Juillet	18,04	1,32	6,98	121,60
Août	16,86	1,22	6,30	105,11
Septembre	11,96	1,04	3,74	63,77
Octobre	5,72	0,94	1,23	27,77
Novembre	-1,61	0,79	0,00	0,00
Décembre	-10,60	0,74	0,00	0,00
			l = <i>27,23</i>	509,75
			a = 0.94	

 Tableau C.6 : Estimation de la recharge à partir du bilan hydrologique à la station de Sainte-Christine (CR=0,4 et RAS max=100 mm)

Mois	Précipitations T	. Ruissellement	Recharge	ETp (mm)	ETr (mm)	D (mm)	RAS (mm)	Delta Sg
	04.50		<u> </u>		0.00	450.75	100.00	50.75
Janvier	84,58	33,83	50,75	0,00	0,00	150,75	100,00	50,75
Février	83,85	33,54	50,31	0,00	0,00	150,31	100,00	50,31
Mars	76,60	30,64	45,96	0,00	0,00	145,96	100,00	45,96
Avril	80,06	32,02	48,04	21,63	21,63	126,41	100,00	26,41
Mai	118,10	47,24	70,86	68,68	68,68	102,18	100,00	2,18
Juin	110,60	44,24	66,36	101,19	101,19	65,17	65,17	0,00
Juillet	122,00	48,80	73,20	121,60	121,60	16,77	16,77	0,00
Août	124,40	49,76	74,64	105,11	91,41	-13,70	0,00	0,00
Septembr	118,40	47,36	71,04	63,77	63,77	7,27	7,27	0,00
Octobre	105,90	42,36	63,54	27,77	27,77	43,04	43,04	0,00
Novembre	: 111,90	44,76	67,14	0,00	0,00	110,18	100,00	10,18
Décembre	e 105,10	42,04	63,06	0,00	0,00	163,06	100,00	63,06
Total	1241.49	496.60	744,89	509,75	496.05	_	-	248,84

Mois	Température (°C)	F (lamda)		i	Etp
lanvier	-14.00	0.79		0.00	0.00
Février	-12 00	0,75		0,00	0,00
Mare	-5 12	1 02		0,00	0,00
Avril	3.21	1 13		0,00	18.84
Mai	10.60	1 29		3 12	70 19
Juin	15.92	1,31		5.77	106.63
Juillet	18.57	1.32		7.29	125.14
Août	17.21	1.22		6,50	107.27
Septembr	11,91	1,04		3,72	63,51
Octobre	5,81	0,94		1,26	28,20
Novembre	-1,27	0,79		0,00	0,00
Décembre	-10,30	0,74		0,00	0,00
			1=	28,17	519,78
			a =	0,95	

Tableau C.7 : Estimation de la recharge à partir du bilan hydrologique à la station de Lac-Aux-Sables (CR=0,4 et RAS max=100 mm)

Mois	Précipitations T.	Ruissellement	Recharge	ЕТр	ETr	D	RAS	Delta Sg
	<u>(mm)</u>	(mm)	(mm)	<u>(mm)</u>	(mm)	<u>(mm)</u>	<u>(mm)</u>	<u>(mm)</u>
Janvier	73,72	29,49	44,23	0,00	0,00	144,23	100,00	44,23
Février	64,55	25,82	38,73	0,00	0,00	138,73	100,00	38,73
Mars	75,94	30,38	45,56	0,00	0,00	145,56	100,00	45,56
Avril	68,93	27,57	41,36	18,84	18,84	122,52	100,00	22,52
Mai	99,81	39,92	59,89	70,19	70,19	89,69	89,69	0,00
Juin	108,30	43,32	64,98	106,63	106,63	48,04	48,04	0,00
Juillet	113,50	45,40	68,10	125,14	116,14	-8,99	0,00	0,00
Août	115,00	46,00	69,00	107,27	69,00	-38,27	0,00	0,00
Septembr	100,00	40,00	60,00	63,51	60,00	-3,51	0,00	0,00
Octobre	99,55	39,82	59,73	28,20	28,20	31,53	31,53	0,00
Novembre	96,23	38,49	57,74	0,00	0,00	89,27	89,27	0,00
Décembre	e 97,19	38,88	58,31	0,00	0,00	147,58	100,00	47,58
Total	1112,72	445,09	667,63	519,78	469,01	-	-	198,63

Mois	Température	F (lamda))	i	Etp
	(°C)				(mm)
Janvier	-15,10	0,77		0,00	0,00
Février	-12,40	0,80		0,00	0,00
Mars	-6,01	1,02		0,00	0,00
Avril	2,76	1,14		0,41	16,37
Mai	10,20	1,30		2,94	68,09
Juin	14,74	1,32		5,14	99,55
Juillet	17,69	1,33		6,77	120,17
Août	16,24	1,22		5,95	101,28
Septembr	10,89	1,04		3,25	58,12
Octobre	4,88	0,93		0,96	23,47
Novembre	-2,10	0,78		0,00	0,00
Décembre	-11,80	0,73		0,00	0,00
			1=	25,43	487,06
	,		a =	0,91	

Tableau C.8 : Estimation de la recharge à partir du bilan hydrologique à la station de Rivière-à-Pierre (CR=0,4 et RAS max=100 mm)

Mois	Précipitations T. (mm)	Ruissellement (mm)	Recharge (mm)	ETp (mm)	ETr (mm)	D (mm)	RAS (mm)	Delta Sg (mm)
Janvier	67,51	27,00	40,51	0,00	0,00	140,51	100,00	40,51
Février	53,22	21,29	31,93	0,00	0,00	131,93	100,00	31,93
Mars	60,63	24,25	36,38	0,00	0,00	136,38	100,00	36,38
Avril	76,72	30,69	46,03	16,37	16,37	129,67	100,00	29,67
Mai	100,80	40,32	60,48	68,09	68,09	92,39	92,39	0,00
Juin	115,60	46,24	69,36	99,55	99,55	62,19	62,19	0,00
Juillet	126,00	50,40	75,60	120,17	120,17	17,62	17,62	0,00
Août	113,90	45,56	68,34	101,28	85,96	-15,32	0,00	0,00
Septembr	122,30	48,92	73,38	58,12	58,12	15,26	15,26	0,00
Octobre	104,20	41,68	62,52	23,47	23,47	54,30	54,30	0,00
Novembre	: 87,77	35,11	52,66	0,00	0,00	106,97	100,00	6,97
Décembre	£ 86,79	34,72	52,07	0,00	0,00	152,07	100,00	52,07
Total	1115,44	446,18	669,26	487,06	471,74	-	-	197,52

Mois	Température	F (lamda)	i	Etp (mm)
lanvior	13.30	0.77	0.00	0.00
Janvier	-10,00	0,77	0,00	0,00
Février	-11,60	0,80	0,00	0,00
Mars	-5,06	1,02	0,00	0,00
Avril	2,61	1,14	0,37	15,48
Mai	9,92	1,30	2,82	66,24
Juin	15,11	1,32	5,34	102,03
Juillet	17,82	1,33	6,85	121,04
Août	16,57	1,22	6,13	103,32
Septembr	11,36	1,04	3,46	60,61
Octobre	5,42	0,93	1,13	26,05
Novembre	-1,37	0,78	0,00	0,00
Décembre	-9,93	0,73	0,00	0,00
			= 26,11	494,77
		á	= 0.92	

Tableau C.9 : Estimation de la recharge à partir du bilan hydrologique à la station de Rivière-verte-ouest (CR=0,4 et RAS max=100 mm)

Mois	Précipitations T.	Ruissellement	Recharge	ETp	ETr	D	RAS	Delta Sg
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
Janvier	98,09	39,24	58,85	0,00	0,00	158,85	100,00	58,85
Février	83,04	33,22	49,82	0,00	0,00	149,82	100,00	49,82
Mars	91,83	36,73	55,10	0,00	0,00	155,10	100,00	55,10
Avril	90,92	36,37	54,55	15,48	15,48	139,07	100,00	39,07
Mai	122,10	48,84	73,26	66,24	66,24	107,02	100,00	7,02
Juin	142,40	56,96	85,44	102,03	102,03	83,41	83,41	0,00
Juillet	146,90	58,76	88,14	121,04	121,04	50,51	50,51	0,00
Août	139,80	55,92	83,88	103,32	103,32	31,07	31,07	0,00
Septembr	140,80	56,32	84,48	60,61	60,61	54,94	54,94	0,00
Octobre	128,90	51,56	77,34	26,05	26,05	106,24	100,00	6,24
Novembre	125,20	50,08	75,12	0,00	0,00	175,12	100,00	75,12
Décembre	114,90	45,96	68,94	0,00	0,00	168,94	100,00	68,94
Total	1424,88	569,95	854,93	494,77	494,77	-	-	360,16

Mois	Température	F (lamda)	i	Etp
·	(°C)				<u>(mm)</u>
Janvier	-12,90	0,79		0,00	0,00
Février	-11,50	0,81		0,00	0,00
Mars	-4,54	1,02		0,00	0,00
Avril	3,70	1,13		0,63	21,68
Mai	11,15	1,29		3,37	73,80
Juin	16,56	1,31		6,13	110,87
Juillet	19,23	1,32		7,69	129,54
Août	17,86	1,22		6,87	111,28
Septembr	12,80	1,04		4,15	68,21
Octobre	6,75	0,94		1,58	32,71
Novembre	-0,31	0,79		0,00	0,00
Décembre	-9,23	0,74		0,00	0,00
			=	30,41	548,10
			a -	0 08	

Tableau C.10 : Estimation de la recharge à partir du bila	n hydrologique à la station de Sainte-Anne-de-la-Pérade
(CR=0,4 et RAS max=100 mm)	

Mois	Précipitations T. (mm)	Ruissellement (mm)	Recharge (mm)	ETp (mm)	ETr (mm)	D (mm)	RAS (mm)	Delta Sg (mm)
Janvier	72,20	28,88	43,32	0,00	0,00	143,32	100,00	43,32
Février	57,78	23,11	34,67	0,00	0,00	134,67	100,00	34,67
Mars	67,85	27,14	40,71	0,00	0,00	140,71	100,00	40,71
Avril	72,39	28,96	43,43	21,68	21,68	121,75	100,00	21,75
Mai	95,41	38,16	57,25	73,80	73,80	83,45	83,45	0,00
Juin	98,43	39,37	59,06	110,87	110,87	31,63	31,63	0,00
Juillet	99,95	39,98	59,97	129,54	91,60	-37,94	0,00	0,00
Août	115,00	46,00	69,00	111,28	69,00	-42,28	0,00	0,00
Septembr	109,80	43,92	65,88	68,21	65,88	-2,33	0,00	0,00
Octobre	91,95	36,78	55,17	32,71	32,71	22,46	22,46	0,00
Novembre	93,11	37,24	55,87	0,00	0,00	78,32	78,32	0,00
Décembre	90,86	36,34	54,52	0,00	0,00	132,84	100,00	32,84
Total	1064,73	425,89	638,84	548,10	465,55	-	-	173,28

Mois	Température	F (lamda)		, I	Etp
	(°C)				<u>(mm)</u>
Janvier	-12,90	0,79		0,00	0,00
Février	-11,40	0,81		0,00	0,00
Mars	-4,39	1,02		0,00	0,00
Avril	3,79	1,13		0,66	22,21
Mai	11,22	1,29		3,40	74,26
Juin	16,21	1,31		5,93	108,55
Juillet	19,01	1,32		7,55	128,07
Août	17,82	1,22		6,85	111,03
Septembr	12,46	1,04		3,98	66,41
Octobre	6,26	0,94		1,41	30,36
Novembre	-0,81	0,79		0,00	0,00
Décembre	-9,05	0,74		0,00	0,00
1			=	29,78	540,90
			a =	0.97	-

Tableau C.11 : Estimation de la recharge à partir du bilan hydrologique à la station de Sainte-Croix (CR=0,4 et RAS max=100 mm)

Mois	Précipitations T. (mm)	Ruissellement (mm)	Recharge (mm)	ETp (mm)	ETr (mm)	D (mm)	RAS (mm)	Delta Sg (mm)
Janvier	69,51	27,80	41,71	0,00	0,00	141,71	100,00	41,71
Février	48,27	19,31	28,96	0,00	0,00	128,96	100,00	28,96
Mars	61,57	24,63	36,94	0,00	0,00	136,94	100,00	36,94
Avril	57,67	23,07	34,60	22,21	22,21	112,40	100,00	12,40
Mai	101,40	40,56	60,84	74,26	74,26	86,58	86,58	0,00
Juin	106,70	42,68	64,02	108,55	108,55	42,05	42,05	0,00
Juillet	105,50	42,20	63,30	128,07	105,35	-22,72	0,00	0,00
Août	106,40	42,56	63,84	111,03	63,84	-47,19	0,00	0,00
Septembr	127,80	51,12	76,68	66,41	66,41	10,27	10,27	0,00
Octobre	91,41	36,56	54,85	30,36	30,36	34,75	34,75	0,00
Novembre	81,47	32,59	48,88	0,00	0,00	83,63	83,63	0,00
Décembre	80,16	32,06	48,10	0,00	0,00	131,73	100,00	31,73
Total	1037,86	415,14	622,72	540,90	470,98	-	-	151,73

Mois	Température	F (lamda))	i	Etp
	(°C)				<u>(mm)</u>
Janvier	-13,10	0,79		0,00	0,00
Février	-11,50	0,81		0,00	0,00
Mars	-5,07	1,02		0,00	0,00
Avril	3,10	1,13		0,48	18,20
Mai	10,54	1,29		3,09	69,80
Juin	15,56	1,31		5,58	104,24
Juillet	18,42	1,32		7,20	124,14
Août	16,88	1,22		6,31	105,23
Septembr	11,70	1,04		3,62	62,40
Octobre	5,74	0,94		1,23	27,86
Novembre	-0,96	0,79		0,00	0,00
Décembre	-10,40	0,74		0,00	0,00
			=	27,52	511,87
			a =	0,94	

Tableau C.12 : Estimation de la recharge à partir du bilan hydrologique à la station de Duchesnay(CR=0,4 et RAS max=100 mm)

Mois	Précipitations T. (mm)	Ruissellement (mm)	Recharge (mm)	ETp (mm)	ETr (mm)	D (mm)	RAS (mm)	Delta Sg (mm)
Janvier	100,10	40,04	60,06	0,00	0,00	160,06	100,00	60,06
Février	81,52	32,61	48,91	0,00	0,00	148,91	100,00	48,91
Mars	90,70	36,28	54,42	0,00	0,00	154,42	100,00	54,42
Avril	81,00	32,40	48,60	18,20	18,20	130,40	100,00	30,40
Mai	111,70	44,68	67,02	69,80	69,80	97,22	97,22	0,00
Juin	118,20	47,28	70,92	104,24	104,24	63,90	63,90	0,00
Juillet	127,10	50,84	76,26	124,14	124,14	16,02	16,02	0,00
Août	126,50	50,60	75,90	105,23	91,92	-13,31	0,00	0,00
Septembr	132,50	53,00	79,50	62,40	62,40	17,10	17,10	0,00
Octobre	111,00	44,40	66,60	27,86	27,86	55,84	55,84	0,00
Novembre	110,80	44,32	66,48	0,00	0,00	122,32	100,00	22,32
Décembre	: 125,00	50,00	75,00	0,00	0,00	175,00	100,00	75,00
Total	1316,12	526,45	789,67	511,87	498,56	-	-	291,11

Mois	Température	F (lamda)		i	Etp
	(°C)		_		(mm)
Janvier	-12,30	0,79		0,00	0,00
Février	-10,50	0,81		0,00	0,00
Mars	-4,38	1,02		0,00	0,00
Avril	3,46	1,13		0,57	20,29
Mai	11,00	1,29		3,30	72,81
Juin	16,37	1,31		6,02	109,61
Juillet	19,37	1,32		7,77	130,48
Août	17,93	1,22		6,91	111,71
Septembr	12,83	1,04		4,16	68,37
Octobre	6,67	0,94		1,55	32,33
Novembre	-0,20	0,79		0,00	0,00
Décembre	-8,37	0,74		0,00	0,00
(l =	30,29	545,60
			a =	0.98	

Tableau C.13 : Estimation de la recharge à partir du bilan hydrologique à la station de Saint-Augustin(CR=0,4 et RAS max=100 mm)

Mois	Précipitations 1	6. Ruissellement	Recharge	ЕТр	ETr	D	RAS	Delta Sg
	(mm)	(mm)	(mm)	(mm)	(mm)	<u>(mm)</u>	<u>(mm)</u>	<u>(mm)</u>
Janvier	92,57	37,03	55,54	0,00	0,00	155,54	100,00	55,54
Février	83,00	33,20	49,80	0,00	0,00	149,80	100,00	49,80
Mars	85,28	34,11	51,17	0,00	0,00	151,17	100,00	51,17
Avril	74,89	29,96	44,93	20,29	20,29	124,64	100,00	24,64
Mai	104,40	41,76	62,64	72,81	72,81	89,83	89,83	0,00
Juin	107,60	43,04	64,56	109,61	109,61	44,77	44,77	0,00
Juillet	120,50	48,20	72,30	130,48	117,07	-13,40	0,00	0,00
Août	113,00	45,20	67,80	111,71	67,80	-43,91	0,00	0,00
Septembr	123,00	49,20	73,80	68,37	68,37	5,43	5,43	0,00
Octobre	95,97	38,39	57,58	32,33	32,33	30,69	30,69	0,00
Novembre	97,31	38,92	58,39	0,00	0,00	89,07	89,07	0,00
Décembre	113,80	45,52	68,28	0,00	0,00	157,35	100,00	57,35
Total	1211,32	484,53	726,79	545,60	488,29	-	-	238,50

ANNEXE D

DONNÉES DE L'ÉTUDE DE SENSIBILITÉ POUR LE BILAN HYDROLOGIQUE

Cr	Ras	Préc. (tot)	Ruiss.	Infiltration	ЕТр	ETr	Recharge
0,3	100,0	1073,7	322,1	751,6	552,4	524,0	227,6
0,3	50,0	1073,7	322,1	751,6	552,4	474,0	277,6
0,3	150,0	1073,7	322,1	751,6	552,4	552,4	199,2
0,2	50,0	1073,7	214,7	859,0	552,4	510,2	348,8
0,2	100,0	1073,7	214,7	859,0	552,4	552,4	306,6
0,2	150,0	1073,7	214,7	859,0	552,4	552,4	306,6
0,4	50,0	1073,7	429,5	644,2	552,4	427,7	216,5
0,4	100,0	1073,7	429,5	644,2	552,4	477,7	166,5
0,4	150,0	1073,7	429,5	644,2	552,4	527,7	138,4
0,3	0,0	1073,7	322,1	751,6	552,4	424,0	327,6
0,2	0,0	1073,7	214,7	859,0	552,4	460,2	398,8
0,4	0,0	1073,7	429,5	644,2	552,4	381,4	262,8

Tableau D.1 : Station météorologique de Donaconna-2

Tableau D.2 : Station météorologique de Sainte-Catherine

Cr	Ras	Préc. (tot)	Ruiss.	Infiltration	ЕТр	ETr	Recharge
0,3	100,0	1271,3	381,4	889,9	516,4	516,4	373,6
0,3	50,0	1271,3	381,4	889,9	516,4	493,0	397,0
0,3	150,0	1271,3	381,4	889,9	516,4	516,4	373,6
0,2	50,0	1271,3	254,3	1017,1	516,4	516,4	500,7
0,2	100,0	1271,3	254,3	1017,1	516,4	516,4	500,7
0,2	150,0	1271,3	254,3	1017,1	516,4	516,4	500,7
0,4	50,0	1271,3	508,5	762,8	516,4	454,9	307,9
0,4	100,0	1271,3	508,5	762,8	516,4	504,9	257,9
0,4	150,0	1271,3	508,5	762,8	516,4	516,4	246,4
0,3	0,0	1271,3	381,4	889,9	516,4	443,0	447,0
0,2	0,0	1271,3	254,3	1017,1	516,4	480,5	536,6
0,4	0,0	1271,3	508,5	762,8	516,4	404,9	357,9

Tableau D.3 : Station météorologique de Sainte-Christine

Cr	Ras	Préc. (tot)	Ruiss.	Infiltration	ЕТр	ETr	Recharge
0,3	100,0	1241,5	372,4	869,0	509,8	509,8	359,3
0,3	50,0	1241,5	372,4	869,0	509,8	481,8	387,3
0,3	150,0	1241,5	372,4	869,0	509,8	509,8	359,3
0,2	50,0	1241,5	248,3	993,2	509,8	509,8	483,4
0,2	100,0	1241,5	248,3	993,2	509,8	509,8	483,4
0,2	150,0	1241,5	248,3	993,2	509,8	509,8	483,4
0,4	50,0	1241,5	496,6	744,9	509,8	446,1	298,8
0,4	100,0	1241,5	496,6	744,9	509,8	496,1	248,8
0,4	150,0	1241,5	496,6	744,9	509,8	509,8	235,1
0,3	0,0	1241,5	372,4	869,0	509,8	431,8	437,3
0,2	0,0	1241,5	248,3	993,2	509,8	467,5	525,7
0,4	0,0	1241,5	496,6	744,9	509,8	396,1	348,8

Cr	Ras	Préc. (tot)	Ruiss.	Infiltration	ЕТр	ETr	Recharge
0,3	100,0	1105,7	331,7	774,0	554,3	534,4	239,6
0,3	50,0	1105,7	331,7	774,0	554,3	484,4	289,6
0,3	150,0	1105,7	331,7	774,0	554,3	554,3	219,7
0,2	50,0	1105,7	221,1	884,6	554,3	520,9	363,6
0,2	100,0	1105,7	221,1	884,6	554,3	554,3	330,2
0,2	150,0	1105,7	221,1	884,6	554,3	554,3	330,2
0,4	50,0	1105,7	442,3	663,4	554,3	440,3	223,1
0,4	100,0	1105,7	442,3	663,4	554,3	490,3	173,1
0,4	150,0	1105,7	442,3	663,4	554,3	540,3	132,2
0,3	0,0	1105,7	331,7	774,0	554,3	434,4	339,6
0,2	0,0	1105,7	221,1	884,6	554,3	470,9	413,6
0,4	0,0	1105,7	442,3	663,4	554,3	390,3	273,1

