Université du Québec
INRS-Institut-Armand-Frappier
Centre de recherche en santé humaine

Par
Myrian Colombo

Mémoire présenté
pour l'obtention
du grade de Maître ès sciences (M.Sc.)
en Sciences Expérimentales de la Santé

Jury d'évaluation

Examinateur externe	Dre Stéphanie Reader Project Leader Bioniche Life Sciences INC.
Examinateur interne	Dr Michel Fournier INRS-Institut Armand-Frappier Centre de Recherche en Santé Humaine
Directeur de recherche	Dr Jacques Bernier INRS-Institut Armand-Frappier Centre de Recherche en Santé Humaine

RÉSUMÉ

Le mercure $\left(\mathrm{CH}_{3} \mathrm{HgCl}\right)$, le plomb $\left(\mathrm{PbCl}_{2}\right)$ et le cadmium $\left(\mathrm{CdCl}_{2}\right)$ sont des substances hautement toxiques largement répandues dans l'environnement de par leurs utilisations industrielle et médicale. Ces métaux lourds sont bioaccumulables et affectent différents organes et systèmes chez l'homme, notamment les cellules du système immunitaire incluant les lymphocytes T .

L'objectif principal de ce mémoire était de caractériser l'effet des métaux lourds sur des propriétés du processus d'activation des lymphocytes T humains telles que l'activation des tyrosines kinases (PTKs) et des facteurs de transcription comme le nuclear factor of activated T-cells (NFAT), qui mènent à la production d'interleukine-2 (LL-2). Ces travaux avaient aussi comme objectif de mieux comprendre l'effet de faibles concentrations de ces métaux, individuellement ou en mélange, de même que l'importance de l'état d'activation cellulaire au moment de l'exposition.

Pour ce faire, des cellules T Jurkat ont été stimulées in vitro selon trois méthodes différentes. Les deux premières stimulaient les cellules via le complexe CD3 et le CD28. Dans le premier cas, la stimulation se faisait à l'aide d'un anticorps monoclonal anti-CD3 humain et de cellules exprimant le CD80, les DT30 (anti-CD3/DT30). Dans le deuxième cas, les cellules étaient stimulées par un anticorps monoclonal anti-CD3 et un anticorps monoclonal anti-CD28 humains (anti-CD3/anti-CD28). La troisième méthode consistait à stimuler les cellules en passant outre les récepteurs de surface par l'utilisation de phorbol 12-myristate 13-acetate (PMA) et d'ionophores de calciums (IONO) (PMA/IONO).

La stimulation des cellules était effectuée après, en même temps ou avant l'exposition aux métaux à des concentrations $(0,01-1 \mu \mathrm{M})$ qui reproduisent les conditions environnementales réelles et n'affectent pas la viabilité cellulaire pour la durée de l'étude.

L'analyse des résultats suggère que les trois métaux, à une concentration de $1 \mu \mathrm{M}$, causent une augmentation de l'activité des PTKs. Elle a aussi démontré que la production d'IL-2 diminue en présence de $\mathrm{CH}_{3} \mathrm{HgCl}$ et PbCl_{2} peu importe l'état d'activation des cellules. Par contre, une augmentation de la production d'LL-2 a été notée lors de l'ajout de CdCl_{2} mais uniquement lorsque les cellules étaient déjà activées. Étonnamment, alors
qu'une exposition aux métaux individuellement affecte ce paramètre, une exposition à un mélange composé des trois métaux n'a démontré aucun effet.

Pour mieux comprendre le mécanisme d'action des métaux, leur effet sur NFAT a ensuite été étudié. Les cellules JKE6-1 ont été transfectées à l'aide d'un vecteur portant le gène rapporteur luciférase dont l'expression est régulée par un promoteur qui contient de multiples sites de liaison pour NFAT. Lors de la stimulation à anti-CD3/DT30, les métaux, individuellement ou en mélange, affectent peu l'activité de NFAT. Les cellules ont ensuite été stimulées à anti-CD3/anti-CD28 pour déterminer si une forte stimulation du CD28 permettait de rétablir l'activation de NFAT. Sous ces conditions, le $\mathrm{CH}_{3} \mathrm{HgCl}$, le CdCl_{2} et le mélange de métaux ont tendance à augmenter de façon importante l'activité de NFAT chez les cellules activées préalablement ou au même moment que l'exposition. Chez les cellules au repos exposées aux métaux, par contre, ont obtient des résultats similaires à ceux obtenus pour la production de l'Ll-2. Enfin, la stimulation à PMA/IONO permet aussi d'obtenir un schéma d'activation/inhibition qui concordent avec celui obtenu pour la production d'IL-2.

En résumé, l'effet des métaux lourds sur la production d'LL-2 et l'activité de NFAT chez les lymphocytes T varient en fonction de l'état d'activation cellulaire. La stimulation à PMA/IONO suggèrent que ces polluants agiraient en aval des voies de la PKC et de la mobilisation intracellulaire du calcium. Nos résultats démontrent aussi qu'une forte stimulation de la molécule CD28 permet de renverser, notamment, l'effet du mercure et du mélange de métaux sur ces paramètres, mais seulement chez les cellules qui n'ont pas été exposées aux métaux avant la stimulation. Ces travaux ouvrent la voie à des études plus poussées sur l'importance de la molécule CD28 dans la toxicité des métaux et appuient l'hypothèse d'un dérèglement du système immunitaires induit par les métaux lourds qui peut mener notamment au développement de maladies auto-immunitaires.

REMERCIEMENTS

J'aimerais tout d'abord remercier Jacques Bernier, mon directeur de recherche. Il m'a accueillie dans son laboratoire pour faire une maîtrise et m'a permis de découvrir ma passion pour la recherche. Son aide et ses conseils m'ont aider à voir et soutirer le meilleur de mes résultats.

Je tiens ensuite à remercier Claudine Hamelin, technicienne du laboratoire. Merci Claudine, ma petite grenouille, pour ton infinie patience, ton sourire, ta bonne humeur et tes incroyables chansons. Tu es une fille très consciencieuse et intègre et tu demeureras un modèle pour moi.

Merci aussi à tous mes collègues de laboratoire, plus particulièrement Julie C., Julie P., Philippe, Jill et Michele, et à mes autres collègues et amis de l'Institut, notamment Isabelle, David, Johanna, Julie, Marie-Soleil et Nancy pour le support moral, les conseils techniques et les bons moments passés en votre compagnie. La folie qui pouvait régner quelquefois me manque déjà beaucoup.

Merci à ma famille, mes parents Vincenzo et Johanne et ma soeur Judith pour leur soutien et leurs encouragements constants. Merci d'avoir toujours été là pour moi lorsque le besoin se faisait sentir, pour m'écouter et me conseiller.

J'aimerais enfin remercier la Fondation-Armand-Frappier, le Fonds de Recherche en Santé du Québec (FRSQ) ainsi que le Réseau de Recherche en Santé Environnementale (RRSE) et l'IRSTpour leur soutien financier.

TABLE DES MATIĖRES

RÉSUMÉ. III
REMERCIEMENTS V
TABLE DES MATIĖRES VII
LISTE DES ABBRÉVIATIONS XI
LISTE DES FIGURES ET DES TABLEAUX. XV
INTRODUCTION1
PREMIĖRE PARTIE: REVUE DE LA LITTÉRATURE 3
Section 1: Les lymphocytes T 3
1.1 Introduction 3
1.2 Classification et structure des lymphocytes T 4
1.2.1 Les TCR $\alpha \beta$ et $\gamma \delta$ 4
1.2.1.1 Le complexe associé au TCR 6
1.2.2 Les sous-classes de lymphocytes $\mathrm{T} \alpha \beta$ 6
1.2.3 Les sous-classes de lymphocytes T CD4 ${ }^{+}$ 7
1.2.4 La molécule CD28 8
Section 2: Les lymphocytes T CD4 ${ }^{+}$et la réponse immunitaire 11
2.1 La reconnaissance de l'antigène par le TCR 11
2.2 Activation des lymphocytes T CD4 ${ }^{+}$et voies de signalisation intracellulaires 12
2.2.1 Activation des protéines tyrosines kinases (PTKs) 14
2.2.2 Activation de la PLC $\gamma 1$ 16
2.2.3 Activation des MAPK 16
2.2.4 Co-stimulation des lymphocytes T CD4 ${ }^{+}$: importance du co-récepteur CD28 18
2.3 Modèles d'activation pour l'étude des lymphocytes T CD4 ${ }^{+}$ 21
2.4 Apoptose: Élimination des lymphocytes T CD4 ${ }^{+}$ après la réponse immunitaire. 24
Section 3: L'Interleukine-2 (IL-2). 27
3.1 Introduction. 27
3.2 Régulation de l'expression du gène 27
3.3 Structure du promoteur 29
3.4 Expression du gène de l'IL-2: Les facteurs de transcription impliqués 31
3.4.1 NFAT 31
3.4.2 NFкB 34
3.4.3 AP-1 36
3.4.4 Oct. 38
Section 4: Les métaux lourds. 39
4.1 Introduction. 39
4.2 Mercure (Hg). 40
4.2.1 Toxicologie. 40
4.2.2 Effets du mercure sur le système immunitaire 41
4.2.3 Mécanismes moléculaires de l'action du mercure. 43
4.2.4 Conséquences d'une exposition au mercure. 44
4.3 Cadmium (Cd). 45
4.3.1 Toxicologie. 45
4.3.2 Cadmium et système immunitaire. 46
4.3.3 Effets du cadmium sur l'expression des gènes 49
4.4 Plomb (Pb). 50
4.4.1 Toxicologie 50
4.4.2 Plomb et système immunitaire 51
4.4.3 Effets du plomb sur l'expression des gènes. 54
4.4.4 Conséquences d'une exposition au plomb. 54
HYPOTHĖSE DE RECHERCHE 57
SECONDE PARTIE: ARTICLE 59

1. Résumé en français de l'article 59
2. Contribution de l'étudiant. 60
3. Article 61
Abstract 63
Introduction 64
Material and methods 68
Results. 75
Discussion 82
Acknowledgements 88
References 89
Figure legends 95
Figures 98
TROISIEME PARTIE: DISCUSSION ET CONCLUSIONS 107
BIBLIOGRAPHIE 113

LISTE DES ABBRÉVIATIONS

Ac... Ac	
ADN.. Acide déoxyribonucléique	
Ag... Antigène	
anti-CD28..................................... Anticorps monoclonal dirigé contre le CD28	
AP-1.. Activated-protein 1	
ARNm... Acide ribonucléique messager	
$\mathrm{C} \alpha, \mathrm{C} \beta$ \qquad Domaines constants, respectivement des chaînes α et β, formant le récepteur à antigène des cellules T	
Ca^{++}ou Ca ${ }^{2+}$................................... Ions Calcium	
CD28RE.......................................Élément de Réponse du CD28 (CD28 Response	
	Element)
Cd.. Cadmium	
$\mathrm{CH}_{3} \mathrm{HgCl}$ ou MeHgCl Chlorure de méthylmercure, mercure organique	
CMH I.. Complexe majeur d'histocompatibilité de classe 1	
CMH П..Complexe majeur d'histocompatibilité de classe 2	
ConA..Concavaline A	
CPA..Cellule présentatrice d'antigène	
CsA.. Cyclosporine A	
DAG..Diacylglycérol	
DL50... Dose létale 50	
FasL...Fas Ligand	
GRF ...GDP releasing factor	
GTP..Guanosine 5'-triphosphate	
Hg..Mercure	
Hg0...Mercure gazeux, vapeur de mercure	
Hg^{2+}.. Ion mercurique, mercure inorganique	
HgCl_{2}	Chlorure de mercure, mercure inorganique

HgO.. Oxyde de mercure, mercure inorganique	
IFN $\gamma . ~ I n t e r f e ́ r o n ~ \gamma ~$	
Ig... Immunoglobulines	
iHg.. Mercure inoranique (tous composés confondus)	
IONO... Ionophores de calcium	
IP3.. Inositols Polyphosphates	
ITAM. \qquad Motif d'activation de la famille de récepteurs des Immunoglobulines, basé sur les tyrosines (Immunoglobulin receptor family Tyrosine-based Activation Motif)	
IL-2.. Interleukine-2	
凹-2R..Récepteur de l'LL-2	
IL-4.. Interleukine-4	
凹-5... Interleukine-5	
IL-6.. Interleukine-6	
IL-10.. Interleukine-10	
IL-12.. Interleukine-12	
JNK.. c-Jun N-terminal kinase	
LPS...Lipopolysaccharides	
MAPK \qquad Protéine Kinase activée par les Mitogènes (Mitogen-activated Protein Kinase)	
MEK...MAPK kinase	
MEKK..MAPK kinase kinase ou MEK kinase	
NFAT...Facteur nucléaire des cellules T activées (Nuclear	
	Factor of Activated T cell)
MT... Métallothionéine	
MT-IIA..Métallothionéine IIA	
NLS..Séquence de localisation nucléaire (Nuclear	
	Localization Sequence)
NO.....	Oxyde Nitrique

LISTE DES FIGURES ET DES TABLEAUX

Liste des figures

Figure 1: Molécules de surface exprimées par les lymphocytes T CD4 ${ }^{+}$ 5

Figure 2: Représentation schématique des voies de signalisation intracellulaire activées chez les lymphocytes $\mathrm{T} \mathrm{CD4}{ }^{+}$suite à la reconnaissance d'un Ag13
Figure 3: Schématisation de trois modèles de stimulation des lymphocytes T 23
Figure 4: Représentation schématique de la structure du promoteur du gène de l'interleukine-2 (LL-2) 30

Liste des tableaux

Tableau 1: Caractéristiques chimiques du plomb, du cadmium et du mercure........... 39
Tableau 2: Les différentes formes de mercure
\qquad
et exemples de formules chimiques.40

INTRODUCTION

Les métaux lourds sont des polluants environnementaux extrêmement toxiques. Parmi ceux-ci, le mercure, le cadmium et le plomb, sous leurs différentes formes, sont reconnus comme faisant partie des plus dangereux. Ils sont présents en quantités appréciables dans l'eau, le sol et l'air à la suite d'une utilisation médicale et industrielle. La littérature relate de plus en plus d'effets néfastes des métaux lourds chez l'homme. Ce dernier en est principalement contaminé par le biais de son alimentation, les sources les plus importantes étant l'eau et le poisson. Les systèmes et organes affectés sont nombreux. Depuis plusieurs années, cependant, une importance particulière a été accordée aux effets de ces polluants sur le système immunitaire, et plus particulièrement les lymphocytes T (McCabe and Lawrence, 1991; Pellegrini et al., 1994; Whitekus et al., 1999). Cependant, les mécanismes précis par lesquels ils agissent sont encore mal compris.

Les lymphocytes $\mathrm{TCD} 4^{+}$, sont des cellules immunitaires qui ont un rôle central à jouer dans la défense de l'organisme contre les agents infectieux (bactéries, virus, parasites, etc.). Ces cellules, par le biais de leur récepteur à l'antigène (TCR), reconnaissent de façon spécifique un antigène (Ag) présent à la surface des cellules présentatrices d'antigènes (CPA) dans le contexte d'une molécule du soi de classe deux du complexe majeur d'histocompatibilité (CMH II). Cette reconnaissance provoque l'association fonctionnelle du TCR avec d'autres molécules comme le complexe CD3, qui résulte en l'induction d'un signal intracellulaire. Ce signal se traduit par une cascade d'activation de différentes protéines tyrosines kinases (PTKs), des enzymes qui ont la capacité d'activer d'autres enzymes en induisant la phosphorylation de leurs résidus tyrosines, ce qui mène à l'activation des cellules.

L'activation n'est cependant pas optimale si elle se fait uniquement par le TCR. La présence et l'activation de molécules de co-stimulation est essentielle. Mentionnons la molécule CD 28 , exprimée par les cellules $\mathrm{CD} 4^{+}$et activée par la liaison à ses ligands naturels, B7.1 (CD80) et B7.2 (CD86), exprimés par les CPA (June et al., 1994; Linsley et Ledbetter, 1993). Son activation permet l'induction d'un signal intracellulaire et l'activation complète de la cellule (June et al., 1994).

Les cellules T CD4 ${ }^{+}$activées vont ensuite activer d'autres types cellulaires et ainsi initier la réponse immunitaire. Pour ce faire, elles sécrètent des cytokines comme l'interleukin-2 (ㄴ-2) (Paul et Seder, 1994). Le promoteur qui régule l'expression de ce gène est une région d'environ 300 paires de bases (pb). Plusieurs facteurs de transcription possèdent des sites de liaison dans ce promoteur. Ceux-ci interagissent et coopèrent afin d'activer l'initiation de la transcription. Entre autres, le nuclear factor of activated T cell (NFAT), est un élément critique voire essentiel pour l'expression de l'LL-2 (Chow et al., 1999).

Des études ont démontré que le mercure, le cadmium et le plomb affectent l'activation et la prolifération cellulaire des lymphocytes $\mathrm{T} \mathrm{CD4}{ }^{+}$(McCabe et Lawrence, 1991). Cependant, aucune étude à ce jour n'a porté sur l'effet de ces métaux sur la fonction du CD28. De plus, la littérature relate différents effets de ces métaux au niveaux de facteurs de transcription chez des cellules non-immunitaires, mais peu chez les cellules immunitaires (Pyatt et al., 1996; Dieguez-Acuna et al., 2001), de sorte que l'effet précis de ces métaux sur l'expression de l'LL-2 est inconnu. On sait également que l'état d'activation des cellules T au moment de l'exposition aux métaux peut faire varier l'intensité de l'effet observé, mais ce phénomène n'est pas encore très bien expliqué. Enfin, il a été démontré qu'une exposition aux métaux lourds pouvaient entraîner le développement de certaines maladies auto-immunitaires mais plus d'études sur le sujet sont nécessaires pour faire le lien de cause à effet chez l'homme (Dantas et Queiroz,1997; Bigazzi, 1994; Heo et al., 1996).

L'objectif principal de cette étude était de caractériser les effets à faibles doses de mercure, de plomb et de cadmium, individuellement ou en mélange, sur la production d'LL-2 chez les lymphocytes T humains. De plus, ce projet avait pour but de démontrer que le mode ainsi que l'état d'activation cellulaire avaient une importance cruciale dans l'étude des métaux lourds. Ce mémoire présente d'abord une revue de la littérature qui servira à mieux comprendre la problématique reliée aux métaux lourds et à leur action sur les lymphocytes T, suivi de l'hypothèse de recherche et de l'article scientifique présentant les résultats obtenus dans le cadre de cette étude. La dernière partie est composée d'une discussion de ces résultats et des conclusions qui peuvent être tirées de l'étude en général.

PREMIĖRE PARTIE: REVUE DE LA LITTÉRATURE

SECTION 1: LES LYMPHOCYTES T

1.1 Introduction

Il existe une importante variété de microorganismes pathogènes dans notre environnement. Ils peuvent infecter les cellules directement ou se propager et demeurer hors des cellules dans les tissus et les cavités de l'organisme. Leur présence peut avoir des conséquences graves chez l'homme; dans la plupart des cas, cependant, l'infection est éliminée rapidement sans laisser de trace. Cette élimination est rendue possible grâce à la présence du système immunitaire, qui s'est développé chez les êtres vivants pour contrer ces envahisseurs (Roitt, Brostoff et Male, 1997: 1). Пl existe différents types de réponses immunitaires. Les lymphocytes font partie des cellules responsables de l'immunité et sont impliqués dans les réponses immunitaires spécifiques qui assurent la reconnaissance et l'élimination d'un Ag. Une réponse immunitaire est triphasique et les différentes étapes sont (Roitt, Brostoff et Male, 1997: 8, 108):

1) la reconnaissance d'un Ag par les cellules T en collaboration avec les CPA;
2) l'initiation de la réaction menant à l'élimination de l'Ag reconnu et
3) l'établissement d'une mémoire immunologique.

Ce chapitre expliquera l'implication des lymphocytes T , dans les réponses immunitaires. Bien qu'une présentation des différentes sous-classes de lymphocytes T s'y trouve, une importance particulière sera apportée à la description de la structure, des caractéristiques et des fonctions des lymphocytes T CD4 ${ }^{+}$, cellules qui ont été étudiées dans le cadre de ce projet de maîtrise. Les chapitres suivants seront consacrés au processus d'activation cellulaire et des voies de signalisation impliquées, notamment celles menant à l'expression de l'IL-2, une cytokine ayant un rôle central à jouer au niveau de la mise en marche de la réponse immunitaire. Enfin, le dernier chapitre décrira l'effet
des métaux lourds sur le système immunitaire, et plus particulièrement au niveau de l'activation des lymphocytes T.

1.2 Classification et structure des lymphocytes T

Les précurseurs des cellules T maturent et se différencient en cellules immunocompétentes dans le thymus. Par la suite, les lymphocytes T migrent dans les organes lymphoïdes secondaires (rate, ganglions lymphatiques) via la circulation lymphatique. Ils forment un groupe hétérogène de cellules possédant des caractéristiques morphologiques et des fonctions différentes (Roitt, Brostoff et Male, 1997: 14). Ils peuvent être classés, premièrement, selon le type de TCR qu'ils expriment. Le TCR est d'abord exprimé par les cellules T lors de leur différenciation dans le thymus et chaque clone de lymphocyte T exprime un TCR spécifique à un seul Ag (Benjamini, Sunshine et Leskowitz, 1996: 156, 157).

1.2.1 Les TCR $\alpha \beta$ et $\gamma \delta$

Il existe deux types de TCR, le premier étant un hétérodimère formé des polypeptides α et β liés ensemble par des ponts disulfures, le second étant composé des polypeptides γ et δ qui est similaire au premier quant à l'organisation (Roitt, Brostoff et Male, 1997: 17; Benjamini, Sunshine et Leskowitz, 1996: 156). Étant donné que le récepteur $\alpha \beta$ est exprimé par 90 à 95% des lymphocytes T , ce dernier sera expliqué en détail (Figure 1).

Le TCR est une molécule transmembranaire possédant une courte queue cytoplasmique. Les polypeptides α et β appartiennent à la superfamille des immunoglobulines (Ig) de par leur homologie de structure avec les Ig. Chaque polypeptide possède dans sa portion extracellulaire un domaine variable ($\mathrm{V} \alpha, \mathrm{V} \beta$) et un domaine constant ($\mathrm{C} \alpha, \mathrm{C} \beta$). La liaison avec l'Ag se produit dans les régions variables (Benjamini, Sunshine et Leskowitz, 1996: 157). Bien que la quantité de gènes codant pour les régions variables soit limitée, le réarrangement somatique de ces gènes permet d'obtenir une très grande diversité dans le répertoire de TCR chez un individu (Benjamini, Sunshine et Leskowitz, 1996: 158) (Figure 1).

Figure 1: Molécules de surface exprimées par les lymphocytes T CD4 ${ }^{+}$.

* Figure inspirée de Roitt, Brostoff et Male, 1997.

Les molécules représentées ici ont un rôle primordial à jouer dans l'activation cellulaire. Le TCR est responsable de la reconnaissance de l'Ag spécifique. La molécule CD4 aide à la reconnaissance de l'Ag et transmet le signal à l'intérieur de la cellule. Les molécules du complexe CD 3 sont associées via leur domaines cytoplasmiques à des protéines qui sont responsables de la transmission du signal d'activation. Finalement, le CD28 est une molécule de co-activation qui permet l'activation optimale de la cellule. Les domaines des molécules sont reliés entre eux par des pont disulfures (non-représentés sur le schéma).

1.2.1.1 Le complexe associé au TCR

Le TCR est associé de façon non covalente avec le complexe CD3, un ensemble de polypeptides transmembranaires non-polymorphiques (Roitt, Brostoff et Male, 1997: 55). Ce complexe est nécessaire pour la transduction du signal induit par la liaison de l'Ag avec le TCR (Benjamini, Sunshine et Leskowitz, 1996: 158).

Le CD3 est composé des polypeptides γ, δ et deux chaînes ε appartenant à la superfamille des Ig. Le complexe associé au TCR est aussi composé dans la majorité des cas d'un homodimère composé de chaînes ζ, ou plus rarement, d'un hétérodimère composé d'une chaîne ζ et une chaîne η (Abbas, Lichtman et Pober, 1994: 143-144). La chaîne ζ est presque totalement intracellulaire avec seulement 9 acides aminés dans la portion extracellulaire (Benjamini, Sunshine et Leskowitz, 1996: 158). Le complexe associé au TCR ne se lie pas à l'Ag. Lorsque les domaines $V \alpha$ et $V \beta$ du TCR se lient à l'Ag, des changements se produisent dans le complexe CD 3 de manière à induire une cascade d'événements et activer les cellules T (Benjamini, Sunshine et Leskowitz, 1996: 158) (Figure 1).

1.2.2 Les sous-classes de lymphocytes $\mathrm{T} \alpha \beta$

Les cellules T exprimant le TCR $\alpha \beta$ peuvent être subdivisées selon l'expression de la molécule CD8 ou CD4 (Roitt, Brostoff et Male, 1997: 17). Les cellules T CD8 ${ }^{+}$ont des propriétés cytotoxiques alors que les cellules $\mathrm{T} \mathrm{CD4}{ }^{+}$ont une fonction auxilliaire (Th ou T-helper). Les premières reconnaissent l'Ag spécifique associé à une molécule du soi du complexe majeur d'histocompatibilité (CMH) de classe I (CMH I) alors que les secondes reconnaissent l'Ag spécifique en association avec le CMH de classe II (CMH II) du soi. Les molécules CD4 et CD8 restreignent donc les cellules avec lesquelles les lymphocytes T peuvent interagir (Roitt, Brostoff et Male, 1997: 17). Dans le cadre de ce mémoire, les cellules à l'étude sont des lymphocytes T CD4 ${ }^{+}$. Par conséquent, il s'avère important de bien comprendre les structure et fonction du CD4.

Le CD4 est une molécule transmembranaire d'environ 55 kDa exprimée en tant que monomère à la surface des lymphocytes T périphériques et des thymocytes (Benjamini, Sunshine et Leskowitz, 1996: 159; Abbas, Lichtman et Pober, 1994: 151). Il possède au moins quatre domaines extracellulaires apparentés aux Ig, une région
transmembranaire hydrophobe ainsi qu'une queue cytoplasmique hautement basique longue de 38 acides aminés (Abbas, Lichtman et Pober, 1994: 151) (Figure 1).

Le CD4 joue au moins deux rôles distincts. Il agit premièrement comme molécule d'adhésion. En effet, lorsque le TCR reconnaît un Ag dans le contexte du CMH II, la molécule CD4 aide à raffermir et stabiliser la liaison entre la cellule T et la cellule présentatrice d'antigène (CPA) (Benjamini, Sunshine et Leskowitz, 1996: 159; Abbas, Lichtman et Pober, 1994: 151). La présence de cette molécule est essentielle car la liaison du TCR-Ag/CMH II peut être de faible affinité (Benjamini, Sunshine et Leskowitz, 1996: 159). Ainsi, le CD4, par le biais de ses deux domaines à Ig de la portion N-terminale, se lie au domaine β_{2} du CMH III (Benjamini, Sunshine et Leskowitz, 1996: 159; Abbas, Lichtman et Pober, 1994: 151). Le deuxième rôle majeur joué par le CD4 est la transmission intracellulaire du signal. La portion intracellulaire du CD4 est associée à une protéine tyrosine kinase (PTK) spécifique, la p56 ${ }^{\text {lck }}$ (Lck), qui assurent la transmission du signal suite à la liaison du CD4 au CMH II et, donc, la promotion des réponses fonctionnelles subséquentes chez les cellules T restreintes par le CMH II (Benjamini, Sunshine et Leskowitz, 1996: 159; Abbas, Lichtman et Pober, 1994: 151).

1.2.3 Les sous-classes de lymphocytes T CD4 ${ }^{+}$

La fonction effectrice majeure des lymphocytes $\mathrm{T} \mathrm{CD4}{ }^{+}$est la sécrétion de cytokines qui agissent de façon autocrine et paracrine. Ces cytokines peuvent agir sur d'autres lymphocytes T et aussi sur les lymphocytes B, les macrophages, les leukocytes inflammatoires et l'endothelium vasculaire (Abbas, Lichtman et Pober, 1994: 157). Ces cytokines exercent une variété d'effets biologiques qui ont pour but de promouvoir et de réguler les réponses humorale et cellulaire ainsi que l'inflammation (Abbas, Lichtman et Pober, 1994: 157).

Les cellules T CD4 ${ }^{+}$se sous-divisent également en lymphocytes T auxilliaires de type 1 (Th1, T-helper 1) ou de type 2 (Th2, T-helper 2), selon le type de cytokines qu'elles produisent. Ainsi, les Th1 sécrètent l'IL-2, l'interféron γ (IFN γ), le tumor necrosis factor β (TNF β) et l'interleukine-12 (IL-12), responsables de l'activation des cellules T CD^{+}, NK et les macrophages. Les Th2 sécrètent l'interleukine-4 (LL-4), l'interleukine-5 (IL-5), l'interleukine-6 (IL-6) et l'interleukine 10 (LL-10), qui activent les cellules B et
induisent un changement dans la synthèse des anticorps (Ac) de l'isotype IgG à IgE (Roitt, Brostoff et Male, 1997: 17; Kurt-Jones et al., 1987; Swain et al., 1991). Donc, dans les réponses contre la plupart des virus de même que l'hypersensibilité de type retardée, on observe une prédominance de cytokines produites par les Thl alors que dans les cas d'allergies déclenchées par une infection à un parasite, les cytokines des Th2 sont prédominantes (Benjamini, Sunshine et Leskowitz, 1996: 206). Enfin, une autre sousclasse, Th0, a aussi été décrite. Ces cellules sécrètent l'LL-2, l'LL-4 et IFN γ. Cette sousclasse est en fait un précurseur des deux autres, et sous certaines conditions, se changera en Th1 ou en Th2 selon la pression de l'environnement (Benjamini, Sunshine et Leskowitz, 1996: 206).

1.2.4 La molécule CD28

Les lymphocytes $\mathrm{T} \mathrm{CD}^{+}$expriment d'autres marqueurs à leur surface qui permettent de les identifier tels que la molécule CD28. Cette molécule est composée d'un homodimère de chaînes de 44 kDa reliées par des ponts disulfures. Chacune des chaînes possèdent un seul domaine extracellulaire apparenté aux Ig , un domaine transmembranaire et une queue cytoplasmique sans activité kinase intrinsèque mais possédant des tyrosines qui peuvent être phosphorylées par des PTKs suite à l'activation de la cellule (Abbas, Lichtman et Pober, 1994: 155; Kim, Tharayil et Rudd, 1998). Le CD28 est exprimé par la plupart des lymphocytes T matures (la majorité des lymphocytes T CD4 ${ }^{+}$et quelques lymphocytes T CD8 ${ }^{+}$) (Benjamini, Sunshine et Leskowitz, 1996: 168; Abbas, Lichtman et Pober, 1994: 149). Elle n'est pas associée au TCR à la surface des cellules T (Benjamini, Sunshine et Leskowitz, 1996: 168). Cette molécule interagit avec les molécules B7.1 et B7.2 (CD80 et CD86, respectivement) qui sont exprimées par certaines CPA (cellules B activées, cellules dendritiques macrophages activés) (Linsley, Clark et Ledbetter, 1990; Freeman et al., 1993a, 1993b; Benjamini, Sunshine et Leskowitz, 1996: 168; Abbas, Lichtman et Pober, 1994: 155) (Figure 1).

Le CD28 est une molécule de co-stimulation qui a pour fonction d'activer de façon optimale des cellules T. La reconnaissance par le TCR de l'Ag présenté par le CMH II n'est généralement pas suffisant pour induire un signal fort permettant l'activation complète de la cellule T CD4 ${ }^{+}$(Benjamini, Sunshine et Leskowitz, 1996: 167, 168). Pour
y arriver, l'engagement du TCR par $\mathrm{Ag} / \mathrm{CMH}$ II doit généralement être accompagné par un stimulus provenant d'un co-récepteur tel que le CD28 (Benjamini, Sunshine et Leskowitz, 1996: 168; Schwartz, 1992).

La co-stimulation des cellules T par le CD28 augmente fortement l'expression des gènes de cytokines (Fraser et Weiss, 1992) ainsi que la stabilité des acides ribonucléiques messagers (ARNm) correspondants (Lindstein et al., 1989; Chen et al., 1998). De plus, il induit l'activation de certaines kinases comme JNK (Su et al., 1994) et de certains facteurs de transcription tels que AP-1 (Rincon et Flavell, 1994) et NFкB (Kalli et al., 1998). Cependant, le rôle précis joué par la co-stimulation par le CD28 dans les fonctions décrites ci-haut est mal compris et controversé. Les différentes hypothèses seront décrites ultérieurement.

SECTION 2: LES LYMPHOCYTES T CD4 ${ }^{+}$ET LA RÉPONSE IMMUNITAIRE

2.1 La reconnaissance de l'antigène par le TCR

Pour être activées, les cellules $\mathrm{T} \mathrm{CD4}{ }^{+}$doivent reconnaître un Ag spécifique présenté dans le contexte d'une molécule CMH II du soi exprimée par une CPA (Allen et Unanue, 1987; Geppert et Lipsky, 1989). Les cellules de type myéloïde provenant de la moelle osseuse ainsi que les cellules dendritiques sont des CPA particulièrement efficaces pour initier la réponse primaire, c'est-à-dire pour activer les cellules T naïves, car elles expriment constitutivement de hauts niveaux de CMH П et de molécules de costimulation et d'adhésion (Benjamini, Sunshine et Leskowitz, 1996: 200). Ces cellules internalisent les Ag exogènes et les dégradent à l'aide d'enzymes protéolytiques dans des compartiments intracellulaires spécialisés. Les peptides antigéniques qui en résultent s'associent, sous forme de fragments linéaires de 12 à 25 acides aminés, au CMH II à l'intérieur des endosomes au moment de leur migration à la surface cellulaire. Les fragments peptidiques linéaires reconnus par les lymphocytes $\mathrm{T} \mathrm{CD4}{ }^{+}$sont appelés épitopes et sont masqués la plupart du temps dans la conformation primaire de la protéine. Seule une minorité de fragments peptidiques provenant d'un antigène protéique peut se lier à une molécule du CMH II. De plus, différentes molécules du CMH II se lieront à des peptides différents. Un TCR spécifique reconnaîtra alors un de ces complexes $\mathrm{Ag} / \mathrm{CMH}$ II et s'y liera pour permettre l'activation de la cellule $\mathrm{T} \mathrm{CD4}{ }^{+}$. Tel que mentionné, cette interaction sera solidifiée par la liaison de la molécule CD4 à la portion invariante du CMH II (Benjamini, Sunshine et Leskowitz, 1996: 201).

Une fois que les cellules T ont interagi avec l'Ag, elles sont sensibilisées. Les réponses subséquentes impliquant ces cellules sont appelées réponses secondaires ou mémoires. En général, les réponses immunitaires impliquant les cellules T se produisent dans les organes lymphoïdes secondaires tels que les ganglions lymphatiques (Benjamini, Sunshine et Leskowitz, 1996: 201).

2.2 Activation des lymphocytes T CD4 ${ }^{+}$et voies de signalisation intracellulaires

L'activation des lymphocytes T CD4 ${ }^{+}$est un processus complexe. Cet événement nécessite l'induction de multiples voies de signalisation intracellulaires, qui sont activées par le biais du complexe du TCR et de la molécule de co-stimulation CD28. L'activation se fait en plusieurs étapes, qui sont: (1) les événements précoces de transduction de signaux, (2) l'activation de la transcription des gènes et l'expression de nouvelles molécules de surface et (3) la sécrétion de nouvelles cytokines effectrices et induction de la mitose (Abbas, Lichtman et Pober, 1994: 158; Owaki et al., 1993).

