

## Atmospheric Hydrogen Scavenging: from Enzymes to Ecosystems

# Chris Greening,<sup>a,b</sup> Philippe Constant,<sup>c</sup> Kiel Hards,<sup>b</sup> Sergio E. Morales,<sup>b</sup> John G. Oakeshott,<sup>a</sup> Robyn J. Russell,<sup>a</sup> Matthew C. Taylor,<sup>a</sup> Michael Berney,<sup>d</sup> Ralf Conrad,<sup>e</sup> Gregory M. Cook<sup>b,f</sup>

CSIRO Land and Water Flagship, Acton, Australian Capital Territory, Australia<sup>a</sup>; University of Otago, Department of Microbiology and Immunology, Dunedin, New Zealand<sup>b</sup>; INRS Institut Armand-Frappier, Laval, Québec, Canada<sup>c</sup>; Albert Einstein College of Medicine, Department of Microbiology and Immunology, Bronx, New York, USA<sup>d</sup>; Max Planck Institute for Terrestrial Microbiology, Department of Biogeochemistry, Marburg, Germany<sup>e</sup>; University of Auckland, Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand<sup>f</sup>

We have known for 40 years that soils can consume the trace amounts of molecular hydrogen  $(H_2)$  found in the Earth's atmosphere. This process is predicted to be the most significant term in the global hydrogen cycle. However, the organisms and enzymes responsible for this process were only recently identified. Pure culture experiments demonstrated that several species of *Actinobacteria*, including streptomycetes and mycobacteria, can couple the oxidation of atmospheric  $H_2$  to the reduction of ambient  $O_2$ . A combination of genetic, biochemical, and phenotypic studies suggest that these organisms primarily use this fuel source to sustain electron input into the respiratory chain during energy starvation. This process is mediated by a specialized enzyme, the group 5 [NiFe]-hydrogenase, which is unusual for its high affinity, oxygen insensitivity, and thermostability. Atmospheric hydrogen scavenging is a particularly dependable mode of energy generation, given both the ubiquity of the substrate and the stress tolerance of its catalyst. This minireview summarizes the recent progress in understanding how and why certain organisms scavenge atmospheric  $H_2$ . In addition, it provides insight into the wider significance of hydrogen scavenging in global  $H_2$  cycling and soil microbial ecology.

t is well established that soil ecosystems can consume the trace concentrations of molecular hydrogen (H<sub>2</sub>) found in the lower atmosphere (troposphere) (1, 2). As both the most significant and least understood process in the global biogeochemical cycle of H<sub>2</sub>, this process has inspired interest among atmospheric chemists for four decades (3). The H<sub>2</sub> cycle is also relevant for climate change research, since the partial pressure of tropospheric H<sub>2</sub> affects the oxidative capacity of the atmosphere and the amount of water vapor in the stratosphere (3). However, only in the last few years have scientists started to look beyond the geochemical aspect and focus on the biological role of atmospheric H<sub>2</sub> scavenging. It is now clear that certain soil bacteria can fuel their survival by scavenging H<sub>2</sub> from the air using specialized hydrogenase enzymes. We propose that this process has a major role in sustaining aerated soil communities by supporting dormant microbial populations during periods of nutrient deprivation. This article provides perspectives on the biology, chemistry, and significance of H<sub>2</sub> scavenging.

### THE SINK OF THE GLOBAL HYDROGEN CYCLE

Atmospheric H<sub>2</sub>. As the most fundamental element, hydrogen constitutes approximately 75% of the universe by mass. However, the majority of the Earth's H<sub>2</sub> has escaped the atmosphere or become assimilated into inorganic and organic compounds following 4.5 billion years of abiotic and biotic processes (3). The present-day concentration of H<sub>2</sub> in the Earth's troposphere is approximately 530 ppb (parts per billion by volume [ppbv]) (~400 pM in aqueous solution) (1, 4). As recently reviewed (3, 5), extensive geochemical studies have shown that the distribution of this gas varies only weakly temporally and spatially in the troposphere. There is no evidence for a continuous trend in the tropospheric H<sub>2</sub> burden, since the beginning of monitoring programs in the 1980s, as the H<sub>2</sub>-oxidizing and H<sub>2</sub>-producing processes that affect the net abundance of atmospheric H<sub>2</sub> are approximately balanced. It is unknown whether the atmospheric burden of H<sub>2</sub>

would increase as a result of transition to a  $H_2$ -based fuel economy (6, 7).

Global hydrogen cycle. H<sub>2</sub> is rapidly turned over in the present-day atmosphere, with the average lifetime of an emitted H<sub>2</sub> molecule predicted to be between 1.4 and 2.1 years (3, 4, 8). Like other biogeochemical cycles, this turnover depends on biological, geochemical, and anthropogenic contributions. Using both "bottom-up" and "top-down" approaches, a wealth of data has been collected on the relative and absolute contributions each process makes to this turnover (Table 1). While there are inevitably large margins of errors both within and between data sets, a consensus that the main sources of H<sub>2</sub> are geochemical and anthropogenic has emerged, whereas the main sink is the biological consumption of H<sub>2</sub> in soil ecosystems. It is estimated that each year, 56 to 88 teragrams of H<sub>2</sub> are taken up by soils globally; hence, this process is predicted to account for three quarters of the net tropospheric  $H_2$  consumed each year (3–5, 8, 9). Consistently, because of the greater landmass of the Northern Hemisphere, the atmospheric partial pressure of H<sub>2</sub> is somewhat higher in the Southern Hemisphere than in the Northern Hemisphere (3).

There are numerous microbial processes that depend on  $H_2$  production and consumption, but these processes make only minor contributions to the global  $H_2$  cycle (Table 1) (5, 10). The

Accepted manuscript posted online 12 December 2014

Citation Greening C, Constant P, Hards K, Morales SE, Oakeshott JG, Russell RJ, Taylor MC, Berney M, Conrad R, Cook GM. 2015. Atmospheric hydrogen scavenging: from enzymes to ecosystems. Appl Environ Microbiol 81:1190–1199. doi:10.1128/AEM.03364-14.

Editor: V. Müller

Address correspondence to Chris Greening, Chris.Greening@csiro.au.

Copyright © 2015, American Society for Microbiology. All Rights Reserved. doi:10.1128/AEM.03364-14

TABLE 1 Estimated global budget of atmospheric H<sub>2</sub> from three different studies

|                                                      | Value for process or parameter found by the following study <sup><i>a</i></sup> : |                 |                       |
|------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------|-----------------------|
| Process or parameter                                 | Novelli et al. (4)                                                                | Rhee et al. (8) | Ehhalt and Rohrer (3) |
| Sources                                              |                                                                                   |                 |                       |
| Fossil fuel combustion (Tg yr $^{-1}$ )              | $15 \pm 10$                                                                       | $15 \pm 6$      | $11 \pm 4$            |
| Biomass burning $(Tg yr^{-1})$                       | $16 \pm 5$                                                                        | $16 \pm 3$      | $15 \pm 6$            |
| Photochemical hydrocarbon oxidation (Tg yr $^{-1}$ ) | $40 \pm 16$                                                                       | $64 \pm 12$     | $41 \pm 11$           |
| Biological nitrogen fixation (Tg yr $^{-1}$ )        | 6 ± 3                                                                             | $12 \pm 10$     | $9 \pm 5$             |
| Total (Tg yr <sup>-1</sup> )                         | $77 \pm 16$                                                                       | $107 \pm 15$    | $76 \pm 14$           |
| Sinks                                                |                                                                                   |                 |                       |
| Hydroxyl radical oxidation (Tg yr $^{-1}$ )          | $19 \pm 5$                                                                        | $19 \pm 3$      | $19 \pm 5$            |
| Biological soil uptake $(Tg yr^{-1})$                | $56 \pm 41$                                                                       | $88 \pm 11$     | $60 \pm 25$           |
| Total (Tg yr <sup>-1</sup> )                         | $75 \pm 41$                                                                       | $107 \pm 11$    | $79 \pm 25$           |
| Tropospheric burden (Tg)                             | 155                                                                               | 150             | 155                   |
| Tropospheric lifetime (yr)                           | 2.1                                                                               | 1.4             | 2.0                   |

<sup>*a*</sup> The estimated strength of the sources and sinks of  $H_2$  in teragrams per year, as well as its predicted global burden and lifetime of tropospheric  $H_2$ , is shown. In 1999, Novelli and colleagues (4) analyzed the budget using a "bottom-up" approach by estimating source and sink terms separately based on globally averaged yields. In 2005, Rhee and colleagues (8) took a "top-down" approach by using seasonal variation of the deuterium budget of tropospheric  $H_2$  to predict the strength of soil uptake. In 2009, Ehhalt and Rohrer (3) based their estimations on a critical, thorough evaluation of the existing literature.

majority of H<sub>2</sub>-oxidizing bacteria can only recycle the high concentrations of H<sub>2</sub> produced by biological or geothermal processes, as their threshold for H<sub>2</sub> (i.e., the minimum concentration of H<sub>2</sub> they can oxidize) exceeds the atmospheric concentration of the gas (11–15). In addition, H<sub>2</sub> produced by biological processes (e.g., nitrogen fixation, fermentation) is generally recycled by such H<sub>2</sub>-oxidizing organisms (through both intraspecies and interspecies H<sub>2</sub> transfer) without escaping into the atmosphere (5, 10). Hence, atmospheric H<sub>2</sub> scavenging is the only biological process that has a dominant influence on the H<sub>2</sub> cycle.

