Université du Québec Institut national de la recherche scientifique Eau, Terre et Environnement

MODÉLISATION HYDROGÉOLOGIQUE POUR SUPPORTER LA GESTION DU SYSTÈME AQUIFÈRE DE LA RÉGION DE VILLE-MERCIER

Par

Olivier Pontlevoy

Mémoire présenté Pour l'obtention Du grade de Maître ès sciences (M.Sc.)

Jury d'évaluation

Examinateur externe

Examinateur interne

Codirecteur de recherche

Codirecteur de recherche

Directeur de recherche

John Molson, Ph.D. École Polytechnique

Claudio Paniconi, Ph.D. INRS, centre ETE

René Therrien, Ph.D. Université Laval

Richard Martel, Ph.D. INRS centre ETE

René Lefebvre, Ph.D. INRS centre ETE

Mai 2004

© droits réservés de Olivier Pontlevoy, 2004

RÉSUMÉ

Le cas de contamination des aquifères granulaires et de roc fracturé de Ville-Mercier par des liquides organiques immiscibles denses et des composés dissous dans l'eau souterraine existe depuis maintenant près de 30 ans. Pour contrôler la contamination de l'aquifère, le ministère de l'Environnement du Québec a mis en place un système de pompage et traitement des eaux contaminées et a délimité une zone à l'intérieure de laquelle le pompage est interdit. Cependant, la région entourant Ville-Mercier a développé une très forte activité maraîchère avec des besoins en eau croissants qui nécessitent une gestion de l'aquifère pour le protéger.

Un modèle numérique régional 2D d'écoulement de l'eau souterraine a donc été développé afin de simuler le comportement de la nappe dans les conditions actuelles et hypothétiques pour soutenir la définition de règles d'exploitation de l'aquifère. Le modèle produit est cohérent par rapport aux observations faites sur le terrain et a été utilisé dans des conditions de régime permanent et transitoire. Les simulations ont apporté une meilleure compréhension de l'hydraulique régionale, elles ont permis d'estimer les aires d'alimentation des principaux puits municipaux, et d'estimer la sensibilité de l'aquifère à des variations éventuelles de la recharge. Sur la base de ces résultats, nous recommandons l'établissement dans la région de zones bien délimitées avec des contraintes d'exploitation spécifiques. Un guide d'exploitation a aussi été proposé comme outil de gestion de l'aquifère.

Le système de pompage et traitement actuellement en place au site des anciennes lagunes de Ville-Mercier arrive en fin de vie. Pour choisir la technologie de remplacement la plus adaptée au site, un modèle d'écoulement 3D multicouche représentant le détail de l'écoulement de l'eau souterraine dans le secteur des anciennes lagunes a été développé. Ce modèle représente à la fois l'écoulement dans l'aquifère fluvio-glaciaire de sable et gravier et dans l'aquifère de roc régional. Ces aquifères sont mis en contact par des fenêtres dans les couches de till les séparant et une attention particulière a été apportée au

i

niveau de ces fenêtres lors du calage du modèle. Les résultats obtenus sont satisfaisants par rapport à l'écoulement souterrain à la fois dans les dépôts meubles et dans le roc, et les échanges hydrauliques entre les deux aquifères sont bien représentés. Il semble aussi que les fenêtres dans le till qui ont été observées lors des forages aient un effet hydraulique plus important que ce qui a été estimé par les travaux antérieurs. Les simulations réalisées ont montré que le pompage exercé par les puits du Ministère avait inversé le sens d'écoulement entre ces deux aquifères et que son contrôle sur la migration des contaminants était efficace.

Étudiant

Directeur de recherche

ABSTRACT

The contamination of a granular as well as a fractured bedrock aquifer by DNAPL and dissolved contaminants at Ville-Mercier started 30 years ago. The Quebec Environment Ministry controlled this problem by implementing a pump-and-treat system designed to intercept the dissolved contaminant plume, and by defining a controlled area within which groundwater pumping is prohibited. The area surrounding Ville-Mercier, within and outside the controlled zone, is a very active agricultural area dedicated mostly to growing vegetables and groundwater is needed to support this expanding industry. The regional fractured bedrock aquifer in the area is thus increasingly used and groundwater management is required to protect it.

A 2D regional flow model was developed to simulate the behaviour of the flow system under present-day and alternative withdrawal regimes. This model was used to support the definition of a set of aquifer management guidelines. This model is consistent with field observations and has been used under transient and steady state flow conditions. A better understanding of the hydrogeological system, the estimation of the aquifer sensibility to recharge changes and an estimation of main municipal wells contribution areas were achieved by different simulations. On the basis of those results, we recommend groundwater exploitation zones with specific groundwater use constraints. A groundwater exploitation guide is also proposed as an aquifer management tool.

The pump and treat system presently in use at the former Ville-Mercier lagoons is becoming obsolete. In order to choose a better adapted technology to replace this system, a multi-layer 3D model representing water flow at the contaminated site in detail was developed. The model considers both groundwater flow in the sand and gravel fluvioglacial deposit and regional groundwater flow in fractured rock. The sand and gravel unit is directly in contact locally with the underlying bedrock aquifer through windows in the layer of till overlying the bedrock, so we focused our attention on these windows during the calibration tests. Simulated water flow obtained from this model in comparison with observed groundwater flow in both rock and sand and gravel aquifers is representative and hydraulic exchanges between those 2 aquifers are well characterized. The model has shown that windows in the till seem to have more effect than observed previously, and that the pump and treat withdrawal in this area has reversed the vertical water flow through till windows. This system is seen to be successful for contaminant plume control.

REMERCIEMENTS

À tout seigneur tout honneur, je tiens à remercier en premier lieu mon directeur de recherche, René Lefebvre auprès de qui j'ai énormément appris. Je souhaite à tout étudiant de tomber sur un directeur de son calibre, humain, ouvert et une source de connaissance intarissable. J'aimerais remercier mes co-directeurs de recherche, René Therrien et Richard Martel pour leurs conseils avisés, et leur disponibilité.

J'aimerais aussi remercier Charles Lamontagne du ministère de l'Environnement avec qui j'ai travaillé sur ce projet et avec qui j'ai eu des discussions très intéressantes ainsi que Michel Ouellet. Les personnes extérieures comme Francine Lagacé ne seront pas oubliées. Merci à l'INRS et au ministère de l'Environnement pour leur soutien financier.

Merci à mes parents qui m'ont toujours soutenu dans mes choix et qui m'ont permis d'arriver là ou j'en suis actuellement (même si ça a été un peu long...).

Enfin je tiens à remercier mes amis qui auront constitué ma famille d'adoption au cours de ces deux années passées au Québec, très belle place pour étudier et profiter de la vie : les 5 à 7, la bière, et l'hiver (une très belle saison quoi qu'on en dise). Je finirais par la dernière mais non la moindre, ma blonde Anne-Laure, merci pour ton soutien et tous ces moments de bonheur.

Merci à tous.

TABLE DES MATIÈRES

Résuméi
Remerciementsv
Table des Matièresvii
Liste des figuresix
Liste des tableauxxi
Liste des annexes xi
CHAPITRE 1 INTRODUCTION
1.1. Localisation1
1.2. Historique de la contamination
1.3. Problématique
1.4. Buts et objectifs
1.5. Méthodologie
1.5.1. Compilation des données existantes
1.5.2. Intégration et analyse des données
1.5.3. Modélisation numérique
CHAPITRE 2 CARACTÉRISATION HYDROLOGIQUE ET GÉOLOGIQUE DE LA RÉGION D'ÉTUDE
2.1. Hydrologie
2.2. Utilisation de l'eau souterraine
2.3. Estimation de la recharge11
2.4. Géologie régionale
2.4.1. Géologie du roc 12
2.4.2. Géologie des dépôts meubles
2.4.2.1. Les tills
2.4.2.2. Les sables et graviers
2.4.2.3. Les argiles
2.4.3. Estimation des épaisseurs des couches
2.5. Hydrogéologie
2.5.1 Caractéristiques hydrogéologiques du roc
2.5.2. Caractéristiques hydrogéologiques des dépôts meubles
2.5.2. Conductoristiques ny drogeologiques des depois inclueirs 20
2522 Les sables et graviers 20
2.5.2.2.2 Les satisfies d'étaiters
2.5.2.5. Écoulement des eaux souterraines
2 6 L'imites de la région d'étude 26
CHAPITRE 3 MODÈLE RÉGIONAL
2.1 Choix du logiciel 29

 3.2. Conditions aux limites	30 31 32 33 34 38 40
CHAPITRE 4 SIMULATIONS ET RÈGLES D'EXPLOITATION	. 43
 4.1. Impact du pompage au niveau régional	43 46 47 50 52 52 53 53 53
CHAPITRE 5 MODÈLE LOCAL	. 57
 5.1. Logiciel utilisé	57 58 60 62 62 62 64 68 68 68 68 78 80 82 83 83 84
CHAPITRE 6 CONCLUSIONS ET RECOMMANDATIONS	. 87
 6.1. État de la situation 6.2. Gestion de l'eau souterraine dans la région de Ville-Mercier 6.3. Questions encore à résoudre et données requises 	. 87 . 91 . 92
REFERENCES	95

LISTE DES FIGURES

Figure 1.1 : Carte de localisation
Figure 2.1: Carte de la répartition des puits agricoles et municipaux 10
Figure 2.2 : Carte de la topographie du roc
Figure 2.3 : Carte d'épaisseur des dépôts meubles 15
Figure 2.4 : Coupes stratigraphiques
Figure 2.5 : Délimitation des zones confinées et non confinées de l'aquifère au roc 17
Figure 2.6 : Carte piézométrique régionale dans le roc
Figure 2.7 : Comparaison des débits de la rivière Châteauguay avec les données
piézométriques du puits 03097094
Figure 2.8 : Essais de pompage à Ste-Martine réalisés par Technorem (1998)
Figure 2.9 : Carte de la piézométrie locale du roc
Figure 2.10 : Carte de la piézométrie des dépôts meubles
Figure 2.11 : Carte représentant les principales structures géologiques et les dépôts
meubles
Figure 3.1 : Conditions aux limites
Figure 3.2 : Carte représentant les principales structures géologiques et les zones de
transmissivité
Figure 3.3 : Charges simulées versus charges observées
Figure 3.4 : Carte piézométrique simulée, puits et zones de transmissivités
Figure 3.5 : Sensibilité du modèle à une variation de la recharge ou de la transmissivité 39
Figure 4.1 : Rabattement généré par un pompage agricole de 4 mois et un pompage
municipal de 15 mois
Figure 4.2 : Aire d'alimentation des puits municipaux et gouvernementaux
Figure 4.3 : Migration des particules à partir des puits contaminés après 10 ans
Figure 4.4 : Migration des particules à partir des puits contaminés après 20 ans
Figure 4.5 : Migration des particules à partir des puits contaminés après 30 ans
Figure 4.6 : Traçage de particules à partir de la zone d'exclusion définie par le MENV. 50
Figure 4.7 : Comparaison des rabattements pour une simulation dans les conditions
actuelles et pour une simulation avec une baisse de 20% de sa recharge
Figure 4.8 : Zones de réglementation
Figure 5.1: Carte de la piézométrie simulée dans le roc
Figure 5.2 : Limites du modèle local et puits d'observations
Figure 5.3 : Comparaison des élévations des niveaux d'eau avant 1984
Figure 5.4: Maillage 2D de la zone de modélisation
Figure 5.5 : Modèle géologique en 3 dimensions
Figure 5.6 : Divisions en sous couches des différentes unités dans le modèle 3D 64
Figure 5.7 : Conditions imposées aux limites
Figure 5.9 : Charges simulées comparées aux charges observées (avec pompage)
Figure 5.10. : Charges simulées comparées aux charges observées dans les dépôts
meubles (sans pompage)72
Figure 5.11 : Piézométrie simulée dans le roc sans pompage
Figure 5.12 : Comparaison des piézométries simulées et observées dans le roc avec
pompage

Figure 5.13 : Comparaison de la piézométrie observée et de la piézométrie simulée dans	5
les sables et graviers (avec pompage)	75
Figure 5.14 : Étude de sensibilité du modèle à une variation de différents paramètres	77
Figure 5.15 : Saturations simulées en plan	78
Figure 5.16 : Saturations simulées en coupe	79
Figure 5.17 : Direction et vitesse verticale d'écoulement résultant de la simulation	81
Figure 5.18 : Aire d'alimentation des puits du MENV dans les dépôts meubles	82
Figure 5.19 : Aire d'alimentation des puits du MENV dans le roc	83
Figure 5.20 : Simulation de l'évolution du panache de contaminants au cours du temps	86

LISTE DES TABLEAUX

Tableau 2.1 : Utilisation de l'eau souterraine sur un territoire de 246 km ²	9
Tableau 2.2 : Caractéristiques des puits au site des anciennes lagunes	10
Tableau 2.3 : Compilation des propriétés hydrogéologiques du roc	18
Tableau 2.4 : Propriétés hydrogéologiques des dépôts meubles	21
Tableau 3.1 : Valeurs initiales de recharge supposées pour chaque unité	33
Tableau 3.2 : Propriétés hydrologiques du roc pour le modèle calé	36
Tableau 3.3 : Valeurs calées pour la recharge	37
Tableau 4.1 : Principaux événements du modèle transitoire	44
Tableau 4.2 : Règles à suivre pour l'implantation de nouveaux puits	54
Tableau 5.1 : Conditions aux limites	65
Tableau 5.2 : Paramètres hydrogéologiques et capillaires appliqués aux différentes zo	nes
du modèle 3D	67
Tableau 5.3 : Recharge appliquée aux différentes unités	68
Tableau 5.4 : Conditions aux limites après calage (avec et sans pompage)	70
Tableau 5.5 : Recharge appliquée après calage (avec et sans pompage)	70
Tableau 5.6 : Paramètres hydrogéologiques appliqués à chaque unité après calage	73

LISTE DES ANNEXES

Annexe A : Puits de pompage sur la région de Ville-Mercier

Annexe B : Débits de la rivière Châteauguay

Annexe C : Données stratigraphiques régionales et locales

Annexe D : Données piézométriques régionales et locales

Annexe E : Hydrogrammes de puits au roc

Annexe F : Article publié à l'AIH, 2002

xii

CHAPITRE 1 INTRODUCTION

Dans la vie, rien n'est à craindre, tout est à comprendre.

Marie Curie

e chapitre présente la localisation et une description sommaire de la région d'étude ainsi qu'une brève revue sur l'histoire de la contamination de Ville-Mercier. Il servira aussi à présenter la problématique liée au site, les objectifs visés par le projet et la méthodologie retenue.

1.1. Localisation

La région à l'étude se situe dans les Basses Terres du Saint-Laurent, au sud sud-ouest de Montréal dans le comté de Châteauguay (Figure 1.1). Le territoire est bordé par le fleuve Saint-Laurent au nord, la rivière Châteauguay à l'ouest, la rivière des Anglais et le ruisseau Norton au sud. Les principales municipalités de la région sont Châteauguay, Ville-Mercier, Sainte-Martine, Sainte-Chlotilde, Saint-Isidore et Saint-Rémi.

1.2. Historique de la contamination

À partir de 1968, la compagnie LaSalle Oil Carriers commençait à entreposer des liquides organiques dans une ancienne gravière située dans des lagunes au sud-est de Ville-Mercier. Ces liquides organiques étaient directement déversés dans les sables et graviers qui affleurent à cet endroit sous la forme d'un complexe fluvio-glaciaire. Environ 2 ans plus tard, les puits privés situés au sud-ouest du site d'entreposage étaient sérieusement contaminés par des organiques. L'origine de cette contamination provient de la migration des liquides organiques et du panache de contaminants dissous, émis par les lagunes d'entreposage, qui s'est faite localement par l'intermédiaire de fenêtres dans le till recouvrant le roc. Pour éviter la migration des contaminants de l'aquifère, le ministère de l'Environnement (MENV) a délimité une zone d'exclusion dans laquelle tout pompage est interdit et a mis en place en 1984 un système de pompage et traitement afin d'intercepter le panache de contaminants.

1.3. Problématique

Au niveau régional, les activités agricoles de la région de Ville-Mercier sont en pleine expansion et les maraîchers ont des besoins en eau croissant. Les rabattements générés par les puits agricoles sont importants et des conflits d'usage entre propriétaires de puits ont déjà été signalés. De plus, pour des puits situés trop près de la zone d'exclusion, des rabattements trop importants pourraient interférer avec le piège hydraulique en place et favoriser une contamination de la nappe à l'échelle régionale. Tous ces problèmes nécessitent donc la mise en place de règles de gestion et d'exploitation de l'aquifère à long terme.

À l'échelle locale, le système de pompage et traitement qui contrôle le panache d'eau contaminée arrive en fin de vie et il faut penser à le remplacer. Dans cette optique, il est nécessaire de développer des outils qui pourront aider dans le choix de la ou des technologies de remplacement mais aussi dans le choix de leur futur emplacement.

3

1.4. Buts et objectifs

Les objectifs visés par ce travail peuvent être séparés en deux parties. La première partie du mémoire correspond à l'approche régionale du problème dont le but est de produire des outils qui aideront à gérer l'exploitation des ressources en eau souterraine à l'intérieur et en périphérie de la zone réglementée. Cette gestion devrait assurer l'approvisionnement en eau souterraine tout en évitant les surexploitations locales et régionales. Elle devrait aussi empêcher la contamination de cette ressource à partir du site des anciennes lagunes de Ville-Mercier. La deuxième partie de ce mémoire correspond à l'approche locale du problème dont le but est de développer un outil qui servira de support dans le choix de la ou des technologies de remplacement du système de pompage et traitement actuellement en place. Cet outil devrait permettre de quantifier l'écoulement au site des anciennes lagunes mais aussi de préciser l'interaction hydraulique qui existe entre les unités de sable et gravier et de roc.

1.5. Méthodologie

La même méthodologie a été appliquée à la partie traitant de la problématique régionale et à la partie traitant de la problématique locale. En effet, dans les deux cas, il s'agissait de permettre une meilleure compréhension des paramètres hydrogéologiques qui régissent l'écoulement des eaux souterraines. Des modèles numériques différents, adaptés aux problématiques régionales et locales, ont cependant été utilisés pour aborder les deux problématiques. Les principales étapes suivies au cours de ce travail sont présentées cidessous.

1.5.1. Compilation des données existantes

Depuis 30 ans, le site de Ville-Mercier a fait l'objet de nombreuses études qui ont apporté énormément d'informations. Ces informations nous ont été fournies par le ministère de l'Environnement et comprennent les puits compilés de la banque des puisatiers, les études de firmes de génie-conseil réalisées dans le secteur d'étude, les données météorologiques, les données du réseau de suivi piézométrique et de la qualité de l'eau souterraine du ministère de l'Environnement, l'usage de l'eau souterraine dans la région d'étude, et les suivis de la nappe au niveau régional et local.

1.5.2. Intégration et analyse des données

Toutes les données citées ci-dessus ont été utilisées pour produire des cartes à l'échelle régionale et à l'échelle locale, de la piézométrie, de l'épaisseur apparente des matériaux granulaires, de la topographie du roc et de l'utilisation de l'eau sur la zone d'étude. Au niveau régional, ces cartes en combinaison avec les cartes topographiques, géologiques et hydrologiques de la région nous ont permis de définir les limites hydrogéologiques de la zone d'étude. Une révision des travaux antérieurs nous a amené à synthétiser toutes les données hydrogéologiques des différents matériaux géologiques présents sur le site et à faire notre propre évaluation de la recharge. Au niveau local, la compilation des forages sur le site des anciennes lagunes nous a permis de créer un modèle géologique en 3 dimensions dont les limites hydrogéologiques ont été tracées à partir du modèle régional et des cartes piézométriques locales.

1.5.3. Modélisation numérique

Deux modèles numériques ont été développés dans le cadre de ce travail : un modèle de l'écoulement régional dans le roc en conditions saturées et un modèle de l'écoulement local dans le roc et dans les dépôts meubles en conditions non saturées au site des anciennes lagunes de Ville-Mercier. Dans les deux cas, la même approche a été suivie : définition d'un modèle conceptuel, délimitation du secteur à modéliser, utilisation de la compilation des propriétés hydrogéologiques des matériaux, utilisation des cartes hydrogéologiques pour servir de condition initiale au calage, discrétisation du domaine à modéliser, calage du modèle et évaluation de sa sensibilité par des simulations paramétriques.

CHAPITRE 2 CARACTÉRISATION HYDROLOGIQUE ET GÉOLOGIQUE DE LA RÉGION D'ÉTUDE

Estimer correctement son degré d'ignorance est une étape saine et nécessaire.

Hubert Reeves

Description de la région d'étude. Une première estimation de la recharge est proposée ainsi qu'une évaluation des épaisseurs des matériaux granulaires faite à partir de la banque des puisatiers. Un bilan de l'utilisation de l'eau souterraine a été dressé et les propriétés hydrogéologiques des matériaux géologiques présents sur la région d'étude ont été compilées dans ce chapitre.

2.1. Hydrologie

Tòth (1963) a montré qu'il existait trois types distincts de systèmes d'écoulement pouvant être imbriqués les uns dans les autres, il s'agit des systèmes d'écoulement locaux, intermédiaires et régionaux. Les systèmes d'écoulement locaux sont caractérisés par des topographies prononcées et des aires de décharge proche et de type rivière ou lac. Les systèmes d'écoulement régionaux couvrent une plus grande superficie et ont des aires de décharge de type grande rivière, fleuve, grands lacs ou océans. Ce qui différencie les systèmes d'écoulement intermédiaires des systèmes d'écoulement régionaux c'est que les hauts et les bas topographiques maximum ne sont pas inclus dans les systèmes d'écoulement intermédiaires. Mais ces deux systèmes affichent des topographies relativement planes et régulières. La région de Ville-Mercier s'apparente plutôt à un système d'écoulement intermédiaire. Le réseau hydrographique de la région est bien développé mais coule essentiellement sur l'argile et sert en grande partie à l'irrigation des terres cultivées. Les rivières principales sont la rivière Châteauguay et la rivière Esturgeon qui sont par endroit en contact avec le roc. Le débit à l'étiage de la rivière Esturgeon a été mesuré par D'Anjou (1991) et il était de 8640 m³/d. Il faut cependant noter que l'usine de traitement des eaux contaminées du MENV (UTES) renvoie l'eau traitée dans la rivière Esturgeon, soit un débit supplémentaire de 4000 m^3/d (Direction régionale de la Montérégie, communication personnelle). Le débit réel naturel de la rivière serait donc de 4640 m^3/d .

Les précipitations annuelles sont de 900 mm pour Ville-Mercier, 1060 mm pour Mirabel, 2042 mm pour Farnham, 1680 mm pour Dorval et de 1892 mm pour Ste-Martine. Ceci constitue une moyenne des précipitations annuelles sur la région de 1262 mm.

2.2. Utilisation de l'eau souterraine

L'utilisation de l'eau souterraine sur la région d'étude peut être divisée en deux catégories (Tableau 2.1). La première catégorie comprend les municipalités de Ste-Martine, St-Rémi, et St-Isidore qui pour alimenter les populations pompent l'eau souterraine avec un rendement et des débits annuels élevés. La deuxième catégorie comprend les exploitations agricoles qui pompent l'eau pendant les 4 mois estivaux avec des débits très variables (de très faibles à très élevés) essentiellement pour irriguer les cultures.

Type de puits	Localité	Débits (m ³ /d)	Lame d'eau (mm/an)
Puits municipaux et industriels (en usage à l'année)	Ste-Martine	810*	1,2
	St-Rémi	3581	5,3
	St-Isidore	1100*	1,6
	UTES	100*	0,15
	Laidlaw	260	0,38
Puits agricoles	Irrigation	2343,7	1,1
(en usage 4 mois)	Autres usages	10819	5,2
		Total	14,9

Tableau 2.1 : Utilisation de l'eau souterraine sur un territoire de 246 km²

* : débits estimé provenant du roc

✤ : Puits pas encore en opération

La Figure 2.1 montre la répartition et les débits des puits pour les deux catégories à partir des données fournies par le ministère de l'Agriculture des Pêches et de l'alimentation du Québec (MAPAQ) et présentées en Annexe A (Lamontagne, 2000, communication personnelle). Les débits agricoles représentés sur cette carte sont les débits maximums annuels estimés par le MAPAQ mais qui ont été reportés sur les 4 mois estivaux. Les zones à plus fort pompage sont situées dans l'est et le nord-est de la région d'étude. L'impact de ces pompages sur les niveaux piézométriques est diminué par le fait que la majorité de ces puits sont situés dans les zones de recharge de l'aquifère. Au niveau local (voir Chapitre 5), la zone d'étude couvre en grande partie la zone d'exclusion définie par le ministère de l'Environnement au site des anciennes lagunes (Annexe II du Règlement sur le captage des eaux souterraines, juin 2002). Seuls quatre puits sont en exploitation dans cette zone : les 3 puits de l'usine de traitement des eaux souterraines (UTES) du MENV et le puits de l'incinérateur Laidlaw. Les caractéristiques des puits ainsi que leurs débits sont présentés au Tableau 2.2. Ces quatre puits sont forés dans le roc et le puits Laidlaw fonctionne en continu tandis que les puits du MENV fonctionnent par alternance, c'est-à-dire que seuls deux puits sur trois sont toujours en opération (Direction Régionale de la Montérégie, communication personnelle).

Figure 2.1: Carte de la répartition des puits agricoles et municipaux et de l'utilisation maximale de l'eau sur la région d'étude à des fins agricoles (d'après les données du MAPAQ, 2001)

Tableau 2.2 :	Caracteristiques	des puits	au site des	anciennes i	agunes

	Puits	UTM X	UTM Y	Débit (m ³ /s)	Élévation sommet crépine (m)	Base crépine (m)
	P-111	599331,188	5015273,5	0,0225	20,92	8,37
UTES	P-112	599296,125	5015277	0,0225	21,03	8,53
	P-113	599254,063	5015281	0,0225	20,83	8,63
Laidlaw	PO-87-01	599470,21	5015665,2	_0,003	16,28	7

2.3. Estimation de la recharge

Deux méthodes ont été utilisées pour estimer la recharge de l'aquifère à partir des débits de la rivière Châteauguay (Annexe B). Ces estimations seront précisées par la modélisation dans le Chapitre 4. Une première estimation de la recharge à partir de la méthode employée par Freeze (1965) a donc été réalisée. La recharge de l'aquifère au roc a été estimée à partir des données météorologiques de la région de Châteauguay et des débits journaliers de la rivière du même nom fournis par le ministère de l'Environnement du Québec.

L'estimation est faite que le débit de la rivière Châteauguay à l'étiage correspond à l'apport en eau de la nappe. La moyenne mensuelle des débits en période d'étiage sur 29 ans, soit de 1971 à 2000, montre que la contribution en eau de la nappe est de 7,32 m³/s. Cette valeur est la moyenne des débits les plus faibles observés sur chaque année durant la période d'étiage. En divisant par la superficie du bassin de la rivière, soit 2490 km², la lame d'eau équivalente perdue par la nappe en m/an est :

$$\frac{7.32 [m^3/s] \times 3600 [s/h] \times 24 [h/d] \times 365 [d/an]}{2490 \times 10^6 [m^2]} = 0,0927 [m/an]$$

La décharge naturelle de la nappe en lame d'eau équivalente est donc de l'ordre de 92,7 mm/an. La loi de la conservation de masse implique que cette perte correspond aussi à la recharge de l'aquifère en régime permanent. Les précipitations annuelles de la région sont en moyenne de 1262 mm. Ainsi, il ressort que 7,3 % des précipitations annuelles serviraient à la recharge. Cette valeur est du même ordre de grandeur que celles obtenues dans les études précédentes qui estimaient le volume de la recharge entre 15% (Freeze, 1965) et 5% (Hamel, 2001) des précipitations totales annuelles dans un contexte similaire.

Une deuxième méthode basée sur la séparation des hydrogrammes de rivières (Chapman, 1999) pour estimer le flux de base journalier apporté par les eaux souterraines a été

utilisée. Les mêmes données ont été utilisées mais les résultats de cette méthode estiment la décharge, et donc la recharge, des eaux souterraines à environ 221 mm/an. Cette valeur est très élevée par rapport aux études précédentes qui ont été réalisées et qui estimaient la recharge à environ 100 mm/an. Ceci peut provenir d'une sous estimation du ruissellement et donc une surestimation de la recharge. De plus cette méthode peut être biaisée par l'emmagasinement de l'eau dans les berges de la rivière.

2.4. Géologie régionale

De nombreuses études ont été menées pour décrire la géologie de la région. La description du socle rocheux est tirée de l'étude de Globensky (1986), du mémoire de maîtrise de Denis (1991) et du rapport du GREGI (1993) tandis que la description des dépôts meubles est tirée de Lasalle (1981), Dion et al. (1985-1986) et de McCormack (1981).

