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 20 

Abstract 21 

Floods, as extreme hydrological phenomena, can be described by more than one 22 

correlated characteristic such as peak, volume and duration. These characteristics should 23 

be jointly considered since they are generally not independent. For an ungauged site, 24 

univariate regional flood frequency analysis (FA) provides a limited assessment of flood 25 

events. A recent study proposed a procedure for regional FA in a multivariate framework. 26 

This procedure represents a multivariate version of the index-flood model and is based on 27 

copulas and multivariate quantiles. The performance of the proposed procedure was 28 

evaluated by simulation. However, the model was not tested on a real-world case study 29 

data. In the present paper, practical aspects are investigated jointly for flood peak (Q) and 30 

volume (V) of a data set from the Côte-Nord region in the province of Quebec, Canada. 31 

The application of the proposed procedure requires the identification of the appropriate 32 

marginal distribution, the estimation of the index flood and the selection of an appropriate 33 

copula. The results of the case study show a good performance of the regional bivariate 34 

FA procedure. This performance depends strongly on the performance of the two 35 

univariate models and more specifically the univarite model of Q. Results show also the 36 

impact of the homogeneity of the region on the performance of the univariate and 37 

bivariate models. 38 

 39 

 40 
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1. Introduction and literature review 41 

A flood can be described as a multivariate event whose main characteristics are peak, 42 

volume and duration. Thus, the severity of a flood depends on these characteristics, 43 

which are mutually correlated (Ashkar 1980, Yue et al. 1999, Ouarda et al. 2000, Yue 44 

2001, Shiau 2003, De Michele et al. 2005, Zhang and Singh 2006, Chebana and Ouarda 45 

2009, Chebana and Ouarda 2011). These studies show that these variables have to be 46 

jointly considered.  47 

The use of joint probabilistic behaviour of correlated variables is necessary to understand 48 

the probabilistic characteristic of such events. Yue et al. (1999) used the bivariate 49 

Gumbel mixed model with standard Gumbel marginal distributions to represent the joint 50 

probability distribution of flood peak and volume, and flood volume and duration. 51 

Ouarda et al (2000) were first to study the joint regional behaviour of flood peaks and 52 

volume. To model flood peak and volume, Yue (2001) and Shiau (2003) used the 53 

Gumbel logistic model with standard Gumbel marginal distributions. Recently, copulas 54 

have been shown to represent a useful statistical tool to model the dependence between 55 

variables. To model flood peak and volume with Gumbel and Gamma marginal 56 

distribution respectively Zhang and Singh (2006) used the copula method, bivariate 57 

distributions of flood peak and volume, and flood volume and duration in frequency 58 

analysis (FA). Using the Gumbel–Hougaard copula, Zhang and Singh (2007) derived 59 

trivariate distributions of flood peak, volume and duration in FA. 60 

Generally, the record length of the available streamflow data at sites is much shorter than 61 

the return period of interest and in some cases, there may not be any streamflow record at 62 
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these sites. Consequently, local frequency estimation is difficult and/or not reliable. 63 

Regional FA is hence commonly used to overcome this lack of data. It is based on the 64 

transfer of available data from other stations within the same hydrologic region into a site 65 

where little or no data are available. The regional FA procedure was investigated with 66 

different approaches by several authors including Stedinger and Tasker (1986), Rocky 67 

Durrans and Tomic (1996), Nguyen and Pandey (1996), Hosking and Wallis (1997), Alila 68 

(1999, 2000) and Ouarda et al. (2001). GREHYS (1996a, 1996b) presented an 69 

intercomparison of various regional FA procedures.  70 

In the literature, flood FA can be classified into four classes according to the 71 

univariate/multivariate and local/regional aspects. The local-univariate and regional-72 

univariate classes were widely studied in the literature (Singh 1987, Wiltshire 1987, Burn 73 

1990, Hosking and Wallis 1993, Hosking and Wallis 1997, Alila 1999, Ouarda et al. 74 

2006, Nezhad et al. 2010). Recently, researchers have been increasingly interested in the 75 

multivariate case and many studies treated the problem of local-multivariate flood FA 76 

(Yue et al. 1999, Yue 2001, Shiau 2003, De Michele et al. 2005, Grimaldi and Serinaldi 77 

2006, Zhang and Singh 2006, Chebana and Ouarda 2011). However, multivariate 78 

regional FA has received much less attention (Ouarda et al. 2000, Chebana and Ouarda 79 

2007, Chebana and Ouarda 2009, Chebana et al. 2009).  80 

The two main steps of the regional FA are the delineation of hydrological homogeneous 81 

regions and regional estimation (GREHYS 1996a). In the multivariate case, the 82 

delineation of hydrological homogeneous regions was treated by Chebana and Ouarda 83 

(2007). They proposed discordancy and homogeneity tests that are based on multivariate 84 

L-moments and copulas. Chebana et al. (2009) studied the practical aspects of these tests. 85 
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In univariate-regional FA, different methods were proposed to estimate extreme quantiles 86 

such as regressive models and index-flood models (e.g. GREHYS 1996a, 1996b). 87 

Chebana and Ouarda (2009) proposed a procedure for regional FA in a multivariate 88 

framework. The proposed procedure represents a multivariate version of the index-flood 89 

model. In this method, it is assumed that the distribution of flood characteristics (flood, 90 

peak or volume) at different sites within a given flood region is the same except for a 91 

scale parameter. Chebana and Ouarda (2009) adopted the multivariate quantile as the 92 

curve formed by the combination of variables corresponding to the same risk (Chebana 93 

and Ouarda 2011). In order to model the dependence between variables describing the 94 

event they employed the copula. In the present paper, practical aspects of the proposed 95 

procedure by Chebana and Ouarda (2009) are studied. Real data sets from sites in the 96 

Côte Nord region in the northern part of the province of Quebec, Canada are used. Flood 97 

peak and volume are the two variables studied jointly in the present study.  98 

The next section presents the theoretical background, including the bivariate modelling, 99 

univariate index-flood model and multivariate quantiles. The “Multivariate Index-flood 100 