Cette section décrira en détail les quatre principaux événements précoces, à savoir :

1) la phopshorylation des tyrosines sur des protéines membranaires et cytoplasmiques;
2) l'hydrolyse des phospholipides inositols (PLP_{2}) de la membrane plasmique;
3) l'augmentation des concentrations cytoplasmiques de calcium $\left(\mathrm{Ca}^{2+}\right)$ et
4) l'augmentation de l'activité de la protéine kinase C (PKC).

Tous ces événements sont interreliés et coopèrent, entre autres, pour activer l'expression du gène de l'LL-2, une des principales conséquences fonctionnelles de l'activation des lymphocytes T CD4 ${ }^{+}$(Smith, 1984) (Figure 2).

Figure 2: Représentation schématique des voies de signalisation intracellulaire activées chez les lymphocytes $\mathbf{T} \mathbf{C D 4}{ }^{+}$suite à la reconnaissance d'un Ag.

* figure inspirée de Hopkins et al., 2000.

Les voies représentées mènent à l'activation de l'expression du gène de l'LL-2. FT: facteurs de transcription; P-: phosphore. Les traits blancs représentent les ITAMs. Pour les autres abbréviations, voir le texte.

2.2.1 Activation des protéines tyrosines kinases (PTKs)

L'état de phosphorylation des résidus tyrosines (Tyr), thréonines (Thr), et sérines (Ser) sur différentes protéines est un élément critique à plusieurs niveaux de la transduction de signaux suivant l'activation du complexe du TCR. L'addition de groupes phosphates sur les protéines par des PTKs et le retrait de ces groupes par les protéines phosphatases sont les événements clés qui permettent la poursuite de la cascade jusqu'au niveau de l'activation de la transcription des gènes (Abbas, Lichtman et Pober, 1994: 158).

Le point de départ des événements de phosphorylation/déphosphorylation sont les domaines cytoplasmiques des molécules du CD3, de la chaîne ζ et du CD4 (Weiss et Littman, 1994). Les queues cytoplasmiques de ces molécules contiennent un motif commun, $\mathrm{EX}_{2} \mathrm{YX}_{2} \mathrm{~L} / \mathrm{IX}_{7} \mathrm{YX} 2 \mathrm{~L} / \mathrm{I}$, appelé ITAM (Immunoglobulin receptor family Tyrosine-based Activation Motif) (Cantrell, 1996) (Figure 2). Les tyrosines de ces motifs sont phosphorylées par des PTKs, enzymes détectables dans les secondes suivant l'activation via le TCR (Samelson et Klausner, 1992; Abbas, Lichtman et Pober, 1994: 159; Gauen et al., 1994). La p56lck (Lck) est une PTK de la famille des kinases src qui est exprimée surtout par les lymphocytes T. Elles est physiquement associée à la queue cytoplasmique du CD4 (Abbas, Lichtman et Pober, 1994: 160) (Figures 1 et 2). Cette PTK est essentielle à l'activation des cellules T. En effet, avec des cellules T de souris exprimant un CD4 muté incapable de se lier à Lck, il a été démontré qu'il n'y avait pas d'activation des cellules via le TCR (Abbas, Lichtman et Pober, 1994: 160). La liaison du complexe $\mathrm{Ag} / \mathrm{CMH}$ II par le TCR et le CD4 induit un signal qui provoque le rapprochement entre le CD4 associé à Lck et les ITAMs, substrats de Lck (Abbas, Lichtman et Pober, 1994: 160). p59Fyn est une autre PTK exprimée dans la plupart des cellules hématopoiétiques. Elle est associée physiquement, quoique faiblement, à la queue cytoplasmique de la chaîne ζ (Abbas, Lichtman et Pober, 1994: 160) (Figures 1 et 2). Ces PTKs sont activées par la déphosphorylation de leurs résidus tyrosines par une phosphatase appelée CD45, une molécule transmembranaire qui possède une activité phosphatase dans sa portion cytoplasmique (Abbas, Lichtman et Pober, 1994: 160).

Il existe une autre PTK associée physiquement, quoique faiblement, à la chaîne ζ. ZAP-70, est une PTK de 70 kDa de la famille syk qui est exprimée exclusivement par les
cellules T (Chu, Morita et Weiss, 1998) (Figures 1 et 2). Les deux domaines SH2 (src-homology-2 domain) de ZAP-70 interagissent et s'associent aux tyrosines phosphorylées des ITAMs de la chaîne ζ (Cantrell, 1996). Cette liaison devient très étroite seulement après la stimulation par le TCR puisque les domaines SH2 de ZAP-70 se lient de façon préférentielle à un ITAM doublement phosphorylé (Gauen et al., 1994; Isakov et al., 1995). L'activité enzymatique de ZAP-70 dépend de cette étroite association (Abbas, Lichtman et Pober, 1994: 160).

La phosphorylation des tyrosines des ITAMs a un rôle double. D'une part, elle favorise le recrutement à la membrane de protéines qui vont s'attacher aux tyrosines phosphorylées des ITAMs par leurs domaines SH 2 . Les domaines SH 2 peuvent reconnaître différents ITAMs et la présence de multiples tyrosines phosphorylées dans la même protéine membranaire peut entraîner la formation de complexes protéiques à la membrane plasmique. D'autre part, la phosphorylation des tyrosines permet l'activation des enzymes à domaines SH 2 qui ont été recrutées à la membrane et se sont «amarrées» aux tyrosines phosphorylées des ITAMs.

La séquence d'événements proposée dans la cascade PTKs régulée par le TCR est l'activation des src kinases, la phosphorylation des motifs ITAMs des chaînes du CD3 le recrutement et la phosphorylation sur les résidus tyrosines de ZAP-70 (Iwashima et al., 1994; Weil et al., 1995). ZAP-70 ainsi activé se couple ensuite avec d'autres événements de signalisation en aval en phosphorylant ces substrats et différentes protéines de liaison/adaptatrices (Lat, SLP-76) qui sont activées exclusivement par les PTKs associées au TCR (Nunès et al., 1996). Ces protéines sont impliquées dans l'organisation de complexes mulitmoléculaires au niveau de la membrane plasmique (Sieh et al., 1994; Rudd, 1999; Schraven et al., 1999). De plus, elles sont aussi essentielles pour l'activation d'événements se produisant en aval de l'activation des PTKs, tels que l'activation de la PLC $\gamma 1$ l, la mobilisation du calcium, ainsi que dans l'activation de certains facteurs de transcription impliqués dans l'expression du gène de l'LL-2 (Yablonski et al., 1998; Finco et al., 1998).

2.2.2 Activation de la PLC $\gamma \mathbf{} 1$

L'activation des PTKs à la suite de la liaison de l'Ag au TCR mène à la régulation de la phospholipase $\mathrm{C} \gamma \mathrm{l}$ ($\mathrm{PLC} \gamma \mathrm{l}$). L'engagement du TCR permet le recrutement et l'«amarrage» de la PLC $\gamma 1$ aux ITAMs phosphorylés du complexe CD3 (Weiss et Littman, 1994). L'activation de la PLC $\gamma 1$ résulte en l'hydrolyse des phospholipides inositols $\left(\mathrm{PIP}_{2}\right)$, générant des inositols polyphosphates $\left(\mathrm{IP}_{3}\right)$ et des diacylglycérols (DAG) (Weiss et Littman, 1994; Sieh et al., 1994). Les $\mathbb{P P}_{3}$ générés par PLC $\gamma 1$ induisent la mobilisation $\mathrm{du} \mathrm{Ca}^{2+}$ intracellulaire en provoquant le relargage des réserves de Ca^{2+} dans le cytoplasme (Figure 2). Cette augmentation demeure soutenue même une heure après la stimulation et est alors dépendante d'un influx de Ca^{2+} extracellulaire (Abbas, Lichtman et Pober, 1994: 160). La mobilisation du Ca^{2+} supporte l'activation de différentes protéines, notamment des facteurs de transcription tels que le NFAT et NFKB, impliqués dans l'expression du gène de l'LL-2 (Emmel et al., 1989; Finco et al., 1998).

La production de DAG par PLC $\gamma 1$ induit l'activation des Ser/Thr kinases de la famille des PKC. En fait, de tout les isoformes de PKC exprimés dans les cellules T en voie d'activation, il a été démontré que seul la $\mathrm{PKC} \theta$ est recrutée au site membranaire du contact cellule T/CPA. La PKC日 est reconnue pour activer, en retour, le facteur de transcription NFкB (Monks et al., 1997).

2.2.3 Activation des MAPK

Il existe aussi d'autres voies activées par les PTKs suite à l'engagement du TCR, dont celles qui activent les GTPase, c'est-à dire les enzymes capables d'hydrolyser le GTP (Guanosine 5^{\prime}-triphosphate), et les protéines kinases activées par des mitogènes (MAPK ou Mitogen-Activated Protein Kinase). Une des plus connue, p21 ${ }^{\text {ras }}$ (Ras), est régulée par une voie dépendante des PTKs (Cantrell, 1996). Le TCR régule l'activité de Ras via les protéines échangeuses de guanine, comme Sos, qui, à l'instar de ZAP-70, s'associe à des protéines adaptatrices (Grb2) afin d'activer différentes voies de signalisation (Sieh et al., 1994; McCormick, 1993).

Ras a un rôle crucial à jouer dans l'activation des cellules T puisque sa forme active, Ras-GTP, est requise pour la production d'LL-2 et contrôle l'activité catalytique de plusieurs kinases en aval de la cascade d'activation (Rayter et al.,1992; Karin et Hunter,
1995). Ras induit la phosphorylation de Raf-1, une MAPK kinase kinase (ou MEKK). On pense que Raf-1 aurait un rôle clé à jouer dans le couplage de Ras avec les MAPK/ERK $1 / 2$ en induisant la phosphorylation des MAPK kinases (ou MEK) dans les cellules T (Izquierdo et al., 1993). La voie Ras-Raf-MEK-MAPK (ERK 1/2) supporte la phosphorylation et la régulation de Elk-1 après l'activation des ERK $1 / 2$ et leur translocation dans le noyau (Hunter et Karin, 1992). Elk-1 fait partie d'une famille de protéine qui forment un complexe tertiaire avec des facteurs de transcription impliqués entre autres dans l'expression du gène c-Fos, une composante du complexe AP-1, facteur de transcription impliqué dans l'expression du gène de l'IL-2 (Jain, Loh et Rao, 1995) (Figure 2).

Parallèlement, il existe dans les cellules T d'autres petites GTPases impliquées dans la transduction de signal à partir du TCR. On pense entre autres aux protéines de la famille des GTPase Rho (Rac-1, Cdc42, Rho) qui activent les enzymes JNK (c-Jun N terminal kinase) et p38 MAPK (Cano et Mahadevan, 1995; Coso et al., 1995; Minden et al., 1995). L'activation de ces GTPase dépend du recrutement de p95 vav (Vav-1), une protéine de 95 kDa exprimée seulement dans les cellules hématopoïétiques et dont l'activation dépend de la phosphorylation de ses tyrosines par Lck (Gulbins et al., 1993; Han et al., 1997).

Vav-l est une protéine échangeuse de guanine aussi appelée GRF (GDP releasing factor) qui agit sur les GTPase de la famille Rho (Crespo et al., 1997; Han et al., 1997). Vav-1 induit la formation de différents complexes de protéines à la membrane plasmique, suite à la reconnaissance d'un Ag par le TCR (Tarakhovsky et al., 1995; Zhang et al., 1995). L'importance de Vav dans l'activation des cellules T a été démontré à l'aide de souris Vav^{-1}. En effet, ces souris sont incapables d'effectuer la polymérisation de l'actine, d'augmenter le Ca^{2+} intracellulaire et d'activer ERK, NFAT et NFKB (Fischer et al., 1998; Holsinger et al., 1998; Costello et al., 1999). Parallèlement, la surexpression de Vav-1 dans les cellules T Jurkat facilite l'activation de NFAT (Wu, Katzav et Weiss) et NFicB (Hehner et al., 2000). Fait important, il a été démontré que Vav-1 serait un point de convergence des signaux générés par le TCR et le CD28 (Salojin, Zhang et Delovitch, 1999; Herndon et al., 2001).

L'activation de Vav-1 induit en aval l'activation de différentes kinases, telles que la p38MAPK qui induit l'activation de la MAPK/AP-2 puis ATF-2, un facteur impliqué dans la formation de complexes de transcription qui activent l'expression du gène de l'LL2 (Junger et al., 1997).

L'activation des GTPase Rho induit aussi l'activation des enzymes JNK 1/2. L'activation de JNK1 dans les cellules T semble aussi nécessiter l'activation d'enzymes impliquées dans la voie $\mathrm{du} \mathrm{Ca}^{2+}$, telles que la calcineurine et autres signaux dérivés du TCR. La phosphorylation des JNK permet l'activation de c-Jun par une cascade similaire à celle menant à l'activation de ERK $1 / 2$ (Figure 2). Cette protéine s'associe à c-Fos pour former le facteur de transcription AP-1 (Jain, Loh et Rao, 1995). Enfin, la convergence entre les voies du TCR et du CD28 impliquerait JNK, point qui sera discuté dans la section suivante.

2.2.4 Co-stimulation des lymphocytes $\mathrm{T}^{\mathrm{CD}}{ }^{+}$: importance du co-récepteur CD28

La stimulation du TCR par Ag/CMH III («signal 1») combiné à la liaison du corécepteur CD28 à CD80 et CD86 («signal 2») (Linsley, Clark et Ledbetter, 1990; Freeman et al., 1993a, 1993b) déclenchent des signaux nécessaires à l'activation complète des cellules T durant la réponse immunitaire (Karin et Hunter, 1995; Schwartz, 1992). Alors que le signal 1 a été largement étudié et est bien caractérisé, la nature du signal 2 est nébuleuse, même si la molécule CD28 est connue depuis longtemps (Linsley et Ledbetter, 1993; June et al., 1994).

Il a été démontré que CD80 et CD86 ont des capacités similaires de liaison au CD28 et déclenchent des cascades de co-stimulation identiques (Nunès et al., 1996). Quant aux fonctions exercées par le CD28, on sait qu'il régule l'expression du gène de l'Ll-2 aux niveaux transcriptionnel et post-transcriptionnel. D'une part, l'activation du TCR et du CD28 induit la liaison de facteurs IkB (p 50 , p65, c-Rel) à un élément de réponse du CD28, le CD28RE (CD28 Response Element) découvert dans le promoteur de l'LL-2 (Fraser et Weiss, 1992). D'autre part, la co-stimulation augmente la stabilité de l'ARNm de l'IL-2 par un mécanisme encore inconnu (Lindstein et al., 1989; Chen et al., 1998; Gonsky et al., 1999). La liaison CD28/CD80 ou CD86 stimule l'expansion des cellules T via des mécanismes à la fois dépendants et indépendants de l'LL-2 qui régulent
la progression du cycle cellulaire au niveau des phases G1 et G1/S (Appleman et al., 2000), associant le CD28 au développement de l'auto-immunité chez des modèles murins (Harlan et al., 1994).

Malgré les découvertes citées précédemment, les voies de signalisation intracellulaires activées par la co-stimulation des cellules T par le CD28 sont non seulement mal comprises, mais leur rôle dans l'activation des cellules T est controversé. Certains suggèrent que la co-stimulation par le CD28 ne servirait qu'à amplifier les signaux déjà déclenchés par le TCR, entraînant la phosphorylation des tyrosines de plusieurs protéines dont la queue cytoplasmique du CD28 elle-même (Rudd, 1996; Chambers et Allison, 1999), au lieu de contribuer à l'activation en déclenchant un signal unique, permettant de réguler l'activité de PTKs distinctes de celles activées par le TCR. Plusieurs travaux qui appuient la première hypothèse ont démontré que la co-stimulation augmentait la durée et l'intensité de la réponse engendrée par la stimulation du TCR (Lenschow, Walunas et Bluestone, 1996) en permettant l'utilisation optimale de certains effecteurs précoces activés via le TCR et impliqués entre autres dans l'augmentation de l'expression de l'Ll-2 (Tuosto et Acuto, 1998; Viola et al., 1999).

Il a effectivement été démontré que le TCR et le CD28 avaient des substrats en commun (les familles de PTKs Src et Tec, Itk, $\mathrm{PI}_{3} \mathrm{~K}$ (Phosphotidylinositide 3-Kinase), sphingomyélinase, Vav-1, Cbl, Grb-2, MAPK/ERK kinase-1). Cependant, plusieurs études sur le sujet se contredisent (Salojin, Zhang et Delovitch, 1999; Herndon et al., 2001). Néanmoins, un grand nombre de travaux ont illustré l'importance de Vav-1 dans la connexion des voies du TCR et du CD28 et dans la transduction des signaux (Nunès et al., 1996; Michel et al., 2000; Herndon et al., 2001).

Michel et al. (2000) ont proposé un modèle selon lequel la liaison CD28/CD80 ou CD86 optimiserait l'activité de Vav-1 déjà activé par le TCR et induirait des modifications dans l'actine corticale nécessaires au rapprochement et à l'intégration des voies de signalisation activées par TCR et CD28. Cette modification de l'actine faciliterait la formation de complexes multimoléculaires stables et permettrait d'augmenter l'activité des différents effecteurs. Cet événement aurait un rôle clé à jouer dans la transduction de signaux et l'activation de différentes molécules (NFAT, Rac-1) suite à l'activation CD28/TCR (Wardenburg et al., 1996; Fang et Koretzky, 1999).

À la base de ce modèle, ils ont observé que la surexpression de Vav-1 entraînait une forte activation de NFAT dans les cellules Jurkat activées via TCR/CD28. Cette activation ne se produisait que lorsque la queue cytoplasmique du CD28 et le domaine SH2 étaient intacts, sans quoi des protéines comme NFAT n'étaient pas phosphorylés et il n'y avait pas de formation de complexes multimoléculaires (Michel et al., 2000; Rincon et Flavell, 1997; Wu, Katzav et Weiss, 1995). Ces travaux suggèrent donc que la costimulation par le CD28 entraîne l'activation de NFAT et, par conséquent de l'expression du gène de l'Ll-2.

En plus de NFAT, la formation de complexes multimoléculaires induite par l'activation de Vav-1 suite à l'engagement des TCR et CD28 régule aussi l'expression du gène de l'IL-2 en modulant l'activation de NFKB (Herndon et al., 2001) et de AP-1 (Su et al., 1994). L'activation de c-Jun et AP-1 dépend de l'activation de JNK par des signaux dérivant du TCR et du CD28 (Su et al., 1994). Ces résultats démontrent bien la grande importance de l'engagement du CD28 dans l'expression de l'LL-2 (Figure 2).

D'autres chercheurs ont par ailleurs démontré que le substrat commun des voies d'activation dérivant du TCR et du CD28 pourrait être ZAP-70, ce qui entraînerait l'activation de la p38 MAPK (Salojin, Zhang et Delovitch, 1999). Ces résultats contredisent ceux de Herndon et al. (2001) qui parlaient plutôt d'un rôle central pour Vav1, les différences s'expliquant probablement par l'utilisation de modes de stimulation différents (Herndon et al. 2001).

En plus des substrats qu'il a en commun avec le TCR, le CD28 aurait aussi la capacité d'induire la phosphorylation et, par conséquent, l'activation de PTKs qui lui sont sécifiques, comme la $\mathrm{PI}_{3} \mathrm{~K}$ et p62. Certains travaux ont démontré l'existence d'une protéine de 62 kDa (p62) qui est phosphorylée suite à la liaison $\mathrm{CD} 28 / \mathrm{B} 7$, mais qui n'est par phosphorylée par le TCR (Nunès et al., 1996). p62 serait une molécule adaptatrice multifonctionnelle qui aurait une fonction sélective de connexion des PTKs activées par le CD28 à différentes voies de signalisation, notamment aux GTPase de la famille Rho (Nunès et al., 1996).

Finalement, il a été rapporté que la stimulation du CD28 par ses ligands naturels ou par un Ac monoclonal dirigé contre le CD28 (anti-CD28) n'induisaient pas l'activation des mêmes effecteurs intracellulaires (Nunès et al., 1994, 1996). Par exemple, l'anti-

CD28 permet l'activation de PLC $\gamma 1$ (Nunès et al., 1994) et certaines PTKs (Fyn, Lck) (Hutchcroft et Bierer, 1994). Par contre, la stimulation par les ligands CD80 ou CD86 n'active pas $\mathrm{PLC} \gamma 1$, mais plutôt $\mathrm{PI}_{3} \mathrm{~K}$ (Nunès et al., 1994). De plus, l'utilisation d'un antiCD28 induit l'association du CD28 phosphorylé aux tyrosines à des molécules adaptatrices qui, normalement, seraient impliquées dans les voies de signalisation activées par le TCR (Nunès et al., 1994).

2.3 Modèles d'activation pour l'étude des lymphocytes T CD4 ${ }^{+}$

Différents modèles ont été développés dans le but d'étudier les événements de signalisation déclenchés par la reconnaissance d'un Ag et menant à la sécrétion d'LL-2. Certains de ces modèles utilisent des composés qui peuvent "mimer" l'activation des cellules T par des moyens naturels, c'est-à-dire les activer via le complexe du TCR et le CD28, en absence des ligands naturels. Pour ce faire, ces systèmes utilisent entre autres des Ac monoclonaux dirigés contre les récepteurs de surface comme le complexe du CD3/TCR ou le CD28 (Owaki et al., 1993) (Figure 3). Ces Ac sont spécifiques pour le récepteur qu'ils activent. L'utilisation d'Ac monoclonaux pour l'étude in vitro de l'activation des lymphocytes T CD4 ${ }^{+}$est un mode d'activation dit «physiologique», c'est-à-dire qu'il a pour avantage de respecter les voies naturelles d'activation de ces cellules, permettant ainsi d'obtenir des résultats aussi fidèles que possible à ce qui se passe en réalité. Il est possible d'augmenter la force du signal d'activation en mettant les lymphocytes T en présence des Ac monoclonaux dans des puits de plaque de culture où un anticorps monoclonal anti-IgG a été préalablement adsorbé. Cela permet un pontage des cellules T plus efficace qui optimise l'activation cellulaire (Geppert et Lipsky, 1987).

Pour stimuler les cellules in vitro de façon physiologique, des cellules CPA peuvent aussi être utilisées. En effet, dans le cadre de ce mémoire, la lignées de lymphocytes T étudiée (JKE6-1) ont été, entre autres, stimulés à l'aide d'un Ac monoclonal humain dirigé contre le CD3 en combinaison avec des cellules DT30, une lignée de lymphocytes B murins qui surexpriment le CD80 humain (Figure 3). L'utilisation de ces cellules comportent un avantage double. D'une part, le CD80 stimulera directement le CD28 exprimé par les lymphocytes T. D'autre part, puisque la cellule DT30 est d'origine murine, elle permettra la liaison, par leur portion Fc , des Ac
monoclonaux anti-CD3, formant des aggrégats de façon à ponter les TCR, augmenter la force du signal d'activation et induire la production d'LL-2 par les cellules. Ce type de combinaison a déjà démontré son efficacité par le passé (Lipsky et al., 1976).

Enfin, les lymphocytes T peuvent être stimulés en court-circuitant l'implication des PTKs, c'est-à-dire sans passer par le TCR et le CD28. En effet, il existe des composés, tels que la phorbol 12-myristate 13-acetate (PMA) et les Ca^{2+} ionophores (IONO), qui vont, respectivement, aller activer directement la PKC et la mobilisation du calcium intracellulaire (Figure 3). L'activation des lymphocytes T en passant outre les PTKs comporte un grand avantage dans l'étude des voies de signalisation. En effet, cela permet de mieux situer la cible de certains toxiques de l'environnement comme les métaux lourds dans la cascade d'activation des lymphocytes T et savoir si celle-ci est située en amont (au niveau des événements précoces) ou plutôt en aval.

Figure 3: Schématisation de trois modèles de stimulation des lymphocytes T. Ces modèles ont été utilisés dans le cadre de ce projet de maîtrise. Le premier (1) est physiologique et représente le plus fidèlement la réalité. II utilise des cellules accessoires murines, les DT30, combiné à un Ac dirigé contre le CD3 humain (anti-CD3). Les DT30 surexpriment le CD80 humain, permettant la stimulation de la cellule T via le CD28. Les DT30 permettent aussi le regroupement de l'anti-CD3 humain à leur surface par la portion Fc afin de stimuler adéquatement les lymphocytes T. Le deuxième modèle (2) stimule aussi les cellules T via les TCR/CD28 mais en utilisant deux types d'Ac, l'anti-CD3 et un autre dirigé contre le CD28 (anti-CD28). Le fait d'exposer les cellules à ces Ac dans des plaques où un autre Ac , un anti-IgG, a été préalablement fixé augmente la force du signal d'activation. Enfin, le troisième modèle active les lymphocytes T avec PMA et (IONO), induisant l'activation cellulaire sans passer par les TCR/CD28 et qui a comme avantage de permettre l'étude et la compréhension des voies de signalisation intracellulaires.

2.4 Apoptose: Élimination des lymphocytes $\mathrm{T} \mathrm{CD4}^{+}$après la réponse immunitaire

La terminaison de la réponse immunitaire se fait entre autres par l'élimination des lymphocytes T qui ont proliféré suite à la reconnaissance d'un Ag spécifique. Quelquesunes de ces cellules seront transformées en cellules mémoires ce qui aura comme effet d'induire une réponse plus rapide contre l'Ag lors d'une seconde infection. Cependant, les cellules excédentaires devront être éliminées afin d'éviter l'apparition de certains problèmes d'autoimmunité.

Le système immunitaire a développé un grand nombre de mécanismes indépendants pour contrôler toute réaction lymphocytaire potentiellement néfaste pour l'organisme. En fait, parmi tous les systèmes biologiques, le système immunitaire est le seul à avoir évolué de façon à éliminer activement ses propres cellules potentiellement dangereuses de manière à maintenir l'organisme en vie. Ces mécanismes agissent soit en inactivant les lymphocytes ayant répondu à l'Ag ou tout simplement en tuant les cellules (Abbas, 1996).

Le principal mécanisme cytolytique impliqué dans le contrôle de la réponse lymphocytaire est une voie de signalisation hautement régulée qui mène à la mort cellulaire par apoptose via l'interaction de Fas (CD95) avec son ligand, FasL (Abbas, 1996). Fas est un membre de la famille du récepteur de TNF regroupé parmi les protéines exprimées à la surface cellulaire alors que le FasL est aussi un membre de la famille du récepteur de TNF mais appartient au groupe des protéines sécrétées (Abbas, 1996).

La mort cellulaire programmée ou apoptose a été décrite en premier par Kerr, Wyllie et Currie (1972) et se distingue de la mort par nécrose selon différents critères morphologiques et biochimiques. Chez les cellules en apoptose, on observe généralement une condensation de la chromatine dans la périphérie nucléaire, la dissociation des protéines formant la charpente nucléaire de même que la formation de corps apoptotiques (Kerr, Wyllie et Currie, 1972). Les événements biochimiques apparaissant suite à l'induction de l'apoptose mènent ultimement, chez plusieurs types cellulaires, à la fragmentation internucléosomale de l'acide déoxyribonucléique (ADN) (Wyllie, 1980; El Azzouzi et al., 1994). La fragmentation est effectuée par les endonucléases, des enzymes activées suite à l'induction des voies signalitiques menant à l'apoptose (Wyllie, 1980). Les protéases cystéines-aspartates (caspases) sont d'autres enzymes impliquées dans la
signalisation et l'exécution de l'apoptose (Thornberry, 1999). Elles font l'objet d'études intensives depuis plusieurs années. Leur activation est complexe et est induite par un grand nombre de «stimuli de mort» (Robertson, Orrenius et Zhivotovsky, 2000). Brièvement, l'activation, par des voies de signalisation différentes, des deux principales caspases initiatrices (les caspases 8 et 9), mènent au recrutement et à l'activation de la pro-caspase-3 qui, sous sa forme active (caspase 3), va exécuter le clivage de différents substrats de mort impliqués dans l'initiation des changements se produisant pendant l'apoptose. Cependant, des études ont démontré que certains de ces changements pouvaient se produire indépendamment de l'activation des caspases (Robertson, Orrenius et Zhivotovsky, 2000).

Le processus apoptotique est régulé aussi à d'autres niveaux. Par exemple, il a récemment été démontré qu'une des premières étapes du processus apoptotique induit par le peroxyde d'hydrogène $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ chez les cellules PC 12 était médiée par un changement du statut fonctionnel de la mitochondrie. Ce nouvel état, qu'on nomme «transition de la perméabilité membranaire», mène, entre autre, au relargage du cytochrome c de la mitochondrie vers le cytoplasme (Yamakawa et al., 2000).

Ces altérations au niveau de la mitochondrie jouent un rôle crucial dans l'initiation de la cascade apoptotique menant à la mort de la cellule. Par exemple, le relargage de cytochrome c active la cascade apoptotique en aval. En effet, ce composé a la capacité d'activer certaines caspases dans le cytoplasme, qui mènent éventuellement à l'activation des caspases 9 et 3 (Shenker, Guo et Shapiro, 2000; Yamakawa et al., 2000; Li et al., 1997). Les pores formés dans la membrane mitochondriales qui causent le relargage du cytochrome c peuvent être stabilisés par certains facteurs, dont la protéine $\mathrm{Bcl}-2$. La présence de cette protéine stabilise les mégapores ce qui résulte en une protection de la cellule contre l'apoptose. Cette propriété de Bcl-2 fait qu'on dit de cette protéine qu'elle est anti-apoptotique. Cependant, il existe différents isoformes de $\mathrm{Bcl}-2$ et certains ont démontré avoir un effet positif sur l'apoptose (Robertson, Orrenius et Zhivotovsky, 2000).

Dans cette optique, plusieurs études ont démontré que le stress oxydatif était un des facteurs prédominants reliés à l'induction de l'apoptose par le biais de la production de radicaux libres (Wolfe, Ross et Cohen, 1994). De plus, la génération de radicaux libres s'accompagne généralement par un changement de la composition en thiols dans les
cellules, phénomène qui a aussi été associé à l'induction de l'apoptose (Shenker, Guo et Shapiro, 2000).

En résumé, l'apoptose est un événement de première importance dans le système immunitaire puisqu'il permet d'éliminer les cellules potentiellement dangereuses. L'apoptose est un processus qu peut être induit de maintes façons. Plusieurs substances et stress sont reconnus pour induire l'apoptose chez les lymphocytes T humains. Ceux-ci incluent les métaux lourds, tels que le mercure et le cadmium, qui ont été étudiés dans le cadre de ce projet de maîtrise.

SECTION 3: L'INTERLEUKINE-2 (IL-2)

3.1 Introduction

Une des fonctions principales des lymphocytes T activés est de contrôler l'ampleur de la réponse immunitaire par la production hautement régulée de nombreuses cytokines. Celles-ci agissent sur d'autres cellules afin d'amplifier la réponse et combattre efficacement l'Ag (Rothenberg et Ward, 1996). L'IL-2 est une des cytokines les mieux caractérisées. Elle est produite principalement par les cellules T CD4 ${ }^{+}$(Roitt, Brostoff et Male, 1997: 101) et a initialement été décrite comme un facteur de croissance très puissant (Paul et Seder, 1994). Elle agit sur un nombre restreint de cellules et principalement sur les cellules T elles-mêmes en induisant leur activation et prolifération (Smith, 1984). Elle induit aussi la prolifération et la différenciation des lymphocytes B ainsi que l'activation des macrophages et oligodendrocytes. L'LL-2 a aussi un effet antitumoral et est utilisée dans certaines immunothérapies (Roitt, Brostoff et Male, 1997: 101).

La régulation de l'expression du gène de l'LL-2 est un phénomène complexe et plusieurs voies de signalisation s'intègrent et coopèrent afin d'activer les facteurs de transcription régulant l'activation de ce gène. Ces facteurs incluent le nuclear factor of activated T cells (NFAT), NFאB, l'activated protein-1 (AP-1) et Oct. La fonction des signaux engendrés par la mobilisation du Ca^{2+} et l'activation de Ras et PKC ont d'abord été étudiés dans le contexte de la régulation de la production d'Шl-2 (Cantrell, 1996). En outre, la plupart des progrès dans la compréhension des voies de transduction de signaux dans les cellules T sont dus aux efforts mis en oeuvre pour tenter de relier les événements biochimiques immédiats déclenchés par l'activation du TCR au niveau de la membrane cellulaire aux facteurs de transcription qui contrôlent l'expression des gènes de cytokines.

3.2 Régulation de l'expression du gène

La régulation de l'expression de l'LL-2 se fait presque entièrement au niveau transcriptionnel et ce, de façon très stricte. Les cellules non-T n'expriment généralement pas ce gène, et les cellules $\mathrm{T} \mathrm{CD}^{+}$ne l'expriment que lorsqu'elles sont activées (Jain, Loh
et Rao, 1995). L'ARNm de l'LL-2 y est détecté rapidement après l'activation avec l'atteinte d'un équilibre entre les taux de transcription et de dégradation de l'ARNm de quatre à huit heures plus tard (Garrity et al., 1994; Shaw et al., 1988; Umlauf et al., 1995). De plus, selon la lignée cellulaire et le stimulus, le pic de transcription est atteint entre 12 et 24 heures après la stimulation et les éléments régulateurs du promoteur de l'LL2 demeurent en action plusieurs heures après la stimulation (Garrity et al., 1994). Le déclin de la transcription peut donc refléter la baisse des niveaux de facteurs de transcription activés, leur dissociation des sites de liaison sur le promoteur suite à des modifications post-traductionnelles ou leur remplacement par des protéines apparentées qui n'ont pas d'activité transcriptionnelle ou la répriment (Jain, Loh et Rao, 1995).

Par ailleurs, le déclin des taux d'ARNm est plus rapide que le déclin du taux de transcription (Shaw et al., 1988; Umlauf et al., 1995). Le traitement des cellules à la cycloheximide, un inhibiteur de synthèse protéique, cause l'accumulation de l'ARNm de l'LL-2 sans affecter la transcription en cours (Shaw et al., 1987, 1988), suggérant l'existence d'un mécanisme de dégradation inductible dépendant de la synthèse protéique (Lindstein et al., 1989; Umlauf et al., 1995). De plus, le traitement des cellules à l'actinomycine-D stabilise aussi considérablement l'ARNm de l'IL-2 (Shaw et al., 1988; Umlauf et al., 1995), suggérant que le mécanisme de dégradation agit au niveau de la synthèse de l'ARN. Enfin, la costimulation des cellules T par la voie B7-CD28 augmente la production d'LL-2, en partie par l'augmentation de la stabilité des ARNm des cytokines (Lindstein et al., 1989).

La phosphorylation/déphosphorylation des facteurs de transcription est un mécanisme clé dans la régulation de leur fonction et de l'expression du gène de l'LL-2 (Hunter et Karin, 1992; Hill et Treisman, 1995). La calcineurine, une phosphatase calcium-dépendante, y joue un rôle clé et son implication dans l'activation des facteurs de transcription impliqués dans l'expression du gène de l'Ll-2 sera discuté plus en détails ultérieurement. Il existe donc plusieurs voies de transduction de signaux qui régulent la transcription de l'LL-2 en activant des facteurs de transcription déjà existants ou en stimulant la synthèse de nouveaux facteurs nécessaires à l'assemblage et à la coordination optimale du complexe d'activation (Northrop et al., 1994).

3.3 Structure du promoteur

L'expression du gène de l'IL-2 par les cellules T est régulée principalement par une région activatrice spécifique aux cellules T d'environ 300 paires de bases (pb) en amont du site d'initiation de la transcription (Shaw et al., 1988; Crabtree, 1989). Il a été démontré que les promoteurs murin et humain possèdent une grande similarité de séquence pour une région de 300 pb au-delà de celle déjà mentionnée, qui aurait comme fonction d'amplifier l'activité du promoteur (Durand et al., 1988). Néanmoins, la plupart des informations cumulées à ce jour sur les éléments régulateurs du gène de l'LL-2 proviennent d'études effectuées sur la première région de 300 pb en amont du site de transcription, celle qu'on décrit comme étant le promoteur de l'LL-2 (Figure 4).

