Mémoire présenté au
Centre de recherche en santé humaine de l'INRS-Institut Armand-Frappier du programme de maîtrise en virologie et immunologie

Par

Cindy Baldwin

LA MODULATION DE L'APOPTOSE INDUITE

PAR LE 5-FLUORO-URACIL CHEZ DES
CELLULES DE CANCER DU CÔLON HUMAIN, PAR L'AJOUT DE BACTÉRIES LACTIQUES

Avril 2002

Directeur : Dr Daniel Oth

Codirecteur : Dr Monique Lacroix

À la mémoire de mon Père

RÉSUMÉ

Le cancer du côlon est le troisième cancer causant le plus de décès par année au Canada. L'ablation chirurgicale et le 5-Fluoro-Uracil (5FU), médicament servant de chimiothérapie, demeure le traitement le plus utilisé contre le cancer du côlon. Plusieurs études sont faites afin d'améliorer ce traitement, soit par l'arrivée de nouveaux médicaments, soit par la combinaison des médicaments déjà existants à des adjuvants de l'immunité. Les bactéries lactiques sont reconnues pour leurs bienfaits au niveau du tractus digestif. Certaines études démontrent qu'elles possèdent la propriété d'inhiber la formation/initiation de cancer dans le côlon. Nous avons étudié l'effet apoptotique des bactéries lactiques sur une lignée cellulaire humaine de cancer du côlon, par cytométrie en flux. Nous avons également vérifié l'effet apoptotique de la combinaison des bactéries lactiques avec le 5FU.

La présence de bactéries lactiques seules n'a eu aucun effet d'apoptose sur les cellules cancéreuses. Une concentration de 5 FU , entraînant environ 50% d'apoptose, a été utilisée afin de vérifier si l'ajout des bactéries lactiques augmente ou diminue l'effet apoptotique du 5 FU. L'efficacité du 5 FU est augmentée d'environ 40% par l'ajout de bactéries lactiques vivantes (10^{8} bactéries $/ \mathrm{ml}$). Cette efficacité est augmentée en fonction de la concentration de bactéries ajoutées. Par contre, si les bactéries lactiques sont chauffées, l'efficacité du 5FU diminue, et ce également en fonction de la concentration de bactéries ajoutées.

Afin d'élucider le ou les mécanisme(s) responsable(s) de ce phénomène, l'expression de différentes protéines impliquées dans le processus apoptotique a été vérifiée par buvardage de type Western. L'étude de l'expression de la caspase-3 (caspase effectrice dans le processus de l'apoptose) permet d'observer son activation beaucoup plus rapide lors de la combinaison des bactéries vivantes et du 5 FU , lorsque comparé au $5 F U$ seul. L'augmentation de l'expression de la p 53 , «gardienne du génome», fut également observée avec le 5FU, mais aucune différence, lors de l'ajout de bactéries, n'a été observée. L'expression du récepteur Fas et du ligand Fas ne semble pas modulée par
la présence de bactéries. L'expression de la p21, impliquée dans l'arrêt du cycle cellulaire, semble être sur-exprimée par l'ajout des bactéries chauffées à la dose de 5FU.

Le phénomène d'augmentation de l'efficacité du 5 FU par les bactéries vivantes reste encore à être élucidé, soit par l'étude de d'autres protéines impliquées dans le processus apoptotique, soit par une étude détaillée au niveau des produits bactériens impliqués.

Cindy Baldwin
Étudiant

Daniel Oth
Directeur de recherche

TABLE DES MATIÈRES

RÉSUMÉ III
TABLE DES MATIÈRES V
LISTE DES ABRÉVIATIONS VII
LISTE DES TABLEAU. IX
LISTE DES FIGURES
INTRODUCTION. 1
CHAPITRE 1 : REVUE BIBLIOGRAPHIQUE 4
1 GÉNÉRALITÉS SUR L'APOPTOSE 4
1.1 Définition de l'apoptose 4
1.2 Rôle de l'apoptose 4
2 CARACTÉRISTIQUES MORPHOLOGIQUES DE L'APOPTOSE ET DE LA NÉCROSE 5
2.1 Apoptose. 5
2.2 Nécrose. 5
3 DIFFÉRENTES ÉTAPES DU PROCESSUS APOPTOTIQUE 6
3.1 Étape de déclenchement de l'apoptose 6
3.2 Étape de décision, ou «de contrôle» de l'apoptose. 6
3.3 Étape d'exécution caractéristique de l'apoptose 8
4. Protéines impliquées dans les mécanismes de régulation de l'apoptose 8
4.1 La famille des protéines Bcl-2. 8
4.2 Rôle des caspases dans l'apoptose. 16
4.3 La protéine p53 20
4.4 Les «récepteurs de mort» 24
4.5 Les protéine kinases C et Nur77 27
5.0 LE CANCER DU CÔLON 30
5.1 Les stratégies de défense du cancer 31
5.2 Thérapies contre le cancer du côlon 33
6.0 LES BACTÉRIES LACTIQUES 36
6.1 Propriétés anti-cancéreuses. 37
7. JUSTIFICATION DU TRAVAIL EXPÉRIMENTAL EFFECTUÉ 40
CHAPITRE 2 : MATÉRIEL ET MÉTHODES 41
1 BACTÉRIES LACTIQUES 41
1.1 Origine 41
1.2 Préparation 41
1.3 Chauffage 41
1.4 Irradiation 42
1.5 Croissance bactérienne 42
2 Cellules cancéreuses 43
2.1 Origine 43
2.2 Culture 43
3 Co-CULTURES DE CELLULES CANCÉREUSES ET DE BACTÉRIES 43
3.1 Ajout de bactéries. 43
3.2 Expérience impliquant l'ajout de butyrate. 43
3.3 Récolte et études des surnageants 44
4 Mesure de la viabilité des cellules cancéreuses. 44
4.1 Prolifération 44
4.2 Apoptose 45
5 MESURE DE L'EXPRESSION DE PROTÉINES IMPLIQUÉES DANS L'APOPTOSE (P53, P21, CaSPaSe-3, BaX) 46
5.1 Buvardage de type Western 46
6 MeSUre de l'expression de marqueurs sur la membrane cellulaire (Fas, FASL) 48
6.1 Cytométrie en flux 48
7 Mesure de l'expression du gène Nur77 49
7.1 Extraction de l'ARN 49
7.2 RT-PCR 50
8 Traitements par des inhibiteurs ou stimulateurs de la PKC 52
9 DOSAGE DE CYTOKINE 52
9.1 Dosage du TNF- α par bioessai 52
CHAPITRE 3 : RÉSULTATS 54
1 RÉSULTATS PRÉLIMINAIRES SUR LA PROLIFÉRATION DES CELLULES CANCÉREUSES dU CÔLON LS513 en présence de 5 Fluoro-Uracil et de bactéries lactiques. 54
2 L'APOPTOSE 54
2.1 Recherche de la dose de 5 Fluoro-uracil optimale. 58
2.2 Effet des bactéries lactiques et du 5FU sur l'apoptose 58
2.3 Expression de la caspase-3 60
3 ACTION DE L'EtAT DES BACTERIES 63
3.1 Bactéries vivantes versus bactéries irradiées 63
3.2 Bactéries vivantes versus bactéries chauffées 63
4 MÉCANISMES POSSIBLES INHÉRENTS AUX CULTURES BACTÉRIENNES 70
4.1 Présentation pharmacologique du 5-Fluoro-uracil 70
4.2 Compétition entre les bactéries vivantes et les bactéries chauffées? 71
4.3 Effet de l'acide butyrique 71
5 MÉCANISMES POSSIBLES INHÉRENTS AUX CELLULES TUMORALES 75
5.1 Expression du récepteur Fas. 75
5.2 Expression du ligand Fas. 75
5.3 Expression de la protéine p53 et p21 78
5.4 Activation et inhibition de la protéine kinase C (PKC) 81
5.5 Expression du gène Nur77 84
CHAPITRE 4 : DISCUSSION 87
CONCLUSION 98
REMERCIEMENTS 100
RÉFÉRENCES BIBLIOGRAPHIQUES 101

LISTE DES ABRÉVIATIONS

$\Delta \Psi \mathrm{m}: \quad$ Potentiel membranaire mitochondrial
5FU: 5-Fluoro-uracil
$\mathrm{ADN}: \quad$ Acide désoxyribonucléique
ADP: Adénosine di-phosphate
AIF: «Apoptosis inducing factor»
ANT: «Adenine nucleotide translocator»
Apaf-1: «Apoptotic protease activating factor-1»
ARN: Acide ribonucléique
ATP: Adénosine tri-phosphate
BH: «Bcl-2-homology»
BSA: Bovin serum albumin
CAD: «Caspase-activated Dnase»
CARD: «Caspase activation and recruitment domain»
Cdk: «Cycline-dependent kinase»
CMH I: Complexe majeur d'histocompatibilité de classe 1
CTL: «Cytotoxic T lymphocyte»
D.O.: Densité optique

Da: Dalton
DAG: Diacylglycérol
DED : «Death-effector domain»
DISC: «Death-inducing signal complex»
DMH: 1,2-diméthylhydrazine dihydrochloride
DR4: «Death receptor 4»
FADD: «Fas-associated death domain»
Gl: Gap 1
I-кB: «Inhibitory kappa B»
ICAD: «Inhibitor caspase-activated Dnase»
ICE: «Interleukin-1 converting enzyme»
IgA: Immunoglobuline de type A

IL-X : Interleukine X (où X désigne un numéro d'ordre)
INF- γ : Interféron gamma
MPT : «Mitochondrial permeability transition»
MRS: Milieu de culture De Man-Rogosa-Sharpe
NF-кB: «Nuclear factor kappa B»
NK: «Natural killer»
PBS: «Phosphate-buffered saline»
PKC: Protéine kinase C
PMA: 12-o-tetradecanoylphorbol-3-acetate
PT: Perméabilité transitoire
RAIDD: «RIP-associated ICH-1/CED-3-homologous protein with a death domain»
RIP: 《Receptor-interacting protein»
RIP-DD: «Receptor interacting protein death domain»
RPM : Rotation par minute
RPMI: Roswell Park Memorial Institute
SBF : Sérum bovin fœtal
SDS: Sodium dodécyl sulfate
TDAG51: «T-cell death-associated gene»
Th1: «T-helper $1 »$
TNF: «Tumor necrosis factor»
TNF-R1: «TNF receptor 1»
TNM : «Tumor characteristics, nodal involvelment and amount of metastasis»
TRADD: «TNF-receptor associated death domain»
TRAF2: «TNF- receptor-associated factor 2»
TRAIL: «TNF-related apoptosis inducing ligand»
VDCA: «Voltage-dependent anion channel»

LISTE DES TABLEAUX

Tableau 1 Les principales différences entre la nécrose et l'apoptose. 7
Tableau 2 Quelques exemples de substrats clivés par les caspases. 21
Tableau 3 Les anticorps utilisés pour les différentes protéines à identifier. 48

LISTE DES FIGURES

Figure 1 Un modèle représentant le processus apoptotique 9
Figure 2 Illustration des hypothèses du relâchement par la famille de protéine Bcl-2 14
Figure 3 Maturation protéolytique de la pro-caspase-3 19
Figure 4 Récapitulation des effets de l'activation de p53. 23
Figure 5 Structure des membres des récepteurs de mort membranaires, et leurs interactions avec les principaux effecteurs cytoplasmiques impliqués dans les voies apoptotiques 28
Figure 6 Récapitulation schématique des interconnections entre deux différentes voies de transduction de l'apoptose. 29
Figure 7 Effet, sur la viabilité des cellules cancéreuses, de bactéries vivantes et 5FU 55
Figure 8 Présentation visuelle des schémas d'apoptose obtenus par cytométrie en flux. 56
Figure 9 Recherche de la dose de 5-Fluoro-uracil (5FU) qui donne 50\% d'apoptose. 57
Figure 10 Effet des bactéries vivantes et/ou du 5FU sur l'apoptose des cellules cancéreuses du côlon. 59
Figure 11 Exemple de schémas obtenus par cytométrie en flux pour la mesure d'apoptose.61
Figure 12 Activation de la caspase-3 62
Figure 13 Mesure de l'apoptose des cellules LS 513 en présence de bactéries vivantes, de bactéries irradiées et/ou de 5FU 65
Figure 14 Mesure de la viabilité de LS 513 par le MTT. 66
Figure 15 Effet des bactéries vivantes, comparé à celui de bactéries chauffées sur l'apoptosedes cellules LS 513.67
Figure 16 Présentation d'histogrammes obtenus par cytométrie en flux, avec des cellules cancéreuses en présence de bactéries chauffées. 68
Figure 17 Effet des bactéries vivantes ou chauffées sur l'activation de la caspase-3. 69
Figure 18 Action des bactéries sur la présentation pharmacologique du 5FU. 72
Figure 19 Effets du mélange de bactéries vivantes et de bactéries chauffées. 73

Figure 20 L'effet d'ajout d'acide butyrique et de 5FU sur l'apoptose de LS 513................. 74
Figure 21 Expression du récepteur Fas... 76
Figure 22 Expression du ligand de Fas ... 77
Figure 23 Expression de la protéine p53... 79
Figure 24 Expression de la protéine p21... 80
Figure 25 Effet de l'activation de PKC sur l'apoptose. ... 82
Figure 26 Effet de l'inhibition de PKC sur l'apoptose. ... 83
Figure 27 Expression du gène de Nur77 .. 86

INTRODUCTION

Au Canada. le cancer du côlon fait partie des trois cancers les plus fréquents, et son pronostic est encore très sombre. Plusieurs facteurs influencent l'apparition du cancer du côlon : le vieillissement de la population, les facteurs héréditaires, les habitudes de vie (stress) et les habitudes alimentaires. Le dépistage précoce de ce cancer favorise le taux de guérison, mais malheureusement bon nombre sont détecté à un stade avancé (présence de métastase) de la maladie. Plusieurs équipes tentent de mettre au point de bons tests de dépistage et de meilleurs traitements pour favoriser l'élimination du cancer. Pour l'instant, l'ablation chirurgicale de la tumeur, suivie de chimiothérapie, sont les traitements utilisés dans plusieurs cas cliniques, lorsqu'il y a signe de propagation. Les traitements de chimiothérapie, afin d'augmenter leur pouvoir d'élimination des cellules cancéreuses restantes, constituent les sujets d'études de plusieurs chercheurs. La combinaison de différents médicaments, utilisés pour la chimiothérapie, et d'adjuvant de l'immunité, semble être plus efficace que la chimiothérapie seule, suite à l'ablation chirurgicale.

Depuis plusieurs années, les produits laitiers fermentés sont reconnus pour leurs bienfaits sur le système gastro-intestinal. Les bactéries lactiques utilisées pour la fermentation de ces produits laitiers, s'ajoutent à la flore bactérienne retrouvée dans les intestins. Elles y vivent en symbiose et forment un écosystème bénéfique pour l'humain par leur compétition avec des bactéries pathogènes, leur capacité de synthèse de vitamines et par leur capacité de neutraliser des composés carcinogènes. Elles sont également reconnues pour leurs propriétés immuno-modulatrices qui favorisent: la résistance à des infections, l'activation de l'immunité en cas d'immunodépression et même l'inhibition de la formation/initiation du cancer du côlon.

Dans un monde parfait, un supplément de bactéries lactiques par ingestion de lait fermenté, yogourt ou capsules, constituerait un bon régime alimentaire pour prévenir la formation de cancers du côlon. Lorsqu'un cancer du côlon s'est développé, il semble bon de recourir à des traitements plus efficaces, avec un minimum d'effets secondaires. La
majorité des ćtudes effectuées in vivo montrent un effet d'inhibition de croissance sur le cancer du côlon, induit chimiquement, par l'ingestion de bactéries lactiques. Peu de travaux ont été réalisés sur des cellules cancéreuses du côlon, en présence de bactéries lactiques afin de vérifier leur effet anti-cancéreux et d'identifier le ou les mécanismes responsables de cet effet.

Puisque peu d'études sont disponibles, nous avons voulu vérifier l'effet de bactéries lactiques sur des cellules de cancer du côlon humaines. Dans le même objectif d'augmenter l'efficacité des traitements contre le cancer du côlon, nous avons également voulu vérifier l'effet d'une combinaison de bactéries lactiques et d'un médicament de chimiothérapie ajouté aux cellules cancéreuses.

Notre modèle, in vitro, nous permettra de mesurer la capacité des bactéries lactiques à provoquer l'apoptose chez les cellules de cancer du côlon et également de vérifier la modulation de certaines protéines clés (p53, p21, caspase-3, Fas, Fas Ligand) dans l'apoptose pour tenter d'expliquer le mécanisme qu'utilisent les bactéries lactiques.

Le mélange de bactéries lactiques que nous avons utilisé est déjà disponible sur le marché sous forme de lait fermenté. Il semble donc très intéressant de vérifier si la combinaison de ce mélange de bactéries à la chimiothérapie, déjà utilisée, pourra améliorer l'efficacité de ce traitement, c'est-à-dire d'augmenter l'apoptose des cellules cancéreuses.

Le premier chapitre est consacré à une revue de la littérature concernant les sujets abordés dans ces pages. Il est divisé en trois parties, la première présente la théorie sur les mécanismes d'apoptose, la seconde traite du cancer du côlon et de ses traitements, et la troisième aborde les bactéries lactiques et leur effet sur le cancer du côlon in vitro et in vivo.

Le second chapitre décrit les protocoles expérimentaux utilisés pour atteindre les différents objectifs que nous nous sommes fixés. Les matériels et techniques y sont décrits en détails.

Le troisième chapitre présente, sous forme de graphique et photos, tous les résultats obtenus lors des expériences. Chaque résultat est accompagné d'une explication.

Le quatrième chapitre représente les tentatives d'explication des résultats afin de les mettre en relation avec les renseignements actuels et de pouvoir les projeter dans des études futures.

CHAPITRE 1 : REVUE BIBLIOGRAPHIQUE

1 Généralités sur l'apoptose

1.1 Définition de l'apoptose

Découverte et redécouverte plusieurs fois par différents cytologistes et biologistes, la mort cellulaire programmée a été décrite sous différents noms au cours des deux derniers siècles. En 1972, le terme apoptose a finalement été proposé par et adopté par Currie et ses collègues, afin de définir un modèle fréquent de mort cellulaire programmée observée de façon répétée dans plusieurs tissus et types de cellules (Hengartner, 2000). Les auteurs ont observé que ces cellules mourantes partageaient plusieurs caractéristiques morphologiques, différentes des caractéristiques observées sur des cellules atteintes d'une pathologie ou de cellules en nécrose. Ils ont suggéré que ces caractéristiques morphologiques partagées puissent être le résultat d'un programme de mort cellulaire commun, qui se serait conservé dans l'évolution. L'apoptose se distingue d'un autre mécanisme de mort cellulaire, appelé nécrose.

1.2 Rôle de l'apoptose

Les chercheurs ont découvert que les cellules peuvent se donner la mort. Ce «suicide» cellulaire, appelé apoptose, s'est révélé indispensable à l'organisme. L'apoptose est aussi fondamentale pour la physiologie des cellules et des tissus que la division et la différenciation cellulaire. L'apoptose est même la forme de mort cellulaire physiologique la plus commune, et se produit dans différents moments tels que, par exemple, le développement embryonnaire, la réorganisation tissulaire, les régulations immunitaires et la régression tumorale. Ainsi, l'apoptose est un processus d'élimination cellulaire spontané, permettant d'assurer le renouvellement cellulaire, et qui intervient dans le maintien de l'homéostasie cellulaire et tissulaire, en opposition avec la mitose. Elle est le mécanisme inné par lequel l'organisme élimine les cellules indésirables. Chaque cellule porte en elle le mécanisme génétique de sa propre destruction. La cellule ne reste en vie qu'à condition de recevoir des signaux de survie émis par son environnement. Si une cellule perçoit des signaux lui ordonnant de se suicider, elle déclenche en elle l'apoptose. Un dérèglement au niveau de l'équilibre entre les protéines maintenant la cellule en vie, et les protéines menant à l'apoptose, peut être associé à un
large spectre de maladies, comprenant notamment le cancer, la neurodégénération, des maladies auto-immunes, le diabète ainsi que d'autres désordres métaboliques (Matsuzama, 2001).

2 Caractéristiques morphologiques de l'apoptose et de la nécrose

2.1 Apoptose

Une des caractéristiques clé de l'apoptose est le rétrécissement cellulaire. Pendant que le rétrécissement cellulaire se produit, le cytoplasme se comprime et la chromatine nucléaire se condense et forme des agrégats, dans le noyau, qui se collent ensuite contre la membrane nucléaire. En revanche, les organelles cellulaires, dont la mitochondrie, semblent relativement inchangées. Par la suite, le noyau devient fragmenté. La formation et l'émission de bourgeons sont observée à la surface de la cellule. L'intégrité de la membrane plasmique, même si la perméabilité augmente, est cependant conservée tout au long de ce processus. Lors de l'étape finale de l'apoptose, la cellule se brise en plusieurs vésicules contenant une variété d'organelles intactes ainsi que des fragments nucléaires. Les fragments de cellules apoptotiques sont rapidement phagocytés par les cellules phagocytaires environnantes, comme par exemple les macrophages. L'apoptose constitue une mort dite propre puisque les fragments cellulaires sont rapidement éliminés et qu'il n'y a ni phase inflammatoire, ni lésion du tissu environnant, ceci en partie parce que leur membrane cellulaire reste intacte. En résumé, les changements morphologiques caractéristiques à l'apoptose sont le rétrécissement du cytoplasme, la condensation et la fragmentation de l'ADN et finalement, la formation de corps apoptotiques renfermant les fragments de noyau entourés du cytoplasme et de la membrane cellulaire (Blatt, 2001).

2.2 Nécrose

La nécrose fait référence à une mort soudaine suite à un stress physique ou chimique extrême. Elle est marquée par des critères morphologiques différents de ceux de l'apoptose (tableau 1). Lors de la nécrose, cette mort cellulaire incontrôlée, il y a rapidement perte du contrôle du flux ionique, ce qui entraîne une pénétration d'eau. Les cellules gonflent, ainsi que leurs organelles comme la mitochondrie et le réticulum endoplasmique, jusqu'à l'éclatement des membranes et la fragmentation aléatoire de l'ADN. Le relâchement, dans le milieu, du contenu cytoplasmique provoque le plus
souvent des lésions dans les tissus situés à proximité, ce qui déclenche une réponse inflammatoire locale très prononcée.

3 Différentes étapes du processus apoptotique

L'apoptose peut comporter trois différentes étapes. Tout d'abord, il faut que la cellule reçoive un "signal apoptotique» et ceci constitue donc la phase de déclenchement ou d'engagement. Ensuite, viennent la phase de décision (ou «de contrôle») et finalement la phase d'exécution, pendant laquelle se déroule la cascade enzymatique intracellulaire induisant la mort apoptotique.

3.1 Étape de déclenchement de l'apoptose

Une variété de stimulis, autant internes qu'externes, peuvent déclencher le signal apoptotique. Parmi les différents stimulis, on peut énumérer des agents biologiques (récepteurs membranaires, facteurs de transcriptions, oncoprotéines, infections virales, toxines bactériennes, ...), la suppression de facteurs essentiels à la croissance cellulaire (cytokines, facteurs de croissances, ...), des lésions génomiques de l'ADN (spontanée ou provoquée), l'exposition à des produits chimiques (agents anticancéreux), l'exposition à des agents inducteurs physiques (rayons UV, rayons X, micro-ondes, chaleur, ...). Cette phase s'accompagne de nombreuses modifications biochimiques.

3.2 Étape de décision, ou «de contrôle» de l’apoptose

Suite à ces différents stimulis, la cellule reçoit les différents signaux et «décide» d'entrer en apoptose ou pas. Cette étape comprend différents chemins de signaux de transduction, entre autres l'activation (ou inactivation) de sérine/thréonine et tyrosine kinases et phosphatases, la synthèse de seconds messagers, la modification de l'expression de gènes et l'activation de protéases spécialisées, connues sous le nom de «caspases». La décision finale, pour le déclenchement de l'apoptose, dépend de plusieurs facteurs incluant l'équilibre entre protéines pro-apoptotiques et protéines anti-apoptotiques (la famille des protéines $\mathrm{Bcl}-2$), l'état métabolique de la cellule, et également l'étape du cycle cellulaire dans laquelle la cellule se trouve. Plusieurs arguments suggèrent que le déroulement de cette deuxième étape soit contrôlé par la

Caractéristiques	Nécrose	Apoptose
Distribution tissulaire	Regroupement cellulaire	Cellule isolée
Reaction tissulare	La lyse et le relâchement du contenu cellulaire aboutissent à l'inflammation des tissus environnants	Phagocytose des corps apoptotiques, par les macrophages ou les cellules environnantes, et aucune inflammation
Morphologie		
Cellule	Gonflement	Rétrécissement, perte de contact avec les cellules environnantes, bourgeonnement, formation de corps apoptotiques
Organelles	Endommagées	Intactes
Noyau	Désintégré	Condensé et fragmenté
Lysosomes	Endommagés	Intacts
Mitochondries	Défectueuses, épuisées en ATP, enflées et endommagées	Enflées, peuvent se rompre, relâchement de cytochrome C
Biochimie		
ADN	Dégradation non spécifique	Clivage inter- nucléosomal
Protéines	Dégradation non spécifique	Activation des caspases

Tableau 1 Les principales différences entre la nécrose et l'apoptose.
D'après (Granville, 1998).
famille des protéines $\mathrm{Bcl}-2$, que l'on retrouve généralement associées aux membranes. La famille des protéines $\mathrm{Bcl}-2$ est divisée en deux groupes de protéines, les unes inhibent l'apoptose ($\mathrm{Bcl}-2, \mathrm{Bcl}-\mathrm{X}_{\mathrm{L}}, \mathrm{Bcl}-\mathrm{w}, \mathrm{CED}-9, \ldots$) et les autres favorisent l'apoptose (Bax, Bid, Bad, Bak, Bcl-X ${ }_{s}, \ldots$. . Qu'elles soient anti- ou pro-apoptotiques, elles ont l'habileté de contrôler le flux ionique entre divers compartiments cellulaires, spécialement entre les mitochondries et le cytoplasme. À cette même étape, il y a activation des caspases sous forme de système d'amplification par auto-activation ainsi que par le relâchement par les mitochondries de facteurs d'activation de l'apoptose, comme l'AIF (apoptosis-inducing factor) (Lorenzo, 1999) et le cytochrome C. L'espace inter-membranaire de la mitochondrie comprend plusieurs protéines participant à l'activation de l'apoptose, comme les pro-caspases-2, $-3,-7$ et -9 , l'AIF et le cytochrome C. L'activation de ces caspases va mener à un point de non-retour, puisque par leur activation, elles iront cliver leurs différentes cibles, entre autre les protéines nécessaires à la survie de la cellule.

3.3 Étape d'exécution caractéristique de l'apoptose

La cellule est maintenant engagée de façon irréversible dans le programme de mort cellulaire portant la signature apoptotique. Par l'activation des différentes caspases, plusieurs protéines nécessaires à la survie de la cellule sont clivées et deviennent non fonctionnelles, comme la polymérase poly(ADP-ribose). D'autres cibles des caspases peuvent êtres activées par celles-ci, entre autre des DNases qui elles-mêmes découperont la chromatine en fragments de haut poids moléculaire.

4. Protéines impliquées dans les mécanismes de régulation de l'apoptose

4.1 La famille des protéines Bcl-2

Les protéines de famille $\mathrm{Bcl}-2$ sont d'importantes modulatrices d'apoptose. On y distingue deux classes; les protéines anti-apoptotiques (Bcl-2, Bcl- $\mathrm{x}_{\mathrm{L}}, \mathrm{Mcl}-1, \mathrm{Bcl}-\mathrm{w}, \mathrm{Bfl}-$ 1/A1, Brag-1) et les protéines pro-apoptotiques (Bax, Bak, Bad, Bid, Bik, Bim, Bcl-x ${ }_{s}$) (Reed, 1996). Les membres de la famille Bcl-2 sont classés selon leur nombre de domaine d'homologie avec la protéine $\mathrm{Bcl}-2$ ($\mathrm{BH}: \mathrm{Bcl}-2$-homology). La protéine $\mathrm{Bcl}-2$ contient 4 domaines.

Figure 1 Un modèle représentant le processus apoptotique.

Il est possible de diviser l'apoptose en trois différentes étapes: (1) une phase de déclenchement, dans laquelle les évènements biochimiques dépendent du signal initiateur de l'apoptose; (2) une phase de décision au cours de laquelle la cellule intègre les différentes informations et «choisit» de se suicider; une fois cette étape franchie, la mort sera inévitable. (3) Une phase de d'exécution où la cellule exécute la sentence en activant des hydrolases cataboliques et en particulier les caspases qui s'amplifieront par auto-activation. C'est pendant cette phase que la cellule acquiert la morphologie apoptotique. Il est important de noter que la mitochondrie participe aux phases de décision et aussi d'exécution de l'apoptose.

Toutes les protéines anti-apoptotiques possèdent les quatre domaines tandis que les protéines pro-apoptotiques peuvent être divisées en trois groupes. Le premier groupe contient les domaines $\mathrm{BH} 1, \mathrm{BH} 2$ et BH 3 ($\mathrm{Bax}, \mathrm{Bak}$), tandis que le deuxième groupe contient seulement le domaine BH 3 ($\mathrm{Bad}, \mathrm{Bid}, \mathrm{Bik}$). Bcl- X_{s} forme le troisième groupe, contenant les domaines BH 3 et BH 4 . Une étude par cristallographique a permis de déterminer la structure de la protéine $\mathrm{Bcl}-\mathrm{X}_{\mathrm{L}}$. La protéine est formée de deux hélices α centrales entourées de cinq hélices α «amphipathiques». Il est intéressant de noter que cette structure tridimensionnelle est homologue à celle des toxines bactériennes formant des pores dans des membranes, comme la toxine de la diphtérie et la colicine, ce qui pourrait suggérer un mécanisme d'action potentiel pour ces protéines au niveau de la mitochondrie (Muchmore et al. 1996; Minn et al., 1997; Vander Heiden et al., 1997; Schendel et al., 1997). Une autre caractéristique structurale serait la capacité de ces protéines à s'homo- et s'hétéro- dimériser les unes avec les autres, par leur domaine BH 3 , et de ce fait elles pourraient favoriser ou antagoniser leurs fonctions mutuelles.

