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ABSTRACT
Prostate cancer is a prevalent age-related disease in North America, accounting for
about 15% of all diagnosed cancers. We have previously identified lithocholic acid
(LCA) as a potential chemotherapeutic compound that selectively kills neuroblas-
toma cells while sparing normal human neurons. Now, we report that LCA inhibits
the proliferation of androgen-dependent (AD) LNCaP prostate cancer cells and that
LCA is the most potent bile acid with respect to inducing apoptosis in LNCaP as well
as androgen-independent (AI) PC-3 cells, without killing RWPE-1 immortalized
normal prostate epithelial cells. In LNCaP and PC-3 cells, LCA triggered the extrinsic
pathway of apoptosis and cell death induced by LCA was partially dependent on
the activation of caspase-8 and -3. Moreover, LCA increased cleavage of Bid and
Bax, down-regulation of Bcl-2, permeabilization of the mitochondrial outer mem-
brane and activation of caspase-9. The cytotoxic actions of LCA occurred despite
the inability of this bile acid to enter the prostate cancer cells with about 98% of
the nominal test concentrations present in the extracellular culture medium. With
our findings, we provide evidence to support a mechanism of action underlying the
broad anticancer activity of LCA in various human tissues.

Subjects Toxicology, Oncology, Pharmacology
Keywords Bile acids, Lithocholic acid, Apoptosis, Prostate cancer, Chemotherapy, In vitro,
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INTRODUCTION
Prostate cancer accounts for approximately 15% of all newly diagnosed cancers and it

is the third highest cause of cancer-related deaths in males in the United States (Siegel,

Naishadham & Jemal, 2012). Most prostate cancers are initially androgen-dependent

(AD) and are generally treated with a combination of radiotherapy, chemical castration,

androgen-receptor (AR) antagonists (hydroxyflutamide, bicalutamide), or inhibitors of

steroidogenesis (abiraterone). However, a large contingent of AD cancers will progress to

become a more aggressive, androgen-independent (AI) form, and less readily treatable,

resulting in higher incidences of morbidity and mortality. Furthermore, patients

treated with either hydroxyflutamide or bicalutamide are known to suffer from severe

side-effects as a result of the anti-androgenic therapy (McLeod, 1997; Wysowski et al., 1993),

How to cite this article Goldberg et al. (2013), Bile acids induce apoptosis selectively in androgen-dependent and -independent prostate
cancer cells. PeerJ 1:e122; DOI 10.7717/peerj.122

mailto:Thomas.Sanderson@iaf.inrs.ca
mailto:Thomas.Sanderson@iaf.inrs.ca
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.122
http://dx.doi.org/10.7717/peerj.122
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://peerj.com
http://dx.doi.org/10.7717/peerj.122


necessitating the search for natural and more potent anti-cancer compounds with fewer

deleterious effects on the human body.

Bile acids are the products of cholesterol catabolism and their main function for the

body is the solubilisation of dietary fats and fat-soluble vitamins from the intestinal

lumen (Lefebvre et al., 2009; Thomas et al., 2008). More recently, bile acids have been

found to have specific regulatory functions, as they interact with a variety of intracellular

and extracellular signalling molecules such as the farnesoid X (FXR), vitamin D (VDR),

pregnane X (PXR) and G-protein coupled (TGR5) receptors. Numerous studies have

shown that bile acids play key homeostatic roles in glucose metabolism, cholesterol

and lipid metabolism, xenobiotic detoxification of toxins and lifespan extension

(Hylemon et al., 2009; Ramalho et al., 2008; Tiwari & Maiti, 2009; Vallim & Edwards,

2009; Goldberg et al., 2010). Moreover, BAs can be useful small molecules for the treatment

of illnesses such as cholestatic liver disease, Alzheimer’s disease, atherosclerosis, obesity

and metabolic disorders (Baxter & Webb, 2006; Chen et al., 2011; Hageman et al., 2010;

Lefebvre et al., 2009; Lim et al., 2012; Nunes et al., 2012; Peiro-Jordan et al., 2012; Pols et al.,

2011; Ramalho et al., 2008; Sola et al., 2003; Thomas et al., 2009; Thomas et al., 2008; Tiwari

& Maiti, 2009; Trauner et al., 2010; Viana et al., 2009; Wachs et al., 2005; Zhong, 2010). It

has also been reported that bile acids have anti-neoplastic and -carcinogenic properties

in a multitude of cancer cell models, such as tamoxifen-resistant breast cancer (Giordano

et al., 2011), colon cancer (Katona et al., 2009), prostate cancer (Kim et al., 2006) and

neuroblastoma (Goldberg et al., 2011) cells.