Tableau D.4 : Station météorologique de Deschambault

Tableau D.5 : Station météorologique de Saint-Alban

Cr	Ras	Préc. (tot)	Ruiss.	Infiltration	ЕТр	ETr	Recharge
0,3	100,0	1086,5	325,9	760,5	537,1	525,2	235,3
0,3	50,0	1086,5	325,9	760,5	537,1	475,2	285,3
0,3	150,0	1086,5	325,9	760,5	537,1	537,1	223,4
0,2	50,0	1086,5	217,3	869,2	537,1	510,4	358,8
0,2	100,0	1086,5	217,3	869,2	537,1	537,1	332,1
0,2	150,0	1086,5	217,3	869,2	537,1	537,1	332,1
0,4	50,0	1086,5	434,6	651,9	537,1	431,5	220,4
0,4	100,0	1086,5	434,6	651,9	537,1	481,5	170,4
0,4	150,0	1086,5	434,6	651,9	537,1	531,5	137,5
0,3	0,0	1086,5	325,9	760,5	537,1	425,2	335,3
0,2	0,0	1086,5	217,3	869,2	537,1	460,4	408,8
0,4	0,0	1086,5	434,6	651,9	537,1	381,5	270,4

 Tableau D.6 : Station météorologique de Chute-Panet

Cr	Ras	Préc. (tot)	Ruiss.	Infiltration	ЕТр	ETr	Recharge
0,3	100,0	1175,4	352,6	822,8	509,5	509,5	313,2
0,3	50,0	1175,4	352,6	822,8	509,5	486,4	336,4
0,3	150,0	1175,4	352,6	822,8	509,5	509,5	313,2
0,2	50,0	1175,4	235,1	940,3	509,5	509,5	430,8
0,2	100,0	1175,4	235,1	940,3	509,5	509,5	430,8
0,2	150,0	1175,4	235,1	940,3	509,5	509,5	430,8
0,4	50,0	1175,4	470,1	705,2	509,5	439,6	265,7
0,4	100,0	1175,4	470,1	705,2	509,5	489,6	215,7
0,4	150,0	1175,4	470,1	705,2	509,5	509,5	195,7
0,3	0,0	1175,4	352,6	822,8	509,5	436,4	386,4
0,2	0,0	1175,4	235,1	940,3	509,5	474,7	465,6
0,4	0,0	1175,4	470,1	705,2	509,5	389,6	315,7

Cr	Ras	Préc. (tot)	Ruiss.	Infiltration	ЕТр	ETr	Recharge
0,3	100,0	1112,7	333,8	778,9	519,8	516,2	262,7
0,3	50,0	1112,7	333,8	778,9	519,8	466,2	312,7
0,3	150,0	1112,7	333,8	778,9	519,8	519,8	259,1
0,2	50,0	1112,7	222,5	890,2	519,8	500,2	390,0
0,2	100,0	1112,7	222,5	890,2	519,8	519,8	370,4
0,2	150,0	1112,7	222,5	890,2	519,8	519,8	370,4
0,4	50,0	1112,7	445,1	667,6	519,8	419,0	248,6
0,4	100,0	1112,7	445,1	667,6	519,8	469,0	198,6
0,4	150,0	1112,7	445,1	667,6	519,8	519,0	151,0
0,3	0,0	1112,7	333,8	778,9	519,8	416,2	362,7
0,2	0,0	1112,7	222,5	890,2	519,8	450,2	440,0
0,4	0,0	1112,7	445,1	667,6	519,8	372,5	295,1

Tableau D.7 : Station météorologique de Lac-Aux-Sables

Tableau D.8 : Station météorologique de Rivière-à-Pierre

Cr	Ras	Préc. (tot)	Ruiss.	Infiltration	ЕТр	ETr	Recharge
0,3	100,0	1115,4	334,6	780,8	487,1	487,1	293,7
0,3	50,0	1115,4	334,6	780,8	487,1	464,9	315,9
0,3	150,0	1115,4	334,6	780,8	487,1	487,1	293,7
0,2	50,0	1115,4	223,1	892,4	487,1	487,1	405,3
0,2	100,0	1115,4	223,1	892,4	487,1	487,1	405,3
0,2	150,0	1115,4	223,1	892,4	487,1	487,1	405,3
0,4	50,0	1115,4	446,2	669;3	487,1	421,7	247,5
0,4	100,0	1115,4	446,2	669,3	487,1	471,7	197,5
0,4	150,0	1115,4	446,2	669,3	487,1	487,1	182,2
0,3	0,0	1115,4	334,6	780,8	487,1	414,9	365,9
0,2	0,0	1115,4	223,1	892,4	487,1	450,5	441,9
0,4	0,0	1115,4	446,2	669,3	487,1	371,7	297,5

Tableau D.9 : Station météorologique de Rivière-verte-ouest

Cr	Ras	Préc. (tot)	Ruiss.	Infiltration	ЕТр	ETr	Recharge
0,3	100,0	1424,9	427,5	997,4	494,8	494,8	502,6
0,3	50,0	1424,9	427,5	997,4	494,8	494,8	502,6
0,3	150,0	1424,9	427,5	997,4	494,8	494,8	502,6
0,2	50,0	1424,9	285,0	1139,9	494,8	494,8	645,1
0,2	100,0	1424,9	285,0	1139,9	494,8	494,8	645,1
0,2	150,0	1424,9	285,0	1139,9	494,8	494,8	645,1
0,4	50,0	1424,9	570,0	854,9	494,8	494,8	360,2
0,4	100,0	1424,9	570,0	854,9	494,8	494,8	360,2
0,4	150,0	1424,9	570,0	854,9	494,8	494,8	360,2
0,3	0,0	1424,9	427,5	997,4	494,8	468,7	528,7
0,2	0,0	1424,9	285,0	1139,9	494,8	491,2	648,7
0,4	0,0	1424,9	570,0	854,9	494,8	425,8	429,1

Cr	Ras	Préc. (tot)	Ruiss.	Infiltration	ЕТр	ETr	Recharge
0,3	100,0	1064,7	319,4	745,3	548,1	508,8	236,6
0,3	50,0	1064,7	319,4	745,3	548,1	458,8	286,6
0,3	150,0	1064,7	319,4	745,3	548,1	548,1	197,2
0,2	50,0	1064,7	212,9	851,8	548,1	497,1	354,7
0,2	100,0	1064,7	212,9	851,8	548,1	547,1	304,7
0,2	150,0	1064,7	212,9	851,8	548,1	548,1	303,7
0,4	50,0	1064,7	425,9	638,8	548,1	415,6	223,3
0,4	100,0	1064,7	425,9	638,8	548,1	465,6	173,3
0,4	150,0	1064,7	425,9	638,8	548,1	515,6	140,4
0,3	0,0	1064,7	319,4	745,3	548,1	408,8	336,6
0,2	0,0	1064,7	212,9	851,8	548,1	447,1	404,7
0,4	0,0	1064,7	425,9	638,8	548,1	367,9	273,3

Tableau D.10 : Station météorologique de Sainte-Anne de la Pérade

Tableau D.11 : Station météorologique de Sainte-Croix

Cr	Ras	Préc. (tot)	Ruiss.	Infiltration	ЕТр	ETr	Recharge
0,3	100,0	1037,9	311,4	726,5	540,9	513,0	213,5
0,3	50,0	1037,9	311,4	726,5	540,9	463,0	263,5
0,3	150,0	1037,9	311,4	726,5	540,9	540,9	185,6
0,2	50,0	1037,9	207,6	830,3	540,9	498,1	332,2
0,2	100,0	1037,9	207,6	830,3	540,9	540,9	289,4
0,2	150,0	1037,9	207,6	830,3	540,9	540,9	289,4
0,4	50,0	1037,9	311,4	726,5	540,9	513,0	213,5
0,4	100,0	1037,9	415,1	622,7	540,9	471,0	151,7
0,4	150,0	1037,9	415,1	622,7	540,9	521,0	120,0
0,3	0,0	1037,9	311,4	726,5	540,9	413,0	313,5
0,2	0,0	1037,9	207,6	830,3	540,9	448,1	382,2
0,4	0,0	1037,9	415,1	622,7	540,9	371,0	251,7

Tableau D.12 : Station météorologique de Duchesnay

Cr	Ras	Préc. (tot)	Ruiss.	Infiltration	ЕТр	ETr	Recharge
0,3	100,0	1316,1	394,8	921,3	511,9	511,9	409,4
0,3	50,0	1316,1	394,8	921,3	511,9	488,5	432,8
0,3	150,0	1316,1	394,8	921,3	511,9	511,9	409,4
0,2	50,0	1316,1	263,2	1052,9	511,9	511,9	541,0
0,2	100,0	1316,1	263,2	1052,9	511,9	511,9	541,0
0,2	150,0	1316,1	263,2	1052,9	511,9	511,9	541,0
0,4	50,0	1316,1	526,4	789,7	511,9	448,6	341,1
0,4	100,0	1316,1	526,4	789,7	511,9	498,6	291,1
0,4	150,0	1316,1	513,9	802,2	511,9	511,9	290,3
0,3	0,0	1316,1	394,8	921,3	511,9	438,5	482,8
0,2	0,0	1316,1	263,2	1052,9	511,9	475,7	577,2
0,4	0,0	1316,1	526,4	789,7	511,9	398,6	391,1

Cr	Ras	Préc. (tot)	Ruiss.	Infiltration	ЕТр	ETr	Recharge
0,3	100,0	1211,3	363,4	847,9	545,6	532,6	315,4
0,3	50,0	1211,3	363,4	847,9	545,6	482,6	365,4
0,3	150,0	1211,3	363,4	847,9	545,6	545,6	302,3
0,2	50,0	1211,3	242,3	969,1	545,6	516,7	452,4
0,2	100,0	1211,3	242,3	969,1	545,6	545,6	423,5
0,2	150,0	1211,3	242,3	969,1	545,6	545,6	423,5
0,4	50,0	1211,3	484,5	726,8	545,6	438,3	288,5
0,4	100,0	1211,3	484,5	726,8	545,6	488,3	238,5
0,4	150,0	1211,3	484,5	726,8	545,6	538,3	188,5
0,3	0,0	1211,3	363,4	847,9	545,6	432,6	415,4
0,2	0,0	1211,3	242,3	969,1	545,6	466,7	502,4
0,4	0,0	1211,3	484,5	726,8	545,6	388,3	338,5

Tableau D.13 : Station météorologique de Saint-Augustin

ANNEXE E

DONNÉES DÉTAILLÉES POUR LES HYDROGRAMMES

	Date	Profondeur		Date	Profondeur
		(mètre)			(mètre)
1	1996/11/22	3,079	47	1997/01/07	3,168
2	1996/11/23	3,083	48	1997/01/08	3,157
3	1996/11/24	3,091	49	1997/01/09	3,162
4	1996/11/25	3,098	50	1997/01/10	3,167
5	1996/11/26	3,103	51	1997/01/11	3,155
6	1996/11/27	3,097	52	1997/01/12	3,145
7	1996/11/28	3,107	53	1997/01/13	3,139
8	1996/11/29	3,105	54	1997/01/14	3,136
9	1996/11/30	3,115	55	1997/01/15	3,141
10	1996/12/01	3,129	56	1997/01/16	3,149
11	1996/12/02	3,123	57	1997/01/17	3,131
12	1996/12/03	3,120	58	1997/01/18	3,122
13	1996/12/04	3,117	59	1997/01/19	3,129
14	1996/12/05	3,122	60	1997/01/20	3,120
15	1996/12/06	3,133	61	1997/01/21	3,104
16	1996/12/07	3,136	62	1997/01/22	3,129
17	1996/12/08	3,135	63	1997/01/23	3,096
18	1996/12/09	3,133	64	1997/01/24	3,105
19	1996/12/10	3,136	65	1997/01/25	3,115
20	1996/12/11	3,127	66	1997/01/26	3,086
21	1996/12/12	3,129	67	1997/01/27	3,092
22	1996/12/13	3,136	68	1997/01/28	3,091
23	1996/12/14	3,135	69	1997/01/29	3,073
24	1996/12/15	3,148	70	1997/01/30	3,082
25	1996/12/16	3,157	71	1997/01/31	3,087
26	1996/12/17	3,166	72	1997/02/01	3,078
27	1996/12/18	3,164	73	1997/02/02	3,069
28	1996/12/19	3,172	74	1997/02/03	3,056
29	1996/12/20	3,163	75	1997/02/04	3,059
30	1996/12/21	3,164	76	1997/02/05	3,064
31	1996/12/22	3,167	77	1997/02/06	3,056
32	1996/12/23	3,172	78	1997/02/07	3,048
33	1996/12/24	3,184	79	1997/02/08	3,043
34	1996/12/25	3,172	80	1997/02/09	3,046
35	1996/12/26	3,169	81	1997/02/10	3,039
36	1996/12/27	3,170	82	1997/02/11	3,037
37	1996/12/28	3,184	83	1997/02/12	3,034
38	1996/12/29	3,186	84	1997/02/13	3,015
39	1996/12/30	3,166	85	1997/02/14	3,030
40	1996/12/31	3,163	86	1997/02/15	3,019
41	1997/01/01	3,180	87	1997/02/16	3,004
42	1997/01/02	3,184	88	1997/02/17	3,008
43	1997/01/03	3,177	89	1997/02/18	3,011
44	1997/01/04	3,172	90	1997/02/19	3,005
45	1997/01/05	3,181	91	1997/02/20	2,997
46	1997/01/06	3,174	92	1997/02/21	2,996

Tableau E.1 : Variation du niveau de la nappe phréatique pour

 l'hydrogramme de puits de Sainte-Christine

	Date	Profondeur		Date	Profondeur
		(mètre)			(mètre)
93	1997/02/22	2.987	139	1997/04/09	2.758
94	1997/02/23	2.982	140	1997/04/10	2,751
95	1997/02/24	2.978	141	1997/04/11	2.747
96	1997/02/25	2.977	142	1997/04/12	2,745
97	1997/02/26	2.973	143	1997/04/13	2,740
98	1997/02/27	2.970	144	1997/04/14	2,731
99	1997/02/28	2.956	145	1997/04/15	2,729
100	1997/03/01	2.963	146	1997/04/16	2,727
101	1997/03/02	2.952	147	1997/04/17	2,722
102	1997/03/03	2,942	148	1997/04/18	2,718
103	1997/03/04	2.943	149	1997/04/19	2,714
104	1997/03/05	2,940	150	1997/04/20	2,710
105	1997/03/06	2,935	151	1997/04/21	2,708
106	1997/03/07	2,928	152	1997/04/22	2,708
107	1997/03/08	2,918	153	1997/04/23	2,712
108	1997/03/09	2,918	154	1997/04/24	2,719
109	1997/03/10	2,918	155	1997/04/25	2,731
110	1997/03/11	2,911	156	1997/04/26	2,741
111	1997/03/12	2,903	157	1997/04/27	2,761
112	1997/03/13	2,892	158	1997/04/28	2,789
113	1997/03/14	2,899	159	1997/04/29	2,809
114	1997/03/15	2,890	160	1997/04/30	2,842
115	1997/03/16	2,883	161	1997/05/01	2,885
116	1997/03/17	2,881	162	1997/05/02	2,918
117	1997/03/18	2,871	163	1997/05/03	2,981
118	1997/03/19	2,872	164	1997/05/04	3,025
119	1997/03/20	2,868	165	1997/05/05	3,081
120	1997/03/21	2,862	166	1997/05/06	3,133
121	1997/03/22	2,855	167	1997/05/07	3,180
122	1997/03/23	2,848	168	1997/05/08	3,228
123	1997/03/24	2,838	169	1997/05/09	3,285
124	1997/03/25	2,843	170	1997/05/10	3,335
125	1997/03/26	2,835	171	1997/05/11	3,383
126	1997/03/27	2,828	172	1997/05/12	3,429
127	1997/03/28	2,825	173	1997/05/13	3,471
128	1997/03/29	2,821	174	1997/05/14	3,509
129	1997/03/30	2,814	175	1997/05/15	3,547
130	1997/03/31	2,806	176	1997/05/16	3,590
131	1997/04/01	2,800	177	1997/05/17	3,617
132	1997/04/02	2,795	178	1997/05/18	3,645
133	1997/04/03	2,793	179	1997/05/19	3,678
134	1997/04/04	2,783	180	1997/05/20	3,702
135	1997/04/05	2,779	181	1997/05/21	3,728
136	1997/04/06	2,778	182	1997/05/22	3,746
137	1997/04/07	2,771	183	1997/05/23	3,764
138	1997/04/08	2,764	184	1997/05/24	3,783

Tableau E.1 : Variation du niveau de la nappe phréatique pourl'hydrogramme de puits de Sainte-Christine (suite 1)