2.4.1. Géologie du roc

Le socle est constitué par des roches sédimentaires d'âge Cambrien à Ordovicien (500 à 430 millions d'années). Les roches du Cambrien sont représentées par les grès du groupe de Potsdam tandis que les grès, dolomies et shales du groupe de Beekmantown représentent les roches datant de l'Ordovicien. Ces formations ont subi une légère déformation structurale lors de l'orogenèse taconienne qui se résume par des failles et joints, et par des synclinaux et anticlinaux de grande amplitude. Les fractures à pendage sub-vertical peuvent être divisées en deux familles. La première famille, de moindre importance, est orientée N030E et présente des espacements de joints variant de 0,1 m à 0,45 m tandis que la seconde famille, plus importante, est orientée N120E avec des espacements de joints variant de 0,1 m à 1,0 m. Trois axes de plis traversent de part et d'autre la zone d'étude. Ce sont les synclinaux de Ste-Martine et de Candiac et l'anticlinal d'Aubrey (Figure 2.11). Les couches sédimentaires affectées par ces déformations présentent de faibles pendages avec des angles jamais supérieurs à 10 degrés. Il existe quelques affleurements rocheux dans la région étudiée, notamment au

niveau de Ste-Martine et dans la rivière Châteauguay. La Figure 2.2 représente l'élévation de la surface du roc estimée à partir des données fournies par la banque des Puisatiers dont les puits sélectionnés sont décrits en Annexe C.

Figure 2.2 : Carte de la topographie du roc

2.4.2. Géologie des dépôts meubles

Après la longue période d'érosion glaciaire du Wisconsinien donnant son aspect très accidenté à la surface du socle, les dépôts meubles datant du Pléistocène recouvrent le roc. Les premiers à se déposer sur le socle rocheux sont le till basal et le till remanié, puis

les sables et graviers d'origine fluvio-glaciaires, et enfin les argiles résultant de la transgression marine à l'origine de la mer de Champlain.

2.4.2.1. Les tills

Le socle est recouvert par le till basal, c'est un matériel très compact, dense et peu perméable, il est le résultat de l'érosion de la roche par les glaciers. Au-dessus du till basal, on retrouve par endroit un till remanié moins compact et plus perméable (Parent, 2000, communication personnelle) qui serait un till d'ablation déposé lors de la fonte d'une glace mince. Ces deux tills présentent localement des fenêtres qui mettent en contact directement le roc avec l'unité de sable et gravier (CNFS, 1993). Il semblerait que ces fenêtres ne soient présentes qu'au niveau du complexe fluvio-glaciaire (voir Section 2.3.3).

2.4.2.2. Les sables et graviers

Ce sont des dépôts fluvio-glaciaires qui se sont déposés aux embouchures des rivières créées par la fonte et le recul glaciaire. Ces dépôts sont très perméables et on en retrouve une partie affleurant au niveau de Ville-Mercier sous la forme d'un complexe fluvio-glaciaire de plus de 11km de long.

2.4.2.3. Les argiles

Suite à la période de déglaciation, la transgression de la mer de Champlain favorise le recouvrement des dépôts glaciaires par des argiles. Elles recouvrent une bonne partie de la région et sont considérées comme des matériaux imperméables, bien que au niveau de la surface, les deux premiers mètres plutôt silto-sableux soient plus perméables.

2.4.3. Estimation des épaisseurs des couches

Les cartes d'épaisseur granulaire générées à partir des données de la banque des puisatiers montraient des zones où le roc était en contact avec les sables et graviers sur une grande surface entre Ville-Mercier et Ste-Martine, au sud des anciennes lagunes. Des coupes géologiques ont donc été réalisées à partir des descriptions stratigraphiques très détaillées, enregistrées lors de l'installation des piézomètres. Ces coupes montrent que souvent le till a été associé aux sables et graviers ou à l'argile dans les descriptions faites par les puisatiers. En fait, il semblerait que la couche de till soit présente sur toute la région d'étude entre l'unité de sable et gravier et l'unité rocheuse, exceptée au niveau du complexe fluvio-glaciaire, avec une épaisseur moyenne de 2 m. Les cartes d'épaisseur granulaire générées ne sont donc pas représentatives du contexte géologique et le roc peut être considéré comme confiné sur toute la région. La Figure 2.3 montre l'épaisseur des dépôts meubles sur la région d'étude et la localisation des coupes présentées à la Figure 2.4.

Figure 2.3 : Carte d'épaisseur des dépôts meubles et localisation des coupes stratigraphiques

Figure 2.4 : Coupes stratigraphiques

2.5. Hydrogéologie

La Figure 2.5 est le résultat de la comparaison entre l'élévation des niveaux piézométriques (Lamontagne, 2000, communication personnelle) de l'aquifère dans le roc et l'épaisseur des argiles. Chaque fois que le niveau piézométrique était inférieur à l'élévation du sommet du roc, la nappe était considérée libre et la zone était contourée. Ensuite, ces résultats ont été projetés sur la carte d'épaisseur apparente des argiles obtenue à partir des données des puisatiers. Dès que l'argile avait une épaisseur supérieure à 2 m, la nappe était considérée captive. Le résultat de cette comparaison montre que 95% de la région étudiée est recouverte par plus de 2 m d'argile ce qui permet de considérer l'aquifère de roc comme étant un aquifère confiné.

2.5.1. Caractéristiques hydrogéologiques du roc

Les études hydrogéologiques précédentes (Hydrogeo Canada, 1981; Poulin, 1977) estimaient que seuls les trois premiers mètres du roc étaient très fracturés et constituaient un bon aquifère. Des débits supérieurs à 5,5 m³/h étaient d'ailleurs obtenus par McCormack (1981). Mais des travaux récents menés par Denis (1991) et le CNFS (1993) montrent que le roc présente une très bonne perméabilité à plus de 20 m de profondeur. De nombreuses études ont été menées pour caractériser les propriétés hydrogéologiques du roc. Les principaux paramètres comme la transmissivité (*T*), la conductivité hydraulique (*K*), la porosité (*n*) et le coefficient d'emmagasinement (*S*) sont résumés dans le Tableau 2.3. La transmissivité moyenne sur l'ensemble de la région étudiée est estimée à $1,2x10^{-3}$ m²/s, la conductivité hydraulique moyenne est de $2,23x10^{-5}$ m/s tandis que le coefficient d'emmagasinement avoisine plus souvent les 10^{-4} , ce qui confirme d'ailleurs l'aspect captif de la nappe. La porosité du roc mesurée à l'aide d'un porosimètre à mercure par Denis (1991) varie entre 0,026 et 0,096. La valeur moyenne considérée dans les études précédentes est de 0,05.

Sur le site de Ville-Mercier, la moyenne arithmétique de la transmissivité est de $1,3x10^{-3}$ m²/s, celle de la conductivité hydraulique est de $2,2x10^{-6}$ m/s et celle du coefficient d'emmagasinement de $8,8x10^{-4}$.

Sources	Localisation	$T (m^2/s)$	<i>K</i> (m/s)	S	n
Poulin, 1977	Ville-Mercier	3,9x10 ⁻⁷	6,4x10 ⁻⁸	-	0,05. fracture: 0,12
	Ville-Mercier	1,8x10 ⁻⁵	9,5x10 ⁻⁶	-	-
	Ville-Mercier	1,8x10 ⁻⁶	$5,1 \times 10^{-7}$		-
	Ville-Mercier	8,7x10 ⁻⁷	9,6x10 ⁻⁷	-	-
	Ville-Mercier	6,4x10 ⁻⁶	2,1x10 ⁻⁶		
McCormack, 1981	Ste-Martine	de 4,1x10 ⁻⁴ à 4,3x10 ⁻⁴	-	-	-

Tableau 2.3 : Compilation des propriétés hydrogéologiques du roc

an a	St-Rémi	1,7x10 ⁻⁴	-	-	
	St-Isidore	5,4x10 ⁻³	-	-	-
Hydrogéo,	Ste-Martine	$2x10^{-4}$	5,7x10 ⁻⁶	_	
1981	Ste-Martine	1,8x10 ⁻³	4,5x10 ⁻⁵	1x10 ⁻⁴	-
	Ste-Martine	$2,75 \times 10^{-4}$	6,7x10 ⁻⁶	-	-
	Ste-Martine	3,16x10 ⁻⁵	1,1x10 ⁻⁶	-	
	St-Rémi	6,2x10 ⁻⁶	2,1x10 ⁻⁷	-	-
Sylvestre, 1982	Entre St- Rémi et Ste- Martine	$\frac{\text{de } 1,1 \text{x} 10^{-3} \text{ à}}{2,3 \text{x} 10^{-3}}$, -	3,2x10 ⁻⁵	-
Foratek Inc., 1987	Ville-Mercier	8,5x10 ⁻³	-	-	-
Bachand, 1987	Entre St- Rémi et Ste- Martine	de 10 ⁻³ à 5,9x10 ⁻⁴	·	de $2x10^{-4}$ à 2,5x10^{-5}	-
	St-Isidore	8,4x10 ⁻⁴		2,8x10 ⁻⁴	
·	Ville-Mercier	8x10 ⁻³	-		-
D'Anjou,	-	-	1,2x10 ⁻⁴	-	-
1991	Ville-Mercier	9,2x10 ⁻⁵	-	-	-
	-	-	1,5x10 ⁻⁵		-
	Ste-Martine	4,2x10 ⁻⁵	1,4x10 ⁻⁵	2,7x10 ⁻⁵	-
	Ste-Martine	7,4x10 ⁻⁵	1,9x10 ⁻⁵	-	
	Ste-Martine	1,7x10 ⁻⁴	4,5x10 ⁻⁵	-	-
Gélinas et al, 1989	Ville-Mercier	de $2,9x10^{-4}$ à $2,4x10^{-6}$	-	$\frac{\text{de } 2,4x10^{-3} \text{ à}}{2,4x10^{-4}}$	-
Denis, 1991	Ville-Mercier	1x10 ⁻⁶	1x10 ⁻⁷	1x10 ⁻⁵	effective:0,0 2
					totale: 0,036 à 0,0 96
Biogénie,	Ste-Martine	-	7x10 ⁻⁷	-	-
1995	Ste-Martine	-	2,8x10 ⁻⁵	-	-
HGE, 1996.	St-Rémi	8,15x10 ⁻⁴	1,1x10 ⁻⁴	-	
	St-Rémi	1,5x10 ⁻³	-	2,26x10 ⁻³	-
	St-Rémi	8,47x10 ⁻⁴	-	$2,26 \times 10^{-4}$	-
	St-Rémi	7,57x10 ⁻⁴	-	$1,02 \times 10^{-4}$	-

	St-Rémi	1x10 ⁻³	-	2x10 ⁻⁵	-
Technorem, 1998	Ste-Martine	de 1x10 ⁻³ à 4,3x10 ⁻³	-	2,1x10 ⁻⁴	-
	Moyenne régionale	1,2x10 ⁻³	2,23x10 ⁻⁵	4,38x10 ⁻⁴	· · · · · ·

2.5.2. Caractéristiques hydrogéologiques des dépôts meubles

Les tills et les argiles sont considérés comme des dépôts imperméables ou à faible perméabilité tandis que les sables et graviers constituent l'une des formations les plus perméable de la région (McCormack, 1981). Les propriétés hydrogéologiques des dépôts meubles sont résumées dans le Tableau 2.4.

2.5.2.1. Les tills

Des essais de perméabilité réalisés sur le till de base (Lefebvre, 2000, communication personnelle) montraient une conductivité hydraulique moyenne de $1,73 \times 10^{-8}$ m/s. Des essais réalisés cette fois sur le till remanié affichaient une conductivité hydraulique moyenne de $1,31 \times 10^{-5}$ m/s (Lefebvre, communication personnelle) et une porosité variant de 0,15 à 0,2 (CNFS, 1993).

2.5.2.2. Les sables et graviers

Ils constituent des aquifères semi-confinés dont une partie a été répertoriée par Géomines (1983). La conductivité hydraulique moyenne est de $2,16 \times 10^{-4}$ m/s (Lefebvre, communication personnelle), les coefficients d'emmagasinement varient de 0,03 à 0,4 (Foratek Int., 1987) et la porosité est de 0,3 (Poulin, 1977).

2.5.2.3. Les argiles

La conductivité hydraulique mesurée en laboratoire par Hydrogéo Canada (1981) varie de $6,4x10^{-10}$ à $4x10^{-10}$ m/s. L'horizon supérieur silto-sableux est un peu plus perméable avec une conductivité hydraulique variant de 10^{-4} à 10^{-6} m/s (GREGI, 1993). La porosité

varie de 0,36 à 0,65 et la conductivité hydraulique verticale est de 10^{-10} m/s (Géomines, 1983).

Unité	Conductivité hydraulique (m/s)	Source	Coefficient d'emmagasinement	Source	Porosité	Source
Argile	$6,4x10^{-10} \text{ à} 4x10^{-10} k_z: 10^{-10}$	2 2 4			0,36 à 0,65	2 2
Sable et gravier	2,16x10 ⁻⁴	6	0,03 à 0,4	3	0,3	1
Till remanié	1,31x10 ⁻⁵	6			0,15 à 0,2	5 5
Till de base	1,73x10 ⁻⁸	6				

Tableau 2.4	: Pro	priétés	hydro	géolo	giques	des	dépôts	meubl	es
1 401044		p11000		0	0-1				

1 Poulin, 1977

2 Hydrogeo, 1978

4 Géomines, 1983

5 CNFS, 1993

3 Foratek International, 1982

6 Lefebvre, communication personnelle

2.5.3. Écoulement des eaux souterraines

La Figure 2.6 représente la carte piézométrique dans le roc générée à partir des relevés effectués en novembre 2000 par le ministère de l'Environnement du Québec (Annexe D). Cette Figure montre que l'écoulement dans le roc se fait globalement de l'est vers l'ouest avec une légère composante vers le sud au niveau de Ville-Mercier qui semble due en partie à l'effet du piège hydraulique en fonctionnement dans les anciennes lagunes. Dans la partie est de la région d'étude les niveaux piézométriques élevés sont associés aux hauts topographiques du socle rocheux montrés à la Figure 2.2 et à la recharge préférentielle dans ce secteur. Il semblerait que l'embouchure de la rivière Esturgeon constitue un exutoire de la nappe au niveau de Ste-Martine. En effet, la convergence des lignes d'écoulement de l'eau souterraine vers ce point génère un creux piézométrique. Les relevés effectués depuis 1977 lors de précédentes études montrent aussi ce creux

piézométrique au niveau de Ste-Martine. Cette convergence ne semble pas liée à l'action de puits locaux, le puits le plus proche étant celui de Aliment Carrières Ltd qui ne fonctionne que 3 mois par an (Technorem, 1998). La comparaison des débits de la rivière Châteauguay avec les relevés piézométriques du puits 03097094, situé à environ 1 km en amont de la jonction de la rivière Châteauguay avec la rivière Esturgeon, montre clairement un lien entre l'aquifère et la rivière Châteauguay (Figure 2.7). La corrélation est moins flagrante en été probablement à cause des pompages saisonniers pour l'irrigation et l'usage industriel (l'usine d'Aliments Carrières Ltd n'est pas très loin du piézomètre). Cependant, les essais de pompage réalisés par Technorem (1998) et réinterprétés dans ce mémoire (Figure 2.8) ne montrent pas ce lien entre la nappe et la rivière. En effet, si on considère la zone d'influence du puits, il devrait aller chercher une partie de son eau dans la rivière or lors des essais de pompage, la courbe de Theis ne montre aucun changement de pente qui paraît être relié à une limite positive. Les piézomètres étaient peut-être trop éloignés pour détecter cet effet.

Figure 2.6 : Carte piézométrique régionale dans le roc réalisée à partir des relevés du MENV (Lamontagne, 2000, communication personnelle)

Figure 2.7 : Comparaison des débits de la rivière Châteauguay avec les données piézométriques du puits 03097094.

Figure 2.8 : Essais de pompage à Ste-Martine réalisés par Technorem (1998) et réinterprétés dans ce mémoire où r est la distance au puits de pompage.

Au niveau local, la Figure 2.9 montre que l'écoulement dans le roc suit l'écoulement régional. L'effet du piège hydraulique est bien visible de même que celui de l'exutoire qui oriente une partie de l'écoulement vers le sud sud-ouest.

Figure 2.9 : Carte de la piézométrie locale du roc

L'écoulement dans les dépôts meubles se fait plutôt parallèlement à l'axe du complexe fluvio-glaciaire (Figure 2.10) et il semble qu'il existe un lien hydraulique entre l'aquifère de sable et gravier et la rivière Esturgeon. Poulin (1977) estimait que l'aquifère de sable et gravier se déchargeait dans la rivière Esturgeon qui passe en arrière du complexe fluvio-glaciaire. Selon la Figure 2.10, il semble que le pompage exercé par les puits du MENV ait inversé la situation, la rivière Esturgeon alimentant les puits du MENV et empêchant ainsi la propagation du panache de contaminants.

Figure 2.10 : Carte de la piézométrie des dépôts meubles

2.6. Limites de la région d'étude

Les limites naturelles à imposer à la région d'étude et au modèle d'écoulement sont basées sur diverses sources d'information. La rivière Châteauguay coule en partie sur le roc et constitue une limite hydraulique naturelle en raison de son contact avec l'aquifère. Elle a donc été choisie comme limite ouest du domaine (Figure 2.11). Les autres limites du modèle ont été choisies en fonction de la topographie du roc. Les affleurements rocheux ainsi que les affleurements de till remanié associés à des renflements de socle rocheux ont permis de tracer une première ébauche des limites sud et est du domaine. En effet, ceux-ci correspondent à des points hauts du socle, ce sont donc des limites à l'écoulement de l'aquifère. Les limites de bassins versants et la carte piézométrique de la région ont permis de tracer les limites nord, sud et est du modèle et ont été fixées parallèlement à l'écoulement des eaux souterraines. Les conditions hydrauliques imposées à ces limites dans le modèle numérique sont discutées dans le Chapitre 3, Section 2.

Figure 2.11 : Carte représentant les principales structures géologiques et les dépôts meubles (d'après Globensky, 1987 et Lasalle, 1980)

CHAPITRE 3 MODÈLE RÉGIONAL

Dans ce monde, rien ne peut-être donné pour certain, sinon la mort et les impôts.

Benjamin Franklin

n modèle 2D ne tenant compte que de l'écoulement dans le roc, les dépôts meubles ne servant qu'à transmettre la recharge, est présenté dans ce chapitre. Dans le Chapitre 2, Section 2.3.3, il a été montré que les contacts entre le roc et les sables et graviers ne seraient présents qu'au niveau du complexe fluvio-glaciaire. Un modèle simplifié en deux dimensions semble donc pouvoir répondre aux objectifs fixés. L'hypothèse est faite que le régime est permanent malgré le pompage continu de l'UTES et de l'usine Laidlaw. En effet, on suppose que ces usines exercent un pompage depuis suffisamment longtemps pour que le régime permanent soit atteint.

3.1. Choix du logiciel

Le logiciel MODFLOW a été choisi afin de répondre le mieux possible à la problématique du site. Ce modèle résout l'équation de l'écoulement de l'eau souterraine dans un milieu poreux saturé, en 2 ou en 3 dimensions, basée sur la loi de Darcy dont la forme tridimensionnelle est présentée ci-dessous:

$$\frac{\partial}{\partial x} \left(K_{xx} \frac{\partial h}{\partial x} \right) + \frac{\partial}{\partial y} \left(K_{yy} \frac{\partial h}{\partial y} \right) + \frac{\partial}{\partial z} \left(K_{zz} \frac{\partial h}{\partial z} \right) - W = S_s \frac{\partial h}{\partial t}$$
(1)

dans laquelle :

Ss : coefficient d'emmagasinement spécifique du milieu poreux (L⁻¹);

W: sollicitations extérieures (sources et pertes) (LT⁻¹);

h : charge hydraulique (L);

K: composantes du tenseur des conductivités hydrauliques dans l'aquifère (LT⁻¹).

MODFLOW résout cette équation à l'aide de la méthode des différences finies, c'est à dire qu'il utilise un maillage composé de cellules rectangulaires réparties en lignes et colonnes. Pour chaque cellule, les paramètres hydrogéologiques doivent être précisés et il faut aussi fournir les conditions d'écoulement aux limites du modèle. Pour tous détails complémentaires sur MODFLOW, le lecteur est prié de se référer au manuel d'utilisation (McDonald et Harbaugh, 1988).

MODFLOW est un modèle qui peut simuler un écoulement, dans un aquifère libre ou confiné, en régime transitoire ou permanent dans un milieu poreux saturé hétérogène et anisotrope. Ce logiciel permet aussi de simuler l'effet de puits de pompage, de puits d'injection, de rivières et de la recharge par les précipitations.

3.2. Conditions aux limites

La Figure 3.1 montre les limites utilisées dans ce modèle d'écoulement. Les limites nord, est et sud ont été imposées à flux nul, les limites nord et sud correspondent à des lignes de courant tandis que la limite est représente une ligne de partage des eaux souterraines. Par contre la rivière Châteauguay est en contact hydraulique avec le roc et a été imposée comme limite à charge constante. Les élévations maximales et minimales tirées de la carte topographique au 1 :20 000 sont de respectivement 37 m à l'extrême sud de la rivière et 27 m à l'extrême nord de la rivière. Il a fallu tenir compte de la présence d'une chute d'eau de 3 m au niveau de Ste-Martine dont la base a une altitude de 30,5 m. La rivière Esturgeon a aussi été imposée comme limite à charge imposée à partir de son embouchure jusqu'aux affleurements rocheux situés en amont en raison de son lien avec la nappe à ce niveau. Les élévations des points extrêmes de cette limite sont de 30,5 m à l'ouest et 31,5 m à l'est.

Figure 3.1 : Conditions aux limites

3.3. Maillage

La zone d'étude couvre environ 250 km². Le maillage se compose de 1051 cellules avec un maximum de 40 cellules selon l'axe des x et 40 cellules selon l'axe des y. Ces cellules sont toutes de même dimension (dx=dy) soit 500 m.

3.4. Choix des paramètres hydrogéologiques du roc

Afin de considérer toutes les profondeurs des puits dans la région, une épaisseur de 100 m a été choisie pour la zone active d'écoulement dans le roc. Le roc fracturé est considéré comme un milieu poreux équivalent et la réponse obtenue de l'essai de pompage montrée à la Figure 2.8 confirme cette supposition. Le roc est aussi supposé isotrope. La carte piézométrique indique une variation dans les gradients hydrauliques impliquant une variation dans la transmissivité du roc. Ces zones à plus fort gradient sont situées au niveau des axes des synclinaux et anticlinaux de la région. Trois zones de transmissivité différentes ont donc été délimitées dans le modèle. Une transmissivité plus petite est associée aux axes des synclinaux car les fractures sont supposées moins ouvertes au niveau des extrados et une transmissivité plus élevée est associée aux axes des anticlinaux (Figure 3.2). Des valeurs de 10⁻⁴ pour le coefficient d'emmagasinement et de 0,05 pour la porosité ont été retenues.

3.5. Valeurs de recharge

À partir des hydrogrammes de puits fournis par le MENVQ, il ressort que 90% de la recharge se produit au printemps (avril) lors de la fonte des neiges. Les 10% qui restent s'infiltrent en automne (octobre) car l'évapotranspiration est plus faible à cette période de l'année. La répartition de la recharge sur la région dépend surtout du type de matériel affleurant et de son contact avec le roc. Le Tableau 3.1 résume les valeurs d'infiltrations supposées pour chaque type de matériel ainsi que leur superficie affleurante (Lasalle, 1980). Ces valeurs sont tirées des études précédentes et d'une étude récente (Hamel, 2001) dans les Basses-Laurentides qui montre des unités géologiques similaires. Des modifications aux valeurs d'infiltrations ont cependant été apportées afin d'obtenir une valeur de recharge totale égale à celle calculée précédemment et de tenir compte de la différence de perméabilité qui existe entre les deux tills (Parent, communication personnelle), le till basal étant moins perméable que le till remanié.

Unités	Superficie (km ²)	Infiltration (mm/an)
Argile	112,7	3
Sable et gravier	12	210
Till remanié	55,7	190
Till basal	65,8	140
Roc	0,11	210
Total	246,31	92

Tableau 3.1 : Valeurs initiales de recharge supposées pour chaque unité

3.6. Calage du modèle

Le calage du modèle consiste à faire varier les paramètres de recharge ou de transmissivité de façon à ce que les valeurs piézométriques simulées s'approchent le plus possible des valeurs observées. Le modèle est considéré calé lorsque les valeurs de transmissivité et de recharge sont proches des valeurs mesurées et que l'erreur RMS (somme des écarts au carré) est inférieure à 5% (ici 1,49 m) de la perte totale de charge (ici 29,77 m) sur la région d'étude (Anderson et Woessner, 1992). Les critères de convergence imposés au modèle sont de 10^{-6} m pour la variation de charge maximum autorisée et de 10^{-6} m³/d pour le résidus à atteindre. Les résultats du calage sont présentés aux Figures 3.3 et 3.4 et ils sont jugés satisfaisants, parce que l'erreur RMS (0,23 m) est largement inférieure à l'objectif fixé au départ et l'erreur absolue moyenne ainsi que la répartition des charges observées par rapport à la droite de calage idéal sont bonnes. Le bilan en eau entre les apports et les pertes qui résulte de ce calage est équilibré. En règle générale, un bilan en eau est considéré équilibré si la différence entre les apports et les pertes est inférieure à 0,1%, toutefois, un maximum de 1% de différence peut être toléré (Anderson et Woessner, 1992). Ce modèle présente une différence de $1,45 \times 10^{-4} \text{ m}^3/\text{d}$ soit en pourcentage, une différence de 2.5×10^{-8} %.

Pour obtenir ces résultats, trois zones de transmissivités ont été utilisées (Tableau 3.2): une première zone au niveau de Ville-Mercier avec une transmissivité de $1,1x10^{-3}$ m²/s, une deuxième zone localisée au niveau de St-Rémi et s'étalant du nord au sud du modèle avec une transmissivité de $1,8x10^{-3}$ m²/s, et le reste de la région constituant une zone de transmissivité de $9,2x10^{-3}$ m²/s. Ces trois valeurs sont du même ordre de grandeur et deux d'entre elles sont très proches de la moyenne régionale des transmissivités ($1,22x10^{-3}$ m²/s). L'avancée de la zone 2 au niveau de St-Rémi correspond aux transmissivités mesurées sur place qui sont très proches de celle appliquée à la zone 2. Le coefficient d'emmagasinement est fixé à 10^{-4} et la porosité à 0,05. Le Tableau 3.2 résume toutes les propriétés hydrauliques du modèle calé pour le roc. Les trois zones de transmissivités définies auparavant ont donc été modifiées. La première zone au niveau de Ville-Mercier a été réduite, les lignes piézométriques observées étaient plus resserrées au Nord indiquant une transmissivité plus faible. Les puits du MENV et de l'usine Laidlaw exerçant chacun des pompages moyens dans le roc estimés à 100 m³/d et 260 m³/d (Lefebvre, communication personnelle) ont été pris en compte lors du calage du modèle. Les puits de St-Rémi ont aussi été pris en considération exceptés le puits #10 (en mauvais état et abandonné pour le #11) et le puits #11 qui vient juste d'être mis en route avec un débit moyen de 1961 m³/d (HGE, 1996).

Figure 3.3 : Charges simulées versus charges observées

Zone	Transmissivité (m ² /s)	Porosité	Coefficient d'emmagasinement
1	1,1x10 ⁻³	0,05	10 ⁻⁴
2	1,8x10 ⁻³	0,05	10 ⁻⁴
3	9,2x10 ⁻³	0,05	10 ⁻⁴

Tableau 3.2 : Propriétés hydrologiques du roc pour le modèle calé

Figure 3.4 : Carte piézométrique simulée, puits et zones de transmissivités

La recharge calculée précédemment au Chapitre 2 n'a pu être appliquée au modèle, celleci générait des valeurs piézométriques beaucoup trop élevées. Il a donc fallu diviser par deux cette recharge en diminuant les valeurs d'infiltration des deux tills. Il semble aussi que le complexe fluvio-glaciaire joue un rôle non négligeable dans la recharge de l'aquifère au roc. En effet, il a fallu augmenter la valeur d'infiltration des sables et graviers du complexe fluvio-glaciaire jusqu'à 600 mm/an pour obtenir la même répartition des lignes piézométriques au niveau de Ville-Mercier que celles observées. Le Tableau 3.3 résume toutes les valeurs d'infiltration pour le modèle calé.

Unité	Superficie (km ²)	Infiltration (mm/an)
Argile	112,7	3
Sable et gravier	7	210
Complexe fluvio- glaciaire	5	600
Till remanié	55,7	100
Till	65,8	30
Roc	0,11	210
Total	246,31	50

Tableau 3.3 : Valeurs calées pour la recharge

Le flux sortant de la rivière Esturgeon dans le modèle est de très peu supérieur à celui mesuré par D'Anjou (8640 m³/d) qui ne semble pas avoir soustrait le débit apporté par l'usine du ministère de l'Environnement. Des tentatives infructueuses ont été faites pour essayer de tenir compte de ce débit réel en le ramenant à 4640 m³/d dans le modèle. En effet, dans les simulations où le débit de la rivière Esturgeon était de l'ordre de 4640

 m^{3}/d , la piézométrie était plus aplatie et reflétait moins bien les ondulations des isopièzes que dans le cas où un débit de 8640 m^{3}/d était appliqué à la rivière.