4.1.1 Rôles des protéines anti- et pro-apoptotiques

A- Sur la mitochondrie
Les modifications que subit la mitochondrie en situation d'apoptose sont décrites dans ce qui suit. Les mitochondries isolées dans une situation d'apoptose subissent ce qu'on appelle une «Transition de Perméabilité Mitochondriale» (MPT) (Zoratti et Szabò, 1995). Expérimentalement, la MPT est caractérisée par une augmentation très rapide de la perméabilité de la membrane interne, qui permet le passage des particules de poids moléculaire $\leq 1500 \mathrm{Da}$. Cette transition de perméabilité est suivie de plusieurs conséquences, incluant l'écroulement du $\Delta \psi_{\mathrm{m}}$, une enflure osmotique, un relâchement du Ca^{2+} matriciel, la création d'espèces oxygèno-réactives, et la rupture de la membrane externe de la mitochondrie, tout ceci menant au relâchement du cytochrome C de l'espace inter-membranaire de la mitochondrie. Une caractérisation biochimique de la mitochondrie a permis d'identifier les pores, sensibles au voltage et au Ca^{2+}, qui contrôlent la MPT, nommés «pores PT», (Zoratti et Szabò, 1995; Kroemer, Zamzami, Susin, 1997). Les pores sont localisés à la jonction des membranes interne et externe de
la mitochondrie, et l'ouverture de ces pores permet la communication directe entre la matrice de la mitochondrie et son environnement. Le «Voltage-Dependent Anion Channel» (VDAC) et le «Adenine Nucleotide Translocator» (ANT) font partie des «pores PT» (Zoratti et Szabò, 1995).

Les protéines de la famille $\mathrm{Bcl}-2$ ont différentes distributions cytoplasmiques. Les protéines $\mathrm{Bcl}-2$ et $\mathrm{Bcl}-\mathrm{X}_{\mathrm{L}}$ possèdent une queue hydrophobe en C -terminal contenant une séquence d'insertion de membrane, et la majorité des protéines de la famille $\mathrm{Bcl}-2$ sont reconnues pour être associées aux membranes des mitochondries, du réticulum endoplasmique, ainsi qu'à la membrane nucléaire. Dans leur forme inactive, les protéines pro-apoptotiques, Bad, Bax et Bid, ont une localisation cytoplasmique. Par contre, lors de leur activation, elles migrent vers la surface des mitochondries. Lorsque Bid est clivé, sa partie carboxy-terminale se relocalise à la surface de la mitochondrie (Luo et al., 1998). Qu'il s'agisse d'initier ou de prévenir l'apoptose, l'action de ces protéines se situe au niveau des mitochondries. Par contre, le mécanisme de ces actions demeure controversé et incertain. Il a été démontré qu'en ajoutant la protéine Bax, une protéine pro-apoptotique, à des mitochondries isolées, il y a induction du relâchement de cytochrome C (Cosulich et al. 1997; Rosse et al. 1998; Pastorino et al. 1998), tandis que la sur-expression de la protéine $\mathrm{Bcl}-2$ ou $\mathrm{Bcl}-\mathrm{X}_{\mathrm{L}}$ inhibe le relâchement du cytochrome C , donc bloque l'apoptose (Kluck et al. 1997). Il est clair que la famille Bcl-2 est impliquée de façon étroite dans la libération du cytochrome C, le transporteur d'électrons à l'intérieur de la mitochondrie. En plus d'être impliqué dans la phosphorylation oxydative dans la mitochondrie, le cytochrome C est un des constituants (ainsi que la protéine adaptatrice Apaf-1) requis pour l'activation de la caspase-9 dans le cytosol. Comment les membres de la famille $\mathrm{Bcl}-2$ régulent-ils le relâchement du cytochrome C ? Plusieurs hypothèses ont été émises, mais aucune n'est prouvée de façon définitive (Figure 2). Trois modèles de base peuvent être suggérés.
1- Les membres de la famille Bcl-2 forment un canal qui facilite le transport des protéines. En se basant sur la similarité de structure de Bcl-X X_{L} et celle de la sous-unité de la toxine de la diphtérie qui forme des pores, il a été suggéré que les protéines Bcl-2 puissent s'insérer dans la membrane externe de la mitochondrie, et ainsi former un canal ou bien même une large perforation. Les membres de la famille Bcl-2, en effet, peuvent
s'insérer dans une couche bi-lipidique synthétique, s'oligomériser, et former un canal avec une conduction discrète (Reed, 1997). Les protéines Bid et Bik peuvent directement induire la mitochondrie à relâcher le cytochrome C sans interagir avec VDAC ou ANT, suggérant qu'elles agissent en dehors des pores PT (Shimizu et Tsujimoto, 2000).

2- Les membres de la famille Bcl-2 interagissent avec d'autres protéines pour former des canaux. La famille de protéines Bcl-2 peut interagir avec plusieurs protéines. Une possibilité serait que les membres de la famille de protéine pro-apoptotique recrutent d'autres protéines de la membrane externe de la mitochondrie, afin de former un pore assez large pour faire un canal. Un candidat particulièrement intéressant pour une telle fonction serait le canal d'anion voltage dépendant (VDAC). Plusieurs membres de la famille $\mathrm{Bcl}-2$ peuvent en effet se lier à ce canal et réguler son activité (Garcia-Calvo et al., 1998). Puisque la grandeur du pore du canal VDAC, tel que caractérisé, est insuffisante pour laisser passer les protéines, ce modèle doit assumer que le VDAC devrait subir un changement conformationnel suite à la liaison avec des membres de la famille $\mathrm{Bcl}-2$. Il a été démontré que les protéines $\mathrm{Bcl}-2$ et $\mathrm{Bcl}-\mathrm{X}_{\mathrm{L}}$ favorisent la fermeture des pores PT , tandis que la protéine pro-apoptotique Bax a un effet contraire, et interagissent avec ANT et VDAC pour favoriser l'ouverture de ces pores, avec pour conséquence le re-largage du cytochrome C (Shimizu, 2000; Marzo, 1998, 2027; Shimizu, 1999; Marzo, 1998, 1261).

3- Les membres de la famille Bcl -2 induisent une rupture de la membrane externe de la mitochondrie. Il est possible que la famille $\mathrm{Bcl}-2$ contrôle l'homéostasie de la mitochondrie. Dans ce modèle, le signal apoptotique altèrerait la physiologie de la mitochondrie (par exemple, échange d'ion ou phosphorylation oxydative) de telle façon que l'organelle gonfle, ce qui donnerait comme résultat la rupture physique de la membrane externe et le re-largage vers le cytosol des protéines situées entre les membranes de la mitochondrie. Avec ce modèle, le besoin de former un canal assez gros pour laisser passer le cytochrome C n'est maintenant plus nécessaire, puisque les protéines diffuseraient simplement par les déchirures dans la double couche lipidique. L'équipe de Kroemer (Susin et al., 1999; Lorenzo et al, 1999; Dumont et al., 2000) a identifié et cloné une protéine AIF (pour «Apoptosis-Inducing Facton») capable, à elle seule, d'induire l'apoptose dans des noyaux isolés. Cette molécule est synthétisée dans le
cytosol sous forme de précurseur puis est importée dans la mitochondrie. Tout comme le cytochrome C , il s'agit d'une molécule phylogénétiquement ancienne, avec une double fonction : oxydoréduction et facteur apoptogène. Néanmoins, à l'inverse de la voie du cytochrome C , qui nécessite l'activation d'autres facteurs pour induire l'apoptose, la voie d'AIF est indépendante des caspases, et ne nécessite aucun intermédiaire pour provoquer l'apoptose. Elle constituerait entre autres un prototype des voies de l'apoptose indépendantes des caspases.

Les hypothèses concernant les mécanismes d'inhibition de l'apoptose, et en particulier la séquestration d'Apaf-1 par Bcl-2 et ses agonistes anti-apoptotiques, semblent encore très discutées (Green et Amarante-Mendes, 1998; Gross, McDonnell et Korsmeyer, 1999). Apaf-1 est probablement une cible importante des membres de la famille de Bcl-2, puisque les cellules déficientes en Apaf-1 sont réfractaires à divers signaux pro-apoptotiques (Yoshida et al., 1998). En plus, une sur-expression d'Apaf-1 a montré que cette protéine était associée avec les protéines de survie comme Bcl- X_{L} (Hu et al., 1998; Pan, O’Rourke et Dixit, 1998) et Bcl-2 (Fang et al., 1998). En revanche, Moriishi et collaborateurs n'ont trouvé aucune co-immunoprécipitation entre les membres de la famille Bcl-2 et Apaf-1 (Moriishi et al., 1999). Apaf-1 a été également trouvée au niveau de sites tels que les membranes externes de la mitochondrie, l'enveloppe nucléaire et le réticulum endoplasmique où résident les protéines de survie comme Bcl-2 et Bcl-X X_{L} (Monaghan et al., 1992; Lithgow et al., 1994).

4.1.2 Mécanismes de modulation des protéines de la famille Bcl-2

Plusieurs mécanismes différents existent pour moduler les fonctions des protéines pro- et anti-apoptotiques. Tout d'abord, l'état de dimérisation des membres de la famille $\mathrm{Bcl}-2$ affecte leur activité (Korsmeyer, 1999). Une des fonctions des protéines antiapoptotiques $\mathrm{Bcl}-2$ et $\mathrm{Bcl}-\mathrm{X}_{\mathrm{L}}$ est de se dimériser avec la protéine pro-apoptotique Bax afin d'en neutraliser l'activité. En étant un hétérodimère, Bax est inactif, mais une fois libre de se dimériser avec lui-même, Bax est capable d'induire l'apoptose (Minn, 1998; Gross, 1998). Bid, Bik et Bad peuvent agir en inhibant l'action anti-apoptotique de Bcl-2 et $\mathrm{Bcl}-\mathrm{X}_{\mathrm{L}}$ en formant des hétérodimères (Shimizu, 2000).

Figure 2 lllustration des hypothèses du relâchement par la famille de protéine Bcl-2 Les protéines pro-apoptotiques (Bid) peuvent s'homo dimériser pour former un pore pour laisser sortir le cytochrome C (Shimizu, 2000). Les proténes anti-apoptọtiques (Bcl-2) ont la capacité de se lier avec des pores PT et ainsi empêcher le re-largage des protéines inter-membranaires. Par contre, les protéines pro-apoptotiques (Bax), vont permettre l'ouverture des pores PT (Shimizu, 2000; Marzo, 1998; Shimizu, 1999; Marzo, 1998).

En second lieu, en altérant le niveau d'expression des membres pro- et anti-apoptotique de la famille Bcl-2, on peut soit initier l'apoptose, soit l'inhiber (Adams et Cory, 1998). Par exemple, lorsque la quantité de $\mathrm{Bcl}-2$ est supérieure ou égale à celle de Bax, la cellule se trouve protégée de l'apoptose. Par contre, lorsque la quantité de Bax dépasse celle de Bcl-2, la cellule est plus sujette à devenir apoptotique. En troisième lieu, les protéines de la famille $\mathrm{Bcl}-2$ peuvent être modifiées par phosphorylation (Chao, 1998; Maundell, 1997; Ito, 1997). Le meilleur exemple pour ce propos serait la protéine pro-apoptotique Bad. Dans son état non phosphorylé, elle se dimérise avec $\mathrm{Bcl}-2$ et $\mathrm{Bcl}-\mathrm{X}_{\mathrm{L}}$, neutralisant ainsi leur activité anti-apoptotique. Par contre, lorsque Bad est phosphorylée, elle est séquestrée et de ce fait ne peut interagir et neutraliser Bcl-2 et Bcl- X_{L} (Korsmeyer, 1999; Zha, 1996). En quatrième lieu, la famille Bcl-2 peut être modifiée par clivage. Lors d'une apoptose causée par Fas, il a été démontré que les caspases clivent Bcl-2 et BclX_{L}, et que les produits clivés non seulement ne sont plus protecteurs, mais en plus deviennent pro-apoptotiques (Fujita, 1998; Clem, 1998). Bid est une autre protéine de la famille Bcl-2, qui est activée par le clivage des caspases. Tandis que la protéine à sa pleine longueur est inactive, Bid induit le re-largage du cytochrome C par la mitochondrie, suite au clivage causé par la caspase-8 (Gross et al., 1999; Li et al., 1998; Luo et al., 1998). Finalement, la conformation des protéines Bcl-2 modifie leur activité. La meilleure preuve en faveur de ce mécanisme vient des études faites sur Bax (Khaled, 1999). Dans son état inactif, Bax existe sous une conformation par laquelle elle résiste aux clivages protéolytiques. Par contre, suite à son activation et sa re-localisation sur la mitochondrie, la région N -terminale de la protéine devient susceptible au clivage, suggérant qu'un changement de conformation s'est bien produit (Khaled, 1999).

En résumé, les mitochondries ont une place importante dans le déclenchement de l'apoptose. Leur espace inter-membranaire contient plusieurs protéines (cytochrome C, caspase-2, $-3,-7$, et -9 , AIF) lesquelles, une fois libérées dans le cytoplasme, participent à la phase de dégradation de l'apoptose. L'énigme des mécanismes d'induction et de contrôle de l'apoptose par la mitochondrie repose sur quatre points essentiels: a) les molécules de la famille $\mathrm{Bcl}-2 / \mathrm{Bcl}-\mathrm{X}_{\mathrm{L}}$ pourraient contribuer à la formation de canaux ioniques au niveau des membranes intracellulaires; b) les membres pro-apoptotiques de cette famille (comme Bax, Bid, ...) pourraient également intervenir dans la perméabilité
des pores PT de la membrane mitochondriale, notamment comme protéines activatrices de l'apoptose; c) les molécules anti-apoptotiques de la famille Bcl-2 pourraient aussi agir en attirant des activateurs endogènes (comme Apaf-1) de l'apoptose et d) certaines procaspases ont aussi une localisation mitochondriale. Ainsi, les promoteurs apoptotiques, ou les inhibiteurs, de la famille Bcl-2, régulent l'apoptose grâce à des effets multiples sur les cascades d'activation de caspases (expliqué dans le paragraphe suivant), sur le potentiel redox, et sur la barrière de perméabilité des membranes mitochondriales. Dans l'ensemble, ces observations suggèrent donc une implication de la transition de perméabilité dans la régulation de l'apoptose induite par les mitochondries.

4.2 Rôle des caspases dans l'apoptose

4.2.1 Définition et classification des caspases

Les caspases sont des protéases spécialisées qui sont essentielles pour l'apoptose. Elles sont différentes des autres protéases parce qu'elles possèdent une cystéine dans leur site catalytique et clivent à la suite d'une acide aspartique (Earnshaw, Martins, et Kaufman, 1999). Cette spécificité d'avoir un aspartate comme substrat est inhabituelle, et retrouvée seulement chez une autre protéase, le granzyme B, mais cette dernière possède une sérine dans son site actif (Sarin, Wu, et Henkart, 1996; Sarin, 1997). Les caspases sont synthétisées comme de simple chaîne de polypeptides, et sont des zymogènes, inactifs. Ces zymogènes sont composés de trois domaines : un pro-domaine N -terminal, et deux autres domaines, p10 et p20, retrouvés dans l'enzyme mature. Lors de l'activation, chaque chaîne de polypeptide est clivée en deux sous-unités, une grande (p20) et une petite (p10), qui par la suite se dimérisent (Krammer, 1999). Les enzymes matures observées sont donc des hétéro-tétramères composés de deux hétéro-dimères p20/p10 et de deux sites actifs (Earnshaw, Martins, et Kaufman, 1999). Lors de l'activation le peptide en N -terminal est clivé et relâché. Ce peptide en N -terminal n'est pas requis pour l'activité enzymatique. Son rôle est connu dans le cas des caspases-8 et 10 , où il agit comme domaine d'interaction avec d'autres protéines pour moduler leur activation. Les caspases-8 et -10 contiennent un «Death-Effector Domain» (DED), alors que les caspase-2 et -9 contiennent un «Caspase Activation and Recruitment Domain» (CARD).

Plus de 14 caspases différentes ont été identifiées dans les tissus de mammiferres, à ce jour (Nunez et al., 1998). Les caspases ont été divisées en trois groupes, selon leur spécificité de substrat, c'est-à-dire, selon la reconnaissance des trois acides aminés qui précèdent l'acide aspartique. Le premier groupe contient les caspases impliquées dans le processus inflammatoire, donc activation des pro-cytokines, qui incluent les caspases-1,-4 et-5 (Salvesen et Dixit, 1997). Ces enzymes sont parfois désignées «ICE-like», ceci parce qu'un autre nom pour caspase-1 est «Interleukin-1-converting enzyme» (ICE). Le motif du tétra-peptide que reconnaissent les protéines de la famille ICE est WEHD, par contre ces caspases sont les plus tolérantes pour ce qui est de la substitution d'acide aminé dans ce tétra-peptide, lorsqu'elles sont comparées aux caspases des deux groupes suivants (Garcia-Calvo et al., 1998). Le second groupe contient les caspases-6, -8, -9 et 10 (Garcia-Calvo et al., 1998). Ces enzymes sont considérées comme des caspases de signalisation parce qu'elles peuvent activer d'autres caspases, et ainsi débuter la cascade (Garcia-Calvo et al., 1998). Leur motif de reconnaissance est (LV)EXD. Le troisième groupe contient les caspases-2, -3 et -7 . Ces enzymes sont connues comme effectrices, puisqu'elles clivent plusieurs cibles intra-cellulaires, ce qui se traduit par l'apparence morphologique propre à l'apoptose. L'activation de ces caspases aboutit généralement dans un point de non-retour dans la mort cellulaire (Nunez et al., 1998; Casciola-Rosen et al., 1996). Les caspases effectrices sont celles dont la spécificité est la plus stricte, avec la nécessité d'avoir un acide aspartique dans la première et la quatrième position précédant le site de clivage (Garcia-Calvo et al., 1998). Leur motif de reconnaissance est DEXD. Les caspases découvertes plus récemment, les caspases-12 à -14, n'ont pas encore été assez caractérisées pour pouvoir être classées dans un des trois groupes précédents.

4.2.2 Activation des caspases

Il existe trois mécanismes différents pour activer les caspases. Le premier mécanisme est l'activation de la caspase par une autre caspase préalablement activée. La plupart des caspases sont activées suite à un clivage protéolytique du zymogène entre les domaines p20 et p10, toujours un autre clivage entre le pro-domaine et le domaine p20. Il est intéressant de noter que tous ces sites de clivages se trouvent après un aspartate, le substrat des caspases, ce qui suggère la possibilité d'une activation par autocatalyse
(Thornberry, et al., 1997). En effet, la façon la plus facile d'activer une caspase est de la mettre en présence d'une autre caspase déjà activée. Cette stratégie de cascade de caspases est amplement utilisée par la cellule pour l'activation de trois caspases importantes, les caspases-3, -6 et -7 (Figure 3). Ces trois caspases effectrices sont considérées comme les plus active de la famille des caspases, et sont habituellement plus nombreuses que les autres. La cascade de caspases est un processus très utile pour amplifier le signal pro-apoptotique, mais il ne peut expliquer comment est activée la caspase la plus en amont. Il y a au moins deux autres modèles qui pourraient expliquer l'activation de ces premières caspases. Le premier modèle est l'induction de l'activation par le rapprochement. Il est connu que la caspase-8 est la caspase initiatrice lors de l'apoptose induite par les récepteurs de mort. Lors de la liaison du ligand à son récepteur, les récepteurs de mort CD95/Fas se trimérisent et forment des complexes de signalisation liés à la membrane. Ces complexes recrutent, par des protéines adaptatrices, plusieurs molécules de pro-caspases-8, donnant comme résultat une grande concentration locale de zymogènes. Ce modèle d'activation par rapprochement implique que sous ces conditions quantitatives, la faible activité protéolytique intrinsèque de la pro-caspase-8 est suffisante pour permettre aux pro-enzymes de se cliver mutuellement et ainsi s'activer les unes les autres (Muzio et al., 1998). Le deuxième modèle d'activation des caspases est l'association de la pro-caspase avec une sous-unité régulatrice. Prenons comme exemple la caspase-9, qui nécessite pour son activation une association avec des co-facteurs. Le co-facteur «Apoptotic Protease Activating Factor-1» (Apaf-1) a été identifié, par une approche biochimique, comme étant une des deux protéines nécessaires à l'activation de la caspase-9, l'autre étant le cytochrome C (Li et al., 1997; Zou et al., 1997) . Le complexe que forment ces trois protéines, nécessitant de l'ATP, donne la forme active de la caspase-9, souvent appelé «apoptosome». Donc, Apaf-1 n'est pas seulement une protéine activatrice de la caspase-9, mais en plus constitue une sous-unité essentielle au fonctionnement de celle-ci (Rodriguez et Lazebnik, 1999). En résumé, les caspases effectrices sont généralement activées par des caspases en amont, alors que les caspases initiatrices sont activées par des interactions protéine-protéine régulées.

Figure 3 Maturation protéolytique de la pro-caspase-3.
Le premier clivage se fait entre les domaines p20 et p10 (ici 12 kDa) afin de séparer les deux sousunités. Le second clivage protéolytique s'effectue entre le pro-domaine et la grande sous-unité. Ensuite il y a formation d'un hétérotétramère qui conduit à la caspase mature sous sa forme active.

4.2.3 Les substrats des caspases

Les caspases clivent un bon nombre de protéines cellulaires, et le processus de protéolyse est limité puisqu'il y a un petit nombre de coupures qui sont réalisées. Parfois, les clivages entraînent l'activation de la protéine, d'autre fois, l'inactivation. Mais jamais la dégradation, puisque leur spécificité de substrats distingue les caspases comme étant des endopeptidases strictes. Les caspases clivent plusieurs protéines cellulaires, et le nombre de ces dernières ne cesse d'augmenter. Les protéines de structure, nucléaires et de signalisation sont toutes des cibles potentielles des caspases (tableau 2). Il y a différentes protéines du cytosquelette clivées par les caspases, comme par exemple, la fodrine et l'actine (Krammer, 1999). Le clivage des ces protéines est probablement responsable des changements morphologiques observés durant l'apoptose. Par exemple le clivage des lamines nucléaires est nécessaire pour le rétrécissement et le bourgeonnement nucléaire (Rao, Perez et White, 1996; Buendia, Santa-Maria et Courvalin, 1999). La fragmentation de l'ADN est due à l'activation de la « caspaseactivated Dnase» (CAD) par la caspase-3. Cette DNase existe sous forme de complexe inactif avec une sous-unité inhibitrice, ICAD. L'activation de CAD s'effectue donc par le clivage de la sous-unité inhibitrice par la caspase-3 résultant, par le relâchement et l'activation de la sous-unité catalytique (Liu et al., 1997; Enari et al., 1998; Sakahira, Enari et Nagata, 1998).

4.3 La protéine p53

La protéine p53 est un facteur de transcription qui joue un rôle critique pour la prévention du cancer. La protéine p53 est considérée comme étant le gardien du génome. Cette protéine est un bon exemple du contrôle de la décision d'entrer en apoptose ou de choisir la vie, lorsque l'ADN a été endommagé (Sionov et Haupt, 1999). Selon la nature du stimulus et la phase du cycle cellulaire dans laquelle la cellule se trouve, l'activation de la p53 peut mener soit à un arrêt de prolifération cellulaire et à la réparation de l'ADN, soit à l'apoptose (Evan et Littlewood, 1998). Alors que le premier stimulus, pour activer la p53, est l'ADN endommagé, d'autres stress cellulaires, tels que le manque de métabolites, un dommage physique, la chaleur, et le manque

Catégorie	Cible	Effet
Signalisation	autres caspases	Activation
	PKC δ	Activation, fragmentation nucléaire
	Phospholipase A_{2}	Activation
	Bcl-2, Bcl-x ${ }_{\text {L }}$	Formation de fragment pro-apoptotiques
	Bid	Activation
Nucléaire	poly (ADP-ribose) polymérase-1	Inactivation
	Protéine kinase ADN-dépendante	Inactivation
	U1 (70 kDa)-snRNP	Diminution de la synthèse des ARNs
	Lamines A et B	Désassemblage de la lamine nucléaire
	ICAD	Fragmentation de l'ADN
Structurale	Actine	Réarrangement du cytosquelette
	Gelsoline	Réarrangement du cytosquelette
	Fodrin	Changement membranaire

Tableau 2 Quelques exemples de substrats clivés par les caspases.

(Selon Krammer, 1999; Blatt et Glick, 2001).
d'oxygène peuvent également activer la p53 (Evan et Littlewood, 1998; Solovyan et al., 1998).

Le niveau de p53 augmente dramatiquement dans les quelques minutes suivant le dommage que la cellule ait subi. Cette augmentation est rendue possible par les modifications post-traductionnelles de p53, sans qu'il y ait une induction dramatique évidente du niveau d'ARNm suite au dommage à l'ADN (Kastan et al., 1991). Cette modification se traduit par une phosphorylation. Dans une cellule n'ayant subi aucun stress, la protéine p53 possède une demi-vie extrêmement courte, mais suite à un dommage, elle devient beaucoup plus stable (Maltzman et Czyzyk, 1984 ; Price et Calderwood, 1993 ; Maki et Howley, 1997). L'instabilité de la protéine p53, dans des conditions normales, est reliée au fait que p53 est la cible d'une protéolyse induite par la protéine Mdm2. Mdm2 se fixe sur p53 et joue le rôle d'une ubiquitine-ligase qui permet l'ubiquitination de p53, ce qui fera d'elle une cible de dégradation par le protéasome (Haupt et al., 1997 ; Honda et al., 1997 ; Kubbutat et al., 1997 ; Midgley and Lane, 1997 ; Fuchs et al., 1998). La protéine Mdm2 cause également la translocation de p53 du noyau de la cellule vers le cytoplasme, où elle subira une protéolyse (Roth et al., 1998 ; Freedman et Levine, 1998 ; Tao et Levine, 1999). Il a donc été démontré que, par la phosphorylation du domaine de régulation situé dans la partie C-terminale de p53, sa liaison à l'ADN n'est plus compromise (Hupp et Lane, 1994 ; Wang et Prives, 1995). De plus, la phosphorylation de la sérine-15 et la sérine-20, en N -terminal de p53, cause l'inhibition de l'interaction entre p53 et Mdm2, avec pour conséquence l'augmentation du niveau de p53 et sa conversion en une forme capable d'une activité de transcription (Shieh et al.,1997; Unger et al., 1999). Un grand nombre de kinases, incluant la kinase caséine, les kinases reliées aux signaux extra-cellulaire, la protéine kinase C et la kinase Raf-1, phosphorylent p53 (Evan et Littlewood, 1998 ; Yan et al., 1997). Une fois phosphorylé, p53 agit comme un facteur de transcription pour soit augmenter, soit diminuer, la transcription de plusieurs gènes impliqués dans l'apoptose.

Figure 4 Récapitulation des effiets de l'activation de p53.

Le résultat final, suite à un dommage de l'ADN, peut être soit l'arrêt du cycle cellulaire (donc de la croissance), soit l'apoptose. Un dommage à l'ADN donne une accumulation el activation de la protéine p53. Une fois activée, p53 possède une activité de transcription qui augmentera la transcription de dillc̈rents gènes (GADD45, 14-3-3, Mdm2, p21, Bax, Fas, DR5). p53 pcut également réguler à la baisse différents gènes ($\mathrm{Bcl}-2$). L'augmentation de p 21 ira inhiber les kinases cyclines dépendantes (cdk), et le cycle cellulaire sera alors arrêté en G_{1}. Le cycle cellulaire peut également être arrêté en phase G_{2} par l'augmentation des protéines GADD45 et 14-3-3 par p53. Le processus d'apoptose est réalisé par dillérentes protéincs (Bax, Fas, DR5) qui sont régulées à la hausse par p53. Une boucle de régulation de la protéine p53 est possible grâce à l'augmentation de Mdm2, une protéine se liant à p53 et favorisant sa dégradation.

Plusieurs protéines régulatrices du cycle cellulaire sont induites par p53, comme par exemple p21, GADD45 et des membres de la famille 14-3-3. L'habileté de p53 d'induire un arrêt du cycle cellulaire dans la phase G_{1}, suite à un dommage à l'ADN, est bien connue et peut s'expliquer par le fait que la protéine p53, une fois stimulée, possède une activité de transcription qui permet de transcrire le gène d'inhibition de la kinase dépendante des cyclines (Cdk), la protéine p21. Une quantité élevée de p21 va ensuite inhiber les kinases cycline $E / c d k 2$ et cycline $A / c d k 2$, empêchant ainsi ces kinases de promouvoir la progression du cycle cellulaire (Ko et Prives, 1996 ; Wu et Levine, 1997). De plus, la protéine p53 est également impliquée dans l'arrêt du cycle cellulaire en phase G_{2} en partie parce que p53 induit l'expression de la protéine sigma 14-3-3 qui causera la séquestration du complexe cycline B/Cdc2 (Hermeking et al., 1997). La protéine p53 peut mener à l'apoptose par l'activation de la transcription de différents gènes donnant des protéines impliquées dans le processus apoptotique. Les protéines ainsi induites sont : la protéine Bax, le récepteur Fas et DR5 (récepteur pour le ligand de mort TRAIL), et sont toutes impliquées dans le processus de l'apoptose (Miyashita et Reed, 1995; Rich, Allen et Wyllie, 2000). P53 cause également la diminution de l'expression de l'ARNm de Bcl-2, favorisant ainsi l'apoptose (Haldar et al., 1994). Il semble exister une voie apoptotique induite par p53 qui ne nécessiterait pas de relâchement de cytochrome C , mais qui nécessiterait toujours l'activation des caspases. Bien que l'expression de la protéine Bax soit augmentée, elle se situerait plutôt dans le cytosol, et aucune translocation sur la mitochondrie n'est détectable (Li, Dietz et Von Harsdorf, 1999; Jügersmeier, 1999). Il pourrait donc exister une autre voie par laquelle la protéine p53 induirait l'apoptose, sans relâchement de cytochrome C.