Atmospheric H<sub>2</sub> oxidation by soil ecosystems was first shown 40 years ago (1, 2). Gas chromatography and tritium exchange measurements demonstrated that whole soils take up H<sub>2</sub> in a biphasic manner, harboring both fast-acting, low-affinity ( $K_m >$ 800 nM) activities and slow-acting, high-affinity ( $K_m < 70$  nM) activities. It is now recognized that some [NiFe]-hydrogenases-a family of H2-metabolizing enzymes formally divided into five phylogenetically and functionally distinct classes (groups 1 to 5) (16, 17)—are responsible for this uptake. It is likely that the lowaffinity H2-recycling Proteobacteria (e.g., Paracoccus denitrificans with an enzyme with a  $K_m$  of 1.1  $\mu$ M) are primarily responsible for the low-affinity process; they primarily use group 1 [NiFe]-hydrogenases (17), a widespread class of membrane-bound H<sub>2</sub>-oxidizing enzymes (17), to recycle the relatively high levels of  $H_2$  produced by biological and geothermal processes (10-12, 18). The organisms and enzymes responsible for the high-affinity process of atmospheric H<sub>2</sub> oxidation remained elusive until recently, and they are the subject of this minireview.

Isolation and identification of hydrogen scavengers. Highaffinity  $H_2$  oxidation in soils is heat sensitive,  $O_2$  dependent, and antimicrobial susceptible, suggesting a microbial origin. The process also follows first-order Michaelis-Menten kinetics, consistent with an enzymatic process (2, 18, 19). However, multiple attempts to isolate pure cultures of high-affinity  $H_2$ -oxidizing bacteria were unsuccessful (Ralf Conrad, unpublished data). In addition, pure cultures of well-characterized  $H_2$ -oxidizing *Proteobacteria* harbored only low-affinity hydrogenases that consumed  $H_2$  well above the atmospheric range (11–15). It was therefore assumed for a number of years that "abiontic hydrogenases" (cell-free hydrogenases embedded in soil) were primarily responsible for the uptake of  $H_2$  by soil systems (10). While a cell-free hydrogenase could be extracted from forest soils, less than 2% of the original activity was recovered (20). It was later confirmed that abiontic hydrogenases make only a marginal contribution to high-affinity  $H_2$  oxidation activity observed in soils and probably originate from lysed high-affinity  $H_2$ -oxidizing bacteria (21).

The determinants of atmospheric H<sub>2</sub> scavenging became clearer in 2008 with the isolation of the first high-affinity H<sub>2</sub> oxidizer, Streptomyces sp. strain PCB7. Constant et al. (22) enriched for high-affinity H<sub>2</sub> oxidizers using a dynamic microcosm chamber and identified a sporulating streptomycete that could take up  $H_2$  at picomolar concentrations (~50 to 400 pM). It was subsequently verified that the H<sub>2</sub> oxidation kinetics of nonaxenic soil was similar to that of sterile soil amended with Streptomyces sp. PCB7 (21); the extent of high-affinity hydrogenase activity was proportional to the abundance of H<sub>2</sub>-oxidizing bacteria in soil. Subsequent soil surveys identified six more high-affinity Streptomyces species, suggesting that H<sub>2</sub> scavenging is a common trait among streptomycetes (16). Pure culture studies revealed that the model actinomycetes Streptomyces avermitilis (16), Mycobacterium smegmatis (23), and Rhodococcus equi (24) are also capable of scavenging atmospheric H<sub>2</sub>. In pure cultures, such organisms can oxidize tropospheric H<sub>2</sub> given their high affinity ( $K_m$  of ~50 nM) and low threshold ( $\sim$ 50 pM) for the substrate (16, 22). Genetic analyses have since confirmed that a novel class of enzymes encoded by these organisms, the group 5 [NiFe]-hydrogenases, are primarily responsible for the oxidation of atmospheric  $H_2$  (23).

### DETERMINANTS OF HYDROGEN SCAVENGING

**Distribution and evolution of group 5** [NiFe]-hydrogenases. All known high-affinity  $H_2$  scavengers carry genes that encode a special group of enzymes, the group 5 [NiFe]-hydrogenases. Genes encoding the large and small subunits of a putative hydrogenase (*hhyLS*) were identified in the genome of *Streptomyces avermitilis* and subsequently detected in numerous other *Streptomyces* isolates (16, 25, 26). Phylogenetic analysis showed that the two genes



FIG 1 Diversity and distribution of group 5 [NiFe]-hydrogenases. The *hhyL* genes of 60 representative [NiFe]-hydrogenases were aligned and visualized in a bootstrapped neighbor-joining phylogenetic tree. Actinobacterial *hhyL* genes (green), other *hhyL* genes (blue), and crenarchaeotal membrane-bound hydrogenase lineage genes (red) are indicated. The tree is rooted with sequences of the group 2a, group 3b, and oxygen-tolerant group 1 [NiFe]-hydrogenases.

encoding the group 5 [NiFe]-hydrogenases are more closely related to the  $H_2$  uptake [NiFe]-hydrogenases (groups 1 and 2) than the bidirectional and  $H_2$ -evolving [NiFe]-hydrogenases (groups 3 and 4). The closest relatives of the enzymes are in fact a deepbranching subclass of membrane-bound [NiFe]-hydrogenases (group 1) encoded in hyperthermophilic archaea (Fig. 1) (16, 25). However, group 5 enzymes have been classified as a distinct group from the group 1 enzymes given that they lack membrane-targeting signal peptides and share low overall sequence identity (17).

BLAST analysis indicates that the group 5 [NiFe]-hydrogenases have a restricted taxonomic distribution, at least among sequenced organisms. To date, genes encoding these enzymes have been identified only in the whole-genome assemblies of aerobic soil and marine bacteria. These enzymes have been widely selected for across soil-dwelling *Actinomycetales* (25), including members of the genera *Mycobacterium*, *Streptomyces*, *Rhodococcus*, *Frankia*, *Amycolatopsis*, and *Saccharomonospora*. They have also been detected in other dominant soil phyla, including *Chloroflexi*, *Acidobacteria*, *Planctomycetes*, *Verrucomicrobia*, methanotrophic *Alphaproteobacteria*, and a betaproteobacterium (Fig. 1). While the number of hydrogenases detected in such groups is small, this is likely because the majority of these groups are severely underrepresented compared to the *Actinobacteria* in public databases (25). Ongoing research and expanding genomic information should provide further information on the capacity of these phyla to scavenge atmospheric  $H_2$ .

The group 5 [NiFe]-hydrogenases likely diverged from other uptake [NiFe]-hydrogenases early in evolution prior to the divergence of *Archaea* and *Bacteria*. This is consistent with the closest relatives of these enzymes being encoded in genes in thermophilic *Crenarchaeota* (Fig. 1). However, the incongruence of *hhyL* and 16S rRNA gene sequence phylogenies suggests some lateral acquisition of these enzymes (25). Genes encoding factors involved in genetic mobility have consistently been observed in the vicinity of *hhyLS* genes in 10 species (25, 27). Genes encoding this enzyme have also been acquired in the pHG1 megaplasmid of the model aerobic hydrogenotroph *Ralstonia eutropha* (also known as *Cupriavidus necator*) (28), likely through horizontal gene transfer, but the hydrogenase does not yet appear to have acquired full functionality in this betaproteobacterial host (29).