We have previously reported that LCA delays chronological aging of the budding

yeast, S. cerevisiae, independent of AMP-activated protein kinase/target of rapamycin

(AMPK/TOR) and cAMP/Protein Kinase A (PKA) signalling. LCA alters the age-related

dynamics of metabolomic processes in yeast such as respiration and reactive oxygen species

production in the mitochondria, and lipid and trehalose accumulation, and modulates

stress response pathways (Goldberg et al., 2010). Moreover, we have shown that LCA can

kill human neuroblastoma cells, while sparing normal human primary neurons. LCA

selectively initiates an extrinsic apoptotic programme of cell death in neuroblastoma

cells, thus recruiting and activating the initiator caspase-8, inducing mitochondrial outer

membrane permeabilization (MOMP), mitochondrial fragmentation, and ultimately

activation of the downstream proteases caspase-9 and -3 (Goldberg et al., 2011). Here we

report that bile acids can inhibit dihydrotestosterone (DHT)-induced cell proliferation,

and kill both AD and AI prostate cancer cells in a caspase-3 dependent manner, by eliciting

the intrinsic and extrinsic pathways of apoptosis. The mechanistic studies we present will

further our understanding of the potential of bile acids to act as chemotherapeutic agents

against prostate cancer.

MATERIALS AND METHODS
Cell lines and reagents
LNCaP, PC-3 and RWPE-1 cell lines were purchased from ATCC (Manassas, VA). LNCaP

and RWPE-1 cells were grown in RPMI 1640 supplemented with 10% fetal bovine
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serum or 2% dextran-coated charcoal-stripped FBS, 2 mM L-glutamine, 1% HEPES,

1% sodium-pyruvate and 10 ml/L of 100× antibiotic-antimycotic solution. PC-3 cells

were grown in a 1:1 mixture of DMEM and Ham’s F12 Nutrient Mixture with either 10%

fetal bovine serum or 2% dextran-coated charcoal-stripped FBS, 2 mM L-glutamine and

10 ml/L of 100× antibiotic-antimycotic solution (Sigma-Aldrich, St. Louis, MO). Cells

were maintained in a humidified atmosphere (5% CO2) at 37◦C. Lithocholic acid (LCA),

deoxycholic acid (DCA), chenodeoxycholic acid (CDCA), ursodeoxycholic acid (UDCA),

hyodeoxycholic acid (HDCA) and cholic acid (CA) were purchased from Sigma-Aldrich

and dissolved in DMSO to make 500 mM stock solutions. Dihydrotestosterone (DHT;

Steraloids Inc., Newport, RI) was dissolved in DMSO to make 100 mM stock solutions. The

final concentration of DMSO in culture medium was not greater than 0.2%. The selective

caspase substrates Ac-DEVD-AFC, Ac-IETD-AFC and Ac-LEHD-AFC were purchased

from Enzo Life Sciences (Farmingdale, NY) and dissolved in DMSO to make 20 mM stock

solutions. Caspase inhibitors z-DEVD-fmk and z-IETD-fmk (BD Biosciences, Franklin

Lakes, NJ) were dissolved in 100% DMSO to produce 10 mM stock solutions. All primary

antibodies were purchased from Cell Signaling (Beverly, MA). LNCaP and PC-3 cells

were exposed to 1000-fold dilutions of the appropriate stock solutions of bile acids, DHT

and/or caspase inhibitors in their respective experimental culture media. Control cells were

exposed to 0.1% or 0.2% DMSO for single or co-exposure experiments, respectively.