Le promoteur de l'LL-2 contient deux sites de liaison pour NFAT à 287 pb et 140 pb du site d'initiation de la transcription (Crabtree et Clipstone, 1994; Rao, 1994). La mutation des deux sites est nécessaire pour éliminer la fonction du promoteur de l'LL-2 (Zhang et Nabel, 1994) et des tests de «footprinting» in vivo ont démontré que les deux sites sont occupés dans les cellules T stimulées (Garrity et al., 1994). Le site distal (-287 pb) contient non seulement le site de liaison pour NFAT, mais aussi une séquence de liaison non-consensus pour AP-1 où les protéines c-Fos et c-Jun ne sont recrutées qu'après la liaison des protéines de la famille NFAT (Jain, Loh et Rao, 1995) (Figure 4). L'altération de la séquence de liaison d'AP-1 dans le site distal de NFAT élimine la transcription du gène dirigé par le promoteur de l'Ll-2 et ce, même si le site proximal de NFAT est intact (Zhang et Nabel, 1994).

Par ailleurs, les sites auxquels se lie $\mathrm{NF} \kappa \mathrm{B}$ sont présents dans les promoteurs de plusieurs gènes impliqués dans la régulation de la réponse immunitaire ($\operatorname{LL}-2, ~ \mathbb{L}-2 \mathrm{R} \alpha$, MHC I et MHC II) (Baeuerle et Henkel, 1994). Dans le promoteur de l'LL-2, cependant, on ne retrouve qu'un seul site de liaison pour NFкB à 208 pb en amont du site d'initiation de la transcription (Ghosh, May et Kopp, 1998) (Figure 4). L'induction de mutations à ce site du promoteur est généralement moins néfaste qu'à l'induction de mutations aux autres sites (Crabtree et Clipstone, 1994).

AP-1 est un complexe de facteurs de transcription qui coopère avec d'autres facteurs pour induire l'expression du gène de l'IL-2 et possède plusieurs sites de liaison à l'ADN dans ce promoteur (Glover et Harrison, 1995). Similairement au site distal de

NFAT, le site distal de liaison pour Oct (-84 pb) possède une séquence non-consensus pour AP-1. Il existe un troisième site de liaison pour AP-1 (-153 pb). Cependant, ce dernier site est de faible affinité relativement aux autres et seul la liaison des dimères c-Fos/c-Jun induit l'activité optimale du promoteur (Shaw et al., 1987) (Figure 4).

Figure 4: Représentation schématique de la structure du promoteur du gène de l'interleukine-2 murin (IL-2).

* inspiré de Jain, Loh et Rao, 1995

Les promoteurs humains et murins possèdent une grande similarité au niveau de la séquence et des espaces entre les éléments (Garrity et al., 1994). La région de 300 pb en aval du site d'initiation de la transcription (flèche) contient de nombreux sites de liaison pour différents facteurs de transcription (NFAT, AP-1 NFkB, OCT, CD28RE) qui s'associent et coopèrent afin d'activer de façon optimale la transcription du gène. Les nombres indiquent la distance en paires de bases du site d'initiation de la transcription. Le site AP-1 adjacent à NFAT (-287 pb) est un site AP-1 non-consensus où les protéines c-Fos et c-Jun sont recrutées par les membres de la famille NFAT.

Enfin, les facteurs de transcription de la famille Oct possèdent deux sites de liaison à l'ADN dans le promoteur de l'LL-2 (-208 pb et -84 pb) (Kamps et al., 1990). La mutation d'un des deux sites affecte peu la transcription alors que la mutation des deux sites inhibe totalement la fonction du promoteur (Kamps et al., 1990). D'autres évidences indiquent que Oct ne serait pas nécessaire pour l'expression du gène. En effet, les cellules T Jurkat, reconnues pour ne pas exprimer Oct-2, peuvent transcrire le gène de l'LL-2 (Jain et al., 1995). Néanmoins, des expériences de «footpriting» ont révélé que le site proximal est occupé dans les cellules T activées (Garrity et al., 1994) (Figure 4).

En plus des sites de liaison pour NFAT, NFkB, AP-1 et Oct, il a été démontré que le promoteur de l'IL-2 contenait aussi un élément de réponse pour le CD28 (CD28RE) (Figure 4). Comme nous l'avons mentionné précédemment, l'importance de la costimulation par le CD28 pour l'expression du gène de l'Ll-2 a été démontré grâce à la découverte de ce site. En effet, suite à la stimulation des cellules via CD28/TCR, des protéines apparentées à $\mathrm{I} \kappa \mathrm{B}$ ($\mathrm{p} 50, \mathrm{p} 65$, c-Rel) vont se lier à ce site (Fraser et Weiss, 1992).

3.4 Expression du gène de l'IL-2: Les facteurs de transcription impliqués

3.4.1 NFAT

Les protéines de la famille NFAT ont d'abord été caractérisées en tant que facteurs de transcription se liant au promoteur du gène de l'LL-2 (Serfling et Neumann, 1995; Durand et al., 1988; Jain, Loh et Rao, 1995; Rothenberg et Ward, 1996). Cependant, de récentes études ont démontré que NFAT peut aussi contribuer à l'expression d'autres cytokines, comme le Tumor Necrosis Factor α (TNF α) (McCaffrey, Goldfeld et Rao, 1994; Rao, 1994). NFAT est aussi impliqué dans la régulation de l'expression à la surface cellulaire de certaines molécules telles que CD40 ligand (Schubert et al., 1995).

La translocation de NFAT vers le noyau des cellules T nécessite l'activation cellulaire via le TCR, et cette induction est sensible aux inhibiteurs de protéines et aux immunosuppresseurs Cyclosporine A (CsA) et FK506 (Shaw et al., 1988b). Ces puissants inhibiteurs de la transcription de gènes de cytokines chez plusieurs types de cellules immunitaires agissent en se liant aux récepteurs intracellulaires des immunophilines et en inhibant l'activité de la calcineurine, une phosphatase dépendante
de la calmoduline qui est activée par la mobilisation du calcium intracellulaire suite à l'engagement du TCR (Clipstone et Crabtree, 1992; Schreiber et Crabtree, 1992).

NFAT est formé de deux composants, soit un composant cytoplasmique membre de la famille NFAT (domaine Rel) et un composant nucléaire correspondant généralement à AP-1, un complexe formé des protéines c-Fos et c-Jun (Rao, Luo et Hogan, 1997). On connaît au moins quatre protéines appartenant à la famille NFAT: NFAT1 (NFATp/NFATc2), NFAT2 (NFATc/NFATc1), NFAT3 et NFAT4 (NFATx/NFATc3) (McCaffrey et al., 1993; Northrop et al., 1994; Masuda et al., 1995). Cependant, les isoformes exprimés dans les cellules T périphériques qui sécrètent de l'IL2 correspondent à NFAT1 et NFAT2, qui sont principalement exprimés dans les tissus lymphoïdes (lymphocytes T, B, mastocytes et NK) (Chow, Rincon et Davis, 1999). D'une part, NFAT1 est fortement exprimé par les cellules T au repos et au cours des premiers stades de l'activation via des voies dépendantes de la calcineurine (Jain et al., 1993), avant d'être lentement désactivé par des voies de rétro-inhibition (Luo et al., 1996; Loh et al., 1996). D'autre part, NFAT2 est exprimé suite à l'activation des cellules (Northrop et al., 1994), suggérant l'implication de NFAT1 dans les premiers stades et NFAT2 dans les stades plus tardifs de la transcription du gène de l'Il-2 (Jain, Loh et Raó, 1995; Loh et al., 1996).

L'importance de NFAT dans l'expression de l'LL-2 a été étudiée à l'aide de souris chez lesquelles l'expression de NFAT1 ou NFAT2 avait été inactivée (Xanthoudakis et al., 1996; Ranger et al., 1998). Les résultats obtenus ont été peu concluants et contradictoires, suggérant une redondance des isoformes de NFAT et la compensation possible par d'autres isoformes de NFAT pour la production d'IL-2 chez ces souris (Chow, Rincon et Davis, 1998). La construction d'un mutant dominant-négatif de NFAT (dnNFAT), qui supprime la translocation nucléaire de NFAT et, par conséquent, la transcription des gènes médiée par NFAT, a permis de rémédier à ce problème (Chow, Rincon et Davis, 1998). Ainsi, il a été prouvé que l'expression de dnNFAT dans une lignée de cellules T inhibait l'activité du promoteur et l'expression de la protéine de l'LL-2, appuyant l'évidence selon laquelle NFAT est essentiel pour l'expression de l'LL-2 (Rao, 1994; Masuda et al., 1998; Chow et al, 1999).

Dans les cellules au repos, les différents isoformes de NFAT, dans leur forme inactive, sont phosphorylés et séquestrés dans le cytoplasme. Ces protéines possèdent deux séquences de localisation nucléaire (NLS ou Nuclear Localization Sequence) qui ont pour fonction de réguler l'importation dans le noyau des isoformes de NFAT et autres facteurs de transcription (Beals et al., 1997). L'activité principale d'importation nucléaire de NFAT semble être attribuable à une unique séquence de trois acides aminés basiques flanqués d'un motif contenant plusieurs phosphosérines qui sont la cible de la calcineurine (Luo et al., 1996; Beals et al., 1997). Une fois la calcineurine activée, elle interagit directement avec la portion N -terminale de la protéine NFAT qui est conservée dans tous les isoformes de NFAT (Loh et al., 1996). Cette interaction induit la déphosphorylation rapide des protéines NFAT et la libération des NLS précédant leur translocation dans le noyau (Luo et al., 1996). La déphosphorylation de NFAT correspond aussi à une augmentation de l'affinité de NFAT pour ses sites de liaison à l'ADN (Loh et al., 1996). Une fois dans le noyau, les protéines NFAT s'associent à AP-1 pour former un complexe de facteurs de transcription fonctionnel qui peut induire la transcription du gène de l'IL-2 en se liant au site distal de NFAT (Rao, 1994; Masuda et al., 1998). Toutes les étapes menant à l'activation de NFAT sont dépendantes de l'activation de la calcineurine, puisque chacune d'elles sont inhibées par la CsA et FK506 (Shaw et al., 1988b; Clipstone et Crabtree, 1992). Bien que les différents isoformes n'aient pas les mêmes schémas d'expression leur translocation nucléaire est contrôlée par des signaux calciumdépendants (Cantrell, 1996).

Par ailleurs, l'activation de NFAT chez les cellules T requiert l'activation de nombreuses voies de signalisation qui agissent en synergie. Outre la voie du calcium, NFAT semble aussi être activé par la PKC au niveau des composantes nucléaires c-Fos et c-Jun, mais son implication dans l'activation de NFAT est controversée (Shaw et al., 1988b; Williams et al., 1995; Rao, Luo et Hogan, 1997). Dans un deuxième temps, les voies de signalisation activées par Ras sont capables de substituer PKC dans l'induction de NFAT (Cantrell, 1996). Certaines évidences suggèrent que Ras est indispensable pour la fonction de NFAT (Cantrell, 1996). Par exemple, il a été démontré que Ras active AP1 et coopère avec la voie du calcium pour activer NFAT et l'expression du gène de l'IL-2 (Rayter et al., 1992; Woodrow et al., 1993; Masuda et al., 1998). Étant donné que se
retrouvent des sites de liaison pour NFAT dans plusieurs promoteurs de gènes de cytokines (IL-2, IL-4, TNF α) (Rao, 1994), la régulation de l'activité de NFAT par Ras ne saurait être spécifique pour l'expression de IL-2 mais commune à toutes ces cytokines.

Enfin, certaines évidences ont démontré que le CD28, par l'activation de $\mathrm{PI}_{3} \mathrm{~K}$ aurait un rôle à jouer dans la régulation de NFAT, mais le processus est encore mal compris (Masuda et al., 1998).

3.4.2 NFкB

NFkB est un facteur de transcription exprimé dans un grand nombre de cellules incluant les cellules du système immunitaires (Baeuerle et Henkel, 1994) où il régule l'expression d'un grand nombre de gènes, dont ceux codant pour des cytokines (Ghosh, May et Kopp, 1996). La plupart des connaissances sur NFкB ont été obtenus à partie de lignées de cellules lymphoïdes incluant les cellules T CD4 ${ }^{+}$Jurkat, les lignées cellulaires pro-myélocytiques HL-60 et U937, mais aussi à partir de lymphocytes T périphériques primaires, macrophages et granulocytes (Baeuerle et Henkel, 1994).

Les protéines $N F k B$ qui se lient aux sites sur l'ADN peuvent soit augmenter ou réprimer la transcription (Baeuerle et Henkel, 1994; Nolan et Baltimore, 1992). Ces protéines contiennent toutes un domaine d'homologie Rel dans la portion N-terminal de la molécule qui permet la liaison à l'ADN et la formation de dimères de sous-unités de protéines NFKB (Baeuerle et Henkel, 1994). Ces sous-unités possèdent aussi une NLS de type classique composée d'un amas d'acides aminés basiques (Lederer et al., 1996; Torgerson et al., 1998). Les protéines NFkB sont divisées en deux classes. La classe I regroupe les protéines qui sont des précurseurs contenant des ankrines en répétition en C terminal (NFkBI p50/p105, NFкB2 p52/p100) tandis que la classe II (c-Rel, RelA (p65) et RelB), est formée de protéines qui ne sont pas des précurseurs et qui ont un domaine d'activation de la transcription en C-terminal (Gilmore et Morin, 1993). Une autre famille de protéines, connue sous le nom de IkB , interagissent avec les protéines $\mathrm{NF} \kappa \mathrm{B}$ pour réguler leur activité de liaison à l'ADN ou leur translocation nucléaire (Nolan et Baltimore, 1992). Une de ces protéines, IkB α, se lie à l'hétérodimère $\mathrm{p} 65(\mathrm{ReIA}) / \mathrm{p} 50$ et le séquestre dans le cytoplasme en bloquant les signaux de localisation nucléaires des deux sous-unités (Beg et al., 1992).

Bien que la plupart des protéines de la famille Rel soient présentes dans les lymphocytes T humains, l'hétérodimère $\mathrm{p} 65(\mathrm{RelA}) / \mathrm{p} 50$ est la forme active qui va se lier majoritairement, avec une affinité extrême de l'ordre de $10^{-12} \mathrm{M}$, à la séquence consensus d'ADN 5'-GGGPuNNPyPyCC-3' suivant la stimulation des cellules T (Grimm et Baeuerle, 1993). L'activation de NFкB, via le TCR ou par des stimuli extracellulaires (TNF, IL-1, lipopolysaccharides (LPS)) induit le relargage de NFкB p65(RelA)-p50 d'un pool cytoplasmique inactif par la phosphorylation rapide et l'ubiquitination (c'est-à-dire la liaison covalente à l'ubiquitine) de $\mathrm{I} \kappa B \alpha$ menant à sa dégradation subséquente (Brown et al., 1995). La phosphorylation de IкB α est induite par une $\mathrm{I} \kappa \mathrm{B} \alpha$ kinase dont l'activité est régulée par des signaux engendrés par la PKC et la calcineurine (Baeuerle et Henkel, 1994). La dégradation de $\mathrm{I} \mathrm{KB} \alpha$ libère le NLS de $\mathrm{p} 65(\operatorname{RelA}) / \mathrm{p} 50$ et permet la translocation nucléaire et l'expression du gène de l'LL-2 (Sakurai et al. 1999). La protéine c-Rel, dont les taux augmentent considérablement après l'activation des cellules T, semble devenir un élément important dans les complexes NFkB se liant au site du promoteur de l'LL-2 et son rôle serait de maintenir plutôt que de réprimer la transcription de l'ARNm de l'LL-2 (Bryan et al., 1994).

La voie de la PKC joue un rôle important dans l'activation de $\mathrm{NF} \kappa \mathrm{BB}$, ce qui expliquerait mieux son rôle dans l'expression de l'LL-2 (Williams et al., 1995). In a été démontré PKC θ est une molécule essentielle à l'activation de NFкB dans les cellules T CD^{+}stimulées par TCR/CD28 (Herndon et al., 2001). PKC日 serait impliqué dans la phosphorylation de IкB (Steffan et al., 1995). En fait, il a été démontré que la voie de la PKC de même que celle de la calcineurine synergise pour permettre la dégradation complète de $\operatorname{IkB} \alpha$. Alors que les voies dépendantes de la PKC résultent en la phosphorylation et la dégradation partielle de $\mathrm{I} \kappa B \alpha$, la co-activation des voies dépendantes du calcium accélèrent la phosphorylation de $\operatorname{I\kappa B} \alpha \alpha$ ce qui résulte en la dégradation complète de la protéine (Steffan et al., 1995). Cependant, la voie du calcium seul n'induit pas la phosphorylation ni la dégradation de IкB α chez une lignée de cellules T Jurkat (Steffan et al., 1995). L'implication de la calcineurine à ce niveau expliquerait pourquoi l'utilisation de CsA ou FK506 inhibent l'activité de NFkB (Jain, Loh et Rao., 1995).

La régulation de l'activation de NFкB pourrait être à la base des différences entre les sous-types de lymphocytes T, Th1 et Th2 (Lederer et al., 1996). Il a été démontré que des extraits nucléaires provenant de cellules Th2 activées, non productrices d'LL-2, contenaient significativement moins d'hétérodimères $\mathrm{NF} \kappa \mathrm{B}$ p65(RelA)/p50 que les extraits nucléaires provenant de clones Th1 et Th0 activés, producteurs d'LL-2 (Lederer et al., 1994). De plus, il existent des évidences selon lesquelles les cellules Th1 et Th2 posséderaient des niveaux cytoplasmiques similaires de sous-unités p65 (RelA) et p50 mais que chez les Th2, la stimulation par le TCR n'induisait pas la translocation de p65 (RelA) dans le noyau (Lederer et al., 1996). Suite à une stimulation des Th2 à l'LL-2, par contre, la translocation de cette sous-unité se produit, signifiant que le mécanisme de base d'activation de NFкB commun à plusieurs types cellulaires est intact chez les cellules Th2 (Lederer et al., 1996). Enfin, Lederer et al. (1996) ont observé que l'LL-2 et TNF induisaient une translocation nucléaire rapide de p65 (RelA) dans les cellules T, mais que l'activation de NFкB induite par le TCR était retardée mais plus durable. Ces résultats suggèrent que la voie du TCR pour l'activation de NFאB est différente de la voie d'activation par les cytokines.

3.4.3 AP-1

Le facteur de transcription AP-1 a été d'abord caractérisé pour son activité de liaison spécifique à des éléments de régulation sur le promoteur du simian virus (SV40) (Wisdom, 1999). Par la suite, il a été démontré que AP-1 avait aussi un rôle important à jouer dans l'expression de gènes inductibles en réponse à certains agents promoteurs de cancer, tels que le tetradecanoyl-13-phorbol acetate (Wisdom, 1999). La purification biochimique de AP-1 a permis de démontrer qu'il est formé d'une série de complexes dimériques composés des protéines des familles c-Fos et c-Jun (Wisdom, 1999; Jain, Loh et Rao, 1995). Les affinités de dimérisation entre c-Fos et c-Jun sont plus fortes qu'entre homodimères de c-Jun et ces hétérodimères sont plus efficaces au niveau de la liaison à l'ADN et de la transactivation (Ryseck et Bravo, 1991). Étant donné que les sites de liaison pour AP-1 dans le promoteur de l'IL-2 sont de faible affinité, la présence des hétérodimères c-Fos-c-Jun est requise pour une activité optimale (Jain, Valge-Archer et Rao, 1992). Il existe d'autres protéines appartenant aux familles Fos et Jun mais celles-ci
ont moins d'affinité pour lier les éléments présents dans le promoteur et activer la transcription (FosB, JunB) ou elles atténuent la transcription du gène de l'IL-2 (Fra-1, Fra-2, Jun B lorsque surexprimé) (Wisdom et Verma, 1993). Les protéines c-Fos et c-Jun subissent des modifications post-traductionnelles qui vont influencer le rôle de ces protéines dans la transcription du gène de l'IL-2.

Contrairement à NFAT et NFאB, AP-1 est présent en quantités minimales seulement dans les cellules T au repos (Su et al., 1994). L'activation des cellules T induit la synthèse de novo, l'activation et l'importation nucléaire des protéines c-Fos et c-Jun (Roux et al., 1990) suite à la reconnaissance des NLS bipartites (possédant deux amas de résidus basiques séparés d'environ 10 acides aminés) de ces deux protéines (Tratner et Verma, 1991; Chida et Vogt, 1992). En effet, suite à l'induction de l'activation cellulaire, une sérine-thréonine kinase va rapidement phosphoryler et activer c-Fos dans sa portion C-terminale, alors que c-Jun est activé par phosphorylation de deux résidus sérines dans son domaine d'activation en N-terminal par JNK (Davis, 1994; Su et al., 1994). Tel que mentionné précédemment, c-Jun serait un point de convergence des voies de signalisation du TCR et du CD28 puisque JNK est activé d'une part, par des signaux engendrés par le CD28 ($\mathrm{PI}_{3} \mathrm{~K}, \mathrm{Vav}-1, \mathrm{Rac}-1$) et, d'autre part, par la voie du calcium engendrée par le TCR (Su et al., 1994). Les signaux dérivés du TCR et du CD28 sont essentiels pour l'activation optimale de JNK (Su et al., 1994) qui, à l'instar de la transcription médiée par AP-1 dans les cellules T, est bloquée par la CsA et FK506 (Su et al., 1994).

AP-1 participe à la régulation de la transcription de l'LL-2 en se liant au promoteur individuellement ou sous forme de complexe avec NFAT ou d'autres facteurs de transcription (e.g., Oct) (Roux et al., 1990). L'interaction avec NFATp, par exemple, permet d'orienter correctement les dimères c-Fos-c-Jun sur les sites adjacents (Glover et Harrison, 1995), précisant ainsi l'architecture générale dans la totalité du promoteur. Cependant, des expériences ont démontré qu'une protéine c-Jun dominante-négative inhibait la transcription à partir du site distal de NFAT alors qu'elle n'affectait pas la transcription à partir de Oct ou du site AP-1 dans le promoteur d'll-2. L'explication pour cette différence pourrait être que les éléments Oct et AP-1 sont des sites de faibles affinités pour AP-1 qui lient seulement les dimères c-Fos-c-Jun, et donc le dominant-
négatif c-Jun aurait pour fonction de recruter c-Fos au site de liaison (Jain, Loh et Rao, 1995).

3.4.4 Oct

Oct (protéines octamères) sont aussi des facteurs de transcription qui régulent la fonction du promoteur de l'LL-2 (Kamps et al., 1990). Comme c'était le cas pour le site distal de NFAT, le site proximal de Oct est formé de sites de liaison et d'interaction pour AP-1 et Oct (Pfeuffer et al., 1994). Il existe différentes protéines Oct (Oct-1, Oct-2) qui ont toutes la capacité de se lier au site proximal et d'interagir avec les protéines des familles c -Fos et c -Jun, bien que Oct-2 soit un transactivateur plus puissant que Oct-1 à ce site (Kamps et al., 1990). De plus, ces deux protéines n'ont pas le même schéma d'expression. Alors que Oct-1 est exprimé constitutivement, Oct-2 est exprimée suite à l'activation des cellules via le TCR (Kang et al., 1992). On sait que la formation du complexe de liaison à l'ADN Oct/AP-1 n'est pas affecté par CsA et FK506, alors que la transactivation induite par des multimères au site proximal Oct est très sensible à ces drogues (Pfeuffer et al., 1994). Cet effet peut être dû à l'activation de AP-1 qui est dépendante de la calcineurine ou par la sensibilité d'Oct-2 à CsA (Kang et al., 1992).

SECTION 4: LES MÉTAUX LOURDS

4.1 Introduction

Les métaux lourds, tels que le mercure le cadmium et le plomb, sont des substances hautement toxiques largement répandues dans l'environnement, principalement suite à une utilisation médicale ou industrielle. Leurs caractéristiques sont présentées au Tableau 1. L'exposition à ces métaux peut avoir de graves conséquences chez l'homme. Depuis plusieurs années, le potentiel extrêmement toxique de ces polluants est connu et ils sont l'objet de recherches intensives afin de comprendre leurs effets au niveau des différents organes et systèmes humains. La section qui suit explique les sources, effets et problématiques reliés à ces trois métaux afin de mettre en évidence le problème réel rattaché à leur présence dans l'environnement. L'emphase sera mis sur leurs effets sur le système immunitaire humain et plus précisément les lymphocytes T .

Tableau 1: Caractéristiques chimiques du plomb, du cadmium et du mercure * tableau tiré de Miquel, 2000

	Plomb	Cadmium	Mercure
Masse atomique	270	112	200
Masse volumique	$11,35 \mathrm{~g} / \mathrm{cm}^{3}$	$8,6 \mathrm{~g} / \mathrm{cm}^{3}$	$13,6 \mathrm{~g} / \mathrm{cm}^{3}$
Température de fusion	327°	$320,9^{\circ}$	-38°
Température d'ébullition	1.740°	765°	357°
Symbole chimique	Pb	Cd	Hg
Minerai d'origine	Galène	Scories du zinc	Cinabre

4.2 Le mercure (Hg)

4.2.1 Toxicologie

Le mercure est un des métaux lourds les plus toxiques pour l'homme. La forme élémentaire de Hg est présente naturellement dans l'environnement, mais l'activité humaine y en répand de grandes quantités où il peut se combiner avec d'autres éléments. Il en existe quatre formes chimiques différentes, à savoir, la vapeur de mercure ou mercure métallique, le mercure mercurique, le mercure mercureux et le mercure organique (Zelikoff et al., 1994) (Tableau 2).

Tableau 2: Les différentes formes de mercure et exemples de formules chimiques * tableau inspiré de Miquel, 2000

Formes de mercure	Exemples
Mercure métallique	Vapeur de mercure $\left(\mathrm{Hg}^{0}\right.$, gazeux)
Mercure mercurique ou inorganique	Ion mercurique $\left(\mathrm{Hg}^{2+}\right)$ Oxyde de mercure (HgO) Chlorure de mercure $\left(\mathrm{HgCl}_{2}\right)$
Mercure mercureux	HgCl
Mercure organique	Chlorure de méthylmercure $\left(\mathrm{CH}_{3} \mathrm{HgCl}\right.$ ou MeHgCl $)$

Les formes organiques méthylées, comme le chlorure de méthylmercure (MeHgCl) sont les plus dangereuses. Le mercure inorganique présent dans les sédiments est converti en composés de méthylmercure et devient bioaccumulable dans la chaîne alimentaire aquatique jusqu'à rejoindre le plus haut maillon. L'homme y est principalement exposé par l'ingestion de poisson et fruits de mer contaminés (Agency for Toxic Substance and Disease Registry (ATDSR), 1993; Clarkson, 1997). La muqueuse gastro-intestinale en absorbe environ 90% d'où il est ensuite redistribué dans le sang et les tissus (World Health Organization (WHO), 1990a, b). Le mercure organique est liposoluble et peut être transporté à travers les barrières biologiques via le système de
transport des acides aminés (Kajiwara et al., 1996). L'accumulation de mercure peut produire des dommages irréversibles chez plusieurs systèmes et organes, dont le système immunitaire, qui sont surtout affectés par le mercure inorganique (iHg) provenant de la dissociation du mercure organique (Magos et Butler, 1972). L'excrétion se fait principalement par les fèces, les cheveux et l'urine, qui est la principale voie d'élimination du iHg (Hirayama et Yasutake, 1986). La demi-vie du mercure organique dans l'organisme total est de 70 jours (WHO, 1990a, b). La déméthylation, un processus chez les mammifères par lequel le mercure organique est métabolisé en iHg , est un facteur important impliqué dans l'élimination (Norseth et Clarkson, 1971).

4.2.2 Effets du mercure sur le système immunitaire

On sait que le Hg a un potentiel immunotoxique considérable (Clarkson, 1997; Zelikoff and Gardner, 1996). Dans cette optique, des chercheurs ont démontré que le Hg organique et inorganique, à des concentrations variant entre $0-2 \mu \mathrm{~g} / \mathrm{ml}$ et $0-20 \mu / \mathrm{ml}$, respectivement, inhibait la prolifération et la production de cytokines, dont l'IL-2, par des cellules immunitaires humaines (lymphocytes et monocytes) (Shenker et al., 1992a, b, 1993). Ces données concordent avec l'observation, chez des travailleurs exposés au mercure en milieu de travail, de l'inhibition de sécrétion de TNF α (Soleo et al., 1997) et de l'apparition d'altérations cytogénétiques suite à une exposition au mercure in vitro ou in vivo (DeFlora et al., 1994).

Au niveau des lymphocytes T , il a été démonté que les composés de Hg peuvent induire l'apoptose chez les lymphocytes T humains. Des changements biochimiques (chute du ratio de charge énergétique du nucléotide adénine, altération de la synthèse des phospholipides, élévation du calcium intracellulaire) et des altérations au niveau du noyau (hyperchromaticité, fragmentation nucléaire, condensation du nucléoplasme) ont été observés chez des lymphocytes T suite à une exposition au Hg (Shenker et al., 1992, 1993, 1997; Shenker, Guo et Shapiro, 2000). Ces changements sont induits rapidement suivant l'exposition à de faibles concentrations $(0-5 \mu \mathrm{M}$ de MeHgCl et $0-40 \mu \mathrm{M}$ de HgCl_{2}), sans pour autant altérer la viabilité cellulaire sur une période de 24 heures, ce qui est caractéristique de l'apoptose (Shenker et al., 1997, 1998).

Des études plus poussées ont permis d'élaborer des modèles d'action différents pour MeHgCl et HgCl_{2} quant à leur pouvoir apoptotique sur les cellules T humaines (Shenker, Guo et Shapiro, 2000).

D'une part, la dose létale 50% (DL50) du MeHgCl , c'est-à-dire la dose de ce composé qui, lorsque administré par une voie définie pendant une période de temps spécifique, cause 50% de mortalité dans une population, est de $2,5 \mu \mathrm{M}$. On sait aussi qu'il est liposoluble et pénètre dans les cellules où il interagit avec les mitochondries et induit une baisse du potentiel membranaire, du pH et des niveaux de GSH intracellulaires ainsi que le relargage du cytochrome c dans le cytosol (Shenker, Guo et Shapiro, 2000). D'autres pertes de fonctions mitochondriales s'observent jusqu'à 16 heures suivant l'exposition au MeHgCl (génération $\mathrm{d}^{\prime} \mathrm{O}_{2}{ }^{-}$, diminution de la taille des organelles, relargage supplémentaire de cytochrome c) (Shenker, Guo et Shapiro, 2000). Le cytochrome c cytosolique et l'état d'oxydoréduction altéré des cellules contribuent à l'activation des caspases qui déclenchent la cascade menant à l'apparition des caractéristiques morphologiques et dégradatives reliées à l'apoptose (Shenker, Guo et Shapiro, 2000).

D'autre part, HgCl_{2} est moins toxique et a une DL50 ($20 \mu \mathrm{M}$) supérieure au MeHgCl (Shenker, Guo et Shapiro, 2000). Il n'est pas liposoluble et se fixe à la surface des cellules. À l'instar du MeHgCl , il induit l'altération des fonctions mitochondriales, mais sans causer le relargage du cytochrome c , possiblement grâce à la présence de hauts taux de protéine anti-apoptotique $\mathrm{Bcl}-2$ (Shenker, Guo et Shapiro, 2000). Néanmoins, l'activation de la cascade des caspases est déclenchée par une voie indépendante du cytochrome c , possiblement par activation directe de la caspase-3, déclenchant la cascade menant aux modifications cellulaires (Shenker, Guo et Shapiro, 2000).

Par ailleurs, Whitekus et al. (1999) ont démontré que le HgCl_{2}, en concentrations inférieures à $10 \mu \mathrm{M}$, inhibait l'apoptose induite via la voie du CD95/Fas chez des lymphocytes T humains (lignée JKE6-1 et T CD4 ${ }^{+}$isolés de sang périphérique), pouvant éventuellement induire certaines maladies autoimmunitaires déclenchées par l'accumulation anormale de lymphocytes autoréactifs résultant d'un problème au niveau de la terminaison de l'activation et la croissance lymphocytaire par apoptose (Whitekus et al., 1999; Hunig and Schiml, 1997). Cette étude contredit les résultats publiés par Shenker Guo et Shapiro (2000). Ces différences pourraient s'expliquer, entre autres, par
une différence des concentrations, du type cellulaire utilisé et par certains facteurs génétiques.

L'état d'activation des cellules immunitaires peut aussi influencer l'immunotoxicité du mercure. Close, Guo et Shenker (1999) ont démontré que l'activation des lymphocytes T humains rendait les cellules réfractaires à l'apoptose induite par le $\mathrm{MeHgCl}(0-10 \mu \mathrm{M})$, le taux d'apoptose observé étant environ 50% plus bas chez les cellules activées 24 heures avant l'exposition. Les cellules activées ne produisaient pas de ROS et ne présentaient pas de relargage de cytochrome c en présence de MeHgCl mais plutôt une forte expression de $\mathrm{Bcl}-2$. Un effet semblable avait déjà été observé chez les lymphocytes B (Shenker et al., 1993).

Enfin, Heo, Lee et Lawrence (1997) ont démontré que le mercure avait la capacité d'induire une réponse oligoclonale et d'augmenter l'expression d'un certains nombres de cellules $\mathrm{T} \mathrm{CD4}{ }^{+}$exprimant un nombre restreint de $V \beta$. Pour ce faire, ces chercheurs ont traité des souris BALB/c au HgCl_{2} (deux injections sous-cutanées de $500 \mu \mathrm{~g} / \mathrm{ml}$ dans la saline physiologique par semaine pendant huit semaines) et ont analyser par cytométrie en flux le répertoire de sous-types de cellules T et des TCR V β qu'ils expriment, en provenance de la rate et du thymus des souris sacrifiées. Ainsi, ils ont démontré que le HgCl_{2} induisait une réponse oligoclonale caractérisée par l'augmentation d'un certain nombre de clones différents de cellules $\mathrm{T} \mathrm{CD4}{ }^{+}\left(\mathrm{TCD} 4^{+} \mathrm{V} \beta 5^{+}, \mathrm{V} \beta 7^{+}\right.$et $\mathrm{V} \beta 13^{+}$) dans la rate mais pas dans le thymus. Ce type d'effet a été observé dans plusieurs maladies autoimmunitaires reliées au développement des cellules T thymiques (Abromson-Leeman et al., 1995; Acha-Orbea et al., 1988). Cette découverte permet de confirmer l'hypothèse selon laquelle une exposition au Hg peut déclencher des maladies autoimmunitaires (Heo, Lee et Lawrence, 1997).

4.2.3 Mécanismes moléculaires de l'action du mercure

Le Hg , sous ses différentes formes, a la capacité d'induire l'expression de plusieurs gènes chez les lymphocytes T humains. Ainsi, il a été démontré que des concentrations de HgCl_{2} inférieures ou égales à $100 \mu \mathrm{M}$ induisaient l'expression de «protéines de stress» comme la métallothionéine IIA (MT-IIA) (Murata et al., 1999). Chez des cellules mononucléaires du sang périphérique humain (incluant les lymphocytes T) le HgCl_{2} (0 -
$2000 \mu \mathrm{M})$ augmente l'activité des PTK et particulièrement p56 ${ }^{\text {lck }}$, module l'activité des tyrosine phosphatase (PTPase) et augmente l'entrée de glucose dans ces cellules (Lander, Levine et Novogrodsky, 1992).