3.7. Sensibilité du modèle

La Figure 3.5 montre les études de sensibilité qui ont été réalisées pour estimer la validité des paramètres (transmissivité et recharge) retenus lors du calage du modèle. Les graphiques présentés en Figure 3.5 A et 3.5 B, où EM est l'erreur moyenne, EAM est l'erreur absolue moyenne, et RMS est la racine de la somme des carrés de l'erreur, montrent les résultats obtenus si on multiplie ou divise la valeur du paramètre retenu lors du calage par 1,5. Il ressort que le modèle est très sensible à la conductivité hydraulique (Figure 3.5 C) mais aussi à la recharge (Figure 3.5 D). Les valeurs de recharge et de conductivité hydraulique obtenues lors du calage du modèle semblent donc être représentatives des conditions du milieu. Cependant, dans ce modèle, la recharge et la transmissivité ne sont pas indépendantes, l'une agissant sur l'autre. Les Figures 3.5 C et D montrent bien qu'une augmentation de la recharge implique une diminution de la conductivité hydraulique et inversement. De plus, le résultat obtenu lors du calage n'est pas unique. En effet, d'autres solutions sont possibles et même meilleures du point de vue du calage. Mais les valeurs de recharge et de transmissivité qui en résultent ne sont pas représentatives de la réalité. Dans le cas de la transmissivité, un tel calage générait trop d'eau dans le modèle et dans le cas de la recharge, les valeurs obtenues étaient bien trop faibles. Les résultats obtenus dans le cadre de ce modèle semblent raisonnables car les paramètres calés sont proches des moyennes de recharge et de transmissivité observées.

Figure 3.5 : Sensibilité du modèle à une variation de la recharge ou de la transmissivité A) : Charge hydraulique simulée versus charge hydraulique observée pour la recharge,

B) : Charge hydraulique simulée versus charge hydraulique observée pour la transmissivité, C) : Erreur absolue moyenne en fonction de la transmissivité, D) : Erreur absolue moyenne en fonction de la recharge.

3.8. Critique du calage

Comme on l'a vu dans la section précédente, la recharge se fait principalement par les tills et les sables et graviers. Les valeurs d'infiltration dans les tills qui ressortent du calage peuvent paraître faibles comparativement à d'autres études. En effet, Hamel (2001) dans un contexte similaire estimait à 198 mm/an l'infiltration moyenne par les tills, ce qui correspondait à 80% de la recharge pour une superficie recouvrant 24% de la région d'étude. Dans notre cas, les tills recouvrent environ 50% de la zone d'étude et représentent 61% des 50 mm/an qui rejoignent la nappe. Cette différence dans l'influence des tills sur la recharge pourrait être expliquée par la présence de deux tills distincts, ce qui ne semble pas être le cas dans l'étude de Hamel. Dans la région de Ville-Mercier, le till remanié et le till basal recouvrent respectivement 22,61% et 26,71% de la zone d'étude. Or le till basal est moins perméable que le till remanié et se retrouve sous le till remanié avec une épaisseur variable, cette disposition limite donc l'infiltration par les tills et diminue la recharge potentielle du roc. Entre autre, Bachand (1987) et d'Anjou (1991) lors de leurs études sur la région de Ville-Mercier avaient estimé que seul 1% des précipitations rechargeaient la nappe par les tills, ce qui correspondait à 10% de la recharge totale. Il y avait donc une sous estimation de la recharge par les tills dans ces études qui était due au fait qu'à l'époque la présence du till remanié n'était pas connue.

La valeur d'infiltration appliquée aux sables et graviers du complexe fluvio-glaciaire peut paraître assez élevée puisqu'elle représente 3 fois celle des sables et graviers affleurants ailleurs sur la région. Le complexe fluvio-glaciaire recouvre 2% de la zone d'étude et représente 24% de la recharge soit 1% des précipitations annuelles. Cette valeur d'infiltration locale est tout à fait plausible puisque ce complexe fluvio-glaciaire constitue un aquifère libre qui entretient des échanges hydrauliques avec l'aquifère de roc par le biais des fenêtres présentes dans les tills. À ceci s'ajoutent que les précipitations moyennes annuelles sur Ville-Mercier de 1973 à 1985 étaient de 900 mm/an et que cette zone est principalement recouverte par des argiles. D'Anjou (1991) estimait que 7% des précipitations rechargeaient le roc par le biais du complexe fluvio-glaciaire, ce qui représentait 63% de la recharge.

Au total, il semblerait que la recharge réelle arrivant au roc ne soit finalement que de 50 mm/an et non de 92,7 mm/an comme calculé précédemment. Cette valeur est en accord avec les résultats de Hamel (2001) qui dans un contexte géologique similaire trouvait une recharge de 45 mm/an dans les basses Laurentides.

CHAPITRE 4 SIMULATIONS ET RÈGLES D'EXPLOITATIONS

À l'échelle cosmique, l'eau est plus rare que l'or.

Hubert Reeves

e chapitre présente les différentes simulations faites à partir du modèle numérique régional ainsi que leurs résultats. À partir de ces résultats et des données compilées tout au long de ce travail, des règles d'exploitation et de gestion de l'aquifère régional ont été produites et sont proposées à la fin de ce chapitre.

4.1. Impact du pompage au niveau régional

Des simulations en régime transitoire ont permis d'estimer les impacts du pompage exercé par les maraîchers en période estivale. Les débits retenus pour les puits agricoles sont ceux fournis par le MAPAQ (Lamontagne, communication personnelle). Ces débits sont conservateurs, c'est-à-dire que les maximums des valeurs de pompage annuels estimées par le MAPAQ ont été retenus et elles ont été ramenées sur 4 mois au lieu des 12 initiaux. Les puits municipaux de Ste-Martine, de

St-Isidore ainsi que le puits #11 de St-Rémi ont aussi été considérés mais en pompage continu car ils sont en fonctionnement toute l'année.

La simulation débute le 1^{er} janvier avec la supposition qu'à cette époque de l'année, le niveau piézométrique de la nappe correspond au niveau moyen annuel. Dans MODFLOW, il n'a été considéré que 5 «périodes de contrainte», chacune d'elle correspondant au commencement ou à l'arrêt de la recharge, au commencement ou à l'arrêt du pompage (Tableau 4.1).

Période de contrainte	Recharge (m ³ /d)	Pompage (m ³ /d)
Du 1 ^{er} janvier au 31 mars	0	5369
Du 1 ^{er} avril au 31 mai	185 704,2	5369
Du 1 ^{er} juin au 1 ^{er} octobre	0	18631
Du 1 ^{er} octobre au 31 octobre	41267,6	5369
Du 1 ^{er} novembre au 31 décembre	0	5369

Tableau 4.1 : Principaux événements du modèle transitoire

Une simulation sur un an (Figure 4.1) montre qu'un rabattement de 6,5 m est généré par les puits municipaux de St-Rémi. Le rabattement moyen généré par les puits agricoles après 4 mois de pompage est d'environ 1,5 m. Un maximum de 3 m est atteint près de St-Rémi en raison d'une concentration de puits à débits élevés dans cette partie de la région. La valeur du rabattement moyen reste raisonnable puisque la plupart des puits sont situés dans les zones de recharge ce qui minimise leur impact sur l'aquifère. Unes estimation de la partie de la recharge utilisée par les activités agricoles est présentée ci-dessous :

dans le modèle, la recharge totale appliquée est de :

185 704,2 (m³/d) x 60 (d) + 41267,6 (m³/d) x 31 (d) = 12 380 280 m³

le pompage agricole sur 4 mois de

 $(18631-5369) (m^3/d)* 4*30 (d) = 1591440 m^3$

le pompage municipal et industriel à l'année de :

$5369 (m^3/d) \ge 365 (d) = 1959685 m^3$

soit en pourcentage la partie de la recharge utilisée par les activités agricoles :

(1 591 440 / 12 380 280) x 100 = 13 %

soit en pourcentage la partie de la recharge utilisée par les activités municipales et industrielles :

$(1\ 959\ 685\ /\ 12\ 380\ 280) \ge 100 = 16\ \%$

Il ressort donc que 29 % de la recharge est exploitée par le total des activités sur la région avec respectivement 13% en 4 mois par les activités agricoles et 16 % par an par les activités municipales et industrielles.

Figure 4.1 : Rabattement généré par un pompage agricole de 4 mois et un pompage municipal de 15 mois

4.2. Impact des puits municipaux

Avec un débit de 1100 m³/d, le puits de St-Isidore ne risque pas de perturber le piège hydraulique de Ville-Mercier. Une simulation, dont les résultats sont présentés à la Figure 4.2, montre que l'aire d'alimentation de ce puits s'étend vers l'ouest et le nord du domaine étudié. Cependant, lors du pompage estival des maraîchers, il semble que le rabattement généré par tous les puits atteignent les lagunes de Ville-Mercier avec un rabattement de 0,5 m (Figure 4.1). Mais ce rabattement semble forcé par les puits situés au nord des lagunes ayant de forts débits (supérieur à 1000 m³/d) et dont le cône de rabattement est bien visible sur la Figure 4.1. Ces hauts débits peuvent être le résultat de l'aspect conservateur de notre modèle et ne pas correspondre aux conditions réelles de terrain.

Le puits de Ste-Martine sera mis en route avec un débit conseillé inférieur à $810 \text{ m}^3/\text{d}$ (Technorem, 1998). Des simulations ont été faites pour estimer l'aire d'alimentation d'un tel puits. Les résultats sont montrés à la Figure 4.2. Il est très net d'après le modèle que le puits va chercher son eau essentiellement au sud-sud-ouest de la région et dans la rivière Châteauguay. Si cette représentation numérique de l'aire d'alimentation du puits est exacte, ceci implique que l'eau alimentant le puits serait assez éloignée de la zone d'exclusion et des secteurs contaminés connus.

Les puits de St-Rémi ont une aire d'alimentation dirigée essentiellement vers l'Est. Par contre, cette aire d'alimentation occupe une grande surface à cause du nombre de puits utilisés (6) et surtout de leur répartition sur la commune. Les résultats sont présentés à la Figure 4.2.

Des simulations ont aussi été faites pour représenter l'aire d'alimentation des puits du ministère de l'Environnement engendrant le piège hydraulique du système de pompage et traitement. Les résultats sont montrés dans la Figure 4.2. Il ressort que les puits du MENV s'alimentent en eau surtout dans la partie nord-est de la région.

46

Figure 4.2 : Aire d'alimentation des puits municipaux et gouvernementaux.

4.3. Traçage de particules

Le panache de contaminants dissous de Ville-Mercier est actuellement contenu par un piège hydraulique généré par les puits de l'usine de traitement des eaux contaminées du MENV. Cependant, deux puits d'observation au sud et à l'extérieur de l'ancienne zone d'exclusion, mais maintenant dans la nouvelle zone d'exclusion définie par le ministère de l'Environnement, indiquent la présence de contaminants en dehors de la zone d'influence du piège hydraulique. Il est fort possible que ce soit de la contamination ayant migré avant l'installation du piège hydraulique. Des simulations ont été réalisées en régime permanent pour représenter la migration des particules à partir de ces deux puits, les particules n'étant pas affectées par des retards ou de la dégradation. Les résultats de ces simulations après 10, 20 et 30 ans sont présentés aux Figures

4.3, 4.4 et 4.5. Ceux-ci montrent que les contaminants migreraient directement vers la rivière Esturgeon qui semble constituer une barrière hydraulique et empêche la migration des contaminants vers le puits de Ste-Martine. Il faut cependant garder à l'esprit qu'une charge constante a été imposée à la rivière Esturgeon, créant peut être ainsi cette barrière hydraulique. L'intensité réelle de cette barrière hydraulique n'est pas bien connue. De plus, les puits d'observation 030978062, 03097094 et 03097095 situés en amont de la rivière Esturgeon sont échantillonnés de manière régulière par le ministère de l'Environnement. Ils sont crépinés dans le roc et suffisamment en dessous du lit de la rivière pour intercepter les contaminants qui passeraient sous le lit. Ces puits non contaminés constituent donc une ceinture d'alarme pour le puits de Ste-Martine qui permettra de prendre les décisions nécessaires en cas d'apparition de contaminant.

Figure 4.3 : Migration des particules à partir des puits contaminés après 10 ans

Figure 4.4 : Migration des particules à partir des puits contaminés après 20 ans

Figure 4.5 : Migration des particules à partir des puits contaminés après 30 ans

La Figure 4.6 présente le résultat du traçage de particules dont la source est la zone d'exclusion délimitée par le ministère de l'environnement. Celle-ci montre que la migration des contaminants suivrait la piézométrie et se rendrait jusqu'aux rivières Esturgeon et Châteauguay.

Figure 4.6 : Traçage de particules à partir de la zone d'exclusion définie par le MENV (Règlement sur le captage des eaux souterraines, 2002)

4.4. Sensibilité de l'aquifère

Afin d'estimer la sensibilité de l'aquifère aux variations saisonnières de la recharge, des simulations de baisse de la recharge en terme de pourcentage ont été réalisées. La simulation consiste à diminuer la recharge qui arrive à l'aquifère au roc mais en maintenant les mêmes sollicitations actuelles en eau par pompage. Des simulations pour une baisse de 10%, 20%, et

30% de la recharge ont été effectuées. La Figure 4.7 montre les résultats obtenus pour une baisse de 20% de la recharge comparés à la modélisation de base avec les conditions actuelles. Une telle diminution de la recharge génère une baisse additionnelle de 0,5 m du niveau de la nappe sur l'ensemble de la région par rapport aux conditions actuelles et de 1m dans les zones à fort pompage. Une telle baisse pourrait affecter les puits qui ne seraient pas forés assez profondément dans le roc. Présentement, la recharge de la nappe constitue environ 12 millions de m³ d'eau et actuellement ce sont 3 690 000 m³ d'eau qui sont prélevés par les activités municipales et

agricoles.

Figure 4.7 : Comparaison des rabattements pour une simulation dans les conditions actuelles et pour une simulation avec une baisse de 20% de sa recharge

4.5. Règles d'exploitation

La compilation de toutes les données existantes ainsi que les simulations réalisées à partir du modèle calé ont permis de définir des règles d'exploitation pour l'aquifère régional.

4.5.1. Zones d'exploitation

La Figure 4.8 montre les zones qui ont été délimitées en fonction des critères à respecter pour installer un puits. Elles sont au nombre de 5, la zone d'exclusion, la zone 1 ou zone tampon, la zone 2 autour de la zone d'exclusion, la zone 3 de St-Rémi et la zone 4 qui correspond au reste du territoire à l'étude. Les critères particuliers à appliquer à ces différentes zones sont discutés dans la Section 6.3.

Figure 4.8 : Zones de réglementation

4.5.2. Règles d'exploitation communes à toutes les zones

La mise en place d'un répertoire des puits existants et des nouveaux puits comprenant le nom et la localisation des puits, la profondeur d'installation, le débit, le type d'installation, le niveau statique et dynamique à l'installation devra être tenu par le ministère de l'Environnement.

Les nouveaux puits devront tous être forés à plus de 10 m dans le roc (15 m dans la zone 3) ou plus profond que 10 m sous le niveau statique dans les secteurs ou la nappe est libre, c'est-à-dire quand le niveau piézométrique est sous le toit du roc. La carte piézométrique ainsi que la carte d'élévation du roc pourront aider à définir ces secteurs à nappe libre en plus de la carte des contextes.

Afin de limiter les conflits d'usage entre les particuliers, une distance minimale entre les puits doit être respectée. Cette distance est fonction des conditions hydrogéologiques du lieu d'installation et des débits de pompage envisagés.

Un suivi piézométrique annuel est recommandé dans ces puits afin de mesurer l'évolution et la réponse de la nappe aux divers pompages. Ce suivi peut se faire par le biais de prêt de sonde à niveau à un particulier intéressé qui en retour devra régulièrement fournir le niveau d'eau au MENV.

4.5.3. Règles spécifiques

a) La zone d'exclusion : zone à l'intérieur de laquelle le pompage de l'eau souterraine est interdit soit à cause de la présence confirmée de contamination de l'eau souterraine soit pour éviter que le pompage ne vienne perturber le piège hydraulique contrôlant le panache de contaminant relié aux anciennes lagunes de Ville-Mercier.

b) Zone 1 ou zone tampon : zone située en aval hydrogéologique de la zone d'exclusion et donc à risque d'être contaminée par une migration éventuelle de contaminants provenant de la zone d'exclusion. La qualité de l'eau souterraine pompée à l'intérieur de cette zone devrait être

53

vérifiée annuellement par l'analyse de paramètres indicateurs diagnostics du type de contamination rencontré dans la zone d'exclusion.

c) Zone 2 : À l'intérieur de cette zone, les études requises pour les puits pompant à un débit supérieur à 75 m³/d devront aussi démontrer que le pompage de ces puits i) ne risque pas de capter d'eau provenant de la zone d'exclusion, et ii) que le pompage ne risque pas de perturber l'intégrité du piège hydraulique du système présentement en place qui contrôle la contamination aux anciennes lagunes ou de tout autre système implanté à cette fin à l'avenir. Ces exigences constituent des objets spécifiques de l'étude hydrogéologique déposée à l'appui de la demande d'autorisation pour les projets de captage visé par l'article 31 du *Règlement sur le captage des eaux souterraines*. Ces objets sont conformes à l'article 1 du Règlement au point e de la page 35.

d) Zone 3 : Ce secteur est influencé par le pompage des puits de St-Rémi ainsi qu'à une utilisation plus intensive de l'eau souterraine à des fins agricoles. Dans cette zone, les nouveaux puits devront être forés à plus de 15 m dans le roc ou sous le niveau statique de l'eau souterraine.

e) Zone 4 : Dans cette zone, aucune mesure spéciale n'a à être prise en dehors de celle prévue par le Règlement.

Zone	Profondeur minimale du puits (m)	Transmissivité (m ² /s)	Suivi qualité eau
Exclusion	_	10-6	Oui
1	10	10 ⁻⁶	Non
2	15	10 ⁻³ à 10 ⁻⁴	Non
3	10	10-4	Oui
4	10	10 ⁻³	Non

Tableau 4.2 : Règles à suivre pour l'implantation de nouveaux puits

54

4.6. Situation actuelle

Les simulations faites pour estimer la sensibilité de l'aquifère aux variations de la recharge ont indiqué que l'exploitation de l'aquifère ne devrait pas atteindre 40% de la recharge estimée à 50 mm/an par le modèle. Or en combinant le pompage agricole (qui ne se produit que 4 mois dans l'année) aux pompages municipaux de la région (qui eux se produisent à l'année), il ressort que c'est 30% de la recharge qui est exploitée chaque année.

CHAPITRE 5 MODÈLE LOCAL

Chaque chose doit être rendue aussi simple que possible, mais pas plus.

Albert Einstein

e chapitre présente le modèle numérique d'écoulement en 3D qui a été développé pour le site des anciennes lagunes. Le logiciel FRAC3DVS a été utilisé pour représenter l'écoulement en saturation variable avec et sans pompage. Des simulations ont été réalisées avec ce modèle pour estimer l'aire d'alimentation des puits du ministère de l'Environnement et pour simuler de manière simplifiée le transport de masse.

5.1. Logiciel utilisé

Le simulateur numérique FRAC3DVS (Therrien et Sudicky, 1996) permet de simuler l'écoulement en 3 dimensions à saturation variable, en différences finies ou en éléments finis, à partir d'une forme modifiée de l'équation de Richards (Cooley, 1983; Huyakorn et al., 1984) présentée ci-dessous :

$$\frac{\partial}{\partial x_i} \left(K_{ij} k_{r\omega} \frac{\partial (\psi + z)}{\partial x_j} \right) \pm Q = \frac{\partial}{\partial t} (\theta_s S_\omega) \approx S_s \frac{\partial h}{\partial t} + \theta_s \frac{\partial S_\omega}{\partial t} \qquad \text{i, j = 1, 2, 3}$$
(2)

Où K_{ij} est le tenseur des conductivités hydrauliques saturées (LT⁻¹), $k_{r\omega} = k_{r\omega}(S_{\omega})$ représente la perméabilité relative du milieu en fonction de la saturation en eau $S_{\omega}(-), \ \psi = \psi(x_{i},t)$ est la charge de pression (L), z la charge d'élévation (L), Ss le coefficient d'emmagasinement spécifique (L⁻¹), Q le flux volumique par unité de volume (T⁻¹)et θ_s la porosité (-).

Ce simulateur permet aussi la simulation du transport de masse en 3 dimensions dans un milieu poreux à saturation variable en solutionnant l'équation d'advection dispersion:

$$\theta_{s}S_{w}R\frac{\partial c}{\partial t} + q_{i}\frac{\partial c}{\partial x_{i}} - \frac{\partial}{\partial x_{i}}\left(\theta_{s}S_{w}D_{ij}\frac{\partial c}{\partial x_{j}}\right) + \theta_{s}S_{w}R\lambda c = 0 \quad i, j = 1, 2, 3 \quad (3)$$

avec $c=c(x_{i,i})$ la concentration du soluté (ML⁻³), D_{ij} le coefficient de dispersion hydrodynamique (L²T⁻¹); λ le coefficient de dégradation du premier ordre (L⁻¹) et R coefficient de retard du soluté (-). Pour plus de détail relié à la résolution par FRAC3DVS de ces équations, le lecteur est prié de se référer à l'article de Therrien et Sudicky (1996).

5.2. Limites du modèle local

La zone d'étude couvre environ 19 km². Dans ce modèle, les limites imposées au roc ont été établies à partir des résultats de la simulation de l'écoulement régional dans l'aquifère de roc (voir Chapitre 3). Ainsi, la carte piézométrique simulée a permis de choisir les isopièzes 44 m et 34 m comme limites est et ouest (Figure 5.1). Les tracés de la limite sud et de la partie ouest de la limite nord ont été faits perpendiculairement aux courbes piezométriques. La partie est de la limite nord qui crée une sorte de protubérance à la zone modélisée correspond à la ligne de partage des eaux dans l'aquifère de sable et
gravier. Ces limites ont été fixées suffisamment éloignées des puits de pompage du MEF et de l'usine Laidlaw afin de minimiser toute interaction entre les conditions fixées aux limites et les puits. Les conditions imposées à ces limites seront précisées dans les Sections 5.5 et 5.8.

Figure 5.1: Carte de la piézométrie simulée dans le roc

Figure 5.2 : Limites du modèle local et puits d'observations

5.3. Données avant pompage

Dans l'objectif de développer un modèle cohérent, il a été décidé de le caler avec et sans le pompage des puits de l'UTES et de l'usine Laidlaw. Cependant les données piézométriques antérieures à 1984 présentent des faiblesses au niveau du roc. En effet, la figure 5.3 montre clairement que plusieurs puits d'observation forés dans le roc (03097041, 03097201) affichent une variation des niveaux d'eau identique à ceux crépinés dans les dépôts meubles (03097051, 03097031). Deux causes sont envisageables, soit le roc est en contact hydraulique avec l'unité de sable et gravier, soit ces puits ont été mal installés et permettent une connexion entre le roc et les dépôts meubles. D'après la stratigraphie relevée lors de l'installation de ces puits, il semble qu'il y ait une épaisseur de till variant de 6 m à 20 m. Il est donc probable que ces puits aient été mal installés.

Figure 5.3 : Comparaison des élévations des niveaux d'eau avant 1984 dans les puits 0397041, 0397201 (dans le roc) et 0397031, 0397051 (dans les dm)

La piézométrie des dépôts meubles semble être fiable, elle est tirée des études précédentes et est présentée en Annexe D. Par contre le nombre de puits dans la région modélisée est assez faible et ne permet pas de tracer une carte piézométrique précise. Les élévations des niveaux d'eau ont donc été utilisées comme paramètres de vérification ponctuelle lors du calage du modèle d'écoulement avant la mise en place du pompage de l'UTES et de Laidlaw.

5.4. Maillage

Le maillage 2D généré pour la zone à modéliser se compose de 4 688 nœuds et de 9 308 éléments (Figure 5.4). Il est assez grossier en bordure et va en s'affinant en direction du site des anciennes lagunes. La discrétisation est très fine au niveau des puits du MENV (P111, P112, P113), du puits de l'incinérateur Laidlaw (PO-87-01) et des fenêtres présentes dans le till. Le maillage 3D se compose de 196 896 nœuds et 381 628 éléments.

Figure 5.4: Maillage 2D de la zone de modélisation

5.5. Constitution du modèle numérique en 3 dimensions

Le modèle géologique 3D a été généré à partir de données stratigraphiques détaillées provenant des puits d'observation présents sur la zone d'étude (Figure 5.2). Ce modèle est très bien caractérisé au niveau des anciennes lagunes mais beaucoup moins bien en périphérie en raison du peu de forages présents à l'extérieur du site contaminé. Les

descriptions stratigraphiques fournies par ces forages montrent qu'une partie des sables et graviers qui sont désignés affleurant sur la carte des dépôts meubles sont en fait recouverts par de l'argile. Lors de la construction du modèle 3D, ces informations ont été prises en compte et la nouvelle superficie affleurante des sables et graviers est montrée à la Figure 5.7. De plus, les petites zones de till qui affleuraient au niveau de la limite nord du modèle ont été associées aux argiles. Ces zones de till font plus de 6 m d'épaisseur (Dion, 1985) et sont situées assez loin des anciennes lagunes. Il est donc supposé que leur rôle n'est pas prépondérant dans la modélisation ciblée sur le site contaminé, la périphérie du modèle ne servant qu'à amener ou évacuer l'eau des anciennes lagunes.

Figure 5.5 : Modèle géologique en 3 dimensions

Le modèle 3D a été généré à l'aide du logiciel GMS 3.1 (BYU, 2000) qui permet de créer un maillage à partir duquel les élévations sur la zone d'étude sont extrapolées par krigeage. Quatre couches aux propriétés hydrogéologiques différentes ont été considérées (Figure 5.5). De la base au sommet du modèle, on retrouve respectivement le roc, le till, les sables et graviers et les argiles. Une épaisseur de 100 m est imposée au roc qui est subdivisé en 18 sous-couches. Du sommet à la base du roc, on retrouve 5 couches de 1 m d'épaisseur, puis 8 couches de 5 m, et enfin 5 couches de 10 m. Par-dessus repose la couche de till qui regroupe en une seule couche le till basal et le till remanié. Cette unité est subdivisée en 19 sous couches sauf sous le complexe fluvio-glaciaire où elle ne se divise qu'en 4 sous-couches et comporte 3 fenêtres. L'unité de sables et graviers est subdivisée en 15 sous-couches et n'est présente qu'au niveau du complexe fluvioglaciaire. Elle repose sur les tills qui l'entourent complètement et est recouverte en partie par les argiles. Ces argiles sont subdivisées en 4 sous-couches (Figure 5.6). Les propriétés hydrogéologiques imposées à ces couches sont présentées dans la Section 5.7. Ce modèle comporte donc 4 unités aux propriétés hydrogéologiques différentes : 1 unité correspondant au roc, et une unité par type de dépôt meuble.

Argile : 4 sous couches Sable et gravier : 15 sous couches Tills : 4 à 19 sous couches 5 sous couches de 1 m 8 sous couches de 5 m puis 5 sous couches de 10 m

Figure 5.6 : Divisions en sous couches des différentes unités dans le modèle géologique 3D

5.6. Limites du modèle et conditions imposées

Pour le roc, les conditions imposées aux limites ne correspondent pas aux résultats du modèle d'écoulement régional. En effet, en raison d'un problème d'échelle, il ressort que

les simulations au niveau régional ne sont pas assez représentatives des particularités locales. Il a donc été décidé de se baser sur la piézométrie observée, la piézométrie simulée ne rendant pas assez bien compte de l'écoulement local. Une charge constante de 42 m pour la bordure est du roc et de 43 m pour la bordure nord de la protubérance du modèle ont donc été imposées (Tableau 5.1). Une charge imposée a été répartie sur la partie ouest de la limite sud pour rendre compte de l'effet de drainage existant au niveau de la jonction de la rivière Esturgeon et de la Rivière Châteauguay. Un flux nul a été imposé sur le reste des limites sud et nord. Même si la limite ouest correspond à un isopièze, un flux nul lui a été imposé pour éviter de figer la piézométrie au roc lors des simulations. Les bordures du complexe fluvio-glaciaire sont à flux nul car l'argile et le till ne rechargent pas l'unité de sable et gravier (Figure 5.7). Une charge constante de 36,5 m a été imposée à la rivière Esturgeon sur sa partie en contact avec l'unité de sable et gravier (Poulin, 1977).

Limite	Charge (m)				
Roc nord	43				
Roc est	42				
Roc sud	De 37 à 34,5				
Esturgeon	36,5				

Tableau 5.1 : Conditions aux limites

Figure 5.7 : Conditions imposées aux limites

5.7. Paramètres initiaux

Le roc est assimilé à un milieu poreux équivalent et isotrope. La simulation se fait en régime permanent avec le puits de l'incinérateur Laidlaw qui pompe en continu. En temps normal les puits du MENV fonctionnent en alternance et seuls 2 puits sur 3 sont en action. Par mesure de simplicité, dans ce modèle le débit total a été réparti sur les 3 puits qui fonctionnent en même temps et en continu.