LNCaP cell proliferation
LNCaP cells were seeded in 16-well E-plates (Roche Diagnostics, Laval, QC) at a density

of 25× 103 cells per 200 µl medium containing 2% stripped FBS/well. After 24 h, DHT

was added at a concentration (0.1 nM) that stimulated optimal growth rate (without

surpassing confluence) in culture over a 72 h period along with various concentrations

of LCA or DMSO vehicle. Then cell proliferation was determined quantitatively and in

real-time over a period of 72 h by measuring changes in impedance detected by the gold

electrode-microarrays at the bottom of each of the 16 wells of the E-plate.

Apoptosis, necrosis and mitochondrial membrane potential
For apoptotic and necrotic cell death measurements, LNCaP and PC-3 cells were

seeded at densities of 1× 105 and 0.5× 105 cells/ml, respectively, in 24-well plates in

2% stripped-FBS. Cells were then treated with several concentrations of bile acids in

the presence (LNCaP) or absence (PC-3) of 0.1 nM DHT. After 48 h, Hoechst 33342

(Sigma-Aldrich) and propidium iodide (PI; Invitrogen, Carlsbad, CA) were each added at

a concentration of 1 µg/ml per well. After a 15 min incubation at 37◦C, cells were observed

and counted under a Nikon Eclipse (TE-2000U) inverted fluorescent microscope at 20×

magnification. Hoechst-positive and PI-positive cells were made visible using filter cubes

with excitation wavelengths of 330–380 nm and 532–587 nm, respectively. To measure

mitochondrial membrane potential (MMP), cells were treated with LCA for 1, 4 or 8 h, and

tetramethylrhodamine ethyl ester (TMRE) was added to each well at a final concentration

of 50 nM. TMRE is a cell permeable, positively charged dye that accumulates in active
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negatively charged mitochondria. In inactive or depolarized mitochondria, membranes

have decreased potential and fail to sequester TMRE. After a 15 min incubation at 37◦C,

cells were observed under an inverted fluorescent microscope using a filter cube with

excitation wavelengths of 532–587 nm. The photos were then analyzed using ImageJ image

processing software (Schneider, Rasband & Eliceiri, 2012).

Caspase activity assays
PC-3 and LNCaP cells were seeded in 6-well plates at densities of 400000 or 750000 cells

per well, respectively, in 0.5 ml culture medium containing 2% stripped FBS and 24 h

later they were exposed to various concentrations of LCA in fresh medium for another

24 h. Proteins were then extracted from harvested cells using 1× RIPA buffer (Millipore,

Billerica, MA) containing 1× protease inhibitor cocktail, centrifuged at 13,000 g for 5 min

at 4◦C to remove cell debris, and frozen at−80◦C overnight. Protein concentrations were

then quantified using a BCA protein detection kit (Thermo Scientific, Waltham, MA).

Caspase activities were determined using fluorogenic caspase substrates selective for either

caspase-3 (5 µM Ac-DEVD-AFC), caspase-9 (10 µM Ac-LEHD-AFC) or caspase-8 (10 µM

Ac-IETD-AFC) in 10 µg of extracted protein suspended in caspase reaction buffer (20 mM

PIPES at pH 7.2, 30 mM NaCl, 10 mM DTT, 1 mM EDTA, 0.1% CHAPS, 10% sucrose).

The time-dependent release of 7-amino-4-trifluoromethyl coumarin (AFC) was measured

using a SpectroMax M5 microplate reader (Molecular Devices, Sunnydale, CA) at an

excitation wavelength of 400 nm and an emission wavelength of 505 nm. Measurements

were recorded at 2 min intervals for 90 min. A standard curve of AFC fluorescence was used

to calculate the amount of AFC released (in picomoles) during each reaction.