Structure and mechanism of the group 5 [NiFe]-hydrogenase. A preliminary 2.8-Å resolution crystal structure of the



FIG 2 Components of the group 5 [NiFe]-hydrogenase of *Mycobacterium smegmatis*. RT-PCR analysis has clarified that *M. smegmatis* encodes a five-gene structural operon (MSMEG\_2718-2722) and a larger accessory/maturation operon (MSMEG\_2705-2717) (27, 32). In *Ralstonia eutropha*, the purified enzyme forms a homodimer (30). On the basis of these findings, we predict that the group 5 [NiFe]-hydrogenase of *M. smegmatis* also forms a (HhyLS)<sub>2</sub> structure. Encoding a predicted [2Fe2S] cluster, HhyE is likely to accept single electrons and potentially serves as an electron transfer protein for respiration and reductive metabolic processes. The predicted functions of the gene products are indicated by color coding as follows: green for the large subunit, blue for the small subunit, yellow for electron transfer protein, orange for maturation proteins, dark gray for conserved hypothetical proteins, and light gray for hypothetical proteins.

low-affinity group 5 [NiFe]-hydrogenase from *Ralstonia eutropha* provides a revealing insight into structure-function relationships of this group of enzymes (29, 30). Like all known [NiFe]-hydrogenases, this enzyme minimally comprises a closely associated large subunit and a small subunit. The large subunit contains a standard [NiFe]-center (ligated by a carbonyl, two cyanides, and four cysteine residues) that forms the catalytic site for H<sub>2</sub> oxidation. The small subunit contains three iron-sulfur clusters:  $3Cys1His[4Fe4S]_{distal}$ ,  $4Cys[4Fe4S]_{medial}$ , and  $3Cys1Asp[4Fe4S]_{proximal}$  (30). Though the number of clusters is the same as for the well-described group 1 [NiFe]-hydrogenases, the ligands of the proximal cluster and the configuration of the medial cluster differ (31). The metal content and cofactor structures observed in the structure are consistent with those derived from spectroscopic studies (29, 30).

The *R. eutropha* enzyme forms a homodimer, as a result of extensive interactions between the C-terminal  $\alpha$ -helical extensions of each small subunit (29, 30). The structure predicts that each monomer forms an electron transport chain, with electrons being tunneled from the catalytic center via proximal and medial clusters to the distal cluster. The still-unidentified physiological electron acceptor is predicted to bind within the vicinity of the distal cluster, perhaps in a binding pocket identified in the crystal structure. Though the catalytic centers between monomers are distant, the distal clusters converge on each other and are sufficiently close to each other in the structure (11.5 Å) that electron transfer could theoretically occur between monomers; hence, it is likely that homodimer formation serves a functional role in addition to a structural one (30).

Maturation and accessory proteins. In *Mycobacterium smegmatis*, reverse transcription-PCR (RT-PCR) analysis under inducing conditions revealed that genes encoding the group 5 [NiFe]hydrogenases are clustered into two adjacent operons: a structural operon (MSMEG\_2718-2722) and an accessory operon (MSMEG\_2705-2717) (Fig. 2) (32). The structural

operon includes genes encoding the large and small subunits of the enzyme, as well as the nickel insertase HypA, nickel chelator HypB, and a putative [2Fe2S] protein (27). We propose that the [2Fe2S] protein (tentatively annotated as *hhyE*) serves as the immediate electron acceptor for the hydrogenase (23), though this has yet to be verified biochemically or genetically. The accessory operon appears to principally encode maturation and accessory proteins required for production of a functional hydrogenase, including the pleiotropic proteins involved in the biosynthesis of the  $Fe-(CN^{-})_2-(CO)$  center and a putative endopeptidase required to specifically cleave the C terminus of the large subunit. The operon also encodes several hypothetical proteins, including three proteins that are highly conserved and specific to hhy-encoding species (herein referred to as *hhaABC* for high-affinity hydrogenase associated proteins); BLAST and COG (clusters of orthologous groups of proteins) analyses provide no clues to their functions (32).

Comparative genomics reveal that the hhyLSE, hhaABC, and hypABCDEF genes are highly conserved across organisms encoding group 5 [NiFe]-hydrogenases. Hence, they are likely to be important determinants for the structure and maturation of the group 5 [NiFe]-hydrogenases. Two other genes show a mosaic distribution among hhyLS-encoding organisms, namely, hypX and gmhA. It has been hypothesized that hypX is involved in the maturation of the hydrogenases in *R. eutropha*, where it may serve to protect against oxidative damage (33); however, its absence in M. smegmatis and R. equi shows that it is dispensable for aerobic H<sub>2</sub> scavenging at least in some organisms (25). Associated with hydrogenases in M. smegmatis and R. eutropha, but absent in many streptomycetes, the gmhA gene is predicted, somewhat perplexingly, to encode a phosphoheptose isomerase (23). In M. smegmatis, the structural operon is more strongly induced than the accessory operon; this is consistent with accessory and maturation proteins being required at substoichiometric levels (27, 34).

**Membrane localization.** Staining of *M. smegmatis* fractions for uptake hydrogenase activity confirmed that the native group 5 [NiFe]-hydrogenase is associated with the membrane (23). However, the homologous enzyme from *R. eutropha* could be purified directly from the cytoplasm (29). The reason for this discrepancy has not been resolved, but it may be physiologically relevant. The *R. eutropha* enzyme behaves significantly differently from the *M. smegmatis* and *Streptomyces* sp. PCB7 enzymes on native polyacrylamide gels, running as two, rather than three, bands (23, 30). It is possible that actinobacterial hydrogenases have different cellular interactions that may contribute to their higher affinities. As no signal peptides or transmembrane helices have been predicted in their primary sequences, it is probable that the enzymes associate with the cytoplasmic side of the membrane through protein-protein interactions or lipid anchors (23).

### PROPERTIES OF GROUP 5 [NiFe]-HYDROGENASES

High-affinity H<sub>2</sub> oxidation. The affinities of group 5 [NiFe]-hydrogenases are generally 20-fold higher than other uptake hydrogenases. The apparent Michaelis constants of the enzymes from M. smegmatis (23), S. avermitilis (16), and Streptomyces sp. PCB7 (22) are between 30 and 60 nM. However, in vivo and in vitro studies have shown that the affinities of group 5 [NiFe]-hydrogenases can vary greatly between organisms. The actinobacteriumtype hydrogenase (AH) from *R. eutropha* has a relatively high  $K_m$ of 760 nM in whole cells and 3.6  $\mu$ M when purified. While it has the highest affinity of the four uptake hydrogenases of R. eutropha, it is still not capable of oxidizing atmospheric H<sub>2</sub> and may not be fully functional (29, 30). Several streptomycetes also exhibited low to medium affinities for H<sub>2</sub> in plate assays, e.g., Streptomyces scabiei and Streptomyces griseoflavus (16); however, even subtle differences in the culture conditions or physiological states of cells could influence the biosynthesis and behavior of the hydrogenases under these conditions.

The factors that influence the affinities of [NiFe]-hydrogenases are still not fully understood. It has been postulated that differences in the chemistry at the active site may play a role. Studies of the group 1 [NiFe]-hydrogenase of R. eutropha (membranebound hydrogenase [MBH]) suggest that the residues surrounding the [NiFe] center directly influences affinity for H2; amino acid substitutions at the second coordination sphere (e.g., Cys81Ala) reduced the  $K_m$  of the enzyme up to 20-fold (35). Schäfer (30) has identified three residues on the second coordination sphere that are substituted between the large subunits of MBH and AH, namely, Cys81 to Asp87, Asp117 to Ile83, and Pro529 to Val500; it has been postulated that these residues might influence the geometry and electron density at the catalytic site. This potentially explains why AH has higher affinity for H<sub>2</sub> of the ralstonial hydrogenases, even if it is still incapable of scavenging atmospheric H<sub>2</sub> (29). It is also probable that the 3Cys1Asp[4Fe4S]<sub>proximal</sub> cluster has a higher redox potential than the 4Cys[4Fe4S]<sub>proximal</sub> clusters of standard enzymes, which would make oxidation of low partial pressures of  $H_2$  more thermodynamically favorable (30).

Nevertheless, primary-sequence differences are unlikely to be solely responsible for the spectrum of affinities observed within the group 5 [NiFe]-hydrogenases. Multiple-sequence alignments reveal that the large and small subunits of the enzyme are highly conserved, especially in the L1 and L2 motifs encoding the aforementioned residues, and there are no consistent amino acid differences between high-affinity and low-affinity enzymes (23, 27). We recently proposed that the wider interactions of the enzymes with their physiological electron acceptor and the respiratory chain may modulate their affinities (23). In accord with this, it is imperative to test whether the purified enzymes from *Actinobacteria* retain high affinities *in vitro*. This is consistent with the second uptake hydrogenase of *M. smegmatis*, a group 2a [NiFe]-hydrogenase, also having a surprisingly high affinity for H<sub>2</sub> (23). While the *R. eutropha* enzyme provides valuable insight into the structure and function of group 5 enzymes, this low-affinity enzyme is clearly not suitable for resolving the biochemical basis of atmospheric H<sub>2</sub> uptake (29). Parallel studies on the high-affinity hydrogenases of *M. smegmatis* and *S. avermitilis* will help to resolve what determines the affinities of these enzymes.