(mètre) (mètre) 185 1997/05/25 3,801 231 1997/07/10 3,764 186 1997/05/26 3,809 232 1997/07/11 3,761 187 1997/05/27 3,822 233 1997/07/12 3,759 188 1997/05/28 3,833 234 1997/07/13 3,757 189 1997/05/29 3,844 235 1997/07/14 3,753 190 1997/05/30 3,855 236 1997/07/15 3,750 191 1997/05/31 3,861 237 1997/07/16 3,748 192 1997/06/01 3,867 238 1997/07/17 3,749 193 1997/06/02 3,870 239 1997/07/18 3,745 194 1997/06/03 3,878 240 1997/07/20 3,734 195 1997/06/04 3,881 241 1997/07/21 3,731 197 1997/06/05 3,884 242 1997/07/22 3,722 <t< th=""></t<>
185 1997/05/25 3,801 231 1997/07/10 3,764 186 1997/05/26 3,809 232 1997/07/11 3,761 187 1997/05/27 3,822 233 1997/07/12 3,759 188 1997/05/28 3,833 234 1997/07/13 3,757 189 1997/05/29 3,844 235 1997/07/14 3,753 190 1997/05/30 3,855 236 1997/07/15 3,750 191 1997/05/31 3,861 237 1997/07/16 3,748 192 1997/06/01 3,867 238 1997/07/17 3,749 193 1997/06/02 3,870 239 1997/07/18 3,745 194 1997/06/03 3,878 240 1997/07/20 3,734 196 1997/06/04 3,881 241 1997/07/21 3,722 198 1997/06/05 3,884 242 1997/07/23 3,722 199 1997/06/07 3,899
1861997/05/263,8092321997/07/113,7611871997/05/273,8222331997/07/123,7591881997/05/283,8332341997/07/133,7571891997/05/293,8442351997/07/143,7531901997/05/293,8442351997/07/153,7501911997/05/303,8552361997/07/153,7501911997/05/313,8612371997/07/163,7481921997/06/013,8672381997/07/173,7491931997/06/023,8702391997/07/183,7451941997/06/023,8702391997/07/193,7381951997/06/033,8782401997/07/203,7341961997/06/043,8812411997/07/203,7341971997/06/053,8842431997/07/213,7221981997/06/063,8842431997/07/233,7221991997/06/083,8912451997/07/243,7222011997/06/103,8972471997/07/263,7182021997/06/103,8972471997/07/273,7162031997/06/113,8982501997/07/283,7122041997/06/133,8982501997/07/293,7042051997/06/143,8842511997/07/303,6972061997/06/153,880252 </td
1871997/05/273,8222331997/07/123,7591881997/05/283,8332341997/07/133,7571891997/05/293,8442351997/07/143,7531901997/05/293,8442351997/07/153,7501911997/05/303,8552361997/07/153,7501911997/05/313,8612371997/07/163,7481921997/06/013,8672381997/07/173,7491931997/06/023,8702391997/07/183,7451941997/06/033,8782401997/07/193,7381951997/06/043,8812411997/07/203,7341961997/06/053,8842421997/07/213,7311971997/06/063,8842431997/07/223,7261981997/06/073,8892441997/07/233,7221991997/06/083,8912451997/07/243,7212001997/06/103,8972471997/07/263,7182021997/06/103,8972471997/07/283,7122041997/06/123,9012491997/07/283,7122041997/06/133,8982501997/07/293,7042051997/06/143,8842511997/07/313,6972071997/06/153,8842531997/08/013,6972061997/06/163,884253 </td
181 1997/05/28 3,833 234 1997/07/13 3,757 188 1997/05/29 3,844 235 1997/07/14 3,753 190 1997/05/29 3,844 235 1997/07/14 3,753 190 1997/05/30 3,855 236 1997/07/15 3,750 191 1997/05/31 3,861 237 1997/07/16 3,748 192 1997/06/01 3,867 238 1997/07/17 3,749 193 1997/06/02 3,870 239 1997/07/18 3,745 194 1997/06/03 3,878 240 1997/07/19 3,734 195 1997/06/04 3,881 241 1997/07/20 3,734 196 1997/06/05 3,884 242 1997/07/21 3,731 197 1997/06/06 3,884 243 1997/07/22 3,722 198 1997/06/07 3,889 244 1997/07/23 3,722 199 1997/06/08 3,891 245 1997/07/24 3,712 200 1997/06/10 3,897 </td
1001397/05/203,8342351997/07/143,7531901997/05/293,8442351997/07/153,7501911997/05/303,8552361997/07/163,7481921997/06/013,8672381997/07/173,7491931997/06/023,8702391997/07/183,7451941997/06/023,8782401997/07/193,7381951997/06/033,8782401997/07/203,7341961997/06/053,8842421997/07/213,7311971997/06/053,8842431997/07/213,7311971997/06/073,8892441997/07/233,7221981997/06/073,8892441997/07/243,7212001997/06/093,8942461997/07/253,7222011997/06/103,8972471997/07/263,7182021997/06/113,8962481997/07/273,7162031997/06/123,9012491997/07/273,7042041997/06/133,8982501997/07/293,7042051997/06/133,8842511997/07/303,7002061997/06/143,8842511997/07/313,6972071997/06/153,8842531997/07/313,6972081997/06/163,8842531997/08/013,6932091997/06/173,869254 </td
1051357/06/253,0442331357/07/143,7501901997/05/303,8552361997/07/153,7501911997/05/313,8612371997/07/163,7481921997/06/013,8672381997/07/173,7491931997/06/023,8702391997/07/183,7451941997/06/033,8782401997/07/193,7381951997/06/033,8812411997/07/203,7341961997/06/053,8842421997/07/213,7311971997/06/063,8842431997/07/223,7261981997/06/073,8892441997/07/233,7221991997/06/083,8912451997/07/243,7212001997/06/103,8972471997/07/263,7182021997/06/103,8972471997/07/263,7182031997/06/113,8962481997/07/273,7162031997/06/123,9012491997/07/283,7122041997/06/133,8982501997/07/293,7042051997/06/133,8842511997/07/303,7002061997/06/153,8842531997/07/313,6972071997/06/153,8842531997/08/013,6972081997/06/163,8842531997/08/023,6932091097/06/163,869254 </td
1301337/03/303,0332301337/07/163,7481911997/05/313,8612371997/07/163,7481921997/06/013,8672381997/07/173,7491931997/06/023,8702391997/07/183,7451941997/06/033,8782401997/07/193,7381951997/06/043,8812411997/07/203,7341961997/06/053,8842421997/07/213,7311971997/06/063,8842431997/07/223,7261981997/06/073,8892441997/07/233,7221991997/06/083,8912451997/07/243,7212001997/06/093,8942461997/07/253,7222011997/06/103,8972471997/07/263,7182021997/06/113,8962481997/07/273,7162031997/06/123,9012491997/07/283,7122041997/06/133,8982501997/07/293,7042051997/06/133,8842511997/07/303,7002061997/06/153,8842531997/08/013,6972071997/06/153,8692541997/08/023,6932081997/06/163,8762541997/08/023,6932091097/06/173,8692541997/08/023,6932001997/06/173,869254 </td
191 1997/06/01 3,867 238 1997/07/17 3,749 192 1997/06/02 3,870 239 1997/07/17 3,749 193 1997/06/02 3,870 239 1997/07/18 3,745 194 1997/06/03 3,878 240 1997/07/19 3,738 195 1997/06/04 3,881 241 1997/07/20 3,734 196 1997/06/05 3,884 242 1997/07/21 3,731 197 1997/06/06 3,884 243 1997/07/22 3,726 198 1997/06/07 3,889 244 1997/07/23 3,722 199 1997/06/08 3,891 245 1997/07/24 3,721 200 1997/06/10 3,897 247 1997/07/26 3,718 202 1997/06/10 3,897 247 1997/07/27 3,716 203 1997/06/13 3,898 250 1997/07/27 3,716 203 1997/06/13 3,898 250 1997/07/29 3,704 205 1997/06/13 3,884 </td
192193/100/013,007230193/107/113,7491931997/06/023,8702391997/07/183,7451941997/06/033,8782401997/07/193,7381951997/06/043,8812411997/07/203,7341961997/06/053,8842421997/07/213,7311971997/06/063,8842431997/07/223,7261981997/06/073,8892441997/07/233,7221991997/06/083,8912451997/07/243,7212001997/06/093,8942461997/07/253,7222011997/06/103,8972471997/07/263,7182021997/06/113,8962481997/07/273,7162031997/06/123,9012491997/07/283,7122041997/06/133,8982501997/07/293,7042051997/06/143,8842511997/07/303,7002061997/06/153,8842531997/08/013,6972071997/06/163,8842531997/08/013,6972081997/06/173,8692541997/08/023,6932091097/06/173,8692541997/08/023,6932001997/06/173,8692541997/08/023,693
1931997/06/023,0702391997/07/103,7431941997/06/033,8782401997/07/193,7381951997/06/043,8812411997/07/203,7341961997/06/053,8842421997/07/213,7311971997/06/063,8842431997/07/223,7261981997/06/073,8892441997/07/233,7221991997/06/083,8912451997/07/243,7212001997/06/093,8942461997/07/253,7222011997/06/103,8972471997/07/263,7182021997/06/113,8962481997/07/273,7162031997/06/123,9012491997/07/283,7122041997/06/133,8982501997/07/293,7042051997/06/143,8842511997/07/303,7002061997/06/153,8842531997/08/013,6972071997/06/163,8842531997/08/013,6972081997/06/173,8692541997/08/023,6932081997/06/173,8692541997/08/023,6932081997/06/173,8762551997/08/023,693
194 1997/06/03 3,076 240 1997/07/20 3,734 195 1997/06/04 3,881 241 1997/07/20 3,734 196 1997/06/05 3,884 242 1997/07/21 3,731 197 1997/06/06 3,884 243 1997/07/22 3,726 198 1997/06/07 3,889 244 1997/07/23 3,722 199 1997/06/08 3,891 245 1997/07/24 3,721 200 1997/06/09 3,894 246 1997/07/25 3,722 201 1997/06/10 3,897 247 1997/07/26 3,718 202 1997/06/11 3,896 248 1997/07/27 3,716 203 1997/06/12 3,901 249 1997/07/28 3,712 204 1997/06/13 3,898 250 1997/07/29 3,704 205 1997/06/13 3,884 251 1997/07/30 3,700 206 1997/06/15 3,880 252 1997/07/31 3,697 206 1997/06/15 3,884 </td
195 1997/06/04 3,881 241 1997/07/20 3,734 196 1997/06/05 3,884 242 1997/07/21 3,731 197 1997/06/06 3,884 243 1997/07/22 3,726 198 1997/06/07 3,889 244 1997/07/23 3,722 199 1997/06/08 3,891 245 1997/07/24 3,721 200 1997/06/09 3,894 246 1997/07/25 3,722 201 1997/06/10 3,897 247 1997/07/26 3,718 202 1997/06/11 3,896 248 1997/07/27 3,716 203 1997/06/12 3,901 249 1997/07/28 3,712 204 1997/06/13 3,898 250 1997/07/29 3,704 205 1997/06/13 3,884 251 1997/07/30 3,700 206 1997/06/15 3,880 252 1997/07/31 3,697 207 1997/06/15 3,884 253 1997/08/01 3,697 208 1997/06/16 3,884 </td
196 1997/06/05 3,884 242 1997/07/21 3,731 197 1997/06/06 3,884 243 1997/07/22 3,726 198 1997/06/07 3,889 244 1997/07/23 3,722 199 1997/06/08 3,891 245 1997/07/24 3,721 200 1997/06/09 3,894 246 1997/07/25 3,722 201 1997/06/10 3,897 247 1997/07/26 3,718 202 1997/06/11 3,896 248 1997/07/27 3,716 203 1997/06/12 3,901 249 1997/07/28 3,712 204 1997/06/13 3,898 250 1997/07/29 3,704 205 1997/06/13 3,884 251 1997/07/30 3,700 206 1997/06/15 3,880 252 1997/07/31 3,697 207 1997/06/15 3,884 253 1997/08/01 3,697 208 1997/06/16 3,884 253 1997/08/01 3,697 208 1997/06/16 3,869 </td
197 1997/06/06 3,884 243 1997/07/22 3,726 198 1997/06/07 3,889 244 1997/07/23 3,722 199 1997/06/08 3,891 245 1997/07/24 3,721 200 1997/06/09 3,894 246 1997/07/25 3,722 201 1997/06/10 3,897 247 1997/07/26 3,718 202 1997/06/11 3,896 248 1997/07/26 3,716 203 1997/06/12 3,901 249 1997/07/28 3,712 204 1997/06/13 3,898 250 1997/07/29 3,704 205 1997/06/13 3,884 251 1997/07/30 3,700 206 1997/06/15 3,880 252 1997/07/31 3,697 206 1997/06/15 3,884 253 1997/08/01 3,697 207 1997/06/16 3,884 253 1997/08/01 3,697 208 1997/06/17 3,869 254 1997/08/02 3,693 208 1997/06/17 3,869 </td
198 1997/06/07 3,889 244 1997/07/23 3,722 199 1997/06/08 3,891 245 1997/07/24 3,721 200 1997/06/09 3,894 246 1997/07/25 3,722 201 1997/06/10 3,897 247 1997/07/26 3,718 202 1997/06/11 3,896 248 1997/07/27 3,716 203 1997/06/12 3,901 249 1997/07/28 3,712 204 1997/06/13 3,898 250 1997/07/29 3,704 205 1997/06/14 3,884 251 1997/07/30 3,700 206 1997/06/15 3,880 252 1997/07/31 3,697 207 1997/06/15 3,884 253 1997/08/01 3,697 208 1997/06/16 3,884 253 1997/08/01 3,697 208 1997/06/17 3,869 254 1997/08/02 3,693 209 1097/06/17 3,869 254 1997/08/02 3,693 208 1997/06/18 3,876 </td
199 1997/06/08 3,891 245 1997/07/24 3,721 200 1997/06/09 3,894 246 1997/07/25 3,722 201 1997/06/10 3,897 247 1997/07/26 3,718 202 1997/06/11 3,896 248 1997/07/27 3,716 203 1997/06/12 3,901 249 1997/07/28 3,712 204 1997/06/13 3,898 250 1997/07/29 3,704 205 1997/06/14 3,884 251 1997/07/30 3,700 206 1997/06/15 3,880 252 1997/07/31 3,697 207 1997/06/16 3,884 253 1997/08/01 3,697 208 1997/06/16 3,869 254 1997/08/02 3,693 209 1997/06/17 3,869 254 1997/08/02 3,693
200 1997/06/09 3,894 246 1997/07/25 3,722 201 1997/06/10 3,897 247 1997/07/26 3,718 202 1997/06/11 3,896 248 1997/07/27 3,716 203 1997/06/12 3,901 249 1997/07/28 3,712 204 1997/06/13 3,898 250 1997/07/29 3,704 205 1997/06/13 3,884 251 1997/07/30 3,700 206 1997/06/15 3,880 252 1997/07/31 3,697 207 1997/06/16 3,884 253 1997/08/01 3,697 208 1997/06/16 3,869 254 1997/08/02 3,693 208 1997/06/17 3,869 254 1997/08/02 3,693 209 1997/06/17 3,876 255 1997/08/02 3,693
201 1997/06/10 3,897 247 1997/07/26 3,718 202 1997/06/11 3,896 248 1997/07/27 3,716 203 1997/06/12 3,901 249 1997/07/28 3,712 204 1997/06/13 3,898 250 1997/07/29 3,704 205 1997/06/14 3,884 251 1997/07/30 3,700 206 1997/06/15 3,880 252 1997/07/31 3,697 207 1997/06/16 3,884 253 1997/08/01 3,697 208 1997/06/17 3,869 254 1997/08/02 3,693 208 1997/06/17 3,869 254 1997/08/02 3,693 209 1997/06/17 3,876 255 1997/08/02 3,693
202 1997/06/11 3,896 248 1997/07/27 3,716 203 1997/06/12 3,901 249 1997/07/28 3,712 204 1997/06/13 3,898 250 1997/07/29 3,704 205 1997/06/14 3,884 251 1997/07/30 3,700 206 1997/06/15 3,880 252 1997/07/31 3,697 207 1997/06/16 3,884 253 1997/08/01 3,697 208 1997/06/17 3,869 254 1997/08/02 3,693 209 1997/06/17 3,876 255 1997/08/02 3,693
203 1997/06/12 3,901 249 1997/07/28 3,712 204 1997/06/13 3,898 250 1997/07/29 3,704 205 1997/06/14 3,884 251 1997/07/30 3,700 206 1997/06/15 3,880 252 1997/07/31 3,697 207 1997/06/16 3,884 253 1997/08/01 3,697 208 1997/06/17 3,869 254 1997/08/02 3,693 209 1997/06/18 3,876 255 1997/08/03 3,696
204 1997/06/13 3,898 250 1997/07/29 3,704 205 1997/06/14 3,884 251 1997/07/30 3,700 206 1997/06/15 3,880 252 1997/07/31 3,697 207 1997/06/16 3,884 253 1997/08/01 3,697 208 1997/06/17 3,869 254 1997/08/02 3,693 209 1997/06/18 3,876 255 1997/08/03 3,696
205 1997/06/14 3,884 251 1997/07/30 3,700 206 1997/06/15 3,880 252 1997/07/31 3,697 207 1997/06/16 3,884 253 1997/08/01 3,697 208 1997/06/17 3,869 254 1997/08/02 3,693 209 1997/06/18 3,876 255 1997/08/03 3,696
206 1997/06/15 3,880 252 1997/07/31 3,697 207 1997/06/16 3,884 253 1997/08/01 3,697 208 1997/06/17 3,869 254 1997/08/02 3,693 209 1997/06/18 3,876 255 1997/08/03 3,695
207 1997/06/16 3,884 253 1997/08/01 3,697 208 1997/06/17 3,869 254 1997/08/02 3,693 209 1997/06/18 3,876 255 1997/08/03 3,686
208 1997/06/17 3,869 254 1997/08/02 3,693 200 1007/06/18 3,876 255 1007/08/03 3,695
200 1007/06/18 3.876 255 1007/08/03 3.696
210 1997/06/19 3,863 256 1997/08/04 3,685
211 1997/06/20 3,862 257 1997/08/05 3,679
212 1997/06/21 3,863 258 1997/08/06 3,674
213 1997/06/22 3,853 259 1997/08/07 3,670
214 1997/06/23 3,843 260 1997/08/08 3,666
215 1997/06/24 3,839 261 1997/08/09 3,663
216 1997/06/25 3,849 262 1997/08/10 3,659
217 1997/06/26 3,835 263 1997/08/11 3,652
218 1997/06/27 3,824 264 1997/08/12 3,649
219 1997/06/28 3,821 265 1997/08/13 3,649
220 1997/06/29 3,816 266 1997/08/14 3,642
221 1997/06/30 3,812 267 1997/08/15 3,640
222 1997/07/01 3,809 268 1997/08/16 3,636
223 1997/07/02 3,806 269 1997/08/17 3,630
224 1997/07/03 3,807 270 1997/08/18 3,624
225 1997/07/04 3,801 271 1997/08/19 3,617
226 1997/07/05 3,790 272 1997/08/20 3.612
227 1997/07/06 3,781 273 1997/08/21 3.609
228 1997/07/07 3,778 274 1997/08/22 3.605
229 1997/07/08 3.773 275 1997/08/23 3.601

Tableau E.1 : Variation du niveau de la nappe phréatique pour l'hydrogramme de puits de Sainte-Christine (suite 2)

	Date	Profondeur		Date	Profondeur
		(mètre)			(mètre)
277	1997/08/25	3,587	323	1997/12/13	2,969
278	1997/08/26	3,584	324	1997/12/14	2,958
279	1997/08/27	3,581	325	1997/12/15	2,952
280	1997/08/28	3,576	326	1997/12/16	2,952
281	1997/08/29	3,567	327	1997/12/17	2,946
282	1997/08/30	3,562	328	1997/12/18	2,941
283	1997/08/31	3,557	329	1997/12/19	2,938
284	1997/09/01	3,551	330	1997/12/20	2,927
285	1997/09/02	3,550	331	1997/12/21	2,921
286	1997/09/03	3,543	332	1997/12/22	2,918
287	1997/09/04	3,539	333	1997/12/23	2,917
288	1997/09/05	3,532	334	1997/12/24	2,911
289	1997/09/06	3,526	335	1997/12/25	2,910
290	1997/09/07	3,519	336	1997/12/26	2,903
291	1997/09/08	3,513	337	1997/12/27	2,898
292	1997/09/09	3,506	338	1997/12/28	2,890
293	1997/09/10	3,502	339	1997/12/29	2,889
294	1997/09/11	3,501	340	1997/12/30	2,886
295	1997/09/12	3,496	341	1997/12/31	2,873
296	1997/09/13	3,489	342	1998/01/01	2,873
297	1997/09/14	3,487	343	1998/01/02	2,868
298	1997/09/15	3,479	344	1998/01/03	2,863
299	1997/09/16	3,466	345	1998/01/04	2,849
300	1997/09/17	3,472	346	1998/01/05	2,849
301	1997/09/18	3,461	347	1998/01/06	2,846
302	1997/09/19	3,460	348	1998/01/07	2,840
303	1997/09/20	3,451	349	1998/01/08	2,837
304	1997/09/21	3,433	350	1998/01/09	2,835
305	1997/09/22	3,452	351	1998/01/10	2,829
306	1997/09/23	3,422	352	1998/01/11	2,819
307	1997/09/24	3,435	353	1998/01/12	2,813
308	1997/09/25	3,425	354	1998/01/13	2,809
309	1997/09/26	3,401	355	1998/01/14	2,800
310	1997/09/27	3,397	356	1998/01/15	2,798
311	1997/09/28	3,396	357	1998/01/16	2,795
312	1997/09/29	3,397	358	1998/01/17	2,790
313	1997/09/30	3,383	359	1998/01/18	2,784
314	1997/10/01	3,373	360	1998/01/19	2,780
315	1997/10/02	3,365	361	1998/01/20	2,775
316	1997/10/03	3,358	362	1998/01/21	2,767
317	1997/10/04	3,354	363	1998/01/22	2,757
318	1997/10/05	3,349	364	1998/01/23	2,759
319	1997/10/06	3,342	365	1998/01/24	2,756
320	1997/10/07	3,335	366	1998/01/25	2,749
321	1997/12/11	2,972	367	1998/01/26	2,739
322	1997/12/12	2,972	368	1998/01/27	2,737

Tableau E.1 : Variation du niveau de la nappe phréatique pourl'hydrogramme de puits de Sainte-Christine (suite 3)