Les caractéristiques hydrogéologiques du roc compilées à la Section 3.2 présentent une conductivité hydraulique moyenne différente de la moyenne régionale, ceci reflète peutêtre une hétérogénéité locale. Les paramètres appliqués au roc dans le cadre du modèle régional ont donc été modifiés. Une seule zone de conductivité hydraulique a été retenue avec comme valeur 4,8x10⁻⁶ m/s. Par contre, la même porosité de 0,05 et le même coefficient d'emmagasinement de 10⁻⁴ ont été appliqués au roc (Tableau 5.2). Les propriétés hydrauliques appliquées aux dépôts meubles sont présentées dans le Tableau 5.2 où la zone 2 représente la couche de till, la zone 3 l'unité de sable et gravier, et la zone 4 la couche d'argile. Il a été considéré pour chaque unité de dépôt meuble une conductivité hydraulique verticale plus petite de un ordre de grandeur.

Les paramètres capillaires, exprimés sous la forme de Van Genuchten, imposés au modèle sont tirés de Carsel et Parrish (1988) qui ont fait des mesures sur différents types de sols en fonction de leurs conductivités hydrauliques. Ces paramètres sont résumés dans le tableau 5.2.

Zone	Conductivité hydraulique (m/s)			n	Paramètres capillaires (Van Genuchten)					
	Kx	Ky	Kz		Swr	α (m ⁻¹)	β	y	Pression d'entrée d'air (m)	
1	2,2 x10 ⁻⁶	2,2 x10 ⁻⁶	2,2 x10 ⁻⁶	0,05	0,012	14,5	2,68	0,62	-0,35	
2	1,7 x10 ⁻⁸	1,7 x10 ⁻⁸	1,7 x10 ⁻⁹	0,2	0,07	0,5	1,09	0,08	-0,35	
3	2,1 x10 ⁻⁴	2,1 x10 ⁻⁴	9,1 x10 ⁻⁶	0,3	0,061	10	2,08	0,52	-0,35	
4	$5 \text{ x} 10^{-10}$	5 x10 ⁻¹⁰	1 x10 ⁻¹¹	0,5	0,07	0,5	1,09	0,08	-0,35	
1 : roc 3 : sable et gravier										

Tableau 5.2 : Paramètres hydrogéologiques et capillaires appliqués aux différentes zones du modèle 3D

2:till

3 : sable et gravier

4 : argile

5.8. Recharge

Les valeurs de recharge appliquées aux différentes unités dans le modèle régional ont été utilisées comme valeurs de recharge initiales pour le modèle local (Tableau 5.3). La recharge initiale totale appliquée au modèle est de 77,2 mm/an en lame d'eau équivalente. Elle est légèrement supérieure à celle imposée au niveau régional (50 mm/an) en raison de la grande superficie recouverte par les sables et graviers dans ce modèle.

Unité	Superficie (km ²)	Infiltration (mm/an)		
Complexe fluvio-glaciaire	2,36	600		
Argile	16,64	3		
total	19	77,2		

Tableau 5.3 : Recharge appliquée aux différentes unités

5.9. Calage

Les critères de convergence spécifiés dans le cadre de ce modèle sont de 1×10^{-8} pour l'écoulement, 1×10^{-2} pour le critère de convergence absolue de Newton, 1×10^{-5} pour le critère de convergence résiduel de Newton et 1×10^{-5} pour l'epsilon du Jacobien. Des critères de convergence plus petits auraient allongés le temps de simulation sans réellement améliorer les résultats puisque l'étude des bilans de masse montrait que la convergence était atteinte lors des simulations réalisés avec les critères précédents.

Les résultats du calage avec et sans pompage sont présentés aux Tableaux 5.4, 5.5, 5.6 et aux Figures 5.9 et 5.10. Dans l'ensemble, les résultats du calage sont jugés satisfaisants car ils représentent assez bien les conditions hydrauliques observées sur le site avec et sans pompage. Avec pompage, l'erreur RMS de 0,272 est inférieure à 5% de la perte de charge sur la zone modélisée (0,414) et l'erreur absolue moyenne est de 0,68 m, ce qui est inférieur aux variations annuelles de la nappe. La différence entre les apports en eau et les pertes affiche une valeur de $2,997 \times 10^{-5}$ m³/s, soit en pourcentage de différence 0,0038% ce qui est très inférieur aux 0,1% préconisés par Anderson et Woessner (1992). Sans pompage, l'erreur RMS de 0,139 est elle aussi inférieure à 5% de la perte de charge sur la zone modélisée (0,305), et l'erreur absolue moyenne de 0,68 m reste ici aussi inférieure aux variations annuelles de la nappe. Dans les deux cas, un meilleur calage aurait été possible mais chaque fois au détriment de l'autre situation. Ainsi, un meilleur calage avec pompage augmentait l'erreur du calage sans pompage et inversément. La Figure 5.10 compare les piézométries observées et simulées dans les dépôts meubles sans pompage, la Figure 5.11 présente les résultats de la simulation pour la piézométrie dans le roc avant pompage et les Figures 5.12 et 5.13 comparent les piézométries simulées et observées dans les dépôts meubles et dans le roc avec pompage,. Ces Figures montrent que l'écoulement global des eaux souterraines dans les sables et graviers et dans le roc ainsi que l'impact des puits du MEF sont relativement bien reproduits par les simulations numériques. Les conductivités hydrauliques et les paramètres capillaires de chaque unité n'ont quasiment pas été modifiés. Cependant les simulations qui utilisaient les formules de Van Genuchten pour calculer les saturations des différents matériaux géologiques ne convergeaient pas. Une option dans FRAC3DVS permet de passer de Van Genuchten à Brooks et Corey et a permis au modèle de converger.

Lors du calage, une attention particulière a été portée au niveau des puits du MEF et des fenêtres dans le till situées en amont. Une erreur minimale aussi bien dans le roc que dans les dépôts meubles était recherchée pour bien rendre compte des échanges entre les deux aquifères. Les conditions aux limites n'ont été modifiées que pour les bordures est et nord du roc dont les charges imposées ont été réduites à 39 m et 40 m respectivement. Le calage a permis de préciser la recharge appliquée dont la valeur a été réduite à 64,5 mm/an.

Limite	Charge (m)				
Roc nord	40				
Roc est	39				
Roc sud	De 37 à 34,5				
Esturgeon	36,5				

Tableau 5.4 : Conditions aux limites après calage (avec et sans pompage)

Tableau 5.5 : Recharge appliquée après calage (avec et sans pompage)

Unité	Superficie (km ²)	Infiltration (mm/an)		
Complexe fluvio-glaciaire	2,36	520		
Argile	16,64	0		
Total	19	64,5		

Figure 5.9 : Charges simulées comparées aux charges observées (avec pompage)

Figure 5.10. : Charges simulées comparées aux charges observées dans les dépôts meubles (sans pompage)

Zone	Conductivité hydraulique (m/s)			n	Paramètres capillaires (Van Genuchten)				
	Kx	Ky	Kz		Swr	α (m ⁻¹)	β	y	Pression d'entrée d'air (m)
1	4,2 x10 ⁻⁶	4,2 x10 ⁻⁶	4,2 x10 ⁻⁶	0,05	0,012	14,5	2,68	0,63	-0,35
2	1,7 x10 ⁻⁸	1,7 x10 ⁻⁸	1,7 x10 ⁻⁹	0,2	0,07	0,5	1,09	0,08	-0,35
3	4,1 x10 ⁻⁴	4,1 x10 ⁻⁴	0,1 x10 ⁻⁵	0,3	0,061	10	2,08	0,52	-0,35
4	5 x10 ⁻¹⁰	5 x10 ⁻¹⁰	1 x10 ⁻¹¹	0,5	0,07	0,5	1,09	0,08	-0,35

Tableau 5.6 : Paramètres hydrogéologiques appliqués à chaque unité après calage (avec et sans pompage)

1:roc2 : till 3 : sable et gravier

4 : argile

Figure 5.11 : Piézométrie simulée dans le roc sans pompage

Figure 5.12 : Comparaison des piézométries simulées (a) et observées (b) dans le roc avec pompage

Figure 5.13 : Comparaison de la piézométrie observée (a) et de la piézométrie simulée (b) dans les sables et graviers (avec pompage)

5.10. Sensibilité du modèle

Différentes simulations ont été réalisées afin d'évaluer la sensibilité du modèle à une variation des conditions imposées. La Figure 5.14 montre les résultats obtenus. Il ressort que dans la plupart des paramètres retenus, l'erreur minimale n'a pas été atteinte ni dans les simulations avec pompage, ni dans les simulations sans pompage. Cependant, une «erreur minimale acceptable» pour les deux cas a été obtenue et correspond à l'intersection des deux courbes d'erreur (Figure 5.14). Ces deux cas présentant des évolutions contraires dans la variation de l'erreur absolue moyenne, une attention plus particulière a été portée au calage avec pompage où l'erreur minimale était recherchée. Une fois celle-ci atteinte, la simulation sans pompage était lancée. Ensuite les paramètres étaient légèrement modifiés pour rester proche de l'erreur minimale atteinte précédemment et obtenir une erreur assez faible dans le cas sans pompage. Cette méthodologie a été retenue en raison de la fiabilité de la piézométrie avec pompage par rapport à celle sans pompage. De plus, l'erreur dans les simulations sans pompage n'est calculée qu'à partir de 8 données fiables comparativement aux 96 données des simulations avec pompage.

Ici encore, le modèle montre l'importance de la rivière Esturgeon dans l'écoulement des eaux souterraines. La valeur de 36,5 m qui correspond aux données piézométriques relevées proche de la rivière génère une erreur minimale dans la simulation avec pompage (Figure 5.14 C). Sans pompage, il semblerait qu'une valeur plus élevée soit plus appropriée (37 ou 38 m), cependant, une telle valeur ne serait pas en accord avec les relevés piézométriques faits à l'époque qui indique une charge de 36,5 m. Le modèle est très sensible à la recharge et l'erreur minimale est atteinte dans le cas avec pompage (Figure 5.14 D). La valeur de 64,5 mm/an obtenue reste cohérente avec celle du modèle régional (50mm/an). Les charges hydrauliques imposées aux limites nord et est du roc ont été revues à la baisse suite à ce calage. Les Figures 5.14 A et B montrent que les nouvelles valeurs appliquées permettent d'atteindre une erreur raisonnable dans les deux simulations.

Le modèle représente donc de façon satisfaisante l'écoulement des eaux souterraines aussi bien dans le roc que dans les sables et graviers. En effet, la très faible différence entre les apports et les pertes en eau dans ce modèle, l'écoulement simulé avec et sans pompage ainsi que l'impact des puits de l'UTES sont cohérents par rapport à ce qui a été observé.

Figure 5.14 : Étude de sensibilité du modèle à une variation de différents paramètres

5.11. Saturation

Les saturations en eau simulée dans ce modèle semblent être représentatives des saturations observées (Figure5.15 et 5.16). L'argile est quasiment saturé à 100% (seul le premier mètre ne l'est pas) et les unités situées en dessous sont saturées à 100%. Le complexe fluvio-glaciaire dans sa partie affleurante est à saturation résiduelle en surface, puis la saturation en eau augmente progressivement dans la frange capillaire pour atteindre une saturation complète dans l'aquifère. Cette désaturation des sables et graviers au-dessus du niveau d'eau de la nappe a pour conséquence de provoquer une désaturation sous les argiles au niveau des anciennes lagunes et en périphérie de la surface affleurante du complexe fluvio-glaciaire.

Figure 5.15 : Saturations simulées en plan

Figure 5.16 : Saturations simulées en coupe

5.12. Effet des fenêtres

Une attention particulière a été portée au niveau des différentes fenêtres présentes dans le modèle et il ressort que le pompage exercé par les puits du ministère crée des conditions hydrauliques particulières à ces emplacements. La Figure 5.17 représente les contours des vitesses d'écoulement verticales en chaque nœud du modèle selon un plan XY à différentes élévations. Des valeurs de vitesse négatives indiquent un écoulement dirigé vers les bas tandis que des valeurs positives indiquent un écoulement vers le haut. La première élévation (12,33 m) se situe dans le roc juste sous l'élévation minimale des fenêtres, la deuxième se situe au niveau de l'élévation moyenne des fenêtres (12,63 m) et la dernière dans l'unité de sable et gravier, bien au dessus des fenêtres (14,33 m). Il apparaît qu'en condition de pompage l'écoulement au niveau des fenêtres se fait préférentiellement du roc vers les dépôts meubles alors qu'en absence de pompage la situation est inversée, c'est-à-dire que l'écoulement se fait des sables et graviers vers le roc.

Figure 5.17 : Direction et vitesse verticale d'écoulement résultant de la simulation avec et sans pompage de l'usine de traitement des eaux souterraines en 3 élévations différentes de haut en bas : 12,33 m, 12,63 m et 14,33 m (les vitesses négatives indiquent un écoulement vers le bas)

5.13. Traçage de particule

Des traçages de particules ont été réalisés pour estimer l'aire d'alimentation des puits de l'UTES. La Figure 5.18 montre l'aire d'alimentation dans les dépôts meubles ainsi que la piézométrie des dépôts meubles. La Figure 5.19 montre l'aire d'alimentation de ces mêmes puits mais juste dans le roc ainsi que la piézométrie du roc. Il ressort que l'aire d'alimentation des puits dans les dépôts meubles recouvre complètement la zone contaminée des anciennes lagunes, s'étend jusqu'à proximité de la rivière Esturgeon, au sud de l'UTES et recouvre presque entièrement la partie Nord de la zone d'exclusion définie par le ministère de l'Environnement (Annexe II du *Règlement du captage des eaux souterraines*, Décret 696-2002 du 12 juin 2002). Dans le roc, l'aire d'alimentation des puits est moins importante mais recouvre complètement les zones où sont situées les fenêtres ainsi que le roc sous-jacent au site contaminé des anciennes lagunes. Le piège hydraulique actuellement en place semble donc être efficace pour capter les eaux souterraines issues de la source active de contamination (sols et roc souillés).

82

Figure 5.19 : Aire d'alimentation des puits du MENV dans le roc

5.14. Bilan hydraulique des puits de l'UTES

Les fichiers de sortie du logiciel FRAC3DVS permettent, à chacun des nœuds qui constituent les puits de pompage, d'estimer les flux. Ainsi, en connaissant la répartition stratigraphique de ces nœuds, il est possible de calculer le volume d'eau prélevé dans le roc par le pompage. Il ressort que 6,23 % de l'eau pompée par les puits de l'UTES provient du roc dans le modèle soit environ 242 m³/d. Cependant, les résultats du calcul sont légèrement biaisés par les nœuds situés à la surface du roc et au contact des sables et graviers. À ces nœuds, le flux d'eau provient à la fois du roc et des dépôts meubles. Il en résulte donc que moins de 6,23 % de l'eau pompée par les puits du MENV provient directement du roc d'après les résultats du modèle. Le système de pompage en place ne permet donc pas de faire un pompage efficace directement dans le roc. Cependant, la circulation d'eau du roc vers les dépôts meubles à travers les fenêtres dans le till fait en sorte que de l'eau pompée par les puits dans les dépôts meubles provient aussi du roc. En

utilisant les contours des vitesses (V) de la Figure 5.17, les surfaces (A) qu'ils recouvrent et en utilisant la porosité du roc (n), il est possible de calculer le flux total (F) d'eau passant par ces fenêtres et provenant du roc en utilisant la formule :

$$F(m^{3}/s) = V(m/s) \ge n \ge A(m^{2})$$
(4)

D'après ces calculs, il ressort que 8 % du volume pompé par les puits provient du roc par le biais des fenêtres. Ceci ajouté aux 6,23 % pompés directement dans le roc fait que un peu moins de 14,23 %, soit environ 553 m³/d, de l'eau pompée par les puits provient du roc.

5.15. Transport de masse

Des simulations de transport de masse ne considérant que le mécanisme d'advection (Domenico et Schwartz, 1990) ont été réalisées à partir de ce modèle pour vérifier s'il était capable de reproduire de manière simplifiée le panache de contaminants dissous observé au site des anciennes lagunes. Seules les lagunes contaminées ont été considérées dans le cadre de cette simulation. Il est toutefois important de souligner que la contamination se retrouve à la fois dans le roc et dans les dépôts meubles, les conditions hydrauliques qui prévalaient avant la mise en place des puits de l'UTES permettaient la migration d'eau contaminée au travers des fenêtres dans le till. Les lagunes représentent donc la seule source de contamination, un flux de masse nulle a été imposé partout ailleurs. Une condition spécifique de concentration de troisième type (*Specified third-type concentration*) a aussi été imposée pour la partie en surface du site contaminé. Le flux imposé à cette limite correspond aux infiltrations des précipitations sur le site pour représenter la dilution des contaminants par ces infiltrations.

Le critère de convergence de la simulation de transport de masse a été fixé à 1×10^{-10} . Ces simulations ont été réalisées avec une pondération en amont des vitesses d'écoulement à l'aide de l'option *upstream weighting of velocities*. Le pas de temps initial fixé pour ces simulations en régime transitoire est de 0,01s et le transport des contaminants est simulé sur 20 ans, cette durée représentant les conditions actuelles depuis la mise en place des

puits du MENV. La fonction *adaptive timestep* du simulateur FRAC3DVS a été utilisée pour gérer les pas de temps nécessaires à la résolution de l'équation de transport. Ainsi, une variation de plus de 5% dans la concentration de contaminant à un nœud du maillage va créer une réduction du pas de temps tandis qu'une variation inférieure à 5% va augmenter le pas de temps. Le pas de temps maximal autorisé est de 12h00. Pour réduire les problèmes de dispersion numérique et d'oscillation artificielle, le nombre de Péclet a été fixé à 0,5 (Huyakorn et Pinder, 1983) et le nombre de Courant à 1 (Zheng et Bennet, 2002).

Les simulations ont été réalisées avec une concentration maximale moyenne de 1 kg/m^3 (Lefebvre, communication personnelle). Une valeur de dispersivité horizontale de 10 m a été assignée en tenant compte de l'effet d'échelle qui est observé lorsqu'un panache migre sur une grande distance (Zheng et Bennett, 2002; Gelhar et al., 1992). Des valeurs de 0,01 m pour la dispersivité transversale et de 0,001 m pour la dispersivité transversale verticale ont été appliquées au modèle.

Les résultats présentés à la Figure 5.20 montrent la migration du panache de contaminants dissous. Celui-ci migre directement vers les puits du MENV ce qui confirme une fois de plus leur efficacité. D'après ces résultats, les contaminants mettraient environ 3 ans pour atteindre les puits de l'UTES. Cependant, seule l'advection a été considérée. Les concentrations résultant de cette simulation sont supérieures à celles observées sur le terrain, ce n'est pas surprenant puisque seule l'advection était prise en compte, mais ça peut aussi provenir de notre concentration initiale moyenne qui serait trop élevée et surtout trop uniforme.

85

Figure 5.20 : Simulation de l'évolution du panache de contaminants au cours du temps

Afin d'obtenir de meilleurs résultats, il faudrait faire des simulations d'écoulement en régime transitoire. Il est à noter que le simulateur FRAC3DVS a été récemment modifié, des améliorations ont été apportées dans la gestion des fichiers d'entrées, des paramètres capillaires et dans la résolution du transport. Les simulations qui seront effectuées avec ce logiciel (devenu HYDROSPHÈRE, Therrien et al., 2003) ne pourront qu'améliorer le modèle développé et la simulation du transport.

CHAPITRE 6 CONCLUSIONS ET RECOMMANDATIONS

Une conclusion, c'est quand vous en avez assez de penser.

Herbert Fisher

6.1. État de la situation

La compilation et l'analyse des données disponibles dans la région de Ville-Mercier ainsi que deux modèles numériques de l'écoulement des eaux souterraines en conditions saturées (modèle régional) et non-saturées (modèle local) permettent une assez bonne compréhension de l'écoulement dans le système aquifère de la région.

Au niveau régional, les résultats de la modélisation estiment à 50 mm/an la recharge moyenne de l'aquifère rocheux par les précipitations. Cette recharge semble se faire en périphérie de la région, à travers le sable et surtout le till là où il y a des hauts topographiques et où l'argile marine est absente.

Au niveau local, le complexe fluvio-glaciaire semble jouer un rôle important dans les évènements de recharge. Les simulations réalisées à l'échelle régionale et à l'échelle locale ont permis d'estimer la recharge réelle passant par le complexe fluvio-glaciaire à environ 50 à 65 mm/an.

Il semble aussi que la rivière Esturgeon joue un rôle important dans les deux modèles. Au niveau régional, il y a un creux piézométrique au centre Ouest de la région qui semble lié à la présence de la rivière Esturgeon qui draine l'aquifère dans sa partie finale où elle est en contact avec le socle rocheux et la rivière Châteauguay. Une corrélation a d'ailleurs été établie entre le débit de la rivière Châteauguay et les relevés piézométriques effectués dans les puits d'observation situés à proximité de la rivière Esturgeon. Au niveau local, la rivière Esturgeon draine l'aquifère des dépôts meubles là où elle est en contact avec l'unité de sable et gravier. Ces liens sont assez bien démontrés dans les deux modèles par l'obligation d'introduire des cellules à charge imposée le long du cours inférieur de cette rivière, au niveau de son embouchure avec la rivière Châteauguay pour le modèle régional, et au niveau où elle recoupe le complexe fluvio-glaciaire pour le modèle local.

Basé sur une recharge régionale de l'ordre de 50 mm/an, le niveau d'utilisation actuel des ressources en eau souterraine est de l'ordre de 29 % soit une proportion assez importante de la recharge de la nappe. Présentement, la recharge de la nappe constitue environ 12 millions de m³ d'eau. Actuellement ce sont 3 551 125 m³ d'eau qui sont prélevés par les activités municipales et agricoles. Par contre, le pompage saisonnier plus intense ne semble pas avoir un impact important sur les niveaux piézométriques

Les études de sensibilité de l'écoulement de l'aquifère indiquent qu'une diminution de 20% de la recharge (soit l'équivalent d'une augmentation de 20% de l'exploitation) pourrait générer une baisse de 1 m des niveaux piézométriques sur la région. Si l'utilisation des ressources en eau souterraine atteignait 40%, une baisse significative des niveaux piézométriques serait observée. En effet, cette augmentation supplémentaire de 10% représente environ 1 310 000 m³ d'eau et engendrerait une baisse des niveaux piézométriques d'environ 0,6 m sur un an pour l'ensemble de la région. Le modèle

88

prévoit un effet important sur les niveaux d'eau reliés aux puits municipaux de St-Rémi, que ce soit dans les conditions d'exploitation actuelle ou futures.

Les activités maraîchères, quant à elles, sont principalement localisées dans les zones de recharge dans la partie nord-est et est de la zone d'étude, là où la recharge est plus forte et où la possibilité est moindre d'affecter le piège hydraulique des puits de l'usine du MENV aux anciennes lagunes.

Au niveau régional, l'étendue de la contamination vers l'ouest n'est pas complètement définie. Le devenir des contaminants loin du secteur des lagunes est mal connu et surtout, malgré toutes les études réalisées à l'époque, il n'est pas possible de bien connaître l'effet de la migration initiale de la contamination avant la mise en place de l'usine du MENV. Il y a peu de contrôle piézométrique et de qualité d'eau à l'ouest du secteur des anciennes lagunes et le MENV devrait palier à cette lacune. Cependant, les deux modèles montrent que le piège hydraulique généré par le pompage des puits du MENV aux anciennes lagunes de Ville-Mercier est efficace et ce plus particulièrement au niveau du modèle local. Les traçages de particules réalisés à l'aide de ce modèle montrent que l'aire d'alimentation des puits de pompage englobe le site des anciennes lagunes, source de la contamination, aussi bien dans le roc que dans les dépôts meubles. La contamination observée à l'extérieur de la zone de confinement semble donc résulter de la migration des puits de pompage du MENV.

Le puits municipal de Ste-Martine représente un approvisionnement en eau souterraine qui pourrait être à risque s'il n'est pas opéré sous des conditions spécifiques. Ce risque est causé 1) par la présence de contamination dans l'aquifère rocheux détectée assez loin au sud de la zone d'exclusion par les puits de la ceinture d'alerte du MENV, 2) par le patron d'écoulement régional qui est convergent vers la municipalité de Ste-Martine, 3) par le potentiel existant pour que la migration des contaminants se fasse tant dans du sable et gravier que dans le roc à partir du secteur des anciennes lagunes de Ville-Mercier, et 4) la protection accordée au puits par la présence de la rivière Esturgeon, qui

89

draine l'eau souterraine en provenance du nord où sont situées les anciennes lagunes, pourrait ne pas être complètement efficace. Toutefois, les puits d'observation 030978062, 03097094 et 03097095 situés en amont de la rivière Esturgeon sont échantillonnés de manière régulière par le ministère de l'Environnement. Ces puits non contaminés constituent une ceinture d'alarme qui permettra de prendre les décisions nécessaires en cas d'apparition de contaminant. De plus, le modèle prédit que l'aire d'alimentation du puits est assez éloignée des secteurs contaminés. En raison du suivi effectué, il n'y a pas de risque pour la santé humaine mais bel et bien un risque financier pour la municipalité de Ste-Martine si la présence de contaminants était enregistrée dans les puits de la ceinture d'alarme. En effet, dans un tel cas, la municipalité se retrouverait dans l'obligation de se tourner vers une autre source d'approvisionnement en eau potable.

Le modèle local a aussi permis de préciser les quantités d'eau pompées dans le roc et celles prélevées dans les dépôts meubles par le système de contrôle actuellement en place. Cette information méconnue jusqu'alors permet de mieux quantifier les performances des puits du MENV dans le captage des eaux contaminées.

Le modèle local montre aussi l'importance des échanges hydrauliques qui existent entre les aquifères des dépôts meubles et de roc par l'intermédiaire des fenêtres dans le till. En effet, le pompage des puits du MENV inverse les conditions hydrauliques initiales et l'aquifère de roc alimente maintenant l'aquifère des dépôts meubles par le biais des fenêtres. Cette particularité locale joue un rôle crucial dans les mécanismes hydrauliques du site et devra être prise en compte lors du choix des technologies de remplacement du système de contrôle actuellement en place.

Toutefois, les simulations de transport de masse qui ont été réalisées avec le modèle local ne sont pas représentatives des observations de terrain. En effet, lors de ces simulations les concentrations résultant des simulations sont supérieures à celles observées sur le terrain. Les simulations ont aussi montré que les contaminants mettaient environ 3 ans pour arriver jusqu'aux puits de l'UTES, mais il faut considérer que ces simulations se faisaient sans facteur de retard ou de dégradation.

Ces simulations ont tout de même permis de préciser une fois de plus l'efficacité des puits de pompage dans le captage du panache de contaminants dissous. Le modèle reproduit suffisamment bien le comportement hydraulique du système pour délimiter de façon convenable « l'enveloppe » de la zone de confinement hydraulique.

6.2. Gestion de l'eau souterraine dans la région de Ville-Mercier

Au point de vue alimentation en eau des municipalités, le réseau des puits d'observations, mis en place par le MENV, assure la sécurité du puits de Sainte-Martine mais cette surveillance doit être maintenue. Les approvisionnements des autres municipalités ne semblent pas menacés à priori par la contamination issue des anciennes lagunes mais cet aspect dépasse le mandat de la présente étude.

Dans la région, pour protéger l'approvisionnement en eau souterraine en période de basses eaux, il serait de faire respecter les dispositions de la Section II du Chapitre V du *Règlement sur le captage des eaux souterraines* (Q-2, r.1.3) qui sont en vigueur depuis le 15 juin 2002. Il faudrait également s'assurer de respecter l'interdiction d'exploiter l'eau souterraine dans la nouvelle zone d'interdiction définie à l'article 42 du *Règlement sur le captage des eaux souterraines* (RCES) pour éviter de perturber le piège hydraulique des puits de l'usine du MENV.

Il est recommandé de mettre en place une zone tampon, à l'extérieur de la zone d'interdiction de pompage définie dans le RCES, dans laquelle l'installation de puits est autorisée à la condition qu'un suivi régulier de la qualité de l'eau pompée soit mis en place comme mentionné dans le RCES lorsque l'aire d'alimentation d'une installation de captage recoupe la zone d'interdiction. Le débit maximal autorisé pour un puits ne devra pas excéder 800 m³/d.

En vue du remplacement du piège hydraulique, les opportunités d'utiliser d'autres approches plus modernes et efficaces pour contrer la migration de la contamination du secteur des anciennes lagunes devront être considérées. Lors du choix de la technologie appropriée, il serait bon de tenir compte de l'écoulement qui se fait à travers les fenêtres dans le till. En effet, les simulations ont montré qu'à ce niveau le pompage exercé par les puits du ministère a inversé le sens d'écoulement, l'eau s'écoulant maintenant du roc vers les sables et graviers. Un arrêt trop brusque du pompage pourrait provoquer un retour à la situation de départ et ainsi favoriser la migration du panache de contaminants dans le roc sous jacent. L'utilisation du modèle 3D en régime transitoire pourrait permettre d'estimer l'impact d'un tel arrêt ainsi que l'impact des technologies de remplacement sur l'interception des contaminants dissous et l'écoulement souterrain. Il permettra ainsi de trouver le meilleur scénario à appliquer pour mettre en opération la ou les technologies de remplacement qui auront été retenues.