Lors d'expériences réalisées in vitro, avec des cellules animales et humaines nonimmunitaires (poumons, reins), il a été démontré que le HgCl_{2}, à des concentrations variant entre $20 \mu \mathrm{M}$ et $500 \mu \mathrm{M}$, induit l'expression des protéines c-Fos et c-Jun et il inhibe l'interaction de NFkB avec ses sites de liaison à l'ADN. Le mercure est un métal qui induit un stress oxydatif chez les cellules et Hg inhibe, par exemple, la liaison à l'ADN de NFkB en se liant aux thiols (Shumilla, Wetterhahn et Barchowsky, 1998). Plusieurs autres études ont démontré que Hg a la capacité de moduler l'activité des facteurs de transcription (Matsuoka, Wispriyono et Igisu, 1997; Shumilla, Wetterhahn et Barchowsky, 1998; Matsuoka et al., 2000; Dieguez-Acuna et Woods, 2000), mais aucune n'a été réalisée avec des lymphocytes T. П était donc essentiel dans le cadre de ce projet de maîtrise de s'intéresser à cet aspect puisque que Hg pourrait moduler l'expression du gène de l'LL-2 en agissant au niveau des facteurs de transcription.

4.2.4 Conséquences d'une exposition au mercure

L'exposition chronique à de faibles concentrations de Hg peut mener au développement de différents problèmes immunitaires. En effet, il a été démontré que ce métal pourrait déclencher certaines maladies auto-immunitaires (Dantas et Queiroz, 1997; Lawrence, 1981). De plus, Hg pourrait augmenter la susceptibilité à des infections chroniques et/ou récurrentes (Koropatnick and Zalups, 1997). Le Hg est reconnu pour induire une auto-immunité rénale caractérisée par une prédominance des cellules Th2 chez certaines lignées de rats et de souris (Pelletier et al., 1994).

Cependant, plusieurs facteurs doivent être considérés (Lawrence et McCabe, 1995). Il faut d'abord tenir compte des facteurs génétiques. Par exemple, il a été démontré que l'expression de certains gènes du CMH favorisaient le déclenchement de maladies auto-imunitaires ou de l'immunosupression. Les facteurs environnementaux comme le Hg peuvent favoriser le déclenchement de ces maladies (Waalkes et al., 2000). La concentration, la forme chimique et la pharmacocinétique de l'exposition (ingestion vs inhalation) influencent grandement l'immunotoxicité du mercure (Waalkes et al., 2000).

Le type de cellules (lymphocytes vs monocytes, animales vs humaines, lignées cellulaires vs cellules primaires) est un autre facteur dont il faut tenir compte (Waalkes et al., 2000). Le lien entre l'intoxication au mercure et l'étiologie des maladies auto-immunitaires a surtout été observé chez l'animal (rongeurs). Chez l'homme (Waalkes et al., 2000), les données publiées proviennent de cas d'exposition en milieu de travail pour lesquels des symptômes auto-immuns ont été développés (Waalkes et al., 2000). Cependant, le mécanisme d'action du Hg sur les cellules immunitaire est encore incompris.

4.3 Cadmium (Cd)

4.3.1 Toxicologie

Le cadmium est un métal répandu en grandes quantités dans l'environnement suite à l'extraction d'autres métaux comme le zinc, le plomb et le cuivre (ATSDR, 1993b). Sa disponibilité dans l'environnement est aussi accrue par une utilisation industrielle où le cadmium est utilisé, entre autres, dans la composition de certaines batteries (Barrie et al., 1992; Moreira, 1996). À l'instar du mercure, l'alimentation, et particulièrement l'ingestion de poissons contaminés, est la principale voie d'exposition au cadmium (Elinder, 1985). L'absorption gastrointestinale est de l'ordre de 5% à 10%, la quantité de cadmium absorbé en provenance de la diète est d'environ 1 à $3 \mu \mathrm{~g} / \mathrm{jour}$ (Bernier et al., 1995). Il faut noter aussi que les cigarettes contiennent une quantité importante de cadmium et que la fumée de cigarette peut contribuer à une absorption aussi importante que $3 \mu \mathrm{~g} / \mathrm{jour}$ chez les fumeurs (ATSDR, 1993b). Le cadmium possède une longue demivie (20-30 ans) (El Azzouzi et al., 1994). Une exposition chronique à de faibles concentrations de cadmium peut causer des dommages au niveau des poumons, des reins et du foie chez l'homme, en induisant une génotoxicité et le développement du cancer, dans certains tissus, ou une toxicité chronique non-maligne, chez les autres (Goyer, 1989; Saygi et al., 1991). Ce type d'exposition a aussi été associé au développement différentiel de maladies auto-immunitaires chez plusieurs souches de souris et de rats (Bigazzi, 1994).

Au niveau cellulaire, il a été démontré que le cadmium peut s'accumuler dans quelques organes et cellules. Dans certains cas, la translocation rapide et l'accumulation du Cd dans le noyau à partir du cytoplasme a même été démontré (Hamada et al., 1994). La distribution du cadmium varie en fonction de la dose et de la voie d'exposition
(Foulkes, 1986; Waalkes et Oberdorster, 1990). De plus, on sait que ce métal s'associe aux cellules nucléées comme les lymphocytes (Hildebrand and Cram, 1979; Enger et al., 1983). Enfin, le cadmium affecte l'activité de différentes fonctions et effecteurs (protéine kinase C, augmentation du calcium cytosolique par sa capacité de «mimer» le calcium, etc), mais la nature des événements moléculaires sous-jacents sont encore incompris et sont discutés dans la prochaine section (Smith, Dwyer et Smith, 1989; Block et al., 1992).

4.3.2 Cadmium et système immunitaire

Plusieurs études ont démontré le cadmium avait la capacité d'altérer la réponse immunitaire, et ce, à différents niveaux. En effet, chez différents modèles animaux, ce métal affecte l'activité humorale (Fujimaki et al., 1982), les réponses à médiation cellulaire (Fugimaki, 1985) de même que l'activité phagocytaire des macrophages et leur capacité à éliminer les tumeurs (Hilbertz et al., 1986; Payette et al., 1995). Il a aussi été postulé que l'immunosuppression causée par le cadmium tant in vitro qu'in vivo, serait reliée principalement à la cytotoxicité engendrée par le Cd (Beatie et al., 1990; Payette et al., 1995). Enfin, la capacité du Cd d'affecter la stimulation mitogénique est un phénomène qui a été démontré maintes fois (Gaworski et Sharma, 1978; Cifone et al., 1988; Theocharis, Margeli et Panayiotidis, 1990).

Chez des hépatocytes de rats, un modèle a été suggéré pour expliquer un des mécanismes responsables de l'empoisonnement au Cd qui pourrait aussi s'appliquer aux cellules immunitaires. Selon ce modèle, il existerait une interaction des ions Cd^{2+} avec les membranes cellulaires (Martel, Marion et Denizeau, 1990), ce qui affecterait la signalisation cellulaire, l'intégrité membranaire et l'homéostasie du calcium dans les cellules (Scott et al., 1985; Sutoo, Akiyama et Imiamiya, 1990; Rossi et al., 1991; Payette et al., 1995). Par ailleurs, d'autres ont postulé que le Cd pourrait plutôt affecter les événements précoces dans l'activation du cycle cellulaire chez les lymphocytes (Cifone et al., 1988).

Dans cette optique, Payette et al. (1995) ont démontré, chez des lymphocytes de rate de souris, qu'il existait un lien entre la cytotoxicité reliée à une exposition à de faibles doses de $\mathrm{Cd}(0.6-10 \mu \mathrm{M})$, d'une part, et l'apparition de modifications au niveau du cycle
cellulaire, d'une baisse de l'LL-2 intracellulaire et du récepteur de l'IL-2 (IL-2R) d'autre part. Ces perturbations apparaissant entre 4 et 72 heures après la stimulation mitogénique à la Concavaline A (Con A), effectuée au moins quatre heures avant l'exposition au Cd de manière à empêcher les perturbations engendrées par l'interaction entre les ions calciumCd dans les premières étapes de l'activation et, donc, de considérer la cytotoxicité et les perturbations observées comme étant indépendantes des effets du Cd sur ces premières étapes (Scott et al., 1995; Payette et al., 1995). Enfin, ces concentrations sont cytotoxiques pour les lymphocytes et représentent l'étendue des concentrations sanguines de cadmium répertoriées (Borella et Giardino, 1991). Ces résultats suggèrent que le Cd altère la morphologie cellulaire ainsi que de nombreux mécanismes fonctionnels chez les lymphocytes de rate de souris, et ce, même chez les cellules activées par un mitogène.

Des résultats allant dans le même sens avaient préalablement été obtenus avec des lymphocytes humains pour des concentrations variant entre 1,6 et $50 \mu \mathrm{M}$ de cadmium (Kastelan et al., 1985). Cependant, la littérature rapporte plutôt un grand nombre d'études contradictoires à ce sujet (Borella et Giardino, 1991; Theocharis, Margeli et Panayiotidis, 1990). Par exemple, une étude a démontré chez des lymphocytes T humains que le Cd inhibait la sécrétion d'IL-2 et l'expression de $\mathbb{I L}-2 \mathrm{R}$ seulement dans les premières minutes ($\leq 60 \mathrm{~min}$) suivant la stimulation lymphocytaire et que l'addition de Cd^{2+} quatre heures après la stimulation n'affectait pas l'activation (Cifone et al., 1988).

Ces contradictions peuvent s'expliquer par des différences inter-espèces, entre souches d'une même espèce ou entre sous-types cellulaires (lymphocytes T versus lymphocytes B) (Payette et al., 1995). L'état d'activation cellulaire au moment de l'exposition au Cd doit aussi être pris en considération puisqu'il a été démontré que la distribution intracellulaire du Cd varient selon le stade d'activation des cellules au moment de l'exposition au métal (Sgagias, Balter et Gray 1989). Ces nombreuses observations suggèrent que le $C d$ exerce bel et bien un effet néfaste au niveau du processus d'activation cellulaire et des fonctions des lymphocytes T humains, mais les mécanismes d'action sont encore inconnus.

À l'instar du mercure, le Cd induit l'apoptose chez les cellules immunitaires, incluant les lymphocytes T. Cet effet varie en fonction du temps et de la dose. De faibles concentrations de cadmium $(0-10 \mu \mathrm{M})$ n'ont pas d'effet ou induisent l'apoptose alors que
de fortes concentrations ($50 \mu \mathrm{M}$) induisent la nécrose chez des cellules CEM C12, une lignée de lymphocytes T humains (CEM C12) (Cifone et al., 1988; Harley et al., 1989; Pellegrini et al., 1994; El Azzouzi et al., 1994). Au niveau moléculaire, il a été démontré, chez des cellules promonocytiques humaines, que le cadmium, à une concentration de $200 \mu \mathrm{M}$, avait la capacité d'activer la p38 MAPK et que cet événement était un régulateur spécifique et précoce pour l'apoptose provoquée par le cadmium (Galan et al., 2000).

Le mode d'action précis du cadmium n'est pas encore bien compris. Cependant, on sait que l'utilisation d'inhibiteurs de la synthèse protéique (cycloheximide) bloque partiellement l'effet apoptotique du cadmium, suggérant que l'apoptose induite par le cadmium est un processus dépendant de la synthèse protéique. De plus, l'inhibition des canaux calcium/potassium par l'utilisation de verapamil augmente fortement la viabilité cellulaire en bloquant la fragmentation de l'ADN et en déplaçant la courbe dose-réponse pour la toxicité du cadmium (El Azzouzi et al., 1994).

Plusieurs études ont démontré des résultats contradictoires au sujet de l'induction de l'apoptose par le cadmium, compliquant ainsi la compréhension de son mécanisme d'action. Par exemple, il a été démontré, chez des thymocytes et des cellules hépatiques de rats, qu'une augmentation soutenue de calcium intracellulaire stimulait l'apoptose et le clivage de l'ADN par l'activation d'une endonucléases dépendante du calcium (McConkey et al., 1988; Lohmann et Beyersmann, 1993). En effet, le clivage de l'ADN est inhibé par l'ajout de zinc ou de Cd conjointement au calcium, mais le Cd seul à la capacité de stimuler l'endonucléase (Lohmann et Beyersmann, 1993), comme s'il remplaçait le calcium, renforçant l'hypothèse d'un mode d'action semblable de ce métal chez les lymphocytes T humains.

Le stress oxydatif est un autre effet du Cd qui a été maintes fois démontré chez plusieurs types cellulaires incluant les cellules immunitaires. L'étude menée par Hassoun et Stohs (1996) a permis de découvrir chez une lignée de macrophages de rats (J774A.1) qu'une exposition à $0,6 \mu \mathrm{M}$ de Cd pendant 48 heures augmentait la production d'anion superoxyde et d'oxyde nitrique (NO). Il ont aussi démontré une augmentation significative en fonction de la concentration du taux de bris d'ADN simple brin (SSB ou Simple Strand Break), avec l'atteinte d'un taux maximum à $0,4 \mu \mathrm{M}$ de Cd .

D'autres études ont démontré que le stress oxydatif causé par une exposition au Cd (0-100 $\mu \mathrm{M}$) induisait l'apoptose par le biais de la formation d'espèces réactives de l'oxygène comme les peroxinitrites, les anions superoxydes et les radicaux hydroxyles (Wolfe, Ross et Cohen, 1994; Stojan, Oros et Moldoveanu, 1996; Lin et al., 1997; Bagchi et al. 2000). Ces effets, toutefois, étaient plus prononcés chez certains types cellulaires que d'autres, suggérant que le cadmium exerce bel et bien un effet toxique chez les cellules immunitaires, mais que cet effet varie en fonction du type cellulaire étudié (Bagchi et al., 2000).

Il est aussi connu que le cadmium, à l'instar du mercure, se lie directement aux thiols (Shumilla, Wetterhahn et Barchowsky, 1998). À des concentrations variant de 0 à $0,6 \mathrm{mM}$, ce métal induit une toxicité cellulaire en se liant aux groupes sulfhydryles des protéines. Cette liaison inhibe l'interaction de facteurs de transcription, comme NFkB, avec leurs sites dans certains promoteurs. Par conséquent, cette propriété des métaux fait en sorte que l'expression de certains gènes est inhibée (Shumilla, Wetterhahn et Barchowsky, 1998).

4.3.3 Effets du cadmium sur l'expression des gènes

À l'instar du mercure, le $\mathrm{Cd}(10 \mu \mathrm{M})$ module l'expression de gènes impliqués dans les processus de détoxification et de résistance comme MT- Π_{A}, chez les cellules immunitaires humaines incluant les lymphocytes T (Ochi et al., 1988; Jungmann et al., 1993; Pellegrini et al., 1994; Tsangaris et Tzortzatou-Stathopoulou, 1998). Cette induction nécessite une interaction complexe entre les éléments de réponse aux métaux des séquences d'ADN des promoteurs et des facteurs protéiques spécifiques (Séguin et Hamer, 1987; Harley et al., 1989; Ciavarra and Simeone, 1991; Pellegrini et al., 1994). La modulation varie en fonction du temps et de la dose chez ces cellules. Le prétraitement au Cd ne modifie pas la stabilité de l'ARNm MT-IIA et augmente la résistance des cellules à la toxicité du cadmium (Pellegrini et al., 1994).

Il reste à déterminer qui d'entre le Cd lui-même ou les métallothionéines (MT) induites par le cadmium est le facteur principalement responsable de l'induction de l'apoptose dans les cellules. Selon une revue de la littérature publiée par Hamada et al. (1997), l'apoptose induite suite à l'exposition au cadmium serait associée au mouvement
intracellulaire du métal et des MT (Hamada, Tanimoto et Sasaguri, 1997). Les MT semblent jouer un rôle double dans l'induction de l'apoptose: le premier en tant que transporteur de cadmium qui permet l'accumulation de Cd dans le noyau (Hamada et al., 1994) et l'autre en tant que qu'inhibiteur des protéines à doigt de zinc, au niveau desquels le cadmium peut compétitionner avec le zinc et abolir la fonction de ces protéines (Thiesen et Bach, 1991; Predki et Sarkar, 1994).

Par ailleurs, il a été démontré que le cadmium (entre 10 et $20 \mu \mathrm{M}$) induisait l'expression des gènes c-fos et c-jun ainsi que l'activité des protéines transcrites, et ce, chez une grande variété de cellules non-immunitaires (Matsuoka et Call, 1995; Wang et Templeton, 1998). Par exemple, chez des cellules mésangiales de rat, il a été démontré que des concentrations de cadmium inférieures ou égales à $10 \mu \mathrm{M}$ causait non seulement une accumulation de l'ARNm de c-Fos, mais aussi une activation prolongée des kinases Erk et c-Jun kinase/stress-activated protein kinase (SAPK) en interférant avec diverses voies de signalisation (Ding et Templeton, 2000). L'activation de ces trois signaux par le cadmium est biphasique, c'est-à-dire qu'elle augmente rapidement entre quinze et trente minutes et qu'ensuite elle augmente plus fortement et plus longtemps (Ding et Templeton, 2000). Ces événements sont spécifiques au cadmium puisque l'exposition de ces cellules à d'autres métaux divalents n'a provoqué aucun effet significatif (Ding et Templeton, 2000). Il est à noter qu'aucune étude portant sur l'effet du Cd sur l'expression de ces gènes chez les lymphocytes Thumains n'a été effectuée.

En résumé, le Cd possède la capacité d'induire ou d'inhiber l'activité de différents facteurs de transcription qui, chez les lymphocytes T, sont responsables de l'expression du gène de l'LL-2. Par conséquent, le Cd pourrait agir à ce niveau chez les lymphocytes T humains et des études sur le sujet sont nécessaires.

4.4 Plomb (Pb)

4.4.1 Toxicologie

Le plomb est un des premiers métaux lourds découverts et utilisé par l'homme à grande échelle. Par conséquent, il est un des métaux les plus répandus dans l'environnement (Shotyk et al., 1998). Son rejet continu par l'industrie, combiné au rejet en tant que produit résiduel dans les gaz d'échappement ont fait du plomb un sérieux
problème de santé publique (Jurberg, Kleiman et Kwon, 1997; Mielke et Reagan, 1998). À l'instar du mercure, le Pb est bioaccumulable par les poissons et les humains qui en consomment fréquemment y sont particulièrement exposées (Villeneuve et al., 1981). Sa cible principale est le système nerveux, particulièrement chez l'enfant (Feldman et White, 1992). Il a aussi été associé, entre aures, à une augmentation de la pression sanguine et au développement de néphropathies tant chez les adultes que chez les enfants (Rutter et Jones, 1983; Gennart, Bernard et Lauwerys, 1992; Fowler, Kahng et Smith, 1994).

4.4.2 Plomb et système immunitaire

Le Pb affecte aussi le système immunitaire, et ce, de différentes façons. Tout d'abord, des données épidémiologiques suivant une exposition en milieu de travail au Pb suggèrent que ce métal lourd affecterait principalement le système immunitaire en perturbant l'aspect cellulaire. Une étude réalisée sur des travailleurs exposés au Pb pendant une période variant entre quatre et 30 ans montrent que ceux-ci avaint un taux sanguin moyen de Pb de $38.4 \mu \mathrm{~g} / \mathrm{dl}$ comparativement au taux moyens chez les individus contrôles se situant à $11.8 \mu \mathrm{~g} / \mathrm{dl}$ (Kimber et al., 1986). Les quantités d'anticorps (IgG, IgM et $\operatorname{Ig} A$) chez les travailleurs exposés demeuraient au même niveau que ceux des contrôles (Kimber et al., 1986). Dans une autre étude, il a démontré que la réponse in vitro des leukocytes du sang périphérique (peripheral blood leukocytes ou PBL) à une stimulation à ConA et à la phytohémagglutinine-A (PHA) était significativement diminuée chez les travailleurs exposés comparativement au groupe contrôle (Alomran et Shleamoon, 1988).

L'exposition au Pb peut, selon le cas, induire une immunosuppression ou une immunostimulation (Heo, Parson et Lawrence, 1996). D'une part, il a été démontré qu'une exposition chronique au Pb chez le rat et la souris augmente la susceptibilité de l'hôte aux infections bactériennes et virales (Hemphil et al., 1971; Gainer, 1974; Cook, Hoffmann et Luzio, 1975). D'autre part, il a aussi été démontré que ce métal peut activer la différenciation des cellules immunitaires de façon dépendante et indépendante de l'activation des cellules T (Lawrence, 1981a, 1981b, 1981c; McCabe and Lawrence, 1990). Les effets immunomodulateurs du Pb s'observent à des concentrations
relativement faibles ($1-10 \mu \mathrm{M}$), comparables aux taux sanguins retrouvés chez des populations exposées à ce métal (Markovac et Goldstein, 1988; Pyatt et al., 1996).

Au niveau des lymphocytes, il a été démontré chez des cellules murines exposées à des concentrations variant entre 0 et 10 mM que le Pb , autant in vitro qu'in vivo,stimule les réponses leukocytaires mixtes (McCabe, Dias et Lawrence, 1991; Lawrence, 1981c) et augmente l'activation et la prolifération des cellules T murines (Warner et Lawrence, 1986) et humaines (Pyatt et al., 1996). Le Pb , à des concentrations situées entre $0.26 \mu \mathrm{M}$ et 2.6 mM , favorise aussi l'interaction entre les cellules B et T, ce qui, par conséquent, augmente l'activation et la prolifération des deux types cellulaires (Razani-Boroujerdi, Edwards et Sopori, 1999). Le renforcement de l'interaction entre les deux types cellulaires peut, entre autres, s'expliquer par le fait que le Pb augmente l'expression à la surface cellulaire des CMH II chez les APC murines et humaines (McCabe, Dias et Lawrence, 1991; Guo, Mudzinski et Lawrence, 1990).

Pour des concentration inférieures ou égales à $100 \mu \mathrm{M}$, le Pb peut modifier la réponse immunitaire en altérant de façon significative la différenciation des cellules Th en cellules Th2 au détriment des cellules Th1 chez la souris (Heo, Lee et Lawrence, 1998; McCabe et Lawrence, 1991). Le Pb stimule donc de façon préférentielle la production d'IL-4, IL-8 et IL-12 et inhibe la production d'IL-2 et d'IFN γ (McCabe et Lawrence, 1991). L'augmentation de la production d'interleukines de type Th2 favorise la différentiation des cellules B en cellules plasmatiques produisant des Acs (Pyatt et al., 1996).

En plus de biaiser les réponses de cellules Th , il a été démontré que le Pb module également l'expression de $\mathrm{V} \beta$ in vivo. Ceci a été démontré par Heo, Lee et Lawrence (1997). Pour ce faire, ils ont traité des souris $\mathrm{BALB} / \mathrm{c}$ au PbCl_{2} (deux injections souscutanée de $500 \mu \mathrm{~g} / \mathrm{ml}$ de saline physiologique par semaine pendant huit semaines) et ont évalué les effets de ce métal sur l'expression de $\mathrm{V} \beta$ in vivo parallèlemement à la fréquence des Th1 et Th2 retrouvées dans les rates et thymus des souris sacrifiées. Leurs expériences leur ont permis d'observer que le PbCl_{2} induisait une réponse oligoclonale caractérisée par l'augmentation d'un certain nombre de clones différents de cellules T $C D 4^{+}\left(T C D 4^{+} V \beta 5^{+}, V \beta 7^{+}\right.$et $V \beta 13^{+}$) dans la rate mais pas dans le thymus. Ils ont également constaté que parmi ces clones présents en plus grande quantité, on dénombrait
plus de clones $\mathrm{T} \mathrm{CD4}{ }^{+}$de type Th2 exprimant $\mathrm{V} \beta 7$ et $\mathrm{V} \beta 13$ par rapport aux clones Th 1 . Ces résultats sont importants dans la mesure où ils permettent de confirmer l'hypothèse selon laquelle il existerait un lien de cause à effet entre l'exposition au Pb et le déclenchement de maladies autoimmunitaire. En effet, l'utilisation oligoclonale des $\mathrm{V} \beta$ a été observée dans le déclenchement de plusieurs maladies autoimmunitaires au niveau du développement des cellules T thymiques (Abromson-Leeman et al., 1995; Acha-Orbea et al., 1988). L'altération des ratios de Th2 et Th1 a également été observée dans des cas de dérèglements immunologiques qui pourraient évoluer en maladies autoimmunes (Heo, Lee et Lawrence, 1997).

Paradoxalement, il a aussi été démontré que le plomb a la capacité d'augmenter directement la production d'H-2 et l'expression du récepteur de l'L-2 (IL-2R) chez les cellules de rate de souris (McCabe, Dias et Lawrence, 1991). Des études supplémentaires sont donc nécessaires afin de mieux caractériser l'effet du plomb au niveau de l'activation des cellules T auxilliaires.

Les propriétés du Pb (augmentation de l'expression du CMH II par les lymphocytes B , expression préférentielle de certains gènes $\mathrm{V} \beta$, activation des Th 2 et augmentation de la production d' $\mathbb{L}-4$ et d'IgE) ont aussi été observées avec le Hg , suggérant un mode d'action semblable pour les deux métaux (Ochel et al., 1991; Vliet et al., 1993; Heo, Parsons et Lawrence). Comme c'est le cas pour le Hg , le Pb pourrait donc être associé au développement de l'autoimmunité (McCabe et Lawrence, 1991; McCabe, Dias et Lawrence, 1991; Pelletier et al., 1994;). Contrairement au mercure, le Pb ne semble pas augmenter l'activité des tyrosines kinases (Razani-Boroujerdi, Edwards et Sopori, 1999) et n'induit pas l'apoptose chez les cellules Thumaines (Ramesh et al., 1999). Il faut savoir que cette dernière étude a été réalisée avec des cellules de rate de rats à des concentrations relativement élevées de Pb (entre $0,26 \mu \mathrm{M}$ et 2.6 mM) qui ne sont pas représentatives des doses auxquelles les humains sont exposés. Ces facteurs font en sorte qu'on ne peut pas extrapoler ces données au lymphocytes T humains. Il était donc important de vérifier ce fait dans le cadre de ce projet de maîtrise puisque la voie des tyrosines kinases est un élément central du processus d'activation cellulaire.

4.4.3 Effets du plomb sur l'expression des gènes

Le Pb a la capacité de moduler l'activité de certains facteurs de transcription. En effet, chez les cellules non-immunitaires, il a été démontré que le Pb augmente de l'activité des sérines/thréonines kinases menant à l'activation de JNK et active NFkB et AP-1 en fonction du temps et de la dose (Lee et al., 1997; Kim et al., 1998; Ramesh et al., 1999). L'augmentation de l'expression des gènes dépendants de l'activité de NFкB dans ces cellules a été reliée à une hausse du stress oxydatif (Ramesh et al., 1999). Il est connu que le Pb active les PKC dans plusieurs types cellulaires et qu'il induit un changement dans l'homéostasie du calcium, mécanismes qui pourraient expliquer l'effet du Pb sur NFкB (Markovac et Goldstein, 1988; Dolmetsch, Xu et Lewis, 1998).

Bien qu'elles soient peu nombreuses, il existe cependant quelques études ayant porté sur l'effet du Pb chez des lymphocytes T CD4 ${ }^{+}$humains. Entre autres, Pyatt et al (1999) ont démontré qu'une exposition au plomb augmentait l'activité de NFkB chez ces cellules. D'autres études à ce sujet sont toutefois essentielles afin de mieux comprendre et caractériser l'effet du Pb sur ces cellules.

4.4.4 Conséquences d'une exposition au plomb

Depuis plusieurs années, les effets néfastes du Pb sur la santé humaine sont connus et ce métal est classé parmi les substances carcinogéniques potentielles (Waalkes, Infante et Huff, 1994; Johnson, 1998).

L'altération des ratios de cellules Th1 et Th2 ont déjà été observés lors de dérèglements immunitaires, menant à l'altération de l'immunité à médiation cellulaire conjugué à une augmentation de l'incidence des maladies infectieuses ou du cancer ou d'une immunité aberrante dont le point culminant est le développement de maladies autoimmunitaires (Heo, Lee et Lawrence, 1997). D'ailleurs, un grand nombre d'études ont démontré que le Pb et le mercure exerçaient des effets semblables au niveau des cellules immunitaires, renforçant ainsi le lien entre l'exposition au Pb et le développement de maladies auto-immunitaires. Par exemple, les résultats obtenus avec les souris BALB/c par Heo, Lee et Lawrence (1997) suggèrent que les réponses oligoclonales de cellules T induites par le Pb chez ces souris, qui peuvent être initiées par des antigènes du soi et qui étaient principalement de type Th2, pourraient être responsable de la production
d'autoanticorps et des effets néfastes sur la santé associés au Pb (Heo, Lee et Lawrence, 1997).

Les effets néfastes observés peuvent dépendre de plusieurs facteurs. En effet, certaines de ces réponses dépendent de la souche de souris ou de rats étudiée (Heo, Lee et Lawrence, 1997) de même que de la concentration en Pb (Razani-Boroujerdi, Edwards et Sopori, 1999). L'augmentation des lymphocytes de rate de souris BALB/c exprimant certains gènes V β n'a pas été observée chez les lymphocytes thymiques (Heo, Lee et Lawrence, 1997), suggérant au plomb un effet spécifique au tissu.

HYPOTHĖSE DE RECHERCHE

Plusieurs points importants présentés dans les sections précédentes méritent une attention particulière. Tout d'abord, il est maintenant reconnu que les métaux lourds tels que le mercure, le plomb et le cadmium sont des substances extrêmement toxiques, largement répandues dans l'environnement, qui exercent des effets nocifs sur le système immunitaire incluant les lymphocytes T .

Ensuite, il est important de noter que la plupart des études in vitro réalisées jusqu'à présent utilisaient des doses très élevées non représentatives des concentrations physiologiques répertoriées chez la moyenne des individus qui, de nos jours, absorbent de petites quantités de métaux, soit par l'alimentation ou en milieu de travail (Oliveira, Malm et Guimaraes, 2001). Par exemple, il a été démontré que des concentrations de 10 à 20 $\mu \mathrm{M}$ de cadmium induisent l'expression des gènes c -fos et c -jun chez plusieurs types cellulaires (Matsuoka et Call, 1995; Wang et Templeton, 1998). Ces concentrations sont bien au-dessus des concentrations sanguines répertoriées chez les groupes d'individus contaminés. Dans ce travail, des concentrations de $\mathrm{CH}_{3} \mathrm{HgCl}, \mathrm{CdCl}_{2}$ et PbCl_{2} inférieures à $1 \mu \mathrm{M}$ seront utilisées, ce qui correspond, par exemple pour le plomb, à une concentration de $20 \mu \mathrm{~g} / \mathrm{dl}$ (Lawrence, 1981c) qui se situe dans la moyenne des expositions environnementales et en milieu de travail, tant chez les adultes que chez les enfants (Markovac and Goldstein, 1988; Pyatt et al., 1996).

Autre fait important à noter, de nombreuses études ont porté sur l'effet de ces métaux lourds sur l'expression des gènes chez plusieurs types cellulaires (Epner et Herschman, 1991; Tang et Enger, 1993; Matsuoka et Call, 1995; Wang et Templeton, 1998; Shumilla et al., 1998; Ramesh et al., 1999; Ding et Templeton, 2000), mais très rarement chez les lymphocytes T humains. À notre connaissance, une seule étude a porté sur l'effet du plomb sur NFкB chez des cellules T Jurkat (humaines) (Pyatt et al., 1996). L'effet de ces métaux sur NFAT chez les lymphocytes T humains est donc tout à fait inconnu et il peut être hasardeux d'extrapoler les résultats, obtenus chez l'animal ou chez d'autres cellules humaines, aux cellules T puisqu'il a été démontré que la plupart de ces métaux ont des effets spécifiques aux cellules et tissus (Bagchi et al., 2000). Compte tenu de ces études, notre hypothèse de recherche est que le mercure, le plomb et le cadmium
modulent la production d'LL-2 en interférant avec l'activité de NFAT, mais la nature de cette modulation est impossible à évaluer uniquement en comparant avec les autres études publiées jusqu'à maintenant.

Malgré la grande quantité d'études qui portent sur les métaux lourds, il n'existe pratiquement pas de connaissances sur l'influence de combinaisons de ces métaux au niveau de l'activation des lymphocytes T humains, car ces différentes substances peuvent avoir des effets additifs ou antagonistes. Il est surprenant que ce type d'étude n'ait pas été effectuée plus souvent puisque, la plupart du temps, ces métaux sont répandus dans l'environnement sous forme de mélange et il est extrêmement rare qu'un individu soit exposé à un seul toxique à la fois. Il était donc crucial d'étudier la question dans le cadre de ce projet de maîtrise.

Aucune étude systématique n'a aussi été réalisée afin de déterminer l'importance de l'état d'activation cellulaire au moment de l'exposition aux métaux lourds. Il est connu que ce paramètre peut faire varier la toxicité des métaux, mais le processus est encore incompris. Afin d'étudier cet aspect, nous avons élaborer un modèle selon lequel les cellules T Jurkat ont été exposées aux métaux avant d'être stimulées, en même temps que la stimulation ou après la stimulation. Ce modèle permet de déterminer si les cellules activées développent ou non une résistance aux métaux par rapport aux cellules non activées. De plus, le fait de mettre les cellules en présence des métaux lourds en même temps que les stimulants permet de savoir si ceux-ci compétitionnent pour les mêmes récepteurs.

Finalement, l'importance du mode de stimulation cellulaire par rapport à l'effet des métaux est mal compris. Plus particulièrement, l'implication du signal de co-stimulation par la molécule CD28 dans l'effet des métaux lourds sur ces cellules est inconnu. Selon notre modèle, les cellules ont été stimulées via CD28/TCR en employant un système physiologique ou un système plus stringent dans le but d'évaluer le rôle du CD28.

SECONDE PARTIE: ARTICLE

Differential effects of mercury, lead, and cadium on IL-2 production by Jurkat T cells

1. Résumé français de l'article

Les métaux lourds, comme le mercure, le plomb et le cadmium, sont des polluants hautement toxiques largement répandus dans l'environnement. II sont accessibles à l'homme principalement par l'ingestion de nourriture (poisson) ou d'eau contaminée. Il est maintenant connu que ces substances ont des effets néfastes sur le système immunitaire humain, incluant les fonctions des lymphocytes T, mais leur mécanisme d'action précis est encore inconnu. Le but de ces travaux était de déterminer l'effet de faibles concentrations de $\mathrm{CH} 3 \mathrm{HgCl}, \mathrm{CdCl}_{2}$ et PbCl_{2} sur la production d'LL-2 par les lymhpocytes T humains. Pour ce faire, une lignée de cellules Jurkat a été stimulée in vitro selon trois systèmes différents (CD3/DT30, CD3/CD28 and PMA/calcium ionophores) après, en même temps ou avant le traitement aux métaux lourds, afin d'évaluer l'importance de l'état et du mode d'activation des lymphocytes T au niveau de l'effet des métaux lourds sur ces cellules. De plus, les cellules T Jurkat ont été exposées aux métaux lourds individuellement ou sous forme de mélange (en concentration équimolaire des trois métaux), pour déterminer si la présence simultanée des trois métaux pouvait avoir un effet additif ou antagoniste. En premier lieu, nous avons démontré qu'une faible concentration ($1 \mu \mathrm{M}$) non-toxique de ces métaux induisait l'activation des protéines tyrosines kinases se tradiusant par une augementation de la phosphorylation des tyrosines après une stimulation de 4 heures. Cette même concentration de mercure et de plomb individuellement inhibe la production d'LL-2 par les cellules Jurkat, peu importe l'état d'activation cellulaire au moment de l'exposition aux métaux, alors que le cadmium augmente la production d'IL-2 seulement chez les cellules pré-activées. Fait intéressant, le mélange de métaux n'a pas d'effet sur ce paramètre et ce, peu importe l'état d'activation des cellules au moment de l'exposition aux métaux. Nous avons ensuite voulu déterminer si les métaux exerçaient leur effet sur NFAT étant donné que c'est un facteur de transcription qui a démontré être essentiel dans l'expression du gène de l'IL-2. Lorsque
les cellules étaient stimulées par le système CD3/DT30, les effets observées étaient mineurs. Cependant, l'induction d'une forte stimulation de la molécule CD28 par le système CD3/CD28 a permis de démontré une augmentation importante de l'activité de NFAT, notamment chez les cellules Jurkat traitées au mercure et au mélange de métaux au même moment ou après la stimulation des cellules. La stimulation cellulaire avec PMA/calcium ionophores a indiqué que la cible des métaux lourds se situent en aval de la PKC et de la mobilisation du calcium intracellulaire. Ces résultats suggèrent que le mode et l'état d'activation des cellules T sont des paramètres importants à considérer dans l'étude des métaux lourds, que ces métaux soient utilisés individuellement ou en mélange à faibles concentrations. De plus. nous avons démontré pour la première fois l'importance co-stimulation forte et soutenue des cellules T par le CD28 dans la modulation des fonctions des cellules T par les métaux lourds. En effet, en présence de cette forte stimulation, nous avons démontré que le mercure et le mélange de métaux, sous certaines conditions, pouvaient devenir de puissant co-activateurs. Cette observation est cruciale, étant donné que ces métaux ont déjà été reliés au développement de maladies autoimmunitaires et qu'il a déjà été démontré que la présence de lymphocytes sur-activés étaient impliqués dans ce type de maladies.