Model” section details the methodology of the adopted procedure with an emphasis on 101 

practical aspects. The case study section presents the study procedure as well as the 102 

obtained results. Concluding remarks are presented in the last section. 103 

2. Background 104 

In this section, the background elements to apply the index-flood model in the 105 

multivariate regional FA procedure are presented. Bivariate modelling including copulas 106 
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and marginal distributions, univariate index-flood model and multivariate quantiles are 107 

briefly described. 108 

II.2.1. Bivariate flood modelling and copulas 109 

In bivariate modelling, a joint bivariate distribution for the underlying variables has to be 110 

obtained. According to Sklar’s theorem (1959), the bivariate distribution is composed of 111 

a copula and two margins which are not necessarily similar. 112 

In the remainder of the paper, we denote FX and FY respectively the marginal distribution 113 

functions of given random variables X and Y, and FXY the joint distribution function of the 114 

vector (X,Y). 115 

a) Copula 116 

Due to its ability to overcome the limitation of classical joint distributions, copulas have 117 

received increasing attention in various fields of science (see e.g. Nelsen 2006). Copulas 118 

are used to describe and model the dependence structure between the two random 119 

variables. A copula is an independent function of marginal distributions. For more details 120 

on copula functions, see for instance Nelsen (2006), Chebana and Ouarda (2007) and 121 

Salvadori et al. (2007). According to Sklar’s (1959) theorem, we can construct the 122 

bivariate distribution FXY with margins FX and FY by:  123 

      , ,XY X YF x y C F x F y     for all real x and y (1) 

When FX and FY are continuous, the copula C is unique.  124 

Different classes of copulas are studied in the literature such as the Archimedean, 125 

Elliptical, Extreme Value (EV), Plackette and Farlie-Gumbel-Morgenstern (FGM) 126 
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copulas (see e.g. Nelsen 2006, Salvadori et al. 2007). The use of a copula requires the 127 

estimation of its parameters as well as goodness-of-fit procedures. In addition, since in 128 

hydrology we are particularly interested by the risk, the tail dependence of copulas is also 129 

a factor to take into account.  130 

Copula parameter estimation: Assuming the unknown copula C belongs to a parametric 131 

family   2;θ:Cθ0  qRC q . The estimation of the parameter vector θ is the first step to 132 

deal with. In the case of one-parameter bivariate copula, a popular approach consists of 133 

using the method of moment-type based on the inversion of Spearman’s ρ and Kendall’s 134 

τ. Demarta and McNeil (2005) have shown that such approach may lead to 135 

inconsistencies. The maximum pseudo-likelihood (MPL) approach is shown to be 136 

superior to the other ones (Besag 1975, Genest et al. 1995, Shih and Louis 1995, Kim et 137 

al. 2007) in which the observed data are transformed via the empirical marginal 138 

distributions to obtain pseudo-observations on which the maximum-likelihood approach 139 

is based to estimate the associated copula parameters (Genest et al. 1995). The advantage 140 

of this approach is that it can provide greater flexibility than the likelihood approach in 141 

the representation of real data. It consists in maximizing the log pseudo-likelihood: 142 

 
   

1

ˆlog log
n

i
i

L c U


  (2)  

where c denotes the density of a copula 
θ 0C C , and  ˆ ˆ ˆ,k kX kYU U U


 are the pseudo-143 

observation obtained from X k Yk   given by: 144 

 
 klÛ ,    1,..., ;     or 1

klR k n l X Yn  
 (3)  

with RkX being the rank of Xk among X1,…,Xn and RlY being the rank of Yl among Y1,…,Yn. 145 
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Goodness-of-fit test: The most important step in copula modelling is the copula selection 146 

by the goodness-of-fit test. Formally, one wants to test the hypotheses: 147 

 0 0 1 0:    against   :H C C H C C   (4)  

Due to the novelty of copula modelling in flood FA, there is no common goodness-of-fit 148 

test for copulas. One of the most commonly used goodness-of-fit tests and valid only for 149 

Archimedean copulas is the graphic test proposed by Genest and Rivest (1993) based on 150 

the K function given by  151 

    
  10    


 u
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  (5)  

where  is the generator function of the Archimedean copula. The K function can be 152 

estimated by  153 
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for a given bivariate sample      NN uuuuuu 21
2
2

2
1

1
2

1
1 , , . . . ,, ,, . Genest and Revest (1993) have 154 

shown that K̂  is a consistent estimator of K under weak regularity conditions. Note that 155 

Archimedean copulas are widely employed in hydrology and particularly to model flood 156 

dependence.  157 

Recently, a relatively large number of goodness-of-fit tests were proposed (see e.g. 158 

Charpentier 2007, Genest et al. 2009, for extensive reviews). Genest et al. (2009) carried 159 

out a power study to evaluate the effectiveness of various goodness-of-fit tests and 160 

recommended a test based on a parametric bootstrapping procedure which makes use of 161 

the Cramer-von Mises statistic Sn (Sn goodness-of-fit test) :  162 
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         vudCvuCvuCnS nnn n
,,, 2

  
(7)  

where Cn is the empirical copula calculated using n observation data. and Cθn is an 163 

estimation of C obtained assuming 0CC . The estimation Cθn is based on the estimator 164 

θn of θ such as the maximum pseudo-likelihood estimator given in (2). 165 

b) AIC for copula  166 

In some cases, results of the goodness-of-fit testing show that more than one copula 167 

provide a good fit to the data set. To select the most adequate copula, we use the AIC 168 

(Akaike's information criterion) proposed by Kim et al. (2008) in the context of copulas: 169 

 

  
ˆ2log( ( ; , )) 2 ; 

ˆ ˆ( ; , ) log  ( ), ( ),X Y

AIC L X Y r

L X Y c F X F Y



 

  


 (8)  

where ̂  is the estimation of the copula parameter vector θ, r is the dimension of θ and c 170 

is the copula density.  171 

The copula which has the lowest AIC value is the most adequate copula for the data set. 172 

c) Marginal distributions 173 

To selection of the most appropriate marginal distribution (for X and for Y). The choice of 174 

the appropriate distribution is based on the Chi-square goodness-of-fit test, graphics and 175 

selection criteria (AIC see e.g. Akaike (1973) and BIC see e.g. Schwarz (1978)). For 176 

parameter estimation, a number of methods are available in the literature to estimate 177 

marginal distribution parameters; such as, the method of moments, the maximum 178 

likelihood method and the L-moments method. 179 
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II.2.2. Univariate Index-flood model 180 