6.3. Questions encore à résoudre et données requises

Il serait utile d'obtenir des données supplémentaires sur la piézométrie ainsi que sur la qualité d'eau au sud de la zone d'exclusion et à l'ouest du secteur des anciennes lagunes. Advenant la mise en place de nouveaux puits, ces derniers devraient permettre de préciser la stratigraphie des dépôts meubles et surtout la présence de sable et gravier sous l'argile au sud de la zone d'exclusion. Les données stratigraphiques ainsi recueillies permettraient de préciser les coupes stratigraphiques. La piézométrie est également mal définie à l'est de la rivière Châteauguay dans la partie nord de la zone d'étude régionale. La mise en place d'une sonde dans un puits de particulier situé dans cette zone serait suffisante. Il serait aussi important de préciser la recharge passant par les sables et graviers du complexe fluvio-glaciaire à l'aide d'hydrogramme de puits provenant de puits crépinés dans cette unité, ici encore, l'ajout d'une sonde dans un des puits déjà existants serait suffisant.

92

Le rôle de la Rivière Esturgeon semble important dans l'écoulement régional ainsi qu'en relation avec la migration potentielle de contaminants en provenance du secteur des anciennes lagunes. Il serait avantageux de préciser le débit de ce cours d'eau et son lien hydraulique avec l'aquifère rocheux. Le rôle protecteur qu'elle joue dans le modèle régional n'est peut être que le résultat des conditions imposées. D'ailleurs, ce modèle n'étant qu'un modèle 2,5D, l'effet de la troisième dimension n'est pas représenté et l'eau pourrait passer sous le lit de la rivière Esturgeon. Au niveau local, la rivière Esturgeon semble avoir un impact important sur la migration des contaminants dans l'unité de sable et gravier, en effet, depuis la mise en place du piège hydraulique, la rivière alimente les puits du MENV créant ainsi une barrière supplémentaire contre la migration des contaminants en provenance des anciennes lagunes.

Des mesures piézométriques in situ à St-Rémi permettront de vérifier la valeur des rabattements générés par les puits municipaux dans le modèle. Ces mesures pourront être prises dans le cadre du programme de suivi à long terme de la piézométrie régionale mis en place par le ministère de l'Environnement. Ce programme permet de surveiller l'évolution de la piézométrie dans les endroits sensibles de la région d'étude comme la zone d'exclusion, Ste-Martine et St-Rémi. Le ministère de l'Environnement possède déjà des sondes dans la région d'étude. Idéalement, on pourrait ajouter deux sondes afin d'avoir un suivi complet à l'échelle de la région : une dans la zone tampon et une dans la zone à pompage élevé des maraîchers de St-Rémi.
RÉFÉRENCES

Trop de lecture peut étouffer le génie.

Jean le Rond d'Alembert

ADS GROUPE-CONSEIL INC., 1993. NAPL and Groundwater Sampling Program-Summer 1993, Ville Mercier, the Mercier remediation panel. No project : 17-36-568-005.

ANDERSON, M.P., and WOESSNER, W.W., 1992. Applied groundwater modelling : Simulation of flow and advective transport. Academic Press, 381p.

BACHAND, G., 1987. Simulation de la charge hydraulique à Ville Mercier. Mémoire de Maîtrise en géologie, Université de Sherbrooke, Québec, Décembre 1987, 179p.

BEAR, J., 1972. Dynamic of Fluids in the Porous Media. American Elsevior, New York, NY, 764p.

BIOGÉNIE INC., 1995. Campagne de forage dans la région de Mercier. Rapport préparé pour le ministère de l'Environnement, août 1995, 20p.

BIOGÉNIE INC., 1995. Campagne de caractérisation numéro 1, printemps 1995. Rapport préparé pour le ministère de l'Environnement, septembre 1995, 13p.

BYU, 2000: Department of Defense Groundwater Modeling System (GMS), version 3.1, Tutorial Manual, Brigham Young University-Environmental Modeling Research Laboratory, 313p.

CARSEL, R.F., PARRISH, R.S., 1988. Developing joint probability distributions of soil water retention characteristics. Water Resources Research, 24, pp 755-769.

CHAPMAN, T., 1999. A comparison of algorithms for streamflow recession and baseflow separation. Hydrological processes, 13, 701-714.

CHAPUIS, R.P., 1999. Guide d'interprétation des essais de pompage. Éditeur officiel du Québec, Environnement Québec, ISBN 2-551-18108-9, 158p.

CNFS, 1993. Caractérisation exhaustive du panache de contamination des anciennes lagunes de Ville-Mercier. Volume 1-5, ministère de l'Environnement du Québec.

COOLEY, R.L., 1983. Some new procedures for numerical solution of variably saturated flow problems. Water Resources Research, 19 (5), pp1271-1285.

D'ANJOU, N., 1991. Simulation de pièges hydrauliques par éléments finis pour l'aquifère fracturé de Ville Mercier. Mémoire de maîtrise en géologie, Université Laval, Québec, avril 1991, 99p.

DENIS, C., 1991. Caractérisation hydrogéologique du substratum rocheux fracturé du site pollué de Ville-Mercier. Mémoire de Maîtrise, Université du Québec à Chicoutimi, 177p.

DION, D.J.,COCKBURN, D., CARON, P.,1985. Levé géotechnique de la région de Beauharnois-Candiac. Rapport DV 85-05, cartes 2015, ministère de l'Énergie et des Ressources du Québec, Québec.

DOMENICO, P.A., and SCHWARTZ, F.W., 1990. Physical and chemical hydrogeology. John Wiley & Sons, New York, 506p.

FORATEK INC., 1987. Tricil, programme de forages. Rapport 857, projet 87014, foratek Inc., 33p.

FREEZE, A.R., 1965. Hydrogéologie de la region de Lachine St-Jean, Québec (au Sud du Saint-Laurent). Commission géologique du Canada, Bulletin 112, 21p.

GELINAS, P., ISABEL, D., ROULEAU, A., 1989. Aquifer decontamination for toxic organics: the case of Mercier, Québec. Contract KE405-8-6001/01-SS, Université Laval et U.Q.A.C., 271p.

GELHAR, L.W., WELTY, C., REHFELDT, K.W., 1992. A critical review of data on field scale dispersion in aquifers. Water Resources Research, 28 (7), pp 1955-1974.

GÉOMINES LTÉE, 1983. Étude hydrogéologique, Région de Saint-Rémi. Rapport 83150, ministère de l'Agriculture, des Pêcheries et de l'Alimentation, 22p.

GLOBENSKY, Y., 1986. Géologie de la région de St-Chrysostome et de Lachine. Rapport MM 84-02, ministère de l'Energie et des ressources du Québec.

GREGI, 1993. Aquifer decontamination for toxic organics: the case study of Ville-Mercier, Québec. Final Report, Volume II. Université Laval, 270p.

HAMEL, A., 2001. Groundwater recharge of fractured rock aquifers in South-Western Quebec. The international association of Hydrogeologists, pp 1078-1084.

HGE, Hydro conseil INC., 1996. Puits 11, demande d'autorisation auprès du MEF et de la CPTAQ. Rapport de synthèse, Tome 1 et 2. Ministère de l'Environnement du Québec.

HUYAKORN, P.S., PINDER, G.F., 1983. Computational Methods in Subsurface Flow. Academic Press, New York, NY, 473p.

HUYAKORN, P.S., THOMAS, S.D., THOMPSON, B.M., 1984. Techniques for making finite elements competitive in modeling flow in variably saturated porous media. Water Resources Research, 19 (4), pp 1019-1035.

HYDROGÉO CANADA INC., 1978. Sondages de reconnaissance et expertise hydrogéologique. Rapport préparé pour Tricil, contrat 2848, 13p.

HYDROGÉO CANADA INC., 1981. Hydrogéologie et contamination des eaux souterraines, Ville Mercier. Rapport hydrogéologique, ministère de l'Environnement du Québec, 30p.

LASALLE, P., 1980. Les sédiments meubles de la région SAINT-JEAN-LACHINE. Rappport DPV-780, ministère de l'Énergie et des Ressources du Québec, direction de la géologie.

MCCORMACK, R., 1981. Étude hydrogéologique - Bassin versant de la Châteauguay. Ministère de l'Environnement du Québec, rapport E.F.-2.

McDONALD, M.G. and HARBAUGH, A.W., 1988. A modular three-dimensionnal finite difference ground-water flow model. Techniques of Water-Ressources Investigations 06-A1, USGS, 576p.

MINISTÈRE DE L'ENVIRONNEMENT, 2002. Règlement sur le captage des eaux souterraines. Loi sur la qualité de l'environnement, 17p.

POULIN, M., 1977. Groundwater contamination near a liquid waste lagoon, Ville Mercier, Quebec. M.Sc. Thesis, University of Waterloo. 158p.

SYLVESTRE, M., 1982. Evaluation de la capacité de deux puits communautaires d'irrigation à St Rémi, Comté de Napierville. Rapport ES-1083, ministère de l'Environnement, Service des eaux souterraines, 19p.

TECHNOREM INC., juillet 1998. Remise en service du puits municipal de Saint-Martine - Évaluation des impacts sur la protection des eaux souterraines de la région de Mercier. Ministère de l'Environnement et de la Faune du Québec.

THERRIEN, R., SUDICKY, E.A., 1996. Three-dimensional analysis of variablysaturated flow and solute transport in discretely-fractured porous media, Journal of Contaminant Hydrology, 23, pp 1-44.

THERRIEN, R., PANDAY, S., McLAREN, R.G., SUDICKY, E.A., DEMARCO, D., MATANGA, G., HUYAKORN, P., 2003. Hydrosphere, a three dimensional numerical model describing fully-integrated subsurface and overland flow and solute transport. Tutorial manual, Groundwater Simulations Group, 220p.

TÒTH, J., 1963. A theoretical analysis of groundwater flow in small drainage basins. Journal of Geophysical Research 68, pp 4785-4812.

ZHENG, C., BENNETT, G.D., 2002. Applied Contaminant Transport Modeling second edition. Wiley-Interscience, 621p.

ANNEXE A

Puits de pompage sur la région de Ville-Mercier

Nom	UTM X NAD-83	UTM Y NAD-83	Pompage maximum sur	Pompage annuel reporté
	and the second		l'année (m ³ /d)	sur 4 mois (m ³ /d)
1	591986.00	5007382.00	0002.19	006.66
2	594025.00	5008600.00	0014.70	044.71
3	594045.00	5014730.00	0011.34	034.49
4	594061.00	5014008.00	0002.52	007.67
5	594097.00	5015424.00	0013.02	039.60
6	594126.00	5015596.00	0008.00	024.33
7	594161.00	5008117.00	0015.78	048.00
8	594190.00	5015047.00	0009.87	030.02
9	594198.00	5008485.00	0023.19	070.54
10	594249.00	5015816.00	0010.50	031.94
11	594289.00	5008388.00	0003.48	010.59
Aliment carrières	594434.00	5008268.00	0916.00	916.00
13	594454.00	5017655.00	0025.20	076.65
14	594515.00	5016069.00	0018.99	057.76
15	594602.00	5008179.00	0001.05	003.19
16	594840.00	5008081.00	0011.36	034.55
17	595057.00	5007700.00	0003.15	009.58
18	595086.00	5007868.00	0012.60	038.33
19	595139.00	5007985.00	0002.19	006.66
20	595301.00	5007435.00	0010.95	033.31
21	595448.00	5007734.00	0012.62	038.39
22	595452.00	5016392.00	0003.15	009.58
23	595502.00	5016104.00	0002.28	006.94
24	595537.00	5007516.00	0000.64	001.95
25	595905.00	5016878.00	0016.89	051.37
26	595909.00	5006889.00	0000.08	000.24
27	595975.00	5006707.00	0010.92	033.22
28	596100.00	5006441.00	0006.10	018.55
29	596626.00	5018130.00	0008.41	025.58
30	596649.00	5018398.00	0000.70	002.13
31	596907.00	5006209.00	0013.27	040.36
32	596968.00	5005864.00	0011.55	035.13
33	596988.00	5020193.00	0002.19	006.66
34	597001.00	5018195.00	0002.19	006.66
35	597031.00	5015051.00	0002.19	006.66
36	597049.00	5010174.00	0003.24	009.86
37	597235.00	5010018.00	0008.40	025.55
38	597606.00	5009563.00	0023.55	071.63
39	597624.00	5018398.00	0010.96	033.34
40	597647.00	5004643.00	0011.30	034.37
41	597852.00	5009503.00	0008.40	025.55
42	597951.00	5009202.00	0002.19	006.66
43	597964.00	5004337.00	0008.42	025.61
44	598046.00	5003836.00	0006.83	020.77
45	598059.00	5004434.00	0006.30	019.16
46	598269.00	5016377.00	0006.30	019.16
47	598342.00	5009078.00	0005.00	015.21
48	598756.00	5007318.00	0008.43	025.64
49	598933.00	5008372.00	0007.92	024.09
50	599105.00	5003447.00	0000.04	000.12
51	599107.00	5019433.00	0009.50	028.90
52	599576.00	5007769.00	0000.03	000.09
53	599587.00	5019286.00	0005.48	016.67
54	599966.00	5018023.00	0018.99	057.76

Nom	UTM X NAD-83	UTM Y NAD-83	Pompage maximum sur	Pompage annuel reporté
han di sana di sa			l'année (m ³ /d)	sur 4 mois (m ³ /d)
55	600025.00	5018144.00	0003.87	011.77
56	600105.00	5018590.00	0003.24	009.86
57	600291.00	5002916.00	0002.19	006.66
58	600405.00	5018710.00	0007.56	023.00
59	600571.00	5019300.00	0028.61	087.02
60	600734.00	5018369.00	0006.15	018.71
61	601233.00	5010091.00	0361.20	1098.65
62	601411.00	5005444.00	0005.88	017.89
63	601478.00	5010741.00	0001.48	004.50
64	601494.00	5018340.00	0002.19	006.66
65	601594.00	5019057.00	0005.80	017.64
67	601935.00	5010396.00	0122.83	373.61
68	601991.00	5008946.00	0013.15	040.00
69	602061.00	5009312.00	0002.19	006.66
70	602179.00	5013251.00	0000.65	001.98
71	602300.00	5013850.00	0137.10	417.01
72	602316.00	5013882.00	0005.25	015.97
73	602351.00	5013249.00	0056.40	171.55
74	602554.60	5015589.00	0167.77	510.30
75	602568.00	5018042.00	0048.24	146.73
76	602583.00	5017323.00	0001.87	005.69
77	602583.00	5016477.00	0012.43	037.81
78	602635.00	5014574.00	0002.80	008.52
79	602640.00	5007404.00	0010.50	031.94
80	602683.60	5011561.30	0000.43	001.31
81	602755.30	5010457.70	0031.13	094.69
82	602769.00	5008379.00	0371.20	1129.07
83	602843.00	5015348.00	0001.27	003.86
84	602872.00	5012053.00	0045.36	137.97
85	602896.00	5015306.00	0004.14	012.59
86	602930.00	5006396.00	0051.66	157.13
87	602989.00	5006326.00	0021.00	063.88
88	603156.00	5017915.00	0000.04	000.12
89	603424.00	5005980.00	0001.87	005.69
90	603547.00	5017761.00	0040.96	124.59
91	603650.00	5008416.00	0006.97	021.20
92	603674.00	5017618.00	0002.19	006.66
93	603701.00	5012421.00	0039.54	120.27
94	603740.00	5011207.00	0325.00	988.54
95	603744.30	5015244.90	0002.19	006.66
96	603773.00	5008763.00	0006.67	020.29
97	603787.30	5011489.60	0000.04	000.12
98	603817.00	5017571.00	0162.00	492.75
99	603844.60	5008494.10	0001.87	005.69
100	603844.60	5009583.40	0001.27	003.86
101	603951.00	5011943.00	0036.92	112.30
102	603993.00	5009052.00	0002.19	006.66
103	604341.00	5012392.00	0006.00	018.25
104	604532.60	5013352.90	0011.39	034.64
105	604590.00	5009540.00	0009.04	027.50
106	604790.60	5010414.70	0022.30	067.83
107	604829.00	5012739.00	0003.21	009.76
108	604905.20	5011231.70	0002.19	006.66
109	605175.00	5007569.00	0093.60	284.70

Nom	UTM X NAD-83	UTM Y NAD-83	Pompage maximum sur	Pompage annuel reporté
·			l'année (m ³ /d)	sur 4 mois (m ³ /d)
110	605178.00	5008220.00	0002.19	006.66
111	605185.00	5006838.00	0002.19	006.66
112	605196.00	5009544.00	0000.01	000.03
113	605284.00	5010031.00	0009.76	029.69
114	605426.00	5013489.00	0010.96	033.34
115	605530.00	5009104.00	0021.14	064.30
116	605547.00	5009999.00	0002.19	006.66
117	605665.00	5013666.00	0046.23	140.62
118	605707.90	5011360.70	0012.73	038.72
119	605707.90	5012521.60	0258.00	784.75
120	605722.20	5010400.30	0000.64	001.95
121	605779.60	5009526.00	0001.95	005.93
122	605822.00	5008522.70	0028.90	087.90
123	606046.00	5006026.00	0012.65	038.48
124	606423.00	5011205.00	0033.40	101.59
125	606487.00	5011236.00	0002.81	008.55
126	606553.50	5014585.60	0002.19	006.66
127	606582.00	5008451.00	0020.30	061.75
128	606625.00	5009583.00	0006.18	018.80
129	606625.20	5010357.30	0000.08	000.24
130	606636.00	5011407.00	0018.80	057.18
131	606639.50	5015517.20	0002.19	006.66
132	606653.90	5007318.70	0061.40	186.76
133	606868.00	5015321.00	0010.20	031.03
134	606935.00	5015223.00	0004.71	014.33
135	607031.00	5006236.00	0005.76	017.52
136	607035.00	5007864.00	0007.35	022.36
137	607073.00	5015722.00	0011.64	035.41
138	607384.90	5014513.90	0000.02	000.06
139	607426.00	5008905.00	0020.80	063.27
140	607485.00	_5008494.10	0013.30	040.45
141	607488.00	5016099.00	0001.24	003.77
142	607692.00	5009368.00	0015.84	048.18
143	607700.20	5009597.70	0017.52	053.29.
144	607728.80	5011547.00	0000.33	001.00
145	607800.50	5013467.60	0012.30	037.41
140	607884.00	5009825.00	0012.30	037.41
147	609599.00	5010175.00	0023.19	070.54
140	000500.00	5010566.70	0012.60	036.33
149	608690.20	5009554.70	0011.60	035.47
150	609703 50	5013610.90	0006.12	035.56
152	608722.20	5012307.30	0000.12	018.62
152	600502.20	5014400.60	0140 50	427.25
154	609606 50	5012725.60	0140.50	427.35
155	609620.00	5015723.00	0029.30	003.73
156	609655.00	5012234 00	001110	003.33
157	609692 50	5011518 30	0327.00	994.63
158	609782.00	5015702.00	0003 62	011 01
159	610466 50	5012550.30	0002 19	006.66
160	610552.50	5013625 30	0008.33	025.34
161	609700.00	5012500.00	0053.00	161 21
162	602700.00	5007500.00	0000.29	000.88
163	601700.00	5010400.00	0000.06	000.18

481 - 18 1 7 4 14

가 같이 많이 가 가

Nom	UTM X NAD-83	UTM Y NAD-83	Pompage maximum sur	Pompage annuel reporté
			l'année (m ³ /d)	sur 4 mois (m ³ /d)
164	600600.00	5018400.00	0005.67	017.25
165	594700.00	5016300.00	0041.48	126.17
. 166	594408.70	5012184.00	0001.10	003.35
Laidlaw	599530.83	5015582.38	0260.00	
MENV	599331.19	5015273.50	0100.00	
St Isidore	603403.50	5017193.70	1100.00	
St Remi # 11	607557.90	5013417.50	1961.30	
St Remi # 8	608759.90	5013568.40	0302.40	
St Remi # 5	608901.60	5012823.40	0360.00	
St Remi # 4	608723.30	5012608.60	0482.40	
St Remi # 6	608106.30	5012828.00	0295.20	
St Remi # 7	607882.40	5012690.80	0180.00]
Ste Martine	594547.70	5011600.00	0810.00	1

ANNEXE B

Débits de la rivière Châteauguay

Chateaugay 30905 BV: 2490 km²

Débit journalier en m³/s - Moyennes mensuelles

Annuel		37.82	54.19	52.43	43.28	33.72	48.68	40.14	39.16	37.48	24.44	44.03	30.11	41.7	29.6	33.36	41.46	27.69	24.79	28.13	45.35	35.65	29.19	45.46	35.27	27.52	52.76	37.04	48.43	23.84	45.25		37.93
Décembre	24.9	28.97	41.43	46.66	24.64	36.36	16.83	43.23	9.37	49.94	51.08	25.6	55.2	102.9	29.31	17.64	43.09	53.95	15.21	13.21	68.95	16.95	17.8	25.61	22.12	15.63	67.01	16.03	19.33	32.61	39.11		34.54
Novembre	24.67	7.64	65.43	27.44	19.81	49.76	26.44	46.27	8.48	37.47	40.46	78.67	44.05	42.48	10.71	34.55	58.24	18.66	62.77	42.94	53.11	8.9	53.11	52.73	18.4	45.48	86.05	34.44	14.29	23.96	20.22		37.28
Octobre	21.84	6.75	20.35	18.39	7.15	23.34	50.83	95.35	9.59	25.68	12.57	76.27	13.52	9.06	5.74	20.49	60.21	7.63	16.44	14.91	50.76	9.64	12.92	30.09	3.86	29.74	20.64	12.37	24.42	37.96	9.12		24.51
Septembre	14.77	11.55	9.94	13.19	6.84	9.89	14.89	14.84	8.83	31.12	21.91	53.78	15.16	4.42	6.26	9.22	36.31	10.08	8.64	10.43	10.99	6.47	8.33	13.31	6.34	4.04	7.79	7.71	12.99	15.04	11.13		13.43
Août	10.19	7.9	51.05	13.77	16.64	2.56	12.54	7.74	6.26	4.81	7.15	55.95	9.94	7.53	6.57	5.1	38.34	6.84	8.25	9.65	20.02	4.63	14.04	8.16	6.3	11.64	12.86	6.4	8.87	2.88	10.62		12.81
Juillet	11.65	8.78	47.04	13.84	17.36	3.55	19.5	4.75	7.08	5.59	5.45	17.28	4.61	6.61	4.58	22.32	19.96	14.06	16.02	7.4	16.79	4.59	8.01	9.3	12.62	5.67	50.76	7.98	54.46	9.02	13.85		14.47
Juin	8.91	11.58	51.58	63.45	20.16	10.67	20.53	8.22	30.66	11.85	1.7.1	22.87	11.11	17.88	19.91	17.02	19.02	15.1	8.28	20.48	19.6	9.53	12.57	36.79	29.79	19.58	47.64	11.29	31.79	3.95	19.59	24.6	20.68
Mai	34.36	71.55	71.63	58.19	68.5	27.27	65.45	14.38	35.6	27.17	16.39	22.34	17.87	71.61	62.38	24.12	29.08	15.95	36.5	47.2	30.29	32.6	22.87	34.79	53.99	18.39	84.84	46.42	17.05	8.69	93.52	25.65	40.21
Avril		231.73	226.72	88.07	163.21	116.88	69.58	75.25	239.66	86.73	59.94	36.97	92.89	117.99	78.94	80.56	45.35	59.74	57.56	85.73	93.43	140.84	110.24	267.99	182.34	29.39	102.53	132.28	134.49	45.89	139.83	223.08	116.64
Mars		35.12	26.12	163.53	88.11	76.66	178.93	152.77	51.83	134.71	51.29	44.66	72.9	67.26	40.83	113.69	108.32	102.45	37.61	65.38	100.77	86.65	67.12	18.99	49.27	77.26	25.99	82.95	186.15	63.82	108.94	40.56	81.31
Février		16.47	14.45	47.96	36.9	17.98	88.56	9.93	22.23	13.41	5.41	85.35	10.33	35.11	74.81	33.09	16.94	12.61	16.96	10.34	47.91	58.05	7.67	12.96	25.52	11.6	42.49	50.61	19.25	16.99	46.21	41.8	30.58
Janvier		17.76	24.56	74.74	49.63	29.7	22.08	8.89	40.34	21.27	13.95	6.65	13.68	17.58	15.11	22.56	24.66	15.19	11.29	9.87	31.61	48.94	15.61	34.74	12.72	61.67	84.32	34.08	58.29	25.3	30.9		191.54
Année	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	Moyennes

ANNEXE C

Données stratigraphiques régionales et locales

2 22.9 29.22 2 32.9 17.72	2 32.9 17.72		2 29 28.62	2 27.1 24.42	6 31.1 41.46	6 29 42 96	6 91.4 51.56	4 25.9 36.84	22 27 26 26 27	38.1 31.42	4 12.9 41.74	4 80.8 41.14	s 35.1 41.36	32 52.08	53.3 50.98	5 22.9 56.66	5 63.1 50.56	2 99.1 31.62	57.9 53.4	5 25.9 42.06	6 41.1 39.66	21 48.16	2 30.00 2 37 47 76	3 01.4 1 42.06	2 20 81.4 12.00 2 20 81.48	1 10 F 57 85	50.3 29.82	31.69	7 13.1 32.62	32 24.08	24.1 32	9 13.7 47.29	1 13.4 45.74	1 25.6 35.34	1 38.1 31.74	1 91.4 33.84	2 19.2 28.32	1 29 28.64	1 29.9 31.64	50.3 17.08	25.6 33.54	25.6 22.82	1 20.5 33.24 7 66 17 66	19.5 11.00	19.5 25.3	1 19.5 1 25.3	32 26.5	5 12.8 47.25	22.9 43.56	12.2 32.3	11.8 20.18	8.5 23.48	1 10.3 21.98	24.1 22.5	35.1 16.7	1 11.9 23.48	18.3 30.72	38.1 18.33	19.0 20.32 21.0 24.77	33.2 26.22	24.4 47.18	23.2 38.04	23.5 35.6 16 E 27.10	21.12 21.12	19.2 44.52	36.6 1 45.12	
6.4 45.72 4.9 45.72 41.0 45.72	4.9 45.72	11.0 15.7'	1.2	5.8 45.72	11.6 60.94	11 60.96	82 60.96	9.4 53.34	34 4575	23.8 45.72	0.6 53.34	68.6 53.34	15.5 60.96	15.5 68.58	35.7 68.58	18.6 60.96	52.7 60.96	85 45.72	35.1 76.2	7 60.96	19.8 60.96	90.09 20.09	1.9 00.95	72.5 60.06	71 0 68 58	00.00 07.5 F. F. B.0 06	28.3 51.82	7 1 50.29	6.1 39.62	25.6 30.48	11.9 44.2	4.6 56.39	5.8 53.34	7.6 53.34	16.5 53.34	71.9 53.34	1.8 45.72	4.3 53.34	8.2 53.34	36.9 30.48	5.8 53.34	8.8 39.62	0.4 53.34 10.7 26.50	7.4 30.20 7.4 38.1	6.7 38.1	6.7 1 38.1	20.4 38.1	6.7 53.35	5.5 60.96	0.4 38.1 1.5 30.40	1.0 30.40	1.5 30.48	1.8 30.48	8.5 38.1	13.7 38.1	4.9 30.48	9.4 39.62	29 27.43	0.9 47.67 47.67	13.7 45.72	9.1 62.48	7.9 53.34	21 38.1	70 50 11	18 45.72	36 1 45.72	
16.5 ĉ		1 22	17.1	21.3	19.5	18	9.4	16.5	19.5	14.3	11.6	12.2	19.6	16.5	17.6	4.3	10.4	14.1	22.8	18.9	21.3	12.8	6.77 40.6	18.9	7 1		22	18.6		6.4	12.2	9.1	7.6	18	21.6	19.5	17.4	24.7	21.7		19.8	16.8	20.1	17.1	12.8	12.8	11.6	6.1	17.4	10.0	10.3	7	8.5	15.6	21.4	7	8.9	9.1	17.9	19.5	15.3	15.3	2.5 19.5	8.91	1.2	0.6	
			0,3 terr		3 terr	5.2 terr		3 terr	3 terr	14.3 terr		3.7 terr+8.5aro/silt	19.5 terr		17.7 terr	4.3 terr		14 arg/silt		18,9 sabl/arg	18,3 terr sur roc	12,0 terr 4 2 torr	4,3 teri 10.7 am/hlo sur mr	3 terr am: 6.7 sah/am:			11.3 ang/blo sur roc	9.4 arg/blo sur roc	7 sabl/ard	Bipaopo -	12.2 and/bloc	9,1 arg/bloc	7,6 arg/bloc	10,4 arg/bio sur roc	21,6 terr					13,4 arg/bloc	24	9,1 arg/bio sur roc	0,/ 16/1 0.8 am/hho	sto alguno	12.8 am/blo	12.8 arg/blo	4 arg/blo sur roc	6,1 terr	0,6 terr	2,7 DIDC SUF FOC	1,01010-1,0 alg/smith 00-4,0 glav.00		0,9 remb; arg; 6,1 silt		21,3 arg/sab		2,4 terr+4,6 bloc		arg++,3 Gravioro+ 4,0 Arg/DIO+ 0,0 gravipio sur rov	8.2 ara/bio entre sabi et aro			2,4 terr		1.2 terr	0.6 terr	
11.6		6.4	12.2	1.8	16.4	0	0	13.4	16.5	0	2.4	0	, o	0	0	0	0	0	0	0		, ;	7.0	0	, c	þ	0	0	0	0	0	0	0	7.6	0	0	7.9	0	2.1	0	1.2			24	• •	0	0	0	10.7			7	0	1.5	0	0	1.8	9.1		5.8	0.9	2.7	0	9.1	0	0	
4.9 31 6	9	21.0	4.6	19.5	0	12.8	9.4	0	0	0	9-1-6	,0	0	16.5	0	0	10.4	0	22.9	0	2	18.0	0.0	9	6	×.	10.7	9.1	0	6.4	0	0	0	0	0	19.5	9.4	24.7	19.5	0	18.6	7.6	13.4	8, I 13.4	0	0	7.6	0	6.1	~ c	10.4	0	1.5	14	0	7	0	0	1.0	5.5	14.3	12.5	40.7	13.1	0	0	
5019321.98		5013072.08	5014822.25	5016122.47	5013622.49	5013872.51	5011922.10	5014422.19	5017122.72	5015022.00	5017672.10	5010123.00	5008922.00	5009621.82	5009322.00	5010323.00	5009521.78	5011823.00	5008822.23	5010022.00	5010/22.12	00.0210005	5011021 00	5011122 63	5010423.00	5010722.05	5015522.14	5014022.68	5013823.00	5019922.27	5020523.00	5017823.00	5018622.00	5017122.44	5013723.00	5014521.84	5016471.99	5015722.53	5014371.88	5023723.00	5015172.57	5021221.85 5045502.00	5015023.00	5014323.00	5021922.00	5022022.00	5021822.02	5009673.00	5008522.33	001027012	5025342.13	5019201.68	5024292.03	5015322.45	5012322.00	5019872.45	5021822.25	5025222.32 502450550	500912176	5005772.38	5008272.14	5015042.25	5023523.00 6047624 74	501/321./4	5021623.00	5022144.00	
608528.69		605528.95	606128.40	607429.23	609528.77	609529.12	606928.36	606178.84	610128.66	604728.70	608428.39	603828.80	605729.10	607829.14	607728.80	605129.10	605728.97	603929.20	607528.99	606128.70	608328.69	00 07 87000	608420 12	605129.20	605329.30	605528.66	606928.39	605829.28	595929.10	596728.50	600929.30	599428.60	598928.70	599528,59	608928.90	606429.00	609928.76	609528.70	605678.78	608328.80	606628.88	60/929.30	640620 20	605928.70	605629.30	605629.40	605629.09	601629.20	605328.55 Forene Fo	291020.33 607868 00	609818.57	595728.95	612229.21	591628.25	590629.10	591528.57	601829.08	612028.86	507028.43	596828.70	607094.41	609729.36	596628.40	590429.20 600420.07	594528.90	594957.20	
288		290	291	292	283	294	295	296	297	298	299	300	303	304	305	306	309	320	321	325	333	242	343	352	354	358	393	394	395	396	397	398	399	400	401	403	404	406	407	408	409	409	410	411	412	413	415	421	431	000	900 005	1386	1403	1679	1681	1685	1713	1714	1/19 1036	1930	1946	1951	1953	1905	1961	1963	