2. Contribution de l'étudiant

Toute les expériences ont été réalisées par l'étudiante avec la collaboration de Claudine Hamelin, technicienne dans le laboratoire du Docteur Bernier. La rédaction de ce chapitre a été réalisée par l'étudiante dans le cadre de ce projet de maîtrise. À être soumis à la revue Human Immunology.

Differential effects of mercury, lead, and cadium on IL-2 production by Jurkat T cells

Myrian Colombo, Claudine Hamelin, Edouard Kouassi, Michel Fournier and Jacques Bernier

Centre de recherche en santé humaine, INRS-Institut Armand Frappier, Université du Québec, Pointe-Claire, QC, Canada

Runing tittle : Modulation of human IL-2 production by heavy metals

Corresponding Author:

Jacques Bernier
INRS-Institut Armand Frappier
245 Hymus Boulevard
Pointe-Claire QC, H9R 1G6
Tel. (514) 630-8813
Fax (514) 630-8850
e-mail: jacques.bernier@inrs-iaf.uquebec.ca

Abstract

Mercury, lead and cadmium, are widespread and highly toxic pollutants. They have adverse effects on the human immune system, including T cell functions, but the precise mechanisms are unclear. The aim of this work was to determine the effect of sublethal doses of $\mathrm{CH}_{3} \mathrm{HgCl}, \mathrm{CdCl}_{2}$ and PbCl_{2} on $\mathbb{L}-2$ production by T lymphocytes. Jurkat T cells were stimulated by triggering CD3 and CD28 molecules prior to, in conjunction with, or following heavy metal exposure. Heavy metals, individually or mixed together at equimolar concentrations were used. Results demonstrated that low, non-cytotoxic doses of metals induce tyrosine phosphorylation.. Mercury and lead ($1 \mu \mathrm{M}$) inhibit $\mathbb{L}-2$ production regardless of the state of T cell activation. Cadmium stimulated IL-2 production only in pre-activated T cells. Surprisingly, a mixture of these three metals had no effect. We then determined the effects of heavy metals on NFAT activity. When cells were stimulated by CD3/CD28, the NFAT activity was slightly affected. However, more potent stimulation of the CD28 molecule increased the NFAT activation when the cells were exposed to mercury and to the metal mixture. Activation with PMA/calcium ionophores indicated that the target of heavy metals is located downstream from PKC and calcium mobilization. These results suggest that the state and mode of T cell activation are important parameters to consider in heavy metal studies, when these metals are used individually or mixed together at low concentrations. The importance of a strong and sustained T cell co-stimulation by CD28 molecules in heavy metal T-cell modulation resulted in a strong stimulation. Under latter conditions, mercury and metal mixtures can act as immunoactivators. This is of primary concern, given that exposure to these metals has already been associated with the onset of autoimmune diseases.

INTRODUCTION

Heavy metals including mercury, lead, and cadmium are present throughout the ecosystem and are detectable in water and fish. The main route of exposure of humans to these metals is via ingestion of contaminated food or water (Bernier et al., 1995). Extensive experimental investigation has show that heavy metals alter several immune system parameters and cause increased susceptibility to infections, autoimmune diseases, and allergic response (Bernier et al. 1995). A number of studies have suggested that mercury, lead and cadmium may exert immunosuppressive effects on animals and humans. However, conflicting results have been reported, due mainly to varying conditions of exposure. Another major problem in metal immunotoxicological studies is that high concentrations are often used, which do not correspond to the values measured in blood.

Immunotoxic effects of mercury are directly related to its chemical form, doses and route of exposure (Shenker et al., 1992). The organic form, methylmercury chloride $\left(\mathrm{CH}_{3} \mathrm{HgCl}\right)$ is known to be the most toxic form (Shenker et al., 1992). Chronic exposure to low levels of $\mathrm{CH}_{3} \mathrm{HgCl}$ can modulate T cell functions (cytokine production, cell growth and proliferation) and different cellular processes leading to apoptotic cell death (Hildebrand and Cram, 1979). Mercury has already been linked to induction of chronic infections or autoimmune diseases (Bigazzi et al., 1994; Dantas and Queiroz, 1997).

Cadmium chloride $\left(\mathrm{CdCl}_{2}\right)$ is another highly toxic heavy metal known to modulate many T cell functions. Cadmium has been detected in human blood following chronic exposure and is found associated with nuclear blood cells (Hildebrand and Cram, 1979;

Enger et al., 1983). A time- and dose-dependant toxicity of cadmium to mononuclear blood cells have been reported (Cifone et al., 1989; Harley et al., 1989). It was shown that cadmium stimulated the expression of various types of genes, including metallothioneins (Angle et al., 1993; Klaassen and Liu, 1997), which play a role in detoxification of cells, as well as cellular proto-oncogenes such as c-jos and c-jun (Matsuoka and Call, 1995) which enhance cell proliferation (Beyersmann and Hartwig, 1994). The extrapolation of results to other cell types is not prudent, given that the toxic effects of cadmium have been reported to be tissue- and cell-specific (Jin and Ringertz, 1990; Epner and Herschman, 1991; Tang and Enger, 1993; Wang and Templeton, 1998).

Lead chloride $\left(\mathrm{PbCl}_{2}\right)$ is another heavy metal which affects the immune system (McCabe and Lawrence, 1991; Heo et al., 1990, 1998). Some studies have demonstrated that lead (Pb) treatment results, in vitro, in immunosuppression whereas others have observed that Pb enhances lymphocyte proliferation in vivo (Shenker et al., 1977; Gaworski and Sharma, 1978; Razani-Boroujerdi et al., 1999). Moreover, Pb has been shown to modulate T cell proliferation by inhibiting Th1 cells and enhancing Th2 cells, leading to an imbalance between Th1 and Th2 cells. This results in an aberrant cellmediated immunity that may culminate with autoimmune diseases or increased incidence of infectious diseases (McCabe and Lawrence, 1991; Heo et al., 1996, 1997, 1998). Furthermore, in pheochromocytoma cells (PC-12 cells), Pb activates NFкB and AP-1, and increases mitogen-activated protein kinase kinase (MEK) and c-Jun N -terminal kinase (JNK) in a dose- and time-dependent manner (Ramesh et al., 1999).

Mercury, cadmium and lead can modulate T cell functions. T lymphocytes are activated via the engagement of the T cell receptors (TcR) by MHC-bound specific antigenic peptide ligands. This event results in activation of intracellular signalling pathways which activate transcriptional factors such as the nuclear factors of activated T cells (NFAT) (Chow et al., 1999) and enhancement of functions involved in the immune response. A second signal, brought about by the engagement of the CD28 co-stimulatory receptor to its ligand, CD 80 (B7-1) or CD86 (B7-2), is generally required for full T cell activation and $\mathbb{L}-2$ production during immune response (Karin and Hunter, 1995). However, little is known about the CD28 intracellular pathway or the effects of heavy metals on this pathway.

Three major points emerge from the literature regarding the effects of metals on cells. Firstly, there is a paucity of information regarding the effects of low doses of $\mathrm{CH}_{3} \mathrm{HgCl}, \mathrm{CdCl}_{2}$ and PbCl_{2} on humans T cells, especially with respect to the regulation of gene expression. Secondly, no studies have demonstrated the importance of T cell activation state and the mode of activation when the immunotoxic effects of heavy metals are being studied. Thirdly, the effects of mixtures of metals on T cell functions have not been examined.

The aim of our study was to determine the effects of low doses of $\mathrm{CH}_{3} \mathrm{HgCl}$, CdCl_{2} and PbCl_{2}, individually or mixed together, on $\mathrm{IL}-2$ production by T lymphocytes. Here we demonstrate that state and mode of T cell activation are important parameters to consider in heavy metal studies, using these metals individually or mixed together at low concentrations. Furthermore, we show for the first time the importance of a strong and
sustained T cell co-stimulation by CD28 molecules in heavy metal T-cell modulation. Possible pathways implications for autoimmune diseases are discussed.

MATERIALS AND METHODS

Heavy metals

$\mathrm{CH}_{3} \mathrm{HgCl}$ was purchased from Sigma-Aldrich Corp (Oakville, ON) and dissolved in DMSO at a concentration of $100 \mathrm{mM} . \mathrm{CdCl}_{2}$ was purchased from Sigma-Aldrich, dissolved in distilled water at a concentration of 10 mM and was $0.22 \mu \mathrm{M}$ filter-sterilized before addition to culture media. PbCl_{2} was purchased from Fisher (Montreal, QC), dissolved in sterile saline at a concentration of 10 mM and was $0.22 \mu \mathrm{M}$ filter-sterilized before addition to culture media.

Reagents

RPMI 1640, foetal calf serum (FCS), antibiotics (penicillin/streptomycin), HEPES buffer and glutamine were purchased from BioMedia (Mississauga, ON). Acrylamidebisacrylamide (30\%), Tris- $\mathrm{HCl}(1.5 \mathrm{M})(0.5 \mathrm{M})$, SDS (10%), ammonium persulfate (APS) and reference proteins used as markers in sodium dodecyl sulfate-polyacrylamide gels electrophoresis (SDS-PAGE) analysis were purchased from Bio-Rad (Mississauga, ON). TEMED was purchased from Fisher Scientific (Montreal, QC). IL-2 was a generous gift of Dr Michel Tremblay (CHUL, QC, Canada). Anti-phosphotyrosine monoclonal antibody (mAb) (clone 4G10, UBI inc., Waltham, MA), Human anti-CD3 mAb (OKT3) was obtained from pooled culture supernatants and purified by HITRAP Protein G column (Amersham-Pharmacia, (Baie d'Urfé, QC). Horseradish-peroxidase linked-antimouse IgG mAb raised in sheep was purchased from Amersham-Pharmacia. Phorbol 12myristate 13-acetate (PMA), calcium ionophores A23187, phytohemagglutinin-A (PHA), human anti-CD28 mAb, goat anti-mouse IgG and 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyl-2H-tetrazolium bromide (MTT) and RNAse were purchased from SigmaAldrich.

Cell lines and cell culture

The human Jurkat T cell line (clone E6-1) was purchased from American Type Culture Collection (ATCC) (Rockville, MD). Cells were maintained in complete culture medium consisting of RPMI 1640 medium (BioMedia) supplemented with 10% heatinactivated FCS, $100 \mathrm{U} / \mathrm{ml}$ penicillin/streptomycin, 10 mM HEPES and 2 mM glutamine. Cells were grown at $37^{\circ} \mathrm{C}$ in a humidified atmosphere containing $5 \% \mathrm{CO}_{2}$. Cells were split three times weekly and maintained at concentration between 0.2 to 0.7×10^{6} cells/ml. DT30 cells are derived from the mastocytoma P815 cell line and stably express at cell surface human B7.1. These cells also express a high level of murine Fc receptors and are thus capable of binding and cross-linking soluble antibodies. This cell line was obtained from ATCC (Rockville, MD). DT30 cells were grown in complete RPMI 1640 medium and were fixed in 1% paraformaldehyde, washed extensively with 1 X phosphatebuffered saline (PBS) and stored frozen at a density of $2 \times 10 \% / \mathrm{ml}$ in complete RPMI medium.

Western blotting

Jurkat cells were washed three times and resuspended at 5×10^{6} cells $/ \mathrm{ml}$. 5 x 10^{5} cells were put into microcentrifuge tubes with or without heavy metals for 30 minutes to 4 hours. Positives control consisted of cells stimulated with $50 \mu \mathrm{~g} / \mathrm{ml}$ of PHA for 4 minutes (min). Cells were harvested and lysed in sample buffer (SDS reducing buffer: 62.5 mM Tris $\mathrm{HCl}, \mathrm{pH} 6.8,20 \%$ glycerol 2% SDS, $5 \% \beta$-mercaptoethanol). Total lysates were analysed on 12% polyacrylamide gels. Proteins were transferred on to nitro-
cellulose membrane and non-specific sites were blocked with TBST 2% BSA. Membranes with anti-phosphotyrosine mAb (clone 4G10) (1:1000), were incubated overnight at $4^{\circ} \mathrm{C}$, washed, and incubated 1 hour at room temperature (RT) with the horseradish peroxidase linked-anti-mouse IgG. Membranes were washed and proteins were detected by the Lumiglo ${ }^{\mathrm{TM}}$ chemiluminescent substrate kit (LifeTechnologies, Burlington, ON).

Transfection

pNFATluc plasmid contains the minimal IL-2 promoter with three tandem copies of the NFAT-binding site (Timmerman et al., 1996). This promoter controls the luciferase reporter gene. To transfect Jurkat cells, the vector was digested with $\mathrm{Bgl} I$ at $37^{\circ} \mathrm{C}$ for 1 hour. $\mathrm{Bg} I$ was then inactivated at $70^{\circ} \mathrm{C}$ for 10 minutes. The JKE6-1 cells were washed in cold 1X PBS and adjusted at 15×10^{6} cells $/ 500 \mu \mathrm{l}$ cold PBS 1 X . In an electroporation cuvette, the digested plasmid $(25 \mu \mathrm{l})$ was mixed with the cells and salmon sperm DNA $(25 \mu \mathrm{~g})$ and left on ice for 10 minutes prior to electroporation. The transfected cells were left on ice for 10 minutes and transferred into small culture flasks overnight prior to heavy metal exposure and analysis of luciferase activity.

Metal exposure

The effects of heavy metals on IL-2 production and NFAT activity were assessed in Jurkat cells. Cells were exposed to $0.01,0.1$ or $1 \mu \mathrm{M}$ of $\mathrm{CH}_{3} \mathrm{HgCl}, \mathrm{CdCl}_{2}$ and PbCl_{2}, individually or mixed together in equimolar concentrations, under three different conditions: 1) cells were exposed to metals prior to cell stimulation, 2) cells were treated
with heavy metals and stimulated at the same time and 3) cells were exposed to heavy metals following cell stimulation. For IL-2 production, in condition 1 , treatment with heavy metals occurred 4 hours prior to cell stimulation. In condition 3, cell stimulation occurred 4 hours prior to heavy metal treatment. For the luciferase assay for NFAT activity, in condition 1 , heavy metals were added to cells 4 hours prior to cell stimulation, while for condition 3 , heavy metal exposure occurred 1 hour following cell stimulation.

Cell activation

1) CD3/DT30 system. Jurkat T cells were stimulated with a human anti-CD3 mAb (OKT3), at a concentration of $0.1 \mu \mathrm{~g} / \mathrm{ml}$, combined with fixed-DT30 cells (ratio 1 DT30: 5 Jurkat T cells). For $\operatorname{LL}-2$ production, cells were washed and resuspended in complete RPMI medium at 1×10^{6} cells $/ \mathrm{ml}$. In 96 -well plates, 1×10^{5} cells $/ 200 \mu \mathrm{l}$ were added to wells with or without anti-CD3 mAb and DT30 cells before, after, or at the same time as heavy metal exposure. For all three conditions, cells were stimulated for a total period of 24 hours. For measurement of NFAT activity using the luciferase assay, cells were stimulated for a total period of 4 hours.
2) CD3/CD28 system. This stimulation was used for measurement of NFAT activity using the luciferase assay. 96 -well plates were coated overnight at $4^{\circ} \mathrm{C}$ with an IgG anti-mouse $\mathrm{Ab}(10 \mu \mathrm{~g} / \mathrm{ml})$. Transfected Jurkat T cells were then washed and resuspended in complete RPMI at 1×10^{6} cells $/ \mathrm{ml}$ containing a human anti-CD28 mAb $(5 \mu \mathrm{~g} / \mathrm{ml})$ and OKT3 $(0.1 \mu \mathrm{~g} / \mathrm{ml})$. Cells were incubated on ice 45 minutes, washed and plated at 1×10^{5} cells/well in coated plates previously washed with 1 X cold PBS.
3) PMA/Calcium ionophores system. In a third series of experiments, Jurkat T cells were stimulated with PMA $\left(5 \times 10^{-8} \mathrm{M}\right)$ combined with calcium ionophores $\left(1 \times 10^{-}\right.$ ${ }^{6} \mathrm{M}$) in order to measure the NFAT activity. Cells were washed and plated at 1×10^{5} cells $/ 200 \mu \mathrm{l} /$ well. PMA and calcium ionophores were added to cells prior to, or following or together with heavy metal exposure. Jurkat T cells were stimulated for a total period of 4 hours.

Luciferase assay for NFAT activity

After stimulation, Jurkat T cells were washed three times with HBSS 0.1% BSA and centrifuged at $1200 \mathrm{rpm}, 10$ minutes, $4^{\circ} \mathrm{C}$. $200 \mu \mathrm{l}$ of HBSS $1 \% \mathrm{BSA}+$ lysis buffer (125mM Tris-phosphate $\mathrm{pH} 7.8,5 \%$ Triton $\mathrm{X}-100,50 \%$ glycérol) were then added to each well. Plates were frozen at $-20^{\circ} \mathrm{C}$ before luciferase activity analysis with luciferase buffer $\left(20 \mathrm{mM}\right.$ tricin, $1.07 \mathrm{mM}\left(\mathrm{MgCO}_{3}\right)_{4} \cdot \mathrm{Mg}(\mathrm{OH})_{2} .5 \mathrm{H}_{2} \mathrm{O}, 2.67 \mathrm{mM} \mathrm{MgSO}_{4}, 0.1 \mathrm{mM}$ EDTA, $270 \mu \mathrm{M}$ Coenzyme A, $470 \mu \mathrm{M}$ luciferin, $530 \mu \mathrm{M}$ ATP and 33.3 mM DTT) using a MLX Microtiter ${ }^{\circledR}$ Plate Luminometer (Dynex Technologies).

MTT assay

Jurkat cells were seeded at 1×10^{5} cells $/ \mathrm{ml}$ in 96 well-plates and exposed to 0.01 , 0.1 and $1 \mu \mathrm{M}$ of $\mathrm{CH}_{3} \mathrm{HgCl}, \mathrm{CdCl}_{2}$ or PbCl_{2}. Plates were incubated at $37^{\circ} \mathrm{C}$ in a humidified atmosphere containing $5 \% \mathrm{CO}_{2}$. After a 48 -hour incubation, the media was discarded and $200 \mu \mathrm{l} /$ well of MTT solution ($0.5 \mathrm{mg} / \mathrm{ml}$) was added. Plates were incubated for an additional 3 hours at $37^{\circ} \mathrm{C}$ in a humidified atmosphere containing $5 \% \mathrm{CO}_{2}$. Following this incubation period, the medium was discarded from wells and $200 \mu \mathrm{l} /$ well of isopropanol was added. The color intensity was measured at 570 nm (reference filter 690
nm), using a PowerWaveX Microplate Scanning Spectrophotometer (BIO-TEK Instruments Inc, Burlington, Vermont).

Apoptosis assay

Jurkat cells were seeded to 1×10^{6} cells/ml in 24 -well plates and exposed to heavy metals $(0.01-1 \mu \mathrm{M})$ under the three conditions described previously. Plates were incubated at $37^{\circ} \mathrm{C}$ in a humidified atmosphere containing $5 \% \mathrm{CO}_{2}$ for 24,48 or 72 hours. Cells were then washed with Krishan buffer (0.1% sodium citrate, 0.3% NP- $40,50 \mu \mathrm{~g} / \mathrm{ml}$ PI) and incubated at $37^{\circ} \mathrm{C}$ with the same buffer for 30 minutes in the dark. Cells were washed, RNAse treated and resuspended in Krishan buffer and cell cycle and DNA fragmentation was analysed by flow cytometry.

IL-2 ELISA assay

ELISA assays were performed as described in the Endogen ELISA kit (Hornby, ON). Briefly, Maxisorp Nunc-Immunoplates (VWR, Montreal QC) were coated with $10 \mu \mathrm{~g} / \mathrm{ml}$ of a human anti-IL-2 pAb (Endogene, Hornby, ON), overnight at room temperature. Non specific sites were blocked with the Assay Buffer (PBS, Tris-base, BSA 2\%) for 45 minutes. Plates were washed (Tween-20 in PBS) and samples and $\mathbb{L}-2$ standards were added for 1 hour, RT. Without emptying the plates, a biotin-labeled human anti-IL-2 mAb (Endogen, Hornby, ON) was added for 1 hour. After washing the plate, peroxidase coupled-streptavidin (Boehringer Mannheim, Laval, Qc), diluted 1:5000, was added for 30 minutes. After washing the plate, 2,2'-azino-bis (3-ethylbenzthiazoline-6 sulfonic acid (ABTS) liquid substrate for L-2 detection (Sigma,

Oakville, ON) was added for 30 minutes. Plates were read at 405 nm on a PowerWaveX Microplate Scanning Spectrophotometer (BIO-TEK Instruments Inc, Burlington, Vermont).

Statistical Analysis

For all experiments, a One Way Analysis of Variance (Anova) test followed by a Dunnett multiple comparisons post test were performed. For the post test, mean results of each treatment were compared to the control (stimulated cells untreated with heavy metals). Significance was established at $\mathrm{P}<0.05$ and $\mathrm{P}<0.01$.

RESULTS

Non toxic doses of heavy metals activate tyrosine phosphorylation
One of the major points to be considered in the in vitro cytotoxicity of heavy metals is the target cells (Bernier et al., 1995). We have determined the sensibility of Jurkat T cells to $0.01-1 \mu \mathrm{M}$ of $\mathrm{CH}_{3} \mathrm{HgCl}, \mathrm{CdCl}_{2}$ and PbCl_{2} after 48 hours of exposure (Figure 1). Cellular viability determined by MTT assay showed no toxic effects during the first 48 hours. Results were confirmed by flow cytometry using propidium iodide and trypan blue exclusion (data not shown). However, exposure for up to 72 hours caused a significant decrease in cellular viability at the higher dose of mercury ($1 \mu \mathrm{M}$) (data not shown).

One of the early events occurring during T cell activation is tyrosine phosphorylation, which can be modulated by many environmental agents including heavy metals (Nakashima et al., 1994; Rosenspire et al, 1998). We have determined the induction of tyrosine kinase activity after 0.5 and 4 hours of exposure to non-cytotoxic doses of heavy metals. As shown in Figure 2, there is a basal level of tyrosine phosphorylation in Jurkat T cells. This basal level is maintained with 0.01 and $0.1 \mu \mathrm{M}$ for all metals, suggesting that these concentrations are too low to affect tyrosine phosphorylation. However, an increase in tyrosine phosphorylation following a 4-hour incubation at a concentration of $1 \mu \mathrm{M}$ for each metals was noted, demonstrating induction of tyrosine kinase activity in Jurkat T cells. The intensity of bands observed were similar to those obtained following stimulation of cells using PHA as a positive control.

Heavy metals modulate IL-2 production by Jurkat T cells

We have shown that heavy metals can influence tyrosine phosphorylation in Jurkat T cells at non-cytotoxic doses. Therefore, the next experiments were done using concentration of $1 \mu \mathrm{M}$ of $\mathrm{CH}_{3} \mathrm{HgCl}, \mathrm{CdCl}_{2}$ and PbCl_{2}, in order to characterize their effects on $\mathrm{LL}-2$ production. Since it is known that cellular activation state can modify response to heavy metals (Shenker et al., 1992; Close et al., 1999) we have considered this in our experiments. Cells were exposed to heavy metal 4 hours before, at the same time or 4 hours following stimulation with a physiological system consisting of anti-CD3 mAb and paraformaldehyde-fixed DT30 cells (expressing human B7.1 and murine $\mathrm{Fc} \gamma$ receptor). L-2 production was monitored after 24hours of stimulation.

Exposure of cells to $1 \mu \mathrm{M}$ of $\mathrm{CH}_{3} \mathrm{HgCl}$ and PbCl_{2} followed by stimulation with CD3/DT30 system caused a significant decrease in $\mathbb{L L}-2$ production (Figure 4A). However, cadmium exposure did not disrupt $\mathbb{L}-2$ production. The addition of heavy metals at the same time as stimulation caused similar effects to those observed when Jurkat T cells were pre-exposed to the metals (Figure 4B). The observed inhibition for $\mathrm{CH}_{3} \mathrm{HgCl}$ and PbCl_{2} is approximately 60% and 30%, respectively. $\mathrm{LL}-2$ production of pre-activated cells with CD3/DT30 system was dramatically decreased by addition of $\mathrm{CH}_{3} \mathrm{HgCl}$ or PbCl_{2}, by 70% and 50% respectively (Figure 4C). Conversely, addition of CdCl_{2} after 4 hours of cell stimulation increased $\mathbb{L}-2$ production (approximately 30% over the control). Taking together, the results obtained with physiological model of T cell stimulation showed that $\mathrm{CH}_{3} \mathrm{HgCl}$ and PbCl_{2} exposure affects the $\mathbb{L}-2$ production,
independent of cellular activation state. Cadmium exposure affects only the activated cells, and causes increased IL-2 production.

Apotosis related to heavy metals species after TCR-CD28 engagement .

TCR engagement led to T cell activation, up-regulation of CD95 and apoptosis (Collette et al., 1998). Since heavy metals modulate tyrosine kinase activity and affect the $\mathbb{L L}-2$ production, we wondered if the decrease or increase of this cytokine could be related to apoptosis of cells. Background levels apoptotic cells stimulated with CD3/DT30 system after 24 hours in control vehicle were between 10 to 15% (Figure 3). Incubation of Jurkat T cells for 4 hours with metals prior to stimulation caused an increase in the number of apoptotic cells only after $\mathrm{CH}_{3} \mathrm{HgCl}$ exposure, PbCl_{2} or CdCl_{2} had no effect (Figure 3A). The increase in apoptotic cells was correlated with the inhibition of $\mathbb{I L}-2$ production. Methylmercury by itself at $1 \mu \mathrm{M}$ caused apoptosis in Jurkat cells only after 72 hrs incubation (data not shown). Thus, stimulation of cells changes the kinetic of methylmercury-induced apoptosis. Stimulation of Jurkat T cells at the same time as heavy metal exposure resulted in increased apoptosis (25\%) in the presence $1 \mu \mathrm{M}$ of $\mathrm{CH}_{3} \mathrm{HgCl}$ or PbCl_{2} (Figure 3B). Lastly, treatment of stimulated Jurkat T cells with heavy metals caused a drastic increase in apoptotic cells following $\mathrm{CH}_{3} \mathrm{HgCl}$ exposure (Figure 4C). Although the production of $\mathbb{L}-2$ is altered after exposure to $1 \mu \mathrm{M}$ of CdCl_{2} (increased) and PbCl_{2} (decreased), no significant changes in apoptotic cell levels were observed. Overall, these results show that apoptosis of cells was independent to the cellular activation state following methylmercury exposure while the effects of lead chloride are dependent upon cellular activation state.

Heavy metals-induced decrease of IL-2 is linked to the inhibition of activation nuclear factor NFAT.

Evidence indicates that heavy metals can interfere with DNA binding of transcription factors and thus modulate gene expression (Acuna et al. 2001; Hanas and Gunn 1996). One of the major nuclear factors involved in regulation of $\mathbb{L}-2$ production is NFAT (Chow et al., 1999). Jurkat T cells were transfected with pNFAT-Luc vector. To determine if transfection altered their sensitivity to heavy metals, the MTT assay was performed (Figure 5). Cellular viability of transiently transfected cells after 24 hours of exposure to heavy metals was not affected as compared to parental cells lines (Figure 5). Stimulation with the CD3-DT30 system of cells transfected with pNFAT vector resulted in a 35 fold increase in luciferase activity as compared to non-stimulated cells (data not shown). Thus, this stimulation system is able to activate NFAT.

Stimulation of cells with CD3/DT30 system resulted in a decrease of NFAT activity when the cells were exposed to mercury prior to stimulation (Figure 6A). This decrease was correlated with the observed effects on $\mathbb{I L}-2$ production and apoptosis. Lead and cadmium had no effect under these conditions. However, addition of cadmium at the same time as activation of cells increased NFAT activity (Figure 6B). Surprisingly, no effects were observed for $\mathrm{CH}_{3} \mathrm{HgCl}$ and PbCl_{2}, although a significant impairment of $\mathbb{L}-2$ production was noted. Finally, the addition of heavy metals in the culture of activated cells reduced NFAT activity only for $\mathrm{CH}_{3} \mathrm{HgCl}$. Results of NFAT activity showed some disparity with $\mathbb{L}-2$ production suggesting that a compensatory effect by other
transcriptional factors present in the promoter region of the $\mathbb{L}-2$ gene may be involved. To verify the effects of heavy metals on NFAT activity, we used a more stringent system for activation of Jurkat T cells. Indeed, it is possible that many T cells become anergic in the absence of CD28 stimulation, since both signals are necessary for optimal T cell stimulation (Schwartz, 1992). Anti-CD3 and anti-CD28 mAbs were incubated with cells and the antibodies were crosslinked by a secondary antibody specific to the Fc receptor of the molecule. In this way, co-aggregation of CD3 and CD28 molecules is more controlled as compared to the CD3/DT30 system. Results showed a decrease in NFAT activity when methylmercury was present prior to stimulation (Figure 6B). On the other hand, an increase of NFAT activity was noted when cadmium chloride was present before or at the same time as cellular activation, as well as when the activated cells were incubated with methylmercury (Figure 6B). Overall, the results differ depending upon the strength of activation stimuli of Jurkat T cells. In the case of cadmium exposure, NFAT activity was increased using either method of stimulation.

To determine the involvement of tyrosine kinase in the observed effects, the cells were activated with PMA plus calcium ionophores. PMA stimulation bypasses activation via TCR and activates cells via protein kinase C activation, while calcium ionophores are responsible for intracellular Ca^{2+} mobilization important in translocation of NFAT from cytoplasm to nucleus in activated T cells (McCaffrey et al., 1993; Karin and Hunter, 1995; Su et al. 1995). Exposure of cells to heavy metals for 4 hours prior to a mitogenic signal caused a decrease of NFAT activity with $1 \mu \mathrm{M}$ of $\mathrm{CH}_{3} \mathrm{HgCl}$ or PbCl_{2}, and an increase of activity with cadmium (Figure 6C). Co-incubation of PMA, calcium ionophores and heavy metals resulted in decreased activity for mercury and increased
activity cadmium. Unexpectedly, the addition of metals to activated cells in culture had no effect. These results suggest that metals perturb the activation of cell downstream of PKC and calcium mobilization, when cells are exposed to heavy metals prior to or at the same time as activation. Tyrosine kinases, which are upstream of $\mathrm{PKC} /$ calcium, seem to be affected only when the cells were subjected to mitogenic signals before exposure to the metals.

The addition in equimolar concentrations of mixtures of heavy metals results in antagonist effect on IL-2 production.

Mixtures of heavy metals have been poorly studied. However, exposure to individual metals occurs rarely. Thus, we have examined the addition of equimolar concentrations of mercury, cadmium and lead, to determine whether or not exposure results in additive or antagonist effects. For the first time, the effects of a metal mixture on IL-2 production has been studied (Figure 7). Interestingly, no change was observed when the mixture of metals was added before, concomitantly or after stimulation with the CD3/DT30 system. This suggests that different metals, with different effects on Jurkat cells when added alone, may have antagonist effects when added as a mixture. We next studied the effects of a metal mixture on NFAT activation after triggering the cells with CD3/DT30 system (Figure 8A). NFAT activation was slightly increased when metals were present at the same time as stimulation, and decreased when metals were added following activation of cells. Although the difference is significant, no effect on LL-2 production was noted, indicating that the change was too minor to be biologically significant to T cell activation.

To determine if the stringency of the signals from by CD3 or CD28 molecules could influence NFAT activation in the presence of a metal mixture, we crosslinked the two molecules together (Figure 8B). Results showed an important increase in NFAT activation when the mixture of metals was present at the same time as stimulation or added to activated cells. This effect was possibly related the effect of cadmium, which can substitute calcium in biochemical pathways. To verify this possibility, we used the PMA/ionophore system to obtain maximal increase maximal in calcium mobilization. Results have showed no change in NFAT activation under the latter two conditions (Figure 8C). However, an increase of NFAT activation was observed when the incubation with metals mixture occurring prior stimulation. Overall, these results show that a metal mixture had a minimal effects on T cell activation when the cells were stimulated under conditions comparable to physiological conditions.

DISCUSSION

Heavy metals are highly toxic pollutants, which are able to modulate many functions in the immune system, more specifically in T cells. However, their specific mechanisms of action are still unknown. The aim of the present study was to clarify this question. In a first series of experiments, we assessed whether or not low concentrations of metals could modulate the T cell response and affect protein tyrosine kinases (PTKs) activity. We observed that $1 \mu \mathrm{M}$ of $\mathrm{CH}_{3} \mathrm{HgCl}, \mathrm{CdCl}_{2}$ or PbCl_{2}, a non-cytotoxic dose (Figure 1), significantly stimulated Jurkat T cell tyrosine kinase activity (Figure 2). These observations suggest that heavy metals could facilitate activation of Jurkat T cells through signalling pathway(s) dependent upon the antigen receptor. The effects of lead contradict those of Razani-Boroujerdi et al. (1999) who noted that lead did not significantly stimulate protein tyrosine kinase activity. This difference may be explained by the fact that they used lead acetate instead of lead chloride, and they exposed T lymphocytes from rats whereas our experiments used a human T cell line. Indeed, it is known that different forms of heavy metals can interfere differentially with different cell systems, and that animal and human cells have different sensitivities to heavy metals (Jin and Ringertz, 1990; Epner and Herschman, 1991; Tang and Enger, 1993; Wang and Templeton, 1998).

Furthermore, Figure 2 indicates that some proteins are phosphorylated more strongly than others. Interesting differences in the regions between 66 and 97 kDa and between 45 and 66 kDa have been observed. The former are consistent with the region for Src-family PTKs, such as Lck and Fyn, while the later are consistent with ZAP-70, SLP-76 and Itk migration (Herndon et al., 2001). However the specific PTKs affected by
heavy metals remain to be established. Nevertheless, the pattern of phosphorylation observed following exposure to heavy metals is similar to that observed after activation by mitogenic stimulation.