**Oxygen insensitivity.** [NiFe] catalytic centers are inherently sensitive to being inactivated by molecular oxygen  $(O_2)$ . However, group 5 [NiFe]-hydrogenases have found a way to overcome this: a range of *in vitro* and *in vivo* studies indicate that they are completely insensitive to  $O_2$  (16, 23, 29). This contrasts with the group 1 [NiFe]-hydrogenases of Proteobacteria which, while also often O<sub>2</sub> dependent (i.e., they rely on the presence of O<sub>2</sub> as the terminal respiratory electron acceptor), are merely O<sub>2</sub> tolerant; the active sites on the large subunits are oxidized to inactive states (Ni<sup>III</sup>-B) in the presence of O<sub>2</sub>, but they can be rapidly reduced back to their catalytically active states (Ni<sup>II</sup>-SI) through reversed electron transfer (36–38). Initial spectroscopic studies did not identify any O<sub>2</sub>inactivated states equivalent to Ni<sup>III</sup>-B in purified AH from R. eutropha (30, 31). Furthermore, group 5 [NiFe]-hydrogenases maintained full activity even in the presence of 70% O<sub>2</sub> both in vivo and in vitro (23, 29).

Two major hypotheses have been put forth about the molecular mechanisms for O2 insensitivity of the group 5 [NiFe]-hydrogenases. Inspired by landmark studies of the O<sub>2</sub>-tolerant [NiFe]hydrogenases (36, 37), it has been proposed that the nonstandard iron-sulfur clusters could contribute to O<sub>2</sub> tolerance, perhaps through facilitating rapid reverse electron transfer to an oxidized active site (29, 30). It is predicted that 3Cys1Asp[4Fe4S]<sub>proximal</sub> cluster has a higher potential and that 4Cys[4Fe4S]<sub>medial</sub> has a lower potential compared to the potentials of the clusters of group 1 [NiFe]-hydrogenases (30, 39). Substitutions of the Asp35 residue of AH large subunit consistently made the group 5 [NiFe]hydrogenase more  $O_2$  susceptible (30). A distinct but not necessarily competing hypothesis is that group 5 [NiFe]-hydrogenases sterically restrict access of O2 to the active site. Mutagenesis studies have established that residues lining the substrate channel are important for  $O_2$  tolerance of certain hydrogenases (40, 41). The crystal structure of AH reveals that the gas diffusion channel is significantly narrower than that of the group 1 [NiFe]hydrogenase, which may contribute to differences in O<sub>2</sub> susceptibility (30).

**Thermostability.** A further unusual property of the group 5 [NiFe]-hydrogenase is its thermostability. Atmospheric H<sub>2</sub> oxidation by soil samples has been observed at temperatures ranging from  $-4^{\circ}$ C to  $60^{\circ}$ C (3, 42, 43). The enzyme purified from *R. eutropha* has a half-life of 80 min at  $60^{\circ}$ C and retains catalytic activity even at  $80^{\circ}$ C with a half-life of 3.5 min (30). The half-life of H<sub>2</sub> oxidation activity is significantly shorter in whole soils at such temperatures, perhaps because of killing of the H<sub>2</sub>-scavenging organisms (44). While phylogenetics suggest that the enzyme has a thermophilic origin (Fig. 1), it is possible that environmental pressure has continued to select for this trait; after all, thermostability

could contribute to the well-characterized heat resistance of certain mesophilic actinobacteria, especially sporulating streptomycetes (45). Group 5 [NiFe]-hydrogenases have also been identified in the genomes of several thermophilic acidobacteria and chloroflexi found in geothermal soils (Matthew Stott, GNS Science, personal communication). While the biochemical basis of this thermostability is not understood, Schäfer (30) has proposed that homodimer formation could be a contributing factor.

#### PHYSIOLOGICAL ROLE OF HYDROGEN SCAVENGING

An input to the respiratory chain. Much evidence suggests that group 5 [NiFe]-hydrogenases are energy-conserving enzymes linked to aerobic respiratory chains. In whole soils,  $O_2$  is either a prerequisite for  $H_2$  scavenging (46) or an extremely strong stimulant (18). In isolated Actinobacteria,  $O_2$  is also required for oxidation of atmospheric  $H_2$  (16, 22, 23). Controlled amperometric and chromatographic measurements showed that H<sub>2</sub> oxidation strictly depends on the presence of  $O_2$  in batch cultures of M. smegmatis (23, 27). H<sub>2</sub> oxidation can also be inhibited in R. eutropha through addition of the terminal oxidase inhibitor potassium cyanide (30). A link to the respiratory chain is also provoked by studies of the regulation, localization, and phenotypes associated with these enzymes in M. smegmatis (23, 27, 34, 47, 48). The combustion of H<sub>2</sub> by O<sub>2</sub> (the "Knallgas" reaction) is one of the most energetically favorable biological reactions under standard biological conditions ( $E^{\circ}$ ' = +1.24 V) (49). Hence, H<sub>2</sub> scavengers can maximize the amount of energy they can derive through electron transfer between two ubiquitous atmospheric gases. Given the redox potential of the 2H<sup>+</sup>/H<sub>2</sub> couple is higher at low partial pressure of H<sub>2</sub> (*p*H<sub>2</sub>), low-potential oxidants are unlikely to stimulate atmospheric H<sub>2</sub> oxidation. Atmospheric H<sub>2</sub> oxidation could be stimulated only in anoxic soils with artificial electron acceptors with high redox potentials, i.e., above +80 mV (18).

Mixotrophic growth. To resolve the physiological role of H<sub>2</sub> scavenging, markerless deletions of the group 5 and group 2a [NiFe]-hydrogenases have been constructed in *M. smegmatis*. Gas chromatography studies have shown that both enzymes are capable of scavenging atmospheric  $H_2$  in this organism (16, 22, 23). The wild-type organism appears to be incapable of growing chemolithoautotrophically using H<sub>2</sub> as the sole electron donor (27). However, the growth rate and yields of the deletion strains were significantly reduced compared to those of the wild type during growth on organic carbon sources under a range of conditions. This indicates that M. smegmatis preferentially grows mixotrophically by cooxidizing organic electron donors and atmospheric H<sub>2</sub> (27, 34, 48). Phenotypic, transcriptome, metabolome, and energetic studies are consistent with H<sub>2</sub> scavenging providing a source of reductant during growth (48). Inhibitor studies have also substantiated a link between central carbon metabolism and H<sub>2</sub> metabolism in this organism (Kiel Hards, unpublished data). The group 5 [NiFe]-hydrogenase of *R. eutropha* is neither required nor sufficient for chemolithoautotrophic growth. Consistent with its low synthesis level and activity, the enzyme also appears to be dispensable for mixotrophic growth (30).

**Electron input during energy limitation.** Recent studies have suggested that the physiological role of  $H_2$  scavenging is to input electrons into the respiratory chain during energy limitation. Batch and continuous culture experiments showed that the two  $H_2$ -scavenging enzymes of *M. smegmatis* were most synthesized and active when the organism is starved for its preferred organic

carbon sources (23, 27, 32, 34). Genes encoding the structural components of the group 5 [NiFe]-hydrogenase and group 2a [NiFe]-hydrogenase were induced 30-fold and 6-fold, respectively, during slow versus fast growth (27, 34). Their upregulation was concurrent with the downregulation of primary dehydrogenases (34), suggesting that oxidation of atmospheric H<sub>2</sub> partly compensates for the reduced oxidation of organic electron donors. When these enzymes were deleted, we observed a 40% reduction in the viability of the mutant strains during their adaptation to and survival of energy starvation in continuous and batch culture systems (34, 48).

H<sub>2</sub> scavenging is intimately linked to the life cycle of Actinobac*teria*. Several groups have shown that expression and activity of the group 5 [NiFe]-hydrogenases peaks after the formation of aerial hyphae in sporulating streptomycetes and that spores appear to be primarily or solely responsible for H<sub>2</sub> scavenging in such organisms (16, 22, 24). R. equi, which is a nonsporulating persister like *M. smegmatis*, consumed atmospheric H<sub>2</sub> only in late exponential and stationary phase (24). It is less clear whether the *R. eutropha* enzyme has a physiological role, given that its expression and activity are barely detectable (29), but consistent with group 5 [NiFe]-hydrogenases being selected for a role in energy limitation, expression of the genes encoding AH increased 50-fold when cultures were grown on glycerol (a poor substrate in this organism) compared to fructose (30). More phenotypic studies are clearly needed on the hydrogenases of such organisms to better understand the basis of differential regulation.