SDS-PAGE and Western Blot
Crude protein extracts (50 µg) were resolved by electrophoresis using 10% sodium dodecyl

sulfate-polyacrylamide gels and then transferred to a PVDF Immobilon-P membrane

(Bio-Rad, Mississauga, ON). Blots were blocked using 5% milk powder (Selection

brand, Marché Jean-Talon, Montréal, QC) and incubated with antibodies as follows:

1:250 dilution for anti-caspase-3, 1:1000 for anti-cleaved PARP, 1:1000 for anti-Bcl-2,

1:1000 for anti-Bax, and 1:1000 for anti-Bid. Immunoreactive proteins were exposed to

anti-rabbit horseradish peroxidise-conjugated secondary antibodies (Millipore) that were

diluted 1:5000. Antigen-antibody complexes were detected using Immobilon ECL Western

Chemiluminescent HRP Substrate (Millipore) and recorded with a Versadoc imaging

system (Bio-Rad). Total protein content per well was determined using 1× Amido Black

staining solution (Sigma-Aldrich).

Mass spectrometry
Mass spectrometry-based analysis of LCA and UDCA was performed as previously

reported (Bourque & Titorenko, 2009). In brief, lipids were extracted by a modified Bligh

and Dyer method (Bourque & Titorenko, 2009) from cells pelleted by centrifugation for

5 min at 16,000× g at 4◦C and from the supernatant of cultural medium. The extracted

lipids were dried under nitrogen and resuspended in chloroform. Immediately prior to
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injection the extracted lipids were combined with a 2:1 methanol:chloroform mixture

supplemented with 0.1% (v/v) ammonium hydroxide. The sample was injected directly

into a Thermo Orbitrap Velos equipped with a HESI-II ion source (Thermo Scientific,

Waltham, MA, USA) at a flow rate of 5 µl/min. Spectra were obtained in negative-ion

mode. The source voltage was set to 4.0 kV, a capillary temperature of 275◦C, a sheath gas

flow of 5 (arbitrary units) and an auxiliary gas flow of 1 (arbitrary units). Acquired spectra

were exported from Xcalibur software (Thermo Scientific) and then deconvoluted and

deisotoped using Excel macros.

Statistical analysis
All experiments were performed in at least triplicate using cells after various passages and

the data are presented as mean ± SEM. Statistically significant differences (p < 0.05)

between various treatments and untreated cells were determined using a two-tailed

Student t-test with Bonferroni correction for multiple comparisons. IC50 values for

inhibition of cell viability were calculated using a sigmoidal curve-fitting model of

log-inhibitor concentration versus normalized inhibition response, with variable slope

(GraphPad Prism v5.03, GraphPad Software, San Diego, CA).

RESULTS
Bile acids inhibit proliferation and induce cell death in LNCaP and
PC-3 cells
A 48 h treatment with LCA significantly decreased the number of intact LNCaP and PC-3

cells, with IC50 values of 40.5 ± 0.07 µM and 74.9 ± 0.25 µM, respectively, without

decreasing the viability of non-tumorigenic RWPE-1 cells (Fig. 1A). The hydrophobic

bile acids DCA and CDCA were less cytotoxic than LCA, decreasing cell viability at

concentrations above 100 µM in LNCaP and PC-3 cells (Figs. 1B and 1C). Relatively

hydrophilic bile acids, such as HDCA and UDCA, decreased the number of intact cells

at concentrations above 300 µM in either cell line, whereas CA was not cytotoxic at

concentrations as high as 500 µM.

In addition to LCA-mediated inhibition of cell viability, we assessed the ability of lower

concentrations of LCA to inhibit the AD proliferation of AR positive LNCaP prostate

cancer cells when stimulated with DHT. Indeed, LCA decreased the proliferation of

androgen-stimulated LNCaP cells in a concentration-dependent manner with an IC50

of 8.5 µM± 1.9 (Fig. 1D).

LCA induces a caspase-3-dependent apoptotic programme
To determine whether the caspases play a role in bile acid-induced prostate cancer cell

death, we determined the effects of LCA on caspase-3 activity in AD LNCaP and AI PC-3

cells. LNCaP and PC-3 cells exposed to sub-cytotoxic and cytotoxic concentrations of LCA

for 24 h contained increased levels of the cleaved and active 17 and 20 kDa subunits of the