Introduced by Dalrymple (1960), the index-flood model was used initially for regional 181 

flood prediction. It is also used to model other hydrological variables including storms 182 

and droughts (e.g. Pilon 1990, Hosking and Wallis 1997, Hamza et al. 2001, Grimaldi 183 

and Serinaldi 2006). This model is based on the assumption of the homogeneity of the 184 

considered region and all the sites in the region have the same frequency distribution 185 

function apart from a scale parameter specific to each site. Let Ns be the number of sites 186 

in the region. The model gives the quantile Qi(p) corresponding to the non-exceedance 187 

probability p at site i as:  188 

  ( ) ,      1     and    0 1i i sQ p q p i ,....,N p     (9)  

where μi corresponds to the index flood and q is the regional growth curve.  189 

The index flood parameter μi can be estimated using a number of approaches (Hosking 190 

and Wallis 1997). For instance, Brath et al. (2001) used three models of estimating the 191 

index flood parameter. These models are multi-regression model, rational model and 192 

geomorphoclimatic model. They show that best results are given by considering the 193 

multi-regression model of the form: 194 

 31 2
0 1 2 3ˆ ... na aa a

i npa A A A A   (10) 

in which ai are coefficients to be estimated, and Ai,…, Anp represent an appropriate set of 195 

morphological and climatic characteristics of the basin such as watershed area and slope 196 

of the main channel.  197 
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II.2.3. Multivariate quantiles 198 

Unlike to the well-known univariate quantile, the multivariate quantile has received less 199 

attention in hydrology. Despite that, a few studies proposed multivariate quantile 200 

versions. For details, the reader is referred to Chebana and Ouarda (2011). The pth 201 

bivariate quantile curve for the direction ε is defined as:  202 

       2, , : ,XYq p x y R F x y p     (11) 

with p I  is the risk and F(x,y) is the bivariate cumulative distribution function given 203 

by:  204 

    , Pr ,F x y X x Y y    (12) 

which represents the probability of the simultaneous non-exceedance event. Other events 205 

can also be considered (see Chebana and Ouarda 2011 for more details). 206 

The bivariate quantile in (10) is a curve corresponding to an infinity of combinations (x,y) 207 

that satisfies  ,F x y p . For the event ,X x Y y  , using (2) and (10), the quantile 208 

curve can be expressed as follows:  209 

 
 

   
     

2 1

1

,    such that   ,

;  , 0,1 : ,
X

XY
Y

x y R x F u
q p

y F v u v C u v p





     
    

 (13) 

The index-flood model used in this paper is based on (12). The resolution of (12), using 210 

copula and margin distribution, gives an infinity of combinations (x,y). These 211 

combinations constitute the corresponding quantile curve. The main properties of the 212 

index-flood model are (see Chebana and Ouarda 2011 for more details):  213 

1. The marginal quantiles are special cases of the bivariate quantile curve. Indeed, they 214 

correspond to the extreme scenarios of the proper part related to the event; 215 
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2. The bivariate quantile curve is composed of two parts: naïve part and proper part. 216 

The proper part is the central part whereas the naïve part is composed of two 217 

segments starting at the end of each extremity of the proper part; 218 

3. When the risk p increases, the proper part of the bivariate quantile becomes shorter. 219 

3. Multivariate index-flood model in practice 220 

The following procedure is proposed by Chebana and Ouarda (2009) and represents a 221 

complete multivariate version of regional FA. Since Chebana and Ouarda (2009) 222 

represent a theoretical study, we propose in the present paper a methodology of 223 

application of this procedure on a real world case study. The multivariate index-flood 224 

model regional estimation requires the delineation of a homogeneous region. 225 

The step of delineation of a homogeneous region is treated by Chebana and Ouarda 226 

(2007) in the multivariate case. Based on multivariate L-moments, they proposed 227 

statistical tests of multivariate discordancy D and homogeneity H. The practical aspects 228 

of these tests are studied in Chebana et al. (2009). 229 

The estimation procedure of the extreme event by the multivariate index-flood model is 230 

developed by Chebana and Ouarda (2009). It consists in extending the index-flood model 231 

to a multivariate framework using copula and multivariate quantiles. In this step, the 232 

homogeneity of the region is assumed. Indeed, non-homogeneous sites must be removed 233 

in the first step.  234 
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Let 'N  be the number of sites in the homogeneous region with record length ni at site i, 235 

1,..., '.i N  The goal is to estimate, at the target site l, the bivariate and marginal 236 

quantiles corresponding to a risk p. 237 

Let  ,   for  1,..., '; 1,..., ,ij ij ix y i N j n  be the data where x and y represent the observations of 238 

the considered variables. Let qp be the regional growth curve which represents a quantile 239 

curve common to the whole region.  240 

The complete procedure of determination of the bivariate quantile curve for an ungauged 241 

site is described as follows: 242 

1. Identify the homogeneous region to be used in the estimation as follows: to 243 

identify and remove discordant sites, apply the multivariate discordancy test D 244 

and check the homogeneity of the remaining sites by the homogeneous test H. In 245 

practice, it's very difficult to find an exactly homogeneous region. According to 246 

Hosking and Wallis (1997), approximate homogeneity is sufficient to apply a 247 

regional FA, in the multivariate framework, this procedure was developed by 248 

Chebana and Ouarda (2007) and results will be used in this paper. 249 

2. Assess the location parameters μiX and μiY i=1,…,N’ and standardize the sample 250 

(xij,yij), j=1,…,ni to be: 251 

 
,ij ij

ij ij
iX iY

x y
x y

 
    (14) 

3. Select the bivariate distribution which is composed of a copula and two margins. 252 

In this step, our goal is to identify adequate marginal distributions and copula for 253 

the whole region to fit the standardized data  ', 'ij ijx y . This step is described as 254 

follows: 255 
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a) Collect the data from the homogeneous region to get a sample  '', ''k kx y  256 

'

1
1,..., ;   

N

i
i

k n n n


  . This sample will be used to select the marginal 257 

distributions and copula. 258 

b) Identify the adequate marginal distributions (for X and for Y) using the 259 

AIC, BIC and graphical criteria. 260 

c) Select the adequate copula using the graphic test proposed by Genest and 261 

Rivest (1993) and the AIC criterion.  262 

4. For each site i, i=1,…,N’, estimate the parameters of marginal distributions and 263 

copula family selected in step 3. For the copula family, the MPL method is used 264 

to estimate the copula parameter. However, for marginal distributions, the 265 

estimation method depends on the marginal distribution. Let  i
k̂  be the estimator 266 

of the kth parameter from the standardized data of the ith site k=1,…, s; s is the 267 

number of parameters to be estimated, 1,..., 'i N . Obtain the weighted regional 268 

parameter estimators: 269 

  
'

1
'

1

ˆ
ˆ ,    1,...,

N
i

i k
r i
k N

i
i

n
k s

n


 



 



 (15) 