4.4 Les « récepteurs de mort»

Les récepteurs de morts sont des récepteurs situés à la surface de la cellule et sont nommés ainsi parce qu'à la liaison avec leur ligand, ils peuvent amorcer le processus d'apoptose. Ces récepteurs, font partie de la famille du récepteur au TNF- α. On y trouve en particulier, bien entendu, le récepteur TNF-R1 lui-même, le récepteur Fas (aussi appelé CD95 ou Apo-1) ainsi que les récepteurs DR3, DR4 et DR5. Tous ces récepteurs sont activés par leurs ligands, qui sont soit solubles, soit membranaires: «Tumor

Necrosis Factor- α » (TNF- α), FasL, «TNF-Related Apoptosis Inducing Ligand» (TRAIL) (Krammer, 1999; Ashkenazi, Dixit, 1998). Les ligands des récepteurs de mort font partie de la famille de cytokines telle que le TNF- α, et sont des molécules homotrimériques. Des analyses en cristallographie indiquent que chaque monomère du ligand se lie à un récepteur, ce qui indique que la liaison d'un ligand implique la trimérisation de ses récepteurs (Ashkenazi, Dixit, 1998). L'interaction ligand-récepteur induit la trimérisation du récepteur, ce qui permet l'association physique de protéines adaptatrices avec les domaines du «Receptor Interacting Protein Death Domain» (RIPDD), favorisant le recrutement et l'activation des caspases proximales comme les pro-caspases-8, -10 et -2 , capables alors de transmettre le signal de mort à l'intérieur de la cellule (Krammer, 1999; Ashkenazi, Dixit, 1998). Prenons comme exemple l'activation du récepteur TNF-R1. Par la liaison de TNF- α au récepteur TNF-R1, ce dernier se trimérise, donnant comme résultat l'agrégation des domaines de mort, permettant le recrutement de TRADD qui à son tour recrute une molécule adaptatrice, TRAF2 «TNF Receptor-Associated Factor 2», qui mène à l'activation des voies JNK et NF-кB. TRADD peut également recruter FADD et RIP menant au processus apoptotique et à l'activation de NF-kB, respectivement. RIP peut également recruter RAIDD «RIPAssociated ICH-1/CED-3-homologous protein with a Death Domain» qui par la suite recrute la caspase-2 et induit l'apoptose. Lorsque l'on prend le récepteur Fas comme modèle d'activation de l'apoptose, le complexe Fas et FADD va recruter la pro-caspase-8 qui formera un complexe qui induira le signal de mort, «Death-Inducing Signal Complex » (DISC) (Krammer, 1999; Ashkenazi, Dixit, 1998). Une fois assemblé, le DISC va causer une auto-activation rapide de la caspase-8, qui ira elle-même activer la caspase-3 et causera l'apoptose de la cellule (Medema et al., 1997; Muzio et al., 1996). Ainsi, cette première voie d'action du récepteur Fas est une voie rapide court-circuitant la mitochondrie et qui ne nécessite pas l'apport de nouvelles molécules (Scaffidi et al., 1998; Scaffidi et al., 1999; Gueydan, 1997; Jiang et al., 1999) car elle est basée sur l'interaction de molécules qui sont déjà présentes.

Toutefois, il a été récemment montré que l'activation de la caspase-8, suite à la trimérisation du récepteur Fas, pouvait provoquer également le clivage de Bid (Li et al., 1998; Green, 1998, 695 ; Steemans et al., 1998; Han et al., 1999), une protéine proapoptotique de la famille Bcl-2. Ce clivage entraîne la pénétration d'une forme tronquée de Bid dans la mitochondrie, avec comme conséquence la sortie du cytochrome C , puis la dépolarisation du potentiel de membrane mitochondriale, puis l'apoptose. Il est également démontré que lorsqu'il y a activation de DR4 et DR5 par TRAIL, la caspase- 8 est activée (Yamada et al., 1999; Kim et al., 2000). La voie utilisée n'est pas encore bien élucidée, mais plusieurs auteurs confirment qu'il y a activation des caspases-3 et -9 suite à l'activation de la caspase-8. Ils observent que Bid est clivé suite à l'activation de la caspase-8 (Yamada et al., 1999; Kim et al., 2000; Nagane, Huang et Cavenee, 2001; Lacour et al., 2001). Il est possible que, par la liaison de TRAIL aux récepteurs DR4 ou DR5, il y ait activation de la caspase-8, par recrutement à l'aide d'une molécule adaptatrice. Celle-ci à la fois activerait la caspase-3 et cliverait Bid, afin que ce dernier devienne actif et permette le re-largage de cytochrome C, avec pour effet l'activation de la caspase-9 qui à son tour activera la caspases-3, causant une amplification de la cascade des caspases et finalement la mort de la cellule.

En résumé, il y aurait donc au moins deux voies de transduction du signal apoptotique par certains récepteurs de mort, l'une directe et rapide, l'autre plus lente et mettant en jeu le relais mitochondrial. C'est pourquoi certains auteurs classent les cellules selon leur mode d'induction de l'apoptose par Fas (type I ou II). En effet, chez certaines cellules (type I), l'activation de Fas mène quasiment exclusivement à la voie des caspases. Ces cellules ne démontrent habituellement aucune implication des mitochondries, et la mort cellulaire n'est pas inhibée par $\mathrm{Bcl}-2$ ou $\mathrm{Bcl}-\mathrm{x}_{\mathrm{L}}$. Dans d'autres cellules (type II), l'activation de Fas enclenche la voie utilisant les mitochondries en grande partie, et ce, suite à l'activation de la caspase-8. Les protéines anti-apoptotiques $\mathrm{Bcl}-2$ ou $\mathrm{Bcl}-\mathrm{X}_{\mathrm{L}}$ peuvent inhiber l'apoptose seulement dans les cellules de type II, par leur action de prévenir le relâchement de cytochrome C dans le cytosol (Blatt et Glick, 2001).

Si plusieurs stimuli peuvent initier l'apoptose, les altérations morphologiques et biochimiques courantes observées sont indépendantes du stimulus initial. En l'état actuel
des recherches, il semble que la plupart des signaux apoptotiques convergent vers un nombre limitć de voies menant à l'apoptose.

4.5 Les protéine kinases C et Nur77

Les protéines kinases C (PKC) font partie d'une famille de sérine/thréonine kinases. Il y a au moins 11 différentes iso-enzymes de PKC, que l'on peut diviser en trois sous-groupes, en se basant sur leur structure et leur mécanisme de réponse à des facteurs de régulation. Les PKC conventionnelles ($\alpha, \beta \mathrm{I}, \beta \mathrm{II}, \gamma$) sont dépendantes du Ca^{2+} et sont activées par le diacylglycérol (DAG) ou par le 12-o-tetradecanoylphorbol-3acetate (PMA) in vivo. Le second sous-groupe ($\delta, \varepsilon, \eta, \theta, \mu$), les iso-types nouveaux, ne répond pas au Ca^{2+} mais est activé par le DAG et le PMA. Le dernier sous-groupe (λ, ζ, r), les PKC «atypiques», sont insensibles autant au Ca^{2+} qu'au DAG. Les PKC sont responsables de la transduction de plusieurs signaux cellulaires, lors d'une variété de processus cellulaires, comme la croissance cellulaire, la différenciation, la transformation maligne et l'apoptose. Les PKC sont également reconnues pour moduler l'activité de différentes protéines de membranes, comme les protéines transporteuses, les canaux, et les protéines reliées au cytosquelette. Puisqu'elles possèdent différents rôles, on constate que leur activation peut donner différents résultats qui peuvent même s'opposer. Il a été démontré que l'activation de la PKC induit l'apoptose chez une lignée de cellules cancéreuses gastriques traitées avec du PMA, par l'activation de la caspase-3 et de protéases à sérine (Park et al., 2001). Il a d'autre part été démontré que la PKC inhibe l'apoptose induite par le récepteur Fas et ce par la modulation de la perte de potassium $\left(\mathrm{K}^{+}\right)$et l'inhibition de l'activité des caspase-8 et -3 (Gòmez-Angelats, Bortner et Cidlowski, 2000). Il est démontré, par différents chercheurs, que les PKC ont un rôle dans la régulation transcriptionnelle de l'expression des gènes Fas et FasL (Sharma et al., 2000). L'équipe de Park a démontré que l'induction de l'expression de Fas par des PKC est rendue possible grâce au gène TDAG51 (T-cell death-associated gene).

Higure 5 Structure des membres des récepteurs de mort membranaires, et leurs interactions avec les principaux effecteurs cytoplasmiques impliqués dans les voies apoptotiques.
Signalisation de l'apoptose par le récepteur Fas et son ligand (Fas L) (Granville et al., 1998; Schulze-Osthoff, 1998; Blatt et Glick, 2001). Signalisation pro-apoptotique et anti-apoptotique du récepteur NNF -R1 (SchulzeOsthoff, 1998; Granville et al., 1998; Matsuzawa et Ichijo, 2001). Signalisation de l'apoptose proposée dans le modèle des récepteurs DR4 et DR5 et de leur ligand TRALL (Yamada et al., 1999; Kim et al., 2000; Nagane, Huang et Cavenee, 2001; Lacour et al., 2001). Les flèches rouges indiquent une activation directe de la caspase8 , et la ligne avec un cercle noir, une inhibition de l'apoptose avec des étapes intermédiaires (activation de kinases/factcur de transcription).
Abréviations : DD, Death Domain; TRADD, TNF-Receptor Associated Death Domain; FADD, Fas-Associated Death Domain; DISC, Death-Inducing Signaling Complex; RIP, Receptor-Interacting Protein; TRAF2, TNFReceptor Associated Factor-2; NF-кB, Nuclear Factor Kappa B, l-кB, Inhibitory Kappa B; JNKK, JNK Kinase; TNF, Tumor Necrosis Factor; TNFR, Récepteur du TNF; Fas L, Fas Ligand; TRAIL, Tumor necrosis factorRelated Apoptosis Inducing Ligand; DR4-5, Death Receptor 4-5; DED, Death-effector Domain; RAIDD, RIPAssociated ICH-1/CED-3-homologous protein with a Death Domain.

Figure 6 Récapitulation schématique des interconnections entre deux différentes voies de transduction de l'apoptose.
Le processus d'apoptose requiert la participation de plusieurs voies afin d'activer les caspases. Les deux plus connues et les mieux caractérisées-sont la transduction du_signal apoptotique_par les récepteur de mort, et l'autre voie, plus interne à la cellule, est l'apoptose induite par les changements de l'intégrité mitochondriale. Cette dernière se caractérise en particulier par la libération de facteurs apoptogènes comme le cytochrome C et AIF. Il existe des interconnexions entre ces deux voies de signalisation et des boucles d'amplification du signal_Abréviations : AIF, Apoptosis-Inducing-Factor; tBid, protéine tronquée.

Il existe un autre médiateur dans l'expression du système Fas/FasL, qui est un membre de la superfamille des «récepteurs stéroïdiens nucléaires orphelins», Nur77 (Davis et Lau, 1994). Nur77 joue un rôle dans la croissance cellulaire par son rôle de facteur de transcription nucléaire. Il a été démontré que l'expression transgénique de Nur77, dans des thymocytes, entraîne une augmentation du niveau de Fas ligand, ce qui suggère que Nur77 peut mener ces cellules à devenir apoptotiques par l'induction de l'expression de Fas ligand (Weih et al., 1996). Nur77 serait également capable de réguler l'apoptose par un moyen indépendant de son activité de régulation transcriptionnelle, entre autre par sa re-localisation du noyau vers les mitochondries, avec pour résultat le relâchement de cytochrome C (Li et al., 2000). Donc, par son rôle de facteur de transcription et son rôle de protéine pouvant causer le relâchement de cytochrome C. Nur77 peut amener une cellule à l'apoptose.

5.0 Le cancer du côlon

À l'intérieur d'un tissu l'homéostasie est maintenue par l'équilibre entre le nombre de cellules en croissance et celui des cellules qui disparaissent par apoptose. Une cellule cancéreuse peut être définie comme une cellule qui a survécu à l'apoptose et se trouve maintenant faisant partie des cellules en croissance, pouvant ainsi contribuer à la formation de tumeur. Plusieurs causes peuvent mener à la formation de cancer, tant au niveau de la régulation du processus de croissance qu'au niveau de la régulation de l'apoptose. Ces failles de régulation sont responsables de nombreuses maladies y compris le cancer. Une accumulation de cellules peut se produire lorsque le taux de mort est normal, mais le taux de croissance est anormalement élevé ou bien lorsque le taux de croissance est normal mais le taux de mortalité est anormalement bas. La transformation maligne, et la progression tumorale, sont des processus complexes nécessitant un certain nombre d'altérations génétiques.

Les cellules tumorales peuvent être éliminées par présentation d'antigènes aux lymphocytes T cytotoxiques (CTL), et aux «natural killer» (NK) par réduction du niveau de complexe majeur d'histocompatibilité de classe I (CMH I) situé à la surface de la
cellule, entraînant comme résultat l'activation de la réponse immunitaire (Boon et al, 1997). Les cellules cytotoxiques peuvent reconnaître les cellules tumorales par l'expression, à leur surface, d'antigènes viraux (non-soi), néo-antigènes (issus de protéines du soi mutées), d'antigènes du soi non-mutés, mais sur-exprimés, d'antigènes oncofoetaux (gène «éteint» au cours de l'embryogenèse qui serait spontanément retranscrit) (Boon, Coulie et Van den Eynde, 1997; Jager, Jager et Knuth, 2001; Benjamini, Sunshine et Leskowits, 1996).

5.1 Les stratégies de défense du cancer

Parfois, les cellules tumorales développent des stratégies afin d'échapper au système immunitaire. Plusieurs mécanismes sont créés par la cellule tumorale, certains causant une aberration de la présentation d'antigène à la surface de la cellule cancéreuse: a diminution de l'expression du CMH I (la cellule tumorale n'est plus reconnaissable par CTL, mais peut être détruite par les NK) et l'altération de la structure du CMH I (reconnaissance ni par CTL, ni par NK). Ensuite, les mécanismes causant une mauvaise interaction entre cellules cytotoxiques et cellules cancéreuses : diminution de la sécrétion de molécules co-stimulatrices ou d'adhésions (essentielles dans la présentation antigénique), ce qui peut causer l'anergie (Gunthert et al., 1996), diminution ou mutation du récepteur Fas membranaire et les récepteurs DR4 ou DR5 (cellule tumorale moins sensible à l'attaque des CTL ou NK) (Butler et al., 1998; von Reyher et al., 1998; Pai et al., 1998; Ozoren, 2000). Les cellules tumorales peuvent également sécréter des cytokines qui favorisent leur croissance. Une étude effectuée sur une lignée de cancer du côlon a démontré qu'il y avait production d'IL-10 (qui a pour effet d'inhiber la production de cellule T CD4 ${ }^{+}$de type Th1 et d'inhiber les fonctions des macrophages) et cette production est régulée par la production locale de cytokines pro-inflammatoires comme IL-6 et IFN- γ (Suzuki et al., 2001). Une seconde étude, faite sur 9 lignées cellulaires de cancer du côlon, démontre que celles-ci produisent des facteurs immunosuppresseurs (exemple : prostaglandine E2), inhibant la prolifération des cellules T (Luo, Kammerer et von Kleist, 2000).

Le concept d'immunité cellulaire spécifique est basé sur la capacité des lymphocytes T cytotoxiques à éliminer les cellules tumorales. Le mode d'action des CTL
est d'induire l'apoptose chez les cellules cancéreuses par deux mécanismes: par la voie des «récepteurs de mort» et par la voie perforine/granzyme B, mais les cellules tumorales sont parfois capables de développer des moyens pour inhiber ces mécanismes. On a démontré que des cellules cancéreuses du côlon peuvent se défendre contre les CTL par l'expression, à leur surface membranaire, de Fas ligand, causant ainsi la mort des CTL par la liaison de leur récepteur Fas, mécanisme appelé la «contre-attaque tumorale» (O’Connell et al., 1996; Shiraki et al., 1997; Bennett et al., 1998; Bennett et al., 1999). Certains résultats contredisent cette hypothèse (Bonnotte et al., 2000), qui reste un sujet de recherche assez controversé (Owen-Schaub et al., 2000; Igney et al., 2000; Hug, 1997). Un autre mécanisme de défense peut être développé par les cellules cancéreuses: la sécrétion sous forme soluble du récepteur Fas. Dans ce scénario, la cellule cancéreuse sécrète le récepteur Fas sous forme soluble, par mutation dans le domaine transmembranaire de la protéine, la privant ainsi de son point d'ancrage à la membrane cellulaire. Le récepteur Fas soluble se lie à son ligand à la surface du CTL, causant ainsi la neutralisation de l'effet apoptotique des CTL (Song et al., 2001). Il est démontré que dans certains cas, les CTL peuvent induire l'apoptose chez les cellules cancéreuses exprimant le ligand Fas par le mécanisme de perforine/granzyme B (Vermijlen et al., 2001). Par contre, dans d'autres cas, les cellules tumorales ont développé un mécanisme contrecarrant l'efficacité du mécanisme perforine/granzyme B, par la sur-expression d'un inhibiteur à protéase de sérine, PI-9 (Medema et al., 2001).

Les cellules tumorales peuvent donc développer divers mécanismes pour éviter la mort, mais parfois ces mécanismes peuvent amener la cellule à se «suiciden» ou bien à causer la «mort fratricide» (mort d'une cellule cancéreuse voisine). Ainsi, si la cellule exprime le ligand Fas à sa surface, celui-ci pourrait aller se lier au récepteur Fas d'une cellule cancéreuse voisine et être «responsable» de sa mort (Green et Ware, 1997).

Il existe d'autres façons par lesquelles une cellule cancéreuse peut échapper à l'apoptose: mutation de certaines protéines impliquées dans le processus d'apoptose, comme par exemple la protéine p53. La protéine p53 est une protéine qui est mutée dans la plupart des cancers du côlon (Roa et al., 2000). Puisque p53 est mutée, elle est privée de ses fonctions de «gardienne du génome» et d'activation du processus d'apoptose. Même si la cellule est endommagée au niveau de son ADN par différents traitements
(radiothérapie et/ou chimiothérapie), elle risque d'échapper malgré tout à l'apoptose. Une autre stratégie développée par la cellule cancéreuse pour échapper à l'apoptose, est la sur-expression de la protéine c-FLIP. Cette protéine inhibe l'étape de liaison entre les protéines adaptatrices FADD et la caspase-8 par sa liaison à FADD (Irmler et al., 1997; Walczak et Krammer, 2000; Griffith et al., 1998). Il a été démontré que la sur-expression de cette protéine est fréquente dans différents cancers du côlon, ce qui pourrait contribuer à la transformation tumorale in vivo (Ryu et al, 2001).

5.2 Thérapies contre le cancer du côlon

Les traitements contre le cancer du côlon obtiennent un bon taux de réussite, mais ceci seulement en l'absence de métastases et de résurgence. La réussite est attribuée au diagnostic précoce. Mais selon Statistiques Canada, le cancer du côlon est le troisième facteur de mortalité par cancer au Canada, avec 6500 morts pour l'année 2000 et 17000 nouveaux cas. Plusieurs traitements sont maintenant disponibles.

5.2.1 Stades du cancer du côlon selon Dukes

Les traitements sont donnés selon le stade de la maladie. Il existe deux systèmes de classification : celle de Duke, et le système TNM (" Tumor characteristics, Nodal involvelment and amount of Metastasis »). La classification de Duke est la plus utilisée à ce jour. Le stade A représente l'étape où le cancer du côlon est limité à la muqueuse ou à la sous-muqueuse du côlon. Les options de traitement à ce stade sont soit la colosectomie, lors d'une lésion superficielle causée par le cancer, soit une excision de la portion affectée, lors d'une lésion plus profonde. Le taux de survie au cancer dans les 5 ans suivant l'opération est de 90%. Le stade B se mesure selon le degré d'envahissement d'organes ou de tissus situés à proximité de la tumeur. Le traitement à donner dans ces cas est naturellement l'excision de la tumeur et la considération pour l'utilisation de la chimiothérapie et/ou radiothérapie. Le taux de survie au cancer dans les 5 ans suivant les traitements se situe entre $70-80 \%$. Le stade C implique l'envahissement de ganglions lymphatiques et la formation de métastases dans les vaisseaux sanguins majeurs. Les traitements à prescrire sont l'excision des parties atteintes, la chimiothérapie avec la combinaison d'adjuvant. Le taux de survie au cancer dans les 5 ans suivant les
traitements est de 50%. Le stade D , le dernier, des métastases distantes sont présentes. Les traitements sont l'ablation des différentes métastases isolées (foie, poumon, ovaires), ainsi que de la chimiothérapie ou/et radiothérapie palliative. Le taux de survie au cancer suite aux traitements est généralement moins de 5 ans.

5.2.2 Chimiothérapie

Le médicament le plus utilisé pour la chimiothérapie est le 5 -fluoro-uracil (5 FU), administré sous forme intra-veineuse. Des études ont démontré que l'utilisation du 5 FU , suite à l'excision de la tumeur, est plus bénéfique que l'excision seule, pour le stade C de Duke. Ensuite, afin d'obtenir de meilleurs résultats, les traitements combinés sont prescrits à différents patients en phase B et C . Plusieurs études démontrent que par la combinaison du 5FU avec un «adjuvant» (levamisole ou leucovorine), les résultats s'améliorent pour le stade C de Dukes (Macdonald et Astrow, 2001; Sargent et al., 2001; Ragnhammar et al., 2001; Mross et Semsek, 2001). Le levamisole est reconnu pour améliorer l'efficacité du 5 FU . Le mécanisme est probablement relié à l'activation de macrophages qui détruisent les cellules tumorales restantes, et le système immunitaire, semble être modulé positivement (Bertram, 1998; Macdonald et Astrow, 2001). La leucovorine est un acide folique administré donné pour diminuer les effets hématologiques négatifs, donc pour aider à garder en vie les cellules saines en laissant les cellules cancéreuses sujettes à l'action cytotoxique du 5FU (Bertram, 1998). En général, les études s'entendent pour dire que les traitements utilisant la combinaison avec un adjuvant ont un effet positif sur le taux de survie, ainsi que sur le temps de récurrence suite à l'ablation du cancer, comparé à l'utilisation du 5 FU seul.

Le mécanisme d'action du 5 FU est de se lier à une enzyme à l'intérieur de la cellule, qui permet la synthèse de la thymine lors de la réplication de l'ADN, et de l'inhiber. Par conséquent, la cellule, incapable de se diviser, va mourir. D'autres médicaments peuvent agir contre le cancer du côlon et sont présentement en étude clinique, ou bien le seront prochainement. Ces différents médicaments sont les suivants : l'Irinotecan (Camptosar, CPT-11), l'Oxaliplatine, le Ralitrexed et le Xeloda (Capecitabine). L'Irinotecan agit en inhibant la topoisomérase I, nécessaire pour donner une certaine forme à l'ADN lors de la translation, transcription, et la réplication. L'Oxaliplatine agit sur l'ADN en formant des ponts dans l'ADN, inhibant ainsi sa
synthèse et sa réplication. Le Ralitrexed à un rôle semblable au 5FU puisqu'il interfere dans la phase de synthèse de l'ADN en bloquant l'enzyme synthétisant la thymine. Le Xeloda est un comprimé oral qui se transforme en 5FU suite à l'ingestion.

5.2.3 Mécanisme de destruction des cellules cancéreuses par chimiothérapie

Le 5 FU étant un inhibiteur de la thymine synthétase, celui-ci cause donc un dommage à l'ADN lors de la division cellulaire en la privant d'une des quatre bases pyrimidiques constituant $1^{\prime} A D N$. Par ce dommage causé à l'ADN, le 5FU est responsable de l'activation de la p53. Il est démontré que cette protéine, par son activité de transcription, peut moduler l'expression de différentes protéines impliquées dans le processus d'apoptose, telles que Bax, Bak et Bcl-2 (Mirjolet et al., 2000; Peters et al., 2000; Nita et al., 1998). Donc, lorsque l'expression de Bax est augmentée et que celle de Bcl-2 est diminuée, le potentiel membranaire mitochondrial devient déséquilibré, ce qui augmente la possibilité d'enclencher le processus d'apoptose par la voie mitochondriale. Ces protéines déterminent la sensibilité de la cellule à la chimiothérapie. Cependant, bien que p53 soit sous forme mutée dans la majorité des cancers du côlon, il est possible d'observer la mort de ces cellules suite à l'ajout de 5FU (Nita et al., 1998).

On sait aussi que le traitement des cellules cancéreuses par le 5 FU induit l'expression membranaire du récepteur Fas et de son ligand (Petak, Tillman et Houghton, 2000; Micheau et al., 1997; Friesen, Fulda et Debatin, 1999). Cette induction permet donc une meilleure chance d'élimination de la cellule cancéreuse par les cellules immuno-compétantes. Il est également proposé que l'induction de l'expression des molécules Fas et Fas ligand à la surface des cellules cancéreuses traitées, serait un mécanisme de mort autocrine ou paracrine, encore appelé «fratricide» (Friesen, Fulda et Debatin, 1999). En effet puisque les cellules expriment à la fois le récepteur et le ligand, il pourrait y avoir une liaison croisée entre le récepteur et le ligand d'une même cellule (autocrine), ou le récepteur d'une cellule et le ligand d'une autre cellule (paracrine). Différentes équipes ont démontré que l'apoptose induite par le traitement de chimiothérapie implique l'activation des caspase-3 et -8 , que ce soit une cellule de «type I» ou de «type II» (Adachi et al., 1999; Fulda et al., 2001). Il est suggéré que dans les cellules de «type I», les deux voies d'initiation d'apoptose soient utilisées lors de la
chimiothérapie. Le traitement favoriserait donc l'agrégation du récepteur Fas, causant l'activation de la caspase-8 qui ira activer directement la caspase-3. La caspase-8 peut également activer la protéine Bid par clivage, ce qui ira activer la voie mitochondriale de l'apoptose. En ce qui concerne les cellules de «type II», l'apoptose est sans doute contrôlée exclusivement par la voie mitochondriale, puisque l'utilisation d'inhibiteurs des FADD n'a pas diminué l'apoptose causée par la chimiothérapie dans ce cas.

D'autres études ont démontré que le dommage causé à l'ADN, soit par la chimiothérapie, soit par l'irradiation, augmente l'expression du récepteur de mort DR5 de façon aussi bien dépendante, qu'indépendante de p53 (Sheikh et al., 1998; Wu et al., 1997).

On observe donc l'implication de plusieurs protéines suite à un traitement de chimiothérapie. Il est important de bien comprendre les mécanismes utilisés par ce traitement puisque plusieurs cancers développent différentes «astuces» pour éviter la mort.

6.0 Les bactéries lactiques

Par l'étude des relations entre les bactéries lactiques et le corps humain, Elie Metchnikoff (1845-1919) a proposé au début du XX ${ }^{\text {ème }}$ siècle que la longévité et la santé du peuple bulgare, serait attribuable à leur grande consommation de produits laitiers fermentés. Il était déjà connu que certaines bactéries étaient pathogènes, il fut proposé que l'on substitue à ces bactéries des bactéries du yogourt depuis longtemps utilisées sans aucun dommage. Pour qu'une bactérie soit considérée comme «bonne» (bénéfique pour l'organisme) elle doit posséder plusieurs caractéristiques: garder son activité et sa viabilité avant consommation, survie au tractus gastro-intestinal, capacité de survivre et de croître dans les intestins, et avoir des effets bénéfiques sur la santé. Bien entendu, de telles bactéries ne doivent pas être pathogènes ou toxiques.

Plusieurs tentatives ont été faites afin d'améliorer la santé par modification de la flore intestinale au moyen de bactéries lactiques vivantes. Aujourd'hui, leurs effets bénéfiques sont bien identifiés, et on tente maintenant d'expliquer le ou les mécanisme(s) relié(s) à ces bienfaits. L'équipe de Salminen en a résumé les effets bénéfiques les plus importants, soutenus par des preuves scientifiques: modulation immunitaire;
renforcement de la barrière mucosale des intestins (Salminen et al., 1996). D'autres équipes ont démontré, chez la souris, que la croissance tumorale, ainsi que les métastases de cancer, peuvent être inhibées par la souche de Lactobacillus casei (Matsuzaki, Yokokura et Azuma, 1985; Asano et al., 1986; Kato et al., 1994). Différents mécanismes sont proposés afin d'expliquer ces «bienfaits»: modification de la flore intestinale, adhérence à la muqueuse intestinale avec la capacité de prévenir l'adhérence de bactéries pathogènes ou l'activation de pathogènes, modification des protéines alimentaires par la microflore intestinale, modification de la capacité enzymatique bactérienne, spécialement celles suggérées pour être reliées à l'induction de cancer, influence sur la perméabilité de la muqueuse intestinale.

En général, la consommation de bactéries lactiques agirait par une augmentation de la réponse immunitaire. Des études sur des animaux ont démontré que le tissu lymphoïde associé aux intestins est stimulé par des bactéries lactiques vivantes, résultant en une production de cytokines et d'anticorps (IgA) et une augmentation de l'activité mitogénique des cellules formant les plaques de Peyer et des splénocytes (Perdigon et al., 1990; Salminen, Isolauri et Salminen, 1996). Dans les études sur des cellules humaines, la production de cytokines, l'activité phagocytaire, la production d'anticorps, les fonctions des cellules T et l'activité des cellules NK , sont augmentées par la consommation de yogourt ou lorsque les cellules sont exposées aux bactéries lactiques in vitro (Perdigon et al.,1995; Isolauri et al., 1991; Kaila et al., 1992).

Certaines preuves indiquent que le yogourt stimulant le système immunitaire peut être associé avec la diminution d'incidences pathologiques: cancer, désordres gastrointestinaux, symptômes d'allergies.

6.1 Propriétés anti-cancéreuses

Les bactéries lactiques auraient des propriétés antinéoplasiques dans une variété de lignées cancéreuses, d'origine aussi bien humaine qu'animale. On a observé que les bactéries lactiques réduisent la viabilité en culture des cellules tumorales (Baricault et al., 1995; McGroatry et al., 1988; Sekine et al., 1985; Reddy et al., 1983; Kato et al., 1981), diminuent la carcinogenèse induite dans le côlon et le foie (Reddy et Riverson, 1993),
inhibent l'activité mutagénique (Hosono et al., 1986; Renner et Müntzner, 1991) et se lient à des composés potentiellement mutagènes (Morotomi et Mutai, 1986).

6.1.1 Prévention de l'induction du cancer du côlon

Il existe des intérêts considérables pour l'activité métabolique de la microflore intestinale, spécialement en relation avec l'étiologie du cancer du côlon. La modulation fécale d'enzymes pro-carcinogènes produits par les bactéries intestinales pourrait réduire les incidences de ce cancer. Les études ont porté entre autre sur la mesure d'enzymes : β glucuronidase, azo-réductase et nitro-réductase. Ces enzymes catalysent dans les intestins la conversion de pro-carcinogènes en carcinogènes. L'activité de ces enzymes est moindre parmi les bactéries lactiques, comme par exemple des souches spécifiques de lactobacillus et de bifidobactéries. Par l'absorption de bactéries lactiques chez l'humain, celles-ci diminueraient l'activité de ces enzymes et ainsi préviendraient l'induction de tumeurs (Goldin et Gorbache, 1984; Marteau et al., 1990). Il a été démontré qu'un supplément oral de bactéries lactiques (L. acidophilus) d'origine humaine causerait une diminution significative de deux de ces trois enzymes, la β-glucuronidase et la nitroréductase (Goldin et Gorbache, 1984; Goldin et al., 1980). Ces résultats ont été partiellement confirmés par l'équipe de Marteau qui a enregistré une diminution seulement de la nitro-réductase chez les 9 sujets qui ont ingéré des bactéries lactiques (L. acidophilus, B. bifidum) pendant 3 semaines (Marteau et al., 1990).