While organic electron donors are often sparse in soil ecosystems, H<sub>2</sub> is a dependable fuel source. After all, it is readily diffusible and hence energy-consuming active transport processes are not required to harness it. Furthermore, it is present in unlimited amounts at a constant, albeit trace, concentration throughout the troposphere. Hence, scavenging atmospheric H<sub>2</sub> could be a useful strategy for the survival of a range of soil organisms. Though developmentally and morphologically distinct, the persistent cells of *Mycobacterium* and the spores of *Streptomyces* are both produced in response to energy limitation and require minimal energy input to remain viable (45). We propose that scavenging of atmospheric H<sub>2</sub> provides a proportion of these cells and spores sufficient electron input for long-term persistence. Aided by a physical association with the membrane, high-affinity hydrogenases appear to couple the oxidation of atmospheric H<sub>2</sub> to reduction of ambient  $O_2$  by liberating electrons to the aerobic respiratory chain (Fig. 3). This flux may create sufficient proton motive force for cells and spores to persist in the absence of growth. The insensitivity of high-affinity hydrogenases to environmental stresses, such as temperature, might also ensure that energy generation can occur even under deleterious conditions. It is also noteworthy that  $pH_2$ does not significantly influence the synthesis levels of high-affinity hydrogenases, in contrast to those of low-affinity hydrogenases in soil organisms. This likely reflects that the atmospheric substrate will always be present at sufficient concentrations for catalysis in well-aerated soils (50).

**Role in oxygen limitation.**  $H_2$  cycling and scavenging are also important for *M. smegmatis* to combat reductive stress during hypoxia. Under this condition, the organism can switch rapidly between three modes of energy conservation, namely, aerobic  $H_2$ respiration, anaerobic  $H_2$  respiration, and fermentative  $H_2$  production, depending on the availability of electron acceptors (47). Batch and continuous culture studies show that the organism in-



FIG 3 Proposed physiological role of group 5 [NiFe]-hydrogenases during energy starvation in *Mycobacterium smegmatis*. When organic electron donors are limiting, primary dehydrogenases are downregulated in favor of uptake hydrogenases (27, 34). Oxidation of atmospheric H<sub>2</sub> by the group 5 [NiFe]-hydrogenase HhyLS (orange) leads to input of electrons into the respiratory chain (yellow) and proton translocation mediated by the terminal oxidase (red). This generates sufficient proton motive force to allow ATP synthesis by ATPase (blue) to sustain long-term survival. Solid arrows depict electron flow. NDH2, type II NAD(P)H:quinone oxidoreductases; MQ, menaquinone; MQH<sub>2</sub>, menaquinol.

duces all three of its [NiFe]-hydrogenases during  $O_2$  deprivation (27, 34, 47). While the group 3b [NiFe]-hydrogenase is responsible for H<sub>2</sub> evolution, the group 2a [NiFe]-hydrogenase can recycle this H<sub>2</sub> and consume it down to atmospheric levels under this condition. The group 5 [NiFe]-hydrogenase is also induced during hypoxia, but its catalytic activity could not be unambiguously observed (47). Consistent with a central role in the hypoxic response, the redox- and  $O_2$ -responsive regulator DosR (51) induces expression of the group 5 and group 3b [NiFe]-hydrogenases under this condition (27, 47). Mutants devoid of these hydrogenases or their regulator have lower NAD<sup>+</sup>/NADH ratios, impaired adaptation to hypoxia, and a 10-fold reduction in long-term viability during  $O_2$  deprivation (47). No studies have investigated whether the high-affinity hydrogenases of streptomycetes and other organisms are induced under hypoxia.

#### FROM CELLS TO COMMUNITIES

Hydrogen scavenging is ubiquitous in soils. Consistent with geochemical observations, the results of microcosm studies suggest that atmospheric H<sub>2</sub> oxidation is ubiquitous in aerated soils. Atmospheric H<sub>2</sub> consumption has been observed in a range of soil types, including but not limited to forest, arable, peatland, and desert ecosystems, as well as diverse climates (21, 44, 52). Whereas *hhyL* copy number varied in such samples from 10<sup>7</sup> to 10<sup>8</sup> per gram of soil, the actual H<sub>2</sub> consumption rates varied more significantly and correlated poorly with *hhyL* copy number. This is consistent with environmental and physiological factors influencing the expression and/or activity of the genes (25).

Soil organic content appears to be a dominant influence on the rate of scavenging. The  $H_2$  uptake rate in soils collected in forests, grasslands, and crop fields could be predicted with 80% precision using multiple linear regressions parameterized with the relative abundance of high-affinity  $H_2$ -oxidizing bacteria and soil total carbon content (Mondher Khedhiri, INRS, unpublished data). Model residuals are probably explained by the influence of other physical and chemical factors on the  $H_2$  oxidation activity, including the temperature, water content, and pH of the soil samples (3, 5). This link is substantiated by other fieldwork: King (53) demonstrated that oxidation of tropospheric  $H_2$  occurred at significantly higher rates in Hawaiian volcanic soils

with reduced organic carbon content and respiration. A significant inverse correlation was also observed between  $H_2$  absorption and  $CO_2$  emission during a yearlong sampling in a rural area (5, 54). Nevertheless, vegetation succession in volcanic deposits in Japan showed higher  $H_2$  oxidation rates in forested than unvegetated soil sites (55), and a survey of the literature highlighted higher rates of  $H_2$  uptake in temperate forests than agricultural areas (3). It therefore appears that atmospheric  $H_2$  represents a relevant energy source for soil microbiome both in oligotrophic and copiotrophic environments.

pH<sub>2</sub> as a selection pressure for soil communities. It is well established that the partial pressure of H<sub>2</sub> in soil ecosystems varies by several orders of magnitude across time and space due to biological processes. Whereas atmospheric H<sub>2</sub> permeates all soils, H<sub>2</sub> is supersaturated in the vicinity of leguminous soils and waterlogged soils due to the respective H2-evolving activities of N2fixing rhizobia and fermentative anaerobes (2, 10, 50, 56, 57). H<sub>2</sub> partial pressure also decreases with soil depth from ambient atmospheric concentrations (530 ppbv) at the surface to threshold levels (<50 ppbv) at a depth of about 10 cm, the gradient depending on the soil microbial  $H_2$  consumption activity (52, 58, 59). Extending physiological studies, we hypothesize that high  $pH_2$ (e.g., in the vicinity of root nodules) would select for growth of low-affinity H2-oxidizing bacteria, i.e., Alpha-, Beta-, and Gammaproteobacteria harboring group 1 [NiFe]-hydrogenases. In contrast, atmospheric and subatmospheric concentrations would sustain the survival of high-affinity H<sub>2</sub>-oxidizing bacteria, e.g., sporulating streptomycetes and persistent mycobacteria (Table 2). Thus, whereas booms and busts in  $pH_2$  could be a selection pressure for copiotrophs, atmospheric H<sub>2</sub> could provide a dependable lifeline for oligotrophs (32). We hypothesize that the rates, affinities, and efficiencies of H<sub>2</sub> consumption in soil environments could also be a selector for growth and survival.

Several studies have demonstrated that exposure of soils to different partial pressures of  $H_2$  can influence microbial community structure (15, 60, 61). Exposure of agricultural soil microcosms to high  $pH_2$  stimulated CO<sub>2</sub> fixation and enriched for  $H_2$ -oxidizing *Beta*- and *Gammaproteobacteria* (60). In contrast, exposure of soils to a moderate  $pH_2$  produced a shift in the soil bacterial community that was reproducible in both microcosms

TABLE 2 Apparent whole-cell affinities for H<sub>2</sub> among H<sub>2</sub>-oxidizing soil bacteria<sup>a</sup>

| Organism                                            | Apparent $K_m$ (nM) | [NiFe]-hydrogenase group(s) | Reference |
|-----------------------------------------------------|---------------------|-----------------------------|-----------|
| High-affinity hydrogen oxidizers                    |                     |                             |           |
| Mycobacterium smegmatis                             | 110                 | 2a, 3b, 5                   | 23        |
| Rhodococcus equi                                    | 110                 | 3b, 5                       | 24        |
| Streptomyces avermitilis                            | 40                  | 5                           | 16        |
| Streptomyces sp. strain AP1                         | 30                  | 5                           | 16        |
| Streptomyces sp. strain PCB7                        | 50                  | 5                           | 22        |
| High-affinity whole-soil activity                   | 40                  | 5                           | 46        |
| Low-affinity hydrogen oxidizers                     |                     |                             |           |
| Bradyrhizobium japonicum                            | 800                 | 1                           | 14        |
| Desulfovibrio sp. strain G11                        | 1,100               | 1, 4                        | 72        |
| Ralstonia eutropha                                  | 3,600               | 1, 2b, 3b, 5                | 29        |
| Methanospirillum hungatei                           | 5,000               | 3a, 4                       | 72        |
| Paracoccus denitrificans                            | 1,100               | 1, 2b                       | 13        |
| Low-affinity whole-soil activity                    | 1,300               | 1                           | 46        |
| Individual enzymes                                  |                     |                             |           |
| Mycobacterium smegmatis group 5 [NiFe]-hydrogenase  | 50                  | 5                           | 23        |
| Mycobacterium smegmatis group 2a [NiFe]-hydrogenase | 180                 | 2a                          | 23        |
| Ralstonia eutropha group 5 [NiFe]-hydrogenase       | 760                 | 5                           | 30        |