The activation of cells by accessory molecules or co-receptors without engagement of TCR causes an increase of PTKs and results in subsequent anergy or activation-induced non-responsiveness (Powell et al., 1998). Thus, the consequences of the increased PTKs after metal exposure was addressed. The assessement of the effects of heavy metals on $\mathbb{L}-2$ secretion showed that $\mathrm{CH}_{3} \mathrm{HgCl}$ and PbCl_{2} caused a decrease of this cytokine. Exposure to these metals before or at the same time as activation by TcR perturbed the production of $\mathbb{L L}-2$ (Figure 4). It is interesting to note that the exposure of activated cells also changed $\mathbb{L}-2$ production. Cadmium affected the $\mathbb{I L}-2$ production positively only if the cells were primed before exposure. The decrease in $\mathbb{L L}-2$ levels in the presence of mercury can be linked to an increase in apoptotic cells for all conditions, although for PbCl_{2} apoptosis increased only when this metal was added to stimulated cells. As previously demonstrated by Close et al. (1999)., activated cells have reduced susceptibility to apoptosis than resting cells. However, the exposure to mercury at the same time as stimulation results in a significant increase in apoptosis. Later results showed that the metabolic state must increase prior to metal exposure in order to have a protective effect. It is also interesting to note that lead can induce an increase in apoptosis only when cells are activated. In resting human mononuclear cells, de la Fuente et al (2002) showed no apoptosis at 500 mM of lead. Our results suggest that lead can pertub the biochemical pathways involved in $\mathbb{L}-2$ production and cause an increase in apoptosis.

Results for $\mathrm{CH}_{3} \mathrm{HgCl}$ showed a correlation between $\mathrm{LL}-2$ production and NFAT activation, but not for PbCl_{2}. However, the modulation of NFAT activity observed was lower than that observed for $\mathbb{L}-2$ production. These results suggest that, regardless of the mode of T cell activation used, $\mathrm{CH}_{3} \mathrm{HgCl}$ modulated $\mathbb{L}-2$ production, at least in part by interactions between NFAT-DNA. It is already known that heavy metals can modulate transcription factors-DNA interactions (Pyatt et al., 1996; Shumilla et al., 1998; DieguezAcuna and Woods, 2000; Dieguez-Acuna et al., 2001). On the other hand, PbCl_{2} decreased $\mathbb{L}-2$ production without an effect on NFAT activation. In this case, the cells were unresponsive to triggering by TCR/CD28. An explanation is that PbCl_{2} polarized IL-2 to T helper 2 type. It has been demonstrated that lead can skew T cell reactivities to stimulate IL-4 production and inhibit IL-2 production (Heo, Lee and Lawrence, 1997, 1998). Expression of $\mathbb{L}-4$ involves NFAT but also other specific transcriptional factors that have binding sites in the promotor region of this gene (Macian, Garcia-Rodriguez and Rao, 2000). Lead can also induce reactive oxygen species (ROS) in lymphocytes (Fracasso et al., 2002). Production of ROS influences the activation of transcriptional factors such as NF-kB and AP-1 (Ramachandiran et al., 2002). Since $\mathbb{L}-2$ production was decreased by lead exposure associated with normal levels of NFAT activation, the polymerization of cytokine production in Th2 is a possibility.

Bypassing of tyrosine kinase activation using PMA and ionomycin showed a increase in NFAT activity under all conditions in the presence of cadmium. Since cadmium can influence calcium mobilization in cells (Smith, Dwyer and Smith, 1989), a increase of calcineurin activity, involved in activation of NFAT, may explain these results. IL-2
production was increased when activated cells were exposed to metals. The decrease in NFAT activity when the cells were exposed to lead before stimulation probably involves a tyrosine kinase activity for these effects. Finally, the results for mercury confirmed the negative action of this metal on NFAT activation. However, the more potent inhibition of NFAT in this condition also suggests that tyrosine kinase can only partly decrease the toxicity of this metal. These results also suggest that heavy metal targets are located downstream of the convergence site of both modes of activation of T cells. It is known that PMA activates Ras via the PKC pathway (Karin and Hunter, 1995). Ras is a small GTPAase that plays an important role in T cell activation (Karin and Hunter 1995), as the active GTP-bound form of Ras controls the catalytic activity of multiple downstream effectors, including the mitogen-activated protein kinase (MAPK). The activation of MAPK by Ras occured via the Ras-Raf-MEK-MAPK cascade (Cano and Mahadevan, 1995). With respect to our results, heavy metal target(s) may be located downstream of Ras. As mentioned, stimulation of T cells by CD3/CD28 pathways is the first mode of activation, although the most typical physiological conditions was not optimal under our experimental condition. Stimulating CD28 molecules with anti-CD28 mAb induced a stronger co-stimulation in T cells than CD80, and different effects on NFAT activity were observed. In fact, this stronger signal was able not only to counteract the effects of heavy metals but also to enhance NFAT activity, regardless of which heavy metal was used when cells were stimulated together or prior to the exposure to heavy metals. This difference has already been shown by others, since activation of CD28 by an anti-CD28 mAb, but not with B7-1 ligand, activates Ras in T cells (Nunes et al., 1994).

Results for the metal mixture showed that antagonistic effects occurred between the metals species. $\mathbb{L}-2$ production appeared to be less sensitive then NFAT activity and these appeared to have no major consequences on T cell activation. Major findings of these experiments were that NFAT activity increased only when the cells were incubated at the same time or following stimulation. Activation with PMA and ionophore abrogated the effects of metal mixtures suggesting that the action of these metals occurred upstream of PKC activation or of calcium mobilization.

Our results, show that T cell mode of activation as well as the T cell state of activation are critical factors to consider in toxicology studies using heavy metals. Moreover, $\mathrm{CH}_{3} \mathrm{HgCl}, \mathrm{CdCl}_{2}$ and PbCl_{2} seem to exert their effects at the transcriptional level, but it is also possible that they interfere with T cell functions at the posttranscriptional level. In fact, it is known that some heavy metals can interfere with $\mathbb{L}-2$ mRNA stability (Hopkins and Failla, 1997, 1999). Moreover, the CD28-mediated $\mathbb{L}-2$ gene expression in T cells can be regulated by stabilization of $\mathbb{I L}-2$ mRNA, but the specific mechanism of action is still unknown (Powell et al., 1998). Thus, stability of mRNA could be one of the common targets of heavy metals and CD28 molecules.

Finally, it is known that heavy metals are implicated in onset of autoimmune diseases (Pelletier et al., 1990; Bigazzi, 1994, 1999; Dantas and Queiroz, 1997; Heo et al., 1996, 1997). It is known that autoreactive T cells cause autoimmune diseases. These cells exist in healthy individuals and represent a reservoir of pathogenic effectors which, when stimulated by a microbial adjuvant, can trigger an autoimmune disease. It has already been demonstrated with HgCl_{2} that inorganic mercury protects Jurkat T cells
against CD95-mediated apoptosis, and causes activated T cells to remain into the organism instead of being eliminated (Withekus et al., 1999). Thus, inorganic mercury as well as $\mathrm{CH}_{3} \mathrm{HgCl}, \mathrm{CdCl}_{2}$ and PbCl_{2}, under specific conditions, may elicit autoimmune dysfunctions. In this paper, we have demonstrated that, depending on the stimulation mode, $\mathrm{CH}_{3} \mathrm{HgCl}, \mathrm{CdCl}_{2}$ and PbCl_{2}, individually or mixed together, induce an overstimulation of NFAT transactivation and, thereby, activation of Jurkat T cells. This effect was observed only when a strong co-simulation by CD28 was triggered. These results confirm the importance of T cell activation mode in heavy metal immunotoxicology studies. This parameter has already been suggeated in the literature (Gonsky et al., 1999) but, to our knowledge, it is the first time that a study focusing on this aspect of the problem has been performed. Of course, NFAT is not the only target of these metals in T cells. Other transcriptional factors, as well as proteins implicated in signalling pathways other than those leading to NFAT activity, can be affected by these pollutants (Epner and Herschman, 1991; Tang and Enger, 1993; Matsuoka and Call, 1995; Wang and Templeton, 1998; Shumilla et al., 1998; Ramesh et al., 1999; Ding and Templeton, 2000). However, this is the first time that a study implicating several heavy metals, as well as different modes of activation, has been done. Furthermore, it is the first time that the importance of the cellular activation state versus the effects of heavy metals, individually or mixed together, has been demonstrated.

In summary, the results presented in this paper show that cellular activation state is a primery concern in the study of heavy metal toxicity. Likewise, to favour the CD28 pathway, a molecule which plays an important role in NFAT activation, $\mathrm{CH}_{3} \mathrm{HgCl}$ and the
mix of metals can act as immunoactivators. This is crucial because its demonstrates the impact that these metals can have in activating autoimmune diseases.

ACKNOWLEDGEMENTS

This project was supported by Canada Government, TSRI grant No 44. Myrian Colombo was supported by studentships form the FRSQ-RRSE and the Armand-Frappier Foundation. The authors thank M Gregory for the review of this manuscripts.

REFERENCES

ANGLE, C. R., D. J. THOMAS, AND S. A. SWANSON. 1993. Osteotoxicity of cadmium and lead in HOS TE 85 and ROS 17/2.8 cells: relation to metallothionein induction and mitochondrial binding. Biometals 6: 179-84.

BERNIER, J., P. BROUSSEAU, K. KRZYSTYNIAK, H. TRYPHONAS et M. FOURNIER. 1995. «Immunotoxicity of heavy metals in relation to Great Lakes». Environ Health Perspect, vol. 103 Suppl 9, p. 23-34.

BEYERSMANN, D. AND A. HARTWIG. 1994. Genotoxic effects of metal compounds. Arch Toxicol Suppl 16: 192-8.

BIGAZZI, P. E. 1994. Autoimmunity and heavy metals. Lupus 3: 449-53.
BIGAZZI, P. E. 1999. Metals and kidney autoimmunity. Environ Health Perspect 107 Suppl 5: 753-65.

CANO, E. AND L. C. MAHADEVAN. 1995. Parallel signal processing among mammalian MAPKs. Trends Biochem Sci 20: 117-22.

CHOW, C. W., M. RINCON, AND R. J. DAVIS. 1999. Requirement for transcription factor NFAT in interleukin-2 expression. Mol Cell Biol 19: 2300-7.

CIFONE, M. G., E. ALESSE, R. DI EUGENIO, T. NAPOLITANO, S. MORRONE, R. PAOLINI, G. SANTONI, AND A. SANTONI. 1989. In vivo cadmium treatment alters natural killer activity and large granular lymphocyte number in the rat. Immunopharmacology 18: 149-56.

CLOSE, A. H., T. L. GUO, AND B. J. SHENKER. 1999. Activated human T lymphocytes exhibit reduced susceptibility to methylmercury chloride-induced apoptosis. Toxicol Sci 49: 68-77.

COLLETTE, Y., A. Benziane, D. Razanajaona, D. Olive. 1998. Distinct regulation of Tcell death by CD28 depending on both its aggregation and T-cell receptor triggering: a role for Fas-FasL. Blood, 92: 1350-1363.

DANTAS, D. C. AND M. L. QUEIROZ. 1997. Immunoglobulin E and autoantibodies in mercury-exposed workers. Immunopharmacol Immunotoxicol 19: 383-92.

DE LA FUENTE, H., D. PORTALES-PEREZ, L. BARABDA, F. DIAZ-BARRIGA, V. SAAVEDRA-ALANIS, E. LAYSECA AND R. GONZALEZ-AMARO. 2002. Effect of arsenic, cadmium and lead on the induction of apoptosis of normal human mononuclear cells. Clin Exp Immunol, 129: 69-77.

DIEGUEZ-ACUNA, F. J., M. E. ELLIS, J. KUSHLEIKA, AND J. S. WOODS. 2001. Mercuric ion attenuates nuclear factor-kappaB activation and DNA binding in normal rat
kidney epithelial cells: implications for mercury- induced nephrotoxicity. Toxicol Appl Pharmacol 173: 176-87.

DIEGUEZ-ACUNA, F. J. AND J. S. WOODS. 2000. Inhibition of NF-kappaB-DNA binding by mercuric ion: utility of the non- thiol reductant, tris(2-carboxyethyl)phosphine hydrochloride (TCEP), on detection of impaired NF-kappaB-DNA binding by thioldirected agents. Toxicol In Vitro 14: 7-16.

DING, W. AND D. M. TEMPLETON. 2000. Activation of parallel mitogen-activated protein kinase cascades and induction of c-fos by cadmium. Toxicol Appl Pharmacol 162: 93-9.

DURAND, D. B., M. R. BUSH, J. G. MORGAN, A. WEISS, AND G. R. CRABTREE. 1987. A 275 basepair fragment at the 5' end of the interleukin 2 gene enhances expression from a heterologous promoter in response to signals from the T cell antigen receptor. $\underline{\mathrm{J}}$ Exp Med 165: 395-407.

EL AZZOUZI, B., G. T. TSANGARIS, O. PELLEGRINI, Y. MANUEL, J. BENVENISTE, AND Y. THOMAS. 1994. Cadmium induces apoptosis in a human T cell line. Toxicology 88: 127-39.

ENGER, M. D., C. E. HILDEBRAND, AND C. C. STEWART. 1983. Cd2+ responses of cultured human blood cells. Toxicol Appl Pharmacol 69: 214-24.

EPNER, D. E. AND H. R. HERSCHMAN. 1991. Heavy metals induce expression of the TPA-inducible sequence (TIS) genes. J Cell Physiol 148: 68-74.

FISCHER, K. D., A. ZMULDZINAS, S. GARDNER, M. BARBACID, A. BERNSTEIN, AND C. GUIDOS. 1995. Defective T-cell receptor signalling and positive selection of Vav- deficient CD4+ CD8+ thymocytes. Nature 374 : 474-7.

FRACASSO, M. E., L. PERBELLINI, S. SOLDA, G. TALAMINI AND P. FRANCESCHETTI. 2002. Lead induced DNA strand breaks in lymphocytes of exposed workers: role of reactive oxygen species and protein kinase C. Mutat Res 515: 159-69.

GAWORSKI, C. L. AND R. P. SHARMA. 1978. The effects of heavy metals on. Toxicol Appl Pharmacol 46: 305-13.

GONSKY, R., R. L. DEEM , D. H. LEE, A. CHEN , AND S. R. TARGAN. 1999. CD28 costimulation augments $\mathbb{I L}-2$ secretion of activated lamina propria T cells by increasing mRNA stability without enhancing $\mathbb{L}-2$ gene transactivation. J Immunol 162: 6621-9.

GUO, T. L., M. A. MILLER, S. DATAR, I. M. SHAPIRO, AND B. J. SHENKER. 1998. Inhibition of poly(ADP-ribose) polymerase rescues human T lymphocytes from methylmercury-induced apoptosis. Toxicol Appl Pharmacol 152: 397-405.

HANAS, J. S. AND C. G. GUNN. 1996. Inhibition of transcription factor IIIA-DNA interactions by xenobiotic metal ions. Nucleic Acids Res 24: 924-30.

HARLEY, C. B., C. R. MENON, R. A. RACHUBINSKI, AND E. NIEBOER. 1989. Metallothionein mRNA and protein induction by cadmium in peripheral- blood leucocytes. Biochem J 262: 873-9.

HEO, Y., W. T. LEE, AND D. A. LAWRENCE. 1997. In vivo the environmental pollutants lead and mercury induce oligoclonal T cell responses skewed toward type-2 reactivities. Cell Immunol 179: 185-95.

HEO, Y., W. T. LEE, AND D. A. LAWRENCE. 1998. Differential effects of lead and cAMP on development and activities of Th1- and Th2-lymphocytes. Toxicol Sci 43: 17285.

HEO, Y., P. J. PARSONS , AND D. A. LAWRENCE. 1996. Lead differentially modifies cytokine production in vitro and in vivo. Toxicol Appl Pharmacol 138: 149-57.

HERNDON, T. M., X. C. SHAN, G. C. TSOKOS, AND R. L. WANGE. 2001. ZAP-70 and SLP-76 regulate protein kinase C-theta and NF-kappa B activation in response to engagement of CD3 and CD28. J Immunol 166: 5654-64.

HILDEBRAND, C. E. AND L. S. CRAM. 1979. Distribution of cadmium in human blood cultured in low levels of CdCl 2 : accumulation of Cd in lymphocytes and preferential binding to metallothionein. Proc Soc Exp Biol Med 161: 438-43.

HOPKINS, R. G. AND M. L. FAILLA. 1997. Copper deficiency reduces interleukin-2 (IL-2) production and IL-2 mRNA in human T-lymphocytes. J Nutr 127: 257-62.

HOPKINS, R. G. AND M. L. FAILLA. 1999. Transcriptional regulation of interleukin-2 gene expression is impaired by copper deficiency in Jurkat human T lymphocytes. J Nutr 129: 596-601.

JAIN, J., C. LOH, AND A. RAO. 1995. Transcriptional regulation of the IL-2 gene. Curr Opin Immunol 7: 333-42.

JIN, P. AND N. R. RINGERTZ. 1990. Cadmium induces transcription of protooncogenes c-jun and c-myc in rat L6 myoblasts. J Biol Chem 265: 14061-4.

KARIN, M. AND T. HUNTER. 1995. Transcriptional control by protein phosphorylation: signal transmission from the cell surface to the nucleus. Curr Biol 5: 747-57.

KLAASSEN, C. D. AND J. LIU. 1997. Role of metallothionein in cadmium-induced hepatotoxicity and nephrotoxicity. Drug Metab Rev 29: 79-102.

LAWRENCE, D. A. 1981. In vivo and in vitro effects of lead on humoral and cellmediated immunity. Infect Immun 31: 136-43.

MACIAN, F., C. GARCIA-RODRIGUEZ AND A. RAO. 2000. Gene expression elicited by NFAT in the presence or absence of cooperative recruitement of Fos and Jun. EMBO J 19: 4783-95.

MATSUOKA, M. AND K. M. CALL. 1995. Cadmium-induced expression of immediate early genes in LLC-PK1 cells. Kidney Int 48: 383-9.

MCCABE, M. J. JR AND D. A. LAWRENCE. 1990. The heavy metal lead exhibits B cell-stimulatory factor activity by enhancing B cell Ia expression and differentiation. $\underline{\mathbf{J}}$ Immunol 145: 671-7.

MCCABE, M. J. JR AND D. A. LAWRENCE. 1991. Lead, a major environmental pollutant, is immunomodulatory by its differential effects on CD4+ T cells subsets. Toxicol Appl Pharmacol 111: 13-23.

MCCAFFREY, P. G., B. A. PERRINO, T. R. SODERLING, AND A. RAO. 1993. NFATp, a T lymphocyte DNA-binding protein that is a target for calcineurin and immunosuppressive drugs. J Biol Chem 268: 3747-52.

MICHEL, F., G. MANGINO , G. ATTAL-BONNEFOY, L. TUOSTO, A. ALCOVER, A. ROUMIER, D. OLIVE, AND O. ACUTO. 2000. CD28 utilizes Vav-1 to enhance TCR-proximal signaling and NF-AT activation. J Immunol 165: 3820-9.

NAKASHIMA, I., M. Y. PU, A. NISHIZAKI, I. ROSLLA, L. MA, Y. KATANO, K. OHKUSU, S. M. RAHMAN, K. ISOBE, M. HAMAGUCHI, AND A. L. ET. 1994. Redox mechanism as alternative to ligand binding for receptor activation delivering disregulated cellular signals. J Immunol 152: 1064-71.

NUNES, J. A., Y. COLLETTE, A. TRUNEH, D. OLIVE, AND D. A. CANTRELL. 1994. The role of p21ras in CD28 signal transduction: triggering of CD28 with antibodies, but not the ligand B7-1, activates p21ras. J Exp Med 180: 1067-76.

PELLETIER, L., J. ROSSERT, R. PASQUIER, M. C. VIAL, AND P. DRUET. 1990. Role of CD8+ T cells in mercury-induced autoimmunity or immunosuppression in the rat. Scand J Immunol 31: 65-74.

POWELL, J. D., J. A. RAGHEB, S. KITAGAWA-SAKAKIDA, AND R. H. SCHWARTZ. 1998. Molecular regulation of interleukin-2 expression by CD28 costimulation and anergy. Immunol Rev 165: 287-300.

PYATT, D. W., J. H. ZHENG, W. S. STILLMAN, AND R. D. IRONS. 1996. Inorganic lead activates NF-kappa B in primary human CD4+ T lymphocytes. Biochem Biophys Res Commun 227: 380-5.

RAMACHANDIRAN, S., Q. HUANG, J. DONG, S. S. Lau AND T. J. Monks. 2002. Mitogen-activated protein kinases contribute to reactive oxygen species- induced cell death in renal proximal tubule epithelial cells. Chem Res Toxicol 15:1635-42.

RAMESH, G. T., S. K. MANNA, B. B. AGGARWAL, AND A. L. JADHAV. 1999. Lead activates nuclear transcription factor-kappaB, activator protein- 1, and aminoterminal c-Jun kinase in pheochromocytoma cells. Toxicol Appl Pharmacol 155: 280-6.

RAZANI-BOROUJERDI, S., B. EDWARDS, AND M. L. SOPORI. 1999. Lead stimulates lymphocyte proliferation through enhanced T cell-B cell interaction. $\underline{\mathrm{J}}$ Pharmacol Exp Ther 288: 714-9.

ROSENSPIRE, A. J., S. BODEPUDI, M. MATHEWS, AND M. J. MCCABE JR. 1998. Low levels of ionic mercury modulate protein tyrosine phosphorylation in lymphocytes. Int J Immunopharmacol 20: 697-707.

SALOJIN, K. V., J. ZHANG, AND T. L. DELOVITCH. 1999. TCR and CD28 are coupled via ZAP-70 to the activation of the Vav/Rac-1-/PAK-1/p38 MAPK signaling pathway. J Immunol 163: 844-53.

SCHWARTZ, R. H. 1992. Costimulation of T lymphocytes: the role of CD28, CTLA-4, and B7/BB1 in interleukin-2 production and immunotherapy. Cell 71: 1065-8.

SERFLING, E., R. BARTHELMAS, I. PFEUFFER, B. SCHENK, S. ZARIUS, R. SWOBODA, F. MERCURIO, AND M. KARIN. 1989. Ubiquitous and lymphocytespecific factors are involved in the induction of the mouse interleukin 2 gene in T lymphocytes. EMBO J 8: 465-73.

SHENKER, B. J., S. DATAR, K. MANSFIELD, AND I. M. SHAPIRO. 1997. Induction of apoptosis in human T-cells by organomercuric compounds: a flow cytometric analysis. Toxicol Appl Pharmacol 143: 397-406.

SHENKER, B. J., T. L. GUO, AND I. M. SHAPIRO. 2000. Mercury-induced apoptosis in human lymphoid cells: evidence that the apoptotic pathway is mercurial species dependent. Environ Res 84: 89-99.

SHENKER, B. J., W. J. MATARAZZO, R. L. HIRSCH, AND I. GRAY. 1977. Trace metal modification of immunocompetence. I. Effect of trace metals in the cultures on in vitro transformation of B lymphocytes. Cell Immunol 34: 19-24.

SHENKER, B. J., C. ROONEY, L. VITALE, AND I. M. SHAPIRO. 1992. Immunotoxic effects of mercuric compounds on human lymphocytes and monocytes. I. Suppression of T-cell activation. Immunopharmacol Immunotoxicol 14: 539-53.

SHUMILLA, J. A., K. E. WETTERHAHN, AND A. BARCHOWSKY. 1998. Inhibition of NF-kappa B binding to DNA by chromium, cadmium, mercury, zinc, and arsenite in vitro: evidence of a thiol mechanism. Arch Biochem Biophys 349: 356-62.

SMITH, J. B., S. D. DWYER AND L. SMITH. 1989. Cadmium evokes inositol polyphosphate formation and calcium mobilization. Evidence for a call surface receptor that cadmium stimulates and zinc antagonizes. J Biol Chem, 264: 7115-8.

SU, B., E. JACINTO, M. HIBI, T. KALLUNKI, M. KARIN, AND Y. BEN-NERIAH. 1994. JNK is involved in signal integration during costimulation of T lymphocytes. Cell 77: 727-36.

TANG, N. AND M. D. ENGER. 1993. Cd(2+)-induced c-myc mRNA accumulation in NRK-49F cells is blocked by the protein kinase inhibitor H7 but not by HA1004, indicating that protein kinase C is a mediator of the response. Toxicology 81: 155-64.

TARAKHOVSKY, A., M. TURNER, S. SCHAAL, P. J. MEE, L. P. DUDDY, K. RAJEWSKY, AND V. L. TYBULEWICZ. 1995. Defective antigen receptor-mediated proliferation of B and T cells in the absence of Vav. Nature 374: 467-70.

TIMMERMAN, L. A., N. A. Clipstone, S. N. Northrop and G. R. Crabtree. 1996. Rapid shuttling of NFAT in discrimination of Ca^{2+} signals and immunosuppression. Nature, 383: 837-840.

TUOSTO, L. AND O. ACUTO. 1998. CD28 affects the earliest signaling events generated by TCR engagement. Eur J Immunol 28: 2131-42.

VIOLA, A., S. SCHROEDER, Y. SAKAKIBARA, AND A. LANZAVECCHIA. 1999. T lymphocyte costimulation mediated by reorganization of membrane microdomains. Science 283: 680-2.

WANG, Z. AND D. M. TEMPLETON. 1998. Induction of c-fos proto-oncogene in mesangial cells by cadmium. J Biol Chem 273: 73-9.

WHITEKUS, M. J., R. P. SANTINI, A. J. ROSENSPIRE, AND M. J. MCCABE JR. 1999. Protection against CD95-mediated apoptosis by inorganic mercury in Jurkat T cells. J Immunol 162: 7162-70.

WU, J., S. KATZAV, AND A. WEISS. 1995. A functional T-cell receptor signaling pathway is required for p95vav activity. Mol Cell Biol 15: 4337-46.

FIGURE LEGENDS

Figure 1 : Viability of of JKE6-1 exposed to metals. Cells were exposed to (A) $0,01 \mu \mathrm{M}$, (B) $0,1 \mu \mathrm{M}$ or (C) $1 \mu \mathrm{M}$ of $\mathrm{CH}_{3} \mathrm{HgCl}$ (grey bars), CdCl_{2} (black bars) or PbCl_{2} (crossed bars). After a 48 -hour treatment, viability of cells was determined by MTT assay (see Material and Methods). The data are expressed as Mean \pm SEM.

Figure 2: Protein tyrosine phosphorylation in JKE6-1 exposed to metals. JKE6-1 cells were incubated without or with (A) $\mathrm{CH}_{3} \mathrm{HgCl}$, (B) CdCl_{2} or (C) PbCl_{2} at indicated concentrations for 30 or 240 minutes. Total lysates were examined for protein tyrosine kinase (PTK) activity by Western blot analysis. First lane, response in absence of metals. Positive control, JKE6-1 cells exposed to PHA ($50 \mathrm{mg} / \mathrm{ml}$) for 4 minutes.

Figure 3 : Apoptosis in JKE6-1 cells exposed to metals. Cells were exposed to (A) 0,01 $\mu \mathrm{M}$, (B) $0,1 \mu \mathrm{M}$ or (C) $1 \mu \mathrm{M}$ of $\mathrm{CH}_{3} \mathrm{HgCl}$ (grey bars), CdCl_{2} (black bars) or PbCl_{2} (crossed bars). After a 24-hour treatment, apoptosis of cells was determined by cytofluorometry (see Material and Methods). The data are expressed as Mean \pm SEM.

Figure 4: IL-2 production by JKE6-1 cells exposed or not (CTRL, white bars) to $\mathrm{CH}_{3} \mathrm{HgCl}$ (grey bars), CdCl_{2} (black bars) or PbCl_{2} (crossed bars). Cells were stimulated with DT30 cells together with an anti-CD3 mAb ($0,1 \mu \mathrm{~g} / \mathrm{ml}$) in 96 -well plates in triplicates. After a 24 -hour stimulation, supernatants were analysed for $\mathbb{L}-2$ production by ELISA assay, as described in Materials and methods. (A) JKE6-1 cells exposed to $1 \mu \mathrm{M}$ of metals 4 hours prior to stimulation. (B) JKE6-1 cells exposed to metals and stimulated at the same time. (C) JKE6-1 cells stimulated 6 hours prior to metal exposition. The data are expressed as relative means compared to control (CTRL) \pm

SEM. The " a " and " b " indicate the mean is significantly different from controls $(\mathrm{P}<0,05$ and $\mathrm{P}<0,01$, respectively).

Figure 5: Viability of JKE6-1 exposed to metals after cell transfection with pNFATluc vector. JKE6-1 cells transfected by electroporation with pNFATluc vector were exposed to $1 \mu \mathrm{M}$ of $\mathrm{CH}_{3} \mathrm{HgCl}$ (grey bars), CdCl_{2} (black bars) or PbCl_{2} (crossed bars). After a 24hour treatment, viability of cells was determined by MTT assay (see Material and Methods). The data are expressed as Mean ODs \pm SEM.

Figure 6: Luciferase activity of pNFATluc cells exposed to heavy metals. JKE6-1 cells, transfected with pNFATluc vector (luciferase reporter gene driven by a basic promoter element join to tandem repeats of NFAT binding elements), were exposed or not (CTRL, white bars) to $1 \mu \mathrm{M}$ of $\mathrm{CH}_{3} \mathrm{HgCl}$ (grey bars), CdCl_{2} (black bars) or PbCl_{2} (crossed bars) prior, together or after cell stimulation in 24 -well plates. After a 4 -hour stimulation, cells were lysed and analysed for luciferase activity, as described in Material and Methods. Cells were stimulated with (A) DT30 cells combined with anti-CD3 mAb, (B) anti-CD28 $(5 \mu \mathrm{~g} / \mathrm{ml})$ and anti-CD3 $(0.1 \mu \mathrm{~g} / \mathrm{ml}) \mathrm{mAbs}$ cross-linked with coated anti-IgG mAb or (C) PMA $\left(5 \times 10^{-8} \mathrm{M}\right)$ and Calcium Ionophores $\left(1 \times 10^{-6} \mathrm{M}\right)$. The data are expressed as relative means compared to control (CTRL) \pm SEM. The " a " and " b " indicate the mean is significantly different from controls ($\mathrm{P}<0,05$ and $\mathrm{P}<0,01$, respectively).

Figure 7: IL-2 production of JKE6-1 cells exposed (black bars) or not (white bars) to a mixture of heavy metals $\mathrm{CH}_{3} \mathrm{HgCl}, \mathrm{CdCl}_{2}$ and PbCl_{2}. Cells were stimulated with DT30 cells and anti-CD3 $\mathrm{mAb}(0,1 \mu \mathrm{~g} / \mathrm{ml})$ in 96 -well plates in triplicates. After a 24 -hour stimulation, supernatants were analysed for IL-2 production by ELISA assay, as described in Materials and methods. (A) JKE6-1 cells exposed to $1 \mu \mathrm{M}$ of mixture (A) 4 hours prior to (B) together with or (C) 6 hours after DT30/anti-CD3 stimulation. The data are expressed as relative means compared to control (CTRL) \pm SEM.

Figure 8: Luciferase activity of pNFATluc cells exposed to a mixture of heavy metals. JKE6-1 cells transfected with pNFATluc vector were exposed (black bars) or not (CTRL, white bars) to $1 \mu \mathrm{M}$ of a mixture of $\mathrm{CH}_{3} \mathrm{HgCl}, \mathrm{CdCl}_{2}$ and PbCl_{2}, prior, together or after cell stimulation in 24 -well plates. After a 4-hour stimulation, cells were lysed and analysed for luciferase activity, as described in Material and Methods. Cells were stimulated with (A) DT30 cells combined with anti-CD3 mAb, (B) anti-CD28 ($5 \mu \mathrm{~g} / \mathrm{ml}$) and anti-CD3 $(0.1 \mu \mathrm{~g} / \mathrm{ml}) \mathrm{mAbs}$ cross-linked with coated anti-IgG mAb or (C) PMA $\left(5 \times 10^{-8} \mathrm{M}\right)$ and Calcium Ionophores $\left(1 \times 10^{-6} \mathrm{M}\right)$. The data are expressed as relative means compared to control (CTRL) \pm SEM. The "a" and "b" indicate the mean is significantly different from controls ($\mathrm{P}<0,05$ and $\mathrm{P}<0,01$, respectively).

FIGURES

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

A

B

Figure 8

TROISIÈME PARTIE

DISCUSSION ET CONCLUSIONS

Les métaux lourds sont des polluants environnementaux qui ont un effet sur le système immunitaire humain et particulièrement au niveau des lymphocytes T. Certains de leurs effets sont bien caractérisés. Parmi ceux-ci, l'induction de l'apoptose par le mercure et le cadmium est un mécanisme qui a été étudié en profondeur. Cependant, ces substances toxiques exercent de nombreux autres effets chez les lymphocytes T , notamment au niveau de l'activation cellulaire et de l'expression des gènes, qui sont encore incompris. Il est primordial de déterminer et comprendre l'ensemble des effets exercés par ces métaux lourds à faibles doses afin d'évaluer le risque d'une exposition à ces métaux de façon plus juste.

L'objectif principal de l'étude présentée dans le cadre de ce projet de maîtrise était de déterminer les effets de faibles doses de $\mathrm{CH}_{3} \mathrm{HgCl}, \mathrm{CdCl}_{2}$ et PbCl_{2}, individuellement ou en mélange, sur la production d'IL-2 par les lymphocytes T. De plus, les expériences effectuées ont voulu démontrer que le mode ainsi que l'état d'activation cellulaire avaient une importance cruciale dans l'étude des métaux lourds.

Les résultats expérimentaux ont tout d'abord démontré qu'une faible dose de ces métaux ($1 \mu \mathrm{M}$) augmente l'activité des PTKs après 4 heures d'exposition. Cette dose est représentative des concentrations physiologiques retrouvées chez des individus contaminés. Ceci suggère que ces trois métaux peuvent faciliter l'activation des cellules T par des voies de signalisation dépendants du TCR. Ces résultats sont en partie en contradiction avec une étude publiée précédemment qui avait démontré que le plomb n'activait pas les tyrosines kinases (Razani-Boroujerdi et al., 1999). Plusieurs hypothèses existent pour expliquer cette différence. Premièrement, la forme chimique de plomb utilisée dans les deux cas varie (l'acétate de plomb comparativement au chlorure de plomb utilisé ici). Deuxièmement, l'étude de Razani-Boroujerdi et al. (1999) s'intéressait aux lymphocytes T de rats alors que les expériences réalisées dans le cadre de ce projet de maîtrise utilisaient une lignée de lymphocytes T humains. Il est bien connu que différentes formes d'un même métal peuvent induire des effets différents dans un même
type cellulaire et que des cellules humaines et animales peuvent avoir des sensibilités différentes aux même métal (Jin et Ringertz, 1990; Epner et Herschman, 1991; Tang et Enger, 1993; Wang et Templeton, 1998).

La série d'expériences suivante avait pour but de déterminer l'effet du $\mathrm{CH}_{3} \mathrm{HgCl}$, du CdCl_{2} et du PbCl_{2} sur la production d'IL-2 et d'évaluer si cette modulation se situait au niveau des interactions entre l'ADN et les facteurs de transcription. Nous avons démontré que le $\mathrm{CH}_{3} \mathrm{HgCl}$ et le PbCl_{2} inhibaient la production d'IL-2 et ce peu importe l'état d'activation cellulaire, chez des cellules stimulées de façon physiologique. Le CdCl_{2}, cependant, augmente la production d'IL-2 mais seulement chez les cellules pré-stimulées. Un résultat expérimental surprenant fut que le mélange de métaux n'induisait aucune modulation dans la production d'Ll-2, et ce, peu importe l'état d'activation cellulaire. Ce résultat suggère donc que ces trois métaux ont des effets antagonistes entre eux.

D'autres résultats nous ont permis de constater que le $\mathrm{CH}_{3} \mathrm{HgCl}$ induisait l'apoptose dans les cellules T Jurkat, indépendamment de l'état d'activation de la cellule. De plus, cette induction coïncide avec celle observée pour la production de l'IL-2 alors que les deux autres métaux n'ont qu'une influence mineure sur ce paramètre.