Les recherches se sont continué sur un modèle de cancer du côlon animal induit chimiquement par le 1,2-diméthylhydrazine dihydrochloride (DMH). L'activation du DMH se fait dans le grand intestin et c'est l'enzyme bactérienne β-glucuronidase qui le transforme en un carcinogène causant des dommages à l'ADN menant au cancer. La suppression de cette enzyme peut réduire l'activation du DMH et par conséquent l'induction de tumeur. Différentes souches de bactéries lactiques ont été utilisées (L. acidophilus, L. confusus, L. gasseri, B. lungum, B. breve) afin de vérifier leur effet préventif sur l'action d'un composé carcinogène. L'étude démontre que l'addition de ces bactéries lactiques peut retarder la formation du cancer du côlon en en prolongeant l'induction, procurant ainsi une protection aux cellules du tractus digestif (Pool-Zobel et al., 1996). Selon les résultats obtenus, différentes souches de bactéries de la même
espèce peuvent exercer différentes intensités d'effet de protection. D'autres recherches, sur le cancer induit par le DMH chez des souris BALB/c, ont également démontré que par le gavage de ces souris avec un yogourt, le développement du cancer était interrompu (Perdigon et al., 1998). Par contre, la conclusion de ces recherches suggérait la stimulation du système immunitaire par les bactéries lactiques, ce qui permettrait au système digestif d'empêcher le développement du cancer.

6.1.2 Action des bactéries sur le cancer déjà établi

Le ou les mécanisme(s) de l'activité anti-tumorale des bactéries lactiques est un sujet de recherche pour plusieurs laboratoires. Il est démontré in vitro que certaines souches de bactéries lactiques (L. helveticus et Bifidobacterium) diminuent la viabilité de cellules de cancer du côlon (Baricault et al., 1995). Une équipe a fractionné les peptides bio-actifs produits durant la fermentation bactérienne et les a ajoutés à différentes lignées cancéreuses du côlon, pour ensuite vérifier leur croissance. Les résultats démontrent une diminution de la division cellulaire (déjà observé) et grâce au fractionnement, les résultats permettent de dire que c'est l'ajout de la fraction protéique, plus particulièrement l' α-lactalbumine, qui causerait ce qui est observé (Ganjam et al., 1997).

Des études sur l'activité anti-tumorale des bactéries lactiques ont été également réalisées in vivo. L'équipe de Ketlinskii a isolé une fraction blastolysine à partir d'un lysat de lysozymes de la souche bactérienne L. bulgaricus. Cette substance a démontré un effet d'inhibition sur la prolifération des cellules d'un sarcome (S-180). Des traitements répétés avec cette fraction ont causé une régression complète de la tumeur dans 15% des animaux, et a donné comme résultat une suppression prolongée de la croissance tumorale. Une autre étude, utilisant des souris qui ont été greffées avec ce même sarcome ($\mathrm{S}-180$), a démontré que la croissance tumorale est significativement réduite et que la moyenne de survie est augmentée lorsque les souris sont gavées avec L. cremoris encapsulé, pendant 9 jours suivant l'inoculation du sarcome (Kitazawa et al., 1991). Un autre modèle in vivo constitué de rats inoculés avec un cancer du côlon développant des métastases au foie, démontre que, par le gavage de ces rats avec Lactobacillus casei, le nombre de métastases est significativement diminué par rapport au témoin (Tazawa et al., 1999). L'équipe de Shackelford, elle a aussi, démontré que
l'incidence de cancer du côlon chimiquement induit (DMH) chez le rat pouvait être diminuée par le gavage de ces rats avec des bactéries lactiques (S. thermophilus et L. bulgaricus).

Chez l'humain, différentes études épidémiologiques suggèrent une corrélation entre le style de diète et le cancer du côlon. Dans les populations où la consommation de produits laitiers, surtout le yogourt, est élevée, les incidences de cancer du côlon sont moins élevées (Howell, 1975; International Agency for Research on Cancer, 1977). Afin d'expliquer le phénomène, plusieurs études ont été réalisées sur les enzymes procarcinogènes (mentionnées plus haut). Par contre, malgré une panoplie d'évidences indirectes, aucune donnée directe n'a encore prouvé la suppression du cancer du côlon chez l'humain par la consommation de cultures de bactéries lactiques. Certaines études démontrent l'efficacité des bactéries lactiques, prises oralement, à prévenir la récurrence de cancer de la vessie, suite à la résection, et également leur efficacité comme adjuvant pour l'immunité en combinaison avec la radiothérapie pour le cancer du col de l'utérus (Aso et al., 1995; Okawa et al., 1993).

En résumé, les conclusions de plusieurs études suggèrent des fonctions inhibitrices de bactéries lactiques, envers le cancer du côlon. Entre autre, l'augmentation ou la stimulation des fonctions immunitaires, pourrait contribuer à diminuer le risque du développement ou la réapparition du cancer. Également, les bactéries lactiques pourraient prendre la place des bactéries pathogènes qui seraient à l'origine de la formation de composés mutagènes ou d'enzyme pro-carcinogènes causant le cancer du côlon.

7. Justification du travail expérimental effectué

Nous avons évoqué différents problèmes reliés à l'élimination par apoptose du cancer du côlon, et les recherches pour un traitement plus efficace contre ses récurrences. Nous avons aussi vu que certaines bactéries lactiques peuvent aider à combattre le cancer du côlon, in vitro et in vivo. Puisque les nouveaux traitements contre le cancer du côlon favorisent les combinaisons (adjuvant de l'immunité + chimiothérapie), il nous a semblé intéressant de vérifier l'effet, au niveau de l'apoptose, d'un traitement constitué de chimiothérapie (5FU) et de bactéries lactiques (mélange «Bio-K») sur des cellules de cancer du côlon. Et ceci in vitro, en l'absence de cellules autres que celles du cancer.

CHAPITRE 2 : MATÉRIEL ET MÉTHODES

1 Bactéries Lactiques

1.1 Origine

Le mélange de bactéries utilisé pour les différentes expériences est fourni par la compagnie Bio-K (Laval, Qc, Canada). Sa composition est confidentielle.

1.2 Préparation

Les bactéries reçues dans 9 mL de milieu complexe MRS (Difco laboratories, Detroit, USA) sont aussitôt multipliées dans 100 mL du même milieu en prélevant 100 $\mu \mathrm{L}$ de la suspension bactérienne. Après une incubation de 18 heures dans un incubateur à $37^{\circ} \mathrm{C}, 10 \mathrm{~mL}$ de glycérol sont ajoutés au mélange de 100 mL qui est ensuite réparti en parties aliquotes de 1 mL dans plusieurs flacons de plastique stériles pouvant contenir 1,5 mL . Ces flacons sont entreposés dans un congélateur à la température de $-80^{\circ} \mathrm{C}$.

Pour les différents protocoles d'incubation avec les cellules cancéreuses, un flacon est dégelé et mis dans 9 mL de MRS et incubé pendant 18 heures à $37^{\circ} \mathrm{C}$. Après ce temps d'incubation, un repiquage est effectué. Un volume de $100 \mu \mathrm{~L}$ est prélevé et ajouté à 9 mL de MRS qui est également incubé pendant 18 heures à $37^{\circ} \mathrm{C}$. Après ces incubations, les bactéries sont lavées deux fois dans du PBS stérile et récoltées par centrifugation à 3500 RPM pendant 10 minutes. Elles sont ensuite suspendues dans un volume final de 9 mL de "RPMI complet" (voir dans culture 2.2) stérile et sont ensuite prêtes à être utilisées pour une incubation en présence de cellules. Lors des différentes expériences, les bactéries sont utilisées sous forme chauffées, irradiées et vivantes.

1.3 Chauffage

Les bactéries sont chauffées pendant 40 secondes à "élevé" dans un four à microondes (Général Électrique, Turntable Microwave Oven, 700 watts) afin d'obtenir une température de $100^{\circ} \mathrm{C}$ et produire le mélange de bactéries qui sera utilisé comme bactéries chauffées. Cette étape s'effectue dans un contenant de verre fermé.

1.4 Irradiation

Afin de produire le mélange de bactéries irradiées, les tubes de bactéries vivantes sont irradiés à une dose minimale pour obtenir une létalité de 100%, soit de 9 kGy . Les mélanges sont irradiés au Centre d'irradiation du Canada dans un Gammacell-220 (MDS Nordion, Laval, Qc, Canada) utilisant le Cobalt-60 (${ }^{60} \mathrm{Co}$) comme source émettrice de rayons gamma.

Afin de faire un comptage bactérien pour obtenir une concentration de bactéries par $\mathrm{mL}, 1 \mathrm{~mL}$ de cette suspension est ajouté à 9 mL d'eau peptonée, une solution isotonique contenant $0,1 \%$ de bactopeptone (Difco laboratories, Detroit, USA). Des dilutions en séries sont effectuées. Ensuite, 1 mL de ces dilutions est prélevé et déposé dans un pétri auquel on ajoute 10 mL de MRS à $1,5 \%$ d'agar (Difco Laboratories, Detroit, USA) pour permettre d'effectuer un dénombrement après une incubation de 48 heures dans un incubateur à $37^{\circ} \mathrm{C}$. Chaque échantillon est fait en duplicata et l'expérience a été répétée trois fois. Le comptage est de $3,7 \times 10^{9}$ bactéries $/ \mathrm{mL}$ avec un écart-type de 0,4.

1.5 Croissance bactérienne

Afin de vérifier si les bactéries peuvent croître dans le milieu utilisé pour la culture cellulaire (le RPMI 1640 complet), une incubation de 48 heures à $37^{\circ} \mathrm{C}, 5 \% \mathrm{CO}_{2}$, a été réalisée avec un volume de $200 \mu \mathrm{~L}$ de solution bactérienne dans 6 mL de RPMI 1640 complet dans les puits également utilisés pour les autres expériences. Il y a donc 1×10^{8} bactéries $/ \mathrm{mL}$ dans le puits. Après 48 heures, 1 mL de ce puits est prélevé et mis dans 9 mL d'eau peptonée. Des dilutions en séries sont effectuées et 1 mL des différentes dilutions est déposé sur un pétri auquel on ajoute 10 mL de MRS à $1,5 \%$ d'agar. Les pétris sont incubés pendant 48 heures à $37^{\circ} \mathrm{C}$ et ensuite un dénombrement est effectué. La moyenne des dénombrements est 1×10^{6} bactéries $/ \mathrm{mL}$ avec un écart-type de 0,2 . À partir de ces résultats, nous concluons que les bactéries ne peuvent pas croître dans le milieu utilisé pour la culture cellulaire, qui est supplémenté avec des antibiotiques (voir dans section 2.2).

2 Cellules cancéreuses

2.1 Origine

La lignée cellulaire LS 513 (ATCC, Rockville, MD, USA) est une lignée continue de cancer du côlon d'origine humaine.

2.2 Culture

La lignée cellulaire (maintenue en culture) étant adhérente, il est obligatoire de décoller les cellules, à l'aide d'une solution de trypsine-EDTA (Gibco, Burlington, ON, Canada) pour ensuite les resuspendre dans du RPMI 1640 supplémenté de glutamine, de tampon HEPES, de gentamicine, pénicilline et de $10 \% \mathrm{SBF}$, qu'on peut donc appeler "RPMI complet" (Gibco, Burlington, ON, Canada). Les plateaux sont préparés en ajoutant la concentration de cellules désirée (décrit sous les graphiques de chaque expérience) la journée précédant l'incubation, pour permettre aux cellules d'adhérer aux plateaux. Le jour de l'incubation, les différents produits sont ajoutés aux concentrations désirées, et les cellules sont incubées pendant une période déterminée pour chaque type d'expérience, dans un incubateur à $37^{\circ} \mathrm{C}, 5 \% \mathrm{CO}_{2}$ et saturé en humidité.

3 Co-cultures de cellules cancéreuses et de bactéries

3.1 Ajout de bactéries

Une fois les plateaux cellulaires prêts à être utilisés, c'est-à-dire quand les cellules ont eu le temps d'adhérer et les bactéries apprêtées pour être utilisées, celles-ci sont ajoutées selon le protocole d'incubation dans les puits contenant les cellules adhérées et le milieu "RPMI complet". Une incubation est effectuée pendant un temps déterminé en fonction de l'expérience à réaliser.

3.2 Expérience impliquant l'ajout de butyrate

Le plateau de cellules cancéreuses contenant 3×10^{5} cellules par puits est incubé une nuit afin de permettre aux cellules d'adhérer. Ensuite, les différentes concentrations d'acide butyrique (Sigma, St-Louis, USA) stérile sont ajoutées aux puits contenant les cellules adhérées et le "RPMI complet". Suite à cet ajout, une incubation de 48 heures est faite afin de mesurer le pourcentage d'apoptose selon la technique décrite plus loin.

3.3 Récolte et études des surnageants

Le but de cette expérience est de vérifier si la présence de bactéries modifie l'efficacité du 5 FU . Une première incubation est effectuée sur des cellules adhérées pour une période de 48 heures en présence de bacteries et de 5 FU . Suite à cette incubation, les surnageants sont récoltés et ajoutés sur une nouvelle culture de cellules fraîchement adhérées. Une seconde incubation de 48 heures est réalisée pour récolter les cellules et remesurer le pourcentage d'apoptose due au 5 FU .

4 Mesure de la viabilité des cellules cancéreuses

4.1 Prolifération

4.1.1 MTT

Les cellules sont préparées comme indiqué plus haut. Le test s'effectue dans une plaque de 96 puits. Un volume de $100 \mu \mathrm{~L}$ d'une concentration de $3,3 \times 10^{5}$ cellules par mL est déposé dans chaque puits, sauf dans la première rangée qui servira de blanc. Suite à une incubation de 48 heures, les surnageants sont retirés par aspiration, et le feuillet cellulaire est lavé, en ajoutant délicatement $200 \mu \mathrm{~L}$ de PBS dans chaque puits, et en jetant rapidement le PBS de rinçage. Ensuite, une solution de MTT (3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide thiazolyl blue) (Sigma, St-Louis, USA) à 5X dilué dans du RPMI complet est ajoutée dans les puits, et une incubation de 5 heures à $37^{\circ} \mathrm{C}$ est effectuée. Par la suite, la solution est décantée et une autre solution est ajoutée dans le but de dissoudre les cristaux formés dans les cellules vivantes. Cette solution est composé de 50% de diméthyl formamide et 12% de sodium dodecyl sulfate (SDS). Une incubation de 18 heures est requise pour dissoudre tous les cristaux. Suite à cette incubation, la plaque est lue dans un spectrophotomètre (Mandel Scientific company, Bio-Tek instruments, Microplate EL309 Autoreader) à 540nm. Chaque échantillon est effectué en triplicata, et une moyenne est faite à partir des valeurs obtenues. La valeur de la moyenne du témoin est le " 100% " de cellules vivantes. Pour obtenir le pourcentage des autres échantillons, il suffit d'effectuer un produit croisé.

4.2 Apoptose

4.2.1 Cytométrie en flux

Une concentration de 5×10^{4} cellules par mL , à raison de 6 mL par puits de 35 mm , est utilisée afin d'obtenir 3×10^{5} cellules par échantillon. Les cellules sont préparées comme indiqué plus haut. Les différents produits (selon l'expérience) sont ajoutés dans les puits, et une incubation de 48 heures à $37^{\circ} \mathrm{C}, 5 \% \mathrm{CO}_{2}$ est faite.

Suite à l'incubation, les surnageants des cellules sont récupérés par pipetage dans différents tubes de 15 mL et centrifugés à 1500 RPM pendant 5 minutes. Les culots cellulaires sont ensuite récupérés par décantation des surnageants et mis de côté sur glace. Cette étape consiste à récupérer les cellules en suspension. Par la suite, le feuillet cellulaire adhéré est lavé avec $0,5 \mathrm{~mL}$ de trypsine-EDTA, puis $0,2 \mathrm{~mL}$ de trypsine-EDTA est ajouté dans chaque puits pour permettre aux cellules de se décoller lorsqu'elles sont incubées environ 8 minutes dans l^{\prime} incubateur à $37^{\circ} \mathrm{C}$. Les cellules sont suspendues dans 3 mL de RPMI complet 10% SBF pour arrêter l'activité enzymatique de la trypsine. La suspension cellulaire est centrifugée à 1500 RPM pendant 5 minutes dans les tubes servant pour la cytométrie en flux. Par la suite, les deux culots cellulaires (cellules en suspension et cellules adhérées) sont combinés et lavés deux fois avec du PBS froid supplémenté de $0,25 \%$ EDTA, afin d'éviter la formation d'agglomérats de cellules. Suite aux lavages, $0,5 \mathrm{~mL}$ de solution d'iodure de propidium est ajouté au culot cellulaire. La solution est composée de $0,1 \%$ de citrate de sodium (Fisher Scientific, New Jersey, USA), $0,1 \%$ de Triton X-100 (Sigma, St-Louis, USA), $50 \mu \mathrm{~g} / \mathrm{mL}$ de RNase A (Sigma, StLouis, USA) et de $20 \mu \mathrm{~g} / \mathrm{mL}$ d'iodure de propidium (Sigma, St-Louis, USA). Une incubation de 15 minutes à $4^{\circ} \mathrm{C}$ est effectuée avant l'analyser des échantillons par cytométrie en flux (Coulter Epics XL-MCL). Un schéma résume un résultat typique d'une analyse par cytométrie en flux. Différents pics sont formés suite aux différences de fluorescence existant entre chaque étape du cycle cellulaire. Plus il y a un contenu élevé en ADN intact, plus la fluorescence est élevée, et vice versa. Le programme mesure le pourcentage de fluorescence que forme le large pic situé sous le pic correspondant à G0G1, ce pic représente des morceaux d'ADN fragmentés, conséquence du clivage de l'ADN par différentes enzymes activées lors de l'apoptose. (Nicolletti et al., 1991; Fried et al., 1978; Darzynkiewicz et al., 1994)

Schéma 1 : L'illustration d'une analyse typique du pourcentage d'apoptose, par cytométrie en flux.

5 Mesure de l'expression de protéines impliquées dans l'apoptose (p53, p21, Caspase-3, Bax)

5.1 Buvardage de type Western

5.1.1 Activation et extraction des protéines

Un total d'environ 6×10^{5} cellules par échantillon est utilisé. Le lendemain, alors que les cellules sont devenues adhérentes, les produits d'incubation sont ajoutés. Ces différents produits sont le 5 -Fluorouracile ($100 \mu \mathrm{~g} / \mathrm{mL}$) et les bactéries, vivantes ou chauffées, à une concentration de 1×10^{8} bactéries par mL . Ces mêmes produits vont amener les cellules à devenir apoptotiques par la modulation de différentes protéines impliquées dans le processus. C'est cette modulation, augmentation de l'expression ou activation de protéine, que la technique permet de vérifier. Suite à différents temps d'incubation (puisqu'il s'agit d'une cinétique), les cellules sont décollées par grattage et récolté par pipetage pour ensuite être centrifugées à 1500 RPM pendant 5 minutes. Par la suite, $50 \mu \mathrm{~L}$ de tampon de lyse composé de 50 mM de Tris- $\mathrm{HCl} \mathrm{pH} 7.5, \mathrm{NaCl} 150 \mathrm{mM}$, Nonidet P-40 1% (Roche Diagnostics, Laval, Qc) ainsi qu'une pastille Complete ${ }^{T M}$ (contentant les inhibiteurs de protéases) (Roche Diagnostics, Laval, Qc), sont ajoutés au culot cellulaire qui est ensuite incubé 30 minutes sur glace. Le volume de $50 \mu \mathrm{~L}$ est prélevé et mis dans un micro-tube de $1,5 \mathrm{~mL}$. Une centrifugation de 10 minutes à 15000 RPM est effectuée afin de précipiter les débris cellulaires. Le surnageant est récupéré et un volume égal de "tampon d'échantillon" est ajouté. Le "tampon d'échantillon" est
composé de 100 mM Tris-HCl pH 6,8, 2% SDS, 20% glycérol et de $0,006 \%$ de bleu bromophénol. Pour terminer, les échantillons sont aliquotés par volume de $20 \mu \mathrm{~L}$ et entreposés à une température de $-20^{\circ} \mathrm{C}$.

5.1.2 Séparation et identification des protéines

Les échantillons de protéines sont séparés sur un gel de polyacrylamide-SDS à 4% et 12% en utilisant le mini-PROTEAN de Bio-Rad. Les protéines migrent à l'intérieur d'un courant électrique de 200 volts pendant 45 minutes. La migration se fait dans un "tampon électrode" à pH 8,3, composé de 1,5 \% Tris-Base, de 7,2\% glycine et de $0,5 \%$ SDS dans le l'eau milli-Q. Par la suite, les protéines sont transférées sur une membrane de nitrocellulose «Hybond ECL» (Amersham Pharmacia Biotech inc., Baie d'Urfé, Québec) à l'aide de l'appareil de transfert de Bio-Rad, et ce pendant une heure à 100 volts dans un tampon de transfert composé de $0,58 \%$ Tris-Base, de $0,29 \%$ de glycine, de $0,037 \%$ SDS et de 20% méthanol. Suite au transfert, la membrane est "bloquée" avec une solution de blocage composée de PBS-Tween 80 à $0,1 \%$ ainsi que du lait en poudre écrémé à 5%, pendant une heure à la température de la pièce et sous agitation. Ensuite, le premier marquage est effectué avec l'anticorps (selon l'expérience) reconnaissant la protéine recherchée. L'anticorps est dilué dans la solution de blocage selon une concentration indiquée par le fournisseur. Après une heure de marquage, on effectue un lavage de 15 minutes suivi de deux lavages de 5 minutes, avec la solution de blocage. Le deuxième marquage est effectué avec un second anticorps qui reconnaît le premier anticorps et qui est couplé à la péroxidase. Une incubation d'une heure est faite avec ce second anticorps, qui est également dilué dans la solution de blocage à une concentration indiquée par le fournisseur. Dès que cette incubation est terminée, un lavage de 15 minutes, ainsi que deux lavages de 5 minutes, sont effectués avec une solution de PBSTween 80 à $0,1 \%$ sans lait en poudre écrémé. Afin de détecter les différentes protéines, une solution ECL (Amersham Pharmacia Biotech inc, Baie d'Urfé, Qc. Canada), qui amène l'activation de la peroxydase, est ajoutée sur la membrane selon les indications du fournisseur. Par la suite, les marquages sont révélés sur papier photographique (hyperfilm ECL, Amersham Pharmacia Biotech inc, Baie d'Urfé, Qc. Canada) qui sera marqué par la peroxydase activée. Le papier photographique est ensuite développé dans
une machine (AFP imaging mini-med/90 X-ray film processor). Le tableau 1 résume les protéines recherchées et les réactifs utilisés.

Premier anticorps			
Protéine	Description	Dilution	Compagnie
p53	Anti-p53 humain purifié Isotype : $\mathrm{IgG}_{2 \mathrm{a}}$ souris	1:1000	BD PharMingen, Mississauga, Ontario
p21	$\begin{aligned} & \text { Anti-p21 souris purifié } \\ & \text { Isotype : } \operatorname{IgG}_{1} \text { souris } \end{aligned}$	2:1000	BD PharMingen, Mississauga, Ontario
Caspase-3	Anti-caspase-3 lapin polyclonal	$1: 1000$	BD PharMingen, Mississauga, Ontario
Bax	Anti-Bax	1:1000	Santa Cruz Californie, USA
Deuxième anticorps			
IgG	Anti-IgG souris Couplé péroxidase Développé dans chèvre	3:10000	Sigma, St-Louis, USA
IgG	Anti-IgG lapin Couplé péroxidase Développé dans chèvre	2.5:10 000	Sigma, St-Louis, USA

Tableau 3 Les anticorps utilisés pour les différentes protéines à identifier.

6 Mesure de l'expression de marqueurs sur la membrane cellulaire (Fas, FasL)

6.1 Cytométrie en flux

Un total d'environ 5×10^{5} cellules est utilisé par échantillon. Les cellules sont préparées comme mentionné précédemment. Une incubation de 24 heures est réalisée
suite à l'ajout des différents produits utilisés pour l'incubation (5FU, bactéries vivantes ou chauffées et autres selon les expériences qui sont effectuées).

Suite à l'incubation, les feuillets cellulaires sont lavés avec $0,5 \mathrm{~mL}$ de trypsineEDTA, puis $0,2 \mathrm{~mL}$ de trypsine-EDTA est ajouté aux feuillets de cellules, qui sont ensuite placés dans l'incubateur à $37^{\circ} \mathrm{C}$ pendant environ 10 minutes. Une fois les cellules décollées, 3 mL de RPMI complet sont ajoutés, et la suspension cellulaire est ensuite centrifugée pendant 5 minutes à 1500 RPM. Les surnageants sont décantés et les cellules sont placées sur glace. Ensuite, $20 \mu \mathrm{~L}$ de la solution d'anticorps contre Fas récepteur (BD PharMingen, Mississauga, Ontario) ou Fas ligand (BD PharMingen, Mississauga, Ontario) sont ajoutés au culot de cellules, auquel on avait préalablement ajouté $50 \mu \mathrm{~L}$ de "tampon pour cytométrie en flux" qui se compose de PBS $1 \mathrm{X}, 1 \%$ BSA, $0,02 \%$ d'azidure de sodium et $0,25 \%$ EDTA. Une incubation d'une demi-heure sur glace à l'obscurité est requise. Ensuite, deux lavages avec 4 mL de "tampon pour cytométrie en flux" sont effectués, par centrifugation à 1500 RPM pendant 5 minutes. Aux cellules marquées par l'anticorps anti-Fas ligand, une quantité de $0,25 \mu \mathrm{~L}$ par tube de streptavidinephycoérythrine (BD PharMingen, Mississauga, Ontario) est ajoutée, suite à la première incubation et aux deux lavages. Une seconde incubation de 30 minutes sur glace à l'obscurité est effectuée, suivie de deux autres lavages. À la fin d'un marquage, $250 \mu \mathrm{~L}$ de solution de paraformaldéhyde (PBS 1x, 2% de paraformaldéhyde) et $250 \mu \mathrm{~L}$ de "tampon de cytométrie en flux" sont ajoutés afin de fixer les marquages. Les tubes sont enveloppés dans du papier d'aluminium et placés à $4^{\circ} \mathrm{C}$ jusqu'à l'analyse des échantillons.

7 Mesure de l'expression du gène Nur77

7.1 Extraction de l'ARN

Un nombre 3×10^{5} cellules est utilisé par échantillon. Une incubation de 3 heures est effectuée suite à l'ajout des différents produits d'incubation. Les cellules sont ensuite récoltées à l'aide d'un grattoir, puis centrifugées à 1500 RPM pendant 5 minutes. L'ARN total de chaque échantillon est extrait et purifié en utilisant la trousse High Pure RNA de Roche Diagnostics (Laval, Qc, Canada), tel qu'indiqué par le manufacturier. La
concentration d'ARN est ensuite mesurée avec le Gene Quant RNA/DNA calculator (Pharmacia Biotech), puis ajustée à $92 \mathrm{ng} / \mu \mathrm{L}$.

7.2 RT-PCR

La trousse LightCycler RNA amplification SYBR Green 1 de Roche Diagnostics (Laval, Qc, Canada) est utilisée afin de réaliser la réaction de transcription inverse (RT) et la réaction de polymérase en chaîne (PCR). Le principe du LightCycler est très semblable à celui du Thermocycleur. La différence majeure consiste en la possibilité, avec le LightCycler, d'observer l'amplification à chaque cycle, grâce à une molécule fluorescente appelée SYBR Green 1 qui s'insère dans chaque double brin formé. Plus il y a formation de doubles brins, plus on observe, à l'aide du programme inclus avec le LightCycler, l'augmentation de la fluorescence (schéma 2.1). Les deux réactions, RTPCR, se font dans un capillaire construit spécialement pour le LightCycler (Roche, Laval, Qc, Canada) et il suffit de faire un seul mélange des produits contenus dans la trousse et d'utiliser cet ensemble selon les indications du manufacturier.

Avant d'effectuer une amplification, il est nécessaire de mettre au point certaines conditions telles la concentration de MgCl_{2}, les températures, et le temps. Une concentration idéale de MgCl_{2} est à déterminer. Pour l'amplification présente, une concentration de 7 mM s'est avérée la meilleure. La concentration des amorces est de 0,5 mM , comme le suggère le manufacturier. Dans le cas du gène Nur 77 , la séquence des amorces utilisées pour le brin positif est 5^{\prime}-CGACCCCCTGACCCCTGAGTT-3' et celle pour le brin négatif est 5'-GCCCTCAAGGTGTTGGAGAAGT-3' (Kang, 2000). L'amplification par cette paire d'amorces donne 658 paires de bases. La programmation du LightCycler est décrite dans le manuel d'instruction fourni par le manufacturier. Deux autres paramètres varient dans le programme d'amplification: le premier est la température à utiliser, qui varie selon les amorces. Cette température [fixée à $5^{\circ} \mathrm{C}$ de moins que la température d'hybridation des amorces (Tm)] se calcule par la formule suivante: $\mathrm{Tm}=2^{\circ} \mathrm{C}(\mathrm{A}+\mathrm{T})+4^{\circ} \mathrm{C}(\mathrm{C}+\mathrm{G})$. Pour les amorces utilisées, la Tm a été fixée à $64^{\circ} \mathrm{C}$. Le deuxième paramètre est le temps d'incubation pour l'élongation, toujours situé dans le programme amplification; il est déterminé par la formule suivante $t=$ (nombre de paires de bases du produit d'amplification $\div 25$) secondes. Dans notre cas, le nombre de
bases étant 658. on obtient donc 26 secondes. Suite aux 35 cycles nécessaires pour amplifier la partie du gène voulu, une courbe de point de fusion est réalisée, la fluorescence en fonction de la température, utilisant une température de $10^{\circ} \mathrm{C}$ plus élevée que la température d'hybridation. Donc, les amplifications sont sujettes à une augmentation progressive de la température et à chaque degré la fluorescence est mesurée et enregistréc. En augmentant la température de façon progressive, les doubles brins formés se dénaturent lorsque la température devient assez élevée, et c'est donc à cette température qu'on observe une diminution de fluorescence. Le programme fait une courbe de point de fusion avec les fluorescences enregistrées, la fluorescence en fonction de la température, et par la suite, il mesure la dérivée de la fluorescence en fonction de la température (schéma 2.2). En connaissant la température de fusion théorique du produit d'amplification, il est possible d'obtenir la valeur de l'aire sous la courbe du pic formé par la séparation des brins du produit de l'amplification à cette température. L'appareil ne permettant pas de visualiser le nombre de paires de bases amplifiées, une migration sur gel d'agarose à 2% avec un marqueur du nombre de paire de bases en permet la vérification, suite à la coloration au bromure d'éthidium à une concentration de 0,5 $\mu \mathrm{g} / \mathrm{mL}$ pendant 15 minutes.

Schéma 2.1: Illustration de l'augmentation de fluorescence par la formation de double brin.

Schéma 2.2 : Illustration de la mesure de la dérivée de la fluorescence en fonction de la température.