5. For a given value of risk p, estimate different combinations of the estimated 270 

growth curve  pq yx,ˆ  from (12) using the fitted copula with the corresponding 271 

weighted regional parameter  R
k̂ with k=1,…, s. 272 

6. Estimate the index flood parameter by a multivariate multiple regression model 273 

    log logE A     (16) 
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where μ is the index flood vector, A is the matrix of watershed physiographic 274 

characteristics, E is the matrix of coefficients to estimate and ε is the error. The 275 

estimation of index flood can be separated into two steps: 276 

a) Choice of physiographic characteristics: the aim of this step is to select, from 277 

a list of physiographic characteristics, the optimal set of physiographic 278 

characteristics to be considered in the model. Here, the order of 279 

characteristics in the selected set is important. The method of multivariate 280 

stepwise regression based on the Wilks statistics was used (see e.g. Rencher 281 

2003).  282 

b) Estimation of the coefficients E: the method of maximum likelihood is used 283 

(Meng and Rubin 1993).  284 

7. Multiply each growth curve combination with the vector of index flood of the 285 

target l: μlX and μlY 286 

     ˆ ˆ ,   0 p 1
 

lXr
xy xyl

lY

μ  
Q p q p

μ
 

   
 

 (17) 

Hence, the obtained result in (16) is an estimation of the bivariate regional quantile 287 

associated to the risk p.  288 

To evaluate the performance of the regional FA models, Hosking and Wallis (1997) 289 

suggested an assessment procedure that involves generation of regional average L-290 

moments through a Monte Carlo simulation. This procedure is based on the Jackknife 291 

resampling procedure (e.g. Chernick 2012). It consists in considering each site as an 292 

ungauged one by removing it temporarily from the region and estimating the bivariate 293 

and univariate regional quantiles for various nonexceedance probabilities p in the 294 

simulations. This is similar, for instance, to Ouarda et al (2001) in the regional frequency 295 
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analysis context. At the mth repetition, the regional growth curves and the site i quantiles 296 

are computed. 297 

As indicated in Chebana and Ouarda (2009), the performance of the corresponding 298 

bivariate regional FA model cannot be evaluated on the basis of the usual performance 299 

evaluation criteria. The evaluation is based on the deviation between the regional and 300 

local quantile estimated curves. The quantile curve is denoted by (x, Gp(x)). The relative 301 

error between the regional and local quantile curves is given by: 302 

      
 

r l
p p

p l
p

G x G x
R x

G x


  (18)  

where exponents r and l referring respectively to regional and local quantile curves.  303 

This relative difference represents vertical point-wise distances between the two quantile 304 

curves. In order to evaluate the estimation error for a site I, Chebana and Ouarda (2009) 305 

proposed the bias and root-mean-square error respectively given by 306 

         2

1 1

100 1*  and  100
M M

i m m m
m m

B p REI p R p REI p
M M 

    (19)  

where M is the number of simulations, REI* and REI are the two relative integrated error 307 

of the simulation m defined respectively by 308 

    1* ,  0 1
p

p
p QC

REI p R x dx p
L

    (20)  

    1 ,  0 1
p

p
p QC

REI p R x dx p
L

  
 

(21)  

with Lp is the length of the proper part of the true quantile curve QCp for the risk p. 309 

To summarize these criteria over the sites of the region, it is possible to average them to 310 

obtain the regional bias, the absolute regional bias and the regional quadratic error given 311 

respectively by  312 
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(22)  

4. Case study 313 

The application of the index-flood model in a multivariate regional FA framework 314 

concerns a regional data set of interest for the Hydro-Québec Company. The two main 315 

flood characteristics, that is, volume V and peak Q are jointly considered. These flood 316 

features are random by definition since they are based on the flood starting and ending 317 

dates. The latter are obtained using an automatic method which consists in the analysis of 318 

cumulative annual hydrographs by adjusting the slopes with a linear approximation (e.g. 319 

Ben Aissia et al. 2012). The employed data is used in Chebana et al. (2009). They are 320 

from sites in the Côte Nord region in the northern part of the province of Quebec, 321 

Canada. The number of sites in the region is N=26 stations with record lengths ni between 322 

14 and 48 years. More information about the data is given in Table 1. Figure 1 presents 323 

the geographical location and the correlation coefficient between Q and V for the 324 

underlying sites. 325 

II.4.1. Study procedure: 326 

The procedure of the study is composed of the following eight steps: 327 

1. Delineate the homogeneous region; 328 

2. Assess the location parameters μiV and μiQ for i = 1,…, N’ given by (13); 329 
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3. Select a family of regional multivariate distributions to fit the standardized data of 330 

the whole region; 331 

4.  For each site in the homogeneous region, estimate the parameters of the marginal 332 

distributions and copula family. Estimate the regional parameter estimator  ˆ R
k by 333 

(14); 334 

5. Estimate different combinations of the estimated growth curve  ,ˆv qq p  from (12); 335 

6. Estimate the index flood by a multiregression model (15); 336 

7. Using (16), estimate the bivariate regional quantiles associated to the risk p; 337 

8. For each flood characteristic, estimate the univariate regional growth curve and 338 

using (8) estimate the univariate regional quantile; 339 

9. Evaluate the performance of the regional models (univariate and bivariate) by 340 

Monte Carlo simulation. 341 

II.4.2. Result and discussion 342 

In this section, results of the application of the adopted procedure are presented. First, 343 

results of the multivariate homogeneity study are briefly presented followed by the results 344 

of the index-flood regional estimation. 345 

Discordancy and homogeneity 346 

The employed data is the same used in Chebana et al. (2009) and the discordancy and 347 

homogeneity results are presented in that reference and in Table 1.The sites that may be 348 

discordant have a large discordancy value. Results show that: 349 

- Sites 2 and 16 are discordant for V; 350 
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-  Site 2 or sites 2 and 3 are discordant for Q; 351 

- Sites 2 and 21 are discordant for (V,Q). 352 

The two sites 2 and 21 are eliminated to allow application of the respective homogeneity 353 

test. Table 2 presents the homogeneity test values for the region for V, Q and (V,Q) after 354 

removing the two discordant sites (2 and 21). From Table 2, according to the statistic H, 355 

we conclude that the region is homogeneous for V, heterogeneous for Q and could be 356 

homogeneous for (V,Q). 357 

Identification of marginal distributions 358 

In regional FA, a single frequency distribution is fitted from the whole standardized data. 359 

In general, it will be difficult to get a homogeneous region, consequently there will be no 360 

single “true” marginal distribution that applies to each site (Hosking and Wallis 1997). 361 