Nos résultats ont aussi démontré que la modulation de la sécrétion d'IL-2 et de l'activité de NFAT sont similaires lorque les cellules sont stimulées via le CD3 et le CD28 à l'aide d'un anti-CD3 humain et des cellules DT30. Cependant, la modulation de l'activité de NFAT observée était de plus faible magnitude que la variation dans la production d'IL-2. Les résultats expérimentaux suggèrent donc que, indépendamment de l'état d'activation cellulaire, les trois métaux modulent la production d'IL-2, du moins en partie, en interférant avec l'interaction de NFAT avec ses sites dans le promoteur de l'IL2. D'ailleurs, il a déjà été démontré que les métaux lourds pouvaient moduler ce genre d'interactions (Pyatt et al., 1996; Shumilla et al., 1998; Dieguez-Acuna et Woods, 2000; Dieguez-Acuna et al., 2001).

Une autre hypothèse serait que les métaux lourds affecterait des PTKs impliquées plus en aval dans la cascade d'activation dérivant de l'activation par le TCR. En effet, la même tendance que celle observée pour la production d'IL-2 a été observée pour les trois métaux lorsque les cellules Jurkat étaient stimulées à la PMA et aux calcium ionophores. Étant donné que ces substances activent les cellules T en passant outre le TCR et les

PTKs qui y sont associées, ces résultats suggèrent que la ou les cibles des métaux lourds se situent en aval de la PKC et de la mobilisation intracellulaire du Ca^{2+}, effecteurs activés respectivement par la PKC et les calcium ionophores.

Les cibles potentielles sont nombreuses. Par exemple, il a été démontré que la PMA active Ras via la PKC (Karin et Hunter, 1995). Cette petite GTPase joue un rôle important dans l'activation des lymphocytes T puisque sa forme active (liée au GTP) contrôle l'activité d'un grand nombre d'effecteurs en aval, comme MAPK (Cano et Mahadevan, 1995). Selon les résultats obtenus, une des cibles des métaux pourraient être Ras ou un autre effecteur situé en aval.

Le mode de stimulation privilégié pour réaliser les expériences présentées dans ce mémoire était le plus physiologique (anti-CD3 combiné à des CPA exprimant le CD80). Cependant, pour l'étude de l'activité de NFAT, ce système ne semble pas être le plus optimal. Cette observation pourrait s'expliquer par le fait que l'activation complète de la cellule T nécessite l'activation simultanée via le CD3 et le CD28. Si un des deux signaux est absent, les cellules deviennent anergiques et ne peuvent plus être activées.

Les expériences suivantes consistaient donc à stimuler les cellules T Jurkat toujours à l'aide de l'anti-CD3 humain, mais cette fois-ci combiné à un anti-CD28 humain, de façon à ce que le signal induit via la molécule de co-stimulation soit plus puissant. Ces expériences avaient pour objectif de déterminer si un fort signal de coactivation modifiait l'effet des métaux sur l'activation cellulaire. Cette forte stimulation du CD28 nous a en effet permis d'observer des différences au niveau de l'activité de NFAT. En fait, ce signal permet non seulement de contrer l'effet des métaux mais aussi, dans certains cas (mercure et mélange de métaux chez les cellules stimulées en même temps ou avant l'exposition aux métaux), d'augmenter l'activité de NFAT par rapport à ce qui avait été observé suite à la stimulation physiologique des cellules. Des travaux publiés précédemment avaient déjà démontré des résultats allant dans le même sens, à savoir que la stimulation du CD28 par un Ac anti-CD28 activait Ras chez les cellules T alors que la stimulation de ce récepteur par CD80 ne l'activait pas (Nunes et al., 1994).

Alors que la voie du TCR a été étudiée intensivement, celle du CD28 est encore incomprise et son rôle précis dans le processus d'activation est controversé. Cependant, certaines études ont démontré que cette voie était impliquée dans l'activation de NFAT.

Par exemple, il a été démontré que la molécule Vav était essentielle dans l'activation des cellules T (Fischer et al., 1995; Tarakhovsky et al., 1995), que la production d'LL-2 est considérablement diminuée lorsque Vav n'est pas exprimée (Tarakhovsky et al., 1995) et que la surexpression de Vav dans les cellules Jurkat permet l'activation de facteurs nucléaires menant à l'expression du gène de l'IL-2, incluant NFAT (Nunes et al., 1994). Les métaux pourraient donc avoir comme cible Vav ou un autre effecteur impliqué dans la voie du CD28. Cependant, les résultats suggèrent que si les cellules ont déjà été activées via TCR/CD28 (avec une forte stimulation su CD28), cette activation est plus forte que l'effet des métaux alors que si cet effecteur n'est pas encore activé au moment de l'exposition aux métaux, ceux-ci ont toujours la capacité d'affecter sa fonction.

Selon les résultats obtenus, le mode d'activation ainsi que l'état d'activation des cellules sont des facteurs critiques à considérer dans l'étude de la toxicité des métaux lourds. De plus, ces polluants semblent agir, du moins en partie, au niveau transcriptionnel, mais il se peut aussi qu'ils interfèrent avec les fonctions des lymphocytes T au niveau post-transcriptionnel. En fait, il a été démontré que certains métaux pouvaient affecter la stabilité de l'ARNm de l'IL-2 (Hopkins and Failla, 1997, 1999). On sait aussi que la modulation de l'expression du gène de l'IL-2 par le CD28 se fait entre autres par l'augmentation de la stabilité de l'ARNm de l'IL-2, mais le mécanisme est encore inconnu (Powell et al., 1998).

Finalement, il a été démontré que les métaux lourds étaient impliqués dans le déclenchement de maladies autoimmunitaires (Pelletier et al., 1990; Bigazzi, 1994, 1999; Dantas and Queiroz, 1997; Heo et al., 1996, 1997). Cependant, plus d'études sont nécessaires chez les cellules humaines pour renforcer le lien de cause à effet.

Ces maladies sont aussi reconnues pour être délenchées par des lymphocytes autoréactifs, qui peuvent être la conséquence d'une défectuosité au niveau de la terminaison des réponses immunitaires. D'ailleurs, Whitekus et al. (1999) ont démontré que le HgCl_{2}, à faibles concentrations, protégeait les cellules T Jurkat contre l'apoptose induite par le CD95 ce qui incite les cellules à rester dans l'organisme au lieu d'être éliminées. De telles cellules existent même chez les individus en santé et constituent un réservoir de cellules potentiellement dangereuses qui, lorsque stimulées, peuvent induire ce genre de maladies. Les résultats obtenus dans le cadre de ce mémoire montrent que le
$\mathrm{CH}_{3} \mathrm{HgCl}$, le CdCl_{2} et le PbCl_{2}, individuellement ou en mélange, induisaient une suractivation de NFAT chez les cellules activées avec un signal fort pour le CD28, alors qu'en temps normal, la plupart de ces métaux ont plutôt un effet inhibiteur sur cette fonction. La présence de cellules «suractivées» dans l'organisme pourrait être dangereuse et entraîner le développement de l'autoimmunité.

En conclusion, les résultats de cette recherche démontrent que de faibles concentrations de $\mathrm{CH}_{3} \mathrm{HgCl}$, de CdCl_{2}, et de PbCl_{2}, des substances toxiques très répandues dans l'environnement, interfèrent avec les voies de signalisation intracellulaires menant à l'activation des lymphocytes T humains, qu'ils soient présents individuellement ou en mélange. De plus, dépendamment du mode de stimulation, ces métaux lourds induisent une sur-stimulation de la transactivation de NFAT, et donc de l'activation des cellules T. Cet état, cependant, n'est observé que lorsqu'une forte stimulation via la molécule de co-stimulation est induite. Cela confirme l'importance de l'état d'activation cellulaire dans les études immunotoxicologiques. Nos résultats correspondent à d'autres travaux qui avaient été publiés auparavant, mais à notre connaissance, c'est la première fois que l'implication du CD28 ainsi que de NFAT dans l'effet des métaux sur les lymphocytes T humains est étudiée.

L'effet des métaux lourds sur les facteurs de transcription étant un sujet peu étudié, c'est la première fois qu'une étude porte sur l'effet du $\mathrm{CH}_{3} \mathrm{HgCl}$, de CdCl_{2} et du PbCl_{2} sur l'activité de NFAT chez les lymphocytes T humains. Bien sûr, ce facteur de transcription n'est probablement pas la seule cible de ces métaux chez les cellules T. Cette recherche ouvre donc la voie à une meilleure compréhension des multiples mécanismes d'action de ces métaux.

Nos travaux ont aussi démontré que le mélange de métaux annulaient l'effet des métaux individuellement, au niveau de la production d'IL-2, et ce, peu importe l'état d'activation des cellules T. Cette information est cruciale, puisqu'il est extrêmement rare qu'un individu soit exposé à un seul métal à la fois et que l'absence d'effet ne signifie pas qu'il n'y a pas de danger et que les problèmes pourraient apparaître à plus long terme.

Ces travaux ont une importance capitale pour la compréhension de la mécanistique des effets des métaux lourds, à faibles concentrations, chez les lymphocytes T humains. Ces renseignements sont aussi essentiels, entre autres pour l'évaluation du
risque d'une exposition à un mélange de métaux lourds et l'établissement d'une norme environnementale plus sévère, étant donné que même à petites doses, ces métaux peuvent être nocifs. Enfin, cette étude a permis de confirmer l'hypothèse selon laquelle ces métaux lourds seraient impliqués dans le développement de maladies auto-immunitaires chez l'homme.

BIBLIOGRAPHIE

ABBAS, A. K., A. H. Lichtman et J. S. Pober. 1994. Cellular and Molecular Immunology, second edition. Philadelphie: W. B. Saunders Company.

ABBAS, A. K. 1996. «Die and let live: eliminating dangerous lymphocytes». Cell, vol. 84, p. 655-657.

ABROMSON-LEEMAN, S., J. Alexander, R. Bronson, J. Carroll, S. Southwood et M. Dorf. 1995. «Experimental autoimmune encephalomyelitis-resistant mice have highly encephalitogenic myelin basic protein (MBP)-specific T cell clones that recognize a MBP peptide with high affinity for MHC class II». Journal of Immunology, vol.154, p. 388398.

ALLEN, P. M. et E. R. Unanue. 1987. «Antigen processing and presentation at a molecular level». Advances in Experimental and Medical Biology, vol. 225, p. 147-154.

ALOMRAN, A. H. et M. N. Shleamoon. 1988. «The influence of chronic lead exposure on lymphocyte proliferative response and immunoglobulin levels in storage battery workers». J Biol Sci Res, vol. 19, p. 575-585.

APPLEMAN, L. J., A. Berezovskaya, I. Grass et V. A. Boussiotis. 2000. «CD28 costimulation mediates T cell expansion via $\mathbb{L}-2$-independent and IL-2-dependent regulation of cell cycle progression». Journal of Immunology, vol. 164, p. 144-151.

AGENCY FOR TOXIC SUBSTANCES AND DESEASE REGISTRY (ATSDR). 1993. Toxicological Profile for Mercury. Atlanta: Agency for Toxic Substances and desease Registry.

AGENCY FOR TOXIC SUBSTANCES AND DESEASE REGISTRY (ATSDR). 1993b. Toxicological Profile for Cadmium. Rpt TP-92/06. Atlanta: Agency for Toxic Substances and desease Registry.

BAEUERLE, P. A. et T. Henkel. 1994. «Function and activation of NF-kappa B in the immune system». Annual Reviews in Immunology, vol. 12, p. 141-179.

BAGCHI, D., S. S. Joshi, M. Bagchi, J. Balmoori, E. J. Benner, C. A. Kuszynski et S. J. Stohs. 2000. «Cadmium- and chromium-induced oxidative stress, DNA damage, and apoptotic cell death in cultured human chronic myelogenous leukemic K562 cells, promyelocytic leukemic HL-60 cells, and normal human peripheral blood mononuclear cells». Journal of Biochemistry and Molecular Toxicology, vol. 14, p. 33-41.

BARRIE, L. A., D. Gregor, B. Hargrave, R. Lake, D. Muir, R. Shearer, B. Tracey et T. Bidleman. 1992. «Arctic contaminants: sources, occurrence and pathways». Sci Total Environ, vol. 122, p. 1-74.

BEALS, C. R., N. A. Clipstone, S. N. Ho et G. R. Crabtree. 1997. «Nuclear localization of NF-ATc by a calcineurin-dependent, cyclosporin- sensitive intramolecular interaction». Genes Dev, vol. 11, p. 824-834.

BEATTIE, J. H., M. Marion, J. P. Schmit et F. Denizeau. 1990. «The cytotoxic effects of cadmium chloride and mercuric chloride mixtures in rat primary hepatocyte cultures». Toxicology, vol. 62: 161-173.

BEG, A. A., S. M. Ruben, R. I. Scheinman, S. Haskill, C. A. Rosen et A. S. Baldwin Jr. 1992. «I kappa B interacts with the nuclear localization sequences of the subunits of NFkappa B: a mechanism for cytoplasmic retention». Genes Dev, vol. 6, p. 1899-1913.

BENJAMINI, E., G. Sunshine et S. Leskowitz. 1996. Immunology: A short course, third edition. New York: Wiley-Liss.

BERNIER, J., P. Brousseau, K. Krzystyniak, H. Tryphonas et M. Fournier. 1995. «Immunotoxicity of heavy metals in relation to Great Lakes». Environ Health Perspect, vol. 103 Suppl 9, p. 23-34.

BIGAZZI, P. E. 1994. «Autoimmunity and heavy metals». Lupus, vol. 3, p. 449-453.
BLOCK, C., S. Freyermuth, D. Beyersmann et A. N. Malviya. 1992. «Role of cadmium in activating nuclear protein kinase C and the enzyme binding to nuclear protein». J Biol Chem, vol.267, p. 19824-19828.

BORELLA, P. et A. Giardino. 1991. «Lead and cadmium at very low doses affect in vitro immune response of human lymphocytes». Environ Res, vol. 55, p. 165-177.

BROWN, K., S. Gerstberger, L. Carlson, G. Franzoso et U. Siebenlist. 1995. «Control of I kappa B-alpha proteolysis by site-specific, signal-induced phosphorylation». Science, vol. 267, p. 1485-1488.

BRYAN, R. G., Y. Li, J. H. Lai, M. Van, N. R. Rice, R. R. Rich et T. H. Tan. 1994. «Effect of CD28 signal transduction on c-Rel in human peripheral blood T cells». Mol Cell Biol, vol. 14, p. 7933-7942.

CANO, E. et L. C. Mahadevan. 1995. «Parallel signal processing among mammalian MAPKs». Trends Biochem Sci, vol. 20, p. 117-122.

CANTRELL, D. 1996. «T cell antigen receptor signal transduction pathways». Annu Rev Immunol, vol. 14, p. 259-274.

CHAMBERS, C. A. et J. P. Allison. 1999. «Costimulatory regulation of T cell function». Curr Opin Cell Biol, vol. 11, p. 203-210.

CHEN, C. Y., F. Del gatto-Konczak, Z. Wu et M. Karin. 1998. «Stabilization of interleukin-2 mRNA by the c-Jun NH2-terminal kinase pathway». Science, vol. 280, p. 1945-1949.

CHIDA, K. et P. K. Vogt. 1992. «Nuclear translocation of viral Jun but not of cellular Jun is cell cycle dependent». Proc Natl Acad Sci U S A, vol. 89, p. 4290-4294.

CHOW, C. W., M. Roncon et R. J. Davis. 1999. «Requirement for transcription factor NFAT in interleukin-2 expression». Mol Cell Biol, vol.19, p. 2300-2307.

CHU, D. H., C. T. Morita et A. Weiss. 1998. «The Syk family of protein tyrosine kinases in T-cell activation and development». Immunol Rev, vol. 165, p. 167-180.

CIFONE, M. G., E. Alesse, A. Procopio, R. Paolini, S. Morrone, R. D. Eugenio, G. Santoni et A. Santoni. 1988. «Effects of cadmium on lymphocyte activation». Biochemica Biophysica Acta, vol. 1011, p. 25-32.

CLARKSON, T. W. 1997. «The toxicology of mercury». Crit Rev Clin Lab Sci , vol.34, p. 369-403.

CLIPSTONE, N. A. et G. R. Crabtree. 1992. «Identification of calcineurin as a key signalling enzyme in T- lymphocyte activation». Nature, vol. 357, p. 695-697.

CLOSE, A. H., T. L. Guo et B. J. Shenker. 1999. «Activated human T lymphocytes exhibit reduced susceptibility to methylmercury chloride-induced apoptosis». Toxicol Sci, vol. 49, p. 68-77.

COOK, J. A., E. O. Hoffmann et N. R. Luzio D. 1975. «Influence of lead and cadmium on the susceptibility of rats to bacterial challenge». Proc Soc Exp Biol Med, vol. 150, p. 741-747.

COSO, O. A., M. Chiariello, J. C. Yu, H. Teramoto, P. Crespo, N. Xu, T. Miki et J. S. Gutkind. 1995. «The small GTP-binding proteins Rac1 and Cdc42 regulate the activity of the JNK/SAPK signaling pathway». Cell, vol. 81, p. 1137-1146.

COSTELLO, P. S., A. E. Walters, P. J. Mee, M. Turner, L. F. Reynolds, A. Prisco, N. Sarner, R. Zamoyska et V. L. Tybulewicz. 1999. «The Rho-family GTP exchange factor Vav is a critical transducer of T cell receptor signals to the calcium, ERK, and NFkappaB pathways». Proc Natl Acad Sci U S A, vol. 96, p. 3035-3040.

CRABTREE, G. R. et N. A. Clipstone. 1994. «Signal transmission between the plasma membrane and nucleus of T lymphocytes». Annu Rev Biochem, vol. 63, p. 1045-1083.

CRESPO, P., K. E. Schuebel, A. A. Ostrom, J. S. Gutkind et X. R. Bustelo. 1997. «Phosphotyrosine-dependent activation of Rac-1 GDP/GTP exchange by the vav protooncogene product». Nature, vol. 385, p. 169-172.

DANTAS, D. C. et M. L. Queiroz. 1997. «Immunoglobulin E and autoantibodies in mercury-exposed workers». Immunopharmacol Immunotoxicol, vol. 19, p. 383-392.

DAVIS, R. J. 1994. «MAPKs: new JNK expands the group». Trends Biochem Sci, vol. 19, p. 470-473.

DE FLORA, S., C. Bennicelli et M. Bagnasco. 1994. «Genotoxicity of mercury compounds. A review». Mutat Res, vol. 317, p. 57-79.

DIEGUEZ-ACUNA, F. J. et J. S. Woods. 2000. «Inhibition of NF-kappaB-DNA binding by mercuric ion: utility of the non- thiol reductant, tris(2-carboxyethyl)phosphine hydrochloride (TCEP), on detection of impaired NF-kappaB-DNA binding by thioldirected agents». Toxicol In Vitro, vol. 14, p. 7-16.

DIEGUEZ-ACUNA, F. J., M. E. Ellis, J. Kushleika et J. S. Woods. 2001. «Mercuric ion attenuates nuclear factor-kappaB activation and DNA binding in normal rat kidney epithelial cells: implications for mercury- induced nephrotoxicity». Toxicol Appl Pharmacol, vol. 173, p. 176-187.

DING, W. et D. M. Templeton. 2000. «Activation of parallel mitogen-activated protein kinase cascades and induction of c-fos by cadmium». Toxicol Appl Pharmacol, vol. 162, p. 93-99.

DOLMETSCH, R. E., K. Xu et R. S. Lewis. 1998. «Calcium oscillations increase the efficiency and specificity of gene expression». Nature, vol. 392, p. 933-936.

DURAND, D. B., J. P. Shaw, M. R. Bush, R. E. Replogle, R. Belagaje et G. R. Crabtree. 1988. «Characterization of antigen receptor response elements within the interleukin-2 enhancer». Mol Cell Biol, vol. 8, p. 1715-1724.

EL AZZOUZI, B., G. T. Tsangaris, O. Pellegrini, Y. Manuel, J. Benveniste et Y. Thomas. 1994. «Cadmium induces apoptosis in a human T cell line». Toxicology, vol. 88, p. 127139.

ELINDER, C. G. 1985. «Cadmium: uses, occurence and intake». In Friberg L., Elinder CG, KJellstrom T, Nordberg GF, (éd.). Cadmium and Health: A toxicological and EpidemiologicalAppraisal. Vol I: Exposure, Dose and Metabolism. Effects and Response. Boca Raton, Floride: CRC Press, p. 23-64.

EMMEL, E. A., C. L. Verweij, D. B. Durand, K. M. Higgins, E. Lacy et G. R. Crabtree. 1989. «Cyclosporin A specifically inhibits function of nuclear proteins involved in T cell activation». Science, vol. 246, p. 1617-1620.

ENGER, M. D., C. E. Hildebrand et C. C. Stewart. 1983. «Cd2+ responses of cultured human blood cells». Toxicol Appl Pharmacol, vol. 69, p. 214-224.

EPNER, D. E. et H. R. Herschman. 1991. «Heavy metals induce expression of the TPAinducible sequence (TIS) genes». Journal of Cellular Physiology, vol. 148, p. 68-74.

FANG, N. et G. A. Koretzky. 1999. «SLP-76 and Vav function in separate, but overlapping pathways to augment interleukin-2 promoter activity». J Biol Chem, vol. 274, p. 16206-16212.

FELDMAN, R. G. et R. F. White. 1992. «Lead neurotoxicity and disorders of learning». J Child Neurol, vol. 7, p. 354-359.

FINCO, T. S., T. Kadlecek, W. Zhang, L. E. Samelson et A. Weiss. 1998. «LAT is required for TCR-mediated activation of PLCgammal and the Ras pathway». Immunity, vol. 9, p. 617-626.

FISCHER, K. D., A. Zmuldzinas, S. Gardner, M. Barbacid, A. Bernstein et C. Guidos. 1995. «Defective T-cell receptor signalling and positive selection of Vav- deficient CD4+ CD8+ thymocytes». Nature, vol. 374, p. 474-477.

FISCHER, K. D., Y. Y. Kong, H. Nishina, K. Tedford, L. E. Marengere, I. Kozieradzki, T. Sasaki, M. Starr, G. Chan, S. Gardener, M. P. Nghiem, D. Bouchard, M. Barbacid, A. Bernstein et J. M. Penninger. 1998. «Vav is a regulator of cytoskeletal reorganization mediated by the T- cell receptor». Curr Biol, vol. 8, p. 554-562.

FOULKES, E. L. (éd.). 1986. «Absorption of cadmium». In Handbook of Experimental Pharmacology: Cadmium, vol.80, p. 75-100.

FOWLER, B. A., M. W. Kahng et D. R. Smith. 1994.«Role of lead-binding proteins in renal cancer». Environ Health Perspect, vol. 102 Suppl 3, p. 115-116.

FRASER, J. D. AND A. Weiss. 1992. «Regulation of T-cell lymphokine gene transcription by the accessory molecule CD28». Mol Cell Biol, vol. 12, p. 4357-4363.

FREEMAN, G. J., F. BORRIELLO, R. J. HODES, H. REISER, K. S. HATHCOCK, G. LASZLO, A. J. MCKNIGHT, J. KIM, L. DU, D. B. LOMBARD, AND A. L. ET. 1993. Uncovering of functional alternative CTLA-4 counter-receptor in B7- deficient mice. Science 262: 907-909.

FreEman, G. J., J. G. Gribben, V. A. Boussiotis, J. W. Ng, V. A. Restivo Jr, L. A. Lombard, G. S. Gray et L. M. Nadler. 1993. «Cloning of B7-2: a CTLA-4 counterreceptor that costimulates human T cell proliferation». Science, vol. 262, p. 909-911.

FUJIMAKI, H. 1985. «In vitro effect of cadmium on primary antibody response to T-cell independent antigen (DNP-Ficoll)». Toxicol Lett, vol. 24, p. 21-4.

FUJIMAKI, H., M. Murakami et K. Kubota. 1982. «In vitro evaluation of cadmiuminduced augmentation of the antibody response». Toxicol Appl Pharmacol, vol. 62, p. 288-293.

GAINER, J. H. 1974. «Lead aggravates viral disease and represses the antiviral activity of interferon inducers». Environ Health Perspect, vol. 7, p. 113-119.

GALAN, A., M. L. Garcia-Bermejo, A. Troyano, N. E. Vilaboa, E. De Blas, M. G. Kazanietz et P. Aller. 2000. «Stimulation of p38 mitogen-activated protein kinase is an early regulatory event for the cadmium-induced apoptosis in human promonocytic cells». J Biol Chem, vol. 275, p. 11418-11424.

GARRITY, P. A., D. Chen, E. V. Rothenberg et B. J. Wold. 1994. «Interleukin-2 transcription is regulated in vivo at the level of coordinated binding of both constitutive and regulated factors». Mol Cell Biol, vol. 14, p. 2159-2169.

GAUEN, L. K., Y. Zhu, F. Letourneur, Q. Hu, J. B. Bolen, L. A. Matis, R. D. KLausner, et A. S. Shaw. 1994. «Interactions of p59fyn and ZAP-70 with T-cell receptor activation motifs: defining the nature of a signalling motif». Mol Cell Biol, vol. 14, p. 3729-3741.

GAWORSKI, C. L. et R. P. Sharma. 1978. «The effects of heavy metals on». Toxicol Appl Pharmacol, vol. 46, p. 305-313.

GENNART, J. P., A. Bernard et R. Lauwerys. 1992. «Assessment of thyroid, testes, kidney and autonomic nervous system function in lead-exposed workers». Int Arch Occup Environ Health, vol. 64, p. 49-57.

GEPPERT, T. D. et P. E. Lipsky. 1987. «Accessory cell independent proliferation of human T4 cells stimulated by immobilized monoclonal antibodies to CD3». J Immunol, vol. 138, p. 1660-1666.

GEPPERT, T. D. et P. E. Lipsky. 1989. «Antigen presentation at the inflammatory site». Crit Rev Immunol, vol. 9, p. 313-362.

GHOSH, S., M. J. May et E. B. Kopp. 1998. «NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses». Annu Rev Immunol, vol. 16, p. 225-260.

GILMORE, T. D. et P. J. Morin. 1993. «The I kappa B proteins: members of a multifunctional family» Trends Genet, vol. 9, p. 427-433.

GLOVER, J. N. et S. C. Harrison. 1995. «Crystal structure of the heterodimeric bZIP transcription factor c-Fos- c-Jun bound to DNA». Nature, vol. 373, p. 257-261.

GONSKY, R., R. L. Deem, D. H. Lee, A. Chen et S. R. Targan. 1999. «CD28 costimulation augments $\mathrm{IL}-2$ secretion of activated lamina propria T cells by increasing mRNA stability without enhancing IL-2 gene transactivation». J Immunol, vol. 162, p. 6621-6629.

GOYER, R. A. 1989. «Mechanisms of lead and cadmium nephrotoxicity». Toxicol Lett, vol. 46, p. 153-162.

GRIMM, S. et P. A. Baeuerle. 1993. «The inducible transcription factor NF-kappa B: structure-function relationship of its protein subunits». Biochem J, vol. 290 (Pt 2), p. 297-308.

GULBINS, E., K. M. Coggeshall, G. Baier, S. Katzav, P. Burn et A. Altman. 1993. «Tyrosine kinase-stimulated guanine nucleotide exchange activity of Vav in T cell activation». Science, vol. 260, p. 822-825.

GUO, T. L., S. P. Mudzinski et D. A. Lawrence. 1996. «The heavy metal lead modulates the expression of both TNF-alpha and TNF- alpha receptors in lipopolysaccharideactivated human peripheral blood mononuclear cells». J Leukoc Biol, vol. 59, p. 932-939.

HAMADA, T., A. Tanimoto, S. Iwai, H. Fujimara et Y. Sasaguri. 1994. «Cytopathological changes induced by cadmium-exposure in canine proximal tubular cells: a cytochemical and ultrastructural study». Nephron, vol. 68, p. 104-111.

HAMADA, T., A. Tanimoto et Y. Sasaguri. 1997. «Apoptosis induced by cadmium». Apoptosis, vol. 2, p. 359-367.

HAN, J., B. DasW. WeiL. Van Aelst, R. D. Mosteller, R. Khosravi-Far, J. K. Westwick, C. J. Der et D. Broek. 1997. «Lck regulates Vav activation of members of the Rho family of GTPases». Mol Cell Biol, vol. 17, p. 1346-1353.

HARLAN, D. M., H. Hengartner, M. L. Huang, Y. H. Kang, R. Abe, R. W. Moreadith, H. Pircher, G. S. Gray, P. S. Ohashi, G. J. Freeman et A. L. Et. 1994. «Mice expressing both B7-1 and viral glycoprotein on pancreatic beta cells along with glycoprotein-specific transgenic T cells develop diabetes due to a breakdown of T-lymphocyte unresponsiveness». Proc Natl Acad Sci U S A, vol. 91, p. 3137-3141.

HARLEY, C. B., C. R. Menon, R. A. Rachubinski et E. Nieboer. 1989. «Metallothionein mRNA and protein induction by cadmium in peripheral- blood leucocytes». Biochem J, vol. 262, p. 873-879.

HASSOUN, E. A. AND S. J. STOHS. 1996. «Cadmium-induced production of superoxide anion and nitric oxide, DNA single strand breaks and lactate dehydrogenase leakage in J774A. 1 cell cultures». Toxicology, vol. 112, p. 219-226.

HEHNER, S. P., M. Li-Weber, M. Giaisi, W. Droge, P. H. Krammer et M. L. Schmitz. 2000. «Vav synergizes with protein kinase C theta to mediate IL-4 gene expression in response to CD28 costimulation in T cells». J Immunol, vol. 164, p. 3829-3836.

HEMPHILL, F. E., M. L. Kaeberle et W. B. Buck. 1971. «Lead suppression of mouse resistance to Salmonella typhimurium». Science, vol. 172, p. 1031-1032.

HEO, Y., W. T. Lee et D. A. Lawrence. 1998. «Differential effects of lead and cAMP on development and activities of Th1- and Th2-lymphocytes». Toxicol Sci, vol. 43, p. 172185.

HEO, Y., P. J. ParsonsD. A. Lawrence. 1996. «Lead differentially modifies cytokine production in vitro and in vivo». Toxicol Appl Pharmacol, vol. 138, p. 149-157.

HERNDON, T. M., X. C. Shan, G. C. Tsokos et R. L. Wange. 2001. «ZAP-70 and SLP76 regulate protein kinase C-theta and NF-kappa B activation in response to engagement of CD3 and CD28». J Immunol, vol. 166, p. 5654-5664.

HILDEBRAND, C. E. et L. S. Cram. 1979. «Distribution of cadmium in human blood cultured in low levels of CdCl 2 : accumulation of Cd in lymphocytes and preferential binding to metallothionein». Proc Soc Exp Biol Med, vol. 161, p. 438-443.

HILL, C. S. et R. Treisman. 1995. «Transcriptional regulation by extracellular signals: mechanisms and specificity». Cell, vol. 80, p. 199-211.

HIRAYAMA, K. et A. Yasutake. 1986. «Sex and age differences in mercury distribution and excretion in methylmercury-administered mice». J Toxicol Environ Health, vol. 18, p. 49-60.

HOLSINGER, L. J., I. A. Graef, W. Swat, T. Chi, D. M. Bautista, L. Davidson, R. S. Lewis, F. W. Alt et G. R. Crabtree. 1998. «Defects in actin-cap formation in Vavdeficient mice implicate an actin requirement for lymphocyte signal transduction». Curr Biol, vol. 8, p.: 563-572.

HOPKINS, C., D. Peterson, P. Hawkins et B. Cocks. 2000. «Activation of T cells: anti-CD3- and anti-CD28-treated Jurkat». In CyteGenomics Life Sciences Research Division, p. 1-8.

HOPKINS, R. G. et M. L. Failla. 1997. «Copper deficiency reduces interleukin-2 (IL-2) production and IL-2 mRNA in human T-lymphocytes». Journal of Nutrition, vol. 127, p. 257-262.

HUNIG, T. et A. Schimpl. 1997. «Systemic autoimmune disease as a consequence of defective lymphocyte death». Curr Opin Immunol, vol. 9, p. 826-830.

HUNTER, T. et M. Karin. 1992. The regulation of transcription by phosphorylation. Cell, vol. 70, p. 375-387.

ISAKOV, N., R. L. Wange, W. H. Burgess, J. D. Watts, R. Aebersold et L. E. Samelson. 1995. «ZAP-70 binding specificity to T cell receptor tyrosine-based activation motifs: the tandem SH2 domains of ZAP-70 bind distinct tyrosine-based activation motifs with varying affinity». J Exp Med, vol. 181, p. 375-380.

IWASHIMA, M., B. A. Irving, N. S. Van Oers, A. C. Chan et A. Weiss. 1994. «Sequential interactions of the TCR with two distinct cytoplasmic tyrosine kinases». Science, vol. 263, p. 1136-1139.

IZQUIERDO, M., S. J. Leevers, C. J. Marshall et D. Cantrell. 1993. «p21ras couples the T cell antigen receptor to extracellular signal- regulated kinase 2 in T lymphocytes». ${ }^{\mathbf{J}}$ Exp Med, vol. 178, p. 1199-1208.

JAIN, J., C. Loh, et A. Rao. 1995. «Transcriptional regulation of the IL-2 gene». Curr Opin Immunol, vol. 7, p. 333-342.

JAIN, J., P. G. Mccaffrey, Z. Miner, T. K. Kerppola, J. N. Lambert, G. L. Verdine, T. Curran et A. Rao. 1993. «The T-cell transcription factor NFATp is a substrate for calcineurin and interacts with Fos and Jun». Nature, vol. 365, p. 352-355.

JAIN, J., V. E. Valge-Archer et A. Rao. 1992. «Analysis of the AP-1 sites in the IL-2 promoter». J Immunol, vol. 148, p. 1240-1250.

JIN, P. et N. R. Ringertz. 1990. «Cadmium induces transcription of proto-oncogenes cjun and c-myc in rat L6 myoblasts». Journal of Biological Chemistry, vol. 265, p. 1406114064.

JOHNSON, F. M. 1998. «The genetic effects of environmental lead». Mutat Res, vol. 410, p. 123-140.

JUBERG, D. R., C. F. Kleiman et S. C. Kwon. 1997. «Position paper of the American Council on Science and Health: lead and human health». Ecotoxicol Environ Saf, vol. 38, p. 162-180.

JUNE, C. H., J. A. Bluestone, L. M. Nadler et C. B. Thompson. 1994. «The B7 and CD28 receptor families». Immunol Today, vol. 15, p. 321-331.

JUNGER, W. G., D. B. Hoyt. Hamreus, F. C. Liu, C. Herdon-Remelius, W. Junger et A. Altman. 1997. «Hypertonic saline activates protein tyrosine kinases and mitogenactivated protein kinase p38 in T-cells». J Trauma, vol. 42, p. 437-445.

JUNGMANN, J., H. A. Reins, C. Schobert et S. Jentsch. 1993. «Resistance to cadmium mediated by ubiquitin-dependent proteolysis». Nature 361: 369-371.

KAJIWARA, Y., A. Yasutake, T. Adachi et K. Hirayama. 1996. «Methylmercury transport across the placenta via neutral amino acid carrier». Arch Toxicol, vol. 70, p. 310-314.

KALLI, K., C. Huntoon M. Bell et D. J. Mckean. 1998.«Mechanism responsible for Tcell antigen receptor- and CD28- or interleukin 1 (IL-1) receptor-initiated regulation of IL-2 gene expression by NF-kappaB». Mol Cell Biol, vol. 18, p. 3140-8.

KAMIYAMA, T., H. Miyakawa, J. P. Li, T. Akiba, J. H. Liu, J. Liu, F. Marumo et C. Sato. 1995. «Effects of one-year cadmium exposure on livers and kidneys and their relation to glutathione levels». Res Commun Mol Pathol Pharmacol, vol. 88, p. 177-186.