8 Traitements par des inhibiteurs ou stimulateurs de la PKC

Les incubations effectuées avec les inhibiteurs et stimulateurs de la PKC sont réalisées de la même façon que les incubations avec des bactéries et par le 5FU. Tout d'abord, les cellules sont préparées la veille pour leur permettre d'adhérer, et le jour même de l'incubation, les différents produits d'incubation sont ajoutés en même temps que l'inhibiteur GÖ 6976 (VWR Scientific, Ville Mont-Royal, Qc, Canada) et/ou les stimulateurs de la PKC, ionomycine (Sigma, St-Louis, USA) et PMA (phorbol 12myristate 13-acetate) (Sigma, St-Louis, USA). Ensuite, une incubation de 48 heures à $37^{\circ} \mathrm{C}, 5 \% \mathrm{CO}_{2}$ est effectuée, les cellules sont récoltées et le pourcentage d'apoptose est mesuré.

9 Dosage de cytokine
 9.1 Dosage du TNF- α par bioessai

Il est possible de doser la quantité de TNF- α dans un surnageant à l'aide de la lignée cellulaire L929, qui est une lignée de fibroblastes de souris sensibles à l'action cytotoxique du TNF. Le principe de ce bioessai est simple : plus il y a de TNF dans le surnageant ajouté au feuillet de cellules L929, plus il y aura de mort cellulaire. On peut ensuite mesurer le taux de cellules restées vivantes. En premier lieu on cultive les cellules dans du RPMI 1640 complet $+5 \%$ SBF. Les cellules se décollent du flacon à l'aide de trypsine-EDTA (Gibco, Burlington, ON, Canada) en incubant environ 1 minute à $37^{\circ} \mathrm{C}$. Un comptage cellulaire est effectué pour préparer une suspension de $3,3 \times 10^{5}$ cellules $/ \mathrm{mL}$ pour le bioessai. Un volume de $75 \mu \mathrm{~L}$ est déposé dans chaque puits d'une plaque de 96 puits. Toutes les lignes reçoivent ce volume sauf la première qui est utilisée comme témoin vide. Suite à une incubation de 24 heures, un volume de $25 \mu \mathrm{~L}$ d'actinomycine D , à une concentration de $2 \mu \mathrm{~g} / \mathrm{mL}$, est ajouté à tous les puits de toutes les lignes, sauf la deuxième ligne qui sert de contrôle d'actinomycine D, et ce afin d'arrêter la croissance cellulaire. Par la suite, les différents échantillons sont ajoutés à partir de la quatrième ligne à raison de $100 \mu \mathrm{~L}$ par puits, et ce en triplicata. La troisième ligne reste vide puisqu'elle servira de contrôle positif, c'est à dire qu'elle représentera le nombre maximum de cellules puisqu'il n'y a aucun agent cytotoxique ajouté. Avec les
échantillons ajoutés, des dilutions successives sont effectuées à partir du $100 \mu \mathrm{~L}$ que l'on dilue en série dans les 8 rangées suivantes. Lorsque les échantillons sont dilués, on incube de 16 à 20 heures à $37^{\circ} \mathrm{C}+5 \% \mathrm{CO}_{2}$. Après cette incubation, les surnageants sont rejetés et les cellules sont fixées au fond du puits à l'aide d'une solution de formaldéhyde 5% à raison de $100 \mu \mathrm{~L}$ par puits pendant 5 minutes. Les plaques sont vidées et rincées 3 fois à l'eau courante. Les cellules restées fixées sont ensuite colorées au crystal violet à raison de $50 \mu \mathrm{~L}$ par puits pendant 5 minutes. Par la suite, les plaques sont vidées et l'excès de colorant est éliminé par 3 rinçages à l'eau courante. Une fois les plaques bien sèches, $100 \mu \mathrm{~L}$ d'une solution d'acide acétique à 33% est ajoutée à chaque puits pour dissoudre le crystal violet absorbé par les cellules fixées. L'absorbance est lue à une longueur d'onde de 540 nm dans un spectrophotomètre pour plaque, en utilisant la colonne 1 comme référence («blanc »).

Afin de calculer le nombre d'unités de TNF, on considère qu'une unité de TNF correspond à l'inverse du facteur de dilution donnant 50% de cytotoxicité. Afin de calculer le pourcentage de cytotoxicité pour chaque échantillon, l'équation suivante est utilisée.

$$
\% \text { cytotoxicité }=\frac{\text { D.O. échantillon }}{\text { D.O. positif }} \times 100
$$

Donc, la D.O. de l'échantillon est la moyenne des trois absorbances obtenues pour une dilution suite à la lecture des plaques. La D.O. du contrôle positif est la moyenne des puits de la ligne 3. Le \% de cytotoxicité est calculé pour chaque dilution. Par la suite, une droite à régression linéaire est tracée pour les dilutions d'un échantillon, le facteur de dilution $(=x)$ et le $\%$ de cytotoxicité $(=y)$ et le point 50% est trouvé à l'aide de l'équation de la droite. L'inverse de la dilution (2^{x}) équivaut au nombre d'unités de TNF dans l'échantillon initial non dilué. Les résultats finaux sont exprimés en U/mL.

CHAPITRE 3 : RÉSULTATS

1 Résultats préliminaires sur la prolifération des cellules cancéreuses du côlon LS513 en présence de 5 Fluoro-Uracil et de bactéries lactiques.

Une expérience préliminaire est exécutée afin de vérifier si les bactéries lactiques vivantes, en combinaison avec le 5FU, ont un effet sur la viabilité de la lignée de cellules cancéreuses du côlon. La prolifération de ces cellules est mesurée par le test de MTT, ce composé qui est transformé en cristaux mauves par les mitochondries des cellules vivantes seulement. Lors de cette expérience, les bactéries absorbaient, elles aussi, le MTT, ce qui constituait un inconvénient du point de vue technique. Pour remédier à cet inconvénient, un lavage délicat du feuillet cellulaire fut effectué afin de déloger les bactéries. Mais ce lavage peut lui-même constituer un facteur d'erreur, si des cellules vivantes, elles aussi, se décollent au lavage.

Dans la figure 7, il est possible d'observer une diminution de la viabilité des cellules cancéreuses par l'ajout de 5-Fluoro-uracil (5FU) (36\%). De plus, lorsque les bactéries lactiques vivantes sont ajoutées à différentes concentrations, nous observons une diminution très claire de la viabilité lorsqu'il y a combinaison de 5 FU et de bactéries lactiques vivantes à une concentration de 1×10^{8} par comparaison avec le 5 FU seul. Dans les puits où se trouve la concentration la plus élevée de bactéries, la couleur du milieu (RPMI 1640) était jaune ce qui indique au milieu très acide, probablement causé par les bactéries lactiques. Cette acidité du milieu cause probablement la mort de certaines cellules, ce qui pourrait fausser le résultat.

2 L'apoptose

Afin d'obtenir des résultats plus fiables, nous avons changé de technique et avons opté pour la cytométrie en flux. Par cette méthode, qui consiste à marquer l'ADN, il nous est possible de «voir» le cycle cellulaire des cellules utilisées comme échantillon. Lorsque les cellules subissent le processus d'apoptose, leur ADN est clivé, ce qui nous permet de mesurer le pourcentage d'apoptose.

Figure 7 Effet, sur la viabilité des cellules cancéreuses, de bactéries vivantes et 5 FU .

La viabilité des cellules cancéreuses du côlon est mesurée par le MTT suite à une incubation de 48 heures en présence ou absence de 5 -Fluoro-uracil (5 FU) $(2,5 \mu \mathrm{~g} / \mathrm{mL})$ et de bactéries vivantes (B) à différentes concentrations $\left(10^{6}-10^{8}\right)$. Les cellules cancéreuses sans aucun ajout servent de témoin (100%). Un total de $3,3 \times 10^{4}$ cellules par puits, dans un plateau de 96 puits, est mis en contact avec les différents ajouts, soit le 5 FU et/ou les bactéries. La coloration, produite par la réaction du MTT avec les cellules vivantes, est évaluée sur un spectrophotomètre à une longueur d'onde de 540 nm . Chaque échantillon est la moyenne de 3 valeurs différentes de spectrophotomètre, ensuite transformées en pourcentage.

Figure 8 Présentation visuelle des schémas d'apoptose obtenus par cytométrie en flux.

Cette image représente une des deux expériences effectuées afin d'obtenir la concentration idéale de 5FU. L'appareil mesure le nombre d'événements du pic «sousGl» par rapport au nombre d'événements totaux de l'échantillon, ce qui permet de calculer les pourcentages. Puisque l’on sait que le pic «sous-G1» correspond à de l'ADN clivé, signe d'apoptose, on calcule l'apoptose, en pourcentage, à partir de ces valeurs. Les pourcentages d'apoptose, pour les diffërents échantillons, sont les suivants : témoin (2,80\%), $2,5 \mu \mathrm{~g} / \mathrm{mL}(18,5 \%), 25 \mu \mathrm{~g} / \mathrm{mL}(26,8 \%), 50 \mu \mathrm{~g} / \mathrm{mL}(46,9 \%), 100 \mu \mathrm{~g} / \mathrm{mL}(58,4 \%)$ et $250 \mu \mathrm{~g} / \mathrm{mL}(79,7 \%)$.

Figure 9 Recherche de la dose de 5-Fluoro-uracil (5FU) qui donne 50\% d'apoptose.

Mesure de l'apoptose par cytométrie en flux, suite à l'exposition à des doses croissantes de 5-Fluoro-uracil (5FU), atin d'obtenir une concentration «idéale» donnant 50% d'apoptose. Un total de 3×10^{5} cellules est mis en présence des différentes concentrations de 5 FU pendant 48 heures. Ensuite, le contenu d'ADN des cellules est marqué à l'aide d'une solution d'iodure de propidium $(20 \mu \mathrm{~g} / \mathrm{mL})$ et analysé par cytométrie en flux afin d'obtenir le pourcentage d'apoptose. Les résultats représentent la moyenne de deux expériences indépendantes. Les barres verticales représentent les écarts-types calculés sur les moyennes de chaque échantillon.

2.1 Recherche de la dose de 5 Fluoro-uracil optimale

Le but de l'expérience consiste à obtenir une dose de 5 FU qui donnerait une valeur d'apoptose d'environ 50%, afin de permettre l'observation d'une variation de l'apoptose, à la baisse ou à la hausse, suite à différents traitements envisagés pour les expériences à venir. Les valeurs d'apoptose sont obtenues par analyse en cytométrie en flux, déterminant le pourcentage de cellules dont l'ADN est clivé, dans l'échantillon analysé qui comprend 10000 évènements. Un exemple de graphique, obtenu suite à l'analyse par cytométrie en flux, est illustré dans la figure 8. La valeur en dessous de celle du pic G1 indique l'ADN clivé, et permet de calculer le pourcentage d'apoptose. Les moyennes de deux expériences indépendantes, utilisant les mêmes doses de 5 FU , sont représentés dans la figure 9.

À partir de ces résultats, nous constatons que le pourcentage d'apoptose augmente en fonction de la concentration de 5FU utilisé. Ces moyennes nous permettent d'obtenir la dose recherchée, celle qui nous donne un pourcentage d'apoptose d'environ 50%. La dose qui sera utilisée pour les expériences à venir, dans des analyses de cytométrie en flux, sera donc $100 \mu \mathrm{~g} / \mathrm{mL}$ puisque c'est cette concentration qui donne un résultat qui se rapproche le plus du 50% d'apoptose.

2.2 Effet des bactéries lactiques et du 5FU sur l'apoptose

Dans la figure 10 , on observe que dans les combinaisons des bactéries et 5 FU , le pourcentage d'apoptose augmente en fonction de la concentration bactérienne ($10^{6}-10^{9}$). Donc, plus on ajoute de bactéries, plus le pourcentage de cellules en apoptose augmente, la concentration de 5 FU restant constante. On atteint plus que le double du pourcentage d'apoptose dans l'échantillon comprenant la combinaison de 5 FU et bactéries vivantes à une concentration de 10^{8}, en comparaison avec l'échantillon 5 FU seul. La valeur de chaque échantillon de la figure 10 , est la moyenne de deux expériences différentes indépendantes. Dans le cas où la concentration de bactéries atteint 10^{9}, il se pourrait qu'un effet dû à l'acidification du milieu contribue à l'apoptose.

Figure 10 Effet des bactéries vivantes et/ou du 5FU sur l'apoptose des cellules cancéreuses du côlon.

Des bactéries lactiques vivantes ("B») à différentes concentrations ($10^{6}-10^{\circ}$) et du 5 -Fluoro-uracil (5 FU) $(100 \mu \mathrm{~g} / \mathrm{mL})$ sont ajoutés aux cellules LS 513. La mesure de l'apoptose par cytométrie en tlux est faite suite à une incubation de 48 heures. Le marquage de l'ADN avec une solution d'iodure de propidium permet de calculer le pourcentage de cellules ayant de l'ADN clivé («sous-G1») produite suite à l'incubation. Les cellules n'ayant subi aucun traitement servent de témoin. Les résultats représentent la moyenne de deux expériences indépendantes. Les barres verticales représentent les écarts-types calculés sur les moyennes de chaque échantillon.

La figure 11 montre différents échantillons d'une expérience de cytométrie en flux mesurant l'apoptose. On remarque bien l'augmentation du pic «sous-Gl» lorsqu'on ajoute le $5 \mathrm{FU}(44,6 \%)$ en le comparant au pic «sous-Gl» du témoin ($2,9 \%$). On peut également bien voir l'augmentation d'apoptose de l'échantillon $5 \mathrm{FU}+$ bactéries vivantes $10^{8}(89,8 \%)$ en comparaison avec l'échantillon 5 FU seul ($44,6 \%$). Chaque échantillon comprend 10000 événements et le nombre d'événements en «sous-Gl» est comparé au reste des événements, pour calculer le pourcentage d'apoptose.

2.3 Expression de la caspase-3

Afin de confirmer les résultats d'apoptose obtenus en cytométrie en flux, nous avons vérifié l'expression de la caspase-3, une enzyme bien connue pour être activée lors du processus d'apoptose. Un anticorps dirigé contre la forme pro-active et active de la caspase-3 est utilisé. Puisque l'immunogène utilisé pour produire cet anticorps se retrouve sur toute la surface de la forme complète (non-clivée) de la protéine, lorsque la protéine est activée (clivée), trois bandes sont normalement obtenues, la forme pro-active et les deux produits de clivage (17 et 11 kDa). Par contre, le fabriquant indique que l'anticorps ne détecte pas le segment de 11 kDa .

Sur la figure 12, on observe qu'il y a effectivement une diminution de la forme pro-active (32 kDa) de la caspase-3 dans l'échantillon contenant du 5FU. Par contre, aucune forme active (17 kDa) de la caspase-3 n'est détectée. Cette absence de détection de la forme active est probablement due à la trop faible quantité de protéine de départ. Si l'on compare les deux échantillons, 5 FU et $5 \mathrm{FU}+$ bactéries vivantes 10^{8}, on observe une diminution beaucoup plus rapide dans le temps dans le deuxième échantillon. À titre d'exemple après 24 heures d'incubation le contenu en forme pro-active dans l'échantillon contenant une combinaison de $5 \mathrm{FU}+$ bactéries vivantes 10^{8} comparativement à l'échantillon 5FU seul est inférieur.

Figure 11 Exemple de schémas obtenus par cytométrie en flux pour la mesure d'apoptose.
Ces 4 panneaux représentent 4 échantillons diffërents, obtenus lors d'une expérience. Le nombre d'évènements en «sous-G1» donne un pourcentage par rapport au reste des étapes du cycle de mitose. Le pourcentage est indiqué pour chacun des panneaux. Le panneau A représente les cellules n'ayant subi aucun traitement, B représente les cellules mises en présence de 5 FU à une concentration de $100 \mu \mathrm{~g} / \mathrm{mL}$, C est l'échantillon où ont été ajoutées les bactéries vivantes seules $\left(10^{8}\right)$ et D représente la combinaison de cellules, de bactéries vivantes $\left(10^{8}\right)$ et de $5 \mathrm{FU}(100 \mu \mathrm{~g} / \mathrm{mL})$.

Expression de la caspase-3 (forme pro-active)

Figure 12 Activation de la caspase-3

Illustration d'un buvardage de type Western, de la caspase-3 sous sa forme pro-active (32 kDa). Une incubation d'une durée totale de 48 h , en présence de bactéries vivantes à une concentration de 10^{8} et de 5 -Fluoro-Uracil (5 FU) à une concentration de $100 \mathrm{ng} / \mathrm{mL}$ a été effectuée. Deux expériences indépendantes ont été réalisées et ont donné les mêmes résultats. Une seule est représentée.

3 Action de l'état des bactéries

Le but de ces expériences est de vérifier si l'état des bactéries influence leur effet sur la croissance ou l'apoptose des cellules cancéreuses du côlon.

3.1 Bactéries vivantes versus bactéries irradiées

3.1.1 Apoptose

Afin de vérifier si l'état des bactéries influence l'apoptose des cellules cancéreuses du côlon, celles-ci ont été mises en présence de bactéries lactiques vivantes ou irradiées. Le pourcentage d'apoptose a par la suite été mesuré par cytométrie en flux. Les résultats sont illustrés dans la figure 13 et représentent la moyenne de deux expériences indépendantes.

La partie de gauche montre les mêmes valeurs que celles présentées dans la figure 10 , que nous représentons à nouveau à titre de comparaison, pour la même expérience. La partie de droite indique les valeurs d'apoptose obtenues pour les incubations en présence des bactéries irradiées. Nous observons ici également une légère augmentation de l'apoptose dans l'échantillon où la concentration de bactéries atteint 10^{9}, et comme indiqué pour la même concentration des bactéries vivantes, cette légère augmentation est probablement causée par le manque de nutriments retrouvés dans le milieu RPMI complet. Nous constatons également que les bactéries irradiées augmentent le pourcentage d'apoptose de façon dose dépendante, en présence de notre dose standard de $5 F U$. Nous notons que l'augmentation d'apoptose causée par l'ajout de bactéries est très semblable entre les bactéries vivantes et les bactéries irradiées. Nous concluons que l'irradiation n'affecte pas la capacité des bactéries d'augmenter l'effet apoptotique du 5FU.

3.2 Bactéries vivantes versus bactéries chauffées

Toujours dans l'optique de vérifier si l'état des bactéries lactiques peut avoir un effet sur la viabilité ou l'apoptose des cellules cancéreuses du côlon, nous avons comparé l'effet des bactéries vivantes avec celui des bactéries tuées par la chaleur.

3.2.1 Prolifération

La viabilité des cellules cancéreuses est évaluée avec le MTT. Dans la figure 14, nous remarquons une augmentation du pourcentage de viabilité dans les échantillons où se trouvent les bactéries chauffées, en comparaison avec le témoin constituant les cellules seules. Nous observons également qu'à l'ajout au 5 FU de bactéries chauffées à différentes concentrations, le pourcentage de viabilité est maintenu dans les 43%, tandis que l'échantillon où seul le 5 FU est présent indique un pourcentage de viabilité de 36%. Les bactéries vivantes et les bactéries chauffées semblent donc avoir des effets contraires sur la viabilité des cellules.

3.2.2 Apoptose

Afin d'éviter le facteur d'erreur rencontré en utilisant le MTT (coloration des bactéries), nous avons opté pour la mesure de l'apoptose des cellules cancéreuses par cytométrie en flux. La figure 15 illustre la moyenne des résultats obtenus au cours de deux expériences indépendantes utilisant les bactéries vivantes et les bactéries chauffées.

La partie de gauche reproduit les valeurs d'apoptose présentées dans la figure 10 , qui nous démontrait l'effet des bactéries vivantes sur l'apoptose. La partie de droite nous indique les valeurs d'apoptose obtenue par l'utilisation des bactéries chauffées, dans la même expérience. Nous observons toujours la faible augmentation de l'apoptose dans l'échantillon contenant la plus haute concentration de bactéries $\left(10^{9}\right)$, probablement causée par le manque de nutriments disponibles dans le milieu RPMI complet. Dans la figure 15, nous notons une diminution du pourcentage d'apoptose dans les échantillons de combinaisons de bactéries chauffées à différentes concentrations et de 5FU. Le pourcentage d'apoptose de l'échantillon 5 FU seul est d'environ 50% tandis que le pourcentage d'apoptose de l'échantillon « $5 \mathrm{FU}+$ bactéries chauffées 10^{8} » est d'environ 20\%.

La figure 16 représente les histogrammes obtenus par l'analyse de cytométrie en flux. Nous constatons la diminution du pic «sous-Gl» en comparant l'échantillon 5 FU seul et l'échantillon combinant le 5 FU et les bactéries chauffées à une concentration de 10^{8} (C versus B).

Figure 13 Mesure de l'apoptose des cellules LS 513 en présence de bactéries vivantes, de bactéries irradiées et/ou de 5 FU.

Les cellules du cancer du côlon sont mises en présence ou absence de 5-Fluoro-Uracil $(5 \mathrm{FU})(100 \mu \mathrm{~g} / \mathrm{mL})$ et de bactéries vivantes (B) ou de bactéries irradiées (R) à différentes concentrations ($10^{6}-10^{9}$) pour une période de 48 heures. Le témoin est composé de cellules n'ayant subi aucun traitement. L'apoptose est mesurée par cytométrie en flux, par marquage de l'ADN à l'iodure de propidium ($20 \mu \mathrm{~g} / \mathrm{mL}$).

Figure 14 Mesure de la viabilité de LS 513 par le MTT.

L'effet de bactéries vivantes (B) et de bactéries chauffées (C) à différentes concentrations ($10^{6}-10^{8}$) en présence ou absence de 5 -Fluoro-Uracil (5 FU) (A$)(2,5 \mu \mathrm{~g} / \mathrm{mL}$) sur la viabilité de LS 513 après une incubation de 48 heures. Les valeurs sont obtenues par lecture au spectrophotomètre (540 nm), de la coloration des mitochondries fonctionnelles, par le MTT. La concentration cellulaire utilisée est de $3,3 \times 10^{4}$ cellules par puits. Les résultats sont la moyenne de 3 valeurs différentes de spectrophotomètre, ensuite transformées en pourcentage.

Figure 15 Effet des bactéries vivantes, comparé à celui de bactéries chauffées sur l'apoptose des cellules LS 513.

Les différents échantillons représentent des cellules cancéreuses du côlon incubées pendant 48 heures en présence de bactéries vivantes (B) ou de bactéries chauffées (C), à différentes concentrations, avec ou sans 5 Fluoro-Uracil ($100 \mu \mathrm{~g} / \mathrm{mL}$). Le pourcentage d'apoptose est mesuré par cytométrie en flux à l'aide d'une solution d'iodure de propidium $(20 \mu \mathrm{~g} / \mathrm{mL})$.

A) bactéries chauffées 10^{8}

B) $5 \mathrm{FU}(100 \mu \mathrm{~g} / \mathrm{mL})$

$$
\text { C) } 5 \mathrm{FU}+\text { bactéries chauffées } 10^{8}
$$

Figure 16 Présentation d'histogrammes obtenus par cytométric en flux, avec des cellules cancéreuses en présence de bactéries chauffées.

Les cellules cancéreuses du côlon furent exposées 48 heures à des bactéries chauffées (10^{8}) (A) et à 5 - Fluoro-uracil (5 FU) ($100 \mu \mathrm{~g} / \mathrm{mL}$) (B), ou à la combinaison des deux (C). Le pourcentage d'apoptose est obtenu par la mesure de fluorescence du pic sous-Gl par rapport à la fluorescence totale de l'échantillon analysé.

Expression de la caspase-3 (forme pro-active)

Figure 17 Effet des bactéries vivantes ou chauffées sur l'activation de la caspase-3.
Les résultats obtenus, par buvardage de type Western, de l'expression de la caspase-3 suite à diffërentes incubations (0-6-12-24-36-48h) en présence de 5-Fluoro-uracil (5FU), seul à une concentration de $100 \mu \mathrm{~g} / \mathrm{mL}$, ou combiné à des bactéries vivantes $\left(10^{8}\right)$, ou chauffées $\left(10^{8}\right)$. Un marquage à l'aide d'un anticorps dirigé contre la caspase-3, est illustré dans cette figure et nous observons l'expression de forme pro-active (32 kDa) de la caspase-3, en fonction du temps de cultures. Deux expériences indépendantes ont été réalisées et ont donné les mêmes résultats. Une seule est représentée.

3.2.3 Expression de la caspase-3

Afin de confirmer les résultats d'apoptose obtenus par la cytométrie en flux, nous avons mesuré l'expression de la caspase-3 dans les mêmes conditions. Un anticorps dirigé contre les formes pro-active et active de la caspase-3 est utilisé pour le buvardage de type Western.

Dans la figure 17, nous pouvons comparer l'expression de la caspase-3 sous sa forme pro-active (32 kDa) seulement, car la forme active n'a pas pu être révélée pour des raisons techniques. Nous croyons que la faible quantité de départ de notre protéine n'a pas permis à la forme active d'être révélée par la technique. Néanmoins, nous observons qu'il y a une diminution beaucoup moins rapide de la forme pro-active (32 kDa) de la caspase- 3 dans l'échantillon contenant du 5 FU et des bactéries chauffées 10^{8}, comparé à l'échantillon $5 \mathrm{FU}+$ bactéries vivantes 10^{8}. Prenons comme exemple le temps 24 heures : il est clair qu'il y a beaucoup moins de forme pro-active dans l'échantillon de combinaison du $5 \mathrm{FU}+$ bactéries vivantes 10^{8} que dans l'échantillon $5 \mathrm{FU}+$ bactéries chauffées 10^{8}. Ceci nous amène à penser que le processus d'apoptose est déclenché plus tôt, et dans plus de cellules, dans la combinaison de bactéries vivantes et de 5FU, comparé aux autres échantillons.

4 Mécanismes possibles inhérents aux cultures bactériennes

4.1 Présentation pharmacologique du 5-Fluoro-uracil

Dans le but de vérifier si les bactéries modifient la présentation pharmacologique du 5 FU , nous avons réalisé une expérience qui consistait à faire une première incubation de 48 heures avec des cellules (LS 513) en présence des différents agents (bactéries vivantes, bactéries chauffées, 5 FU) («premier plateau»), de récolter les surnageants et les ajouter à une culture fraîche de cellules, pour une autre incubation de 48 heures («deuxième plateau»). Suite à cette dernière incubation, nous avons mesuré le pourcentage d'apoptose des cellules du deuxième plateau.

La figure 18 illustre les résultats obtenus. Nous constatons que le pourcentage d'apoptose des deux témoins (effet du surnageant du premier plateau, témoin en bleu, et le témoin du deuxième plateau, en rouge) sont semblables. Nous constatons que les surnageants de la première culture (colonnes bleues) exercent sur les cellules de la
seconde les effets habituels : les bactéries vivantes augmentent l'apoptose provoquées par le 5 FU , tandis que les bactéries chauffées ne l'augmentent pas. Ces cellules de la seconde culture présentent donc la sensibilité habituelle à l'action du 5FU (colonnes rouges)

4.2 Compétition entre les bactéries vivantes et les bactéries chauffées?

Afin de vérifier si les mécanismes reliés aux effets observés par l'ajout de bactéries vivantes et de bactéries chauffées peuvent entrer en compétition, nous avons fait la combinaison des deux types de bactéries dans un même puits, en présence de cellules cancéreuses, et nous avons mesuré le pourcentage d'apoptose.

La figure 19 indique que le mélange de bactéries chauffées ne semble pas avoir agi, car nous n'observons pas la diminution habituelle du pourcentage d'apoptose.

4.3 Effet de l'acide butyrique

Dans le but d'observer une variation de la sensibilité à l'apoptose, causée par le 5FU chez les cellules cancéreuses du côlon, une incubation est effectuée avec de l'acide butyrique à différentes concentrations, par comparaison avec l'effet obtenu avec les bactéries lactiques.

La figure 20 présente les pourcentages d'apoptose obtenus suite à l'incubation en présence d'acide butyrique. Nous voyons tout d'abord que l'acide butyrique, seul à une concentration de 4 mM , entraîne un pourcentage d'apoptose d'environ 18% par rapport au témoin (6.69%). La combinaison de 5 FU et d'acide butyrique, aussi bien à 2 mM qu'à 4 mM , augmente le pourcentage d'apoptose en comparaison avec le 5 FU seul, d'environ 25%. Nous obtenons ainsi un résultat très semblable à celui obtenu lorsque nous ajoutons la combinaison de 5 FU et bactéries lactiques vivantes aux cellules cancéreuses.

Figure 18 Action des bactéries sur la présentation pharmacologique du 5FU.

Une première culture de 48 heures avait été effectuée selon le protocole habituel. Les surnageants des différents groupes (témoin, $5 \mathrm{FU}, 5 \mathrm{FU}+$ bactéries vivantes ($\mathrm{B} 10^{7}$) ou $5 \mathrm{FU}+$ bactéries chauffées $\left(\mathrm{C} 10^{7}\right)$) ont été transférés sur un nouveau plateau de culture contenant de nouvelles cellules (colonnes bleues). Les colonnes rouges représentent l'action du 5 FU , par rapport au témoin, sur les cellules de la seconde culture de 48 heures.

Figure 19 Effets du mélange de bactéries vivantes et de bactéries chauffées.

Les cellules cancéreuses du côlon (LS 513) sont mises en présence d'une concentration déterminée de $5 \mathrm{FU}(100 \mu \mathrm{~g} / \mathrm{mL})$, de bactéries vivantes (B) (10^{7} et 10^{8}) et/ou de bactéries chauffées (C) (10^{7} et 10^{8}). Le témoin est composé de cellules sans aucun traitement. La mesure de l'apoptose est réalisée par cytométrie en flux, suite à une incubation de 48 heures.

Figure 20 L'effet d'ajout d'acide butyrique et de 5FU sur l'apoptose de LS 513.
Aux cellules cancéreuses du côlon est ajoutée une dose de $5 \mathrm{FU}(100 \mu \mathrm{~g} / \mathrm{mL})$ ainsi que différentes doses (2 mM et 4 mM) d'acide butyrique (ab). L'apoptose est mesurée, suite à une incubation de 48 heures, à l'aide d'une solution d'iodure de propidium (20 $\mu \mathrm{g} / \mathrm{mL}$) marquant l'ADN. Le témoin est composé de cellules cancéreuses sans aucun ajout.

5 Mécanismes possibles inhérents aux cellules tumorales

5.1 Expression du récepteur Fas

Afin de vérifier si les différents traitements (5FU, bactéries lactiques vivantes ou chauffées) font varier l'expression du récepteur Fas à la surface des cellules cancéreuses, les cellules sont marquées d'un anticorps dirigé contre le récepteur Fas, et analysées par cytométrie en llux, suite à une incubation de 24 heures. L'analyse par cytométrie en flux donne une valeur qui est nommée «moyenne de fluorescence». Afin de vérifier si les cellules ont répondu aux traitements par une augmentation de l'expression du récepteur Fas, les valeurs de «moyenne de fluorescence» de chaque échantillon sont divisées par la valeur de moyenne de fluorescence du témoin, pour obtenir un facteur de multiplication.

La figure 21 représente la moyenne des facteurs de multiplications, pour trois expériences indépendantes. Les données nous montrent une augmentation lorsqu'il y a ajout de 5 FU par rapport au témoin. Lorsqu'il y a ajout des bactéries lactiques, sous forme vivante ou sous forme chauffée, à la concentration de 5FU utilisée, l'expression de Fas n'est jamais augmentée de façon significative.