Therefore, the aim is to find a marginal distribution that will yield accurate quantile 362 

estimates for each site. The scale factor of this marginal distribution changes from one 363 

site to another.  364 

Figure 2 shows that the adequate marginal distributions are Gumbel for Q and GEV for 365 

V. Results for the appropriate marginal distributions are in agreement with those of 366 

similar studies e.g. Cunnane and Nash (1971) and De Michele and Salvadori (2002). 367 

Identification of copula 368 

Table 1 indicates that the dependence between V and Q varies from 0.34 to 0.82 while 369 

Figure 1 shows that the dependence variability is scattered over the entire study area. The 370 

graphic test based on the K function (5) with the estimate (6) is applied for the three 371 
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Archimedean copulas: Gumbel, Frank and Clayton. This test leads to fitting the Frank 372 

copula to the bivariate data for the studied region. The illustration of this fitting is 373 

presented in Figure 3.  374 

The AIC and p-value of the Sn goodness-of-fit test described earlier and proposed by 375 

Kojadinovic and Yan (2009) are also calculated for the commonly considered copulas in 376 

hydrology. However, direct results show that none of the commonly used copulas in 377 

hydrology can be accepted. Even though, the graphic test based on the K function 378 

indicates excellent fitting with Frank copula, the Sn goodness-of-fit test rejects this 379 

copula, as well as the other ones being considered. First, the reason may be that 380 

numerical tests tend to be narrowly focused on a particular aspect of the relationship 381 

between the empirical copula and the theoretical copula and often try to compress that 382 

information into a single descriptive number or test result (see e.g. NIST 2013). Second, 383 

the test is widely and successfully applied to at-site hydrological studies which is not the 384 

case for regional studies where the total sample size is very large (here n=714). The 385 

performance of Sn goodness-of-fit test could be affected when the sample size is large as 386 

indicated in Genest et al. (2009). In addition, in terms of application, Vandenberghe et al. 387 

(2010) indicated limitation of this test for long sample size like in rainfall. Therefore, to 388 

overcome this situation, this test is applied to the data series of each site separately. This 389 

is justified since basically regional FA assumes the same distribution in each site apart 390 

from a scale factor (see e.g. Hosking and Wallis 1997, Ouarda et al. 2008). However, 391 

according to Hosking and Wallis (1997), it is difficult in practice to have a single 392 

distribution which provides a good fit for each site. The goal is hence to find a 393 

distribution that will yield accurate quantile estimates for all sites. For the present case-394 
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study, results (Table 3) show that Frank is the most accepted copula in the study sites 395 

(accepted by the Sn goodness-of-fit test for 20 sites and sorted best by AIC for 17 sites 396 

among 24 sites). Frank copula has already been shown to be adequate to model the 397 

dependence between flood V and Q in a number of hydrological studies (see e.g. 398 

Grimaldi and Serinaldi 2006). Finally, based on the above arguments (at-site Goodness-399 

of-fit selection, regional graphic test based on the K function, regional and at-site AIC, 400 

hydrological literature), the Frank copula is selected for the present case-study. 401 

Therefore, the appropriate copula is Frank defined by: 402 

     1 11, ln 1 ;     0 ;    0 , 1
ln 1

u v

C u v u v

 


 

  
     

  
 (23)  

where γ is the parameter to be estimated. The choice of the adequate copula is in 403 

agreement with those of similar studies e.g Lee et al. (2012). 404 

Estimation of parameters associated to margins and copula 405 

Parameters of marginal distributions and copula for each site and their corresponding 406 

confidence intervals are presented in Figure 4 while Table 4 showing the regional 407 

parameters of the marginal distributions and copula determined by (14). The MPL is 408 

employed for the copula parameter. For the Gumbel distribution, μ and σ represent, 409 

respectively, the location and scale parameters whereas for the GEV distribution, μ, σ and 410 

k represent respectively the location, scale and shape parameters. The ML method is used 411 

to estimate the Gumbel parameters while the generalized ML (Martins and Stedinger 412 

2000) is used to estimate the GEV parameters. 413 

 414 
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Index flood estimation 415 

To estimate the index flood 
Q̂  

of the peak and 
V̂  of the volume, we use the 416 

multiregression m#odel described by (9). The available morphologic and climatic 417 

characteristics, used as explicative or input variables in the model are: watershed area in 418 

km2 (BV), mean slope of the watershed in % (BMBV), percentage of forest in % (PFOR), 419 

percentage of area covered by lakes in % (PLAC), annual mean of total precipitation in 420 

mm (PTMA), summer mean of liquid precipitation in mm (PLME), degree days above 421 

zero in degree Celsius (DJBZ), absolute value of mean of minimum temperatures in 422 

January (Tminjan), February (Tminfeb), March (Tminmar) and April (Tminapr), absolute 423 

value of mean of maximum temperatures in January (Tmaxjan), February (Tmaxfeb), March 424 

(Tmaxmar) and April (Tmaxapr), and mean of cumulative precipitation in January 425 

(PRCPjan), February (PRCPfeb), March (PRCPmar) and April (PRCPapr).  426 

The selection of the significant variables to be included in model (9) is based on the 427 

stepwise method. Which led to the selection of BV, Tminjan, Tmaxfev and PRCPfev. The 428 

model coefficients are estimated by the ML method. Then, the model built is given by:  429 

 0.09 1.33 1.04 0.79

1.00 3.31 1.55 0.14

ˆ 4.05 min max

ˆ 6.68 min max
Q jan feb feb

V jan feb feb

BV T T PRCP

BV T T PRCP









     

    
 (1)  

Note that BV is already selected in similar studies (e.g. Brath et al. 2001) which is not the 430 

case for Tminjan, Tmaxfeb and PRCPfeb. 431 

Model performance is evaluated by the following criteria: coefficient of determination 432 

(R2*), relative root-mean-square error (RRMSE*) and mean relative bias (MRB*) defined 433 

by:  434 
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with ˆi  and i  represent the estimated and calculated (mean of observed data in 435 

underling site) index flood respectively, and N’ is the number of sites. 436 

The criteria R2*, RRMSE* and MRB* are evaluated on the basis of a cross-validation of 437 

the model with Jackknife. Results are presented in Table 5. The obtained values of R2 are 438 

higher than 0.95 which shows the high performance of the built model in (9). This 439 

performance is confirmed by the low values of RRMSE and MRB in Table 5.  440 

Bivariate and univariate growth curve estimation 441 

The bivariate regional growth curve is estimated for each risk value p by (12) and by 442 

using the regional parameters of the bivariate distribution. On the other hand, univariate 443 

regional growth curves of V and Q are estimated directly using regional parameters of 444 

marginal distributions. Figure 5 shows the univariate and bivariate estimated growth 445 

curves corresponding to nonexceedance probabilities p =0.9, 0.95, 0.99, 0.995 and 0.999 446 

as well as the quantile curve in the unit square and the marginal distributions for Q and V. 447 