	UIM-A NAU 83	UTM-Y NAD 83	Epaisseur Argile(m)	Épaisseur S&G	Autres	Epaisseur DM	Épaisseur Roc	Altitude sol	Profondeur puits	Élévation roc
1984	609529.33 600379 50	5014022.51	15.2	2.1		17.4	15.5	56.39	32.9	38.99
2639	599128.85	5008022.01	7°C1	4:4		1.11	11	00.90	28./	43.20 32.02
2653	590629.06	5007322 14	5.5 F.F.	4.6	3.7 Mor sur mor	13.8	0'T C C	28.4	18.5	20.26
2654	598328.76	5004422.27	0	5.1	5.5 bloc sur drav	10.7	21	45.72	12.8	35.02
2656	598928.44	5007722.37	0	12.8		12.8	16.2	45.72	29	32.92
2658	599676.63	5008572.30	0	6.7	6.1 depo	12.8	5.2	45.72	18	32.92
2662	599629.10	5007523.00	0	0	13,7 shie .	13.7	11.6	45.72	25.3	32.02
2673	597978.99	5004571.76	7,6	0		7.6	7.9	45.72	15.5	38.12
2675	598529.27	5009721.93	17.1	0		17.1	2.7	38.1	19.8	21
2680	590428.50	5006922.42	12.8	0		12.8	9.1	38.1	21.9	25.3
2681	594128.97	501/321.94	14	1.5		15.6	2.7	38.1	18.3	22.5
2683	594429.20	5021823.00	0	0	1,5 shle	1.6	21.3	45.72	22.9	44.12
2004	594220.40 500009 40	50/27/27.00	•	- -	1,2 she	1.2	30.8	22.86	32	21.66
2687	597528.91	502167214	15.2	1.5		15.2	34./	45.72	4/.9 40 E	32.52
2689	594128 90	5021622 00	7.61	0.0	0.3 dama	0.0	31.2	30.40	19.5	14.00 27 a
2690	595678.91	5019471 73	15.8	3Å	ndan c'n	10.0	612	30.1	21.0	07.0 11.00
2691	594778.52	5019171 98	9.0 21	13.1		19.6	0 4	30.40 28.1	200	87
2692	601519.07	5021822.46	73	- c		- E /	40		40.4	4U B
2694	597528.74	5021842.15	12.8	1.2		14	10.4	30.48	24.4	16.48
2701	595878.80	5023723.00	0	0	4 depo	4	7.9	30.48	11.9	26.48
2702	600928.40	5020623.00	0	0	1,5 depo	1.5	7.3	45.72	8.8	44.22
2703	594229.07	5016671.81	11.6	2.7		14.3	12.2	38.1	26.5	23.8
2705	594528.90	5021623.00	. 0	0	4,3 depo	4.3	14.9	45.72	19.2	41.42
2707	594378.60	5022823.00	0	0	0,3 depo	0.3	24.7	30.48	25	30.18
2714	594328.58	5016321.66	11	1.5	2,1 bloc entre arg et sabl	14.7	2.4	30.48	17.1	15.78
2746	593128.90	5014423.00	0	0	3 arg/blo	3	57	38.1	60	35.1
2910	604328.78	5011521.75	10.1	0		10	35.7	60.96	45.7	50.96
2916	603128.80	5011523.00	0	0	3,7 terr+6,1 sab/arg	9.7	22.3	53.34	32	43.64
2938	605828.51	5005672.59	8.8	0	6,1 terr	14.9	23.2	53.34	38.1	38.44
2946	597929.04	5006721.82	0	5.5	9,1 depo+9,1 arg/blo sur sabi	23.8	14.3	45.72	38.1	21.92
2947	609429.40	5024922.00	0	0	9,1 arg/sab	9.1	10.1	30.48	19.2	21.38
2948	598728.70	5018623.00	0	0	6,7 sab/arg	6.7	6.7	53.34	13.4	46.64
2951	600728.88	5004521.84	0.6	0		0.6	55.8	53.34	56.4	52.74
2969	600728.31	5004121.85	3.4	0		3.3	28.7	53.34	32	50.04
2989	598228.47	5022822.16	11.9	0		11.9	18.6	30.48	30.5	18.58
2990	598228.47	5022822.16	12.2	0	6,1 sab/arg sur roc	18.3	19.8	30.48	38.1	12.18
2992	598828.50	5022823.00	0	0	12,5 sltt/bio	12.5	75.9	30.48	88.4	17.98
2993	599829.10	5018922.00	0	0	5,2 silt/blo	5.2	8.2	45.72	13.4	40.52
2994	594628.60	5018522.00	0	0	12,2 arg/sab	12.2	7.3	38.1	19.5	25.9
2995	597428.71	5018622.33	7.6	•		7.6	8	45.72	43.6	38.12
2996	601228.60	5020722.00	0	0	8,5 sab/arg	8.5	÷	45.72	19.5	37.22
2997	609328.90	5024522.00	0	•	11 silvbio	=	13.1	30.48	24.1	19.48
2998	590518.74	5012771.89	0	8.8	6,1 terr	15	1.5	38.1	16.5	23.1
3006	594428.29	5016122.52	6.1	1.8	7,6 terr entre ang et sab	15.5	5.2	38.1	20.7	22.6
3007	595478.92	5019472.01	12.2	0	4,6 terr entre ang et roc	16.7	4.3	30.48	21	13.78
3075	594149.20	5017202.31	13.7	1.8		15.5	4.9	38.1	20.4	22.6
30/6	594419.00	5022422.00	0	-	1,5 terr	1.5	44.2	22.86	45.7	21.36
30/8	594528.80 C00000 C1	5021523.00	0	•	1,2 terr	1.2	24.1	45.72	25.3	44.52
3104	10.022200	5004173 00	18.3		9,1 sablarg sur roc	2/.4	4.6	45.72	32	18.32
2007	000820 30	5004123.00	5	-	/ arg/bio	10 4	18.0	53,34 53,34	0.02 1 ac	40.34
3234	593594 69	5010473 17	87 87	37		104	7 6	1 8°	30. I 13 R	+0.24 27 7
3238	601929.10	5007522.00	50	;, c	18 shle	17.9	23.2	45.72	41 1	27.82
3239	601929.30	5007622.00	0	0	17.7 shie	17.7	4.6	45.72	22.3	28.02
3240	599328.70	5008622.00	0	0	11.6 shle	11.6	2.9	45.72	19.5	34.12
3245	592128.93	5007971.99	18.3	4.6		22.8	5.5	38.1	28.3	15.3
3248	601928.90	5007322.00	0	0	9,1 depo	9.2	0.6	45.72	9.8	36.52
3249	599379.04	5005321.76	11.3	0	4,3 depo sur arg	15.5	12.5	45.72	28	30.22
3252	597728.34	5004822.11	5.5	1.5		7	6.4	45.72	13.4	38.72
3253	602228.99	5007421.71	12.2	10.4		22.6	13.1	53.34	35.7	30.74
3254	599778.70	5008622.17	7	0	4,9 terr	11.9	1.5	45.72	13.4	33.82
3255	598528.60	5007122.00	0	0	9,1 sab/arg	9.2	8.8	45.72	18	36.52
3257	599128.58	5007122.09	14	0		14.1	9.4	45.72	23.5	31.62
3259	599128.58	5007122.09	12.8	0		12.8	19.2	45.72	32	32.92
3260	599328.87	5007321.81	16.5	0		16.5	9.4	45.72	25.9	29.22
3262	59/8/9.04	5000121.89	eil eil	2	1-1	0.1	12.2	45./2	18.3	39.62
3203	071329.20	00.5218005	5	-	24,7 arg/sil	24./	6./ 	1.92	32	13.4
3204	002023-10 R00878-00	00 0000000			14,0 terr 3 7 torr	0.4.0	6.) 7.0	00.04 AF 70	21.9	30.74
3267	504828.70	5007922.00	15.0		2,1 tett 3 am/sil sur mo	18.3	2.1	43./2 38.1	7.70	10.8
3276	592928.55	5008421.84	41.1	0		41.1	6.1	38.1	47.2	

3297 3297 3303 3304 3304 3319 3319 3329 3329 3329 3329 3329 3329	591928.60 591928.60 594529.16	5007022.31	24.4	0.2 3.4		23.0 27.8 14.3	2.1 2.1	38.1 38.1	33.2 29.9	14.02 10.3 23.8
3301 3303 3304 3318 3318 3318 3319 3321 3322 3323 3323	594529.16					14.3	4.9	38.1	20.04	22.8
3003 3304 3318 3318 3318 3318 3328 3321 3322 3323 3323		5017472.38	14.3	0					19.2	20.04
3304 3319 3319 3319 3320 3321 3323 3323 3323 3323 3323	594128.60	5017771.91	13.4	0		13.4	6.1	38.1	19.5	24.7
3313 3316 3316 3319 3320 3321 3322 3323 3323 3323 3323	597529.25	5021922.15	7.3	6.1		13.4	5.8	30.48	19.2	17.08
3318 3320 3321 3321 3322 3322 3322 3322	601928.56	5017822.11	14.9	0		15	14	51.82	29	36.82
3319 3320 3321 3322 3323 3323 3323	599029.30	5021812.00	0	0	3 terr	6	35.1	38.1	38.1	35.1
3320 3321 3322 3322 3323	599429.10	5021823.00	0	0	3 terr		24.4	38.1	27.4	35.1
3321 3322 3323 3325	598928.70	5021522.00	0	0	2,4 sabi/bio	2.5	58.5	38.1	61	35.6
3322 3323 3325	599428.70	5021523.00	0	0	3 terr	3	118.9	38.1	121.9	35.1
3323 3325	599128.50	5022122.00	0	0	1,5 terr	1.6	59.4	38.1	61	36.5
3325	599728.90	5021722.00	0	0	1,5 terr	1.5	112.8	38.1	114.3	36.6
	594428.72	5017872.50	13.4	0		13.4	4	38.1	17.4	24.7
3326	595378.62	5016372.21	1	1.8		12.8	2.4	38.1	15.2	25.3
3331	608928.82 F05705 F0	5024522.53 F040000 00	9.4	•		9.4	4.9	30.48	14.3	21.08
3333	596/28.50 640606 50	5019923.00	-	9	18,9 snie	18.9	20.7	30.48	39.6	11.58
3338	010020.00	3023022.21	- 20			900	8.8	45.72	16.8	38.72
3330	506720 10	5017742 32	88		1 8 dem sir mc	36.U	3.1	30.48	20.0	0.0
3340	594228.79	5016471.81	15.8	18		17.7	24	38.1	20.5	20.4
3345	598628.87	5023122.62	12.2	0		12.2	70.1	30.48	82.3	18.28
3349	596694.70	5017973.00	0	0	18,9 shle	18.9	20.7	30.48	39.6	11.58
3350	599979.02	5021771.78	3.4	10.7		14	1.2	38.1	15.2	24.1
3351	594294.74	5017973.00	11	0		11	5.8	38.1	16.8	27.1
3353	599228.92	5012321.91	24.7	7.9		32.6	26.2	38.1	58.8	5.5
3354	593978.98	5015172.19	13.7	-	10,7 terr entre arg et roc	24.3	4	38.1	28.3	13.8
3355	593928.59	5014172.28	11.3			11.2	4	38.1	15.2	26.9
3356	601428.77	5019421.80	16.5	•		16.5	1.2	60.96	17.7	44.46
335/	601257.25	5018644.99	9.7	-	2,1 terr entre arg et roc	8.9	2.7	60.96	11.6	52.06
0000	5001//9.18	5040600 34		9.0	2'3 (BI	19.2	2.21	00.90	21.4	45.75
9300 2360	506420 0.14	5018002.34	0.0 17 B			40 D	0,11	00.00 1 06	20:4 E7	21.10
2364	502620 24	20121210105	14:0			70.7	1.4	30.	10	C.02
3230	5042028.64	5005000 00	20./			20.1	4 D T	20.1	100	8:4 43.4
3540	504057 03	5008344 56	24.6	01		23 F	13.7	30.5	0.02 47 0	46
3540	601094 61	5020472 57	t 1	13.7		13.7	10.7	30.1	2.17	30.5
5134	610729.24	5025522 10	, k			1.2	44 R	27 43	51.8 51.8	20.43
5136	604429.17	5019722.66	16.8	1.5		18.3	46	44 2	22.9	25.9
5137	600408.92	5011621.86	21.6	4.9		26.5	1.2	42.67	27.7	16.17
5138	607928.45	5019441.82	15.5	12		16.7	34	44.2	20.1	27.5
5139	607539.07	5019622.57	9.8	0		9.8	8.2	44 2	18	34.4
5435	595778.71	5007171.84	4.6	4.9	7.6 terr entre aro et sab	17.1	11.9	38.1	29	21
5436	599228.44	5007721.94	4.6	0	6.1 terr	10.7	5.5	45.72	16.2	35.02
5437	595328.71	5019322.22	19.8	4.3		24.1	2.1	30.48	26.2	6.38
5546	594528.33	5016872.37	11.3	0		11.3	8.5	38.1	19.8	26.8
5548	599428.40	5008422.00	0	0	14,3 terr	14.4	8.5	45.72	22.9	31.32
5570	594394.68	5017272.88	14.3	0		14.3	7	38.1	21.3	23.8
5571	601429.09	5021821.79	9.1	7.6		16.8	18.6	41.15	35.4	24.35
5942	605349.10	5010321.71	8.2	0		8.2	11.9	60.96	20.1	52.76
5958	605778.60	5010942.00	0	0	8,2 terr	8.2	51.2	60.96	59.4	52.76
5966	604729.10	5009622.19	10.1	0		10.1	21.9	67.06	32	56.96
5967	605428.65	5010722.19	4.6	0		4.6	86	60.96	100.6	56.36
1/8C	006528./b	20183/1.98 5018062.00	7.6		0,4 lerr 13.1 farr	1.0	3.5	44.2	10.8	32.0 35 87
5073 5073	607379.01	5015972 53	, o	4 ĥ	12 B terr	17.4	13.7	50.29	31.1	32.89
5975	607728.65	5016422.05	21	0.3		21.4	13.7	50.29	35.1	28.89
5976	605929.27	5014022.54	18.3	1.8		20.1	6.4	50.29	26.5	30.19
5977	606218.98	5014521.94	0	3	14 terr	17	4	50.29	21	33.29
5978	606528.62	5012122.67	0	10.1		10.1	12.8	53.34	22.9	43.24
5980	610429.15	5021822.42	9.1	8.8		18	19.8	36.58	37.8	18.58
6066	602828.79	5015821.86	21.9	0		22	13.1	45.72	35.1	23.72
6909	605379.19	5021172.35	14	4		18	5.2	38.1	23.2	20.1
6070	607328.59	5020722.66	6.7	0	3 arg/sab sur roc	9.7	10.1	38.1	19.8	28.4
6076	605829.31	5021971.75	8.5	0	5,8 terr sur roc	14.4	9.4	38.1	23.8	23.7
6077	609828.70	5019322.19	18			17.9	35.4	45.72	53.3	27.82
6079	614128.49 601126 76	5024172.40	6./	∍ ţ		6.7	9.8	30.48	1/1	22.58
6081 6000	004128./8	5019422.00	4	7	22 0 for	7.61	0'0	45.72	2.6	20.02
6082 6084	6105/9.10 640640 40	50181/2.00				8:77	8.C	27.05	20.4	22.02 16.48
0004 6006	610720 14	502522 03	4 A A		0 0 terr	40	0.4 25.6	30.48	35.4	20.08
6087	608829.41	5024222 67	0	6.1		6.1	28.3	30.48	34.4	24.38
6088	610028.65	5020721.95	13.1	0		13.2	21.9	38.1	35.1	24.9
6089	608628.73	5023721.92	11.6	0		11.5	48.5	30.48	60	18.98

s Banque des puisatiers 6001	UTM-X NAD 83 611228 58	UTM-Y NAD 83 5023572 36	Epaisseur Argile(m)	Épaisseur S&G	Autres	Épaisseur DM	Épaisseur Roc	Altitude sol	Profondeur puits	Élévation roc
6094	608828.48	5024272.65	10.1	0	1,2 bloc sur roc	11.3	1.5	30.48	12.8	19.18
6098	609278.52	5025022.06	0	12.8		12.8	2.4	30.48	15.2	17.68
6100	608828.75	5024472.66	10.7	0		10.7	2.4	30.48	13.1	19.78
6101	610329.29	5021922.56	15.5	0		15.5	10.4	38.1	25.9	22.6
6102	604678.84	5020922.32	13.1	0		13.2	°	41.15	16.2	27.95
6103	602828.81	5015121.86 F000404.00	21.3		3 depo	27.5	15.2	45.72	42.7	18.22
6104	603420 43	56.121020C	81	30	3 depo	15.2	4.6	45./2	19.8	30.52
6106	60507870	00 10270 J 100	771	3.0	3 Uepo	10.9	1.8	43.72 20.60	20.7	20.02
6107	605078 70	5021523.00			0,5 saurarg	a 11	9.0 A 7	39.02 20.62	10.3	31.12
R108	R40378 74	5021323.00 E036173 66	10.0	, c	Ribingo o'r i	0.04	0.1	20.00	40.0	10.02
8100	60000000	5075323 00	7.7		404	707	10	04-00	0.0	10.20
0103 A112	64013870	5020223.00 5020022 00			e 4 anholo - 7 ann fann	10.1	10	16.C2	10.8	15.81
2110	010120.10	2020022.00			o, I sau/bio+ / grav/gro	3.1	9.Z	40.72	21.3	32.52
0114	000020.40	20/2/2/2/202	~ '.	- -	4'A 0600	6.7	10.8	45./2	24.(37.82
6116	81.9220.0	50146/2.38	2.7	18.6	arg sur roc	21.3	3.7	48.77	25	27.47
6119	/G.822909	5022172.19	11	0		ŧ	8.2	38.1	19.2	27.1
6122	611929.30	5024822.44	7.9	0		80	8.8	30.48	16.8	22.48
6124	601378.39	5018421.85	6.1	2.7	3 depo	11.8	41.5	53.34	53.3	41.54
6268	597209.15	5021122.20	14	0.9		15	1.5	30.48	16.5	15.48
6269	596328.80	5020121.83	15.2	0		15.2	3.4	30.48	18.6	15.28
6270	597607.90	5021994.62	15.2	0		15.2	11	30,48	26.2	15.28
6273	610378.81	5021572.47	0	12.5	4,6 terr	17.1	14	36.58	31.1	19.48
6488	599294.60	5008072.00	0	0	14,3 terr	14.4	8.5	45.72	22.9	31.32
6627	601978.48	5007772.05	0	5.2	14,3 terr	19.5	1.8	60.96	21.3	41.46
8504	596828.47	5020622.12	20.7	0		20.7	4.3	30.48	25	9.78
8507	596528.34	5018212.57	11.6	3.7		15.3	14	45.72	29.3	30.42
8509	592348.43	5008322.06	13.7	0.9		14.7	е	38.1	17.7	23.4
8527	592828.55	5008421.98	24.4	13.1		37.5	20.1	38.1	57.6	0.6
9709	594228.60	5022822.00	0	0	1,5 terr	1.6	27.4	22.86	29	21.26
803/	500000 04	2003922.2/	0.9	- -		0.9	3/.2	45./2 20 1	38.1	44.82
0039	46.02828C	8/1710100		0.0	4,3 arg/sao entre arg et grav	11.3	3./	38.1	212	20.8
0.40	40.820903	181170000	2.4 40.4	P. 4	o,o ploc entre arg et grav	10.4	0.1	45.72	0.72	78.67
86.47	500520 10	5007523 00	* 0		42.4 tore	10.0	0.4	30. E 2.4		0.12
0042 BEAA	0150229.10	5001025-000		2,2		13.1	0.0	20.04 14	57.9	4U.24
BEAF	500428 76	5003731 71	2	7°0		3.6	7-	27.54	4,01	20.00
0040 8646	0133420.10	50151212121	0.1		Jiai o'o	C'71	1.0	27.64	14.3	33.22
9469	500828 70	20100011.13	<u>+</u> c		40.4 for-	10 4	0.0	30.40 53 24	32.3	10.48
8566	597828 90	5006622 00			7 3 torr	73	7.0	45.70	10.0	13.47
8576	508728 33	5004821 68		, ţ	5.5 hlor eur cabla	R.7	13.4	45.72	20 4	30.02
02/10 8678	280/20.33	501040K1.00	15.5	2.1	a,a proc sur sabre	10.1	13.4	40.12	20.1	39.02
8570	607278 BD	E015822 66	2.0	10.7	0 1 1000	10.6	0 +	10.00	1.12	31.24 33.54
BERD	607628 51	5018322 18	18.0	10.1	112) 1 ¹ 6	77.0	E.1	10.00	21.1 DE E	10.00
8581	604548 70	5009322.10	<u>-0.9</u>	+ -	6.4 terr	64. 6.4	2.1 R 1	50.05	20.0	30.44 54 56
8587	608228 40	5010522.00		25.3	1121 + 0	0.4 25.3	15.8	00.30 68 58	6.7I	96.90
8507	607470 15	5010022.20	13.4	C.U.2	4 0 terr	20.2	7.0	00.00 A 2.4	1.14	43.20
REAR	R06528.57	5007122 R1	1.5	t; c	1/3) 8'5 Hort C Y	15	<u> </u>	40.00 90.09	C.02	15.22 15.05
8607	607529.08	5016022 33	23.8	, c	710 - 101	23.8	113	53.34	35.1	20 54
8609	608928.77	5013622.33	15.5	, c		15.5	60 7	10.00	76.2	37.84
8610	606229.24	5010422.08	12.2	6.4		18.6	88	60.96	27.4	42.36
8618	610578.69	5021472.19	14.9	1.5		16.5	6.4	38.1	22.9	21.6
28739	610728.76	5021521.99	12.2	0	Aral/arav 2.7 sur roc	15	6.2	38.1	22.9	23.1
28740	610878.83	5023021.84	13.4	0		13.4	5.5	30.48	18.9	17.08
28741	610278.92	5020922.61	3.7	12.5		16.2	13.7	38.1	29.9	21.9
28742	609778.81	5020122.27	18	0		17.9	10.4	38.1	26.3	20.2
28743	613728.90	5023021.92 /	11.3	5.2		16.5	47.5	30.48	64	13.98
28744	609978.61	5019972.00	10.1	6.1		16.2	9.4	38.1	25.6	21.9
28745	609928.85	5019422.05	3	9.8		12.8	13.7	41.15	26.5	28.35
28746	607828.84	5023072.02	6.1	7		13.1	18.9	33.53	32	20.43
28747	609778.66	5020022.27	6.1	10.3		16.5	7.9	41.15	24.4	24.65
28748	607868.49	5020942.72	0.9	7.9		8.8	13.1	41.15	21.9	32.35
28749	610419.40	5021702.24	14.6	0		14.7	8.8	33.53	23.5	18.83
28751	608429.11	5023272.20	9.1	3.9		13.1	13.7	32	26.8	18.9
28752	607229.29	5021221.81	8,5	0	terr 3	11.6	30.5	42.67	42.1	31.07
28753	610359.27	5017842.04	11.6	0	8,8 depo	20.5	14.6	48.77	35.1	28.27
28/55	607828.80 606000 60	5022322.00	0	12.8 2		12.8	24.4	35.05	37.2	22.25
00100	000928.0U	5022602.00	0	- 2	c,a depo	8.8 2.0	10./	30.58	19.5	21.18
28/59	610329.25	5022622.58	0	9.1	3 terr	12.2	37.5	30.48	49.7	18.28
20/02	013020.40	50/20/42.34	0.0	1.7	Line 0.2 and 200	2.0	13./	07.67	10.5	47.00
28/03	00/0/0///	5023UZ1.94	0.0	0./	DIOC U,3 SUL FOC	C.21	0.7	30.40	19.2	11.98
78/04	010420.01	50/200/ 2.48	Q.1	0.1	Snie 3	1.01	0.1	20.91	11.4	12.21
28765	608428.87 I	5023822.20 I	4.9	5.8	sabl /blo 2,4 entre arg et sabl	13.1	17.4	22.86	30.5	9.76