34 KDa caspase-3 zymogen (Fig. 2A). In concordance with this observation, the catalytic

activity of caspase-3 was also increased after exposure to (sub)cytotoxic concentrations

of LCA (Fig. 2B). Also, levels of the 89 kDa fragment of poly ADP ribose polymerase
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Figure 1 Bile acids inhibit proliferation and induce apoptosis in androgen-dependent LNCaP and
-independent PC-3 prostate cancer cells. (A) Percentage of intact LNCaP, PC-3 and RWPE-1 cells that
did not have fragmented nuclei (apoptotic), condensed chromatin (apoptotic), or propidium iodide
staining (necrotic) was calculated 48 h after treatment with 50 or 75 µM of lithocholic acid (LCA).
The percentage of intact LNCaP cells (B) and PC-3 cells (C) was calculated 48 h after treatment with
increasing concentrations (10–500 µM) of lithocholic (LCA, •), deoxycholic (DCA, �), chenodeoxycholic
(CDCA, �), hyodeoxycholic (HDCA,N), ursodeoxycholic (UDCA,1) or cholic (CA, ◦) acid. (D) Relative
androgen-dependent growth rates of LNCaP cells grown in stripped RPMI 1640 medium without
phenol-red and co-treated with 0.1 nM DHT and increasing concentrations (1–25 µM) of LCA. Data
are presented as means± SEM (n= 3–5).

(PARP), an endogenous substrate of caspase-3 usually cleaved during apoptosis, were

significantly elevated in LNCaP cells, but not in PC-3 cells (Fig. 2C). Moreover, a cell

permeable inhibitor of caspase-3, z-DEVD-fmk, partially inhibited LCA-induced cell death

in both cell lines (Fig. 2D).

LCA does not accumulate inside LNCaP or PC-3 cells
To determine the extent to which LCA was able to enter human prostate cancer cells, we

determined the intra/extra cellular distribution of LCA under our experimental cell culture
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Figure 2 LCA-induced cell death is a caspase-3-dependent process. Cleavage of caspase-3 protein was
assessed by western blot (A) and catalytic activity (B) was measured by cleavage of the fluorogenic
substrate Ac-DEVD-AFC in response to a 24 h treatment of LNCaP cells and PC-3 cells with increasing
concentrations (25–75 µM) of LCA. (C) Cleavage of PARP after 24 h exposure of LNCaP cells to
increasing concentrations (25–75 µM) of LCA. (D) Inhibition of cell death after a 24 h co-exposure
of LNCaP (40 µM) or PC-3 (50 µM) cells to LCA and 10 µM of the membrane permeable caspase-3
inhibitor z-DEVD-fmk. In (B) and (D) responses are presented as means ± SEM (n = 3–5); ∗p < 0.05;
∗∗∗p< 0.001.

conditions. LNCaP and PC-3 cells did not accumulate LCA, with as much as 98% of the

nominal LCA concentrations present in the extracellular medium of LNCaP and PC-3

cultures after 24 h (Table 1). Also, neither cell line was able to accumulate the relatively

hydrophilic bile acid, UDCA, when treated with concentrations as high as 75 µM for 24 h

(Table 1).
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Table 1 Extra/intracellular distribution of LCA and UDCA in LNCaP and PC-3 human prostate
cancer cells in culture. Cells were separated from cultural media and the compounds were extracted and
their concentrations measured by mass spectrometry as described in Materials and Methods. Percentages
are presented as means± SD of three independent experiments.

Cell line Compound Concentration (µM) % of compound recovered

Medium Cells

LCA 25 97.28± 1.10 2.72± 1.10

50 94.15± 2.45 5.85± 2.45

UDCA 25 90.40± 3.86 9.60± 3.86
LNCaP

50 95.77± 0.10 4.23± 0.10

LCA 50 97.91± 0.05 2.09± 0.05

75 97.61± 1.93 2.39± 1.93

UDCA 50 97.56± 0.17 2.44± 0.17
PC-3

75 97.57± 0.67 2.43± 0.67

LCA activates extrinsic and intrinsic pathways of apoptosis in
human prostate cancer cell lines
The inability of LCA to significantly accumulate inside prostate cancer cells led us to

explore if LCA-induced cell death may occur through activation of the extrinsic pathway

of apoptosis. We found increased levels of active caspase-8 in extracts of both LNCaP

and PC-3 cells treated with increasing concentrations of LCA (Fig. 3A). LCA-induced cell

toxicity was also alleviated in the presence of the caspase-8 inhibitor, z-IETD-fmk (Fig. 3B).