Univariate regional growth curves of V and Q are also presented in Table 6. Univariate 448 

and bivariate quantiles can be assessed by multiplying growth curves by the 449 

corresponding index flood (16). 450 

 451 
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Model performances  452 

As described above, the accuracy of the quantile estimates of the three regional models: 453 

univariate of V (V-model), univariate of Q (Q-model) and bivariate of (V,Q) (VQ-model) 454 

is assessed using a Monte Carlo simulation procedure. The record lengths of the 455 

simulated sites are assumed to be the same as those of observed data and the number of 456 

simulations is set to be M=500. To illustrate these results, we present in Figure 6 the 457 

univariate and bivariate quantiles of three sites derived from one simulation (M=1) and 458 

from the sample data, as well as quantile curves in the unit square and the local and 459 

regional marginal distributions of Q and V. Figure 6 shows that, generally, the 460 

performance of the two univariate models and the bivariate model decrease with the risk 461 

level and depends on the discordancy values. Indeed, for Mistassibi (Figure 6 a) the 462 

performance of the V-model is higher than that of the Q-model which is in harmony with 463 

the two discordance values of V and Q and with the difference between marginal 464 

distributions (local and regional) of Q and V in the side panels. The performance of the 465 

bivariate model depends mainly on marginal distributions. Indeed, a small difference in 466 

the marginal distribution leads to possible wide shifts in the quantile curve. However, the 467 

unit square curves indicate very less effect. Figure 7 illustrates the bivariate quantiles 468 

(Regional and the 500 simulations) corresponding to a nonexceedance probability of 469 

p=0.9 for the Petit Saguenay station. Figure 7 shows that, in the Petit Saguenay station, 470 

the simulated bivariate quantile curves form a surface which includes (but not in the 471 

middle) the regional bivariate quantile curve. Table 7 presents the univariate and bivariate 472 

model performances of the corresponding nonexceedance probability p = 0.90, 0.95, 473 
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0.99, 0.995 and 0.999. The univariate and bivariate model performances in each site are 474 

presented in Figure 8. 475 

Table 7 shows that the V-model performs well, since all performance criteria are less than 476 

16% for all values of p. However, the performance of the Q-model is lower compared to 477 

that of the V-model where for instance, for p = 0.999, the RRMSE is larger than 21%. 478 

This conclusion can also be drawn from Figure 8 where the performance criteria of the Q-479 

model are clearly higher than those of the V-model for all values of p. This conclusion 480 

can be explained by the fact that the region is heterogeneous for Q. On the other hand, the 481 

performance of the VQ-model is, generally, somewhat lower than the Q-model. This 482 

conclusion is confirmed by Figure 8 where we see a close performance criteria for the 483 

VQ-model and Q-model. One can explain this by the fact that the univariate quantiles are 484 

special cases of bivariate quantiles, since they correspond to the extreme scenario of the 485 

proper part related to the event. Then the performance of the univariate models has an 486 

effect on the performance of the bivariate model. Since the performance criteria of the Q-487 

model are higher than those of the V-model then effects of the Q-model performance on 488 

the QV-model is more important than the effects of the V-model performance. On the 489 

other hand, from Figure 8 we observe that the performance behaviour criteria of the VQ-490 

model and Q-model are similar to those of Gumbel parameters (Figure 4 a), especially for 491 

the scale parameter (σ). Consequently, a variation of the Gumbel parameters has an effect 492 

on the Q-model performance and therefore an effect on the VQ-model performance. 493 

Performance criteria corresponding to the VQ-model are less than 19% for the highest 494 

considered risk level p = 0.999 (Table 7). Values of these performance criteria are larger 495 

than those obtained by Chebana and Ouarda (2009). Indeed, unlike their simulation study, 496 
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the performance of the bivariate model is affected by the error of the index flood 497 

estimation as well as parameter estimations. Generally the performance criteria increase 498 

with the value of the risk p (Table 7 and Figure 8). An exception is recorded between 499 

p=0.995 and p=0.999 where performance criteria of the VQ-model are higher for 500 

p=0.995. This finding can be explained by the curse of dimensionality in the multivariate 501 

context, where the central part of a distribution contains little probability mass compared 502 

to the univariate framework (for more details see Scott 1992, Chebana and Ouarda 2009).  503 

In order to further explain the results, we plot in Figure 9 the RRMSE of each model (for 504 

p=0.99) with respect to the corresponding discordancy values. Ideally we should find an 505 

increasing relation between the RRMSE of each model and the corresponding 506 

discordance. This relation is observed only for the V-model (Figure 9a) since the studied 507 

region is homogeneous for V, heterogeneous for Q and could be homogeneous for (V,Q). 508 

To find out other factors that have an impact on the model performance, we present in 509 

Figure 10 the RRMSE of the VQ-model (for p=0.99) with respect to watershed area and 510 

the correlation between V and Q. Figure 10a shows that high RRMSE values are seen for 511 

small watersheds whereas Figure 10b shows that sites with ρ(V,Q)> 0.6 have a good 512 

performance (RRMSE of the order of 10%) with the exception of Godbout (site number 513 

15) which has ρ=0.75 and high RRMSE. Godbout is one of the four sites that have a high 514 

value of the Gumbel scale parameter and a high RRMSE of the Q-model and the VQ-515 

model.  516 

The quantile curve, for a given risk p, leads to infinite combinations of (Q,V) associated 517 

to the same return period. However, they could be not equal in practice or in practical 518 

point of view (Chebana and Ouarda 2011). Recently, Volpi and Fiori (2012) proposed a 519 
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methodology to identify a subset of the quantile curve according to a fixed probability 520 

percentage of the events, on the basis of their probability of occurrence; see Volpi and 521 

Fiori (2012) for more details. As an illustrative example, the Chamouchouane station is 522 

considered. Figure 11 presents the curves and the limits with probability (1-α)=0.95. 523 

5. Conclusions and perspectives 524 

The procedure for regional FA in a multivariate framework is applied to a set of sites 525 

from the Côte-Nord region in the northern part of the province of Quebec, Canada. This 526 

procedure is proposed by Chebana and Ouarda (2009) and represents a multivariate 527 

version of the index-flood model. It is based on copulas and multivariate quantiles. 528 