Puts Banque des puisatiers	UTM-X NAD 83	UTM-Y NAD 83	Epaisseur Argile(m)	Épaisseur S&G	Autres	Épaisseur DM	Épaisseur Roc	Altitude sol	Profondeur puits	Élévation roc
28767	610148.88 640428.75	5025272.28	4.6	1.8	1 8 cabl/fin anten am at cab	5.4	5.6	22.86	11.6	16.46 16.07
28/00	610129.04	5018122.76	6.1	13.7		19.8	6.7	46.63	26.5	26.83
28772	610628.95	5023122.18	4.6	12.2	terr 0.9	17.7	8.2	32	25.9	14.3
28773	610628.95	5023122.18	4.3	9.4	depo 0,9	14.6	5.2	32	19.8	17.4
28775	609528.73	5025172.73	6.1	4		10	5.2	27.43	15.2	17.43
28776	608878.55	5024322.59	7	4.6	2,1 remb	13.7	0.3	25.91	14	12.21
28777	608828.69	5024422.66	4.5	5.5		19	4.9	25.91	14.9	15.91
28778	611078.64	5023622.57	6.1	1.5	sabl/arg 6,1 entre arg et sab	13.7	18.3	29.57	32	15.87
28779	607878.77	5023021.94	4.6	3.4		277	ъ.	30.48	11	22.48
28780	609158.10	5019944.71 E004700.40	5.8	0	grav/gro 11,3 sur roc 1 5 deno	7:7L	14.3 5.5	39.02 28.06	32 13.1	21.92 21 36
20/07	011423.10 607170 36	5024/27.12 5022721.01		- -		10.0	9.8	38.1	20.7	27.2
28784	610128.68	5025121.90	4.6	.0	grav/blo 6.7 sur roc	11.3	5.5	22.86	16.8	11.56
28785	611429.16	5024722.12	0	7.6	1,5 depo	9.1	4.6	28.96	13.7	19.86
28786	612228.92	5024522.02	3	6.1	depo 1,5 sur ang	10.7	33.5	27.43	44.2	16.73
28787	610129.40	5017623.00	0	0	20,4 sab/ang	20.4	20.7	45.72	41.1	25.32
28788	608408.77	5024041.83	6.1	2		13.2	9.4	30.48	22.6	17.28
28789	610079.20	5018221.84	0	13.4		13.4	31.7	45.72	45.1	32.32
28790	610079.20	5018221.84	13.1	- -	conforms E. 2 cure and	13.1	32	45./2 20.48	45.1	32.62 24.68
20/91	615740 25	5023082.38	5. Y		aig/giay 0/2 sui 100	1.5	153	36.58	154.5	35.08
20/92 28703	612028 B3	5024472.29	7.3	ļ	sab/aro 1.2 sur roc	8.6	8.2	22.86	16.8	14.26
28794	610179.18	5018222.70	9.8	4.6	ter 4.9	19.2	6.1	45.72	25.3	26.52
28796	612429.44	5025942.80	12.2	0		12.2	20.4	22.86	32.6	10.66
28798	607728.90	5021672.13	9.4	0		9.5	50.9	38.1	60.4	28.6
28799	610458.66	5020721.96	8.5	7.6	arg sur roc	16.2	14.3	38.1	30.5	21.9
28802	607828.65	5023082.01	12.5	0		12.5	4.3	30.48	16.8	17.98
28805	601428.44	5010571.82	6.7	0		6.7	21	45.72	27.7	39.02
28806	604478.46	5019922.58	13.1	9.1	0,6 terr	22.8	10.1	45.72	32.9	22.92
28807	605128.66	5018622.67	15.2	2.7		18	6.4	45.72	24.4	27.72
28808	602478.41	5014122.34	6.1	8.5		14.7	1.8	45.72	16.5	31.02
28809	605029.20	5018272.00	0	0	12,2 terr	12.2		53.34	19,2	41.14
28810	602978.63	5015722.65	21	•		21.1	8.2 C	53.34	5.93	32.24
28811	602629.18	5014672.15	0	=	10,7 terr	21.0	80	45.72	97.0	24.12
28812	602078.38	5012671.91	17.1	0.0 (depo 2,1; arg sur roc	24./	1.5	45./2 15 70	20.2	20.02
28813	605528.80	5019422.00		120		1.61	1.1	45.70	30.0 24.4	32.02 18 07
28814	602128.95	5013071.84	1 i	12.8	Snie 3 57 4 4000	20.0 17 E	0.4 0	43.72	31.1	10.92
28815	601528.90	0108/2/00				V VC	0.0	45.70	20.5	21 32
28816	601928.47	21.2202106	R 17	10.0		24.4	2.0	45.75	306	21.32
28817	604429.26	2019/ / 2.00	7.71	10.3	eablifte A cur wa	7 76	1 24	47.74	45.1	40 F.d
01007	075253700	5014082 AB	1.1	18.0		20.1	43	50.20	24.4	30.19
50015 78874	601228.60	5010401 97	116	0		11.6	6.4	45.72	18	34.12
29423	606509.30	5020522 40	10.7	6		13.7	1.5	42.67	15.2	28.97
10002	R05878 Q0	5018502 71	c	12.1		12.2	16.8	44.2	29	33
47007 90960	602448 60	5013252 21	223	24		24.7	27.4	44.2	52.1	19.5
07007	002 140.00 R04628 66	5020502 52	~~~	19.5		19.5	121	42.67	36.6	23.17
28830	601928.56	5017822.11	, o	~	6.1 sabl/fin sur sabl	13.1	4.6	51.82	17.7	38.72
28833	606129.18	5022032.34	0	6.1	3 sab/arg sur sable	9.1	4.6	38.1	13.7	29
28834	606228.54	5022442.19	0	13.7		13.7	3.7	36.27	17.4	22.57
28835	606228.71	5020822.18	0	17.4		17.4	1.8	41.76	19.2	24.36
28839	605878.67	5021522.66	0	3	0,6 depo+5,5 sabl/arg sur sab	9.1	6.4	39.01	15.5	29.91
28840	606278.64	5022222.12	1.2	1.8	remb 0,6 et sab/bio 9,8 sur Arg	13.4	0.3	38.1	13./	24.1
28841	606478.90	50209/2.00			9,1 Sabirbio+4,0 gravinin 3 coh/hio	11.7	0.4 R 1	1 12	17.4	26.43 26.8
20042	000129.20 806070 22	502727 42		73	4.9 sah/hin sur sah: 0.6 shia sur me	12.8	6.7	38.1	19.5	25.3
28844	602028.42	5017721.96	òo	10.9		11	6.7	50.29	17.7	39.29
29846	601728 77	5011522.40	× ×	0	terr 4.3	11.3	19.5	39.62	30.8	28.32
28847	602379.13	5017522.49	1.8	1.2	6,1 terr	9.1	5.5	60.96	14.6	51.86
28850	603978.80	5018722.27	13.7	4.6		18.2	22.9	48.77	41.1	30.57
28851	602828.80	5015122.00	0	0	19,8 depo	19.8	32	45.72	51.8	25.92
28852	601978.70	5009322.00	0	0	9,8 bloc	9.8	e	38.1	12.8	28.3
28853	601528.48	5017772.66	11.3	0	sab/arg 2,7 sur roc	14	2	60.96 20 50	21	46.96
28854	606829.06	5022522.38	0	2.1	6,1 sab/blo	8.2	11	36.05 60.06	19.2	28.38
29029	609678.43	5015522.31	15.8	2.2 2.7		21.12	C:1	60.90 60.50	22.0	39.80
29139	603579.20	5008271.81	11.9	•	Oepo r/b	C'RI	14 6	00.00 77 AA	5.02	30.07
29140	603979.12	CZ.Z//1109	0)	0	0,3 terr 0.6 terr+14 shie	9./ 14.6	6.7	64.01	21.3	49.41
14182	0044/0.40 80422034	501102101	12.8	60	dio territ 5 and	14.6	6.7	48.77	21.3	34.17
29143	605178.40	5006323.00	0	0	15,8 depo	15.5	16.5	60.96	32	45.46
29145	605178.33	5008372.53	0	21.3		21.3	10.1	60.96	31.4	39.66
29146	605428.80	5008672.00	0	0	12,8 terr	12.8	2.7	60.96	15.5	48.16

Élévation roc	55.78 55.78	50.36	56.68	25.24	61.88	61.28	59.08	48.78	48.76	54.58	54.88	58.58	34.39	32.84	52.81	52.11	44.73	49.63	<u>8</u> .03	30.49	49.90	40.40	1-	20.67	10.40	20.04	36 84	49.06	31 00	22.28	45.96	46.26	5121	51.21	36.96	38.14	36.84	31.39	36.54	58.48	43.56	47.51	46.66	55.26	42.66	43.29	46.11	36.04	44.76	54.26	55.13 14.72	20 34	10.27	37.12	33.56	39.04	35.69	22.57	29.59	28.57	49.66	32.62	28.39	40.52	41.46	35.04	27.77	28.99	
Profondeur puits	29.9	116	26.5	36.6	63.7	43.9	11	21.9	21.3	18	49.1	26.8	31.1	23.2	15.8	21.3	35.1	44.2	46.9		305	30.5	0.0	99 99	23 E4 0	30	25	25.6	23.8	18.9	24.1	23.8	19.5	19.5	47.2	32	31.1	22.3	30.5	23.5	22.9	22.9	91.4	53.9	15.2	167.6	167.6	21.3	62.5	14.6	19.8	24.7	60.4	16.5	26.8	53.9	41.1	45.7	25	28.7	67.1	20.4	33.0 18.3	18	23.5	24.4	25	31.1	
Altitude sol	68.58	68.58	68.58	53.34	68.58	68.58	68.58	68.58	60.96	68.58	68.58	68.58	56.39	53.34	64.01	64.01	50.00	65.53	00.03 20.03	80.00 80.0a	80.06	00.30 57 01	48.77	40.//	F3 34	23.24	20.07	60.96	50.29	36.58	96.09	60.96	64.01	64.01	60.96	53.34	53.34	50.29	53.34	68.58	96.09	64.01	54.86	60.96	54.86	56.39	57.91	53.34	60.96	60.96 27 50	00.03 65 53	53.24	48.77	51.82	54.86	59.44	50.29	48.77	50.29	48.77	60.96 54.60	51.82 00.73	53 34	51.82	54.86	53.34	48.77	50.29	
Épaisseur Roc	17.1	2.4	14.6	8.5	57	36.6	1.5	2.1	9.1	4	35.4	16.8	9.1	2.7	4.6	9.4	14.3	28.3	50.4 0.0	0.6	0.0	80	2.U	5.14	30.5	A F	A.F.	13.7	55	4.6	9.1	9.1	6.7	6.7	23.2	16.8	14.6	3.4	13.7	13.4	5.5	6.4	83.2	48.2	3	154.5	155.8	4	46.3	7.9	4.9 C 0	10.7	21.9	1.8	5.5	33.5	26.5	19.5	4.3 ? =	8.5	55.8	2'L	0.11	6.7	10.1	6.1	4	9.8	
Épaisseur DM	12.8	9.2	11.9	28.1	6.7	7.3	9.5	19.8	12.2	14	13.7	9	22.22	G.02	211	11.9	20.8	19.9	0.1.0	5.07 11	10 E	6.4 8 8	20.5	24.5	747	18.5	16.5	11.9	18.3	14.3	15	14.7	12.8	12.8	24	15.2	16.5	18.9	16.8	10.1	17.4	16.5	8.2	5.7	12.2	13.1	11.8	17.3	16.2	6.7	90.8	24.0	38.5	14.7	21.3	20.4	14.6	26.2	20.7	20.2	11.3	19.2 19.0	R.12	11.3	13.4	18.3	21	21.3	
Autres	12,8 0600 1		11,9 terr		6,7 depo		9,4 depo	Arg sur roc	0,6 terr+11 silt sur sabl		S&G+4,3 shie et arg sur roc	S&G+8,5 shle arg sur roc	21,9 depo		11,3 depo	11,9 depo		U,9 depo		deno 3	deno 7		6.1 deno+14.3 drav/am	3 deno		0.3 shle sur mc	0.3 shle sur noc	2.7sab/fin+7.6 sabl/blo sur roc	17.4 sabi/bloc sur roc		5,5 terr+9,4 depo	5,8 depo	4 6 Arg/bio+4,6 Arg/Gra sur sabl	4,6 depo	24,1 depo	7 terr+8,2 depo	9,4 terr	6,4 terr+11,3 depo sur sable	1,5 depo	5,5 terr+4,6 depo	17,4 sabi/arg	terr 5,8				13,1 arg/blo	11,9 arg/blo	arg/bloc 5,5 sur arg	0.1 L	0,7 0epo	0,4 (erit 74 depu	6 4 terr	38.4 sabl/aro	6,1 depo entre Arg et roc	3 depo+12,2 sabl/arg+6,1 sabl/blo			26,2 depo		20,1 depo	11,3 depo	4,9 terr+9,5 arg/bio sur saple	sao/ proc z,r sur roc 7 6 deno	sabl/fin 7 entre ang et sab	10.4 sab/ard sur roc	6,1 sab/fin sur roc			
Épaisseur S&G	-	9.1	0	21.9	0	0	0	1.2	0.6	14	9.0	9.6	2	0. 4		-			, ,	2 0	, c	27	c	116	24.7	16.2	16.2	1.5	0	3.4	0	0	3.6	3.7	0	0	7	1.2	15.2	0	0	0	8.2	1.2	12.2	0	•	4.6	0, 4	5 0	- c	7.9	0	0	0	20.4	•	•	3.4	•	- -	0; 4	15	1.5	3	12.2	21	21.3	
Epaisseur Argile(m)	> c	0	0	6.1	0	7.3	0	18.6			8.8	R'n	22	0.0		0	10.4		20.7	7.9	5.5	6.1		, o	0	0	0	0	0.9	11	0	8.8	0	4.6	0	0	0	0	0	0	0	10.7	0	4.6	•	0	•	5.7	16.2) e	9.6	0	8.5	0	0	14.6		17.4			10.5	0	2.7	0	0	0	0	•
UTM-Y NAD 83	5011072 00	5010422.48	5010972.00	5013522.21	5011022.00	5011422.37	5010123.00	5009372.02	5012021.75	5009621.89 5040870.23	2010072.33	5013072 00	5015374 00	501027200	00020112000	5008005 E0	500070 46	5010027 ED	5008242 53	5011622.62	5011462.22	5012022.61	5016352.00	5014641.77	5015872.32	5014772.16	5014772.16	5012022.68	5014122.46	5008722.58	5007523.00	5006522.18	5008822.20	5008822.20	5011773.00	5015072.00	5014822.10	5015521.99	5012522.70	5009023.00	5007945.00	5007271.70	5011272.64	5010871.78	5014122.07	5012873.00	5012822.00	5014221.94	5011522.32 5007323 00	50104323.00	5008623.00	5015092.51	5013223.00	5015842.12	5014273.00	5013442.36	5013122.64	5015923.00	5015721./9 =04520000	5015622.UU	5010//3.00	2013014.30 E015671.87	5014222.62	5016372.29	5014452.03	5014922.17	5016222.20	5016022.54	
UTM-X NAD 83	605729.20	605229.23	605679.00	605428.59	606379.10	606028.64	606028.80	60/6/8/8	05.8/1/09	00///9.14	2001/0.01	000020.9/ 600070.30	600078 40	606780 30	605070 PD	00301 0.0U	EDADOB 60	R06148 74	603348 75	606848.92	606128.90	607278.49	609929.00	606478.76	607528.88	609778.38	609778.38	607228.49	605978.41	607278.85	606199.10	606128.73	605428.97	605428.97	608679.20	609778.80	609828.45	608478.42	607229.19	607429.30	607007.30	606748.81	605828.42	605728.88	609828.48	608228.70	6089/8.60	297972970	000//8//8	605428 00	603778.70	609528.42	605329.20	609828.49	609428.70	609629.13	605129.01	607428.90	60/1/8.08	00/020.00	DUDZ90.0U	A07128.61	608728.59	603228.54	609449.33	609778.60	607629.37	607379.08	
Puits Banque des puisatiers	29148	29149	29150	29151	29152	29153	29155	29150	2915/	00162	28138 20180	29100	20163	29164	20165	20187	20168	20120	24172	29173	29175	29178	29179	29180	29183	29189	29191	29192	29195	29196	29197	29198	29199	29200	29201	29202	29203	29204	29205	29206	29207	29208	29209	29210	29212	29213	29214	29210	29218	20210	2920	29221	29222	29223	29224	29225	29226	17767	07767	42000	16787	29233	29234	29235	29237	29238	29239	29240	1 0000

Puits Banque des puisatiers	UTM-X NAD 83	UTM-Y NAD 83	Epaisseur Argile(m)	Épaisseur S&G		Épaisseur DM	Épaisseur Roc	Altitude sol	Profondeur puits	Élévation roc
30056	600529.00	5006722.13	5.5	7.6		13.2	33	45.72	16.2	32.52
30057	597228.57	5009921.74	23.5	1.8	0,9 terr	26.3	8.8	39.62	35.1	13.32
30058	599128.79	5007972.09	0	12.5		12.5	e	45.72	15.5	33.22
30060	596628.56	5005941.66	7.9	0	7,3 terr sur arg et 11,9 grav/blo sur roc	27.2	2.4	45.72	29.6	18.52
30061	595868.85	5006572.54	7.6	5.8		13.4	5.8	38.1	19.2	24.7
30062	59/129.00	50052/1.96 5003572.00		0.8 0		18.0	10.1	43./2 AE 79	29.0 16.0	20.22
30066	28/ 820.00 508158 45	00135/2002	13.4	, a	2,4 Uepo	14	15	38.1	15.5 15.5	10.4
30000	290120.40 20100 20	5000431.82	87 87	00	4.0 am/hlo eir am	-1 H	2 4 4	30. I 45. 77	0.01 6 8 h	23.27
20001	507020	5005421 83	, ,	<u>ور</u>	1 8 cab/hho sur roc	8.8	2.0	24.2	15.8	35.4
30070	50428 57	5008521.66	46	ò	0.3 terrs 7.9 silt/sab sur am	12.8	44.5	53.34	57.3	40.54
30071	599918.49	5007341.77	5.2	0	9.8 bloc+9.4 aro/blo sur ard	24.3	29.6	53.34	53.9	29.04
30072	598438.60	5007233.00	0	0	5,2 arg/blo	5.2	5.2	44.2	10.4	39
30073	599468.31	5007782.41	10.7	0		10.7	1.8	53.34	12.5	42.64
30074	601229.00	5006722.13	0	8.8	1,5 depo	10.4	8.8	50.29	19.2	39.89
30075	600628.83	5009421.96	3.4	0	5,5 terr	8.8	7	45.72	15.8	36.92
30076	596128.50	5006323.00	0	0	1,8 terr	1.8	10.1	39.62	11.9	37.82
30077	597279.07	5005321.75	6.7	3.7	5,8 terr	16.2	8.2	45.72	24.4	29.52
30078	599129.28	5008322.09	0	2 2 2	3,7 terr+5,8 arg/bio sur sab	16.5	1.5	53.34	18	36.84
30080	597694.65 600529.65	500/3/2.44		5.22		5 C F	30.7	42.5/	20.9	17.8L
19005	00.020.00	21.2200000		12.2	36 1 dano	35.1	0.4	48.77	34.5	33.32 13.67
30084	508420 10	5004022.00	, c		13.1 bloc	13.1	88	45.72	010	32.62
20005	500730 07	5007472 25	ýc	21.0		21 9	25.3	51.82	47.9	20.02
30000	507028 34	5004121 84	18.3	49		23.7	85	45.72	317	20.52
3008	600028.38	5009822 53	52	18		7	37	45.72	10.7	38.72
0000	599578.40	5008423.00	0	20	6.1 terr	6.1	8.5	45.72	14.6	39.62
06006	598828.71	5025492.33	6.4	0		6.4	1.71	28.96	23.5	22.56
30091	601528.86	5021672.65	14.9	0		15	1.8	42.67	16.8	27.67
30002	598178.86	5022372.25	14.9	• 0	shle 6.1	21.3	18.6	28.96	39.9	7.66
30093	596978.48	5026471.83	10.1	0		10	4	22.86	14	12.86
30094	598079.20	5027023.00	0	0	9,1 depo	9.1	4.6	22.86	13.7	13.76
30103	596378.48	5025721.65	9.1	0	0,3 terr+arg+4 gra/moy+ 0,9 grav/fin	14.3	0.3	22.86	14.6	8.56
30105	596079.27	5025572.07	0	3.7	7,6 gra/moy+5,5 sab/moy sur roc	16.8	0.3	22.86	17.1	6.06
30108	596728.67	5025872.18	9.8	0	arg entre 0,9 depo; 5,5 grav/moy	16.2	0.6	22.86	16.8	6.66
30109	596328.80	5025922.00	0	0	1,2 remb+4,9 sabl/gro+6,4 grav/moy	12.5	0.3	22.86	12.8	10.36
30110	596578.34	5026372.37	3	0	arg entre 4,3 Grav/gro & 0,6 Grav/moy	7.9	0.6	22.86	8.5	14.96
30111	596428.73	5025922.59	0	3	12,8 grav/gro sur roc	15.9	0.3	22.86	16.2	6.96
30127	597629.25	5021922.01	13.4	0		13.4	13.7	30.48	27.1	17.08
30128	597728.80	5022321.86	9.8	1.5		11.3	2.1	33.53	13.4	22.23
30134	598029.27	5022672.46	1.2	0		1.2	25.3	24.38	26.5	23.18
30149	598018.80	5022163.00	-	0	4,9 arg/blo+10,4 terr	15.3	1.8	28.96	17.1	13.66
30150	597428.78	5021732.29	13.4	1.8		15.2	11.9	32	27.1	16.8
30151	597688.88	5021942.13	12.2	3.6		15.8	12.2	30.48	28	14.68
30152	595178.64	5019272.42	23.2	6.7		29.9	8.5	30.48	38.4	0.58
30153	596279.29	5020041.90	21.6	~		28.7	2.4	30.48	31.1	1./8
30154	597109.02	5021022.34	11.9	4.6		15.5	2.1	30.48	18.6	13.98
301/3	07.670/AC	CI 778170C	4.0	***	7 3 am bloc aus mo	1.1	0.0	04.00	6 50	10.30
301/4	08'07C/RC	007117700 207730700	4.0			3.0 B 3	16.F	30.48	7 40	2.01 BC CC
30105	801320.00 801540 30	201024201.82	7.0 7.0		4.6 terr	45	4	41 15	27./ 15.5	36.65
30187	601609 00	502042 00		, c	7.9 drav/blo+1.8depo	8.6	7.6	45.72	17.4	35.92
30188	601628.85	5023122.51	0	18.2	3 depo	21.3	10.7	38.1	32	16.8
30189	594428.89	5018722.47	15.8	0		15.9	7	38.1	22.9	22.2
30190	600928.93	5023172.47	6.4	0	5,5 terr	11.9	9.1	32	21	20.1
30191	597028.40	5022021.82	8.8	0		8.8	9.8	39.62	18.6	30.82
30192	597628.87	5022372.00	16.8	0		16.7	24.4	36.58	41.1	19.88
30193	600528.69	5023722.02	5.5	0	6,4 terr	11.9	5.2	33.53	17.1	21.63
30194	598129.27	5022672.32	18.9	0		18.9	۳	30.48	21.9	11.58
30196	600679.19	5019721.84	0	11.6		11.6	7.6	50.29	19.2	38.69
30198	596829.23	5018272.18	9.4	0		9.5	19.8	45.72	29.3	36.22
30199	599078,80	5015822.07	0	31.1		31.1	-	45.72	38.1	14.62
30200	595828.55	5019222.53	13.1	0		13.1	13.4	36.58	26.5	23.48
30201	600388.97	5018982.44	0	11.8		11.9	0./ 1.0	56.39 F0.60	18.6	44.49
30202	599678.87	5017322.24	10.7	5.2		15.9	¢.7	50.29	23.2	34.39
30203	600268.67	5018622.20		13.4		13.4	0.7	24.80 52.61	20.1	41.40
30204	597828.83	5017271.80		14.9		14.9	5.22	42.6/	31.2	21.12
30205	599128.41	50198/1.96	8.6		18.6 tore	9.0	11 3	42.01	-, +	34.01 28.07
30207	291109.20	5010542.30 E030603 30		7.7		10.3	5 S	42.67	34 15 5	32.37
30206	507050 08	5015432 AD	75.R	5.5		36.5	46	45.72	41.1	9.22
00505 20240	EDE020 27	E018020 57	A 2			8.2	73	30.62	15.5	31.42
30210	1C.020CBC	10.228010C	7.0	2		2.0	2 ··· /	JJ.74	10.0	24.10

Puits Banque des puisatiers	UTM-X NAD 83	UTM-Y NAD 83	Epaisseur Argile(m)	Épaisseur S&G	Autres	Épaisseur DM	Épaisseur Roc	Altitude sol	Profondeur puits	Élévation roc
30211	597048.87 507049.49	5020332.23 5048344 70	9.8	•		9.8	7.6	30.48	17.4	20.68
30212	500738.81	5017202 34	101	*;*	o,/ arg/oro+o,o terr sur saor	4.4	22.3	4/.24 E4 00	37.2	32.34
30214	599899.03	5018012.33	7.6	, c	2 7 terr	10.3	4.4 7.5	70.10	45.R	43.04
30215	600428.92	5018232.18	20	9.8		5.5	55	53.34	15.2	43.64
30216	596958.96	5020112.56	1.5	0		15	16.8	42.67	18.3	41.17
30217	594528.76	5018622.34	13.1	0		13.1	4.9	28.96	18	15.86
30218	594628.48	5018422.20	11.6	1.5		13.1	4.6	36.58	17.7	23.48
30219	596728.64	5020022.27	15.5	0		15.5	4	30.48	19.5	14.98
30220	596928.79	5020122.00	8.8	2.4		11.3	6.1	38.1	17.4	26.8
30222	600629.10 506138.51	5019622.00 5017022.16	0;	0	9,1 bloc	9.2	7.6	47.24	16.8	38.04
3023	597829.04	5017421.00	53			_ 4	1.2	39.6Z	12.2	28.62 36.67
30224	596928.43	5018422.01	9.6 10.1	2.4		12.5	8.0 12.2	42.07	24.7	30.0/ 34 74
30225	597228.84	5018722.61	7	6.4	arg sous le sabi	13.4	31.4	48.77	44.8	35.37
30226	594628.78	5017922.22	11.6	0		11.6	8.8	· 38.1	20.4	26.5
30227	595528.50	5019171.94	7.3	0		7.3	8.2	30.48	15.5	23.18
30228	596829.02	5018122.17 5018722.01	11.3	•	4,3 depo	15.6	13.7	45.72	29.3	30.12
30200	507678 FA	30 22.0100	13.1	8.0	0 0 abla cata are at soc	14.9	6.4	39.62	21.3	24.72
30231	592328.29	5008221.69	24.4	16.8	3 7 shie entre arg et loc	44.8	13.7	36.FR	21.3 58.5	22.9 -8.22
30232	594128.55	5015571.97	8.5	0	10.7 bloc sur roc	19.2	26.5	39.62	45.7	20.42
30233	597179.27	5013271.77	13.7	0	0,3 terr	14	6.1	41.15	20.1	27.15
30234	597028.78	5012921.98	7.9	0		7.9	7.9	39.62	15.8	31.72
30235	596529.09	5012421.69	6.4	0		6.4	11.9	41.15	18.3	34.75
30237	594328.51	5008421.87	22.9	21.3		44.2	9.1	39.62	53.3	-4.58
30238	593548.69	5014812.20	19.8		3 bloc entre arg et grav	25.9	9.8	33.22	35.7	7.32
30239 30240	293008.40 604670 90	5015351./8 E044423 00	10.7	5	5,4 depo entre arg et roc	1/1	22.3	38.1 26.1	39.3 or	21.1
30241	504510 2R	5016122 22	15.5	7	10,4 uepo	10.4	14.0	30.1	3 CC	1.12
30242	594957.20	5013495.00	0.0	2		0	347	38.1	34.7	21 38 1
30243	595528.30	5007302.19	11.6	24		14	15	42.67	15.5	28.67
30244	594228.74	5011421.94	10.1	4.9	0,6 terr	15.6	2.1	33.53	17.7	17.93
30245	592958.69	5009382.37	11.9	0		11.9	9.4	38.1	21.3	26.2
30246	592878.63	5009331.88	11.6	1.5		13.1	2.1	38.1	15.2	25
30247	593019.04	5009632.49	10.4	0	3,4 arg/bloc sur roc	13.7	4	38.1	17.7	24.4
30248	593118.58	5009872.32	5.2	0		5.1	· 4	38.1	9.1	33
30249	594209.17	5011022.57	6.1	0	6,7 sab/moy sur roc	12.8	1.8	39.62	14.6	26.82
30250	592429.03	5007912.56	14.6	5.8		20.4	13.7	39.62	34.1	19.22
30251	594938.60 505400.00	500/932.21 5007400 4F	21	3.7		24.7	5.2	38.1	29.9	13.4
30252	595488.88 506747 97	500/432.45 50445442	9.4	/.6		17.1	2.4	38.1	19.5	21
30255	593928.87	5015232.26	19.0	10.4		41.1	τ. α	1.15	40.4	8.21
30256	594238 42	5012622-09	20.7	67		25.6 25.6	0.0	30.67	21.10	14.02
30257	594389.17	5013011.88	18.9	0		18.9	2.4	30.48	21.3	11.58
30258	593309.15	5013121.78	20.1	1.2		21.3	4	30.48	25.3	9.18
30259	594219.19	5015321.66	22.9	0	6,1 silt sur roc	29	6.7	38.1	35.7	9.1
30260	594148.91	5015552.35	10.7	2.4		13.2	3	38.1	16.2	24.9
30261	594428.31 F04060.04	5016/12.52	14.3	0.9 Č		15.3	e	38.1	18.3	22.8
20202	10.8028403	0 12822.01	305	0 2 2		15.3	5.8	30.48	12.8	23.48
30264	596398.95	5012322.27	C.21), V		C [2]	2.4 8.7	30.40 38.1	11.1	31.0
30265	592828.60	5008311.98	21.3	7.9		29.3	5.8	38.1	35.1	8.8
30266	594428.94	5008721.72	12.2	0.9	3 depo	16.1	9.8	38.1	25.9	22
30267	594228.80	5015722.00	0	0	4 terr+3 depo	7	6.4	38.1	13.4	31.1
30268	593729.08 503557 07	5014522.57	21.6	6.1		27.7 of	0.6	38.1 25.10	28.3 ŝŝ	10.4
30269	19/20202	5014044.25 E014322 43	21.6	3.4		25 70 A	4	30.48	29	5.48
302/0	502820.79	5014322.43	20.1	0.0 0	2 1 eab/bloc eur roc	12 5	4.0 A.C	30.48 36.58	33.2	24.08
30272	592928.40	5010422.00	tol	òo		13.4	85	38.1	21.9	24.7
30273	592928.66	5009921.80	9.8	0	5,5 terr	15.3	9.1	38.1	24.4	22.8
30274	594128.72	5016421.94	11.9	1.5		13.4	8.5	38.1	21.9	24.7
30275	593728.52	5014122.56	23.2	1.8		25	4.3	38.1	29.3	13.1
30276	594228.68	5013521.87	20.7	74		28.1	e	38.1	31.1	10
30277	593657 67	5014544.22 5008200 28	22.6	4.6		27.2	2.1	38.1 201	29.3	10.9
30278	2933/8.33	5008322.38 E000404.07	10.7	5		10.1	13./	38.1	24.4	21.4
30280	592928.40	5009021.83	19.8	0	ara+7.6 sab/fin+17.4 sab/arg sur roc	44.8	4. 2. 2.	39.62	533	-5.18
30281	592628.85	5007922.28	21	4.3	and the Diminster if it is an and a fit Dim	25.3	2.1	41.15	27.4	15.85
30283	593928.38	5014022.28	19.8	7.9		27.8	2.7	38.1	30.5	10.3
30282	594128.80	5008622.00	0	0	20,1 sabl/arg	20.1	21	41.15	41.1	21.05
50200 10202	2433420.4U	3014023.00 EAA7473 01	19.0	(.a		19.6	7.7	30.1 20.1	50.3	10.5 10.5
30404	082128.IU	JUU1444.01	10.4	0.4		10.0	2.4		17	19.0