Moreover, we found statistically significant increases of caspase-9 activity in both cell

lines (Fig. 4A) in addition to cleavage of pro-apoptotic Bcl-2 related proteins Bax and Bid

(Fig. 4B). However, we found decreased levels of Bcl-2 in PC-3 cells only (Fig. 4B). We

observed only a slight decrease in MMP in LNCaP cells after 8 h of exposure to LCA, but in

PC-3 cells we observed a marked decrease in MMP as early as after 1 h of treatment with

LCA (Fig. 4C).

DISCUSSION
We have previously shown that LCA can selectively kill human neuroblastoma cells at

concentrations non-toxic to normal human primary neurons (Goldberg et al., 2011). In the

present study, we provide evidence that LCA also possesses selective anticancer properties

against cultured AD and AI prostate cancer cells, whilst not affecting the viability of normal

epithelial prostate cells.

LCA activates a caspase-dependent mode of apoptosis in AD and
AI prostate cancer cells
We have shown that LCA kills LNCaP and PC-3 cells in a caspase-dependent manner by

activating the intrinsic and extrinsic pathways of apoptosis. In both prostate cancer cell

types, cell death induced by LCA appears to be at least partly dependent on the activity of

initiator caspase-8. Our observation is similar to those made in studies where treatment of

hepatocytes and colon cancer cells with bile acids resulted in a TGR5-dependent increase
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Figure 3 LCA activates the extrinsic pathway of apoptosis in androgen-dependent and -independent
prostate cancer cells. (A) Activity of caspase-8 was measured by cleavage of the fluorogenic substrate Ac-
IETD-AFC after 24 h of treatment of LNCaP and PC-3 cells with increasing concentrations (25–75 µM)
of LCA. (B) Inhibition of cell death after a 24 h co-exposure of LNCaP (40 µM) or PC-3 (50 µM) cells to
LCA and 10 µM of the membrane permeable caspase-8 inhibitor z-IETD-fmk. Activities are presented as
means± SEM (n= 3–5); ∗p< 0.05; ∗∗p< 0.01.

in levels of CD95/Fas death receptor in the plasma membrane, facilitating the activation

of caspase-8 and its downstream apoptotic machinery (Katona et al., 2009; Yang et al.,

2007). TGR5 is a cell surface membrane-bound metabotropic G-protein-coupled receptor

that is highly conserved among species and is found predominantly in gall bladder and

intestinal epithelium (Foord et al., 2005; Tiwari & Maiti, 2009). Although TGR5 mRNA

has been found in prostate cells (Kawamata et al., 2003), its function in this tissue has

yet to be established. LCA is a potent natural agonist of TGR5 and, upon direct binding

to the receptor, activates a cAMP/PKA signalling cascade, resulting in the modification

of the oxidation-reduction processes in the mitochondria with a resultant increase

in the generation of reactive oxygen species, thereby promoting the vesicle-mediated

trafficking of CD95/Fas from the Golgi apparatus to the plasma membrane (Hylemon et

al., 2009; Katona et al., 2009; Merrill et al., 2011; Pols et al., 2011; Sodeman et al., 2000;

Thomas et al., 2008; Wachs et al., 2005). Interaction between LCA and TGR5 may also

stimulate the phosphorylation of c-Jun-N terminal kinase (JNK) through activation of the

MEKKK1/2/3-MKK4/7 pathway, resulting in the release of pro-caspase-8 from JNK and

enabling its recruitment to CD95/Fas (Yang et al., 2007). That LCA does not accumulate

inside either LNCaP or PC-3 cells implies that LCA interacts directly with a cell surface

receptor in order to activate the extrinsic pathway of apoptosis, and that this identity of

this receptor is likely to be TGR5 as it is the only known cell surface receptor that binds bile

acids, a hypothesis we are currently investigating in detail.
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Figure 4 LCA activates the intrinsic pathway of apoptosis in androgen-dependent and -independent
prostate cancer cells. (A) Activity of caspase-9 was measured by cleavage of the fluorogenic substrate Ac-
LEHD-AFC after a 24 h treatment of LNCaP and PC-3 cells with increasing concentrations (25–75 µM)
of LCA. (B) Expression levels of Bcl-2 and cleavage of Bax and Bid after a 24 h exposure of LNCaP and
PC-3 cells to increasing concentrations (25–75 µM) of LCA. (continued on next page...)
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Figure 4 (...continued)