5.2 Expression du ligand Fas

Nous avons cette fois mesuré la variation du ligand Fas, suite à une stimulation (24 heures) avec le 5 FU et les bactéries lactiques, vivantes ou chauffées, à différentes concentrations ($10^{7}-10^{8}$). Les cellules cancéreuses sont marquées d'un anticorps dirigé contre le ligand Fas, puis analysées par cytométrie en flux. Les valeurs de moyenne de fluorescence des échantillons sont calculées comme dans le cas de l'expression du récepteur Fas.

Les facteurs de multiplication obtenus (figure 22) ne nous montrent aucune variation significative de l'expression de Fas ligand lorsque les bactéries lactiques, vivantes ou chauffées, aux concentrations 10^{7} et 10^{8}, sont ajoutées au 5FU.

Figure 21 Expression du récepteur Fas
Les cellules cancéreuses sont mises en présence de 5 -Fluoro-uracil (5 FU) à une concentration de $100 \mu \mathrm{~g} / \mathrm{mL}$. Différentes combinaisons sont ajoutées aux cellules cancéreuses. Au 5FU sont ajoutées des bactéries vivantes (B) ou des bactéries chauffèes (C) à différentes concentrations ($10^{7}-10^{8}$ bactéries $/ \mathrm{mL}$). Après une incubation de 24 heures, l'expression du récepteur Fas est mesurée par cytométrie en flux et exprimée par la «moyenne de fluorescence». La moyenne de fluorescence de chaque échantillon est divisée par la moyenne de fluorescence du témoin, pour obtenir les «facteurs de multiplication». Les résultats représentent la moyenne de trois expériences indépendantes. Les barres verticales représentent les écarts-types calculés sur les moyennes de chaque échantillon.

Figure 22 Expression du ligand de Fas
Les cellules cancéreuses sont traitées pendant 24 heures par le 5-Fluoro-uracil (5 FU) à une concentration de $100 \mu \mathrm{~g} / \mathrm{mL}$. Au 5FU sont ajoutées des bactéries vivantes (B) ou des bactéries chauffées (C) à différentes concentrations ($10^{7}-10^{8}$ bactéries $/ \mathrm{mL}$). L'expression de Fas ligand est mesurée à la surface des cellules cancéreuses récoltées. Les «facteurs de multiplication» sont obtenus de la même façon que pour l'expression de Fas. Les résultats représentent la moyenne de trois expériences indépendantes. Les barres verticales représentent les écarts-types calculés sur les moyennes de chaque échantillon.

5.3 Expression de la protéine p53 et p21

Afin de vérifier si l'expression des protéines p53 et p21 est affectée lorsque les cellules cancéreuses du côlon sont mises en présence de bactéries lactiques, vivantes ou chauffées, à une concentration de 1×10^{8} bactéries $/ \mathrm{mL}$, et/ou de $5 \mathrm{FU}(100 \mu \mathrm{~g} / \mathrm{mL})$, un immuno-buvardage de type Western est effectué pour chaque protéine. La concentration bactérienne choisie correspond à celle qui modifie le plus le pourcentage d'apoptose. Une étude cinétique est effectuée à 6 temps différents.

La figure 23 illustre l'immuno-buvardage effectué pour la protéine p53. Puisque la technique d'extraction des protéines utilisée ne permet pas de distinguer les différentes fractions cellulaires (noyau, cytoplasme, mitochondrie), l'expérience ne permet pas de discriminer la p53 inactive et active (qui aurait été transloquée au noyau). Nous observons une augmentation progressive, dans le temps, de la protéine p53 lorsque le 5 FU est ajouté. En comparant le «temps 0» (expression basale de la protéine) et le temps «24 heures», nous pouvons confirmer qu'il y a effectivement une augmentation de son expression. Par contre, lorsque les bactéries, vivantes ou chauffées, sont ajoutées à la dose de 5 FU utilisée, aucune variation de l'expression de la protéine p53 n'est observée lorsque nous les comparons à l'action du 5 FU seul.

La figure 24 représente l'immuno-buvardage de type Western effectué pour vérifier l'expression de la protéine p21. Nous voyons tout d'abord que l'expression de la protéine p21 augmente dans le temps, jusqu'à 36 heures, lorsque nous ajoutons le 5 FU . Ensuite cette expression diminue (48 heures). Nous observons également que l'expression de la protéine p21 est augmentée lorsque les cellules sont mises en présence de la combinaison de 5 FU et de bactéries, vivantes ou chauffées, à une concentration de 1×10^{8}. Lorsque nous comparons les échantillons «5FU» avec «5FU + bactéries vivantes», nous observons que l'augmentation de l'expression de la protéine p21 est beaucoup moins élevée dans l'échantillon «5FU + bactéries vivantes», et que cette expression diminue plus rapidement. À 36 heures nous observons déjà une diminution qui devient totale à 48 h . Lorsque nous comparons les échantillons 5 FU et $5 \mathrm{FU}+$ bactéries chauffées, nous constatons que l'augmentation de l'expression de la protéine p21 est beaucoup plus élevée dans l'échantillon $5 \mathrm{FU}+$ bactéries chauffées et que la diminution de l'expression observée à 48 heures est moins rapide que l'échantillon 5FU.

Figure 23 Expression de la protéine p53
L'expression de la protéine p53 est vérifiee par la technique d'immuno-buvardage de type Western. Les cellules cancéreuses sont mises en présence de 5-Fluoro-uracil (5 FU) à une concentration de $100 \mu \mathrm{~g} / \mathrm{mL}$ en présence ou non de bactéries lactiques, vivantes ou chauffées, à une concentration de 10^{8} bactéries $/ \mathrm{mL}$. Les cellules sont récoltées après différents temps d'incubation (0-3-6-9-12-24 heures). Un extrait des protéines totales est réalisé. Cet extrait est mis à migrer sur gel de polyacrylamide pour ensuite être transféré sur membrane de nitrocellulose. Ces membranes sont marquées par un anticorps dirigé contre la proténe p53, et ensuite révélées. Trois expériences indépendantes ont été réalisées et ont donné les mêmes résultats Une seule est représentée.

5FU

$5 \mathrm{FU}+$ bactéries

 vivantes 10^{8}5FU + bactéries chauffées 10^{8}

Figure 24 Expression de la protéine p21.
L'expression de la protéine p21 est vérifiée par la technique d'immuno-buvardage de type Western. Les cellules cancéreuses sont mises en présence de 5-Fluoro-uracil (5 FU) à une concentration de $100 \mu \mathrm{~g} / \mathrm{mL}$ et/ou en présence de bactéries lactiques, vivantes ou chauffées, à une concentration de 10^{8} bactéries $/ \mathrm{mL}$. Les cellules sont récoltées après différents temps d'incubation (0-3-6-12-24-48 heures). Comme dans la figure 5.2, un extrait des protéines totales est réalisé. Cet extrait est mis à migrer sur gel de polyacrylamide, pour ensuite être transfèré sur membrane de nitrocellulose. Ces membranes sont marquées par un anticorps dirigé contre la protéine p21, et ensuite révélées. Deux expériences indépendantes ont été réalisées et ont donné les mêmes résultats. Une seule est représentée.

Afin de vérifier si la protéine p21 est active, l'analyse des pourcentages de la phase G0-G1 ont été analysé par cytométrie en flux (tableau 4). Les échantillons utilisés pour cette analyse sont les mêmes échantillons que ceux qui ont servi pour la mesure d'apoptose (figure 16). Nous en avons sélectionné le pic G0-G1 pour l'analyse. Il est possible d'observer qu'il y a une augmentation significative du pourcentage en G0-G1 lors de l'ajout de hautes concentrations de bactéries chauffées (10^{8} et 10^{9}) à la concentration de 5 FU , ce qui signifie que la p21 était active dans ces circonstances.

5.4 Activation et inhibition de la protéine kinase C (PKC)

Dans le but de vérifier si les bactéries miment un stimulateur ou un inhibiteur de la PKC, afin de moduler l'apoptose, les cellules cancéreuses du côlon sont mises en présence de stimulateurs, (phorbol 12-myristate 13-acetate (PMA) et ionomycine) ou d'un inhibiteur (GÖ6976) des PKC de type α et $\beta 1$, dépendantes du calcium.

Différentes concentrations croissantes de PMA et d'ionomycine sont utilisées, en combinaison ou pas, avec la dose de 5-Fluoro-uracil (5FU) normalement utilisée, ceci afin de tenter de mimer les expériences effectuées avec les bactéries lactiques combinées avec le 5 FU . La figure 25 illustre les résultats obtenus au cours de trois expériences indépendantes. Nous remarquons que le PMA et l'ionomycine n'ont aucun effet sur l'apoptose. lorsqu'ils sont ajoutés aux cellules cancéreuses. La combinaison de ces derniers avec la dose de 5 FU ne donne pas les résultats que nous attendrions si les bactéries agissaient sur la PKC, puisqu'il n'y a aucune variation du pourcentage d'apoptose lorsque nous comparons ces différentes combinaisons avec l'échantillon «SFU seul».

Une autre expérience a été effectuée, en utilisant un inhibiteur de la PKC, le GÖ6976 (Gomez-Angelats et al., 2000). La figure 26 montre les pourcentages d'apoptose obtenus en présence de 5 FU et bactéries lactiques vivantes à une concentration de 1×10^{7}, avec ou sans inhibiteur. Les résultats montrent que le GÖ6976 seul n'a pas d'effet sur l'apoptose lorsqu'il est comparé au témoin, et que la combinaison de celui-ci au 5 FU ne change en rien l'efficacité du 5FU. Lorsque le GÖ6976 est ajouté à la combinaison de $5 \mathrm{FU}+$ bactéries vivantes (67.6%), le pourcentage d'apoptose est similaire à celui de l'échantillon $5 \mathrm{FU}+$ bactéries vivantes (71.8%).

Figure 25 Effet de l'activation de PKC sur l'apoptose.

Les cellules cancéreuses de côlon sont incubées pour une période de 48 heures en présence de 5-Fluoro-uracil (5FU) à une concentration de $100 \mu \mathrm{~g} / \mathrm{mL}$ et/ou d'ionomycine (iono) à différentes concentrations (100,200 et $500 \mathrm{ng} / \mathrm{mL}$) et/ou en présence de phorbol 12 -myristate 13 -acetate (PMA) à différentes concentrations (10,50 et $100 \mathrm{ng} / \mathrm{mL}$). Le pourcentage d'apoptose est mesuré par cytométrie en flux à l'aide d'une solution d'iodure de propidium ($20 \mu \mathrm{~g} / \mathrm{mL}$). Les résultats d'apoptose représentent la moyenne de 3 expériences indépendantes. Les barres verticales représentent les écarts-types calculés sur les moyennes de chaque échantillon.

Figure 26 Effet de l'inhibition de PKC sur l'apoptose.
Les cellules cancéreuses du côlon sont incubées pour une période de 48 heures en présence de 5-Fluoro-uracil (5FU) à une concentration de $100 \mu \mathrm{~g} / \mathrm{mL}$ et/ou de bactéries vivantes à une concentration de 1×10^{7} et/ou d'un inhibiteur de la PKC, le GÖ 6976, à une concentration de $1 \mu \mathrm{M}$. Après 48 heures, les cellules sont récoltées et marquées à l'aide d'une solution d'iodure de propidium ($20 \mu \mathrm{~g} / \mathrm{mL}$), puis analysées par cytométrie en flux pour obtenir le pourcentage d'apoptose.

5.5 Expression du gène Nur77

Afin de vérifier l'expression du gène Nur77, nous avons effectué un RT-PCR à l'aide de la trousse LightCycler. Les valeurs numériques obtenues sont le résultat de la dérivation mathématique de la valeur de la fluorescence en fonction de la température. Puisque les amorces utilisées ont le rôle d'amplifier seulement une partie du gène Nur 77 , nous devrions obtenir un seul pic d'amplification, une fois les données traitées par le programme LightCycler tel que décrit dans le chapitre «Matériel et Méthode». Le programme mesure l'aire sous la courbe formée par le pic d'amplification qui nous donne une valeur d'amplification.

Les images de la figure 27 représentent les différents pics d'amplification du gène Nur77 suite à l'effet des différents traitements. L'image \# 9 de la figure 27 donne les valeurs calculées par le programme LightCycler. La température de fusion (Tm) du produit d'amplification étant de $92^{\circ} \mathrm{C}$, il suffit de faire mesurer, par le programme, l'aire sous la courbe du pic qui est formé aux environs de $92^{\circ} \mathrm{C}$. Soulignons que dans le cas présent, plusieurs valeurs n'ont pu être calculées par le programme, ceci à cause de la présence de produits d'amplification non spécifiques. La présence de ces produits d'amplification non spécifiques peut être causée par différents facteurs tel que le choix des amorces (Kang et al., 2000), l'état de l'ARN ou la qualité des réactifs utilisés. Néanmoins, les résultats montrent que l'expression du gène est augmentée par l'ajout de PMA (2.824) et d'ionomycine (2.450) par rapport au témoin (1.588). Par contre, lorsque le 5 FU est ajouté, l'expression du gène est diminuée jusqu'à un point où les produits d'amplification non spécifiques empêchent le programme de mesurer l'aire sous la courbe du petit pic formé. Les résultats obtenus à l'ajout de bactéries lactiques sous forme vivantes ou chauffées au 5 FU sont sensiblement les mêmes que celui du 5 FU seul puisqu'il est également impossible d'obtenir une valeur vu la faible expression du gène. En conclusion les résultats montrent que l'ajout de bactéries ne modifie probablement pas l'expression du gène codant pour Nur77.

7) $5 \mathrm{FU}+$ bactéries chauffées 10^{7}

8) $5 \mathrm{FU}+$ bactéries chauffées 10^{8}

Poxition	Nome	Tm1	Ars.	SD 1	Tm 2	Are.	SD 2	Im 3	Ara	SD 3
1	Sample 1	81.31	9.271	4.012	91.86	1.588	0.785			
2	Sample 2	92.01	2.824	0.783						
3	Semple 3	\$1.88	2450	0.322						
4	Sample 4	79.50	4.959	2075	81.76	0.705	0.536	84.23	3.135	1.308
5	Sample 5	79.43	5.618	2352	83.87	4.460	1.882	91.78	0.853	0.833
6	Sample 6	77.74	1.305	0.983	81.73	7.248	2.462	84.97	0.835	0.649
7	Sample 7	78.53	2763	1.270	82.03	4.964	1.631	84.92	1.711	0.811
8	Sample 8	7802	1.170	0.817	81.79	7.261	2457	84.88	0727	0.88

9) Tableau des valeurs obtenues pour l'amplification du gène Nur77

Figure 27 Expression du gène de Nur77.
Les cellules cancéreuses du côlon sont incubées pendant 3 heures avec différents produits de stimulation: 5-Fluoro-uracil (5FU) à $100 \mu \mathrm{~g} / \mathrm{mL}$ (4); phorbol 12-myristate 13-acetate (PMA) à $100 \mathrm{ng} / \mathrm{mL}$ (2); lonomycine à $500 \mathrm{ng} / \mathrm{mL}$ (3) et des bactéries vivantes (5 et 6) ou chauffées (7 et 8) à deux concentrations différentes 1×10^{7} et 1×10^{8} bactéries $/ \mathrm{mL}$. Le témoin (1) est composé de cellules cancéreuses sans aucune stimulation. L'ARN total est extrait de chaque échantillon, et les transcrits du gène codant Nur77 sont amplifiés par RT-PCR dans le LightCycler, par lequel est effectuée l'analyse de l'amplification du gène. À l'aide des valeurs de fluorescence, le pic de l'amplification est obtenu lorsque le programme mesure la dérivée de la fluorescence en fonction de la température. Il est également possible de mesurer l'aire sous la courbe que forme le pic d'amplification qui donne une valeur à l'amplification (9). La Tm du produit d'amplification est théoriquement $92^{\circ} \mathrm{C}$.

CHAPITRE 4 : DISCUSSION

Plusieurs recherches s'effectuent afin de mettre au point différents traitements (chimiothérapie, radiothérapie, adjuvants de l'immunité) pour diminuer la probabilité de récurrence chez les patients ayant subi une résection du cancer du côlon. Les traitements semblent plus efficaces lorsqu'ils sont donnés en combinaison: par exemple, chimiothérapie plus adjuvant de l'immunité. D'autre part, il existe également des recherches sur la propriété des bactéries lactiques à combattre le cancer du côlon. Plusieurs résultats militent en faveur d'un effet de protection/diminution de ces bactéries vis-à-vis du cancer du côlon. Le but de ce travail consistait à vérifier l'effet, sur l'apoptose de cellules d'une lignée de cancer du côlon exposée à la chimiothérapie (5-Fluoro-Uracile), de l'ajout de bactéries lactiques du «mélange Bio-Kı. On a également essayé de comprendre les mécanismes impliqués dans l'apoptose des cellules de cancer du côlon exposées à ces combinaisons de traitements.

À notre connaissance, il ne semble pas y avoir de recherches publiées sur l'effet des bactéries lactiques et de la chimiothérapie sur le cancer du côlon, en combinaison. Le modèle in vitro que nous avons utilisé comporte certaines limites. 1 . Il est composé seulement de cellules de cancer du côlon, sans aucune cellule du système immunitaire. Ceci l'éloigne donc des conditions retrouvées in vivo dans un système humain complet. 2. Nous avons choisi une lignée cellulaire de cancer du côlon dont la protéine p53 présente le type sauvage, ce qui en fait un modèle moins représentatif de la majorité des cancers du côlon, mais permettant l'étude du rôle de p53.

Ces deux limitations ont été acceptées en toute conscience, afin d'offrir un modèle le plus simple possible pour répondre à une question, simple elle aussi, qui s'énonce ainsi :

La présence de bactéries lactiques a-t-elle une quelconque influence sur la sensibilité du cancer du côlon vis-à-vis de la chimiothérapie?

Dans un premier temps, nous avons effectué un test préliminaire afin de voir si la croissance cellulaire était altérée par la combinaison de $5 \mathrm{FU}+$ bactéries lactiques. La croissance cellulaire est, naturellement, affectée par le 5 FU , et l'effet du 5 FU semble plus efficace en présence de bactéries vivantes à haute concentration $\left(10^{8}\right)$. Mais à cette concentration de bactéries vivantes, le milieu de culture a tendance à s'acidifier. Cette acidification est probablement due à l'acide lactique libéré par les bactéries lactiques (Hove et al., 1999). Lors de l'ajout des bactéries chauffées, il ne semble pas y avoir d'effet dû à ces bactéries, au niveau de la croissance cellulaire en présence de 5 FU . Mais les bactéries vivantes ajoutées aux cellules métabolisent, elles aussi, le MTT, et ceci a constitué un problème d'interprétation des résultats, basée sur l'intensité de coloration. Nous avons donc, ensuite, choisi une autre technique, beaucoup plus fiable, qui mesure l'apoptose des cellules tumorales par cytométrie en flux.

Différentes recherches ont été réalisées, dans le passé, sur l'efficacité du 5-FluoroUracile (5FU) à induire l'apoptose chez le cancer du côlon humain (Nita et al., 1998 : Mirjolet et al., 2000). Nous avons bien sûr confirmé cet effet apoptotique, dose dépendant, du 5FU sur les cellules de cancer du côlon étudiées dans cette recherche. Une concentration de 5 FU a été déterminée en fonction du pourcentage d'apoptose permettant d'observer une modulation d'environ 50% : $100 \mu \mathrm{~g} / \mathrm{mL}$.

D'autre part, des résultats publiés dans la littérature démontrent un effet antiprolifératif exercé par des bactéries lactiques seules, sur des cellules de cancer du côlon (Baricault et al., 1995; Ganjam et al., 1997). Différents chercheurs pensent que chaque souche bactérienne lactique aurait un taux différent d'efficacité sur l'inhibition de croissance des cellules cancéreuses (Pool-Zobel et al., 1996; Baricault et al., 1995). À haute concentration $\left(10^{8}\right)$, ces résultats ont été confirmés au niveau de la croissance cellulaire par la diminution du pourcentage de cellules vivantes. Par contre, par la mesure de l'apoptose, plutôt que de la croissance, sur ces cellules tumorales, aucune augmentation significative n'a été observée d'apoptose en ajoutant des bactéries lactiques seules aux cellules cancéreuses. La légère augmentation d'apoptose observée chez les échantillons auxquels les bactéries étaient ajoutées à une concentration de 10^{9}, est
probablement due au trop grand volume de RPMI 1640 remplacé par la solution de bactéries (environ $1 \mathrm{~mL} / 6 \mathrm{~mL}$). Pour éviter ce problème, il aurait été préférable d'utiliser une solution de bactéries plus concentrée, afin d'ajouter un plus petit volume de milieu dans les puits. Il semble donc que les souches bactériennes utilisées dans le cocktail BioK ne modifient pas, par elles-mêmes, l'apoptose.

Par contre, lorsque ces bactéries sont mises en présence de 5FU, un effet très net sur l'apoptose des cellules cancéreuses, exercé par les bactéries lactiques, est observé. Le pourcentage d'apoptose augmente en fonction de la concentration de bactéries vivantes ou irradiées ajoutées à une concentration donnée de 5 FU . Pour la concentration de 5 FU qui donne environ 50% d'apoptose, lorsque différentes concentrations de bactéries vivantes ou irradiées sont ajoutées, ce pourcentage augmente jusqu'à 90%, avec 10^{8} bactéries $/ \mathrm{mL}$. Lors de l'ajout de bactéries chauffées, des résultats inverses ont été obtenus en comparaison avec les bactéries vivantes ou irradiées: l'efficacité du 5 FU diminue, pour les concentrations « 10^{8} » et $« 10^{9}$ ». Il se pourrait qu'un ou plusieurs des produits membranaires (acides teïchoïques, peptidoglycane) permettent d'amplifier le signal apoptotique du 5 FU , par un mécanisme inconnu. La suspension de bactéries chauffées comprend des débris de toutes sortes, membranaires ou intracellulaires. Il pourrait donc s'agir de d'acides teïchoïques, peptidoglycane, ADN bactérien, exopolysaccharides ou autres qui feraient interférence avec l'action du 5 FU , par un mécanisme inconnu.

Toutes les recherches publiées jusqu'ici, sur les effets des bactéries lactiques, utilisaient des bacteries sous forme vivante, ou tout au moins intacte, ceci afin de conserver l'intégrité bactérienne. Puisque les résultats obtenus avec les bactéries, sous forme vivante aussi bien qu'irradiée, étaient très semblables, nous avons abandonné l'utilisation de bactéries irradiées, dans la suite des expériences.

Nous avons tout d'abord voulu vérifier si les résultats observés, concernant l'apoptose, mettaient en cause des caspases. Nous avons donc vérifié, l'expression de la caspase-3. Cette dernière est dite effectrice, clivée et activée préalablement par d'autres caspases lors de la cascade des caspases qui à lieu lors de l'apoptose (Blatt et al., 2001; Hengartner, 2000). Effectivement, nous observons une activation de la caspase-3, caractérisée par la diminution de sa forme pro-active (32 kDa). Nous n'avons pas réussi à apercevoir la forme active de la caspase-3 $(17 \mathrm{kDa})$. Ceci résulte très probablement parce que, dans cette expérience, une quantité suffisante de la forme active, pour atteindre les limites de détection du test n'a pu être produite. Néanmoins, en ce qui concerne la diminution de la forme pro-active, nous observons une diminution beaucoup plus rapide lors de l'ajout de bactéries vivantes comparé à l'ajout de bactéries chauffées ou au 5FU seul. Ces résultats nous permettent de confirmer qu'il y a bien apoptose, dépendante de l'activation de la caspase-3, et ce processus apoptotique semble se déclencher beaucoup plus rapidement dans le temps (12 h au lieu de 36 h), à l'ajout de bactéries vivantes.

Nous avons ensuite tenté de vérifier si les bactéries améliorent l'efficacité du 5FU en en modifiant la présentation pharmacologique. Pour ce faire, nous avons préalablement incubé le 5 FU , à sa concentration standard, avec des bactéries (vivantes ou chauffées) pendant 48 heures, et l'avons ensuite ajouté à une nouvelle culture de cellules. Le pourcentage d'apoptose obtenu dans ces conditions s'est avéré très semblable aux pourcentages obtenus dans les autres expériences. Il ne semble donc pas y avoir eu modification de la présentation pharmacologique du 5 FU , suite à l'exposition aux bactéries, vivantes ou chauffées. Bien que les bactéries ne semblent pas modifier la présentation pharmacologique du 5 FU , il est possible qu'elles favorisent le mécanisme d'absorption du 5FU au niveau des cellules cancéreuses. Il serait intéressant d'étudier le mécanisme par lequel le 5FU est absorbé par les cellules, et ensuite vérifier si les bactéries lactiques influencent le fonctionnement de ce mécanisme.

Nous avons voulu savoir si les effets opposés, observés avec des bactéries vivantes, et avec des bactéries chauffées, sur les cellules de cancer du côlon, pouvaient entrer en compétition entre eux. Nous n'observons pas de diminution du pourcentage
d'apoptose à l'ajout de la concentration de 10^{8}, en ajoutant un mélange de bactéries chauffées et de bactéries vivantes, par rapport à l'effet observé avec le même nombre de bactéries vivantes seules. En conclusion il semble que l'effet des bactéries chauffées n'inhibe pas celui des bactéries vivantes.

D'autre part, on sait que, dans les intestins de l'organisme vivant, le butyrate et d'autres chaînes-courtes d'acides gras, sont générés par la fermentation de fibres alimentaires non-assimilables, en raison de l'activité de certaines bactéries du tractus digestif. On sait aussi que le butyrate joue un rôle important dans la prévention du cancer du côlon (Hague et al., 1993; Velazquez et al., 1996; Bras-Gonçalves et al., 2001). Il a même été démontré, récemment, qu'il existe une synergie entre le 5 FU et le butyrate pour inhiber la crọissance cellulaire du cancer du côlon (Ruemmele et al., 1999). Nous avons confirmé cette synergie avec notre propre système expérimental. La suite logique était donc d'essayer de savoir s'il y avait eu production d'acide butyrique, dans le milieu de culture, lors de la combinaison des bactéries lactiques et des cellules cancéreuses. Bien que notre milieu ne contienne pas de fibres alimentaires pouvant servir de substrat, nous avons supposé que le sérum de bovin fortal ait pu fournir un tel substrat, amenant à la formation de butyrate par l'activité bactérienne. Cependant, aucune trace d'acide butyrique n'a été détectée par HPLC dans nos cultures cellulaires où avaient été mises des bactéries vivantes, à n'importe quelles concentrations (résultats non présentés).

Nous avons également vérifié si les bactéries avaient le pouvoir de modifier l'expression de certaines protéines impliquées dans le processus apoptotique. Différentes équipes de chercheurs ont démontré, en effet, une augmentation de l'expression du récepteur Fas sur des cellules de cancer du côlon lorsqu'elles sont traitées au 5FU (Micheau et al.. 1997; Ciccolini et al., 2000). Nous avons, de même, observé une augmentation de l'expression du récepteur Fas sur les cellules de cancer du côlon exposées au 5FU. Par contre, l'ajout des bactéries, vivantes ou chauffées, n'entraîne aucune augmentation supplémentaire de ce récepteur. Les bactéries lactiques n'ont pas modulé l'expression de ce récepteur à la hausse, pas plus d'ailleurs que celle de son ligand, excluant ainsi une action sur le système Fas/Fas ligand, pour expliquer
l'augmentation d'apoptose observée par la combinaison «5FU + bactéries». Le système Fas/ligand Fas n'est cependant pas le seul système pouvant causer l'apoptose chez la cellule. Il existerait d'autres récepteurs de mort intéressants à étudier, entre autres les récepteurs DR4 et DR5, ainsi que leur ligand TRAIL largement exprimé dans les tissus humains. Le ligand TRAIL induit l'apoptose chez les cellules tumorales, par contre, les cellules saines sont protégées par l'expression préférentielle de récepteur de la même famille mais ne causant pas l'apoptose, DcR1 et DcR2 (Nagane et al. 2001). Il serait donc intéressant de vérifier si l'expression ou l'activation de ce ligand ou de ces récepteurs, sont favorisées par l'ajout de bactéries lactiques, dans le contexte expérimental que nous avons utilisé.

Les cellules cancéreuses ont développé différentes stratégies de résistance, entre autres, par l'expression du Fas ligand, habituellement l'apanage des cellules immunitaires, ou de celles de sites privilégiés (O^{\prime} Connell et al., 2000; Shiraki et al., 1997). L'induction du ligand Fas a été observée chez des cellules de cancer du côlon aptes à l'exprimer, suite à un traitement par le 5FU (Frisen et al., 1999; Tillman et al., 1999). Dans ces expériences l'expression du ligand Fas à la surface des cellules utilisées n'a pas été augmentée suite à l'ajout de bactéries (vivantes ou chauffées) à des cellules tumorales traitées par le 5FU. Si l'augmentation avait été proportionnelle aux résultats d'apoptose obtenus lors des combinaisons ($5 \mathrm{FU}+$ bactéries), nous aurions pu proposer, pour expliquer l'augmentation d'apoptose obtenue avec la combinaison «5FU + bactéries vivantes», le mécanisme de mort fratricide (paracrine) résultant de l'amplification de l'expression de molécules Fas ou ligand Fas, à la surface des cellules tumorales.

Mais tel ne semble pas être le cas, en ce qui concerne le système Fas/ Fas ligand. Il reste que ce pourrait être le cas, au niveau de l'expression d'autres systèmes récepteurs de mort/ligand. Mais ceci reste à établir par d'autres expériences.

La protéine p53 est impliquée dans le processus apoptotique lorsque la cellule subit des dommages irréparables à son ADN . Par l'utilisation du 5 FU sur des cellules cancéreuses possédant une p53 de type sauvage, l'expression de la protéine p53 est augmentée (Mirjolet et al., 2000; Peters et al., 2000). Le statut de la protéine p53
détermine, dans certain cas, la susceptibilité des cellules cancéreuses au traitement chimique, selon leur appartenance au type I ou au type II (Nita et al., 1998). Nous avons observé une augmentation de l'expression de la protéine p53 dans le temps, lors de l'ajout de 5 FU . Nous n'avons, par contre, obtenu aucune variation d'expression suite à l'ajout de bactéries, vivantes ou chauffées, à cette dose de 5 FU . Donc, il semble bien que le 5 FU cause des dommages à l'ADN (ce qui enclenche l'augmentation de l'expression de la p53) mais ce ne serait pas au niveau de cette protéine que les bactéries joueraient leur rôle d'amplification du processus d'apoptose. La protéine p53 joue un rôle de facteur de transcription qui module l'expression d'autres protéines impliquées dans le processus apoptotique : protéine p21, récepteur Fas, certaines protéines de la famille Bcl2 telles que Bax et $\mathrm{Bcl}-2$. Nous avons tenté de vérifier si l'expression des protéines $\mathrm{Bcl}-2$ et Bax étaient modulées, mais les anticorps utilisés n'ont jamais fonctionné, au cours de plusieurs tentatives. Il aurait également été intéressant de se procurer une lignée cellulaire de cancer du côlon dont la p53 est mutée, et de vérifier l'effet de l'ajout de la combinaison « $5 \mathrm{FU}+$ bactéries vivantes», sur ces cellules. Nous pourrions ainsi soit confirmer que la p53 n'a aucun rôle dans ce phénomène observé, si les résultats sont les mêmes qu'avec la lignée LS 513, soit conclure qu'elle joue un rôle actif dans ce phénomène, si les résultats sont différents.