(mètre)(mètre) 369 1998/01/282,7354151998/03/152,494 370 1998/01/292,7314161998/03/162,487 371 1998/01/302,7264171998/03/172,486 372 1998/01/312,7174181998/03/182,484 373 1998/02/012,7124191998/03/192,481 374 1998/02/022,7094201998/03/202,475 375 1998/02/032,7004211998/03/212,472 376 1998/02/042,6974221998/03/232,461 378 1998/02/052,6924231998/03/232,461 378 1998/02/072,6864241998/03/252,450 380 1998/02/072,6814251998/03/262,447 381 1998/02/092,6694271998/03/262,444 382 1998/02/102,6664281998/03/282,439 383 1998/02/102,6664281998/03/302,427 385 1998/02/112,6594301998/03/302,427 385 1998/02/122,6594301998/03/312,425 386 1998/02/132,6504311998/03/312,425 386 1998/02/142,6214331998/04/022,420 388 1998/02/152,6354331998/04/032,419 399 1998/02/162,6224371998/04/05	ur
369 $1998/01/28$ $2,735$ 415 $1998/03/15$ $2,494$ 370 $1998/01/29$ $2,731$ 416 $1998/03/16$ $2,487$ 371 $1998/01/30$ $2,726$ 417 $1998/03/17$ $2,486$ 372 $1998/01/31$ $2,717$ 418 $1998/03/19$ $2,481$ 373 $1998/02/01$ $2,712$ 419 $1998/03/20$ $2,475$ 375 $1998/02/02$ $2,709$ 420 $1998/03/20$ $2,472$ 376 $1998/02/03$ $2,700$ 421 $1998/03/21$ $2,472$ 376 $1998/02/04$ $2,697$ 422 $1998/03/22$ $2,469$ 377 $1998/02/05$ $2,692$ 423 $1998/03/23$ $2,461$ 378 $1998/02/05$ $2,692$ 423 $1998/03/24$ $2,454$ 379 $1998/02/05$ $2,666$ 424 $1998/03/25$ $2,450$ 380 $1998/02/07$ $2,681$ 425 $1998/03/25$ $2,450$ 380 $1998/02/08$ $2,676$ 426 $1998/03/26$ $2,447$ 381 $1998/02/10$ $2,666$ 428 $1998/03/29$ $2,433$ 384 $1998/02/10$ $2,666$ 428 $1998/03/29$ $2,433$ 384 $1998/02/11$ $2,655$ 433 $1998/03/30$ $2,427$ 385 $1998/02/13$ $2,650$ 431 $1998/03/30$ $2,427$ 386 $1998/02/14$ $2,624$ 436 $1998/04/04$ $2,423$ 390 $1998/02/15$	
370 $1998/01/29$ $2,731$ 416 $1998/03/16$ $2,487$ 371 $1998/01/30$ $2,726$ 417 $1998/03/17$ $2,486$ 372 $1998/01/31$ $2,717$ 418 $1998/03/19$ $2,481$ 373 $1998/02/01$ $2,712$ 419 $1998/03/19$ $2,481$ 374 $1998/02/02$ $2,709$ 420 $1998/03/20$ $2,475$ 375 $1998/02/03$ $2,700$ 421 $1998/03/21$ $2,472$ 376 $1998/02/04$ $2,697$ 422 $1998/03/22$ $2,469$ 377 $1998/02/05$ $2,692$ 423 $1998/03/23$ $2,461$ 378 $1998/02/05$ $2,692$ 423 $1998/03/24$ $2,454$ 379 $1998/02/07$ $2,681$ 425 $1998/03/25$ $2,450$ 380 $1998/02/07$ $2,669$ 427 $1998/03/25$ $2,447$ 381 $1998/02/09$ $2,669$ 427 $1998/03/29$ $2,433$ 383 $1998/02/10$ $2,666$ 428 $1998/03/29$ $2,433$ 384 $1998/02/10$ $2,665$ 431 $1998/03/30$ $2,427$ 385 $1998/02/13$ $2,650$ 431 $1998/03/30$ $2,427$ 386 $1998/02/14$ $2,641$ 432 $1998/04/01$ $2,422$ 387 $1998/02/15$ $2,635$ 433 $1998/04/02$ $2,420$ 388 $1998/02/15$ $2,635$ 433 $1998/04/03$ $2,419$ 389 $1998/02/16$	
371 $1998/01/30$ $2,726$ 417 $1998/03/17$ $2,486$ 372 $1998/01/31$ $2,717$ 418 $1998/03/18$ $2,484$ 373 $1998/02/01$ $2,712$ 419 $1998/03/19$ $2,481$ 374 $1998/02/02$ $2,709$ 420 $1998/03/20$ $2,475$ 375 $1998/02/03$ $2,700$ 421 $1998/03/21$ $2,472$ 376 $1998/02/04$ $2,697$ 422 $1998/03/22$ $2,469$ 377 $1998/02/05$ $2,692$ 423 $1998/03/23$ $2,461$ 378 $1998/02/05$ $2,692$ 423 $1998/03/24$ $2,454$ 379 $1998/02/06$ $2,686$ 424 $1998/03/25$ $2,450$ 380 $1998/02/07$ $2,661$ 426 $1998/03/25$ $2,447$ 381 $1998/02/09$ $2,669$ 427 $1998/03/28$ $2,439$ 383 $1998/02/10$ $2,666$ 428 $1998/03/28$ $2,433$ 384 $1998/02/11$ $2,663$ 429 $1998/03/29$ $2,433$ 384 $1998/02/13$ $2,650$ 431 $1998/03/30$ $2,427$ 385 $1998/02/13$ $2,650$ 431 $1998/03/30$ $2,427$ 386 $1998/02/15$ $2,635$ 433 $1998/04/02$ $2,420$ 388 $1998/02/15$ $2,635$ 433 $1998/04/03$ $2,419$ 389 $1998/02/16$ $2,627$ 435 $1998/04/04$ $2,423$ 390 $1998/02/17$	
3721998/01/312,7174181998/03/182,4843731998/02/012,7124191998/03/192,4813741998/02/022,7094201998/03/202,4753751998/02/032,7004211998/03/212,4723761998/02/042,6974221998/03/222,4693771998/02/052,6924231998/03/232,4613781998/02/062,6864241998/03/252,4503801998/02/072,6814251998/03/252,4503801998/02/082,6764261998/03/262,4473811998/02/092,6694271998/03/282,4393831998/02/102,6664281998/03/292,4333841998/02/112,6634291998/03/292,4333841998/02/132,6504311998/03/302,4273851998/02/132,6504311998/03/312,4253861998/02/142,6354331998/04/012,4223871998/02/152,6354331998/04/032,4193891998/02/152,6274351998/04/032,4193891998/02/172,6274351998/04/052,4333911998/02/192,6224371998/04/052,4333911998/02/192,6224371998/04/052,4453921998/02/192,622437 </td <td></td>	
373 $1998/02/01$ $2,712$ 419 $1998/03/19$ $2,481$ 374 $1998/02/02$ $2,709$ 420 $1998/03/20$ $2,475$ 375 $1998/02/03$ $2,700$ 421 $1998/03/21$ $2,472$ 376 $1998/02/04$ $2,697$ 422 $1998/03/22$ $2,469$ 377 $1998/02/05$ $2,692$ 423 $1998/03/23$ $2,461$ 378 $1998/02/05$ $2,669$ 424 $1998/03/24$ $2,454$ 379 $1998/02/06$ $2,686$ 424 $1998/03/25$ $2,450$ 380 $1998/02/07$ $2,661$ 426 $1998/03/26$ $2,447$ 381 $1998/02/08$ $2,676$ 426 $1998/03/26$ $2,444$ 382 $1998/02/10$ $2,669$ 427 $1998/03/28$ $2,439$ 383 $1998/02/10$ $2,666$ 428 $1998/03/28$ $2,439$ 383 $1998/02/11$ $2,663$ 429 $1998/03/29$ $2,433$ 384 $1998/02/12$ $2,659$ 430 $1998/03/30$ $2,427$ 385 $1998/02/14$ $2,641$ 432 $1998/04/01$ $2,422$ 387 $1998/02/15$ $2,635$ 433 $1998/04/02$ $2,420$ 388 $1998/02/15$ $2,627$ 435 $1998/04/03$ $2,419$ 389 $1998/02/16$ $2,624$ 436 $1998/04/04$ $2,423$ 390 $1998/02/18$ $2,624$ 436 $1998/04/05$ $2,433$ 391 $1998/02/19$	
374 $1998/02/02$ $2,709$ 420 $1998/03/20$ $2,475$ 375 $1998/02/03$ $2,700$ 421 $1998/03/21$ $2,472$ 376 $1998/02/04$ $2,697$ 422 $1998/03/22$ $2,469$ 377 $1998/02/05$ $2,692$ 423 $1998/03/23$ $2,461$ 378 $1998/02/06$ $2,686$ 424 $1998/03/24$ $2,454$ 379 $1998/02/06$ $2,686$ 424 $1998/03/25$ $2,450$ 380 $1998/02/07$ $2,681$ 425 $1998/03/25$ $2,447$ 381 $1998/02/09$ $2,669$ 427 $1998/03/26$ $2,444$ 382 $1998/02/10$ $2,666$ 428 $1998/03/28$ $2,439$ 383 $1998/02/11$ $2,666$ 428 $1998/03/28$ $2,433$ 384 $1998/02/12$ $2,659$ 430 $1998/03/30$ $2,427$ 385 $1998/02/13$ $2,650$ 431 $1998/03/31$ $2,425$ 386 $1998/02/14$ $2,641$ 432 $1998/04/01$ $2,422$ 387 $1998/02/15$ $2,635$ 433 $1998/04/02$ $2,420$ 388 $1998/02/16$ $2,627$ 435 $1998/04/03$ $2,419$ 389 $1998/02/18$ $2,624$ 436 $1998/04/05$ $2,433$ 391 $1998/02/19$ $2,622$ 437 $1998/04/05$ $2,433$ 391 $1998/02/20$ $2,617$ 438 $1998/04/07$ $2,456$ 393 $1998/02/21$	
375 $1998/02/03$ $2,700$ 421 $1998/03/21$ $2,472$ 376 $1998/02/04$ $2,697$ 422 $1998/03/22$ $2,469$ 377 $1998/02/05$ $2,692$ 423 $1998/03/23$ $2,461$ 378 $1998/02/06$ $2,686$ 424 $1998/03/24$ $2,454$ 379 $1998/02/07$ $2,681$ 425 $1998/03/25$ $2,450$ 380 $1998/02/07$ $2,669$ 427 $1998/03/26$ $2,447$ 381 $1998/02/09$ $2,669$ 427 $1998/03/28$ $2,439$ 383 $1998/02/10$ $2,666$ 428 $1998/03/28$ $2,439$ 383 $1998/02/12$ $2,659$ 430 $1998/03/29$ $2,433$ 384 $1998/02/12$ $2,659$ 430 $1998/03/30$ $2,427$ 385 $1998/02/13$ $2,650$ 431 $1998/03/31$ $2,425$ 386 $1998/02/15$ $2,635$ 433 $1998/04/01$ $2,422$ 387 $1998/02/15$ $2,635$ 433 $1998/04/02$ $2,420$ 388 $1998/02/16$ $2,630$ 434 $1998/04/03$ $2,419$ 389 $1998/02/17$ $2,627$ 435 $1998/04/05$ $2,433$ 391 $1998/02/18$ $2,624$ 436 $1998/04/05$ $2,433$ 391 $1998/02/19$ $2,622$ 437 $1998/04/05$ $2,445$ 392 $1998/02/20$ $2,617$ 438 $1998/04/06$ $2,445$ 393 $1998/02/21$	
376 $1998/02/04$ $2,697$ 422 $1998/03/22$ $2,469$ 377 $1998/02/05$ $2,692$ 423 $1998/03/23$ $2,461$ 378 $1998/02/06$ $2,686$ 424 $1998/03/24$ $2,454$ 379 $1998/02/07$ $2,681$ 425 $1998/03/25$ $2,450$ 380 $1998/02/08$ $2,676$ 426 $1998/03/26$ $2,447$ 381 $1998/02/09$ $2,669$ 427 $1998/03/28$ $2,439$ 383 $1998/02/10$ $2,666$ 428 $1998/03/28$ $2,433$ 384 $1998/02/12$ $2,659$ 430 $1998/03/29$ $2,433$ 384 $1998/02/12$ $2,650$ 431 $1998/03/30$ $2,427$ 385 $1998/02/13$ $2,650$ 431 $1998/03/31$ $2,425$ 386 $1998/02/15$ $2,635$ 433 $1998/04/01$ $2,422$ 387 $1998/02/15$ $2,635$ 433 $1998/04/02$ $2,420$ 388 $1998/02/16$ $2,627$ 435 $1998/04/03$ $2,419$ 389 $1998/02/16$ $2,624$ 436 $1998/04/05$ $2,433$ 391 $1998/02/18$ $2,624$ 436 $1998/04/05$ $2,433$ 391 $1998/02/19$ $2,622$ 437 $1998/04/05$ $2,445$ 392 $1998/02/20$ $2,617$ 438 $1998/04/05$ $2,445$ 393 $1998/02/21$ $2,603$ 440 $1998/04/08$ $2,470$ 394 $1998/02/22$	
377 $1998/02/05$ $2,692$ 423 $1998/03/23$ $2,461$ 378 $1998/02/06$ $2,686$ 424 $1998/03/24$ $2,454$ 379 $1998/02/07$ $2,681$ 425 $1998/03/25$ $2,450$ 380 $1998/02/08$ $2,676$ 426 $1998/03/26$ $2,447$ 381 $1998/02/09$ $2,669$ 427 $1998/03/27$ $2,444$ 382 $1998/02/10$ $2,666$ 428 $1998/03/28$ $2,439$ 383 $1998/02/10$ $2,666$ 428 $1998/03/29$ $2,433$ 384 $1998/02/12$ $2,659$ 430 $1998/03/29$ $2,433$ 384 $1998/02/13$ $2,650$ 431 $1998/03/30$ $2,427$ 385 $1998/02/13$ $2,650$ 431 $1998/03/31$ $2,425$ 386 $1998/02/15$ $2,635$ 433 $1998/04/01$ $2,422$ 387 $1998/02/15$ $2,635$ 433 $1998/04/02$ $2,420$ 388 $1998/02/16$ $2,627$ 435 $1998/04/03$ $2,419$ 389 $1998/02/17$ $2,627$ 435 $1998/04/05$ $2,433$ 391 $1998/02/18$ $2,624$ 436 $1998/04/05$ $2,433$ 391 $1998/02/19$ $2,622$ 437 $1998/04/05$ $2,445$ 392 $1998/02/20$ $2,617$ 438 $1998/04/07$ $2,456$ 393 $1998/02/21$ $2,603$ 440 $1998/04/08$ $2,470$ 394 $1998/02/22$	
3781998/02/062,6864241998/03/242,4543791998/02/072,6814251998/03/252,4503801998/02/082,6764261998/03/262,4473811998/02/092,6694271998/03/272,4443821998/02/102,6664281998/03/282,4393831998/02/112,6634291998/03/292,4333841998/02/122,6594301998/03/302,4273851998/02/132,6504311998/03/312,4253861998/02/142,6414321998/04/012,4223871998/02/152,6354331998/04/022,4203881998/02/162,6304341998/04/032,4193891998/02/172,6274351998/04/042,4233901998/02/182,6244361998/04/052,4333911998/02/192,6224371998/04/052,4453921998/02/192,6224371998/04/062,4453931998/02/202,6174381998/04/072,4563931998/02/212,6034401998/04/092,482	
3791998/02/072,6814251998/03/252,4503801998/02/082,6764261998/03/262,4473811998/02/092,6694271998/03/272,4443821998/02/102,6664281998/03/282,4393831998/02/112,6664281998/03/292,4333841998/02/122,6594301998/03/292,4273851998/02/122,6504311998/03/312,4253861998/02/132,6504311998/03/312,4253861998/02/152,6354331998/04/012,4223871998/02/152,6354331998/04/022,4203881998/02/162,6304341998/04/032,4193891998/02/172,6274351998/04/042,4233901998/02/182,6244361998/04/052,4333911998/02/192,6224371998/04/052,4453921998/02/192,6224371998/04/062,4453931998/02/202,6174381998/04/072,4563931998/02/212,6034401998/04/092,482	
3801998/02/082,6764261998/03/262,4473811998/02/092,6694271998/03/272,4443821998/02/102,6664281998/03/282,4393831998/02/112,6634291998/03/292,4333841998/02/122,6594301998/03/302,4273851998/02/132,6504311998/03/312,4253861998/02/142,6414321998/04/012,4223871998/02/152,6354331998/04/022,4203881998/02/162,6304341998/04/032,4193891998/02/172,6274351998/04/042,4233901998/02/182,6244361998/04/052,4333911998/02/192,6224371998/04/062,4453921998/02/202,6174381998/04/072,4563931998/02/212,6034401998/04/092,482	
3811998/02/092,6694271998/03/272,4443821998/02/102,6664281998/03/282,4393831998/02/112,6634291998/03/292,4333841998/02/122,6594301998/03/302,4273851998/02/132,6504311998/03/312,4253861998/02/142,6414321998/04/012,4223871998/02/152,6354331998/04/022,4203881998/02/162,6304341998/04/032,4193891998/02/172,6274351998/04/042,4233901998/02/182,6244361998/04/052,4333911998/02/192,6224371998/04/062,4453921998/02/202,6174381998/04/072,4563931998/02/212,6034401998/04/092,482	
3821998/02/102,6664281998/03/282,4393831998/02/112,6634291998/03/292,4333841998/02/122,6594301998/03/302,4273851998/02/132,6504311998/03/312,4253861998/02/142,6414321998/04/012,4223871998/02/152,6354331998/04/022,4203881998/02/162,6304341998/04/032,4193891998/02/172,6274351998/04/042,4233901998/02/182,6244361998/04/052,4333911998/02/192,6224371998/04/062,4453921998/02/202,6174381998/04/072,4563931998/02/212,6034401998/04/082,4703941998/02/222,6034401998/04/092,482	
3831998/02/112,6634291998/03/292,4333841998/02/122,6594301998/03/302,4273851998/02/132,6504311998/03/312,4253861998/02/142,6414321998/04/012,4223871998/02/152,6354331998/04/022,4203881998/02/162,6304341998/04/032,4193891998/02/162,6274351998/04/042,4233901998/02/182,6244361998/04/052,4333911998/02/192,6224371998/04/062,4453921998/02/202,6174381998/04/072,4563931998/02/212,6034401998/04/092,482	
3841998/02/122,6594301998/03/302,4273851998/02/132,6504311998/03/312,4253861998/02/142,6414321998/04/012,4223871998/02/152,6354331998/04/022,4203881998/02/162,6304341998/04/032,4193891998/02/172,6274351998/04/042,4233901998/02/182,6244361998/04/052,4333911998/02/192,6224371998/04/062,4453921998/02/202,6174381998/04/072,4563931998/02/212,6034401998/04/092,482	
3851998/02/132,6504311998/03/312,4253861998/02/142,6414321998/04/012,4223871998/02/152,6354331998/04/022,4203881998/02/162,6304341998/04/032,4193891998/02/172,6274351998/04/042,4233901998/02/182,6244361998/04/052,4333911998/02/192,6224371998/04/062,4453921998/02/202,6174381998/04/072,4563931998/02/212,6104391998/04/082,4703941998/02/222,6034401998/04/092,482	
3861998/02/142,6414321998/04/012,4223871998/02/152,6354331998/04/022,4203881998/02/162,6304341998/04/032,4193891998/02/172,6274351998/04/042,4233901998/02/182,6244361998/04/052,4333911998/02/192,6224371998/04/062,4453921998/02/202,6174381998/04/072,4563931998/02/212,6104391998/04/082,4703941998/02/222,6034401998/04/092,482	
3871998/02/152,6354331998/04/022,4203881998/02/162,6304341998/04/032,4193891998/02/172,6274351998/04/042,4233901998/02/182,6244361998/04/052,4333911998/02/192,6224371998/04/062,4453921998/02/202,6174381998/04/072,4563931998/02/212,6104391998/04/082,4703941998/02/222,6034401998/04/092,482	
3881998/02/162,6304341998/04/032,4193891998/02/172,6274351998/04/042,4233901998/02/182,6244361998/04/052,4333911998/02/192,6224371998/04/062,4453921998/02/202,6174381998/04/072,4563931998/02/212,6104391998/04/082,4703941998/02/222,6034401998/04/092,482	
3891998/02/172,6274351998/04/042,4233901998/02/182,6244361998/04/052,4333911998/02/192,6224371998/04/062,4453921998/02/202,6174381998/04/072,4563931998/02/212,6104391998/04/082,4703941998/02/222,6034401998/04/092,482	
3901998/02/182,6244361998/04/052,4333911998/02/192,6224371998/04/062,4453921998/02/202,6174381998/04/072,4563931998/02/212,6104391998/04/082,4703941998/02/222,6034401998/04/092,482	
3911998/02/192,6224371998/04/062,4453921998/02/202,6174381998/04/072,4563931998/02/212,6104391998/04/082,4703941998/02/222,6034401998/04/092,482	
3921998/02/202,6174381998/04/072,4563931998/02/212,6104391998/04/082,4703941998/02/222,6034401998/04/092,482	
3931998/02/212,6104391998/04/082,4703941998/02/222,6034401998/04/092,482	
394 1998/02/22 2,603 440 1998/04/09 2,482	
395 1998/02/23 2.600 441 1998/04/10 2,493	
396 1998/02/24 2.596 442 1998/04/11 2.503	
397 1998/02/25 2.591 443 1998/04/12 2.517	
398 1998/02/26 2.585 444 1998/04/13 2.534	
399 1998/02/27 2.578 445 1998/04/14 2.553	
400 1998/02/28 2.574 446 1998/04/15 2.570	
401 1998/03/01 2.569 447 1998/04/16 2.589	
402 1998/03/02 2.564 448 1998/04/17 2.612	
403 1998/03/03 2.560 449 1998/04/18 2.631	
404 1998/03/04 2.552 450 1998/04/19 2.668	
405 1998/03/05 2.546 451 1998/04/20 2.704	
406 1998/03/06 2.540 452 1998/04/21 2.743	
407 1998/03/07 2.532 453 1998/04/22 2.782	
408 1998/03/08 2.529 454 1998/04/23 2.821	
409 1998/03/09 2,529 455 1998/04/24 2.858	
410 1998/03/10 2,521 456 1998/04/25 2.888	
411 1998/03/11 2,516 457 1998/04/26 2.922	
412 1998/03/12 2,510 458 1998/04/27 2.950	
413 1998/03/13 2,504 459 1998/04/28 2.978	
414 1998/03/14 2,501 460 1998/04/29 3,005	

Tableau E.1 : Variation du niveau de la nappe phréatique pourl'hydrogramme de puits de Sainte-Christine (suite 4)

	Date	Profondeur		Date	Profondeur
		(mètre)			(mètre)
461	1998/04/30	3.030	507	1998/06/15	3,141
462	1998/05/01	3.050	508	1998/06/16	3,137
463	1998/05/02	3.070	509	1998/06/17	3,130
464	1998/05/03	3.087	510	1998/06/18	3,127
465	1998/05/04	3.101	511	1998/06/19	3,124
466	1998/05/05	3.113	512	1998/06/20	3,116
467	1998/05/06	3.126	513	1998/06/21	3,111
468	1998/05/07	3,140	514	1998/06/22	3,109
469	1998/05/08	3,148	515	1998/06/23	3,104
470	1998/05/09	3,156	516	1998/06/24	3,099
471	1998/05/10	3,166	517	1998/06/25	3,098
472	1998/05/11	3,173	518	1998/06/26	3,094
473	1998/05/12	3,179	519	1998/06/27	3,087
474	1998/05/13	3,185	520	1998/06/28	3,082
475	1998/05/14	3,192	521	1998/06/29	3,084
476	1998/05/15	3,196	522	1998/06/30	3,080
477	1998/05/16	3,202	523	1998/07/01	3,073
478	1998/05/17	3,205	524	1998/07/02	3,066
479	1998/05/18	3,208	525	1998/07/03	3,061
480	1998/05/19	3,213	526	1998/07/04	3,057
481	1998/05/20	3,217	527	1998/07/05	3,053
482	1998/05/21	3,216	528	1998/07/06	3,050
483	1998/05/22	3,218	529	1998/07/07	3,047
484	1998/05/23	3,218	530	1998/07/08	3,044
485	1998/05/24	3,219	531	1998/07/09	3,043
486	1998/05/25	3,224	532	1998/07/10	3,042
487	1998/05/26	3,215	533	1998/07/11	3,036
488	1998/05/27	3,216	534	1998/07/12	3,034
489	1998/05/28	3,220	535	1998/07/13	3,032
490	1998/05/29	3,218	536	1998/07/14	3,030
491	1998/05/30	3,207	537	1998/07/15	3,029
492	1998/05/31	3,221	538	1998/07/16	3,028
493	1998/06/01	3,207	539	1998/07/17	3,030
494	1998/06/02	3,213	540	1998/07/18	3,026
495	1998/06/03	3,204	541	1998/07/19	3,029
496	1998/06/04	3,201	542	1998/07/20	3,028
497	1998/06/05	3,193	543	1998/07/21	3,037
498	1998/06/06	3,182	544	1998/07/22	3,037
499	1998/06/07	3,177	545	1998/07/23	3,048
500	1998/06/08	3,168	546	1998/07/24	3,049
501	1998/06/09	3,160	547	1998/07/25	3,056
502	1998/06/10	3,156	. 548	1998/07/26	3,064
503	1998/06/11	3,153	549	1998/07/27	3,075
504	1998/06/12	3,153	550	1998/07/28	3,082
505	1998/06/13	3,151	551	1998/07/29	3,087
506	1998/06/14	3,146	552	1998/07/30	3,090

Tableau E.1 : Variation du niveau de la nappe phréatique pourl'hydrogramme de puits de Sainte-Christine (suite 5)

	Date	Profondeur		Date	Profondeur
	Duio	(mètre)		2010	(mètre)
553	1998/07/31	3.093	599	1998/09/15	3.005
554	1998/08/01	3.096	600	1998/09/16	3.001
555	1998/08/02	3 103	601	1998/09/17	2,997
556	1998/08/03	3 105	602	1998/09/18	2 997
557	1998/08/04	3 108	603	1998/09/19	2 994
558	1998/08/05	3 111	604	1998/09/20	2 992
559	1998/08/06	3 113	605	1998/09/21	2,990
560	1998/08/07	3 113	606	1998/09/22	2,000
561	1998/08/08	3 116	607	1998/09/23	2 985
562	1998/08/09	3 120	001	1000/00/20	2,000
563	1998/08/10	3 123			
564	1998/08/11	3 119			
565	1998/08/12	3 115			
566	1008/08/13	3 1 1 9			
567	1998/08/14	3 122			
568	1990/00/14	3,122			
560	1008/08/16	3 113			
570	1008/08/17	3,115			
571	1008/08/18	3,110			
572	1990/00/10	3,107			
573	1008/08/20	3,102			
574	1008/08/21	3,100			
575	1008/08/22	3,030			
576	1990/00/22	3,092			
577	1008/08/24	3,004			
578	1008/08/25	3,091			
570	1990/00/20	3,004			
580	1008/08/27	3,075			
581	1008/08/28	3,070			
582	1998/08/29	3,067			
583	1998/08/30	3,061			
584	1998/08/31	3,056			
585	1998/00/01	3,052			
586	1008/00/07	3 051			
587	1008/00/02	3 045			
588	1008/00/03	3 0/1			
580	1008/00/05	3 037			
509	1008/00/06	3 035			
501	1998/00/07	3 032			
592	1998/09/08	3 028			
593	1998/09/09	3 025			
594	1998/09/10	3 021			
595	1998/09/11	3 018			
596	1998/09/12	3 013			
597	1998/09/12	3,009			
598	1998/00/14	3 006			
090	1330/03/14	0,000			

Tableau E.1 : Variation du niveau de la nappe phréatique pourl'hydrogramme de puits de Sainte-Christine (suite 6)