Chebana and Ouarda (2009) evaluated the proposed model based on a simulation study. 529 

In the present paper, practical aspects of this model are presented and investigated jointly 530 

for the flood peak and volume of the considered data set.  531 

Results show that the appropriate fitted marginal distributions are Gumbel for Q and 532 

GEV for V as well as the Frank copula for their dependence structure. The multi-533 

regressive proposed method to estimate the index flood is shown to lead to a high 534 

performance. The performance of the two univariate models is in accordance with the 535 

quality of the region (homogeneity test). Indeed, the studied region is homogenous for V 536 

and heterogeneous for Q where the performance of the V-model is higher than that of the 537 

Q-model. The high performance of the V-model is confirmed by a relation between their 538 

performance criteria and the discordance values of V in each site whereas the low 539 

performance of the Q-model is mainly caused by the variation of the marginal 540 

distribution parameters. This is a logical consequence of the heterogeneity of the region 541 
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for Q. The performance of the two univariate models increases with the risk level p. For 542 

the bivariate model, the performance criteria are less than 19% which indicates the high 543 

performance of the proposed procedure to estimate bivariate quantiles at ungauged sites. 544 

This performance increases, generally, with the risk level p and is affected by the 545 

performance of the Q-model. Results show also that high values of the performance 546 

criteria of the bivariate regional model are seen for small watershed and for sites with low 547 

correlation between V and Q. From this study it is concluded that a good performance of 548 

the bivariate model requires good performance of the two univariate models. This means 549 

that we should have a homogeneous region for both univariate variables.  550 

The considered method estimates the bivariate quantile as combinations that constitute 551 

the quantile curve for a given risk level p. A method to select the appropriate 552 

combination(s) for a specific application is of interest and should be developed in future 553 

efforts. Furthermore, the adaptation of the model to the estimation of other hydrological 554 

phenomena such as drought and the consideration of others homogenous regions can be 555 

conducted by considering the appropriate distributions, copulas and events to be studied. 556 

 557 
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Tables and Figures 716 

Tables 717 

Table 1: Discordancy statistic for each site (Chebana et al. 2009). 718 

# Site name BV (Km2) ni 
(V,Q) correlation 

coefficient  
Discordancy statistic  
V Q (V,Q) 

1 Petit Saguenay 729 24 0.50 0.80 0.40 1.09 
2 Des Ha Ha 564 19 0.73 3.60 4.44 3.88 
3 Aux Écorces 1120 34 0.5 0.16 2.42 0.69 
4 Pikauba 489 34 0.34 0.89 1.16 1.22 
5 Métabetchouane 2270 30 0.54 1.22 1.23 1.59 
6 Petite Péribonka 1090 31 0.62 0.26 0.45 0.98 

7 Chamouchouane 
(Ashuapmushuan) 

15 300 43 0.70 0.13 0.14 0.26 

8 Mistassibi 8690 39 0.52 0.32 0.78 0.88 
9 Mistassini 9620 43 0.52 0.62 0.19 0.53 

10 Manouane 3720 23 0.39 0.55 0.47 2.38 
11 Valin 740 31 0.42 0.40 0.46 2.37 
12 Ste-Marguerite 1100 21 0.48 1.50 0.55 1.30 
13 DesEscoumins 779 19 0.49 1.14 1.81 1.27 
14 Portneuf 2580 20 0.80 0.99 0.32 1.06 
15 Godbout 1570 30 0.75 0.91 0.89 1.29 
16 Aux-Pékans 3390 16 0.54 3.19 0.38 2.25 
17 Tonerre 674 48 0.64 0.51 1.65 2.25 
18 Magpie 7200 27 0.66 0.12 1.23 1.11 
19 Romaine 13 000 48 0.68 1.62 0.48 0.57 
20 Nabisipi 2060 25 0.78 1.12 0.64 0.54 
21 Aguanus 5590 19 0.60 1.53 0.84 3.07 
22 Natashquan 15 600 39 0.75 0.28 0.39 1.02 
23 Etamamiou 2950 19 0.82 1.06 1.33 1.32 
24 St Augustin 5750 14 0.73 0.62 0.67 0.92 
25 St Paul 6630 25 0.73 0.31 1.35 1.11 
26 Moisie 19000 39 0.65 1.16 0.32 0.54 
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Table 2 : Homogeneity after exclusion of the discordant sites 719 

V Q (V,Q)  

H 0.7052 2.4081 1.5234 
 720 

Table 3 : Results of Sn Goodness-of-fit test and AIC criterion for considered 721 
copulas. Gray color indicates that Frank copula is accepted by Sn goodness-of-fit 722 

test (p-value column) and has the smallest AIC (AIC column) for the corresponding 723 
site. 724 