La protéine p21 est impliquée dans la régulation du cycle cellulaire, ceci par l'inhibition de certaines cyclines kinases impliquées dans les phases G1-S au cycle cellulaire. Lorsque p21 est exprimée, le cycle cellulaire est arrêté, et la croissance de la cellule est interrompue. Nous avons confirmé que l'expression de la protéine p21 est également augmentée lors de l'ajout de 5 FU . Mais, contrairement à ce qui se passe avec p53 et avec Fas, les bactéries vivantes et chauffées ont modifié, cette fois, l'expression de p21. À l'ajout des bactéries vivantes à la dose de 5 FU de référence, nous observons une légère augmentation de la protéine p 21 , suivie rapidement d'une diminution. Comme nous l'avons observé au tout début, c'est dans cet échantillon que nous observons une augmentation de plus de 40% d'apoptose, par rapport au 5FU seul, causée par la combinaison du 5 FU et des bactéries vivantes. Comme nous l'avons déjà vu avec la caspase-3, le processus d'apoptose semble être enclenché plus rapidement lors de la
combinaison du 5FU et des bactéries vivantes, et ceci expliquerait la diminution de l'expression de la p21, qui devient moins nécessaire puisque les cellules subissent déjà les étapes de dégradation par les caspases activées. Lors de l'ajout des bactéries chauffées au 5 FU , nous observons un phénomène tout à fait différent: l'expression de la protéine p21 est beaucoup plus élevée par comparaison à l'échantillon 5 FU seul. Lorsque la protéine p21 est active, elle entraîne l'arrêt du cycle cellulaire en phase G1. Nous avons donc vérifié que l'augmentation de la protéine se traduit par une accumulation en phase G1 du cycle cellulaire, une augmentation d'accumulation d'au moins 10%. Nous pouvons donc affirmer que la p21 exprimée est active. Lors de la combinaison du 5 FU et des bactéries chauffées $\left(10^{8}\right)$, nous avons observé que l'efficacité du 5 FU à induire l'apoptose était diminuée, et ici nous observons que l'expression de la p21 est plus élevée que les autres échantillons. Nos observations appuient donc la théorie selon laquelle p21 aurait également un rôle d'inhibiteur de l'apoptose (Javelaud et al., 2000; MahyarRoemer et al., 2001; Xu et al., 2000). Différents mécanismes sont proposés pour expliquer ce phénomène : l'augmentation de l'expression de p21 s'accompagnerait d'une induction de l'expression de la protéine-kinase Akt, qui protège les cellules contre l'apoptose (Javelaud et al., 2000).

L'activation de la protéine kinase $\mathrm{C}(\mathrm{PKC})$ est impliquée dans plusieurs voies de transduction de signaux, incluant la croissance cellulaire, la différenciation et l'apoptose (Park et al., 2001). Différentes études ont démontré que l'activation de la PKC peut inhiber (Gòmez-Angelats et al., 2000) ou activer (Park et al., 2001) l'apoptose. Nous avons voulu vérifier si les bactéries vivantes modifieraient la transduction de signaux apoptotiques résultant du traitement par le 5 FU , en mimant un modulateur de la PKC. Il semble que l'augmentation d'apoptose que nous avons observé, lors de la combinaison du 5FU et des bactéries vivantes, ne nécessiterait pas l'utilisation de PKC. En effet, en stimulant cette dernière à l'aide d'ionomycine et de PMA, nous n'avons pas observé l'augmentation retrouvée dans la combinaison du 5FU et des bactéries vivantes. La même conclusion peut être tirée des résultats obtenus en inhibant la PKC, à l'aide d'un inhibiteur adapté à la situation (PKC α et $\beta 1$). Donc, l'augmentation d'apoptose
observée lors de l'ajout des bactéries vivantes ne semble pas causée par une action au niveau de la transduction des signaux par les PKC.

La protéine Nur77 possède deux fonctions, celle de facteur de transcription nucléaire, et celle de régulateur de l'apoptose, indépendamment de son activité de régulation transcriptionnelle, entre autre par sa re-localisation du noyau vers les mitochondries, causant le relâchement de cytochrome C (Li et al., 2000). Ce gène nous a semblé intéressant puisque son implication dans l'apoptose, chez des cellules de cancer du côlon causé par des agents apoptotiques, a récemment été démontrée (Kang et al., 2000; Li et al., 2000). Malgré la présence de produits d'amplification non spécifiques, il a été possible d'observer que l'ajout de 5 FU et de bactéries, vivantes ou chauffées, n'a pas modifié l'expression du gène Nur77. L'augmentation d'apoptose, observée lors de la combinaison du 5 FU et des bactéries lactiques, ne semble donc pas impliquer l'activation du gène Nur77.

Une propriété importante des bactéries lactiques consiste en leur habilité antioxydante. Une variété d'espèces oxygèno-réactives peut être formée dans le corps humain, et entraîner des dommages pouvant mener à une maladie comme le cancer du côlon. Par contre, des suppléments alimentaires contenant des antioxydants pourraient aider le corps humain à réduire les dommages oxydatifs. Il a été démontré que les bactéries lactiques possèdent des propriétés anti-oxydantes (Lin et al., 1999).

D'autre part, et d'une façon qui paraît quelque peu paradoxale, il a été récemment démontré que la combinaison d'antioxydants et de 5FU augmente l'efficacité du 5FU in vitro (Adeyemo et al., 2001; Chinery et al., 1997) et in vivo (Bach et al., 2000) sur les cellules de cancer du côlon. Il serait donc très intéressant de vérifier le potentiel antioxydant du mélange de bactéries utilisé lors de nos expériences sur les cellules de cancer du côlon. Un mécanisme très intéressant, proposé par l'équipe de Chinery, serait que les antioxydants (vitamine E et PDTC) éliminent le cancer en induisant un arrêt du cycle cellulaire en G1, entraînant ainsi dans l'apoptose les cellules de cancer du côlon. L'effet anti-tumoral de ces produits augmente l'efficacité d'agents de chimiothérapie communs
(5 FU et doxorubicine). Le mécanisme par lequel cela se produit impliquerait l'induction d'un facteur de transcription, le C/EBF β. Ce facteur de transcription peut induire la protéine p21 et ce serait cette induction qui jouerait un rôle clé dans l'habilité des antioxydants à augmenter l'efficacité du 5FU et induire l'apoptose. Nous avons confirmé, au cours de nos expériences, une augmentation de la protéine p21. Maintenant, il resterait à savoir si le facteur de transcription $C / E B F \beta$ est bel et bien impliqué dans notre système et de vérifier également si les bactéries lactiques que nous avons utilisées exercent une propriété anti-oxydante sur les cellules LS 513. Malgré tout, il reste que ces antioxydants ont un rôle paradoxal, puisque tout en aidant à garder un équilibre sain entre la cellule et ses déchets, ils semblent causer la mort de certaines cellules par ce fait même.

Les résultats obtenus lors de nos études, dont le caractère reste très préliminaire, devraient inspirer de nouvelles recherches afin de les confirmer, en évaluer la portée scientifique et, possiblement, l'incidence pratique. Il faudrait tout d'abord utiliser, in vitro, d'autres lignées tumorales de côlon humain, dont le type de p53 (sauvage ou muté) serait connu d'avance. Il serait aussi fort intéressant de projeter notre modèle expérimental dans un modèle expérimental in vivo. L'utilisation de souris nues, inoculées avec des cellules humaines tumorales du côlon, permettrait la mesure du développement d'une masse cancéreuse. Ces souris seraient gavées avec le mélange de bactéries lactiques «BioK+», et traitées avec du 5FU. Elles seraient sacrifiées à des différents moments suivant leur inoculation, et la taille des masses cancéreuses, ainsi que le nombre de métastases au foie, seraient analysés. Par ce modèle, nous pourrions conclure si le phénomène se répète in vivo, dans un système partiellement complet (partiellement, du fait que les souris nues n'ont pas de système immunitaire complet).

Finalement, l'effet de cette combinaison à un système humain complet, donc par la collaboration d'humains qui ont subi une résection du cancer du côlon devrait être réalisée. L'ingestion du mélange de bactéries lactiques augmenterait peut être l'efficacité du 5 FU , ce qui favoriserait l'élimination des cellules cancéreuses restantes et préviendrait la réapparition de masses cancéreuses, améliorant les statistiques sur les récurrences de ce
cancer. Mais cet ultime aspect du travail initié ici est évidemment du domaine des cliniciens.

Conclusion

Le cancer du côlon étant un des cancers avec le taux de mortalité des plus élevé, en cas de récurrence ou de métastases, il est important de mettre au point des protocoles de plus en plus efficaces pour en diminuer les possibilités de récurrence. Comme différents modèles expérimentaux ont démontré, in vivo, que l'ingestion de bactéries lactiques peut amener une régression ou une inhibition de la croissance de cancer du côlon nous avons voulu, dans ce travail, explorer in vitro la possibilité d'associer ces bactéries avec la chimiothérapie classique contre ce cancer. Un résultat encourageant ayant été obtenu, nous avons tenté de démonter le mécanisme amenant la cellule cancéreuse à augmenter sa susceptibilité à l'apoptose, sous l'influence de cette combinaison.

Nous avons remarqué que le mélange de bactéries utilisé ne possède, par luimême, aucun pouvoir apoptotique sur les cellules de cancer du côlon. Par contre, la combinaison de bactéries lactiques vivantes et de 5 FU , ajoutée aux cellules de cancer du côlon, démontre un pouvoir apoptotique amplifié. Cette amplification est proportionnelle à la concentration de bactéries ajoutées. Ceci implique donc, semble-t-il, un rôle pour les bactéries lactiques dans le processus apoptotique des cellules de cancer du côlon.

L'utilisation de bactéries chauffées en combinaison avec le 5 FU , a donné un résultat inverse. L'efficacité du 5 FU est, dans ce cas, diminuée par la présence de bactéries. Le mécanisme par lequel ces bactéries chauffées diminuent l'apoptose des cellules cancéreuses semble être associé à la sur-expression de p21.

La caspase-3 est activée dans les cellules cancéreuses apoptotiques, lors des différentes combinaisons ($5 \mathrm{FU}+$ bactéries vivantes ou chauffées). La transduction du signal apoptotique associé à la caspase-3 pourrait impliquer, en théorie, soit la voie des «récepteurs de mort», plus rapide, soit le relais mitochondrial, moins rapide. Nos résultats indiquent que la caspase-3 est activée beaucoup plus tôt lors de la combinaison de bactéries vivantes et du 5 FU , ce qui suggérerait l'activation d'un récepteur de mort.

Mais il semble que l'augmentation d'apoptose observée lors de la combinaison de bactéries vivantes et de 5FU, ne requiert pas une augmentation d'expression de Fas ou de son ligand. Ceci bien sûr n'exclut pas un rôle important que pourraient jouer des récepteurs de mort autres que Fas. La transduction du signal apoptotique ne semble pas non plus nécessiter l'utilisation des PKC de type α et $\beta 1$.

Finalement, les bactéries lactiques ne semblent pas modifier la présentation pharmacologique du 5FU. Nous avons confirmé que les cellules de cancer du côlon utilisées sont sensibles à l'acide butyrique, acide produit par les bactéries lactiques lors de la fermentation. Par contre, aucune trace de cet acide ne fut détectée dans le milieu. Le mécanisme par lequel les bactéries lactiques vivantes améliorent l'efficacité du 5FU reste donc totalement inconnu.

Bien qu'aucun mécanisme n'ait pu être suggéré pour expliquer les résultats obtenus par la combinaison de bactéries lactiques vivantes et de 5 FU , ces résultats peuvent inciter d'autres chercheurs à se pencher sur l'étude de d'autres protéines impliquées dans le processus apoptotique, ainsi que sur le rôle de la propriété antioxydante des bactéries lactiques combinées à l'exposition au 5 FU . Il nous semble en tout cas urgent de vérifier si cette combinaison de chimiothérapie et de bactéries lactiques est retrouvée in vivo, dans un contexte plus proche du contexte clinique.

Remerciements

Le présent travail a été réalisé à l'INRS-IAF. Je tiens avant tout à manifester ma profonde reconnaissance à mon directeur de recherche, Dr Daniel Oth. Je lui exprime ma gratitude, pour l'intérêt et l'aide qu'il a porté à mon travail et à son soutien financier au cours de mes travaux de recherche. Ses conseils me seront d'une aide précieuse tout au long de ma carrière.

Je tiens également à signaler la participation de ma co-directrice, Dr Monique Lacroix et la disponibilité qu'elle a démontrée tout au long de la réalisation de mon projet de recherche. Je veux la remercier pour ses conseils précieux et également de m'avoir accueillie dans son laboratoire.

Mes remerciements vont également à tous mes collègues et amis de l'Institut Armand-Frappier: à Denise, la maman du labo, Louis et Sylvie, pour toutes les discussions professionnelles et personnelles!!! ; Isabelle pour toutes les pauses café scientifiques ; Mathieu pour son expertise de micro ; Katy et Dominike pour les «western blot» et la cytométrie.

Je veux également souligner l'aide financière de l'INRS-IAF et de la compagnie Bio-K plus pour la continuité de mon projet.

Finalement, je remercie ma mère, petite maman chérie d'amour, pour ses encouragements et son appui moral tout au long de mes études. Je voudrais dire merci à Abdelatif pour tous ses bons conseils qui m'incitaient toujours à foncer! Je tiens à dire un gros merci à mes deux jeunes sours que j'aime très fort et qui ont su m'encourager en m'écoutant parler de trucs qu'elles ne comprenaient même pas! Pour terminer, merci Jean-François, pour avoir partagé toutes les gammes d'émotions que j'ai ressenties et pour ton soutien moral...je t'aime!

Références bibliographiques

Adachi Y, Taketani S, Oyaizu H, Ikebukuro K, Tokunaga R et Ikehara S, 1999, «Apoptosis of colorectal adenocarcinoma induced by 5-FU and/or IFN- γ through caspase-3 and caspase-8», International Journal of Oncology, vol. 15, p. 1191-1196.

Adams JM, Cory S, 1998, «The Bcl-2 protein family: arbiters of cell survival», Science, vol. 281, p.1322-1326

Adeyemo D, Imtiaz F, Toffa S, Lowdell M, Wickremasinghe RG et Winslet M, 2001, «Antioxydants enhance susceptibility of côlon carcinoma cells to 5 -fluorouracil by augmenting the induction of the bax protein», Cancer letters, vol. 164, p. 77-84.

Asano M, Karasawa E, Takayama T, 1986, «Antitumor activity of Lactobacillus casei (LC 9018) against experimental mouse bladder tumor (MBT-2)», J. Urol., vol. 136, p. 719-721.

Ashkenazi A, Dixit VM, 1998, «Death receptors: signaling and modulation», Science, vol. 281, p. 1305-1308

Aso Y, Akaza H, Kotake T, Tsukamoto T, Imai K et Naito S, 1995, «Preventive effect of Lactobacillus casei preparation on the recurrence of superficial bladder cancer in a double-blind trial», Eur. Urol., vol. 27, p. 104-109.

Bach SP, Chinery R, O'Dwyer S, Potten CS, Coffey RJ et Watson AJM, 2000, «Pyrrolidinedithiocarbamate increases the therapeutic index of 5-fluorouracil in a mouse model», Gastroenterology, vol. 118, p. 81-89.

Baricault L, Denariaz G, Houri JJ, Bouley C, Sapin C, Trugnan G, 1995, «Use of HT-29, a cultured human côlon cancer cell line, to study the effect of fermented milks on côlon cancer cell growth and differentiation», Carcinogenesis, vol. 16, p. 245-252.

Benjamini E, Sunshine G et Leskowits S, 1996, Immunology, a short course, New York, Wiley-Liss inc., 484 p.

Bennett MW, O'Connell J, O'Sullivan GC, Brady C, Roche D, Collins JK, Shanahan F, 1998, «The Fas counterattack in vivo: apoptotic depletion of tumor-infiltrating lymphocytes associated with Fas ligand expression by human esophageal carcinoma», J. Immunol., vol. 160, p. 5669-5675

Bennett MW, O'connell J, O'sullivan GC, Roche D, Brady C, Kelly J, Collins JK, Shanahan F, 1999, «Expression of Fas ligand by human gastric adenocarcinomas: a potential mechanism of immune escape in stomach cancen», Gut, vol. 2, p.156-162

Bertram G. Katzung, éditeur, 1998, Basic \& Clinical Pharmacology, Connecticut, Appleton \& Lange, 1151 p.

Blatt NB et Glick GD, 2001, «Signaling pathways and effector mechanisms preprogrammed cell death», Bioorg. Med. Chem,vol. 9, p. 1371-1384

Boon T, Coulie PG, Van den Eynde B, 1997,«Tumor antigens recognized by T cells», Immunol. Today, vol. 18, p. 267-268

Bras-Gonçalves RA, Pocard M, Formento JL, Poirson-Bichat F, De Pinieux G, Pandrea I, Arvelo F, Ronco G, Villa P, Coquelle A, Milano G, Lesuffleur T, Dutrillaux B et Poupon M-F, 2001, «Synergistic efficacy of 3n-Butyrate and 5-Fluorouracil in human colorectal cancer xenografts via modulation of DNA synthesis», Gastroenterology, vol. 120, p. 874888.

Buendia, B, Santa-Maria, A et Courvalin, JC, 1999, «Caspase-dependant proteolysis of integral and peripheral proteins of nuclear membranes and nuclear pore complex proteins during apoptosis», J. Cell Sci., vol. 112, p. 1743-1753

Butler LM, Hewett PJ, Butler WJ, Cowled PA, 1998, «Down-regulation of Fas gene expression in côlon cancer is not a result of allelic loss or gene rearrangement», Br . J. Cancer, vol. 77, p. 1454-1459

Casciola-Rosen L, Nicholson DW, Chong T, Rowan KR, Thornberry NA, Miller DK, Rosen A, 1996, «Apopain/CPP32 cleaves proteins that are essential for cellular repair: a fundamental principle of apoptotic death», J. Exp. Med., vol. 183, p. 1957-1964

Chao DT, Korsmeyer SJ, 1998, «BCL-2 family: regulators of cell death», Annu. Rev. Immunol., vol 16, p. 395-419

Chinery R, Brockman JA, Peeler MO, Shyr Y, Beauchamp RD et Coffey RJ, 1997, «antioxidants enchance the cytotoxicity of chemotherapeutic agents in colorectal cancer: A p53-independent induction of p21 WAF1/C1P1 via C/EBP β », Nature Medecine, vol. 3, p. 1233-1241.

Ciccolini J, Peillard L, Evrard A, Cuq P, Aubert C, Pelegrin A, Formento P, Milano G et Catalin J, 2000, «Enhanced antitumor activity of 5-Fluorouracil in combination with 2'deoxyinosine in human colorectal cell lines and human côlon tumor xenografts", Clin. Cancer Res., vol. 6, p. 1529-1535.

Clem RJ, Cheng EH, Karp CL, Kirsch DG, Ueno K, Takahashi A, Kastan MB, Griffin DE, Earnshaw WC, Veliuona MA, Hardwick JM, 1998, «Modulation of cell death by Bcl-XL through caspase interaction», Proc. Natl. Acad. Sci. U.S.A., vol. 95, p. 554-559

Cosulich SC, Worrall V, Hedge PJ, Green S, Clarke PR, 1997, «Regulation of apoptosis by BH3 domains in a cell-free system», Curr. Biol., vol. 7, p. 913-920.

Darzynkiewics Z, Li X et Gong J, 1994, «Assays of cell viability: discrimination of cells dying by apoptosis», Methods in Cell Biology, vol. 41, p. 15-38.

Davis IJ et Lau LF, 1994, «Endocrine and neurogenic regulation of the orphan nuclear receptors Nur77 and Nurr-1 in the adrenal glands», Mol. Cell. Biol., vol. 14, p. 34693483.

Dumont C, Durrbach A, Bidere N, Rouleau M, Kroemer G, Bernard G, Hirsch F, Charpentier B, Susin SA, Senik A, 2000, «Caspase-independent commitment phase to apoptosis in activated blood T lymphocytes: reversibility at low apoptotic insult», Blood, vol. 96, p. 1030-1038

Earnshaw WC, Martins LM, Kaufman SH, 1999, «Mammalian caspases: structure, activation, substrates, and functions during apoptosis», Annu. Rev. Biochem. Vol. 68, p.383-424

Enari, M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S, 1998, «A caspase-activated DNase that degrades DNA during apoptosis and its inhibitor ICAD », Nature, vol. 391, p. 43-50

Evan G et Littlewood T, 1998, «A matter of life and cell death», Science, vol. 281, p. 1317-1322

Fang G, Chang BS, Kim CN, Perkins C, Thompson CB, Bhalla KN, 1998, " "Loop" domain is necessary for taxol-induced mobility shift and phosphorylation of $\mathrm{Bcl}-2$ as well as for inhibiting taxol-induced cytosolic accumulation of cytochrome C and apoptosis», Cancer Res., vol. 58, p. 3202-3208.

Favre-Felix N, Fromentin A, Hammann A, Solary E, Martin F, Bonnotte B, 2000, «Cutting edge: the tumor counterattack hypothesis revisited: côlon cancer cells do not induce T cell apoptosis via the Fas (CD95, APO-1) pathway», J. Immunol., vol. 10, p. 5023-5027

Freedman DA et Levine AJ, 1998, «Nuclear export is required for degradation of endogenous p53 by MDM2 and human papillomavirus E6», Mol. Cell. Biol., vol. 18, p. 7288-7293.

Fried J, Perez GA et Clarkson BD, 1978, «Rapid hypotonic method for flow cytofluorometry of monolayer cell cultures», The Journal of Histochemistry and Cytochemistry, vol. 26, p. 921-933.

Friesen C, Fulda S et Debatin KM, 1999, «Cytotoxic drugs and the CD95 pathway», Leukemia, vol. 13, p. 1854-1858.

Fuchs SY, Adler V, Buschmann T, Wu X, Ronai Z, 1998, «Mdm2 association with p53 targets its ubiquitination», Oncogene, vol.17, p. 2543-2547.

Fujita N, Nagahashi A, Nagashima K, Rokudai S, Tsuruo T, 1998, «Acceleration of apoptotic cell death after the cleavage of $\mathrm{Bcl}-\mathrm{X}_{\mathrm{L}}$ protein by caspase-3-like proteases», Oncogene, vol. 17, p. 1295-1304

Fulda S, Meyer E, Friesen C, Susin SA, Kroemer G et Debatin KM, 2001, «Cell type specific involvement of death receptor and mitochondrial pathways in drug-induced apoptosis», Oncogene, vol. 20, p. 1063-1075.

Ganjam LS, Thorton WH, Marshall JR RT et Macdonald RS, 1997, «Antiproliferative effects of yogurt fractions obtained by membrane dialysis on cultured mammalian intestinal cells», J. Dairy Sci., vol. 80, p. 2325-2329.

Garcia-Calvo M, Peterson EP, Leiting B, Ruel R, Nicholson DW, Thornberry NA, 1998, «Inhibition of human caspases by peptide-based and macromolecular inhibitors», J. Biol. Chem., vol. 273, p. 32608-32613

Garcia-Calvo M, Peterson EP, Leiting B, Ruel R, Nicholson DW, Thomberry NA, 1998, «Inhibition of human caspases by peptide-based and macromolecular inhibitor», J. Biol. Chem., vol. 273, p. 32608-32613

Goldin BR, Gorbach SL, 1984, «The effect of milk and lactobacillus feeding on human intestinal bacterial enzyme activity», Am J Clin Nutr, vol. 39, p. 756-761.

Goldin BR, Swenson L, Dwyer J, Sexton M, Gorbach SL, 1980, «Effect of diet and Lactobacillus acidophilus supplements on human fecal bacterial enzymes», J. Natl. Cancer Inst., vol. 64, p. 255-261.

Gomez-Angelats M, Bortner CD et Cidlowski JA, 2000, «Protein kinase C (PKC) inhibits Fas receptor-induced apoptosis through modulation of the loss of $\mathrm{K}+$ and cell shrinkage. A role for PKC upstream of caspases», J. Biol. Chem., vol. 275, p. 1960919619.

Granville DJ, Carthy CM, Hunt DWC et McManus BM, 1998, «Apoptosis : Molecular aspects of cell death and dieases». Laboratory Investigation, vol. 78, p. 893-908.

Green DR, Amarante-Mendes GP, 1998, «The point of no return: mitochondria, caspases, and the commitment to cell death», Results Probl Cell Differ, vol. 24, p. 45-61.

Green DR, 1998, «Apoptotic pathways: the roads to ruin», Cell, vol. 94, p. 695-698.
Griffith TS, Chin WA, Jackson GC, Lynch DH, Kubin MZ, 1998, «Intracellular regulation of TRAIL-induced apoptosis in human melanoma cells», J. Immunol., vol. 6, p. 2833-2840.

Gross A. Jockel J, Wei MC, Korsmeyer SJ, 1998, «Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis", EMBO J., vol. 17, p. 3878-3885.

Gross A, McDonnell JM, Korsmeyer SJ, 1999, «Bcl-2 family members and the mitochondria in apoptosis», Genes Dev., vol. 13, p. 1899-1911.

Gross, A., Yin XM, Wang K, Wei MC, Jockel J, Milliman C, Erdjument-Bromage H, Tempst P, Korsmeyer SJ, 1999, « Caspase cleaved BID targets mitochondria and is required for cytochrome C release, while $\mathrm{BCL}-\mathrm{X}_{\mathrm{L}}$ prevents this release but not tumor necrosis factor-Rl/Fas death», J. Biol. Chem., vol. 274, p. 1156-1163.

Gueydan C, 1997, «Avancées et perspectives de la recherche sur le facteur de nécrose tumorale (TNF)», Med. Sci., vol. 13, p. 83-88.

Gunthert AR, Strater J, von Reyher U, Henne C, Joos S, Koretz K, Moldenhauer G, Krammer PH, Moller P, 1996, «Early detachment of côlon carcinoma cells during CD95(APO-1/Fas)-mediated apoptosis. I. De-adhesion from hyaluronate by shedding of CD44», J. Cell Biol., vol. , p. 1089-1096.

Hague A, Manning AM, Hanlon KA, Huschtscha LL, Hart D et Paraskeva C, 1993, «Sodium butyrate induces apoptosis in human côlonic tumor cell lines in a p53independent pathway: implication for the possible role of dietary fibers in the prevention of large bowel cancer», Int. J. Cancer, vol. 55, p. 498-505.

Haldar S, Negrini M, Monne M, Sabbioni S, Croce CM, 1994, «Down-regulation of bcl-2 by p53 in breast cancer cells», Cancer Res., vol. 54, p. 2095-2097.

Han Z, Bhalla K, Pantazis P, Hendrickson EA, Wyche JH, 1999, «Cif (Cytochrome C efflux-inducing factor) activity is regulated by $\mathrm{Bcl}-2$ and caspases and correlates with the activation of Bid», Mol. Cell. Biol., vol. 19, p. 1381-1389.

Haupt Y, Maya R, Kazaz A, Oren M, 1997, «Mdm2 promotes the rapid degradation of p53», Nature, vol. 387, p. 296-299.

Hengartner, Michael O, 2000, «The biochemistry of apoptosis», Nature, vol. 407, p. 770776.

Hermeking H, Lengauer C, Polyak K, He TC, Zhang L, Thiagalingam S, Kinzler KW, Vogelstein B, 1997, «14-3-3 sigma is a p53-regulated inhibitor of G2/M progression», Mol. Cell, vol. 1, p. 3-11.

Honda R, Tanaka H, Yasuda H, 1997, «Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53", FEBS Lett., vol. 420, p. 25-27.

Hosono A, Kashina T, Kada T, 1986, «Antimutagenic properties of lactic acid-cultured milk on chemical and fecal mutagens», J. Dairy Sci., vol.69, p. 2237-2242.

Howell MA, 1975, «Diet as an etiological factor in the development of cancer of the côlon and rectum», J. Chronic Dis., vol. 28, p. 67-80.

Hu Y, Benedict MA, Wu D, Inohara N, Nuñez G, 1998, «Bcl-X ${ }_{\text {L }}$ interacts with Apaf-1 and inhibits Apaf-1 dependent caspase-9 activation», Proc. Natl. Acd. Sci. U.S.A., vol. 94, p. 4386-4391.

Hug H, 1997, «Fas-mediated apoptosis in tumor formation and defense», J. Biol. Chem., vol. 378, p.1405-1412.

Hupp TR et Lane DP, 1994, «Regulation of the cryptic sequence-specific DNA-binding function of p53 by protein kinases», Cold Spring Harb. Symp. Quant. Biol., vol. 59, p. 195-206.

Igney FH, Behrens CK, Krammer PH, 2000, «Tumor counterattack--concept and reality», Eur. J. Immunol., vol. 30, p.725-731.

International Agency for Research on Cancer, 1977, «Dietary, fibre, transit-time, fecal bacteria, steroids and côlon cancer in two Scandinavian populations», Lancet, vol. 2, p. 207-211.

Irmler M, Thome M, Hahne M, Schneider P, Hofmann K, Steiner V, Bodmer JL, Schroter M, Burns K, Mattmann C, Rimoldi D, French LE, Tschopp J, 1997, «Inhibition of death receptor signals by cellular FLIP», Nature, vol. 388, p. 190-195.

Isolauri E, Juntunen M, Rautanen T, Sillanaukee P et Koivula T, 1991, «A human Lactobacillus strain (Lactobacillus casei sp. Strain GG) promotes recovery from acute diarrhoea in children», Pediatrics, vol. 88, p. 90-97.

Ito T, Deng X, Carr B, May WS, 1997, «Bcl-2 phosphorylation required for antiapoptosis function», J. Biol. Chem., vol. 272, p.11671-11673

Javelaud J et Besançon F, 2000, «P21 ${ }^{\text {WAF1/CIP1 }}$: un inhibiteur de l'apoptose», Med. Sci., vol. 16, p. 265-266.

Jiang Y, Woronicz JD, Liu W, Goeddel DV, 1999, «Prevention of constitutive TNF receptor 1 signaling by silencer of death domains», Science, vol. 283, p. 543-546.