(C) Mitochondrial membrane permeability was measured using TMRE in LNCaP and PC-3 cells treated
with 50 and 75 µM LCA, respectively. In (A) and (C) responses are presented as means± SEM (n= 3–5);
∗p< 0.05; ∗∗p< 0.01.

Our observation that Bid is cleaved after treatment with LCA suggests that once

caspase-8 is activated it would continue to cleave Bid, thereby initiating the intrinsic

pathway of apoptosis. In fact, treatment of neuroblastoma cells with LCA resulted in

MOMP, which allowed the exit of cytochrome c, formation of the apoptosome and

ultimately activation of caspase-9 (Goldberg et al., 2011). In the present study, we show

that LCA induces Bax cleavage, suggesting an induction of MOMP and mitochondrial

fragmentation, resulting in the observed activation of caspase-9 in both cell lines.

Moreover, we show that LCA causes loss of MMP in PC-3 cells as soon as 1 h after

treatment, showing that LCA induces MOMP in at least one type of prostate cancer cell, in

addition to neuroblastoma cells, and that the induction of MOMP is an early-stage event

in the induction of apoptosis in these cells. We did not observe a statistically significant

decrease in MMP in LNCaP cells up to 8 h after exposure to LCA, indicating that the onset

of MOMP in these cells is a later-stage event that would appear to occur after activation

of caspase-8. Therefore, it is possible that LCA may transmit a MOMP-activating signal

through interaction with a cell surface receptor that requires numerous steps in order to

target the mitochondria and activate the intrinsic pathway of apoptosis. Additionally, the

reduction in the levels of Bcl-2 observed only in PC-3 cells may suggest a larger role for

Bcl-2 in promoting the intrinsic pathway of apoptosis in these cells, and may help explain

why LCA increased MOMP much earlier in PC-3 cells than in LNCaP cells.

We saw increases in the activity of caspase-3 in each cell line treated with LCA, and

cell death induced by LCA was only partially dependent on this main effector caspase.

Previous studies have shown that the cleaved form of Bax can significantly sensitize cells

to stress-induced apoptosis by releasing cytochrome c, apoptosis-inducing factor and

endonuclease G from the mitochondria (Cao, Deng & May, 2003; Gao & Dou, 2000; Toyota

et al., 2003; Wood & Newcomb, 2000; Cabon et al., 2012; Moubarak et al., 2007; Whiteman

et al., 2007). Paired with our observation that inhibition of caspase-8 did not completely

abrogate LCA-induced cell death, it is likely that LCA induces both caspase-dependent and

-independent modes of apoptosis in prostate cancer cells.

Pharmacophore modeling of the anticancer activity of bile acids
We tested the ability of a wide range of bile acids to induce cell death in AD (LNCaP)

and AI (PC-3) prostate cancer cells and found that LCA was the most effective bile acid,

while two other hydrophobic bile acids, DCA and CDCA, were moderately toxic to these

cells. Addition of alpha-oriented hydroxyl groups at the 7- or 12-positions (CDCA and

DCA, respectively) or at the 6-position (HDCA) significantly reduced the cytotoxicity

of the bile acid structure. Moreover, addition of beta-oriented hydroxyl groups to the

molecule at the 12-position (UDCA) further reduced the toxicity of the bile acid in each

cell line, whereas the addition of two alpha-oriented hydroxyl groups to both the 7- and
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12-positions rendered the resultant bile acids non-cytotoxic. Therefore, reduction of the

hydrophobicity of the alpha- or beta-faces of the steroid backbone is sufficient to negate

the toxicity of the molecule. Such a relationship between bile acid hydrophobicity and

potency, where the hydrophobicity is directly correlated with the biological activity of the

molecule, has been described in two other contexts: (1) TGR5 receptor activation in a

reporter system (Kawamata et al., 2003), and (2) extension of lifespan of chronologically

aging yeast (Goldberg et al., 2010). In support of a possible involvement of TGR5 in bile

acid-induced cell death, we found a highly significant correlation between the potency

of each cytotoxic bile acid in LNCaP cells and its reported EC50 for induction of TGR5

receptor-mediated luciferase activity (r = 0.96; n= 4; p< 0.001) in transiently transfected