Site 
Gumbel  Frank  Clayton  Galambos  Husler-Reiss Placket 

P-value AIC P-value AIC P-value AIC P-value AIC P-value AIC P-value AIC 
1 0.190 -75.0 0.078 -97.5 0.012 -55.2 0.237 -74.5 0.318 -74.1 0.034 -66.6
3 0.086 -106.2 0.081 -151.7 0.175 -72.2 0.095 -105.4 0.117 -104.8 0.086 -86.5
4 0.173 -98.6 0.154 -200.9 0.460 -70.8 0.183 -97.4 0.194 -96.6 0.191 -84.5
5 0.150 -114.0 0.137 -177.7 0.083 -82.3 0.169 -113.2 0.187 -112.4 0.068 -102.6
6 0.128 -146.8 0.133 -103.9 0.064 -102.3 0.030 -146.5 0.028 -145.9 0.044 -131.7
7 0.152 -210.9 0.054 -202.4 0.003 -140.0 0.159 -210.2 0.202 -209.1 0.020 -182.3
8 0.135 -142.9 0.207 -181.7 0.120 -95.0 0.148 -142.1 0.175 -141.3 0.135 -116.7
9 0.148 -175.2 0.404 -231.1 0.041 -115.7 0.155 -174.2 0.197 -173.2 0.214 -145.1
10 0.459 -48.0 0.231 -96.7 0.104 -36.6 0.480 -47.4 0.522 -47.1 0.218 -42.0
11 0.002 -101.2 0.017 -172.8 0.242 -71.4 0.002 -100.3 0.002 -99.5 0.017 -86.5
12 0.120 -66.7 0.113 -59.9 0.200 -48.7 0.114 -66.4 0.112 -66.2 0.180 -58.6
13 0.016 -71.4 0.037 -101.0 0.079 -56.2 0.016 -70.9 0.016 -70.4 0.036 -69.6
14 0.027 -101.0 0.058 24.1 0.019 -78.1 0.026 -101.1 0.029 -101.0 0.020 -98.7
15 0.120 -160.8 0.041 -164.2 0.048 -118.1 0.118 -160.3 0.130 -159.2 0.066 -153.5
16 0.243 -43.0 0.124 -56.0 0.227 -33.1 0.253 -42.7 0.249 -42.5 0.199 -39.1
17 0.048 -164.2 0.003 -230.3 0.000 -113.1 0.059 -163.2 0.069 -162.1 0.003 -143.3
18 0.092 -123.2 0.112 -105.3 0.255 -88.9 0.081 -122.7 0.069 -122.1 0.135 -113.4
19 0.214 -236.0 0.177 -180.7 0.150 -149.6 0.208 -235.3 0.222 -234.4 0.192 -193.7
20 0.352 -122.2 0.326 28.1 0.059 -90.4 0.366 -122.1 0.345 -121.9 0.321 -116.6
22 0.241 -193.4 0.215 -199.3 0.006 -131.4 0.254 -192.7 0.302 -191.6 0.022 -171.5
23 0.002 -100.3 0.011 -184.9 0.040 -85.4 0.002 -100.5 0.007 -101.2 0.002 -104.2
24 0.173 -64.5 0.091 29.3 0.002 -55.0 0.179 -64.5 0.206 -64.6 0.052 -64.8
25 0.138 -107.0 0.310 -111.4 0.031 -78.5 0.140 -106.6 0.140 -106.0 0.035 -99.4
26 0.168 -182.9 0.280 -192.1 0.041 -123.6 0.158 -182.2 0.193 -181.2 0.127 -159.7

Pooled data  0.0005 -329.35 0.045 -365.65 0.0005 -318.94 0.0005 -327.34 0.0005 -300.11 0.04785 -364.86
 725 
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 726 

Table 4: Regional parameters of marginal distributions and copula 727 

Marginal distribution Copule 
Peak (Gumbel) Volume (GEV) Frank 
μr σr kr σr μr γr 

1.16 0.33 0.16 0.28 0.88 2.06 
 728 

Table 5 : Performance criteria of multiregression index flood model 729 

R2* MRB*(%) RRMSE* (%) 

Q 0.94 1.24 16.75 

V 0.97 0.70 11.68 
 730 

Table 6 : Univariate regional growth curve values 731 

 Marginal distribution 
p 

 0.9 0.95 0.99 0.995 0.999 
Volume (GEV) 1.40 1.53 1.77 1.85 2.02 
Peak (Gumbel) 1.90 2.13 2.67 2.90 3.43 

732 
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 733 

Table 7 : Performance of the univariate and bivariate quantiles corresponding to 734 
the nonexceedance probabilities 0.9, 0.95, 0.99, 0.995 and 0.999. 735 

 736 

Risk Criterion (V.Q) V Q 

p=0.9 
RB 1.99 -1.25 -0.94 

ARB 9.60 3.44 11.87 
RRMSE 15.25 7.68 13.88 

p=0.95 
RB 3.27 -1.34 -1.05 

ARB 11.25 4.32 13.56 
RRMSE 17.34 9.37 15.83 

p=0.99 
RB 2.49 -0.78 -1.26 

ARB 12.03 5.95 15.99 
RRMSE 17.93 13.56 18.79 

p=0.995 
RB 3.41 -0.20 -1.73 

ARB 12.87 7.25 16.93 
RRMSE 19.06 14.90 19.77 

p=0.999 
RB 3.23 0.56 -1.51 

ARB 12.21 7.89 18.95 
RRMSE 18.21 15.79 21,78 

 737 

738 
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 739 

Figures 740 

 741 

 742 

Figure 1 : Geographical chart of the location of the sites 743 

744 
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 745 

a)  746 

b)  747 

Figure 2 : Fitting of the marginal distribution of a) Q and b) V. 748 

749 
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Figure 3 : Copula fitting using K-function  751 
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Figure 4: Parameters of marginal distributions and copula. Dashed lines indicate 755 
the confidence interval corresponding to each parameter 756 

757 
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Figure 5 : Estimated regional bivariate and univariate growth curves, quantile 760 
curve in the unit square and the marginal distributions for Q and V 761 
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Figure 6a : Univariate and bivariate quantiles corresponding to a nonexceedance probability p=0.9, 0.95, 0.99, 0.995 and 0.999 764 
in Mistassibi, quantile curve in the unit square and side panels showing the marginal distributions (local and regional) of Q 765 

and V  766 
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Figure 6b: Univariate and bivariate quantiles corresponding to a nonexceedance probability p=0.9, 0.95, 0.99, 0.995 and 0.999 769 
in Des Escoumins , quantile curve in the unit square and side panels showing the marginal distributions (local and regional) of 770 

Q and V. 771 
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Figure 6c: Univariate and bivariate quantiles corresponding to a nonexceedance probability p=0.9, 0.95, 0.99, 0.995 and 0.999 774 
in Natashquan , quantile curve in the unit square and side panels showing the marginal distributions (local and regional) of Q 775 

and V.776 
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 777 

Figure 7 : Bivariate quantiles (Regional and the 500 simulation) corresponding to a 778 

nonexceedance probability p=0.9 in the Petit Saguenay station. 779 

780 
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 783 

Figure 8 : Performance of the univariate and bivariate quantiles for each site with a) 784 
p=0.9, b) p=0.95, c) p=0.99, d) p=0.995 and d) p=0.999. Continuous line: VQ; dotted 785 

line: V and dashed line: Q. 786 



 

47 
 

a) 
0 0.5 1 1.5 2 2.5 3 3.5

0

10

20

30

40

50

60

70

Discordancy (V)

R
R
M
S
E
 (V

)

p=0.99

 787 

b) 
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Figure 9 : RRMSE (%) of the three models with respect to the corresponding 790 
discordance values for p=0.99: a) margin for V, b) margin for Q, and c) bivariate 791 

792 
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Figure 10 : RRMSE of bivariate quantile for p=0.99 with respect to a) watershed 795 
area (BV) and b) correlation between V and Q. 796 

797 
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 798 

Figure 11 : Bivariate quantiles of Chamouchouane station corresponding to a 799 
nonexceedance probability p=0.9 with scatter plot of (Q,V) and the limit of subset 800 
that includes the critical events with probability (1-α)=0.95. Simulation in dotted 801 

line and sample data in solid line 802 