	Date	Profondeur		Date	Profondeur
	040	(mètre)		Balo	(mètre)
1	1996/11/22	2 060	47	1997/01/07	2 121
2	1996/11/22	2,000	48	1997/01/08	2,121
2	1996/11/24	2,014	40	1997/01/09	2,120
1	1006/11/25	2,000	50	1007/01/00	2,113
- -	1006/11/26	2,000	50	1007/01/11	2,123
5	1990/11/20	2,071	51	1997/01/11	2,127
7	1990/11/27	2,009	52	1997/01/12	2,121
0	1990/11/20	2,005	55	1997/01/13	2,110
0	1996/11/29	2,071	54 55	1997/01/14	2,113
9	1996/11/30	2,000	55	1997/01/15	2,113
10	1996/12/01	2,073	50	1997/01/16	2,124
11	1996/12/02	2,084	57	1997/01/17	2,127
12	1996/12/03	2,078	58	1997/01/18	2,120
13	1996/12/04	2,073	59	1997/01/19	2,112
14	1996/12/05	2,069	60	1997/01/20	2,122
15	1996/12/06	2,078	61	1997/01/21	2,113
16	1996/12/07	2,081	62	1997/01/22	2,109
17	1996/12/08	2,088	63	1997/01/23	2,127
18	1996/12/09	2,089	64	1997/01/24	2,098
19	1996/12/10	2,084	65	1997/01/25	2,111
20	1996/12/11	2,085	66	1997/01/26	2,099
21	1996/12/12	2,075	67	1997/01/27	2,099
22	1996/12/13	2,076	68	1997/01/28	2,109
23	1996/12/14	2,082	69	1997/01/29	2,094
24	1996/12/15	2,078	70	1997/01/30	2,099
25	1996/12/16	2,085	71	1997/01/31	2,111
26	1996/12/17	2,091	72	1997/02/01	2,109
27	1996/12/18	2,099	73	1997/02/02	2,097
28	1996/12/19	2,094	74	1997/02/03	2,090
29	1996/12/20	2,108	75	1997/02/04	2,091
30	1996/12/21	2,090	76	1997/02/05	2,104
31	1996/12/22	2,091	77	1997/02/06	2,095
32	1996/12/23	2,091	78	1997/02/07	2,086
33	1996/12/24	2.098	79	1997/02/08	2,083
34	1996/12/25	2,112	80	1997/02/09	2.087
35	1996/12/26	2.095	81	1997/02/10	2.082
36	1996/12/27	2.099	82	1997/02/11	2.083
37	1996/12/28	2 099	83	1997/02/12	2.085
38	1996/12/29	2,109	84	1997/02/13	2.067
39	1996/12/30	2,111	85	1997/02/14	2,084
40	1996/12/31	2,097	86	1997/02/15	2,081
41	1997/01/01	2,100	87	1997/02/16	2,063
42	1997/01/02	2 113	88	1997/02/17	2,066
43	1997/01/03	2 118	89	1997/02/18	2,000
44	1997/01/04	2,113	90	1997/02/19	2,075
<u>4</u> 5	1997/01/05	2,113	Q1	1997/02/20	2,070
46	1007/01/06	2,115	02	1007/02/20	2,001
-+-0	1991/01/00	2,120	34		2,071

Tableau E.2 : Variation du niveau de la nappe phréatique pour

 l'hydrogramme de puits de Saint-Raymond

-		Date	Profondeur		Date	Profondeur
			(mètre)			(mètre)
1	93	1997/02/22	2,070	139	1997/04/09	1,948
	94	1997/02/23	2,056	140	1997/04/10	1,944
	95	1997/02/24	2,056	141	1997/04/11	1,941
	96	1997/02/25	2,056	142	1997/04/12	1,940
	97	1997/02/26	2,058	143	1997/04/13	1,940
	98	1997/02/27	2,056	144	1997/04/14	1,931
	99	1997/02/28	2,045	145	1997/04/15	1,928
	100	1997/03/01	2,058	146	1997/04/16	1,928
	101	1997/03/02	2,050	147	1997/04/17	1,926
	102	1997/03/03	2,040	148	1997/04/18	1,924
	103	1997/03/04	2.042	149	1997/04/19	1,919
	104	1997/03/05	2,040	150	1997/04/20	1,914
	105	1997/03/06	2,045	151	1997/04/21	1,911
	106	1997/03/07	2,033	152	1997/04/22	1,907
	107	1997/03/08	2,028	153	1997/04/23	1,903
	108	1997/03/09	2.028	154	1997/04/24	1,901
	109	1997/03/10	2.038	155	1997/04/25	1,895
	110	1997/03/11	2.028	156	1997/04/26	1,891
	111	1997/03/12	2.023	157	1997/04/27	1,887
	112	1997/03/13	2.018	158	1997/04/28	1,888
	113	1997/03/14	2.028	159	1997/04/29	1,884
	114	1997/03/15	2,019	160	1997/04/30	1,884
	115	1997/03/16	2.014	161	1997/05/01	1,884
	116	1997/03/17	2.019	162	1997/05/02	1,874
	117	1997/03/18	2.008	163	1997/05/03	1,879
	118	1997/03/19	2.010	164	1997/05/04	1.873
	119	1997/03/20	2.010	165	1997/05/05	1.876
	120	1997/03/21	2.007	166	1997/05/06	1,883
	121	1997/03/22	2.003	167	1997/05/07	1.886
	122	1997/03/23	1.998	168	1997/05/08	1.895
	123	1997/03/24	1,991	169	1997/05/09	1,911
	124	1997/03/25	1,997	170	1997/05/10	1.925
	125	1997/03/26	1,997	171	1997/05/11	1.938
	126	1997/03/27	1,989	172	1997/05/12	1.952
	127	1997/03/28	1,985	173	1997/05/13	1.964
	128	1997/03/29	1,985	174	1997/05/14	1.978
	129	1997/03/30	1,981	175	1997/05/15	1,995
	130	1997/03/31	1,976	176	1997/05/16	2.016
	131	1997/04/01	1.971	177	1997/05/17	2.027
	132	1997/04/02	1,969	178	1997/05/18	2.042
	133	1997/04/03	1,969	179	1997/05/19	2.062
	134	1997/04/04	1,962	180	1997/05/20	2.082
	135	1997/04/05	1,959	181	1997/05/21	2.101
	136	1997/04/06	1.962	182	1997/05/22	2.120
	137	1997/04/07	1.958	183	1997/05/23	2.141
	138	1997/04/08	1.953	184	1997/05/24	2.165
			- ,			

Tableau E.2 : Variation du niveau de la nappe phréatique pour l'hydrogramme de puits de Saint-Raymond (suite 1)

	Date	Profondeur		Date	Profondeur
		(mètre)			(mètre)
185	1997/05/25	2.191	231	1997/07/10	2.707
186	1997/05/26	2.207	232	1997/07/11	2,710
187	1997/05/27	2.231	233	1997/07/12	2.712
188	1997/05/28	2,255	234	1997/07/13	2.713
189	1997/05/29	2,279	235	1997/07/14	2.712
190	1997/05/30	2,305	236	1997/07/15	2.712
191	1997/05/31	2 328	237	1997/07/16	2.717
192	1997/06/01	2 348	238	1997/07/17	2.719
193	1997/06/02	2,370	239	1997/07/18	2,720
194	1997/06/03	2,391	240	1997/07/19	2,715
195	1997/06/04	2,001	241	1997/07/20	2 712
196	1997/06/05	2 430	242	1997/07/21	2.712
197	1997/06/06	2,400	243	1997/07/22	2 706
198	1997/06/07	2,465	244	1997/07/23	2 705
199	1997/06/08	2,400	245	1997/07/24	2 709
200	1997/06/09	2,400	246	1997/07/25	2 714
200	1997/06/10	2,400	240	1997/07/26	2,715
201	1997/06/11	2,510	247	1997/07/27	2,715
202	1997/06/12	2,525	240	1997/07/28	2,715
200	1007/06/12	2,558	250	1997/07/29	2,712
204	1007/06/14	2,556	250	1997/07/20	2,702
200	1007/06/15	2,500	252	1997/07/31	2,007
200	1997/06/16	2,574	253	1997/08/01	2,001
207	1007/06/17	2,500	254	1997/08/02	2,698
200	1997/06/18	2,000	255	1997/08/03	2,000
203	1007/06/10	2,004	256	1997/08/04	2,000
210	1007/06/20	2,010	257	1997/08/05	2,001
211	1007/06/20	2,019	258	1997/08/06	2,000
212	1007/06/22	2,020	250	1997/08/07	2,002
213	1007/06/22	2,000	260	1997/08/08	2,001
215	1007/06/23	2,009	261	1997/08/09	2,074
216	1997/06/25	2,040	262	1997/08/10	2,673
210	1997/06/26	2,007	263	1997/08/11	2,670
217	1997/06/20	2,001	264	1997/08/12	2,665
210	1007/06/28	2,007	265	1997/08/12	2,000
219	1007/06/20	2,075	200	1997/08/13	2,672
220	1007/06/30	2,077	267	1007/08/15	2,664
221	1007/07/01	2,002	207	1007/08/16	2,004
222	1997/07/07	2,000	200	1007/08/17	2,004
220	1997/07/02	2,030	203	1997/08/18	2,000
22 4 225	1007/07/04	2,090	270	1007/08/10	2,000
225	1007/07/05	2,700	271	1997/08/20	2,077
220	1997/07/06	2,037	212	1997/08/21	2,041
228	1997/07/07	2,033	275	1997/08/22	2,000
220	1997/07/02	2,701	275	1997/08/22	2,072
220	1997/07/09	2,705	276	1997/08/24	2 631
200	1001109	2,700	210	1001/00/24	2,001

.

Tableau E.2 : Variation du niveau de la nappe phréatique pourl'hydrogramme de puits de Saint-Raymond (suite 2)

	Date	Profondeur		Date	Profondeur
		(mètre)			(mètre)
277	1997/08/25	2.627	323	1997/10/10	<u>`</u>
278	1997/08/26	2,625	324	1997/10/11	
279	1997/08/27	2,625	325	1997/10/12	
280	1997/08/28	2.622	326	1997/10/13	
281	1997/08/29	2.618	327	1997/10/14	
282	1997/08/30	2.613	328	1997/10/15	
283	1997/08/31	2,609	329	1997/10/16	
284	1997/09/01	2,606	330	1997/10/17	
285	1997/09/02	2,608	331	1997/10/18	
286	1997/09/03	2,602	332	1997/10/19	
287	1997/09/04	2,599	333	1997/10/20	
288	1997/09/05	2,596	334	1997/10/21	
289	1997/09/06	2,592	335	1997/10/22	
290	1997/09/07	2,587	336	1997/10/23	· ••
291	1997/09/08	2,583	337	1997/10/24	
292	1997/09/09	2,579	338	1997/10/25	
293	1997/09/10	2,575	339	1997/10/26	
294	1997/09/11	2,574	340	1997/10/27	
295	1997/09/12	2,573	341	1997/10/28	
296	1997/09/13	2,568	342	1997/10/29	
297	1997/09/14	2,566	343	1997/10/30	
298	1997/09/15	2,563	344	1997/10/31	
299	1997/09/16	2,557	345	1997/11/01	
300	1997/09/17	2,564	346	1997/11/02	
301	1997/09/18	2,556	347	1997/11/03	
302	1997/09/19	2,556	348	1997/11/04	
303	1997/09/20	2,551	349	1997/11/05	
304	1997/09/21	2,543	350	1997/11/06	
305	1997/09/22	2,544	351	1997/11/07	
306	1997/09/23	2,537	352	1997/11/08	
307	1997/09/24	2,536	353	1997/11/09	
308	1997/09/25	2,535	354	1997/11/10	
309	1997/09/26	2,527	355	1997/11/11	
310	1997/09/27	2,523	356	1997/11/12	
311	1997/09/28	2,525	357	1997/11/13	
312	1997/09/29	2,537	358	1997/11/14	
313	1997/09/30	2,520	359	1997/11/15	
314	1997/10/01	2,510	360	1997/11/16	
315	1997/10/02	2,505	361	1997/11/17	
316	1997/10/03	2,499	362	1997/11/18	
317	1997/10/04	2,497	363	1997/11/19	
318	1997/10/05	2,494	364	1997/11/20	
319	1997/10/06	2,489	365	1997/11/21	
320	1997/10/07	2,486	366	1997/11/22	
321	1997/10/08		367	1997/11/23	
322	1997/10/09		368	1997/11/24	

Tableau E.2 : Variation du niveau de la nappe phréatique pourl'hydrogramme de puits de Saint-Raymond (suite 3)
	Date	Profondeur		Date	Profondeur
		(mètre)			(mètre)
369	1997/11/25		415	1998/01/10	
370	1997/11/26		416	1998/01/11	
371	1997/11/27		417	1998/01/12	
372	1997/11/28		418	1998/01/13	
373	1997/11/29		419	1998/01/14	
374	1997/11/30		420	1998/01/15	
375	1997/12/01		421	1998/01/16	
376	1997/12/02		422	1998/01/17	
377	1997/12/03		423	1998/01/18	
378	1997/12/04		424	1998/01/19	
379	1997/12/05		425	1998/01/20	
380	1997/12/06		426	1998/01/21	
381	1997/12/07		427	1998/01/22	
382	1997/12/08		428	1998/01/23	
383	1997/12/09		429	1998/01/24	
384	1997/12/10		430	1998/01/25	
385	1997/12/11		431	1998/01/26	
386	1997/12/12		432	1998/01/27	
387	1997/12/13		433	1998/01/28	
388	1997/12/14		434	1998/01/29	1,959
389	1997/12/15		435	1998/01/30	1,953
390	1997/12/16		436	1998/01/31	1,936
391	1997/12/17		437	1998/02/01	1,932
392	1997/12/18		438	1998/02/02	1,934
393	1997/12/19		439	1998/02/03	1,922
394	1997/12/20		440	1998/02/04	1,920
395	1997/12/21		441	1998/02/05	1,919
396	1997/12/22		442	1998/02/06	1,912
397	1997/12/23		443	1998/02/07	1,904
398	1997/12/24		444	1998/02/08	1,902
399	1997/12/25		445	1998/02/09	1,894
400	1997/12/26		446	1998/02/10	1,892
401	1997/12/27		447	1998/02/11	1,893
402	1997/12/28		448	1998/02/12	1,894
403	1997/12/29		449	1998/02/13	1,877
404	1997/12/30		450	1998/02/14	1,869
405	1997/12/31		451	1998/02/15	1,862
406	1998/01/01		452	1998/02/16	1,860
407	1998/01/02		453	1998/02/17	1,858
408	1998/01/03		454	1998/02/18	1,858
409	1998/01/04		455	1998/02/19	1,855
410	1998/01/05		456	1998/02/20	1,858
411	1998/01/06		457	1998/02/21	1,841
412	1998/01/07		458	1998/02/22	1,832
413	1998/01/08		459	1998/02/23	1,830
414	1998/01/09		460	1998/02/24	1,830

Tableau E.2: Variation du niveau de la nappe phréatique pour

 l'hydrogramme de puits de Saint-Raymond (suite 4)

	Date	Profondeur		Date	Profondeur
		(mètre)			(mètre)
461	1998/02/25	1.823	507	1998/04/12	1,588
462	1998/02/26	1.817	508	1998/04/13	1.586
463	1998/02/27	1 810	509	1998/04/14	1,585
464	1998/02/28	1,817	510	1998/04/15	1,580
465	1998/03/01	1,007	510	1008/04/16	1,500
466	1008/03/07	1,000	512	1008/04/17	1,573
400	1990/03/02	1,000	512	1009/04/19	1,575
407	1998/03/03	1,790	515	1990/04/10	1,509
400	1990/03/04	1,700	514	1990/04/19	1,500
409	1998/03/05	1,777	515	1996/04/20	1,304
470	1998/03/06	1,772	510	1996/04/21	1,003
4/1	1998/03/07	1,766	517	1998/04/22	1,500
472	1998/03/08	1,765	518	1998/04/23	1,576
473	1998/03/09	1,824	519	1998/04/24	1,588
474	1998/03/10	1,754	520	1998/04/25	1,595
475	1998/03/11	1,749	521	1998/04/26	1,607
476	1998/03/12	1,743	522	1998/04/27	1,618
477	1998/03/13	1,739	523	1998/04/28	1,632
478	1998/03/14	1,736	524	1998/04/29	1,644
479	1998/03/15	1,725	525	1998/04/30	1,659
480	1998/03/16	1,719	526	1998/05/01	1,671
481	1998/03/17	1,717	527	1998/05/02	1,685
482	1998/03/18	1,713	528	1998/05/03	1,696
483	1998/03/19	1,711	529	1998/05/04	1,706
484	1998/03/20	1,704	530	1998/05/05	1,718
485	1998/03/21	1,701	531	1998/05/06	1,732
486	1998/03/22	1,700	532	1998/05/07	1,746
487	1998/03/23	1,691	533	1998/05/08	1,756
488	1998/03/24	1.682	534	1998/05/09	1,767
489	1998/03/25	1.678	535	1998/05/10	1,778
490	1998/03/26	1.677	536	1998/05/11	1.787
491	1998/03/27	1 673	537	1998/05/12	1,798
492	1998/03/28	1,677	538	1998/05/13	1 810
493	1998/03/29	1,611	539	1998/05/14	1,810
400	1998/03/30	1,001	540	1998/05/15	1,829
404	1998/03/31	1,001	541	1998/05/16	1,828
400	1008/04/01	1,030	542	1998/05/17	1,000
407	1008/04/07	1,047	543	1008/05/18	1,040
497	1990/04/02	1,042	543	1008/05/10	1,000
490	1996/04/03	1,037	544	1990/05/19	1,004
499	1996/04/04	1,034	545	1990/05/20	1,074
500	1998/04/05	1,030	540	1998/05/21	1,079
501	1998/04/06	1,624	547	1998/05/22	1,884
502	1998/04/07	1,616	548	1998/05/23	1,889
503	1998/04/08	1,611	549	1998/05/24	1,895
504	1998/04/09	1,609	550	1998/05/25	1,902
505	1998/04/10	1,602	551	1998/05/26	1,904
506	1998/04/11	1,594	552	1998/05/27	1,910

Tableau E.2 : Variation du niveau de la nappe phréatique pourl'hydrogramme de puits de Saint-Raymond (suite 5)

ەر ،

	Date	Profondeur		Data	Profondeur
	Dale	(mètre)		Dale	(mètre)
552	1008/05/29	1 019	500	1008/07/12	1 027
555	1002/05/20	1,910	599 599	1008/07/14	1,927
555	1008/05/29	1,921 1 000	601	1008/07/15	1,524
556	1990/05/30	1,922	602	1008/07/16	1,921
557	1998/05/31	1,952	602	1008/07/17	1,919
558	1990/00/01	1,934	604	1008/07/18	1,910
550	1990/00/02	1,942	605	1008/07/10	1,912
560	1998/06/03	1,943	606	1008/07/20	1,912
561	1990/00/04	1,945	607	1990/07/20	1,900
562	1990/00/05	1,947	609	1009/07/21	1,912
562	1990/00/00	1,945	600	1990/07/22	1,900
505	1990/00/07	1,940	610	1008/07/23	1,900
565	1990/00/00	1,940	611	1990/07/24	1,900
566	1008/06/10	1,900	610	1008/07/20	1,090
500	1008/06/10	1,901	01Z 612	1008/07/20	1,095
562	1990/00/11	1,900	617	1008/07/20	1,900
500	1008/06/12	1 062	014 615	1008/07/20	1,800
509	1990/00/13	1,902	616	1990/07/29	1,097
570	1990/00/14	1,902	617	1990/07/30	1,093
571	1990/00/10	1,962	610	1990/07/31	1,009
572	1998/06/10	1,964	610	1990/00/01	1,000
513	1996/06/17	1,904	619	1990/00/02	1,093
574	1998/06/18	1,964	620	1996/06/03	1,000
5/5	1998/06/19	1,965	621	1996/06/04	1,090
570	1998/06/20	1,962	622	1998/08/05	1,009
5//	1998/06/21	1,962	623	1998/08/06	1,091
5/8	1998/06/22	1,964	624	1998/08/07	1,000
5/9	1998/06/23	1,963	625	1998/08/08	1,093
580	1998/06/24	1,961	020	1998/08/09	1,900
581	1998/06/25	1,965	627	1998/08/10	1,905
582	1998/06/26	1,966	628	1998/08/11	1,899
583	1998/06/27	1,959	629	1998/08/12	1,894
584	1998/06/28	1,959	630	1998/08/13	1,900
585	1998/06/29	1,968	631	1998/08/14	1,906
586	1998/06/30	1,965	632	1998/08/15	1,905
587	1998/07/01	1,958	633	1998/08/16	1,901
588	1998/07/02	1,951	634	1998/08/17	1,907
589	1998/07/03	1,950	635	1998/08/18	1,902
590	1998/07/04	1,948	636	1998/08/19	1,899
591	1998/07/05	1,943	637	1998/08/20	1,902
592	1998/07/06	1,941	638	1998/08/21	1,903
593	1998/07/07	1,940	639	1998/08/22	1,905
594	1998/07/08	1,941	640	1998/08/23	1,913
595	1998/07/09	1,942	641	1998/08/24	1,912
596	1998/07/10	1,940	642	1998/08/25	1,910
597	1998/07/11	1,931	643	1998/08/26	1,903
598	1998/07/12	1,929	644	1998/08/27	1,900

Tableau E.2 : Variation du niveau de la nappe phréatique pourl'hydrogramme de puits de Saint-Raymond (suite 6)

_	Date	Profondeur	Date	Profondeur
		(mètre)		(mètre)
645	1998/08/28	1,903		
646	1998/08/29	1,907		
647	1998/08/30	1,904		
648	1998/08/31	1,902		
649	1998/09/01	1,901		
650	1998/09/02	1,903		
651	1998/09/03	1,901		
652	1998/09/04	1,898		
653	1998/09/05	1,898		
654	1998/09/06	1,898		
655	1998/09/07	1,898		
656	1998/09/08	1,895		
657	1998/09/09	1,893		
658	1998/09/10	1,888		
659	1998/09/11	1,890		
660	1998/09/12	1,885		
661	1998/09/13	1,883		
662	1998/09/14	1,882		
663	1998/09/15	1,881		
664	1998/09/16	1,878		
665	1998/09/17	1,876		
666	1998/09/18	1,880		
667	1998/09/19	1,877		
668	1998/09/20	1,877		
669	1998/09/21	1,876		
670	1998/09/22	1,872		
671	1998/09/23	1,871		

Tableau E.2 : Variation du niveau de la nappe phréatique pour

 l'hydrogramme de puits de Saint-Raymond (suite 7)