KAMPS, M. P., L. Corcoran, J. H. Lebowitz et D. Baltimore. 1990. «The promoter of the human interleukin-2 gene contains two octamer- binding sites and is partially activated by the expression of Oct-2». Mol Cell Biol, vol. 10, p. 5464-5472.

KANG, S. M., W. Tsang, S. Doll, P. Scherle, H. S. Ko, A. C. Tran, M. J. Lenardo et L. M. Staudt. 1992. «Induction of the POU domain transcription factor Oct-2 during T-cell activation by cognate antigen». Mol Cell Biol, vol. 12, p. 3149-3154.

KARIN, M. et T. Hunter. 1995. «Transcriptional control by protein phosphorylation: signal transmission from the cell surface to the nucleus». Curr Biol, vol. 5, p. 747-757.

KASTELAN, M., M. Gerencer, A. Kastelan et S. Gamulin. 1981. Inhibition of mitogen and specific antigen-induced human lymphocyte proliferation by cadmium. Exp Cell Biol, vol. 49, p. 15-19.

KERR, J. F., A. H. Wyllie et A. R. Currie. 1972. «Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics». Br J Cancer, vol. 26, p. 239-257.

KHAN, S., M. A. Khan, D. Bhatnagar, P. Yadav et S. Sarkar. 1991. «Zinc protection against lipid peroxidation from cadmium». Indian J Exp Biol, vol. 29, p. 823-825.

KIM, H. H., M. Tharayil et C. E. Rudd. 1998. «Growth factor receptor-bound protein 2 SH2/SH3 domain binding to CD28 and its role in co-signaling». J Biol Chem, vol. 273, p. 296-301.

KIM, K., T. K. Chakaraborti, G. W. Goldstein, et J. P. Bressler. 1998. «Pb activates immediate early genes by a mechanism dependent on protein kinase C». Toxicological. Sciences, vol. 42(1-S), p. 198.

KIMBER, I., M. D. Stonard, D. A. Gidlow et Z. Niewola. 1986. «Influence of chronic low-level exposure to lead on plasma immunoglobulin concentration and cellular immune function in man». Int Arch Occup Environ Health, vol. 57, p. 117-125.

KOROPATNICK, J. et R. K. Zalups. 1997. «Effect of non-toxic mercury, zinc or cadmium pretreatment on the capacity of human monocytes to undergo lipopolysaccharide-induced activation». Br J Pharmacol, vol. 120, p. 797-806.

KOSTIC, M. M., B. Ognkanovic, S. Dimitrijevic, R. V. Zikic, A. Stajn, G. L. Rosic, et R. V. Zivkovic. 1993. «Cadmium-induced changes of antioxidant and metabolic status in red blood cells of rats: in vivo effects». Eur J Haematol, vol. 51, p. 86-92.

KURT-JONES, E. A., S. Hamberg, J. Ohara, W. E. Paul et A. K. Abbas. 1987. «Heterogeneity of helper/inducer T lymphocytes. I. Lymphokine production and lymphokine responsiveness». J Exp Med, vol. 166, p. 1774-1787.

LANDER, H. M., D. M. Levine et A. Novogrodsky. 1992. «Stress stimuli-induced lymphocyte activation». Cell Immunol, vol. 145, p. 146-155.

LAWRENCE, D. A. 1981a. «Heavy metal modulation of lymphocyte activities. 1. In vitro effects of heavy metals on primary humoral immune responses». Toxicol Appl Pharmacol, vol.57, p. 439-451.

LAWRENCE, D. A. 1981b. «Heavy metal modulation of lymphocyte activities--II. Lead, an in vitro mediator of B-cell activation». Int J Immunopharmacol, vol. 3, p. 153-161.

LAWRENCE, D. A. 1981c. «In vivo and in vitro effects of lead on humoral and cellmediated immunity». Infect Immun, vol. 31, p. 136-143.

LAWRENCE, D. A. et M. J. McCabe Jr. 1995. «Immune modulation by toxic metals». In R. A. Goyer, C. D. Klaassen et M. P. Waalkes (éd.). Metal Toxicology. New-York: Academic Press. p. 305-337.

LEDERER, J. A., J. S. Liou, S. Kim, N. Rice et A. H. Lichtman. 1996. «Regulation of NF-kappa B activation in T helper 1 and T helper 2 cells». J Immunol, vol. 156, p. 56-63.

LEDERER, J. A., J. S. Liou, M. D. Todd, L. H. Glimcher et A. H. Lichtman. 1994. «Regulation of cytokine gene expression in T helper cell subsets». J Immunol, vol. 152, p. 77-86.

LEE, F. S., J. Hagler, Z. J. Chen et T. Maniatis. 1997. «Activation of the IkappaB alpha kinase complex by MEKK1, a kinase of the JNK pathway». Cel, vol. 1 88, p. 213-222.

LENSCHOW, D. J., T. L. Walunas et J. A. Bluestone. 1996. «CD28/B7 system of T cell costimulation». Annu Rev Immunol, vol. 14, p. 233-258.

LI, P., D. Nijhawan, I. Budihardjo, S. M. Srinivasula, M. Ahmad, E. S. Alnemri et X. Wang. 1997. «Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade». Cell, vol. 91, p. 479-489.

LIN, K. T., J. Y. Xue, F. F. Sun et P. Y. Wong. 1997. «Reactive oxygen species participate in peroxynitrite-induced apoptosis in HL-60 cells». Biochem Biophys Res Commun, vol. 230, p. 115-119.

LINDSTEIN, T., C. H. June, J. A. Ledbetter, G. Stella et C. B. Thompson. 1989. «Regulation of lymphokine messenger RNA stability by a surface-mediated T cell activation pathway». Science, vol. 244, p. 339-343.

LINSLEY, P. S., E. A. Clark et J. A. Ledbetter. 1990. «T-cell antigen CD28 mediates adhesion with B cells by interacting with activation antigen B7/BB-1». Proc Natl Acad Sci U S A, vol. 87, p. 5031-5035.

LINSLEY, P. S. et J. A. Ledbetter. 1993. «The role of the CD28 receptor during T cell responses to antigen». Annu Rev Immunol, vol. 11, p. 191-212.

LIPSKY, P. E., J. J. Ellner et A. L. Rosenthal. 1976. «Phytohemagglutinin-induced proliferation of guinea pig thymus-derived lymphocytes. I. Accessory cell dependence». \mathbf{J} Immunol, vol. 116, p. 868-875.

LOH, C., J. A. Carew, J. Kim, P. G. Hogan et A. Rao. 1996. «T-cell receptor stimulation elicits an early phase of activation and a later phase of deactivation of the transcription factor NFAT1». Mol Cell Biol, vol. 16, p. 3945-3954.

LOH, C., K. T. Shaw, J. Carew, J. P. Viola, C. Luo, B. A. Perrino et A. Rao. 1996. «Calcineurin binds the transcription factor NFAT1 and reversibly regulates its activity». \mathbf{J} Biol Chem, vol. 271, p. 10884-10891.

LOHMANN, R. D. et D. Beyersmann. 1993. «Cadmium and zinc mediated changes of the $\mathrm{Ca}(2+)$-dependent endonuclease in apoptosis». Biochem Biophys Res Commun, vol. 190, p. 1097-1103.

LUO, C., E. Burgeon, J. A. Carew, P. G. Mccaffrey, T. M. Badalian, W. S. Lane, P. G. Hogan et A. Rao. 1996. «Recombinant NFAT1 (NFATp) is regulated by calcineurin in T cells and mediates transcription of several cytokine genes». Mol Cell Biol, vol. 16, p. 3955-3966.

MAGOS, L. et W. H. Butler. 1972. «Cumulative effects of methylmercury dicyandiamide given orally to rats». Food Cosmet Toxicol, vol. 10, p. 513-517.

MARKOVAC, J. et G. W. Goldstein. 1988. «Picomolar concentrations of lead stimulate brain protein kinase C». Nature, vol. 334, p. 71-73.

MARTEL, J., M. Marion et F. DEenizeau. 1990. «Effect of cadmium on membrane potential in isolated rat hepatocytes». Toxicology, vol. 60, p. 161-172.

MASUDA, E. S., R. Imamura, Y. Amasaki, K. Arai, et N. Arai. 1998. «Signalling into the T-cell nucleus: NFAT regulation». Cell Signal, vol. 10, p. 599-611.

MASUDA, E. S., Y. Naito, H. Tokumitsu, D. Campbell, F. Saito, C. Hannum, K. Arai, et N. Arai. 1995. «NFATx, a novel member of the nuclear factor of activated T cells family that is expressed predominantly in the thymus». Mol Cell Biol, vol. 15, p. 2697-2706.

MATSUOKA, M. et K. M. Call. 1995. «Cadmium-induced expression of immediate early genes in LLC-PK1 cells». Kidney Int, vol. 48, p. 383-389.

MATSUOKA, M., B. Wispriyono et H. Igisu. 1997. «Induction of c-fos gene by mercury chloride in LLC-PK1 cells». Chem Biol Interact, vol. 108, p. 95-106.

MATSUOKA, M., B. Wispriyono, Y. Iryo et H. Igisu. 2000. «Mercury chloride activates c-Jun N-terminal kinase and induces c-jun expression in LLC-PK1 cells». Toxicol Sci, vol. 53, p. 361-368.

MCCABE, M. J. Jr, J. A. Dias et D. A. Lawrence. 1991. «Lead influences translational or posttranslational regulation of Ia expression and increases invariant chain expression in mouse B cells». J Biochem Toxicol, vol. 6, p. 269-276.

MCCABE, M. J. Jr et D. A. Lawrence. 1990. «The heavy metal lead exhibits B cellstimulatory factor activity by enhancing B cell Ia expression and differentiation». \underline{J} Immunol, vol. 145, p. 671-677.

MCCABE, M. J. Jr et D. A. Lawrence. 1991. «Lead, a major environmental pollutant, is immunomodulatory by its differential effects on CD4+ T cells subsets». Toxicol Appl Pharmacol, vol. 111, p. 13-23.

MCCAFFREY, P. G., B. A. Perrino, T. R. Soderling et A. Rao. 1993. «NF-ATp, a T lymphocyte DNA-binding protein that is a target for calcineurin and immunosuppressive drugs». J Biol Chem, vol. 268, p. 3747-3752.

MCCONKEY, D. J., P. Hartzell, S. K. Duddy, H. Hakansson et S. Orrenius. 1988. «2,3,7,8-Tetrachlorodibenzo-p-dioxin kills immature thymocytes by Ca2+- mediated endonuclease activation». Science, vol. 242, p. 256-259.

MICHEL, F., G. Mangino, G. Attal-Bonnefoy, L. Tuosto, A. Alcover, A. Roumier, D. Olive et O. Acuto. 2000. «CD28 utilizes Vav-1 to enhance TCR-proximal signaling and NF-AT activation». J Immunol, vol. 165, p. 3820-3829.

MIELKE, H. W. et P. L. Reagan. 1998. «Soil is an important pathway of human lead exposure». Environ Health Perspect, vol. 106 Suppl 1, p. 217-229.

MINDEN, A., A. Lin, F. X. Claret, A. Abo et M. Karin. 1995. «Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs». Cell, vol. 81, p. 1147-1157.

MIQUEL, G., sénateur. 2000-2001. «Rapport sur les effets des métaux lourds sur l'environnement et la santé». In Rapport 261. Paris: Office parlementaire d'évaluation des choix scientifiques et technologiques.

MONKS, C. R., H. Kupfer, I. Tamir, A. Barlow et A. Kupfer. 1997. «Selective modulation of protein kinase C-theta during T-cell activation». Nature, vol. 385, p. 83-86.

MOREIRA, J. C. 1996. «Threats by heavy metals: human and environmental contamination in Brazil». Sci Total Environ, vol. 188 Suppl 1, p. S61-71.

MULLER, S., K. E. Gillert, C. Krause, G. Jautzke, U. Gross et T. Diamantstein. 1979. «Effects of cadmium on the immune system of mice». Experientia, vol. 35, p. 909-910.

MURATA, M., P. Gong, K. Suzuki et S. Koizumi. 1999. «Differential metal response and regulation of human heavy metal- inducible genes». J Cell Physiol , vol. 180, p. 105-113.

NOLAN, G. P. et D. Baltimore. 1992. «The inhibitory ankyrin and activator Rel proteins». Current Opinions in Genetic Development, vol. 2, p. 211-220.

NORSETH, T. et T. W. Clarkson. 1971. «Intestinal transport of 203 Hg -labeled methyl mercury chloride. Role of biotransformation in rats». Archives of Environmental Health, vol. 22, p.: 568-577.

NORTHROP, J. P., S. N. Ho, L. Chen, D. J. Thomas, L. A. Timmerman, G. P. Nolan,A. Admon et G. R. Crabtree. 1994. «NF-AT components define a family of transcription factors targeted in T- cell activation». Nature, vol. 369, p. 497-502.

NUNES, J. A., Y. Collette, A. Truneh, D. Olive et D. A. Cantrell. 1994. «The role of p21ras in CD28 signal transduction: triggering of CD28 with antibodies, but not the ligand B7-1, activates p21ras». Journal of Experimental Medicine, vol. 180, p. 10671076.

NUNES, J. A., A. Truneh, D. Olive et D. A. Cantrell. 1996. «Signal transduction by CD28 costimulatory receptor on T cells. B7-1 and B7-2 regulation of tyrosine kinase adaptor molecules». Journal of Biological Chemistry, vol. 271, p. 1591-1598.

OCHEL, M., H. W. Vohr, C. Pfeiffer et E. Gleichmann. 1991. «IL-4 is required for the IgE and IgG1 increase and IgG1 autoantibody formation in mice treated with mercuric chloride». Journal of Immunology, vol. 146, p. 3006-30011.

OCHI, T., F. Otsuka, K. Takahashi et M. Ohsawa. 1988. «Glutathione and metallothioneins as cellular defense against cadmium toxicity in cultured Chinese hamster cells». Chemical and Biological Interactions, vol. 65, p. 1-14.

OLIVEIRA, R. B., O. Malm et J. R. Guimaraes. 2001. «Distribution of methylmercury and inorganic mercury in neonate hamsters dosed with methylmercury during fetal life». Environmental Research, vol. 86, p. 73-79.

OWAKI, H., R. Varma, B. Gillis, J. T. Bruder, U. R. Rapp, L. S. Davis et T. D. Geppert. 1993. «Raf-1 is required for T cell IL2 production». EMBO Journal, vol. 12, p. 43674373.

PAUL, W. E. et R. A. Seder. 1994. «Lymphocyte responses and cytokines». Cell, vol. 76, p. 241-251.

PAYETTE, Y., M. Lachapelle, C. Daniel, J. Bernier, M. Fournier et K. Krzystyniak. 1995. «Decreased interleukin-2 receptor and cell cycle changes in murine lymphocytes exposed in vitro to low doses of cadmium chloride». International Journal of Immunopharmacology, vol. 17, p. 235-246.

PELLEGRINI, O., E. Davenas, L. Morin, G. T. Tsangaris, J. Benveniste, Y. Manuel, et Y. Thomas. 1994. «Modulation of stress proteins by Cd2+ in a human T cell line». European Journal of Pharmacology, vol. 270, p. 221-228.

PELLETIER, L., J. Rossert, R. Pasquier, M. C. Vial et P. Druet. 1990. «Role of CD8+ T cells in mercury-induced autoimmunity or immunosuppression in the rat». Scandinavian Journal of Immunology, vol. 31, p. 65-74.

PELLETIER, L., M. Castedo, B. Bellon et P. Druet. 1994. In Immunotoxicology and immunopharmacology. New York: Raven Press, p. 539-552.

PFEUFFER, I., S. Klein-Hessling, A. Heinfling, S. Chuvpilo, C. Escher, T. Brabletz, B. Hentsch, H. Schwarzenbach, P. Matthias et E. Serfling. 1994. «Octamer factors exert a dual effect on the IL-2 and IL-4 promoters». Journal of Immunology, vol. 153, p. 55725585.

POWELL, J. D., J. A. Ragheb, S. Kitagawa-Sakakida et R. H. Schwartz. 1998. «Molecular regulation of interleukin-2 expression by CD28 co-stimulation and anergy». Immunol Rev, vol. 165, p. 287-300.

PREDKI, P. F. et B. Sarkar. 1994. «Metal replacement in "zinc finger" and its effect on DNA binding». Environmental Health Perspective, vol. 102 Suppl 3, p. 195-198.

PYATT, D. W., J. H. Zheng, W. S. Stillman et R. D. Irons. 1996. «Inorganic lead activates NF-kappa B in primary human CD4+ T lymphocytes». Biochemical and Biophysical Research Communications, vol. 227, p. 380-385.

RAMESH, G. T., S. K. Manna, B. B. Aggarwal et A. L. Jadhav. 1999. «Lead activates nuclear transcription factor-kappaB, activator protein- 1, and amino-terminal c-Jun kinase in pheochromocytoma cells». Toxicolology and Applied Pharmacology, vol. 155, p. 280286.

RANGER, A. M., M. J. Grusby, M. R. Hodge, E. M. Gravallese, F. C. De La Brousse, T. Hoey, C. Mickanin, H. S. Baldwin et L. H. Glimcher. 1998. «The transcription factor NFATc is essential for cardiac valve formation». Nature, vol. 392, p. 186-190.

RAO, A. 1994. «NF-ATp: a transcription factor required for the co-ordinate induction of several cytokine genes». Immunology Today, vol. 15, p. 274-81.

RAO, A., C. Luo et P. G. Hogan. 1997. «Transcription factors of the NFAT family: regulation and function». Annual Reviews in Immunology, vol. 15, p. 707-747.

RAYTER, S. I., M. Woodrow, S. C. Lucas, D. A. Cantrell et J. Downward. 1992. «p21ras mediates control of $\amalg-2$ gene promoter function in T cell activation». EMBO Journal, vol. 11, p. 4549-4556.

RAZANI-BOROUJERDI, S., B. Edwards et M. L. Sopori. 1999. «Lead stimulates lymphocyte proliferation through enhanced T cell-B cell interaction». Journal of Pharmacological and Experimental Therapy, vol. 288, p. 714-719.

RINCON, M. et R. A. Flavell. 1994. «AP-1 transcriptional activity requires both T-cell receptor-mediated and co-stimulatory signals in primary T lymphocytes». EMBO Journal, vol. 13, p. 4370-4381.

RINCON, M. et R. A. Flavell. 1997. «Transcription mediated by NFAT is highly inducible in effector CD4+ T helper 2 (Th2) cells but not in Th1 cells». Molecular and Cellular Biology, vol. 17, p. 1522-1534.

ROBERTSON, J. D., S. Orrenius et B. Zhivotovsky. 2000. «Review: nuclear events in apoptosis». Journal of Structural Biology, vol. 129, p. 346-358.

ROITT, I. M., J. Brostoff et D. K. Male. 1997. Immunologie, quatrième édition. Traduit de l'anglais par Jean-Pierre Révillard et Wolf Herman Fridman. Bruxelles: DeBoeck Université.

ROSSI, A., L. Manzo, S. Orrenius, M. Vahter et P. Nicotera. 1991. «Modifications of cell signalling in the cytotoxicity of metals». Pharmacological Toxicology, vol. 68, p. 424429.

ROTHENBERG, E. V. et S. B. Ward. 1996. «A dynamic assembly of diverse transcription factors integrates activation and cell-type information for interleukin 2 gene regulation». Proceeding of National Academy of Sciences U S A, vol. 93, p. 9358-9365.

ROUX, P., J. M. Blanchard, A. Fernandez, N. Lamb, P. Jeanteur et M. Piechaczyk. 1990. «Nuclear localization of c-Fos, but not v-Fos proteins, is controlled by extracellular signals». Cell, vol. 63, p. 341-51.

RUDD, C. E. 1999. «Adaptors and molecular scaffolds in immune cell signaling». Cell 96, p. 5-8.

RUDD. 1996. «Upstream-downstream: CD28 cosignaling pathways and T cell function». Immunity, vol. 4, p. 527-534.

RUTTER, M. et R. R. Jones. 1983. Lead versus health soures and effects of low levels lead exposures. New York: John Wiley and Sons.

RYSECK, R. P. et R. Bravo. 1991.«c-JUN, JUN B, and JUN D differ in their binding affinities to AP-1 and CRE consensus sequences: effect of FOS proteins». Oncogene , vol. 6: 533-542.

SAKURAI, A., S. Hara, N. Okano, Y. Kondo, J. Inoue et N. Imura. 1999. «Regulatory role of metallothionein in NF-kappaB activation». FEBS Letters, vol. 455, p. 55-58.

SALOJIN, K. V., J. Zhang et T. L. Delovitch. 1999. «TCR and CD28 are coupled via ZAP-70 to the activation of the Vav/Rac-1-/PAK-1/p38 MAPK signaling pathway». Journal of Immunology, vol. 163, p. 844-853.

SAMELSON, L. E. et R. D. Klausner. 1992. «Tyrosine kinases and tyrosine-based activation motifs. Current research on activation via the T cell antigen receptor». Journal of Biological Chemistry, vol. 267, p. 24913-24916.

SARKAR, S., P. Yadav, R. Trivedi, A. K. Bansai et D. Bhatnagar. 1995. «Cadmiuminduced lipid peroxidation and the status of the antioxidant system in rat tissues». Journal of Trace Elements in Medical Biology, vol. 9, p. 144-149.

SCHRAVEN, B., A. Marie-Cardine, C. Hubener, E. Bruyns et I. Ding. 1999. «Integration of receptor-mediated signals in T cells by transmembrane adaptor proteins». Immunology Today, vol. 20, p. 431-434.

SCHREIBER, S. L. et G. R. Crabtree. 1992. «The mechanism of action of cyclosporin A and FK506». Immunology Today, vol. 13, p. 136-142.

SCHUBERT, L. A., G. King, R. Q. Cron, D. B. Lewis, A. Aruffo et D. Hollenbaugh. 1995. «The human gp39 promoter. Two distinct nuclear factors of activated T cell
protein-binding elements contribute independently to transcriptional activation». Journal of Biological Chemistry, vol. 270, p. 29624-29627.

SCHWARTZ, R. H. 1992. «Costimulation of T lymphocytes: the role of CD28, CTLA-4, and B7/BB1 in interleukin-2 production and immunotherapy». Cell, vol. 71, p. 10651068.

SCOTT, I. G., C. H. Wolfe, K. E. Akerman et L. C. Andersson. 1985. «Effects of Cd2+ upon $\mathrm{Ca} 2+$ fluxes and proliferation in concanavalin A- stimulated lymphocytes». Experimental and Cellular Research, vol. 156, p. 191-197.

SEGUIN, C. et D. H. Hamer 1987. «Regulation in vitro of metallothionein gene binding factors». Science, vol. 235, p. 1383-1387.

SGAGIAS, M., N. J. Balter et I. Gray. 1989. «Uptake and subcellular distribution of cadmium in resting and mitogen- activated lymphocytes and its relationship to a metallothionein-like protein». Environmental Research, vol. 49, p. 262-270.

SHAW, J., K. Meerovitch, R. C. Bleackley et V. Paetkau. 1988. «Mechanisms regulating the level of LL-2 mRNA in T lymphocytes». Journal of Immunology, vol. 140, p. 22432248.

SHAW, J., K. Meerovitch, J. F. Elliott, R. C. Bleackley et V. Paetkau. 1987. «Induction, suppression and superinduction of lymphokine mRNA in T lymphocytes». Molecular Immunology, vol. 24, p. 409-419.

SHAW, J. P., P. J. Utz, D. B. Durand, J. J. Toole, E. A. Emmel et G. R. Crabtree. 1988. «Identification of a putative regulator of early T cell activation genes». Science, vol. 241, p. 202-205.

SHENKER, B. J., P. Berthold, S. Decker, J. Mayro, C. Rooney, L. Vitale et I. M. Shapiro. 1992. «Immunotoxic effects of mercuric compounds on human lymphocytes and monocytes. II. Alterations in cell viability». Immunopharmacology and Immunotoxicology, vol. 14, p. 555-577.

SHENKER, B. J., T. L. Guo et I. M. Shapiro. 2000. «Mercury-induced apoptosis in human lymphoid cells: evidence that the apoptotic pathway is mercurial species dependent». Environmental Research, vol. 84, p. 89-99.

SHENKER, B. J., J. S. Mayro, C. Rooney, L. Vitale et I. M. Shapiro. 1993. «Immunotoxic effects of mercuric compounds on human lymphocytes and monocytes. IV. Alterations in cellular glutathione content». Immunopharmacology and Immunotoxicology, vol. 15 p. 273-290.

SHENKER, B. J., C. Rooney, L. Vitale et I. M. Shapiro. 1992. «Immunotoxic effects of mercuric compounds on human lymphocytes and monocytes. I. Suppression of T-cell activation». Immunopharmacology and Immunotoxicology, vol. 14, p. 539-553.

SHOTYK, W., D. Weiss, P. G. Appleby, A. K. Cheburkin, R. F. M. Glor, J. D. Kramers, S. Reese et W. O. Van Der Knaap. 1998. «History of atmospheric lead deposition since 12,370 (14)C yr BP from a peat bog, jura mountains, switzerland». Science, vol. 281, p. 1635-1640.

SHUMILLA, J. A., K. E. Wetterhahn et A. Barchowsky. 1998. «Inhibition of NF-kappa B binding to DNA by chromium, cadmium, mercury, zinc, and arsenite in vitro: evidence of a thiol mechanism». Archives of Biochemistry and Biophysics, vol. 34, p. 356-362.

SIEH, M., A. Batzer, J. Schlessinger et A. Weiss. 1994. «GRB2 and phospholipase Cgamma 1 associate with a 36 - to 38 -kilodalton phosphotyrosine protein after T-cell receptor stimulation». Molecular and Cellular Biology, vol. 14, p. 4435-4442.

SMITH, J. B., S. D. Dwyer et L. Smith. 1989. «Cadmium evokes inositol polyphosphate formation and calcium mobilization. Evidence for a cell surface receptor that cadmium stimulates and zinc antagonizes». Journal of Biological Chemistry, vol. 264, p. 71157118.

SOLEO, L., A. Vacca, L. Vimercati, S. Bruno, M. Di Loreto, C. Zocchetti, R. Di Stefano, G. Candilio, G. Lasorsa, G. Franco et V. Foa. 1997. «Minimal immunological effects on workers with prolonged low exposure to inorganic mercury». Occupational and Environmental Medicine, vol. 54, p. 437-442.

STEFFAN, N. M., G. D. Bren, B. Frantz, M. J. Tocci, E. A. O'Neill et C. V. Paya. 1995. «Regulation of IkB alpha phosphorylation by PKC- and $\mathrm{Ca}(2+)$-dependent signal transduction pathways». Journal of Immunology, vol. 155, p. 4685-4691.

STOIAN, I., A. Oros et E. Moldoveanu. 1996. «Apoptosis and free radicals». Biochemical and Molecular Medicine, vol. 59, p. 93-97.

SU, B., E. Jacinto, M. Hibi, T. Kallunki, M. Karin et Y. Ben-Neriah. 1994. «JNK is involved in signal integration during costimulation of T lymphocytes». Cell, vol. 77, p. 727-736.

SUTOO, D., K. Akiyama et S. Imamiya. 1990. «A mechanism of cadmium poisoning: the cross effect of calcium and cadmium in the calmodulin-dependent system». Archives of Toxicology, vol. 64, p. 161-164.

SWAIN, S. L., L. M. Bradley, M. Croft, S. Tonkonogy, G. Atkins, A. D. Weinberg, D. D. Duncan, S. M. Hedrick, R. W. Dutton et G. Huston. 1991. «Helper T-cell subsets: phenotype, function and the role of lymphokines in regulating their development». Immunology Reviews, vol. 123, p. 115-144.

TANG, N. et M. D. Enger. 1993. «Cd(2+)-induced c-myc mRNA accumulation in NRK49 F cells is blocked by the protein kinase inhibitor H 7 but not by HA1004, indicating that protein kinase C is a mediator of the response». Toxicology, vol. 81, p. 155-164.

TARAKHOVSKY, A., M. Turner, S. Schaal, P. J. Mee, L. P. Duddy, K. Rajewsky et V. L. Tybulewicz. 1995. «Defective antigen receptor-mediated proliferation of B and T cells in the absence of Vav». Nature, vol. 374, p. 467-470.

THIESEN, H. J. AND C. Bach. 1991. «Transition metals modulate DNA-protein interactions of SP1 zinc finger domains with its cognate target site». Biochemistry and Biophysics Research Communications, vol. 176, p. 551-557.

THORNBERRY, N. A. 1999. «Caspases: a decade of death research». Cell Death and Differenciation, vol. 6, p. 1023-1027.

TORGERSON, T. R., A. D. Colosia, J. P. Donahue, Y. Z. Lin et J. Hawiger. 1998. «Regulation of NF-kappa B, AP-1, NFAT, and STAT1 nuclear import in T lymphocytes by noninvasive delivery of peptide carrying the nuclear localization sequence of NFkappa B p50». Journal of Immunology, vol. 161, p. 6084-6092.

TRATNER, I. et I. M. Verma. 1991. «Identification of a nuclear targeting sequence in the Fos protein. Oncogene, vol. 6, p. 2049-2053.

TSANGARIS, G. T. et F. Tzortzatou-Stathopoulou. 1998. «Cadmium induces apoptosis differentially on immune system cell lines». Toxicology, vol. 128, p. 143-150.

TUOSTO, L. et O. Acuto. 1998. «CD28 affects the earliest signaling events generated by TCR engagement». European Journal of Immunology, vol. 28, p. 2131-2142.

UMLAUF, S. W., B. Beverly, O. Lantz et R. H. Schwartz. 1995. «Regulation of interleukin 2 gene expression by CD28 costimulation in mouse T-cell clones: both nuclear and cytoplasmic RNAs are regulated with complex kinetics». Molecular and Cellular Biology, vol. 15, p. 3197-3205.

US. ENVIRONMENTAL PROTECTION AGENCY (U.S. EPA). 1989. «Supplement to the 1986 U.S. EPA air quality criteria for lead, vol.1». In Addendum U.S. EPA/600/889/049A. Washington: U.S. Environmental Protection Agency.

VAN VLIET, E., M. Uhrberg, C. Stein et E. Gleichmann. 1993. «MHC control of LL-4dependent enhancement of B cell Ia expression and Ig class switching in mice treated with mercuric chloride». Internstional Archives of Allergy and Immunology, vol. 101, p. 392-401.

VILLENEUVE, D. C., V. E. Valli, R. J. Norstrom, H. Freeman, G. B. Sanglang, L. RitterR et G. C. Becking. 1981. «Toxicological response of rats fed Lake Ontario or Pacific Coho salmon for 28 days». Journal of Environmental Science Health B, vol. 16, p. 649-689.

VIOLA, A., S. Schroeder, Y. Sakakibara et A. Lanzavecchia. 1999. « lymphocyte costimulation mediated by reorganization of membrane microdomains» Science, vol. 283, p. 680-682.

WAALKES, M. P., D. A. Fox, J. C. States, S. R. Patierno et M. J. McCabe Jr. 2000. «Metals and disorders of cell accumulation: modulation of apoptosis and cell proliferation». Toxicological Sciences, vol. 56, p. 255-261.

WAALKES, M. P., P. Infante et J. Huff. 1994. «The scientific fallacy of route specificity of carcinogenesis with particular reference to cadmium». Regul Toxicol Pharmacol, vol. 20, p. 119-121.

WAALKES, M. P. et G. Oberdorster. 1990. «Cadmium Carcinogenesis». In E. C. Foulkes (éd.). Biological effetcs of Heavy Metals, Vol. II. Floride: CRC Press.

WANG, Z. et D. M. Templeton. 1998. «Induction of c -fos proto-oncogene in mesangial cells by cadmium». Journal of Biological Chemistry, vol. 273, p. 73-79.

WARDENBURG, J. B., C. Fu, J. K. Jackman, H. Flotow, S. E. Wilkinson, D. H. Williams, R. Johnson, G. Kong, A. C. Chan et P. R. Findell. 1996. «Phosphorylation of SLP-76 by the ZAP-70 protein-tyrosine kinase is required for T-cell receptor function». Journal of Biological Chemistry, vol. 271, p. 19641-19644.

WARNER, G. L. et D. A. Lawrence. 1986. «Cell surface and cell cycle analysis of metalinduced murine T cell proliferation». European Journal of Immunology, vol. 16, p. 1337-1342.

WEIL, R., J. F. Cloutier, M. Fournel et A. Veillette. 1995. «Regulation of Zap-70 by Src family tyrosine protein kinases in an antigen-specific T-cell line». Journal of Biological Chemistry, vol. 270, p. 2791-2799.

WEISS, A. et D. R. Littman. 1994. «Signal transduction by lymphocyte antigen receptors». Cell, vol. 76, p. 263-274.

WHITEKUS, M. J., R. P. Santini, A. J. Rosenspire et M. J. McCabe Jr. 1999. «Protection against CD95-mediated apoptosis by inorganic mercury in Jurkat T cells». Journal of Immunology, vol. 162, p. 7162-7170.

WORLD HEALTH ORGANIZATION (WHO). 1990a. Environmental health criteria 101: Methylmercury, No.42. Geneva: World Health Organization.

WORLD HEALTH ORGANIZATION (WHO). 1990b. Environmental health criteria 101: Methylmercury, No.48. Geneva: World Health Organization.

WILLIAMS, D. H., M. WOODROW, D. A. CANTRELL, AND E. J. MURRAY. 1995. Protein kinase \mathbf{C} is not a downstream effector of p21ras in activated T cells. Eur J Immunol 25: 42-7.

WISDOM, R. 1999. «AP-1: one switch for many signals». Exp Cell Res, vol. 253, p. 180-185.

WISDON, R. et I. M. Verma. 1993. «Transformation by Fos proteins requires a Cterminal transactivation domain». Molecular and Cellular Biology, vol. 13, p. 7429-7438.

WOLFE, J. T., D. Ross et G. M. Cohen. 1994. «A role for metals and free radicals in the induction of apoptosis in thymocytes». FEBS Letters, vol. 352, p. 58-62.

WU, J., S. Katzav et A. Weiss. 1995.«A functional T-cell receptor signaling pathway is required for p95vav activity». Molecular and Cellular Biology, vol. 15, p. 4337-4346.

WYLLIE, A. H. 1980. «Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation». Nature 284, p. 555-556.

XANTHOUDAKIS, S., J. P. Viola, K. T. Shaw, C. Luo, J. D. Wallace, P. T. Bozza, D. C. Luk, T. Curran et A. Rao. 1996. «An enhanced immune response in mice lacking the transcription factor NFAT1». Science, vol. 272, p. 892-895.

YABLONSKI, D., M. R. Kuhne, T. Kadlecek et A. Weiss. 1998. «Uncoupling of nonreceptor tyrosine kinases from PLC-gammal in an SLP-76- deficient T cell». Science, vol. 281, p. 413-416.

YAMAKAWA, H., Y. Ito, T. Naganawa, Y. Banno, S. Nakashima, S. Yoshimura, M. Sawada, Y. Nishimura, Y. Nozawa et N. Sakai. 2000. «Activation of caspase-9 and -3 during H2O2-induced apoptosis of PC12 cells independent of ceramide formation». Neurological Research, vol. 22, p. 556-564.

ZELIKOFF, J. T., R. Smialowicz, P. E. Bigazzi, R. A. Goyer, D. A. Lawrence, H. I. MAIBACH, AND D. GARDNER. 1994. «Immunomodulation by metals». Fundamental and Applied Toxicology, vol. 22, p. 1-7.

ZHANG, L. et G. J. Nabel. 1994. «Positive and negative regulation of IL-2 gene expression: role of multiple regulatory sites». Cytokine, vol. 6, p. 221-8.

ZHANG, R., F. W. Alt, L. Davidson, S. H. Orkin et W. Swat. 1995. «Defective signalling through the T - and B-cell antigen receptors in lymphoid cells lacking the vav protooncogene». Nature, vol. 374, p. 470-473.