Jügersmeier JM, Xie Z, Deveraux Q, Ellerby L, Bredesen D, Reed JC, 1998, « Bax directly induces release of cytochrome c from isolated mitochondria », Proc. Natl. Acad. Sci. U.S.A, vol. 95, p. 4997-5002

Kaila M, Isolauri E, Soppi E, Virtanen E, Laine S et Arvilommi H, 1992, «Enhancement of the circulating antibody secreting cell response in human diarrhoea by a human Lactobacillus strain», Pediatr Res, vol. 32, p. 141-144.

Kang HJ, Song MJ, Choung SY, Kim SJ, Le MO, 2000, «Transcriptional induction of Nurr77 by indomethacin that results in apoptosis of côlon cancer cells», Biol. Pharm. Bull., vol. 23, p. 815-819.

Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW, 1991, «Participation of p53 protein in the cellular response to DNA damage», Cancer Res., vol. 51, p. 63046311.

Kato I, Endo K, Yokokura T, 1994, «Effects of oral administration of Lactobacillus casei on antitumor responses induced by tumor resection in mice», Int. J. Immunopharmacol., vol. 16, p. 29-36.

Kato I, Kobayashi S, Yokokura T, Mutai M, 1981, «Antitumor activity of Lactobacillus casei in mice», Gann, vol. 72, p. 517-523.

Ketlinskii SA, Prokop'eva ED, Prokop'ev AA, Artiukhov AI, Pasechnik VA, 1987, «Mechanism of the anti-tumoral effect of the blastolysin fraction isolated from Lactobacillus bulgaricus», Vopr. Onkol., vol. 33, p. 51-56.

Khaled, A. R., Kim K, Hofmeister R, Muegge K, Durum SK, 1999, «Withdrawal of IL-7 induces Bax translocation from cytosol to mitochondria through a rise in intracellular pH», Proc. Natl. Acad. Sci. U.S.A., vol. 96, p. 14476-14481.

Kim IK, Chung CW, Woo HN, Hong GS, Nagata S, Jung YK, 2000, «Reconstitution of caspase-8 sensitizes JB6 cells to TRAIL», Biochem. Biophys. Res. Commun., vol. 277, p. 311-316.

Kitazawa H, Toba T, Itoh T, Kumano N, Adachi S et Yamaguchi T, 1991, «Antitumoral activity of slime-forming, encapsulated lactococcus lactis subsp. Cremoris isolated from Scandinavian ropy sour milk, " viili"», Anim. Sci. Technol., vol. 62, p. 277-283.

Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD, 1997, «The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis», Science, vol. 275, p. 1132-1136.

Ko LJ et Prives C, 1996, «p53: puzzle and paradigm», Genes Dev., vol. 10, p. 1054-1072.
Korsmeyer, S. J., 1999, «BCL-2 gene family and the regulation of programmed cell death», Cancer Res., vol. 59, p.1693s-1700s.

Krammer, P. H., 1999, «CD95(APO-1/Fas)-mediated apoptosis: live and let die», Adv. Immunol., vol. 71, p.163-210.

Kroemer G, Zamzami N, Susin SA, 1997, «Mitochondrial control of apoptosis» Immunology Today, vol. 18, p.44-51.

Kubbutat MH, Jones SN, Vousden KH, 1997, «Regulation of p53 stability by Mdm2», Nature, vol. 387. p. 299-303.

Lacour S, Hammann A, Wotawa A, Corcos L, Solary E, Dimanche-Boitrel MT, 2001, «Anticancer agents sensitize tumor cells to tumor necrosis factor-related apoptosisinducing ligand-mediated caspase-8 activation and apoptosis», Cancer Res., vol. 61, p.1645-1651.

Li H, Kolluri SK. Gu J, Dawson MI, Cao X, Hobbs PD, Lin B, Chen G, Lu J, Lin F, Xie Z, Fontana JA, Reed JC, Zhang X, 2000, «Cytochrome C release and apoptosis induced by mitochondrial targeting of nuclear orphan receptor TR3», Science, vol. 289, p. 11591164.

Li PF, Dietz R, Von Harsdorf R., 1999, «p53 regulates mitochondrial membrane potential through reactive oxygen species and induces cytochrome C -independant apoptosis blocked by Bcl-2», EMBO J., vol. 18, p. 6027-6036.

Li, H, Zhu H, Xu CJ, Yuan J, 1998, «Cleavage of BID by caspase-8 mediates the mitochondrial damage in the Fas pathway of apoptosis », Cell, vol. 94, p. 491-501

Li, P. et al., 1997, « Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade», Cell, vol. 91, p. 479-489

Lin MY et Yen CL, 1999, «Antioxidative ability of lactic acid bacteria», J. Agric. Food Chem., vol. 47, p. 1460-1466.

Lithgow T, van Driel R, Bertram JF, Strasser A, 1994, «The protein product of the oncogene $b c l-2$ is a component of the nuclear envelop, the endoplasmic reticulum and the outer mitochondrial membrane», Cell Growth Differ., vol. 5, p. 411-417.

Liu, X., Zou, H., Slaughter, C. et Wang, X., 1997, «DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis», Cell, vol. 89, p. 175-184.

Lorenzo HK, Susin SA, Penninger J et Kroemer G, 1999, " Apoptosis inducing factor (AIF): a phylogenetically old, caspase-independent effector of cell death », Cell Death Differ., vol. 6, p.516-524.

Luo JS, Kammerer R et von Kleist S, 2000, «Comparison of the effects of immunosuppressive factors from newly established côlon carcinoma cell cultures on human lymphocyte proliferation and cytokine secretion», Tumor Biol., vol. 21, p. 11-20

Luo, X., Budihardjo I, Zou H, Slaughter C, Wang X, 1998, «Bid, a Bcl-2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors», Cell, vol. 94, p. 481-490

Macdonald JS et Astrow AB, 2001, «Adjuvant therapy of côlon cancer», Sem. in Oncology, vol. 28, p. 30-40

Mahyar-Roemer M et Roemer K, 2001, «p21 Waf1/Cipl can protect human côlon carcinoma cells against p53-dependent and p53-independent apoptosis induced by natural chemopreventive and therapeutic agents», Oncogene, vol. 20, p. 3387-3398.

Maki CG et Howley PM, 1997, «Ubiquitination of p53 and p21 is differentially affected by ionizing and UV radiation», Mol. Cell. Biol., vol. 17, p. 355-363.

Maltzman W et Czyzyk L, 1984, «UV irradiation stimulates levels of p 53 cellular tumor antigen in nontransformed mouse cells», Mol. Cell. Biol., vol. 4, p. 1689-1694.

Marteau P, Pochart P, Flourie B, Pellier P, Santos L, Desjeux JF, Rambaud JC, 1990, «Effect of chronic ingestion of a fermented dairy product containing Lactobacillus acidophilus and Bifidobacterium bifidum on metabolic activities of the côlonic flora in humans», Am. J. Clin. Nutr., vol. 52, p. 685-688.

Marzo I, Brenner C, Zamzami N, Jurgensmeier JM, Susin SA, Vieira HL, Prevost MC, Xie Z, Matsuyama S, Reed JC, Kroemer G, 1998, «Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis», Science, vol. 281, p. 2027-2031.

Marzo I, Brenner C, Zamzami N, Susin SA, Beutner G, Brdiczka D, Remy R, Xie ZH, Reed JC, Kroemer G, 1998, «The permeability transition pore complex: a target for apoptosis regulation by caspases and bcl-2-related proteins», J. Exp. Med., vol. 187, p. 1261-1271

Matsuzaki T, Yokokura T, Azuma I, 1985, «Anti-tumour activity of Lactobacillus casei on Lewis lung carcinoma and line-10 hepatoma in syngeneic mice and guinea pigs», Cancer Immunol. Immunother., vol. 20, p. 18-22.

Matsuzama A et Ichijo H, 2001, «Molecular mechanisms of the decision between life and death: Regulation of apoptosis by apoptosis signal-regulating kinase 1», J. Bioch., vol. 130, p. 1-8.

Maundrell K, Antonsson B, Magnenat E, Camps M, Muda M, Chabert C, Gillieron C, Boschert U, Vial-Knecht E, Martinou JC, Arkinstall S, 1997, «Bcl-2 undergoes phosphorylation by c-Jun N-terminal kinase/stress-activated protein kinases in the presence of the constitutively active GTP-binding protein Rac1», J. Biol. Chem, vol. 272, p. 25238-25242

McGroatry JA, Hawthorn AA et Reid G, 1988, «Anti-tumor activity of lactobacilli in vitro», Microbios. Lett, vol. 39, p. 105-112.

Medema JP, de Jong J, Peltenburg LT, Verdegaal EM, Gorter A, Bres SA, Franken KL, Hahne M, Albar JP, Melief CJ, Offringa R, 2001, «Blockade of the granzyme B/perforin pathway through overexpression of the serine protease inhibitor PI-9/SPI-6 constitutes a mechanism for immune escape by tumors», Proc. Natl. Acad. Sci. U. S. A., vol. 20, p. 11515-11520.

Medema JP, Scaffidi C, Kischkel FC, Shevchenko A, Mann M, Krammer PH, Peter ME, 1997, «FLICE is activated by association with the CD95 death-inducing signaling complex (DISC)», EMBO J., vol. 16, p. 794-804.

Micheau O, Solary E, Hammann A, Martin F et Dimanche-Boitrel MT, 1997, «Sensitisation of cancer cells treated with cytotoxic drugs to fas-mediated cytotoxicity», J. Natl. Cancer Inst., vol. 89, p. 783-789.

Midgley CA et Lane DP, 1997, «p53 protein stability in tumour cells is not determined by mutation but is dependent on Mdm2 binding», Oncogene, vol. 15, p. 1179-1189.

Minn AJ, Swain RE, Ma A, Thompson CB, 1998, «Recent progress on the regulation of apoptosis by Bcl-2 family members», Adv. Immunology, vol. 70, p. 245-279

Minn AJ, Velez P, Schendel SL, Liang H, Muchmore SW, Fesik SW, Fill M, Thompson $\mathrm{CB}, 1997$, «Bcl-x(L) forms an ion channel in synthetic lipid membranes», Nature, vol. 385, p. 353-357.

Mirjolet JF, Barberi-Heyob M, Didelot C, Peyrat JP, Abecassis, Millon R et Merlin JL, 2000, «Bcl-2/Bax protein ratio predicts 5 -fluorouracil sensitivity independently of p53 status», Br. J. Cancer, vol. 10, p. 1380-1386.

Miyashita T et Reed JC, 1995, «Tumor suppressor p53 is a direct transcriptional activator of the human bax gene», Cell, vol. 80, p. 293-299.

Momand J, Wu H H et Dasgupta G, 2000, «MDM2-master regulator of the p53 tumor suppressor protein», Gene, vol. 242, p. 15-29

Monaghan P, Robertson D, Amos TAS, Dyer MJS, Mason DY, Greaves MF, 1992, «Ultrastructure localization of Bcl-2 protein», J. Histochem. Cytochem., vol. 40, p. 18191825.

Moriishi K, Huang DCS, Cory S, Adams JM, 1999, «Bcl-2 family members do not inhibit apoptosis by binding the caspase-activator Apaf-1», Proc. Natl. Acad. Sci. U.S.A., vol. 96, p. 9683-9688.

Morotomi M et Mutai M, 1986, «In vitro binding of potent mutagenic pyrolysates to intestinal bacteria», J. Natl. Cancer Inst., vol. 77, p. 195-201.

Mross K et Semsek D, 2001, «Chemotherapy of côlonic carcinoma in the year 2001», Scheweiz Rundsch Med Prax, vol. 90, p. 497-510.

Muchmore SW, Sattler M, Liang H, Meadows RP, Harlan JE, Yoon HS, Nettesheim D, Chang BS, Thompson CB, Wong SL, Ng SL, Fesik SW, 1996, «X-ray and NMR structure of human Bcl- X_{L}, an inhibitor of programmed cell death», Nature, vol. 381, p. 335-341.

Muzio M, Chinnaiyan AM, Kischkel FC, O'Rourke K, Shevchenko A, Ni J, Scaffidi C, Bretz JD, Zhang M, Gentz R, Mann M, Krammer PH, Peter ME, Dixit VM ,1996, «FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death--inducing signaling complex», Cell, vol. 85, p. 817-827

Muzio, M., Stockwell, B. R., Stennicke, H. R., Salvesen, G. S. et Dixit, V. M., 1998, «An induced proximity model for caspase-8 activation», J. Biol. Chem. Vol. 273, p. 29262930

Nagane M, Huang HJ et Cavenee WK, 2001, «The potential of TRAIL for cancer chemotherapy», Apoptosis, vol. 6, p. 191-197.

Neal B. Blatt et Gary D Glick, 2001, «Signaling pathways and effector mechanisms preprogrammed cell death», Bioorg. Med. Chem., vol. 9, p. 1371-1384.

Nicoletti I, Migliorati G, Pagliacci MC, Grignani F et Riccardi C, 1991, «A rapid and simple method for measuring thymocytes apoptosis by propidium iodide staining and flow cytometry, J. Immunol. Meth., vol. 139, p. 271-279.

Nita ME, Nagawa Hm Tominaga O, Tsuno N, Fujii S, Sasaki S, Fu CG, Takenoue T, Tsuruo T et Muto T, 1998, «5-Fluorouracil induces apoptosis in human côlon cancer cell lines with modulation of Bcl-2 family proteins», Br. J. Cancer, vol. 78, p. 986-992.

Nunez G, Benedict MA, Hu Y, Inohara N, 1998, «Caspases: the proteases of the apoptotic pathway», Oncogene, vol. 17, p. 3237-3245.

O'Connell J, Bennett MW, Nally K, Houston A, O'Sullivan GC et Shanahan F, 2000, «Altered mechanisms of apoptosis in côlon cancer: Fas resistance and counterattack in the tumor-immune conflict", Ann. N. Y. Acad. Sci., vol. 910, p. 178-192.

O'Connell J, O'Sullivan GC, Collins JK, Shanahan F, 1996, «The Fas counterattack: Fasmediated T cell killing by côlon cancer cells expressing Fas ligand», J. Exp. Med., vol. 3, p. 1075-1082.

Okawa T, Niibe H, Arai T, Sekiba K, Noda K, Takeuchi S, Hashimoto S, Ogawa N, 1993, «Effect of LC9018 combined with radiation therapy on carcinoma of the uterine cervix. A phase III, multicenter, randomized, controlled study», Cancer, vol. 72, p. 19491954.

Owen-Schaub L, Chan H, Cusack JC, Roth J, Hill LL, 2000, «Fas and Fas ligand interactions in malignant disease», Int. J. Oncol., vol. 17, p. 5-12.

Ozoren N, Fisher MJ, Kim K, Liu CX, Genin A, Shifman Y, Dicker DT, Spinner NB, Lisitsyn NA, El-Deiry WS, 2000, «Homozygous deletion of the death receptor DR4 gene in a nasopharyngeal cancer cell line is associated with TRAIL resistance», Int. J. Oncol., vol. 5, p. 917-925.

Pai SI, Wu GS, Ozoren N, Wu L, Jen J, Sidransky D, El-Deiry WS, 1998, «Rare loss-offunction mutation of a death receptor gene in head and neck cancer», Cancer Res., vol. 16, p. 3513-3518.

Pan G, O'Rourke K, Dixit VW, 1998, «Caspase-9, Bcl-x ${ }_{\text {L }}$ and Apaf-1 form a ternary complex», J. Biol. Chem., vol. 273, p. 5841-5845.

Park IC, Park MJ, Rhee CH, Lee J, Choe TB, Jang JJ, Lee SH, Hong SI, 2001, «Protein kinase C activation by PMA rapidly induces apoptosis through caspase-3/CPP32 and serine protease(s) in a gastric cancer cell line», Int. J. Oncol., vol. 18, p. 1077-1083.

Pastorino JG, Chen ST, Tafani M, Snyder JW, Farber JL, 1998, «The overexpression of Bax produces cell death upon induction of the mitochondrial permeability transition», J . Biol. Chem., vol. 273, p. 7770-7775.

Perdigon G, Nader de Macias ME, Alvarez S, Oliver G, Pesce de Ruiz Holgado AA, 1990, «Prevention of gastrointestinal infection using immunobiological methods with milk fermented with Lactobacillus casei and Lactobacillus acidophilus», J. Dairy. Res., vol. 57, p. 255-264.

Perdigon G, Alvarez S, Rachid M, Aguero G et Gobbato N, 1995, «Symposium: probiotic bacteria for humans: clinical systems for evaluation of effectiveness», J. Dairy Sci., vol. 78, p. 1597-1606.

Perdigon G, Valdez JC et Rachid M, 1998, «Antitumor activity of yogurt: study of possible immune mechanisms», J. Dairy Res., vol. 65, p. 129-138.

Petak I, Tillman DM et Houghton JA, 2000, «p53 dependence of Fas induction and acute apoptosis in response to 5 -fluorouracil-leucovorin in human côlon carcinoma cell lines», Clin. Cancer Res., vol. 6, p. 4432-4441.

Peters GJ, van Triest B, Backus HH, Kuiper CM, van der Wilt CL et Pinedo HM, 2000, «Molecular downstream events and induction of thymidylate synthase in mutant and
wild-type p53 côlon cancer cell lines after treatment with 5-fluorouracil and the thymidylate synthase inhibitor raltitrexed», Eur. J. Cancer, vol. 36, p. 916-924.

Pool-Zobel BL, Neudecker C, Domizlaff I, Ji S, Schillinger U, Rumney C, Moretti M, Vilarini I, Scassellati-Sforzolini R et Rowland I, 1996, "Lactobacillus- and Bifidobacterium-Mediated antigenotoxicity in the côlon of rats», Nutr. Cancer, vol. 26, p. 365-380.

Price BD et Calderwood SK, 1993, «Increased sequence-specific p53-DNA binding activity after DNA damage is attenuated by phorbol esters», Oncogene, vol. 8, p. 30553062.

Ragnhammar P, Hafstrom L, Nugren P et Glimelius B, 2001, «A systematic overview of chemotherapy effects in colorectal cancer», Acta. Oncol., vol. 40, p.282-308.

Rao, L., Perez, D. et White, E., 1996, «Lamin proteolysis facilitates nuclear events during apoptosis», J. Cell. Biol., vol. 135, p.1441-1455.

Reddy BS et Riverson A, 1993, «Inhibitory effect of Bifidobacterium longum on côlon, mammary, and liver carcinogenesis induced by 2 -amino-3-methylimidazo[4,5f]quinoline, a food mutagen», Cancer Res., vol. 53, p. 3914-3918.

Reddy GV, Friend BA, Shahani KM, Farmer RE, 1983, «Antitumor activity of yogurt components», J. Food Prot., vol. 46, p. 8-11.

Reed JC, 1996, «Mechanisms of Bcl-2 family protein function and dysfunction in health and disease», Behring Inst. Mitt., vol. 97, p. 72-100.

Reed JC, 1997, «Double identity for proteins of the Bcl-2 family», Nature, vol. 387, p. 773-776.

Renner HW et Münzner R, 1991, «The possible role of probiotics as dietary antimutagen», Mutat. Res., vol. 262, p. 239-245.

Rich T, Allen RL et Wylliw AH, 2000, «Defying death after DNA damage», Nature, vol. 407, p. 777-783.

Roa JC, Roa I, Melo A, Araya JC, Villaseca MA, Flores M, Schneider B, 2000, « p53 gene mutation in cancer of the côlon and rectum», Rev. Med. Chil., vol. 9, p. 996-1004.

Rodriguez, J. et Lazebnik, Y., 1999, "Caspase-9 and Apaf-1 form an active holoenzyme », Genes Dev., vol. 13, p. 3179-3184.

Rosse T, Olivier R, Monney L, Rager M, Conus S, Fellay I, Jansen B, Borner C, 1998, «Bcl-2 prolongs cell survival after Bax-induced release of cytochrome C», Nature, vol. 391, p. 496-499.

Roth J, Dobbelstein M, Freedman DA, Shenk T, Levine AJ, 1998, «Nucleo-cytoplasmic shuttling of the mdm 2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein», EMBO J., vol. 17, p. 554-564.
Ruemmele FM, Dionne S, Qureshi I, Sarma DSR, Levy E et Seidman EG, 1999, «Butyrate mediate Caco-2 cell apoptosis via up-regulation of pro-apoptotique BAK and inducing caspase-3 mediated cleavage of poly-(ADP-ribose) polymerase (PARP)», Cell death diff., vol. 6. p. 729-735.

Ryu BK, Lee MG, Chi SG, Kim YW, Park JH, 2001, «Increased expression of cFLIP(L) in côlonic adenocarcinoma», J. Pathol., vol. 194, p. 15-19.

Sakahira, H., Enari, M. et Nagata, S., 1998, «Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis», Nature, vol. 391, p. 96-99.
Salminen S, Isolauri E, Salminen E, 1996, «Clinical uses of probiotics for stabilizing the gut mucosal barrier: successful strains for furture challenges», Antonie Van Leeuwenhoek, vol. 70, p. 347-358.

Salvesen GS, Dixit VM, 1997, «Caspases: intracellular signaling by proteolysis» Cell, vol. 91, p. 443-446.

Sargent DJ, Goldberg RM, Jacobson SD, Macdonald JS, Labianca R, Haller DG, Shepherd LE, Seitz JF et Francini G, 2001, «A pooled analysis of adjuvant chemotherapy for resected côlon cancer in elderly patients», N. Engl. J. Med., vol. 345, p. 1091-1097.

Sarin A, Williams MS, Alexander-Miller MA, Berzofsky JA, Zacharchuk CM, Henkart PA, 1997, «Target cell lysis by CTL granule exocytosis is independent of ICE/Ced-3 family proteases», Immunity, vol. 6, p.209-215.

Sarin A, Wu ML, Henkart PA, 1996, « Different interleukin-1 beta converting enzyme (ICE) family protease requirements for the apoptotic death of T lymphocytes triggered by diverse stimuli», J. Exp. Med., vol. 184, p. 2445-2450.

Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, Debatin KM, Krammer PH, Peter ME. 1998, «Two CD95 (APO/Fas) signaling pathways», EMBO J., vol. 17, p. 1675-1687.

Scaffidi C, Schimitz I, Zha J, Korsmeyer SJ, Krammer PH, Peter ME, 1999, «Differential modulation of apoptosis sensitivity in CD95 type I and type II cells», J. Biol. Chem., vol. 274, p. 22532-22538.

Schackelford LA, Ramkishan Rao D, Chawan CB, et Pulusani SR, 1983, «Effect of feeding fermented milk on the incidence of chemicallu induced côlon tumors in rats», Nutri. cancer, vol. 5, p. 159-163.

Schendel SL, Xie Z, Montal MO, Matsuyama S, Montal M, Reed JC, 1997, «Channel formation by antiapoptotic protein Bcl-2», Proc. Natl. Acad. Sci. U.S.A., vol. 94, p. 5113-5118.

Schulze-osthoff K, Ferrari D, Los M, Wesselborg S et Peter ME, 1998, «Apoptosis signaling by death receptors», Eur. J. Biochem., vol. 254, p. 439-459.

Sekine K, Toida T, Saito M, Kuboyama M, Kawashima T, Hashimoto Y, 1985, «A new morphologically characterized cell wall preparation (whole peptidoglycan) from Bifidobacterium infantis with a higher efficacy on the regression of an established tumor in mice», Cancer Res., vol. 45, p. 1300-1307.

Sharma K, Wang RX, Zhang LY, Yin DL, Luo XY, Solomon JC, Jiang RF, Markos K, Davidson W, Scott DW, Shi YF, 2000, «Death the Fas way: regulation and pathophysiology of CD95 and its ligand», Pharmacol. Ther., vol. 88, p. 333-347.

Sheikh MS, Burns TF, Huang Y, Wu GS, Amundson S, Brooks KS, Fornace AJ Jr, elDeiry WS, 1998, «p53-dependent and -independent regulation of the death receptor KILLER/DR5 gene expression in response to genotoxic stress and tumor necrosis factor alpha», Cancer Res., vol. 58, p. 1593-1598.

Shieh SY, Ikeda M, Taya Y, Prives C,1997, «DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2», Cell, vol. 91, p. 325-334.

Shimizu S et Tsujimoto Y, 2000, «Proapoptotic BH3-only Bcl-2 family members induce cytochrome c release, but not mitochondrial membrane potential loss, and do not directly modulate voltage-dependent anion channel activity», Proc. Natl. Acad.Sci. U.S.A., vol. 97, p. 577-582.

Shimizu S, Narita M, Tsujimoto Y, 1999, «Bcl-2 family proteins regulate the release of apoptogenic cytochrome C by the mitochondrial channel VDAC», Nature, vol. 399, p.483-487.

Shiraki K, Tsuji N, Shioda T, Isselbacher KJ, Takahashi H, 1997, «Expression of Fas ligand in liver metastases of human côlonic adenocarcinomas», Proc. Natl. Acad. Sci. U.S.A., vol. 94, p. 6420-6425.

Sionov RV et Haupt Y, 1999, «The cellular response to p53: the decision between life and death», Oncogene, vol. 18, p. 6145-6157.

Solovyan V, Bezvenyuk Z, Huotari V, Tapiola T, Suuronen T et Salminen A, 1998, «Distinct mode of apoptosis induced by genotoxic agent etoposide and serum withdrawal in neuroblastoma cells», Mol. Brain. Res., vol. 62, p. 43-55.

Song E, Chen J, Ouyang N, Su F, Wang M, Heemann U, 2001, « Soluble Fas ligand released by côlon adenocarcinoma cells induces host lymphocyte apoptosis: an active mode of immune evasion in côlon cancer», Br. J. Cancer, vol. 7, p. 1047-1054.

Steemans M, Goossens V, van de Craen M, van Herreweghe F, Vancompernolle K, de Vos K. Vandenabeele P, Grooten J, 1998, "A caspase-activated factor (CAF) induces mitochondrial membrane depolarization and cytochrome C release by non proteolytic mechanism». J. Exp. Med., vol. 188, p. 2193-2198.

Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aedersold R, Siderovski DP, Penninger JM, Kroemer G, 1999, «Molecular characterization of mitochondrial apoptosis-inducing factor», Nature, vol. 397, p. 441-446.

Suzuki S, Mita S, Kamohara H, Sakamoto K, Ishiko T, Ogawa M, 2001, «IL-6 and IFNgamma regulation of IL-10 production by human côlon carcinoma cells», Int. J. Oncol., vol. 18, p. 581-586.

Tao W et Levine AJ, 1999, «P19(ARF) stabilizes p53 by blocking nucleo-cytoplasmic shuttling of Mdm2», Proc. Natl. Acad. Sci. U.S.A., vol. 96, p. 6937-6941.

Tazawa K, Yatuzuka K, Yatuzuka M, Koike J, Ohkami H, Saito T, Ohnishi Y, Saito M., 1999, "Dietary fiber inhibits the incidence of hepatic metastasis with the anti-oxidant activity and portal scavenging functions», Hum. Cell, vol. 12, p. 189-196.

Thornberry NA et al., 1997, «A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis», J. Biol. Chem., vol. 272, p. 17907-17911.

Tillman DM, Petak I et Houghton JA, 1999, «A Fas-dependent component in 5-fluorouracil/leucovorin-induced cytotoxicity in côlon carcinoma cells», Clin. Cancer Res., vol. 5, p. 425-430.

Unger T, Sionov RV, Moallem E, Yee CL, Howley PM, Oren M, Haupt Y, 1999, «Mutations in serines 15 and 20 of human p53 impair its apoptotic activity», Oncogene, vol. 18, p. 3205-3212.

Vander Heiden MG, Chandel NS, Williamson EK, Schumacker PT, Thompson CB, 1997, «Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria», Cell, vol. 91, p. 627-637.

Velazquez OC, Lederer HM, et Rombeau J, 1996, «Butyrate and the côlonocyteimplication for neoplasia», Dig. Dis. Sci, vol. 41, p. 727-739.

Vermijlen D, Froelich CJ, Luo D, Suarez-Huerta N, Robaye B, Wisse E, 2001, «Perforin and granzyme B induce apoptosis in FasL-resistant côlon carcinoma cells», Cancer Immunol. Immunother., vol. 4, p. 212-217.
von Reyher U, Strater J, Kittstein W, Gschwendt M, Krammer PH, Moller P, 1998, «Côlon carcinoma cells use different mechanisms to escape CD95-mediated apoptosis», Cancer Res., vol. 3, p. 526-534.

Walczak H et Krammer PH, 2000, «The CD95 (APO-1/Fas) and the TRAIL (APO-2L) apoptosis systems», Exp. Cell Res., vol. 256, p. 58-66.

Wang Y et Prives C, 1995, «Increased and altered DNA binding of human p53 by S and G2/M but not Gl cyclin-dependent kinases», Nature, vol. 376, p.88-91.

Weih F, Ryseck RP, Chen L, Bravo R, 1996, «Apoptosis of nur77/N10-transgenic thymocytes involves the Fas/Fas ligand pathway», Proc. Natl. Acad. Sci. U.S.A., vol. 93, p. 5533-5538.

Wu GS, Burns TF, McDonald ER 3rd, Jiang W, Meng R, Krantz ID, Kao G, Gan DD, Zhou JY, Muschel R, Hamilton SR, Spinner NB, Markowitz S, Wu G, el-Deiry WS, 1997, «KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene», Nat. Genet., vol. 17, p. 141-143.

Wu L, Levine AJ, 1997, «Differential regulation of the p21/WAF-1 and mdm2 genes after high-dose UV irradiation: p53-dependent and p53-independent regulation of the mdm2 gene», Mol. Med., vol. 3, p. 441-451.

Xu SQ et El-Deiry WS, 2000, «p21 (WAF1/CIP1) inhibits initiator caspase cleavage by TRAIL death receptor DR4», Biochem. Biophys. Res. Commun., vol. 269, p. 179-190.

Yamada H, Tada-Oikawa S, Uchida A, Kawanishi S, 1999, «TRAIL causes cleavage of bid by caspase-8 and loss of mitochondrial membrane potential resulting in apoptosis in BJAB cells», Biochem. Biophys. Res. Commun., vol. 265, p. 130-133.

Yan Y, Shay JW, Wright WE, Mumby MC, 1997, «Inhibition of protein phosphatase activity induces p53-dependent apoptosis in the absence of p53 transactivation», J. Biol. Chem., vol. 272, p. 15220-15226.

Yoshida H, Kong YY, Yoshida R, Elia AJ, Hakem A, Hakem R, Penninger JM, Mak TW, 1998, «Apaf-1 is required for mitochondrial pathways of apoptosis and brain development», Cell, vol. 94, p. 739-750.

Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ, 1996, «Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCLX(L)», Cell, vol. 87, p. 619-628.

Zoratti, M., Szabò, I., 1995, «The mitochondrial permeability transition» Biochim. Biophys. Acta, vol. 1241, p. 139-176.

Zou, H., Henzel, W. J., Liu, X., Lutschg, A. et Wang, X., 1997, «Apaf-1, a human protein homologous to C. Elegans CED-4, participates in cytochrome C-dependent activation of caspase-3", Cell, vol. 90, p. 405-413.