Figure E.2 : Hydrogramme de puits à Saint-Raymond

(m) əbnoz sl əb sussəb-us usə'b usəviN

	Date	Profondeur		Date	Profondeur
	Buto	(mètre)		2010	(mètre)
1	1996/11/22	1.65	47	1997/01/07	1.57
2	1996/11/23	1,66	48	1997/01/08	1.57
3	1996/11/24	1 66	49	1997/01/09	1.57
4	1996/11/25	1,66	50	1997/01/10	1.57
5	1996/11/26	1,66	51	1997/01/11	1.57
6	1996/11/27	1,66	52	1997/01/12	1.55
7	1996/11/28	1.66	53	1997/01/13	1.55
8	1996/11/29	1.66	54	1997/01/14	1.55
9	1996/11/30	1.65	55	1997/01/15	1.55
10	1996/12/01	1.65	56	1997/01/16	1,55
11	1996/12/02	1.65	57	1997/01/17	1,55
12	1996/12/03	1.66	58	1997/01/18	1,54
13	1996/12/04	1,68	59	1997/01/19	1,54
14	1996/12/05	1,68	60	1997/01/20	1,53
15	1996/12/06	1,68	61	1997/01/21	1,53
16	1996/12/07	1,68	62	1997/01/22	1,53
17	1996/12/08	1,68	63	1997/01/23	1,53
18	1996/12/09	1,66	64	1997/01/24	1,53
19	1996/12/10	1,66	65	1997/01/25	1,53
20	1996/12/11	1,65	66	1997/01/26	1,51
21	1996/12/12	1,65	67	1997/01/27	1,51
22	1996/12/13	1,65	68	1997/01/28	1,51
23	1996/12/14	1,64	69	1997/01/29	1,51
24	1996/12/15	1,64	70	1997/01/30	1,51
25	1996/12/16	1,64	71	1997/01/31	1,51
26	1996/12/17	1,65	72	1997/02/01	1,50
27	1996/12/18	1,64	73	1997/02/02	1,50
28	1996/12/19	1,64	74	1997/02/03	1,50
29	1996/12/20	1,64	75	1997/02/04	1,50
30	1996/12/21	1,62	76	1997/02/05	1,50
31	1996/12/22	1,62	77	1997/02/06	1,48
32	1996/12/23	1,62	78	1997/02/07	1,48
33	1996/12/24	1,62	79	1997/02/08	1,48
34	1996/12/25	1,61	80	1997/02/09	1,48
35	1996/12/26	1,61	81	1997/02/10	1,47
36	1996/12/27	1,61	82	1997/02/11	1,48
37	1996/12/28	1,61	83	1997/02/12	1,47
38	1996/12/29	1,59	84	1997/02/13	1,47
39	1996/12/30	1,59	85	1997/02/14	1,47
40	1996/12/31	1,59	86	1997/02/15	1,47
41	1997/01/01	1,59	87	1997/02/16	1,47
42	1997/01/02	1,59	88	1997/02/17	1,47
43	1997/01/03	1,58	89	1997/02/18	1,46
44	1997/01/04	1,58	90	1997/02/19	1,46
45	1997/01/05	1,58	91	1997/02/20	1,46
46	1997/01/06	1,58	92	1997/02/21	1,44

Tableau E.3 : Variation du niveau de la nappe phréatique pour l'hydrogramme de puits de Pont-Rouge

	Date	Profondeur		Date	Profondeur
		(mètre)			(mètre)
93	1997/02/22	1,46	139	1997/04/09	1,32
94	1997/02/23	1,44	140	1997/04/10	1,31
95	1997/02/24	1,44	141	1997/04/11	1,31
96	1997/02/25	1.44	142	1997/04/12	1.29
97	1997/02/26	1.43	143	1997/04/13	1.29
98	1997/02/27	1.43	144	1997/04/14	1.29
99	1997/02/28	1 43	145	1997/04/15	1.29
100	1997/03/01	1 43	146	1997/04/16	1.29
101	1997/03/02	1 42	147	1997/04/17	1 29
107	1997/03/03	1 43	148	1997/04/18	1 29
102	1997/03/04	1,40	149	1997/04/19	1 28
100	1997/03/05	1 42	150	1997/04/20	1 28
104	1997/03/06	1 42	151	1997/04/21	1 28
100	1997/03/07	1,42	152	1997/04/22	1 29
100	1007/03/08	1 42	152	1997/04/23	1.31
107	1007/03/00	1,42	150	1007/04/24	1,01
100	1007/03/10	1,40	154	1997/04/25	1,32
109	1007/03/11	1,40	156	1007/04/26	1,00
110	1997/03/11	1,40	150	1007/04/20	1,30
110	1997/03/12	1,40	157	1007/04/27	1,09
112	1997/03/13	1,40	150	1007/04/20	1,42
113	1997/03/14	1,40	159	1997/04/29	1,40
114	1997/03/15	1,39	160	1007/05/01	1,44
110	1997/03/10	1,39	101	1997/05/01	1,40
110	1997/03/17	1,39	102	1997/05/02	1,50
117	1997/03/10	1,37	103	1997/05/03	1,54
110	1997/03/19	1,37	104	1997/05/04	1,55
119	1997/03/20	1,37	100	1997/05/05	1,50
120	1997/03/21	1,37	100	1997/05/00	1,09
121	1997/03/22	1,30	107	1997/05/07	1,01
122	1997/03/23	1,30	100	1997/05/06	1,02
123	1997/03/24	1,30	109	1997/05/09	1,04
124	1997/03/25	1,30	170	1997/05/10	1,00
125	1997/03/26	1,35	171	1997/05/11	1,00
120	1997/03/27	1,35	172	1997/05/12	1,09
127	1997/03/28	1,35	173	1997/05/13	1,70
128	1997/03/29	1,35	174	1997/05/14	1,72
129	1997/03/30	1,35	175	1997/05/15	1,70
130	1997/03/31	1,33	176	1997/05/16	1,79
131	1997/04/01	1,33	177	1997/05/17	1,80
132	1997/04/02	1,33	1/8	1997/05/18	1,83
133	1997/04/03	1,33	1/9	1997/05/19	1,84
134	1997/04/04	1,32	180	1997/05/20	1,87
135	1997/04/05	1,32	181	1997/05/21	1,90
136	1997/04/06	1,32	182	1997/05/22	1,91
137	1997/04/07	1,32	183	1997/05/23	1,94
138	1997/04/08	1,32	184	1997/05/24	1,95

.

Tableau E.3 : Variation du niveau de la nappe phréatique pour l'hydrogramme de puits de Pont-Rouge (suite 1)

	Date	Profondeur		Date	Profondeur
	Date	(mètre)		Build	(mètre)
185	1997/05/25	1.98	231	1997/07/10	2.14
186	1997/05/26	2 01	232	1997/07/11	2.13
187	1997/05/27	2.02	233	1997/07/12	2.13
188	1997/05/28	2,02	234	1997/07/13	2.13
189	1997/05/29	2,00	235	1997/07/14	2 12
190	1997/05/30	2,00	236	1997/07/15	2 12
100	1997/05/31	2,00	237	1997/07/16	2 12
102	1007/06/01	2,00	238	1997/07/17	2,12
102	1007/06/02	2,00	230	1997/07/18	2 12
10/	1007/06/02	2,10	240	1007/07/10	2,12
105	1007/06/04	2,12	240	1007/07/20	2,12
106	1007/06/05	2,13	241	1007/07/21	2,10
107	1997/06/06	2,14	242	1007/07/27	2,00
108	1007/06/07	2,14	240	1007/07/23	2,00
100	1007/06/08	2,10	244	1997/07/24	2,00
200	1007/06/00	2,10	240	1007/07/25	2,00
200	1997/06/10	2,10	240	1997/07/26	2,00
201	1007/06/11	2,10	247	1007/07/27	2,00
202	1997/06/12	2,17	240	1997/07/28	2,00
203	1997/06/12	2,20	249	1997/07/20	2,00
204	1007/06/14	2,20	250	1007/07/20	2,00
205	1007/06/15	2,20	251	1007/07/31	2,00
200	1007/06/16	2,20	252	1007/08/01	2,00
207	1997/06/17	2,20	250	1997/08/02	2,00
200	1997/06/18	2,21	255	1997/08/03	2 03
210	1997/06/19	2,21	256	1997/08/04	2 03
210	1997/06/20	2,21	257	1997/08/05	2.03
212	1997/06/21	2 21	258	1997/08/06	2.02
213	1997/06/22	2,21	259	1997/08/07	2 02
214	1997/06/23	2 20	260	1997/08/08	2.01
215	1997/06/24	2,20	261	1997/08/09	2.01
216	1997/06/25	2.23	262	1997/08/10	1.99
217	1997/06/26	2.21	263	1997/08/11	2.01
218	1997/06/27	2.20	264	1997/08/12	1,99
219	1997/06/28	2.20	265	1997/08/13	1,99
220	1997/06/29	2.19	266	1997/08/14	1,99
221	1997/06/30	2.17	267	1997/08/15	1,98
222	1997/07/01	2.17	268	1997/08/16	1,98
223	1997/07/02	2,17	269	1997/08/17	1,98
224	1997/07/03	2,20	270	1997/08/18	1,98
225	1997/07/04	2,20	271	1997/08/19	1,97
226	1997/07/05	2,17	272	1997/08/20	1,97
227	1997/07/06	2,16	273	1997/08/21	1,97
228	1997/07/07	2,16	274	1997/08/22	1,95
229	1997/07/08	2,14	275	1997/08/23	1,95
230	1997/07/09	2,14	276	1997/08/24	1,95

Tableau E.3 : Variation du niveau de la nappe phréatique pourl'hydrogramme de puits de Pont-Rouge (suite 2)

	<u> </u>				Durfe ?
	Date	Profondeur		Date	Profondeur
		(métre)			(metre)
277	1997/08/25	1,94	323	1997/10/10	1,73
278	1997/08/26	1,94	324	1997/10/11	1,72
279	1997/08/27	1,94	325	1997/10/12	1,72
280	1997/08/28	1,92	326	1997/10/13	1,72
281	1997/08/29	1,92	327	1997/10/14	1,70
282	1997/08/30	1,91	328	1997/10/15	1,70
283	1997/08/31	1,91	329	1997/10/16	1,70
284	1997/09/01	1,90	330	1997/10/17	1,70
285	1997/09/02	1,90	331	1997/10/18	1,69
286	1997/09/03	1,91	332	1997/10/19	1,69
287	1997/09/04	1,90	333	1997/10/20	1,68
288	1997/09/05	1,90	334	1997/10/21	1,69
289	1997/09/06	1.90	335	1997/10/22	1,68
290	1997/09/07	1,88	336	1997/10/23	1,68
291	1997/09/08	1.88	337	1997/10/24	1,68
292	1997/09/09	1.87	338	1997/10/25	1.66
293	1997/09/10	1.87	339	1997/10/26	1.66
294	1997/09/11	1.87	340	1997/10/27	1.66
295	1997/09/12	1.86	341	1997/10/28	1 65
296	1997/09/13	1,86	342	1997/10/29	1 65
200	1997/09/14	1,00	343	1997/10/30	1,00
208	1007/00/14	1,84	344	1997/10/31	1 64
200	1997/09/16	1,04	345	1997/11/01	1,64
300	1997/09/10	1,04	346	1997/11/02	1,64
301	1997/09/18	1,0-	347	1997/11/03	1,62
302	1997/09/19	1,00	348	1997/11/04	1,62
302	1997/09/19	1,00	349	1997/11/05	1,62
304	1007/00/21	1,00	350	1997/11/06	1,62
305	1997/09/21	1,00	351	1997/11/07	1,01
306	1007/00/23	1,01	352	1997/11/08	1,01
307	1007/00/24	1,01	353	1997/11/09	1,01
308	1997/09/24	1,01	354	1997/11/00	1,00
300	1997/09/25	1,00	355	1997/11/10	1,00
310	1007/00/27	1,00	356	1997/11/12	1,00
310	1007/00/28	1,79	357	1007/11/13	1,50
312	1997/09/20	1,79	358	1007/11/1/	1,55
212	1997/09/29	1,79	350	1007/11/15	1,50
214	1997/09/30	1,75	360	1007/11/16	1,50
215	1997/10/01	1,77	361	1007/11/17	1,57
216	1997/10/02	1,11	301	1007/11/19	1,57
010 247	1997/10/03	1,70	202	1007/11/10	1,37
317	1997/10/04	1,70	303	1997/11/19	1,5/
318	1997/10/05	1,70	304	1997/11/20	1,37
319	1997/10/06	1,70	305	1997/11/21	1,00
320	1997/10/07	1,75	300	1997/11/22	1,55
321	1997/10/08	1,/3	367	1997/11/23	1,55
322	1997/10/09	1,73	368	1997/11/24	1,54

Tableau E.3 : Variation du niveau de la nappe phréatique pour l'hydrogramme de puits de Pont-Rouge (suite 3)

	Date F	Profondeur		Date	Profondeur
		(mètre)			(mètre)
369	1997/11/25	1,54	415	1998/01/10	1,39
370	1997/11/26	1,54	416	1998/01/11	1,39
371	1997/11/27	1,54	417	1998/01/12	1,39
372	1997/11/28	1,54	418	1998/01/13	1,39
373	1997/11/29	1,53	419	1998/01/14	1,39
374	1997/11/30	1,53	420	1998/01/15	1,39
375	1997/12/01	1,53	421	1998/01/16	1,37
376	1997/12/02	1,51	422	1998/01/17	1,37
377	1997/12/03	1,51	423	1998/01/18	1,36
378	1997/12/04	1,51	424	1998/01/19	1,36
379	1997/12/05	1,51	425	1998/01/20	1,36
380	1997/12/06	1,51	426	1998/01/21	1,36
381	1997/12/07	1,50	427	1998/01/22	1,36
382	1997/12/08	1,50	428	1998/01/23	1,35
383	1997/12/09	1,50	429	1998/01/24	1,35
384	1997/12/10	1,50	430	1998/01/25	1,35
385	1997/12/11	1,48	431	1998/01/26	1,35
386	1997/12/12	1,48	432	1998/01/27	1,33
387	1997/12/13	1,48	433	1998/01/28	1,33
388	1997/12/14	1,48	434	1998/01/29	1,33
389	1997/12/15	1,48	435	1998/01/30	1,32
390	1997/12/16	1,47	436	1998/01/31	1,32
391	1997/12/17	1,47	437	1998/02/01	1,32
392	1997/12/18	1,47	438	1998/02/02	1,32
393	1997/12/19	1,46	439	1998/02/03	1,31
394	1997/12/20	1,46	440	1998/02/04	1,31
395	1997/12/21	1,46	441	1998/02/05	1,31
396	1997/12/22	1,46	442	1998/02/06	1,29
397	1997/12/23	1,46	443	1998/02/07	1,29
398	1997/12/24	1,44	444	1998/02/08	1,29
399	1997/12/25	1,44	445	1998/02/09	1,29
400	1997/12/26	1,44	446	1998/02/10	1,28
401	1997/12/27	1,44	447	1998/02/11	1,28
402	1997/12/28	1,44	448	1998/02/12	1,28
403	1997/12/29	1,43	449	1998/02/13	1,28
404	1997/12/30	1,43	450	1998/02/14	1,26
405	1997/12/31	1,43	451	1998/02/15	1,26
406	1998/01/01	1,43	452	1998/02/16	1,26
407	1998/01/02	1,43	453	1998/02/17	1,25
408	1998/01/03	1,42	454	1998/02/18	1,25
409	1998/01/04	1,42	455	1998/02/19	1,25
410	1998/01/05	1,42	456	1998/02/20	1,24
411	1998/01/06	1,40	457	1998/02/21	1,24
412	1998/01/07	1,40	458	1998/02/22	1,24
413	1998/01/08	1,40	459	1998/02/23	1,24
414	1998/01/09	1,40	460	1998/02/24	1,24

Tableau E.3 : Variation du niveau de la nappe phréatique pour l'hydrogramme de puits de Pont-Rouge (suite 4)

	Dete	Drofondour		Data	Drofondour
	Dale			Date	(màtro)
		(meue)		1000/01/140	
461	1998/02/25	1,22	507	1998/04/12	1,17
462	1998/02/26	1,22	508	1998/04/13	1,18
463	1998/02/27	1,22	509	1998/04/14	1,18
464	1998/02/28	1,21	510	1998/04/15	1,20
465	1998/03/01	1,21	511	1998/04/16	1,21
466	1998/03/02	1,21	512	1998/04/17	1,22
467	1998/03/03	1,21	513	1998/04/18	1,24
468	1998/03/04	1,21	514	1998/04/19	1,25
469	1998/03/05	1,20	515	1998/04/20	1,28
470	1998/03/06	1,20	516	1998/04/21	1,31
471	1998/03/07	1,20	517	1998/04/22	1,32
472	1998/03/08	1,18	518	1998/04/23	1,35
473	1998/03/09	1,18	519	1998/04/24	1,37
474	1998/03/10	1,18	520	1998/04/25	1,40
475	1998/03/11	1,18	521	1998/04/26	1,43
476	1998/03/12	1.18	522	1998/04/27	1,46
477	1998/03/13	1.18	523	1998/04/28	1,47
478	1998/03/14	1.17	524	1998/04/29	1.50
479	1998/03/15	1.17	525	1998/04/30	1.51
480	1998/03/16	1 17	526	1998/05/01	1.53
481	1998/03/17	1 18	527	1998/05/02	1.55
482	1998/03/18	1 17	528	1998/05/03	1.58
483	1998/03/19	1 17	529	1998/05/04	1,58
484	1998/03/20	1 15	530	1998/05/05	1,00
485	1008/03/20	1,13	531	1998/05/06	1,01
486	1008/03/22	1,10	532	1998/05/07	1,64
487	1008/03/23	1,15	533	1008/05/08	1,04
407	1008/03/23	1,13	534	1008/05/00	1,00
400	1009/03/24	1,14	535	1008/05/10	1,00
400	1009/03/25	1,14	536	1008/05/11	1,00
490	1990/03/20	1,14	530	1008/05/12	1,09
491	1990/03/27	1,13	539	1008/05/12	1,70
492	1990/03/20	1,10	520	1990/05/13	1,70
493	1990/03/29	1,10	539	1990/05/14	1,72
494	1996/03/30	1,13	540	1990/05/15	1,70
495	1998/03/31	1,13	541	1996/05/16	1,73
496	1998/04/01	1,13	542	1998/05/17	1,73
497	1998/04/02	1,11	543	1998/05/18	1,70
498	1998/04/03	1,11	544	1998/05/19	1,76
499	1998/04/04	1,13	545	1998/05/20	1,76
500	1998/04/05	1,13	546	1998/05/21	1,77
501	1998/04/06	1,13	547	1998/05/22	1,/7
502	1998/04/07	1,14	548	1998/05/23	1,79
503	1998/04/08	1,14	549	1998/05/24	1,77
504	1998/04/09	1,15	550	1998/05/25	1,79
505	1998/04/10	1,15	551	1998/05/26	1,79
506	1998/04/11	1,15	552	1998/05/27	1,79

Tableau E.3 : Variation du niveau de la nappe phréatique pour l'hydrogramme de puits de Pont-Rouge (suite 5)

	Date F	Profondeur		Date	Profondeur
		(mètre)			(mètre)
553	1998/05/28	1,79	599	1998/07/13	1,65
554	1998/05/29	1,80	600	1998/07/14	1,65
555	1998/05/30	1,80	601	1998/07/15	1,64
556	1998/05/31	1,81	602	1998/07/16	1,65
557	1998/06/01	1,80	603	1998/07/17	1,65
558	1998/06/02	1,80	604	1998/07/18	1,64
559	1998/06/03	1,81	605	1998/07/19	1,62
560	1998/06/04	1.81	606	1998/07/20	1,62
561	1998/06/05	1.81	607	1998/07/21	1,62
562	1998/06/06	1.80	608	1998/07/22	1,62
563	1998/06/07	1.80	609	1998/07/23	1.62
564	1998/06/08	1.79	610	1998/07/24	1.61
565	1998/06/09	1.79	611	1998/07/25	1.61
566	1998/06/10	1.79	612	1998/07/26	1.61
567	1998/06/11	1.77	613	1998/07/27	1.61
568	1998/06/12	1.79	614	1998/07/28	1.59
569	1998/06/13	1.79	615	1998/07/29	1.59
570	1998/06/14	1 79	616	1998/07/30	1.59
571	1998/06/15	1 77	617	1998/07/31	1.58
572	1998/06/16	1 77	618	1998/08/01	1,58
573	1998/06/17	1 77	619	1998/08/02	1,57
574	1998/06/18	1 76	620	1998/08/03	1,57
575	1998/06/19	1,76	621	1998/08/04	1,07
576	1998/06/20	1,70	622	1998/08/05	1,01
577	1990/00/20	1,73	623	1998/08/06	1,07
578	1998/06/22	1,73	624	1998/08/07	1,00
570	1990/00/22	1,73	625	1998/08/08	1,50
580	1008/06/24	1,73	626	1008/08/00	1,54
581	1008/06/25	1,72	627	1008/08/10	1,54
501	1009/06/26	1,73	629	1008/08/11	1,54
502	1990/00/20	1,73	620	1008/08/12	1,54
505	1990/00/27	1,72	620	1009/09/12	1,54
504	1990/00/20	1,70	621	1990/00/13	1,54
505	1990/00/29	1,72	622	1990/00/14	1,54
500	1996/06/30	1,72	032	1990/00/10	1,55
507	1998/07/01	1,70	033	1990/00/10	1,00
500	1996/07/02	1,09	625	1990/00/17	1,01
569	1998/07/03	1,69	030	1996/06/16	1,01
590	1998/07/04	1,69	030	1998/08/19	1,01
591	1996/07/05	1,00	630	1990/00/20	1,51
592	1998/07/06	1,08	630	1990/00/21	1,50
593	1998/07/07	1,08	039	1990/08/22	1,50
594	1998/07/08	1,08	040	1990/00/23	1,50
595	1998/07/09	1,68	641	1998/08/24	1,50
596	1998/07/10	1,68	642	1998/08/25	1,50
597	1998/07/11	1,66	643	1998/08/26	1,48
598	1998/07/12	1,66	644	1998/08/27	1,48

Tableau E.3 : Variation du niveau de la nappe phréatique pour l'hydrogramme de puits de Pont-Rouge (suite 6)

	Date P	rofondeur	Date	Profondeur
		(mètre)	 	(mètre)
645	1998/08/28	1,48		
646	1998/08/29	1,48		
647	1998/08/30	1,47		
648	1998/08/31	1,47		
649	1998/09/01	1,47		
650	1998/09/02	1,47		
651	1998/09/03	1,46		
652	1998/09/04	1,46		
653	1998/09/05	1,46		
654	1998/09/06	1,44		
655	1998/09/07	1,46		
656	1998/09/08	1,44		
657	1998/09/09	1,44		
658	1998/09/10	1,44		
659	1998/09/11	1,43		
660	1998/09/12	1,43		
661	1998/09/13	1,43		
662	1998/09/14	1,43		
663	1998/09/15	1,43		
664	1998/09/16	1,43		
665	1998/09/17	1,42		
666	1998/09/18	1,42		
667	1998/09/19	1,40		
668	1998/09/20	1,40		
669	1998/09/21	1,40		
670	1998/09/22	1,40		
671	1998/09/23	1,42		

Tableau E.3 : Variation du niveau de la nappe phréatique pourl'hydrogramme de puits de Pont-Rouge (suite 7)