<sup>*a*</sup> Whereas many *Proteobacteria* consume biologically produced  $H_2$  using group 1 [NiFe]-hydrogenases (13, 14, 72), some *Actinobacteria* can scavenge atmospheric  $H_2$  using group 5 [NiFe]-hydrogenases (16, 22–24). The kinetics of these two activities correspond to the biphasic uptake observed in soils (46, 73). Genetic deletions show that, whereas the group 5 [NiFe]-hydrogenase of *Mycobacterium smegmatis* is a high-affinity enzyme (23), its homolog in *Ralstonia eutropha* has a low affinity for  $H_2$  (30). All affinities were determined from whole-cell studies; to date, no high-affinity hydrogenase has been purified.

and the field; the relative abundance of ribotypes corresponding to soil actinomycetes, specifically *Pseudonocardia*, *Mycobacterium*, and *Streptomyces* species, increased (61). Hence, moderate  $pH_2$  might select for the high-affinity group 5 and group 2a [NiFe]-hydrogenases encoded by these genera over the low-affinity proteobacterial group 1 [NiFe]-hydrogenases (16, 23, 62). Several other studies have suggested that low  $H_2$  concentrations also enrich for actinomycetes (63) and *hhyL* genes (64). Ongoing studies are further analyzing how  $pH_2$  influences bacterial community structure and hydrogenase expression.

Fuelling a dormant population. In light of these physiological and ecological studies, we propose that atmospheric H<sub>2</sub> scavenging is important for sustaining the survival of microbes in energystarved soils. It is predicted that 0.1 to 5% of the total microbial biomass in soils is active, with the remainder in a gradient of dormant states (65). Atmospheric H<sub>2</sub> scavenging may be a particularly effective mechanism to sustain a proportion of these cells. While nonreplicating cells have drastically reduced energy expenditure, they cannot be metabolically inactive: energy input is still necessary for basic cell maintenance, environmental sensing, and especially in the case of sporulators, structural changes (66). We propose that atmospheric H<sub>2</sub> scavenging is a particularly dependable and robust process to generate energy for persisters. The stress tolerance of the group 5 [NiFe]-hydrogenase (29), combined with the ubiquity of atmospheric  $H_2$  and the abundance of the electron acceptor  $O_2(3)$ , would enable scavenging to occur in a range of chemically and physically challenging environments. This may in turn contribute to the relative stability of microbial community structures in soils (66).

Atmospheric  $H_2$  scavenging is likely to sustain a significant population of dormant cells. The geochemical profile of atmospheric  $H_2$ , including its regular distribution, high uptake (56 to 88 Tg year<sup>-1</sup>), and short lifetime (1.4 to 2.1 year<sup>-1</sup>), suggest that the microbial sink is highly active (3, 4, 8). Based on the rates of atmospheric H<sub>2</sub> uptake observed in whole soils and streptomyces cultures, theoretical calculations have estimated that H<sub>2</sub> scavenging could sustain the maintenance energy required for the survival of a maximum population of  $10^6$  to  $10^7$  H<sub>2</sub>-oxidizing bacteria per gram of soil (16, 67). Though atmospheric  $H_2$  scavenging has so far been detected only in Actinobacteria, hhyLS genes have been identified in six of the nine dominant bacterial phyla in soil (68). It is especially interesting that these genes are found in the genomes of Acidobacteria, Chloroflexi, Planctomycetes, and Verrucomicrobia (Fig. 1), the importance and characteristics of which are only starting to be understood (68, 69). That hhyLS is found in these organisms, while also being expressed and active in streptomyces spores and mycobacterial persisters (16, 23), further suggests that atmospheric H<sub>2</sub> scavenging could fuel a significant quantity of dormant cells. Consistently, it is noteworthy that Actinobacteria are among the most abundant taxa in some of the most nutrient-deprived, physically demanding, underdispersed soil ecosystems (70, 71). Could atmospheric H<sub>2</sub> provide the fuel to sustain the development and survival of such communities?

### CONCLUSIONS

The findings on atmospheric  $H_2$  scavenging provide a new paradigm for understanding how microorganisms persist under stress-inducing conditions. It is irrefutable that nongrowing cells and even spores require energy to remain viable, but the energy sources that fulfill this need have largely been underlooked. It is probable that microorganisms have adapted to consume a range of exogenous and endogenous substrates to maintain viability. On first inspection, it is surprising that organisms have evolved to consume a substrate available at mere picomolar concentrations. However, the recent studies on the regulation, physiology, and biochemistry of this process provide a rationale for this process. While atmospheric  $H_2$  is insufficient to sustain growth, consumption of this ubiquitous, diffusible trace gas provides a portion of the energy needed for oligotrophs to survive chemically and physically challenging soil conditions. The group 5 [NiFe]-hydrogenases appear to be well adapted to provide this lifeline. Now that the basics of  $H_2$  scavenging are largely understood, there is much room for more-detailed studies on the biochemistry of high-affinity hydrogenases, the physiological integration of  $H_2$  scavenging, and the importance of this process at the ecosystem level.

#### REFERENCES

- 1. Schmidt U. 1974. Molecular hydrogen in the atmosphere. Tellus A 26: 78–90. http://dx.doi.org/10.1111/j.2153-3490.1974.tb01954.x.
- Conrad R, Seiler W. 1980. Contribution of hydrogen production by biological nitrogen fixation to the global hydrogen budget. J Geophys Res 85:5493–5498. http://dx.doi.org/10.1029/JC085iC10p05493.
- 3. Ehhalt DH, Rohrer F. 2009. The tropospheric cycle of H<sub>2</sub>: a critical review. Tellus B 61:500–535. http://dx.doi.org/10.1111/j.1600-0889.2009 .00416.x.
- Novelli PC, Lang PM, Masarie A, Hurst DF, Elkins W. 1999. Molecular hydrogen in the troposphere: global distribution and budget. J Geophys Res Atmos 104:30427–30444. http://dx.doi.org/10.1029/1999JD900788.
- Constant P, Poissant L, Villemur R. 2009. Tropospheric H<sub>2</sub> budget and the response of its soil uptake under the changing environment. Sci Total Environ 407:1809–1823. http://dx.doi.org/10.1016/j.scitotenv.2008.10.064.
- Schultz MG, Diehl T, Brasseur GP, Zittel W. 2003. Air pollution and climate-forcing impacts of a global hydrogen economy. Science 302:624– 627. http://dx.doi.org/10.1126/science.1089527.
- Tromp TK, Shia R-L, Allen M, Eiler JM, Yung YL. 2003. Potential environmental impact of a hydrogen economy on the stratosphere. Science 300:1740–1742. http://dx.doi.org/10.1126/science.1085169.
- Rhee TS, Brenninkmeijer CAM, Röckmann T. 2006. The overwhelming role of soils in the global atmospheric hydrogen cycle. Atmos Chem Phys 6:1611–1625. http://dx.doi.org/10.5194/acp-6-1611-2006.
- 9. Yashiro H, Sudo K, Yonemura S, Takigawa M. 2011. The impact of soil uptake on the global distribution of molecular hydrogen: chemical transport model simulation. Atmos Chem Phys 11:6701–6719. http://dx.doi .org/10.5194/acp-11-6701-2011.
- Conrad R. 1996. Soil microorganisms as controllers of atmospheric trace gases (H<sub>2</sub>, CO, CH<sub>4</sub>, OCS, N<sub>2</sub>O, and NO). Microbiol Rev 60:609–640.
- Conrad R, Seiler W. 1979. The role of hydrogen bacteria during the decomposition of hydrogen by soil. FEMS Microbiol Lett 6:143–145. http: //dx.doi.org/10.1111/j.1574-6968.1979.tb04296.x.
- 12. Conrad R, Aragno M, Seiler W. 1983. The inability of hydrogen bacteria to utilize atmospheric hydrogen is due to threshold and affinity for hydrogen. FEMS Microbiol Lett 18:207–210. http://dx.doi.org/10.1111/j.1574 -6968.1983.tb00479.x.
- Häring V, Conrad R. 1991. Kinetics of H<sub>2</sub> oxidation in respiring and denitrifying *Paracoccus denitrificans*. FEMS Microbiol Lett 78:259–263. http://dx.doi.org/10.1111/j.1574-6968.1991.tb04452.x.
- Klüber HD, Conrad R. 1993. Ferric iron-reducing Shewanella putrefaciens and N<sub>2</sub>-fixing Bradyrhizobium japonicum with uptake hydrogenase are unable to oxidize atmospheric H<sub>2</sub>. FEMS Microbiol Lett 111:337–341. http://dx.doi.org/10.1111/j.1574-6968.1993.tb06408.x.
- Maimaiti J, Zhang Y, Yang J, Cen Y-P, Layzell DB, Peoples M, Dong Z. 2007. Isolation and characterization of hydrogen-oxidizing bacteria induced following exposure of soil to hydrogen gas and their impact on plant growth. Environ Microbiol 9:435–444. http://dx.doi.org/10.1111/j.1462 -2920.2006.01155.x.
- Constant P, Chowdhury SP, Pratscher J, Conrad R. 2010. Streptomycetes contributing to atmospheric molecular hydrogen soil uptake are widespread and encode a putative high-affinity [NiFe]-hydrogenase. Environ Microbiol 12:821–829. http://dx.doi.org/10.1111/j.1462 -2920.2009.02130.x.
- 17. Vignais PM, Billoud B. 2007. Occurrence, classification, and biological function of hydrogenases: an overview. Chem Rev 107:4206–4272. http://dx.doi.org/10.1021/cr050196r.
- Conrad R, Weber M, Seiler W. 1983. Kinetics and electron transport of soil hydrogenases catalyzing the oxidation of atmospheric hydrogen. Soil Biol Biochem 15:167–173. http://dx.doi.org/10.1016/0038-0717 (83)90098-6.
- 19. Conrad R, Seiler W. 1981. Decomposition of atmospheric hydrogen by