Chinese Ovarian Hamster cells (Sato et al., 2008). The inability of LCA and UDCA to enter

LNCaP or PC-3 cells would suggest they would have equal opportunity to interact with a

cell surface membrane receptor in order to induce apoptosis, yet LCA was far more potent

than UDCA, supporting the notion that a specific interaction between LCA and a cell

surface receptor, possibly TGR5, could be the event responsible for the apoptotic death of

prostate cancer cells. With respect to the lesser toxic bile acids, our results are consistent

with a previous study of bile acids in PC-3 cells where concentrations of CDCA and UDCA

as high as 100 µM did not result in significant cell death (Choi et al., 2003).

LCA inhibits proliferation of AD prostate cancer cells
In our study, LCA inhibits the proliferation of DHT-stimulated LNCaP cells, yet it is

unlikely that LCA directly antagonizes the AR, because it does not accumulate inside

LNCaP cells. Instead, it is possible that the inhibition of LNCaP cell growth is related to

the ability of LCA to interact with cell surface receptors, such as TGR5, which can activate

JNK, thereby antagonizing the NFκB pro-survival pathway (Yang et al., 2007), or any

other cell surface receptor capable of inhibiting androgen-independent processes related

to proliferation of these cells. It has previously been reported that LCA can directly bind

to two key negative regulators of p53, MDM2 and MDM4 (Vogel et al., 2012). However,

it is unlikely that LCA directly inhibits either of these cytoplasmic proteins directly due to

its inability to enter prostate cancer cells. It is still possible that LCA might upregulate p53

expression via a Mnt-Max to Myc-Max switch in nuclear binding of E-box sequences in

these cells (Yang et al., 2009), but our results imply that this would be more likely the result

of an upstream event, such as the activation of a cell surface receptor.

Broad anticancer activity of LCA toward various cancerous tis-
sues
Our findings in this report share several similarities with those we described previously

in neuroblastoma cells treated with LCA (Goldberg et al., 2011): (1) LCA elicits apoptosis

in a caspase-3 dependent manner, (2) LCA activates both extrinsic and intrinsic pathways

of apoptosis and (3) LCA enters neither neuroblastoma nor prostate cancer cells. It is

then probable that these cancerous tissues share a common target, which is most likely

localized at the surface of the plasma membrane and is either activated or deactivated

by LCA in order to elicit apoptosis. Additionally, the concentrations used to kill prostate
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cancer was found to be in a similar range to that of neuroblastoma cells (between 25

and 100 µM), and these concentrations were found to be non-toxic to both normal

human primary neurons and non-tumourigenic immortalised prostate cells. We have

also found that concentrations well below those needed to induce apoptosis (2.5–10 µM)

can inhibit the proliferation of AD prostate cancer cells. Though ingesting amounts of

LCA in order to reach plasma concentrations as high as these might be lethal, methods of

employing LCA in a more targeted manner, using nanoparticle-encapsulation techniques

(Makadia & Siegel, 2011) or delivery via infection with the bacteria Listeria monocytogenes

(Quispe-Tintaya et al., 2013), allowing for its accumulation in only immune-compromised

metastatic tissues without killing the surrounding tissues, could be successfully developed

to employ LCA as an anti-cancer compound. It is then pertinent to understand the exact

molecular mechanism of cell death instigated by LCA, to develop novel strategies to

enhance the ability of LCA or newly designed compounds to trigger (the) LCA-mediated

anticancer pathway(s), as well as to validate these strategies using in vivo models of

neuroblastoma, prostate and other cancers.
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