(m) əbnoz al əb zuzsəb-us usə'b usəviN

	Date	Profondeur		Date	Profondeur
	Date	(mètre)		Date	(mètre)
1	1006/11/22	2 509	47	1997/01/07	2 351
2	1996/11/23	2,000	48	1997/01/08	2,337
3	1996/11/24	2 481	49	1997/01/09	2 344
4	1996/11/25	2,401	50	1997/01/10	2 344
5	1996/11/26	2 460	51	1997/01/11	2 323
6	1996/11/27	2 447	52	1997/01/12	2,316
7	1996/11/28	2 440	53	1997/01/13	2.302
8	1996/11/29	2,426	54	1997/01/14	2.302
9	1996/11/30	2.419	55	1997/01/15	2,309
10	1996/12/01	2.412	56	1997/01/16	2,296
11	1996/12/02	2.488	57	1997/01/17	2.261
12	1996/12/03	2.515	58	1997/01/18	2,254
13	1996/12/04	2.536	59	1997/01/19	2,282
14	1996/12/05	2,550	60	1997/01/20	2,268
15	1996/12/06	2,564	61	1997/01/21	2,261
16	1996/12/07	2,564	62	1997/01/22	2,234
17	1996/12/08	2.557	63	1997/01/23	2,254
18	1996/12/09	2,550	64	1997/01/24	2,254
19	1996/12/10	2,550	65	1997/01/25	2,220
20	1996/12/11	2,529	66	1997/01/26	2,213
21	1996/12/12	2,515	67	1997/01/27	2,241
22	1996/12/13	2,509	68	1997/01/28	2,220
23	1996/12/14	2,502	69	1997/01/29	2,192
24	1996/12/15	2,488	70	1997/01/30	2,213
25	1996/12/16	2,488	71	1997/01/31	2,206
26	1996/12/17	2,481	72	1997/02/01	2,172
27	1996/12/18	2,481	73	1997/02/02	2,172
28	1996/12/19	2,495	74	1997/02/03	2,165
29	1996/12/20	2,474	75	1997/02/04	2,158
30	1996/12/21	2,460	76	1997/02/05	2,158
31	1996/12/22	2,447	77	1997/02/06	2,151
32	1996/12/23	2,447	78	1997/02/07	2,151
33	1996/12/24	2,447	79	1997/02/08	2,144
34	1996/12/25	2,433	80	1997/02/09	2,144
35	1996/12/26	2,433	81	1997/02/10	2,131
36	1996/12/27	2,426	82	1997/02/11	2,124
37	1996/12/28	2,426	83	1997/02/12	2,110
38	1996/12/29	2,426	84	1997/02/13	2,082
39	1996/12/30	2,426	85	1997/02/14	2,089
40	1996/12/31	2,426	86	1997/02/15	2,089
41	1997/01/01	2,412	87	1997/02/16	2,076
42	1997/01/02	2,392	88	1997/02/17	2,076
43	1997/01/03	2,385	89	1997/02/18	2,062
44	1997/01/04	2,378	90	1997/02/19	2,048
45	1997/01/05	2,378	91	1997/02/20	2,055
46	1997/01/06	2,364	92	1997/02/21	2,055

Tableau E.4 : Variation du niveau de la nappe phréatique pourl'hydrogramme de puits de Saint-Léonard

	Date	Profondeur		Date	Profondeur
	Duto	(mètre)		Date	(mètre)
03	1007/02/22	2.048	130	1007/04/09	1 890
94	1997/02/22	2,040	140	1997/04/10	1,000
95	1997/02/24	2,027	140	1997/04/11	1,011
96	1997/02/25	2,040	147	1997/04/12	1,018
97	1997/02/26	2,021	142	1997/04/13	1 924
98	1997/02/27	2,021	140	1997/04/14	1,021
99	1997/02/28	2,017	145	1997/04/15	1,000
100	1997/03/01	2,000	146	1997/04/16	1,945
101	1997/03/02	1 986	147	1997/04/17	1,952
102	1997/03/03	1,986	148	1997/04/18	1,973
103	1997/03/04	1,000	149	1997/04/19	1,993
104	1997/03/05	1,979	150	1997/04/20	2.034
105	1997/03/06	1.973	151	1997/04/21	2.089
106	1997/03/07	1,973	152	1997/04/22	2.186
107	1997/03/08	1,966	153	1997/04/23	2.247
108	1997/03/09	1,959	154	1997/04/24	2.344
109	1997/03/10	1,945	155	1997/04/25	2.426
110	1997/03/11	1,945	156	1997/04/26	2.522
111	1997/03/12	1.959	157	1997/04/27	2.625
112	1997/03/13	1,945	158	1997/04/28	2,756
113	1997/03/14	1.938	159	1997/04/29	2.887
114	1997/03/15	1,931	160	1997/04/30	3.017
115	1997/03/16	1,924	161	1997/05/01	3,148
116	1997/03/17	1.911	162	1997/05/02	3.292
117	1997/03/18	1,918	163	1997/05/03	3,333
118	1997/03/19	1,904	164	1997/05/04	3,381
119	1997/03/20	1,911	165	1997/05/05	3,409
120	1997/03/21	1.897	166	1997/05/06	3,457
121	1997/03/22	1,890	167	1997/05/07	3,519
122	1997/03/23	1,897	168	1997/05/08	3,505
123	1997/03/24	1,890	169	1997/05/09	3,491
124	1997/03/25	1,897	170	1997/05/10	3,464
125	1997/03/26	1,883	171	1997/05/11	3,450
126	1997/03/27	1,876	172	1997/05/12	3,457
127	1997/03/28	1,856	173	1997/05/13	3,464
128	1997/03/29	1,835	174	1997/05/14	3,443
129	1997/03/30	1,842	175	1997/05/15	3,423
130	1997/03/31	1,842	176	1997/05/16	3,409
131	1997/04/01	1,828	177	1997/05/17	3,388
132	1997/04/02	1,828	178	1997/05/18	3,368
133	1997/04/03	1,828	179	1997/05/19	3,354
134	1997/04/04	1,828	180	1997/05/20	3,333
135	1997/04/05	1,814	181	1997/05/21	3,313
136	1997/04/06	1,828	182	1997/05/22	3,285
137	1997/04/07	1,842	183	1997/05/23	3,258
138	1997/04/08	1,876	184	1997/05/24	3,230

Tableau E.4 : Variation du niveau de la nappe phréatique pourl'hydrogramme de puits de Saint-Léonard (suite 1)

	Date	Profondeur		Date	Profondeur
		(mètre)			(mètre)
185	1997/05/25	3,216	231	1997/07/10	2,639
186	1997/05/26	3,196	232	1997/07/11	2,619
187	1997/05/27	3,155	233	1997/07/12	2,605
188	1997/05/28	3,134	234	1997/07/13	2,598
189	1997/05/29	3,113	235	1997/07/14	2,591
190	1997/05/30	3.093	236	1997/07/15	2,570
191	1997/05/31	3.079	237	1997/07/16	2,564
192	1997/06/01	3.065	238	1997/07/17	2,557
193	1997/06/02	3.038	239	1997/07/18	2.543
194	1997/06/03	3.017	240	1997/07/19	2,529
195	1997/06/04	3.003	241	1997/07/20	2.515
196	1997/06/05	2,976	242	1997/07/21	2,509
197	1997/06/06	2,955	243	1997/07/22	2.495
198	1997/06/07	2,928	244	1997/07/23	2.474
199	1997/06/08	2,907	245	1997/07/24	2.467
200	1997/06/09	2 887	246	1997/07/25	2,454
201	1997/06/10	2,866	247	1997/07/26	2,433
202	1997/06/11	2 859	248	1997/07/27	2,426
203	1997/06/12	2,832	249	1997/07/28	2 4 1 2
200	1997/06/13	2,802	250	1997/07/29	2 399
204	1997/06/14	2,010	251	1997/07/30	2,385
206	1997/06/15	2 783	252	1997/07/31	2 378
200	1997/06/16	2,763	252	1997/08/01	2,371
208	1997/06/17	2,756	254	1997/08/02	2,364
200	1997/06/18	2 742	255	1997/08/03	2,351
210	1997/06/19	2 749	256	1997/08/04	2,337
210	1997/06/20	2,140	250	1997/08/05	2,330
211	1007/06/21	2,742	258	1997/08/06	2,000
212	1007/06/22	2,123	250	1007/08/07	2,010
213	1007/06/22	2,722	200	1007/08/08	2,000
214	1007/06/24	2,713	200	1007/08/00	2,200
215	1007/06/25	2,700	201	1007/08/10	2,202
210	1007/06/26	2,707	262	1007/08/11	2,278
217	1007/06/27	2,007	203	1007/08/12	2,200
210	1997/06/28	2,000	265	1007/08/13	2,207
219	1007/06/20	2,074	203	1007/08/14	2,247
220	1007/06/30	2,000	200	1007/08/15	2,241
221	1007/07/01	2,009	268	1007/08/16	2,227
222	1997/07/01	2,020	200	1007/08/17	2,213
223	1007/07/02	2,012	209	1007/08/18	2,213
224	1997/07/03	2,020	270	1997/00/10	2,200
220	1997/07/04	2,000 0 607	271	1007/09/20	2,199
220	1997/07/05	2,00/	212	1007/09/01	2,100
221	1997/07/00	2,00/	213	1007/00/21	2,179
220	1997/07/07	2,094	214	1007/00/22	2,172
220	1007/07/00	2,000	210	1007/08/04	2,172
200	1991/01/09	2,007	210	1331/00/24	2,100

Tableau E.4 : Variation du niveau de la nappe phréatique pourl'hydrogramme de puits de Saint-Léonard (suite 2)

		Date	Profondeur		Date	Profondeur
			(mètre)			(mètre)
=	277	1997/08/25	2,165	323	1997/10/10	2,000
	278	1997/08/26	2,158	324	1997/10/11	1,993
	279	1997/08/27	2,144	325	1997/10/12	1,986
	280	1997/08/28	2,144	326	1997/10/13	1.986
	281	1997/08/29	2,137	327	1997/10/14	1,979
	282	1997/08/30	2,131	328	1997/10/15	1.973
	283	1997/08/31	2 124	329	1997/10/16	1 973
	284	1997/09/01	2 124	330	1997/10/17	1 959
	285	1997/09/02	2 117	331	1997/10/18	1,966
	286	1997/09/03	2 117	332	1997/10/19	1,952
	287	1997/09/04	2 110	333	1997/10/20	1 945
	288	1997/09/05	2 103	334	1997/10/21	1,945
	289	1997/09/06	2,100	335	1997/10/22	1,945
	200	1997/09/07	2,000	336	1997/10/23	1 938
	200	1997/09/08	2,000	337	1997/10/24	1 931
	201	1007/00/00	2,002	338	1007/10/25	1 924
	292	1997/09/09	2,003	330	1007/10/26	1,024
	293	1997/09/10	2,005	340	1007/10/20	1,018
	294	1997/09/11	2,000	3/1	1007/10/28	1,010
	295	1007/00/12	2,040	347	1007/10/20	1,911
	290	1007/00/14	2,041	3/2	1007/10/20	1,904
	291	1997/09/14	2,041	343	1007/10/31	1,007
	290	1997/09/15	2,034	345	1007/11/01	1 890
	299	1997/09/10	2,004	345	1007/11/02	1,090
	300	1997/09/17	2,021	340	1007/11/02	1,097
	202	1007/00/10	2,007	349	1007/11/04	1,004
	302	1997/09/19	2,000	340	1007/11/05	1,904
	204	1997/09/20	2,000	349	1007/11/06	1,924
	205	1997/09/21	2,007	251	1997/11/00	1,950
	305	1997/09/22	1,995	351	1997/11/07	1,952
	207	1997/09/23	1,900	352	1997/11/00	1,909
	200	1997/09/24	1,900	303	1997/11/09	1,900
	200	1997/09/25	1,979	304	1007/11/10	1,973
	309	1997/09/20	1,900	300	1997/11/11	1,979
	214	1997/09/27	1,900	350	1997/11/12	1,900
	210	1997/09/20	1,909	357	1997/11/13	1,900
	31Z	1997/09/29	1,909	350	1997/11/14	1,900
	212	1997/09/30	1,900	309	1997/11/15	1,900
	314	1997/10/01	1,979	300	1997/11/10	1,900
	315	1997/10/02	2,000	301	1997/11/17	1,900
	010	1997/10/03	2,007	302	1007/44/40	1,900
	31/ 210	1997/10/04	2,014	303	1007/11/19	1,900
	210	1997/10/00	2,007	304 265	1007/11/20	1,919
	319 320	1997/10/00	2,007	300	1007/11/21	1,979
	320	1997/10/07	2,007	300	1007/11/22	1,319
	১∠। ১০০	1997/10/08	2,000	307	1007/11/23	1,900
	322	1997/10/09	∠,000	300	1997/11/24	1,909

Tableau E.4 : Variation du niveau de la nappe phréatique pourl'hydrogramme de puits de Saint-Léonard (suite 3)

		Date	Profondeur		Date	Profondeur
			(mètre)			(mètre)
=	369	1997/11/25	1.993	415	1998/01/10	1.711
	370	1997/11/26	1.959	416	1998/01/11	1,704
	371	1997/11/27	1,959	417	1998/01/12	1,704
	372	1997/11/28	1,938	418	1998/01/13	1,698
	373	1997/11/29	1 931	419	1998/01/14	1 704
	374	1997/11/30	1,001	420	1998/01/15	1 684
	375	1997/12/01	1 911	420	1998/01/16	1 691
	376	1007/12/01	1 897	421	1998/01/17	1,670
	377	1007/12/02	1,007	422	1008/01/18	1,673
	378	1997/12/04	1,007	420	1998/01/19	1,000
	370	1007/12/05	1,000	424	1008/01/20	1,000
	380	1997/12/06	1,005	426	1998/01/20	1,000
	381	1007/12/07	1,070	420	1008/01/27	1,000
	382	1007/12/08	1,070	421	1008/01/22	1,070
	302	1997/12/00	1,005	420	1008/01/23	1,000
	202	1997/12/09	1,090	429	1009/01/24	1,000
	304 205	1997/12/10	1,003	430	1990/01/20	1,043
	200	1997/12/11	1,070	431	1990/01/20	1,043
	300	1997/12/12	1,003	432	1990/01/27	1,022
	307 200	1997/12/13	1,800	433	1990/01/20	1,022
	300	1997/12/14	1,869	434	1996/01/29	1,010
	389	1997/12/15	1,856	435	1998/01/30	1,010
	390	1997/12/16	1,842	430	1998/01/31	1,015
	391	1997/12/17	1,842	437	1998/02/01	1,601
	392	1997/12/18	1,835	438	1998/02/02	1,601
	393	1997/12/19	1,828	439	1998/02/03	1,601
	394	1997/12/20	1,835	440	1998/02/04	1,601
	395	1997/12/21	1,821	441	1998/02/05	1,594
	396	1997/12/22	1,814	442	1998/02/06	1,588
	397	1997/12/23	1,814	443	1998/02/07	1,594
	398	1997/12/24	1,801	444	1998/02/08	1,581
	399	1997/12/25	1,794	445	1998/02/09	1,574
	400	1997/12/26	1,787	446	1998/02/10	1,574
	401	1997/12/27	1,787	447	1998/02/11	1,574
	402	1997/12/28	1,787	448	1998/02/12	1,567
	403	1997/12/29	1,766	449	1998/02/13	1,567
	404	1997/12/30	1,766	450	1998/02/14	1,553
	405	1997/12/31	1,766	451	1998/02/15	1,553
	406	1998/01/01	1,753	452	1998/02/16	1,546
	407	1998/01/02	1,746	453	1998/02/17	1,540
	408	1998/01/03	1,732	454	1998/02/18	1,540
	409	1998/01/04	1,739	455	1998/02/19	1,533
	410	1998/01/05	1,739	456	1998/02/20	1,526
	411	1998/01/06	1,732	457	1998/02/21	1,519
	412	1998/01/07	1,725	458	1998/02/22	1,533
	413	1998/01/08	1,718	459	1998/02/23	1,526
	414	1998/01/09	1,718	460	1998/02/24	1,519

Tableau E.4 : Variation du niveau de la nappe phréatique pourl'hydrogramme de puits de Saint-Léonard (suite 4)

		Date I	Profondeur		Date	Profondeur
			(mètre)			(mètre)
-	461	1998/02/25	1,519	507	1998/04/12	2,495
	462	1998/02/26	1,512	508	1998/04/13	2,564
	463	1998/02/27	1,498	509	1998/04/14	2,667
	464	1998/02/28	1.491	510	1998/04/15	2,735
	465	1998/03/01	1.485	511	1998/04/16	2,763
	466	1998/03/02	1.485	512	1998/04/17	2.859
	467	1998/03/03	1.485	513	1998/04/18	2.976
	468	1998/03/04	1,485	514	1998/04/19	3.024
	469	1998/03/05	1 491	515	1998/04/20	3.058
	470	1998/03/06	1,101	516	1998/04/21	3,093
	471	1998/03/07	1 498	517	1998/04/22	3 079
	472	1998/03/08	1 491	518	1998/04/23	3 065
	473	1998/03/09	1 491	519	1998/04/24	3,093
	474	1998/03/10	1,101	520	1998/04/25	3 100
	475	1998/03/11	1,519	521	1998/04/26	3 058
	476	1998/03/12	1,510	522	1998/04/27	3 038
	477	1998/03/13	1,546	523	1998/04/28	3 017
	478	1998/03/14	1,540	524	1998/04/29	2 990
	479	1998/03/15	1,540	525	1998/04/30	2,000
	480	1998/03/16	1,000	526	1998/05/01	2 955
	481	1998/03/17	1 588	527	1998/05/02	2,000
	482	1998/03/18	1,500	528	1998/05/03	2,042
	483	1998/03/19	1,574	529	1998/05/04	2 907
	484	1998/03/20	1 608	530	1998/05/05	2,900
	485	1998/03/21	1,581	531	1998/05/06	2 887
	486	1998/03/22	1,001	532	1998/05/07	2 873
	487	1998/03/23	1,001	533	1998/05/08	2,866
	488	1998/03/24	1,000	534	1998/05/09	2,859
	489	1998/03/25	1,588	535	1998/05/10	2,852
	490	1998/03/26	1,594	536	1998/05/11	2 866
	491	1998/03/27	1,007	537	1998/05/12	2 832
	492	1998/03/28	1,588	538	1998/05/13	2 818
	493	1998/03/29	1,000	539	1998/05/14	2 790
	400	1998/03/30	1,620	540	1998/05/15	2 763
	495	1998/03/31	1 759	541	1998/05/16	2 756
	496	1998/04/01	1,700	542	1998/05/17	2 735
	400	1998/04/02	1,000	543	1998/05/18	2,700
	498	1998/04/02	2 048	544	1998/05/19	2,720
	400	1998/04/04	2,040	545	1998/05/20	2 701
	500	1998/04/05	2,000	546	1998/05/21	2 687
	501	1998/04/06	2,107	547	1998/05/22	2,007
	502	1998/04/07	2 241	548	1998/05/23	2,004
	503	1998/04/08	2 200	540	1998/05/24	2,007
	504	1998/04/09	2,000	550	1998/05/25	2 630
	505	1998/04/10	2,001	551	1998/05/26	2,000
	506	1998/04/11	2,002	552	1998/05/27	2,000
			~, ·· · ·	002		2,000

Tableau E.4 : Variation du niveau de la nappe phréatique pour l'hydrogramme de puits de Saint-Léonard (suite 5)

ì

-		Date	Profondeur		Date	Profondeur
			(mètre)			(mètre)
1	553	1998/05/28	2,577	599	1998/07/13	2,550
	554	1998/05/29	2,564	600	1998/07/14	2,564
	555	1998/05/30	2,570	601	1998/07/15	2,570
	556	1998/05/31	2,577	602	1998/07/16	2,570
	557	1998/06/01	2,570	603	1998/07/17	2,591
	558	1998/06/02	2,543	604	1998/07/18	2,612
	559	1998/06/03	2,536	605	1998/07/19	2,639
	560	1998/06/04	2,536	606	1998/07/20	2,653
	561	1998/06/05	2,515	607	1998/07/21	2,646
	562	1998/06/06	2,509	608	1998/07/22	2,646
	563	1998/06/07	2,495	609	1998/07/23	2,639
	564	1998/06/08	2,495	610	1998/07/24	2,625
	565	1998/06/09	2,460	611	1998/07/25	2,612
	566	1998/06/10	2,460	612	1998/07/26	2,605
	567	1998/06/11	2,433	613	1998/07/27	2,584
	568	1998/06/12	2,426	614	1998/07/28	2,570
	569	1998/06/13	2,419	615	1998/07/29	2,564
	570	1998/06/14	2,419	616	1998/07/30	2,557
	571	1998/06/15	2,412	617	1998/07/31	2,557
	572	1998/06/16	2,426	618	1998/08/01	2,543
	573	1998/06/17	2,447	619	1998/08/02	2,529
	574	1998/06/18	2,454	620	1998/08/03	2,536
	575	1998/06/19	2,454	621	1998/08/04	2,515
	576	1998/06/20	2,454	622	1998/08/05	2,488
	577	1998/06/21	2,447	623	1998/08/06	2,474
	578	1998/06/22	2,433	624	1998/08/07	2,454
	579	1998/06/23	2,419	625	1998/08/08	2,440
	580	1998/06/24	2,419	626	1998/08/09	2,433
	581	1998/06/25	2,412	627	1998/08/10	2,426
	582	1998/06/26	2,405	628	1998/08/11	2,419
	583	1998/06/27	2,399	629	1998/08/12	2,447
	584	1998/06/28	2,399	630	1998/08/13	2,412
	585	1998/06/29	2,392	631	1998/08/14	2,399
	586	1998/06/30	2,392	632	1998/08/15	2,385
	587	1998/07/01	2,392	633	1998/08/16	2,378
	588	1998/07/02	2.378	634	1998/08/17	2.371
	589	1998/07/03	2.385	635	1998/08/18	2,371
	590	1998/07/04	2.433	636	1998/08/19	2,371
	591	1998/07/05	2,488	637	1998/08/20	2,357
	592	1998/07/06	2,529	638	1998/08/21	2,344
	593	1998/07/07	2,529	639	1998/08/22	2,344
	594	1998/07/08	2.529	640	1998/08/23	2,330
	595	1998/07/09	2.529	641	1998/08/24	2,323
	596	1998/07/10	2.529	642	1998/08/25	2.309
	597	1998/07/11	2.529	643	1998/08/26	2.309
	598	1998/07/12	2.543	644	1998/08/27	2,302
			· · · · · · · · · · · · · · · · · · ·			,

Tableau E.4 : Variation du niveau de la nappe phréatique pourl'hydrogramme de puits de Saint-Léonard (suite 6)

	Date	Profondeur	Date	Profondeur
		(mètre)		(mètre)
645	1998/08/28	2,309		
646	1998/08/29	2,302		
647	1998/08/30	2,309		
648	1998/08/31	2,309		
649	1998/09/01	2,309		
650	1998/09/02	2,309		
651	1998/09/03	2,323		
652	1998/09/04	2,330		
653	1998/09/05	2,344		
654	1998/09/06	2,351		
655	1998/09/07	2,351		
656	1998/09/08	2,351		
657	1998/09/09	2,351		
658	1998/09/10	2,351		
659	1998/09/11	2,357		
660	1998/09/12	2,357		
661	1998/09/13	2,357		
662	1998/09/14	2,351		
663	1998/09/15	2,344		
664	1998/09/16	2,344		
665	1998/09/17	2,351		
666	1998/09/18	2,351		
667	1998/09/19	2,337		
668	1998/09/20	2,330		
669	1998/09/21	2,323		
670	1998/09/22	2,316		
671	1998/09/23	2,337		