soil microorganisms and soil enzymes. Soil Biol Biochem 13:43–49. http://dx.doi.org/10.1016/0038-0717(81)90101-2.

- Guo R, Conrad R. 2008. Extraction and characterization of soil hydrogenases oxidizing atmospheric hydrogen. Soil Biol Biochem 40:1149–1154. http://dx.doi.org/10.1016/j.soilbio.2007.12.007.
- Constant P, Chowdhury SP, Hesse L, Conrad R. 2011. Co-localization of atmospheric H<sub>2</sub> oxidation activity and high-affinity H<sub>2</sub>-oxidizing bacteria in non-axenic soil and sterile soil amended with *Streptomyces* sp. PCB7. Soil Biol Biochem 43:1888–1893. http://dx.doi.org/10.1016/j.soilbio.2011 .05.009.
- Constant P, Poissant L, Villemur R. 2008. Isolation of *Streptomyces* sp. PCB7, the first microorganism demonstrating high-affinity uptake of tropospheric H<sub>2</sub>. ISME J 2:1066–1076. http://dx.doi.org/10.1038 /ismej.2008.59.
- 23. Greening C, Berney M, Hards K, Cook GM, Conrad R. 2014. A soil actinobacterium scavenges atmospheric H<sub>2</sub> using two membrane-associated, oxygen-dependent [NiFe] hydrogenases. Proc Natl Acad Sci U S A 111:4257–4261. http://dx.doi.org/10.1073/pnas.1320586111.
- Meredith LK, Rao D, Bosak T, Klepac-Ceraj V, Tada KR, Hansel CM, Ono S, Prinn RG. 2014. Consumption of atmospheric hydrogen during the life cycle of soil-dwelling actinobacteria. Environ Microbiol Rep 6:226–238. http://dx.doi.org/10.1111/1758-2229.12116.
- 25. Constant P, Chowdhury SP, Hesse L, Pratscher J, Conrad R. 2011. Genome data mining and soil survey for the novel group 5 [NiFe]hydrogenase to explore the diversity and ecological importance of presumptive high-affinity H<sub>2</sub>-oxidizing bacteria. Appl Environ Microbiol 77: 6027–6035. http://dx.doi.org/10.1128/AEM.00673-11.
- Bontemps C, Toussaint M, Revol P, Hotel L, Jeanbille M, Turpault M, Blaudez D, Leblond P, Lorraine D. 2013. Taxonomic and functional diversity of *Streptomyces* in a forest soil. FEMS Microbiol Lett 342:157– 167. http://dx.doi.org/10.1111/1574-6968.12126.
- Berney M, Greening C, Hards K, Collins D, Cook GM. 2014. Three different [NiFe] hydrogenases confer metabolic flexibility in the obligate aerobe *Mycobacterium smegmatis*. Environ Microbiol 16:318–330. http: //dx.doi.org/10.1111/1462-2920.12320.
- Schwartz E, Henne A, Cramm R, Eitinger T, Gottschalk G. 2003. Complete nucleotide sequence of pHG1: a *Ralstonia eutropha* H16 megaplasmid encoding key enzymes of H<sub>2</sub>-based lithoautotrophy and anaerobiosis. J Mol Biol 332:369–383. http://dx.doi.org/10.1016 /S0022-2836(03)00894-5.
- Schäfer C, Friedrich B, Lenz O. 2013. Novel, oxygen-insensitive group 5 [NiFe]-hydrogenase in *Ralstonia eutropha*. Appl Environ Microbiol 79: 5137–5145. http://dx.doi.org/10.1128/AEM.01576-13.
- Schäfer C. 2014. Proteinbiochemische, spektroskopische und röntgenkristallographische Untersuchung der Actinobakteriellen [NiFe]-Hydrogenase aus Ralstonia eutropha. Ph.D. thesis. Humboldt-Universität zu Berlin, Berlin, Germany.
- 31. Lubitz W, Ogata H, Rüdiger O, Reijerse E. 2014. Hydrogenases. Chem Rev 114:4081–4148. http://dx.doi.org/10.1021/cr4005814.
- 32. Greening CA. 2013. Physiological roles of the three [NiFe]-hydrogenases in *Mycobacterium smegmatis*. Ph.D. thesis. University of Otago, Dunedin, New Zealand.
- Lenz O, Schwartz E, Dernedde J. 1994. The Alcaligenes eutrophus H16 hoxX gene participates in hydrogenase regulation. J Bacteriol 176:4385– 4393.
- 34. Berney M, Cook GM. 2010. Unique flexibility in energy metabolism allows mycobacteria to combat starvation and hypoxia. PLoS One 5:e8614. http://dx.doi.org/10.1371/journal.pone.0008614.
- 35. Ludwig M, Cracknell J, Vincent K, Armstrong F, Lenz O. 2009. Oxygentolerant H<sub>2</sub> oxidation by membrane-bound [NiFe] hydrogenases of *Ralstonia* species: coping with low level H<sub>2</sub> in air. J Biol Chem 284:465–477. http://dx.doi.org/10.1074/jbc.M803676200.
- Fritsch J, Scheerer P, Frielingsdorf S, Kroschinsky S, Friedrich B, Lenz O, Spahn CMT. 2011. The crystal structure of an oxygen-tolerant hydrogenase uncovers a novel iron-sulphur centre. Nature 479:249–252. http: //dx.doi.org/10.1038/nature10505.
- Shomura Y, Yoon K-S, Nishihara H, Higuchi Y. 2011. Structural basis for a [4Fe-3S] cluster in the oxygen-tolerant membrane-bound [NiFe]hydrogenase. Nature 479:253–256. http://dx.doi.org/10.1038/nature10504.
- Bowman L, Flanagan L, Fyfe P, Parkin A, Hunter WN, Sargent F. 2014. How the structure of the large subunit controls function in an oxygentolerant [NiFe]-hydrogenase. Biochem J 458:449–458. http://dx.doi.org /10.1042/BJ20131520.