+

Tableau E.4 : Variation du niveau de la nappe phréatique pourl'hydrogramme de puits de Saint-Léonard (suite 7)

Figure E.4 : Hydrogramme de puits à Saint-Léonard

Temps (jours)

293

ANNEXE F

DONNÉES DÉTAILLÉES POUR LA CONDUCTIVITÉ HYDRAULIQUE

Nombre	Unité	No. Référence	UTM	UTM	Conductivité	Profondeur	Source
			Х	Y	cm/s	m	
1	GxT	96BZA004A	735289,75	5193505,00	9,80E-06	3,00	A
2	GxT	90BZA0132	715760,00	5175870,00	1,16E-05	-	С
3	GxT	96DNA008	736313,81	5198841,50	3,81E-03	-	А
4	GxT	533 (500)	731625,00	5189393,00	2,25E-02	-	С
5	GxT	534 (500)	731943,00	5189099,00	3,24E-02	-	С
	Moyenne géométrique			7,94E-04			
			Moyenne	logarithmique	-3,10E+00		
			Moyenne	e arithmétique	1,17E-02		
			Écart-type (logarithmique)		1,74E+00		
				Minimun	9,80E-06		
				Maximum	3,24E-02		

Tableau F.1 : Conductivité hydraulique pour les sédiments de la moraine

Tableau F.2 : Conductivité hydraulique pour les sédiments littoraux, prélittoraux et d'exondation du Lac Lampsilis

Nombre	Unité	No. Référence	UTM	UTM	Conductivité	Profondeur	Source
			<u> </u>	Y	cm/s	m	
1	Lb	FAN-96-09	739597,19	5176252,68	1,09E-02	-	A
2	Ld	Pointe C	722350,00	5173350,00	1,40E-02	-	С
			Moyenne géométrique		1,24E-02		
			Moyenne	logarithmique	-1,91E+00		
			Moyenne	e arithmétique	1,25E-02		
		Écart-type (logarithmique)			7,58E-02		
		Minimun			1,09E-02		
		Maximum			1,40E-02		

Nombre	Unité	No. Référence	UTM	UTM	Conductivité	Profondeur	Source
			Х	Y	cm/s	m	
1	Ма	MNB-96-04	740135,69	5201604,50	2,39E-06	1,00	A
2	Ma	96BZA005C	735594,06	5193372,50	2,32E-06	9,00	А
3	Ма	FAN-96-22	720988,52	5174625,78	2,94E-06	-	А
4	Ма	FAN-96-12	743264,16	5195754,32	3,16E-06	-	А
5	Ма	MNB-96-15	740938,57	5200888,54	3,71E-06	10,00	А
6	Ма	MNB-96-118	733088,10	5174617,74	9,32E-06	7,62	А
7	Ма	MNB-96-03	757160,00	5185600,00	1,60E-05	13,00	Α
8	Ма	MNB-96-11	740736,98	5200942,99	2,26E-05	16,00	А
6 · · ·			Moyenn	e géométrique	5,32E-06		
			Moyenne	logarithmique	-5,27E+00		

Tableau F.3 : Conductivité hydraulique pour les sédiments fins d'eau profonde

Moyenne arithmétique 7,81E-06

Écart-type (logarithmique) 3,92E-01

Minimun 2,39E-06

Maximum 2,26E-05

Nombre	Unité	No. Référence	UTM	UTM	Conductivité	Profondeur	Source	
			X	Y	cm/s	m		
1	Mb	MNB-96-153	734223,43	5177361,69	9,25E-05	0,50	A	
2	Mb	MNB-96-126	732016,19	5174616,51	1,58E-04	3,05	А	
3	Mb	MNB-96-113	732697,00	5174801,19	2,50E-04	1,52	А	
4	Mb	MNB-96-123	733249,62	5174246,29	2,54E-04	1,52	А	
5	Mb	MNB-96-154	734014,55	5176600,35	9,93E-04	1,52	А	
6	Mb	FAN-96-21	722288,50	5178475,00	1,09E-03	0,00	А	
7	Mb	MNB-96-121	733271,27	5174568,12	1,24E-03	1,52	А	
8	Mb	MNB-96-115	733088,11	5174617,74	1,30E-03	1,52	А	
9	Mb	MNB-96-163	733569,01	5176231,25	1,96E-03	-	А	
10	Mb	MNB-96-142	732706,01	5176168,00	1,99E-03	3,05	A	
11	Mb	MNB-96-132	732343,97	5175015,97	2,25E-03	4,27	А	
12	Mb	MNB-96-01	757160,10	5185600,00	3,94E-03	5,00	А	
13	Mb	MNB-96-27	756760,70	5183599,10	5,43E-03	-	А	
14	Mb	MNB-96-137	732988,00	5175962,57	5,45E-03	1,52	А	
15	Mb	MNB97-116	723767,84	5181696,32	7,00E-03	0,15	А	
16	Mb	FAN-96-02	759003,92	5192210,92	7,97E-03	1,00	А	
17	Mb	P-1 (0046399)	726532,00	5181495,00	8,59E-03	-	С	
18	Mb	96BZA002B	729639,13	5182918,50	8,85E-03	6,00	А	
19	Mb	MNB97-161	728869,50	5182648,01	8,91E-03	10,02	В	
20	Mb	MNB97-160	727444,20	5182217,65	8,97E-03	0,33	В	
21	Mb	MNB97-129	724560,00	5182121,59	9,52E-03	3,57	В	
22	Mb	MNB97-115	724420,92	5181808,82	1,06E-02	0,20	В	
23	Mb	FAN-96-08	752403,75	5179129,91	1,07E-02	-	А	
24	Mb	S-1(1181)	720600,00	5169250,00	1,10E-02	-	С	
25	Mb	MNB97-128	724018,64	5181711,12	1,15E-02	0,77	В	

Tableau F.4 : Conductivité hydraulique pour les sédiments littaoraux, prélittoraux et d'exondation de la Mer deChamplain

Nombre	Unité	No. Référence	UTM	UTM	Conductivité	Profondeur	Source
			Х	Y	cm/s	m	
26	Mb	MNB97-109	724078,15	5179536,49	1,34E-02	-	В
27	Mb	MNB97-158	727022,61	5181559,37	1,44E-02	1,94	В
28	Mb	MNB-96-140	732706,01	5176168,00	1,54E-02	0,91	А
29	Mb	FAN-96-07	758944,00	5180731,00	1,58E-02	-	А
30	Mb	MNB97-114	723990,18	5181996,67	1,74E-02	0,62	В
31	Mb	MNB-96-160	733569,01	5176231,25	1,77E-02	-	А
32	Mb	MNB-96-133	732810,12	5175623,77	1,86E-02	0,25	А
33	Mb	MNB97-163	727978,94	5182188,85	2,07E-02	8,98	В
34	Mb	96DNA0022-1	733282,14	5199985,99	2,29E-02	-	А
35	Mb	MNB97-166	728929,48	5182178,98	2,58E-02	0,38	В
36	Mb	MNB97-154	757103,15	5184657,99	2,82E-02	0,59	В
37	Mb	MNB97-145	756140,25	5183082,68	2,99E-02	2,38	В
38	Mb	96BZA003A	754332,38	5185102,00	3,41E-02	3,00	А
39	Mb	MNB97-117	723107,79	5178750,70	3,65E-02	1,20	В
40	Mb	MNB97-121	723289,37	5180191,67	3,74E-02	0,92	В
41	Mb	MNB97-159	727789,79	5181564,01	4,35E-02	-	В
42	Mb	MNB97-155	755946,57	5183280,02	4,95E-02	2,14	В
43	Mb	MNB97-162	728179,20	5181969,59	6,60E-02	0,44	В
44	Mb	FAN-96-19	720403,88	5175167,00	7,45E-02	-	A
	Moyenne géométrique				7,31E-03		
	Moyenne logarithmique				-2,14E+00		
	Moyenne arithmétique						
	Écart-type (logarithmique)				7,05E-01		
	Minimun						
				Maximum	6,60E-02		

 Tableau F.4 : Conductivité hydraulique pour les sédiments littaoraux, prélittoraux et d'exondation de la Mer de Champlain

 (suite)

Nombre	Unité	No. Référence	UTM	UTM	Conductivité	Profondeur	Source
			X	Y	cm/s	m	
1	Md	MNB97-164	730234,67	5184184,62	1,13E-03	0,47	В
2	Md	FAN-96-03	762854,44	5196870,00	2,57E-03	-	A
3	Md	P-3 (0046399)	726290,00	5181610,00	3,30E-03	-	С
4	Md	P-2 (0046399)	726028,00	5181685,00	4,68E-03	-	С
5	Md	MNB97-170	730077,02	5185735,18	4,93E-03	3,42	В
6	Md	563 (500)	744555,00	5188782,00	5,60E-03	-	С
7	Md	565 (500)	745303,00	5188482,00	5,60E-03	-	С
8	Md	566 (500)	745754,00	5188428,00	5,60E-03	-	С
9	Md	96BZA003C	754332,38	5185102,00	5,96E-03	9,00	А
10	Md	MNB97-175	731617,84	5185879,65	5,97E-03	1,33	В
11	Md	546 (500)	736972,00	5189527,00	6,40E-03	-	С
12	Md	MNB97-133	753891,94	5183777,55	6,50E-03	4,24	В
13	Md	MNB97-177	729822,57	5183134,37	6,56E-03	5,10	В
14	Md	MNB-96-08	740736,98	5200942,99	6,82E-03	8,00	A
15	Md	MNB97-138	755023,20	5184949,62	7,75E-03	9,78	В
16	Md	MNB97-135	753316,12	5184400,87	8,74E-03	8,67	В
17	Md	MNB97-180	729498,30	5186652,48	8,75E-03	6,80	В
18	Md	MNB97-142	755153,37	5185528,26	9,37E-03	7,09	В
19	Md	550 (500)	738651,00	5190138,00	1,00E-02	-	С
20	Md	MNB97-157	755253,11	5184032,90	1,19E-02	2,62	В
21	Md	96BZA001A	740781,50	5193108,00	1,20E-02	3,00	А
22	Md	MNB97-174	731893,13	5187545,54	1,22E-02	2,55	В
23	Md	MNB97-101	724255,74	5179770,96	1,22E-02	3,77	В
24	Md	MNB97-143	755433,10	5186259,75	1,25E-02	3,00	В
25	Md	P-4 (0046399)	726043,00	5181945,00	1,25E-02	-	С

Tableau F.5 : Conductivité hydraulique pour les sédiments deltaïques

Nombre	Unité	No. Référence	UTM	UTM	Conductivité	Profondeur	Source
			Х	Y	cm/s	m	
26	Md	MNB97-132	754046,79	5183628,10	1,32E-02	5,05	B
27	Md	MNB97-113	724492,73	5181190,98	1,39E-02	0,69	В
28	Md	MNB97-182	729574,94	5185572,55	1,41E-02	7,80	В
29	Md	PZ-4	726121,00	5182087,00	1,55E-02	-	С
30	Md	544 (500)	735989,00	5189200,00	1,69E-02	-	С
31	Md	MNB97-150	757502,44	5186293,19	1,72E-02	0,50	В
32	Md	MNB-96-13	740938,57	5200888,54	1,74E-02	5,00	А
33	Md	MNB97-141	755624,54	5185000,12	1,78E-02	7,53	В
34	Md	MNB-96-17	725848,75	5180768,50	1,94E-02	6,00	А
35	Md	MNB97-167	729394,56	5183755,44	2,01E-02	10,80	В
36	Md	MNB97-179	731607,22	5187220,95	2,15E-02	2,21	В
37	Md	577 (500)	750071,00	5187470,00	2,25E-02	-	С
38	Md	536 (500)	732683,00	5188450,00	2,25E-02	-	С
39	Md	542 (500)	735103,00	5188907,00	2,25E-02	-	С
40	Md	MNB97-100	724277,77	5179769,38	2,30E-02	8,23	В
41	Md	MNB97-136	754122,97	5184397,00	2,36E-02	7,35	В
42	Md	MNB97-130	752390,63	5183764,66	2,43E-02	0,77	В
43	Md	94109-01)	726546,00	5181835,00	2,68E-02	-	С
44	Md	549 (500)	738351,00	5190034,00	2,89E-02	-	С
45	Md	547 (500)	737469,00	5189656,00	3,24E-02	-	С
46	Md	548 (500)	737974,00	5189890,00	3,24E-02	-	С
47	Md	MNB97-152	753894,95	5185857,94	3,28E-02	8,65	В
48	Md	MNB97-149	756280,13	5186709,13	3,32E-02	3,33	В
49	Md	FAN-96-17	731866,38	5187315,50	3,46E-02	-	А
50	Md	MNB97-127	724382,65	5180878,77	3,58E-02	2,60	В

 Tableau F.5 : Conductivité hydraulique pour les sédiments deltaïques (suite 1)

Nombre	Unité	No. Référence	UTM	UTM	Conductivité	Profondeur	Source
			Х	Y	cm/s	m	
51	Md	MNB97-110	724653,17	5180122,66	3,63E-02	0,89	В
52	Md	MNB97-119	723823,22	5178741,34	3,65E-02	0,98	В
53	Md	96BZA005A	735594,06	5193372,50	3,82E-02	3,00	А
54	Md	MNB97-156	755591,58	5183669,52	3,83E-02	2,71	В
55	Md	MNB97-165	729293,08	5183045,23	3,95E-02	7,97	В
56	Md	MNB97-112	725014,27	5180595,72	3,98E-02	1,18	В
57	Md	537 (500)	732897,00	5188201,00	4,00E-02	-	С
58	Md	543 (500)	736081,00	5189089,00	4,00E-02	-	С
59	Md	MNB97-140	755982,36	5185505,62	4,16E-02	5,44	В
60	Md	PE-1	727861,00	5184201,00	4,33E-02	-	С
61	Md	MNB97-178	730168,73	5183709,19	4,43E-02	1,61	В
62	Md	MNB97-111	724023,05	5180536,79	4,59E-02	0,80	В
63	Md	PZ-3	726311,00	5182070,00	4,65E-02	-	С
64	Md	DCH-1	727917,00	5184412,00	4,68E-02	-	С
65	Md	530 (500)	730620,00	5190330,00	4,80E-02	-	С
66	Md	MNB97-125	723826,64	5179243,59	4,87E-02	1,51	В
67	Md	MNB97-144	753428,18	5183459,37	5,06E-02	0,69	В
68	Md	MNB97-134	753891,94	5183777,55	5,15E-02	4,24	В
69	Md	FAN-96-16	739070,03	5193820,96	5,22E-02	-	А
70	Md	MNB97-139	756336,09	5184421,63	5,45E-02	0,77	В
71	Md	MNB97-131	752811,81	5183286,78	5,56E-02	1,15	В
72	Md	MNB97-172	730331,45	5187393,65	5,69E-02	3,10	В
73	Md	MNB97-147	756716,79	5185646,92	5,72E-02	6,79	В
74	Md	MNB97-176	730832,11	5187421,23	5,83E-02	2,57	В
75	Md	MNB97-137	753746,26	5184798,28	6,09E-02	9,63	В

 Tableau F.5 : Conductivité hydraulique pour les sédiments deltaïques (suite 2)

Nombre	Unité	No. Référence	UTM	UTM	Conductivité	Profondeur	Source
			X	Y	cm/s	m	
76	Md	MNB97-124	724109,72	5180136,30	6,15E-02	2,75	B
77	Md	MNB97-168	730532,62	5183355,00	6,26E-02	0,34	В
78	Md	MNB97-123	723900,60	5180348,38	6,35E-02	1,06	В
79	Md	MNB97-118	723477,83	5178388,63	6,58E-02	2,81	В
80	Md	MNB97-122	723748,60	5180502,54	6,92E-02	0,62	В
81	Md	MNB97-181	730291,84	5186848,70	7,08E-02	3,43	В
82	Md	FAN-96-14	742812,94	5196701,50	7,19E-02	-	А
83	Md	PE-2	727829,00	5184280,00	7,41E-02	-	С
84	Md	MNB97-126	723596,02	5180058,47	9,01E-02	1,23	В
85	Md	FAN-96-05	735482,63	5193464,00	9,50E-02	-	А
86	Md	MNB97-120	724654,72	5180617,86	9,81E-02	7,30	В
87	Md	MNB97-173	731578,57	5187830,63	9,92E-02	1,98	В
88	Md	MNB97-171	730922,36	5186362,56	1,04E-01	3,65	В
89	Md	MNB97-104	724336,15	5180327,69	1,06E-01	2,05	В
90	Md	MNB97-183	730524,23	5185994,82	1,07E-01	2,95	В
91	Md	MNB97-169	730077,02	5185735,18	1,10E-01	3,42	В
92	Md	MNB97-103	724414,21	5179959,04	1,14E-01	4,71	В
93	Md	P-1	726002,00	5182025,00	1,15E-01	-	С
94	Md	(LE912029)	754922,00	5183412,00	1,59E-01	-	С
95	Md	MNB97-151	753894,95	5185857,94	1,94E-01	8,65	В
96	Md	P-4	749427,28	5184630,92	2,83E-01	-	С
97	Md	P-1	749225,73	5185175,47	3,89E-01	-	С
98	Md	P-2	749565,04	5185024,58	4,49E-01	-	С

 Tableau F.5 : Conductivité hydraulique pour les sédiments deltaïques (suite 3)

Nombre Unité No. Référence UTM UTM Conductivite Profondeur So	ource
X Y cm/s m	
99 Md P-3 749893,24 5184717,74 6,81E-01 -	С
Moyenne géométrique 2,97E-02	
Moyenne logarithmique -1,53E+00	
Moyenne arithmétique 5,73E-02	
Écart-type (logarithmique) 4,98E-01	
Minimun 1,13E-03	
Maximum 6,81E-01	

 Tableau F.5 : Conductivité hydraulique pour les sédiments deltaïques (suite 4)

Nombre	Unité	No. Référence	UTM	UTM	Conductivité	Profondeur	Source
			Х	Y	cm/s	m	
1	Mdp	MNB-96-147	733377,00	5176583,91	6,87E-06	1,52	A
2	Mdp	MNB-96-147	733377,00	5176583,91	1,97E-05	-	Α
3	Mdp	FAN-96-24	760218,83	5194756,51	6,46E-05	-	Α
4	Mdp	MNB-96-155	734014,55	5176600,35	8,61E-05	3,05	Α
5	Mdp	MNB-96-130	732343,97	5175015,97	1,35E-04	0,91	Α
6	Mdp	MNB-96-125	732016,19	5174616,51	1,98E-04	1,52	А
7	Mdp	MNB-96-141	732706,01	5176168,00	2,08E-04	1,52	Α
8	Mdp	MNB-96-122	733271,27	5174568,12	2,62E-04	3,05	Α
9	Mdp	MNB-96-141	732706,01	5176168,00	3,20E-04	1,52	Α
10	Mdp	MNB-96-165	733569,01	5176231,25	3,49E-04	-	А
11	Mdp	MNB-96-131	732343,97	5175015,97	3,92E-04	3,05	А
12	Mdp	MNB-96-135	732343,97	5175015,97	1,21E-03	3,05	А
13	Mdp	MNB-96-119	733114,32	5174859,69	1,58E-03	1,52	А
			Moyenn	e géométrique	1,69E-04		
	Moyenne logarithmique Moyenne arithmétique				-3,77E+00		
					3,72E-04		
			Écart-type (I	ogarithmique)	6,53E-01		
	Minimun				6,87E-06		
				Maximum	1,58E-03		

Tableau F.6 : Conductivité hydraulique pour les rythmites
Nombre	Unité	No. Référence	UTM	UTM	Conductivité	Profondeur	Source
			Х	Y	cm/s	m	
1	Тg	90BZA0065	695200,00	5166830,00	4,00E-06	-	С
2	Тg	FAN-96-01	760224,38	5184364,00	1,02E-05	1,00	А
3	Тg	90BZA0123	696160,00	5204960,00	1,60E-05	-	С
4	Тg	90BZA0074	698660,00	5180730,00	4,90E-05	-	С
5	Тg	90BZA0111	724150,00	5185620,00	8,10E-05	-	С
6	Тg	90BZA0096	727290,00	5197790,00	1,69E-04	-	С
7	Тg	90BZA0101	710890,00	5203860,00	2,89E-04	-	С
8	Tg	90BZA0018	724660,00	5206440,00	2,89E-04	-	С
9	Тg	90BZA0145	710890,00	5192820,00	4,84E-04	-	С
10	Тg	90BZA0076	701040,00	5193840,00	2,00E-03	-	С
			Moyenne géométrique				
			Moyenne	logarithmique	-4,04E+00		
			Moyenn	e arithmétique	3,39E-04		
			Écart-type (l	ogarithmique)	8,36E-01		
				Minimun	4,00E-06		
			2,00E-03				

Tableau F.7 : Conductivité hydraulique pour le till rencontré dans le Grenville

Nombre	Unité	No. Référence	UTM	UTM	Conductivité	Profondeur	Source
			Х	Y	cm/s	m	
1	Тр	P-1 (19190)	725718,00	5164353,00	1,16E-06	-	С
2	Тр	P-6 (19190)	726908,00	5163870,00	1,16E-06	-	С
3	Тр	90BZA0024	727510,00	5168500,00	4,00E-06	-	С
4	Тр	FAN-96-23	732202,38	5170180,15	5,32E-06	-	А
5	Тр	FAN-96-06A	756530,18	5181386,27	8,02E-06	-	А
6	Тр	P-2 (19190)	726167,00	5164421,00	9,26E-06	-	С
7	Тр	90BZA0130	711980,00	5167460,00	1,23E-05	-	С
8	Тр	FAN-96-06	758474,58	5181220,87	1,33E-05	-	А
9	Тр	90BZA0026	721610,00	5164260,00	1,60E-05		С
10	Тр	90BZA0025	726420,00	5166000,00	1,00E-04	-	С
	_	· · ·	Moyenne géométrique		7,49E-06	·····	
			Moyenne	logarithmique	-5,13E+00		
			Moyenn	e arithmétique	1,70E-05		
			Écart-type (l	ogarithmique)	5,68E-01		
				Minimun	1,16E-06		
			1,00E-04				

Tableau F.8 : Conductivité hydraulique pour le till rencontré dans les Basses-Terres

ources :

A : Banque de données du projet de cartographie dans la MRC de Portneuf B : Travaux de terrain de Daniel Paradis, été 1997 C : Tiré de Béland-Pelletier (1996)