- Rousset M, Montet Y, Guigliarelli B, Forget N, Asso M, Bertrand P, Fontecilla-Camps JC, Hatchikian EC. 1998. [3Fe-4S] to [4Fe-4S] cluster conversion in *Desulfovibrio fructosovorans* [NiFe] hydrogenase by sitedirected mutagenesis. Proc Natl Acad Sci U S A 95:11625–11630. http://dx .doi.org/10.1073/pnas.95.20.11625.
- Buhrke T, Lenz O, Krauss N, Friedrich B. 2005. Oxygen tolerance of the H<sub>2</sub>-sensing [NiFe]-hydrogenase from *Ralstonia eutropha* H16 is based on limited access of oxygen to the active site. J Biol Chem 280:23791–23796. http://dx.doi.org/10.1074/jbc.M503260200.
- 41. Cano M, Volbeda A, Guedeney G, Aubert-Jousset E, Richaud P, Peltier G, Cournac L. 2014. Improved oxygen tolerance of the *Synechocystis* sp. PCC 6803 bidirectional hydrogenase by site-directed mutagenesis of putative residues of the gas diffusion channel. Int J Hydrogen Energy 39: 16872–16884. http://dx.doi.org/10.1016/j.ijhydene.2014.08.030.
- Schuler S, Conrad R. 1991. Hydrogen oxidation activities in soil as influenced by pH, temperature, moisture, and season. Biol Fertil Soils 12:127–130. http://dx.doi.org/10.1007/BF00341488.
- Smith-Downey NV, Randerson JT, Eiler JM. 2006. Temperature and moisture dependence of soil H<sub>2</sub> uptake measured in the laboratory. Geophys Res Lett 33:L14813. http://dx.doi.org/10.1029/2006GL026749.
- 44. Chowdhury SP, Conrad R. 2010. Thermal deactivation of high-affinity H<sub>2</sub> uptake activity in soils. Soil Biol Biochem 42:1574–1580. http://dx.doi .org/10.1016/j.soilbio.2010.05.027.
- 45. Scherr N, Nguyen L. 2009. *Mycobacterium* versus *Streptomyces*—we are different, we are the same. Curr Opin Microbiol 12:699–707. http://dx.doi .org/10.1016/j.mib.2009.10.003.
- 46. Häring V, Conrad R. 1994. Demonstration of two different H<sub>2</sub>-oxidizing activities in soil using an H<sub>2</sub> consumption and a tritium exchange assay. Biol Fertil Soils 17:125–128. http://dx.doi.org/10.1007/BF00337744.
- 47. Berney M, Greening C, Conrad R, Jacobs WR, Cook GM. 2014. An obligately aerobic soil bacterium activates fermentative hydrogen production to survive reductive stress during hypoxia. Proc Natl Acad Sci U S A 111:11479–11484. http://dx.doi.org/10.1073/pnas.1407034111.
- 48. Greening C, Villas-Bôas SG, Robson JR, Berney M, Cook GM. 2014. The growth and survival of *Mycobacterium smegmatis* is enhanced by cometabolism of atmospheric H<sub>2</sub>. PLoS One 9:e103034. http://dx.doi.org/10 .1371/journal.pone.0103034.
- Thauer RK. 2011. Hydrogenases and the global H<sub>2</sub> cycle. Eur J Inorg Chem 2011:919–921. http://dx.doi.org/10.1002/ejic.201001255.
- Greening C, Cook GM. 2014. Integration of hydrogenase expression and hydrogen sensing in bacterial cell physiology. Curr Opin Microbiol 18: 30–38. http://dx.doi.org/10.1016/j.mib.2014.02.001.
- Kumar A, Toledo JC, Patel RP, Lancaster JR, Steyn AJC. 2007. Mycobacterium tuberculosis DosS is a redox sensor and DosT is a hypoxia sensor. Proc Natl Acad Sci U S A 104:11568–11573. http://dx.doi.org/10.1073 /pnas.0705054104.
- Smith-Downey NV, Randerson JT, Eiler JM. 2008. Molecular hydrogen uptake by soils in forest, desert, and marsh ecosystems in California. J Geophys Res 113:G03037. http://dx.doi.org/10.1029/2008JG000701.
- King GM. 2003. Contributions of atmospheric CO and hydrogen uptake to microbial dynamics on recent Hawaiian volcanic deposits. Appl Environ Microbiol 69:4067–4075. http://dx.doi.org/10.1128/AEM.69.7.4067 -4075.2003.
- 54. Constant P, Poissant L, Villemur R. 2008. Annual hydrogen, carbon monoxide and carbon dioxide concentrations and surface to air exchanges in a rural area (Québec, Canada). Atmos Environ 42:5090–5100. http://dx .doi.org/10.1016/j.atmosenv.2008.02.021.
- 55. King GM, Weber CF, Nanba K, Sato Y, Ohta H. 2008. Atmospheric CO and hydrogen uptake and CO oxidizer phylogeny for Miyake-jima, Japan volcanic deposits. Microbes Environ 23:299–305. http://dx.doi.org/10 .1264/jsme2.ME08528.

- Conrad R, Seiler W. 1979. Field measurements of hydrogen evolution by nitrogen-fixing legumes. Soil Biol Biochem 11:689–690. http://dx.doi.org /10.1016/0038-0717(79)90041-5.
- Dong Z, Wu L, Kettlewell B, Caldwell CD, Layzell DB. 2003. Hydrogen fertilization of soils—is this a benefit of legumes in rotation? Plant Cell Environ 26:1875–1879. http://dx.doi.org/10.1046/j.1365-3040.2003.01103.x.
- Seiler W, Liebl KH, Stöhr WT, Zakosek H. 1977. Zeitschrift fir Pflanzenernahrung und Bodenkunde. Z Pflanzenernaehr Bodenkd 272:257– 272.
- Yonemura S, Kawashima S, Tsuruta H. 2000. Model analysis of the influence of gas diffusivity in soil on CO and H<sub>2</sub> uptake. Tellus B 52:347– 362. http://dx.doi.org/10.1034/j.1600-0870.2000.00103.x.
- Stein S, Selesi D, Schilling R, Pattis I, Schmid M, Hartmann A. 2005. Microbial activity and bacterial composition of H<sub>2</sub>-treated soils with net CO<sub>2</sub> fixation. Soil Biol Biochem 37:1938–1945. http://dx.doi.org/10.1016 /j.soilbio.2005.02.035.
- 61. Osborne CA, Peoples MB, Janssen PH. 2010. Detection of a reproducible, single-member shift in soil bacterial communities exposed to low levels of hydrogen. Appl Environ Microbiol 76:1471–1479. http://dx.doi .org/10.1128/AEM.02072-09.
- Grostern A, Alvarez-Cohen L. 2013. RubisCO-based CO<sub>2</sub> fixation and C<sub>1</sub> metabolism in the actinobacterium *Pseudonocardia dioxanivorans* CB1190. Environ Microbiol 15:3040–3053. http://dx.doi.org/10.1111 /1462-2920.12144.
- McLearn N, Dong Z. 2002. Microbial nature of the hydrogen-oxidizing agent in hydrogen-treated soil. Biol Fertil Soils 35:465–469. http://dx.doi .org/10.1007/s00374-002-0495-z.
- 64. Pumphrey GM, Ranchou-Peyruse A, Spain JC. 2011. Cultivationindependent detection of autotrophic hydrogen-oxidizing bacteria by DNA stable-isotope probing. Appl Environ Microbiol 77:4931–4938. http://dx.doi.org/10.1128/AEM.00285-11.
- Blagodatskaya E, Kuzyakov Y. 2013. Active microorganisms in soil: critical review of estimation criteria and approaches. Soil Biol Biochem 67: 192–211. http://dx.doi.org/10.1016/j.soilbio.2013.08.024.
- Lennon JT, Jones SE. 2011. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat Rev Microbiol 9:119–130. http://dx.doi.org/10.1038/nrmicro2504.
- Conrad R. 1999. Soil microorganisms oxidizing atmospheric trace gases (CH<sub>4</sub>, CO, H<sub>2</sub>, NO). Indian J Microbiol 39:193–203.
- Janssen PH. 2006. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol 72:1719–1728. http://dx.doi.org/10.1128/AEM.72.3.1719-1728.2006.
- Bergmann GT, Bates ST, Eilers KG, Lauber CL, Caporaso G, Walters WA, Knight R, Fierer N. 2011. The under-recognized dominance of *Verrucomicrobia* in soil bacterial communities. Soil Biol Biochem 43: 1450–1455. http://dx.doi.org/10.1016/j.soilbio.2011.03.012.
- Lynch RC, King AJ, Farías ME, Sowell P, Vitry C, Schmidt SK. 2012. The potential for microbial life in the highest-elevation (>6000 m.a.s.l.) mineral soils of the Atacama region. J Geophys Res 117:G02028. http://dx .doi.org/10.1029/2012JG001961.
- Pointing SB, Chan Y, Lacap DC, Lau MCY, Jurgens JA, Farrell RL. 2009. Highly specialized microbial diversity in hyper-arid polar desert. Proc Natl Acad Sci U S A 106:19964–19969. http://dx.doi.org/10.1073 /pnas.0908274106.
- Robinson JA, Tiedje JM. 1984. Competition between sulphate-reducing and methanogenic bacteria for H<sub>2</sub> under resting and growing conditions. Arch Microbiol 137:26–32. http://dx.doi.org/10.1007/BF00425803.
- Schuler S, Conrad R. 1990. Soils contain two different activities for oxidation of hydrogen. FEMS Microbiol Lett 73:77–83. http://dx.doi.org/10 .1111/j.1574-6968.1990.tb03927.x.