Puits Banque des puisatiers	UTM-X NAD 83	UTM-Y NAD 83	Epaisseur Argile(m)	Épaisseur S&G		Épaisseur DM	Épaisseur Roc	Altitude sol	Profondeur puits	Élévation roc
30265	90 90 90 90 90 90 90 90 90 90 90 90 90 9	80 0009	21.0	~		411	3.1 27.0	30. 38.1	6.02 AA	10.01 F
30288	593648.37	5014722.06	25.3	4.3		29.5	4	38.1	33.5	8.6
30289	593657.72	5013144.27	18.3	1.8	7,3 bloc entre arg et sabl	27.5	1.2	38.1	28.7	10.6
30321	596328.50	5003792.00	•	0	6,7 terr	6.7	8.2	45.72	14.9	39.02
30335	595828.67	5002921.86	2.1	0		2.1	11.6	45.72	13.7	43.62
30340	590628.78	5007122.13	7.9	2.4	9,1 arg blo entre arg et sabl	19.8	3.4	38.1	23.2	18.3
30345	591129.10	5008072.40	14.3	0		14.4	2.4	38.1	16.8	23.7 16.70
30880	598488.99 500770.40	5014952.11 5045333.00	17.4	10.6	0,9 sabunin entre arg et sabt	54 V	0.9	45.72	29.9	10.72
00805	508757 81	50125546 Fd	× 4		1 8 cab/am sur roc	7.10	14	39.56	22.0 21.9	31.66
30891	596257.81	5012544.64	6.1	0	idem ci dessus	7.9	44.5	39.56	52.4	31.66
53507	608728.80	5024522.00	0	0	12,2 depo	12.2	0.6	30.48	12.8	18.28
53508	610878.80	5022272.00	0	0	9,1 depo	9.2	14.9	30.48	24.1	21.28
53510	610878.69	5022921.83	0	7.6		7.6	1.5	30.48	9.1	22.88
53511	610178.60	5017773.00	0	0	18,3 sabl/fin	18.3	6.1	48.77	24.4	30.47
53512	608378.40	5019872.00	•	•	1,2 depo	1.2	11	45.72	12.2	44.52 26 67
93014	6084/9.20 643600.40	50189/2.00			9,1 UEDO	45.2 15.2	3.1	20.48	14.0	30.02 15.10
53517	613629.40	5072422.0U			oden 7'c1	0.0 C	6.31	30.40	15.0	30.49
33316 53524	612378 80	5055022 00			52 (1900	52	50	20.40 27.86	6 1 6	30.40 17 66
53522	610478.80	5020773.00		0	11.9 depo	11.9	0.9	38.1	12.8	26.2
53524	609778.50	5019873.00	0	0		0	12.5	38.1	12.5	38.1
53525	610578.60	5022122.00	0	0		0	13.7	30.48	13.7	30.48
53535	610179.30	5018273.00	0	0	17,4 arg/grav	17.4	7	47.24	24.4	29.84
53537	610629.30	5027773.00	0	0	0,6 depo	0.6	.14	25.91	14.6	25.31
53542	614758.10	5023445.00	0	0	9,1 depo	9.2	9.1	30.48	18.3	21.28
53543	609929.00	5026822.00	0	0	3 depo	3	22.9	30.48	25.9	27.48
53544	609929.10	5026922.00	0	0	3 depo	3	80.8	30.48	83.8	27.48
53551	602728.39	5014821.99	12.2	6.1	4 shle	22.2	17.1	45.72	39.3	23.52
53553	601928.61	5012122.12	18.3	12.5		30.7	10.4	45.72	41.1	1 <u>5</u> .02
53556	606678.90	5022373.00	0	0	11,3 depo	11.3	0.3	38.1	11.6	26.8
53558	602628.70	5014322.00	0	0	2,1 remb+8,8 arg/silt	=	2.7	30.48	13.7	19.48
53559	602528.83	5014422.28	0	7.6	8,8 arg/sil+6,1 sab/fin	22.6	1.5	27.43	24.1	4.83
53560	602728.53	5014921.99	0	16.8		16.7	5.2	47.24	21.9	30.54
53575	603428.80	5017222.00	•	0	24,4 depo	24.3	67.1	53.34	91.4	29.04
53576	606629.40	5022023.00	0	0	10,7 depo	10.7	27.4	39.62	38.1	28.92
53719	604979.10	5012472.00	0	0	5,2 shie	5.2	17.4	48.77	22.6	43.57
53720	604878.60	5012822.00	0	•	22,9 depo	22.9	6.7	48.// 20.00	29.6	/8.62
53723	605129.00	5006723.00	-	•	15,2 depo	2.GL	10.1	60.90 50.00	20.3	43./b
53724	605178.80	5007273.00	-		/ depo		18.5	60.90 20.90	2.02	53.90
53725	605228.90	500/3/3.00		-	14,9 Snie 3 door±12 2 abio	4.4 7 2 3 1	0.0	00.90 60.06	10.0	40.00
53/20	02128.30	20080/2.00				881	4.07 D.B.	00.00	10.0	45.00
33/2/ 53798	003328.7U	2000023.00			13 1 4000	13.1	17.4	64.01	30.5	50.91
53/20	605473.00	5000023 00		, c	8.2 demo	82	13.1	68.58	21.3	60.38
53730	605778 80	5000422 00	, c	ļ	9.8 deno	86	8.5	68.58	18.3	58.78
53734	805720 20	5011072 00		, c	11 dam	10.9	10.4	68.58	213	57.68
53732	605828.60	5011373.00	, o	0	16.8 depo	16.8	5.8	68.58	22.6	51.78
53734	605678.90	5013722.00		0	30.5 depo	30.5	6.1	53.34	36.6	22.84
53735	605678.90	5013722.00	0	0	14,6 depo	14.6	0.3	53.34	14.9	38.74
53737	605478.70	5013572.00	0	0	22,6 depo	22.6	0.3	53.34	22.9	30.74
53738	606578.40	5014823.00	0	0	15,2 depo	15.2	12.2	53.34	27.4	38.14 55 75
53741	606778.90	5011573.00	o (-) (12,8 depo	12.8	-	08.08 59.34	23.8	55.04
53/42	606476.7U	5015023.00			11 0 4500	110	6.1 6.4	90.09	18.3	40.05
03/43	606178.80	5005172.00		, c	7.6 deno	7.6	0.9	60.96	8.5	53.36
53746	606728.60	5011423.00	, , ,	0	9.4 depo	9.5	8.2	68.58	17.7	59.08
53748	607278.60	5012073.00	0	0	8,8 depo	8.8	7	60.96	15,8	52.16
53750	607729.10	5012472.00	0	0	13,4 depo	13.4	0.6	57.91	14	44.51
53751	607029.30	5015472.00	0	0	18,9 depo	18.9	3	53.34	21.9	34,44
53752	607228.40	5008423.00	0	Q	14,6 depo	14.6	3.7	64.01	18.3	49.41
53754	607779.30	5009722.00	0	0	15,2 depo	15.3	3	68.58	18.3	53.28
53755	607878.50	5009872.00	0	•	15,2 depo	15.2	10.7	68,58 59,5	25.9 25.5	53.38
53756	607029.30	5015472.00	0	•	23,2 depo	23.2	0.3	53.34	23.5	30.14
53757	607228.40	5015573.00	0		18,3 depo	18.3	2.4	53.34	20.7	35.04
53758	607029.29	5011871.98	0	10.7	6,7 blo	1/.0	10./	60.96 57.04	28.3	43.30
53759	607729.14	50124/2.00	6.1	7.1	0,1 Srife sur arg	13.4	40	90 US	16.7	44.01
53/63	606000 00	50130/3.00	0		10,0 uepo 21 0 dano	(J. 2	0.0 A 1	00.90 F3 34	23.R	31 34
33/04 53765	608178.60	5017123.00		, o	2.15 depo	16.5	12.5	53,34	29	36.84
53766	608978.80	5013673.00		0	21,3 depo	21.4	9.1	60.96	30.5	39.56
53767	608679.20	5013223.00	0	0	16,5 depo	16.2	0.3	60.96	16.5	44.76

609479.10	01M-Y NAU 83 E	paisseur Argile(m) 0	Epaisseur S&G 0	Autres 18.3 depo	Epaisseur DM 18.3	Epaisseur Roc 18.9	Altitude sol	Profondeur puits	Élévation roc 35.04
	5016822.01	0	18.3		18.3	12.2	48.77	30.5	30.47
-	5016822.00	0	0	0,9 depo+9,8 sabl/fin	10.7	6.4	48.77	17.1	38.07
-	5013822.00 5011170.00	0	0	19,8 depo	19.8	13.7	56.39	33.5	36.59
-	50141/2.00 5015672 00	•	•	21,3 depo	21.3	0.3	56.39	21.6	35.09
+-	5006172 00			10,5 Gepo	18.3	/9.2 / 1 3	53.34 60.06	97.5	35.04
t	5007772.00	òo	, o	25.3 deno	25.3	30.5	90.90 90.90	32 55 A	35.66
П	5012644.57	19.8	0		19.9	193.5	67.06	213.4	47.16
1	5012644.57	0	25.6		25.6	151.2	67.06	176.8	41.46
T	5011222.04	5	10.3	1.5 am/nrav sur am	18.3 7.6	153.9	68.58 53 34	7.0	50.28 45.74
	5011721.99	9.1	, O		9.1	0.3	53.34	9.4	44.24
_	5011502.34	3.4	0		3,4	0.9	53.34	4.3	49.94
	5012523.00 E012523.00	0		18,3 depo	18.3	153.9	57.91	172.2	39.61
	5011502.34	3.4	, o		3.4	/3.2 0.9	53.34	81.4 4.3	19.04
ģ	5002923.00	0	0	11,9 depo	11.9	0.3	50.29	12.2	38.39
2	5011662.00	0	0	21,3 depo	21.4	15.2	39.62	36.6	18.22
2 E	5010522.00 F008122.00	0	5 0	18 depo	18 20 E	0.3	41.15	18.3	23.15
3 23	5009172.00	t:07	0	22.9 dep0	22 9	79	39.62	30.1 30.8	25.22 16.72
30	5007622.00	0	0	5,8 depo	5,8	14.6	45.72	20.4	39.92
.60	5007122.00	0	0	11,6 depo	11.6	21.9	54.86	33.5	43.26
.80	5005495.00	0	0	5,5 depo	5.5	0.3	51.82	5.8	46.32
08.7	5003045.00	•	0	12,2 depo	12.2	9	54.86	15.2	42.66
8.50	5004222.00	•	0	5,5 depo	5.5	9.1	42.67	14.6	37.17
0.00	004222,00			4,3 Gepo 0 8 4000	4,3	1.8	42.67	6.1	38.37
8.40	5006222.00			a,o ueno 20 4 deno	3./ 20.4	1 +	30.62	13./ 21.R	32.81 10.22
00.6	5010222.00	, c	, c	24.4 deno	24.4	6.1 6.1	41 15	30.5	19.44
9.80	5010072.00	0	0	9.1 grav/arg	9.2	32.6	38.1	41.8	28.9
28.60	5009272.00	0	0	12,8 grav/arg	12.8	1.5	45.72	14.3	32.92
28.30	5009072.00	0	0	1,5 terr	1.6	15.2	45.72	16.8	44.12
078.34 00 07	5008372.05	0	27.4		27.4	=	45.72	38.4	18.32
178.50	5007072 00		0.00	10.0 amadam	30.4 13.5	10.2	45.72	46.6	15.32
479.00	5006722.00	0		1∠,∠ ⊌ravary 1.8 depo	18	14.0	33.34 45.72	20.8 15.8	41.14
029.20	5006173.00	0	0	4,6 terr	4.6	27.4	45.72	32	41.12
929.17	5009672.14	7.9	0		æ	2.1	38.1	10.1	30.1
529.40	5024922.00	0;	0	5,8 terr	5.8	11.6	21.34	17.4	15.54
78 BD	5019423.00) <u>, c</u>		21 0 dam	14./	12.2	21.43	6.02 8.02	13./3
29.34	5025622.01	ò	17.4	0000 2113	17.4	13.1	20.1 22.86	30.5	5 46
28.50	5019171.66	0	6.1	5,5 silVsab sur roc	11.6	0	38.1	11.6	26.5
28.35	5018321.76	18.9	2.7		21.6	0.3	38.1	21.9	16.5
328.50	5022872.00	0	0	18,3 depo	18.3	0	38.1	18.3	19.8
29.23	5018272.18	0	24.4		24.4	12.2	45.72	36.6	21.32
28.40	5018422.00	0	0	13,7 depo	13.7	13.7	45.72	27.4	32.02
29.07	5018172.24	0	24.4		2.7	9.8	45.72	12.5	43.02
29.10	5016722.00	0	0	8,8 depo	8.9	0.9	42.67	9.8	33.77
128.50	5016322.00	0	0	7,6 terr	7.6	3.4	45.72	11	38.12
328.90	5018072.00	0	0	2,7 terr	2:7	9.8	45.72	12.5	43.02
20./U	5020022.00	2	- c	/ 9 depo	2000	2.4	42.67	10.4	34.67
10.07	5016171.81	5.5	20.4	1,3 ter am sur noc	3.9 25.0	4 G	40.// 50.20	311	24.8/ 24.30
78.80	5015822.07	0	27.4	DOL IDO RID	27.4	13.7	45.72	411	18.32
78.50	5013472.00	0	0	21 depo	21.1	1.8	39.62	22.9	18.52
78.60	5012823.00	0	0	21,3 depo	21.4	2.4	42.67	23.8	21.27
79.20	5018222.00	0	0	7,9 terr	7.9	0	45.72	7.9	37.82
28.60	5018522.00	0	0	3,7 depo	3.7	32	45.72	35.7	42.02
29.20	5018272.00		0	5,8 depo	5.7	3.7	45.72	9.4	40.02
9.30	5016172.00	o,	0	27,4 depo	27.4	3.7	45.72	31.1	18.32
200	90.17671.00		ۍ ۲۹	U,o bioc+8,2 gravgro sur roc	8°11	1.8	53.34	13./	41.44
20 0	5017622-08	- -	7.6	1.0 540/1111 501 105	7.6	0.0	50.29	۲.Y	30.12 47.60
4	5016271.63	, o	18,6		18.6	0.3	48.77	18.9	30.17
3.70	5017011.81	6.4	1.2		7.6	0.3	39.62	7.9	32.02
3,70	5018082.00	0	0	1,5 sabl/fin+3 sabl/moy+2,1 sabl/fin	6.7	2.7	30.48	9.4	23.78
.32	5019071.78	0	6.1	12,5 silt/sab sur roc	18.6	0	38.1	18.6	19.5
00 00	5019022.00	•	0	16,8 depo	16.8	3	53.34	19.8	36.54
, ,	501/242.21	5,	12.0		6.21	, 'ž	48.11	15.2	36.27
4	5017222.42	0	11.8	1,5 terr	13.4	0	48.77	13,4	35.37

Puits Banque des puisatiers	UTM-X NAD 83	UTM-Y NAD 83	Epaisseur Argile(m)	Épaisseur S&G	Autres	Épaisseur DM	Épaisseur Roc	Altitude sol	Profondeur puits	Élévation roc
54439	599029.05	5012422.19	2.7	0		2.8	19.5	40.23	22.3	37.43
54443	597228.59	5020722.57	15.2	0		15.2	4.6	30.48	19.8	15.28
54446	598938.54	5015782.46	2.1	21.9	0,9 silt sur arg 3 silt entre arg et sab	28	4,9	45.72	32.9	17.72
5447	598228.53	5013902.27	29.9	0		29.8	3.4	41.15	33.2	11.35
54450	596928.80	5020122.00	0	0	18,3 depo	18.3	0.6	38.1	18.9	19.8
54455	594629.30	5011503.00	0	•	39,6 terr	39.7	9.1	39.62	48.8	-0.08
54458	596379.10	5019621.77	13.7	0		13.7	11.6	36.58	25.3	22.88
54459	598678.93	5013181.66	3	17	3 silt entre arg et sab	23.2	1.5	45.72	24.7	22.52
54460	599678.90	5013182.27	0	15.2	1,5 silt sur sabl	16.8	0.3	45.72	17.1	28.92
54461	596078.62	5019272.18	12.2	0		12.2	5.5	38.1	17.7	25.9
54463	599978.71	5017921.81	0	21.3		21.3	0	48.77	21.3	27.47
54466	594079.10	5016722.00	0	0	4,6 depo	4.6	14.3	39.62	18.9	35.02
54467	593728.50	5015523.00	0	0	15,8 depo	15.8	17.7	39.62	33.5	23.82
54468	593578.60	5014872.00	0	0	21,3 depo	21.3	6.7	39.62	28	18.32
54469	593657.80	5014594.00	0	0	22,9 depo	22.9	5.8	38.1	28.7	15.2
54470	593657.40	5014344.00	0	0	29 depo	29	1.5	38.1	30.5	9.1
54471	592978.40	5012622.00	0	0	28 depo	28.1	1.8	38.1	29.9	10
54472	591828.30	5011773.00	0	0	19,8 depo	19.8	1.2	38.1	21	18.3
54473	591528.70	5010622.00	0	0	6,1 depo	6.1	2.7	38.1	8.8	32
54474	591278.30	5008172.00	0	0	8,5 depo	8.5	0.3	38.1	8.8	29.6
54475	591278.30	5008172.00	0	¢	7,3 depo	7.3	0.9	38.1	8.2	30.8
54476	590528.80	5007123.00	0	¢	16,8 depo	16.8	2.1	38.1	18.9	21.3
54480	594378.90	5011522.00	0	0	30,5 terr	30.5	7.6	39.62	38.1	9.12
54481	596828.60	5012823.00	0	0	9,1 depo	9.2	3	40.54	12.2	31.34
54482	596499.10	5012472.00	6.8	0	0	7	0.3	38.1	7.3	31.1
54484	595729.00	5011622.00	0	0	18,3 depo	18.3	4.6	39.62	22.9	21.32
54485	594629.30	5011503.00	0	0	39,6 terr	39.7	9.1	39.62	48.8	-0.08
54487	592778.50	5008372.00	0	0	37,8 depo	37.8	6.1	38.1	43.9	0.3
54490	592278.80	5007822.00	0	Q	1,5 depo	1.5	25.9	38.1	27.4	36.6
54492	594729.10	5008123.00	0	0	9,1 depo	9.2	26.5	38.1	35.7	28.9
54493	595228.80	5007923.00	0	Q	27,4 depo	27.4	3.7	36.58	31.1	9.18
54494	595378.60	5007823.00	0	0	25,6 depo	25.6	0.3	38.1	25.9	12.5
54495	595828.60	5007122.00	0	0	12,2 depo	12.2	19.5	38.1	31.7	25.9
54496	595728.50	5007022.00	0	0	15,2 depo	15.3	1.8	39.62	17.1	24.32
54497	594828.80	5007922.00	0	0	29 depo	28.9	3.7	38.1	32.6	9.2
54502	593928.80	5013623.00	0	0	10.7	10.7	6.1	38.1	16.8	27.4
54503	593657.80	5010665.00	7.6	0		7.6	0.6	38.1	8.2	30.5
54505	594348.51	5012402.13	10.7	0.9		11.6	0.9	38.1	12.5	26.5
54512	597468.54	5013472.14	8.8	0		8.9	8.8	40.84	- 17.7	31.94
54514	595579.02	5013502.01	10,1	2.1		12.2	0	38.1	12.2	25.9
54515	596888.85	5012972.37	7.3	2.1		9.5	0.6	38.1	10.1	28.6
54516	596749.16	5012901.78	8.2	0.9		9.2	0.6	38.1	9.8	28.9
54518	597198.54	5013042.13	12.5	0	1,5 sab/moy sur roc	14	0	38.1	14	24.1
54519	595298.67	5011101.83	5.5	16.5		21.9	0	38.1	21.9	16.2
54521	595568.49	5010841.86	13.4	5.2		18.6	0.9	38.1	19.5	19.5
54524	596069.27	5011982.16	13.1	0.9		14	0	38.1	14	24.1
54536	592129.20	5007422.00	0	0	1,5 depo	1.5	29	38.1	30.5	36.6

Élévations supérieures des unités géologiques (m)

PUITS	UTM X	UTM Y	Argile	Sable et Gravier	Till	Roc
PW-111	599327.35	5015275.65	44.52	44.02	13.52	11.52
PW-112	599293.25	5015276.11	44.53	44.03		12.53
PW-113	599252.04	5015279.75	43.33	42.83		12.63
01-87	599470.21	5015665.17	49.73	49.23		
02-87	599574.02	5015622.09	49.72	34.50		
F-1	599428.68	5015694.98	49.10	48.04	35.54	
F-2	599437.38	5015638.04	48.07	47.57	31.84	
F-3	599416.03	5015645.61	46.43	45.93	32.71	
F-4	599379.93	5015646.00	47.04	46.54	34.76	
F-5	599434.29	5015597.84	48.85	48.35	26.64	
F-6	599404.17	5015603.93	50.00	38.08	31,90	
F-7	599366.20	5015612.23	49.10	48.60	38.10	
F-8	599426.11	5015562.14	49.72	49.22	25.60	
F-9	599383.91	5015539.77	49.65	49.15	29.59	
F-10	599355.27	5015573.27	49.37	48.87	34.86	
F-11	599454.29	5015534.07	49.21	47.08	18.73	
F-11-A	599461.65	5015588.00	49.55	41.93	26.99	
F-11-B	599470.64	5015622.96	49.70	41.52	29.18	14.76
F-12	599429.76	5015528.41	49.11	48.61	20.46	
F-13	599325.89	5015548.58	47.13	46.63	33.81	
F-14	599448.63	5015481.76	49.45	37.56	24.15	13.74
F-15	599364.36	5015442.20	42.46	41.96	15.33	10.91
F-16	599248.31	5015539.71	45.58	45.08	33.81	15.28
F-17	599366.46	5015474.87	42.57	42.07	15.59	13.94
F-18	599407.47	5015449.15	43.22	42.72	19.60	9.69
F-19	599303.09	5015511.06	41.46	40.96	33.54	14.33
P-1	599328.71	5015638.53	40.05		39.20	
P-2	599325.00	5015623.46	40.32		39.32	
P-3	599317.33	5015605.32	39.93		38.43	
P-4	599292.55	5015600.20	39.98		37.38	
P-5	599268.44	5015604.75	39.38		38.58	
P-10	599298.91	5015627.97	40.03			
F-11-C	599446.42	5015557.08	49.08	44.85	22.40	
F-11-D	599454.18	5015638.74	49.31	42.30	30.11	
F-20	599352.93	5015504.95	43.26	42.76	27.56	
F-101	599338.94	5015488.33	42.48	41.98	27.23	14.12
F-102	599305.83	5015417.11	39.60	39.10		12.92
F-103	599416.99	5015301.18	49.41		29.59	12.35
F-104	599176.63	5015393.25	44.10	41.18	21.62	11.00
F-106	599274.97	5015463.53	40.94	40.44	27.22	13.26
F-108	599211.57	5015431.35	43.06	42.56	28.89	12.40
F-109	599228.71	5015372.24	43.83	43.33	19.26	10.88
F-110	599292.05	5015374.61	41.25	40.75	_	12.63
F-110a	599286.17	5015375.19	41.19	40.69		12.68
F-111	599359.14	5015379.79	43.32	42.82	15.69	11.27
F-112	599394.98	5015354.72	47.84	40.92	17.45	12.73

PUITS	UTM X	UTM Y	Argile	Sable et Gravier	Till	Roc
F-113	599244.67	5015238.69	40.14	39.64	23.79	12.82
F-114	599196.97	5015261.83	39.85	39.35	18.28	13.10
F-115	599128.11	5015294.80	42.86	38.90	16.96	10.65
F-119	599209.84	5015481.23	45.23	41.23	31.98	12.16
F-120	599400.80	5015731.11	41.13		40.02	14.45
F-121C	599290.19	5015760.00	43.41		40.41	12.52
F-124	599306.75	5015334.69	42.99		16.15	12.19
PO-94-1S	599367.12	5015234.55	48.63		29.43	
Z-1	599362.42	5015519.03	51.09		33.26	
Z-2	599384.42	5015510.29	51.57	36.63	24.25	
Z-3	599382.23	5015499.97	51.26	36.22	20.08	
Z-4	599402.58	5015503.08	49.91	33.91	17.55	
Z-5	599425.07	5015493.67	49.08	32.25	14.86	
Z-6	599449.33	5015483.83	49.33	38.33		14.10
Z-7	599473.06	5015473.96	49.05	31.71	15.85	
Z-8	599493.07	5015465.62	48.76	27.96	19.54	
Z-9	599542.66	5015643.06	49.32	33.31	20.16	
Z-10	599323.31	5015535.52	45.16	44.66	34.38	
Z-11	599470.52	5015674.59	49.20	44.54	30.85	15.04
Z-12	599427.92	5015642.69	46.59	46.09	33.05	
Z-13	599378.75	<u>5015711.96</u>	46.59	32.10	30.26	
L-1	599386.19	5015656.22	45.75		36.60	
L-2	599401.78	5015640.44	46.77		37.68	
L-3	599363.95	5015609.87	48.90		37.90	
L-5	599352.64	5015627.80	47.22	46.72	40.13	
L-6	599380.57	<u>5015593.71</u>	49.95	49.45	35.12	
L-7	599374.04	5015571.63	49.69	49.19	31.44	
L-8	599397.25	5015542.77	49.99	49.49	28.35	
L-9	599391.99	5015575.73	50.57	50.07	31.46	
L-10	599404.50	5015570.13	50.62	50.12	28.88	
L-11	599367.97	5015658.39	46.08	45.58	40.19	
L-12	599407.55	5015654.07	45.75	45.25		
L-13	599430.39	5015520.41	48.91	48.41	19.90	
L-14	599403.94	5015517.01	50.56	50.06	20.07	
L-15	599352.80	5015538.48	48.29	47.79	32.77	
L-17	599384.92	5015630.59	48.27	47.77	37.25	
L-18	599356.40	5015666.58	46.06	45.56	40.28	
L-19	599397.01	5015625.73	48.61	48.11	33.78	
<u>l-1</u>	599331.46	5015675.48	42.86	42.36	39.86	
1-2	599344.03	5015670.10	43.42	42.92	0021	
1-4	599325.97	5015603.35	41.04	40.54	38.34	
1-5	599330.82	5015601.82	43.30	42.80	38.34	
385	090929.10	5013823.00			45 - 4	32.62
400	599528.59	5017122.44	53.34	52.84	45.74	35.34
1900	090429.20	5010521.74	39.62		28.92	27.12
3004	002228.01	5012821.70	45.72		27.42	18.32
3320	595378.62	5016372.21	38.10		27.10	25.30
3339	596729.10	501/742.32	30.48		21.68	19.88

PUITS	UTM X	UTM Y	Argile	Sable et Gravier	Till	Roc
3353	599228.92	5012321.91	38.10	13.40		5.50
6066	602828.79	5015821.86	45.72			23.72
8541	596257.92	5017644.55	38.10			27.80
28808	602478.41	5014122.34	45.72	39.62		31.02
28810	602978.63	5015722.65	53.34	49.34		32.24
28811	602629.18	5014672.15	45.72	38.72		24.12
28812	602078.38	5012671.91	45.72	38.12	28.12	21.02
28818	602329.26	5014022.57	47.24	40.54	23.54	19.54
28819	602808.40	5014982.48	50.29	49.09		30.19
28828	602148.60	5013252.21	44.20		21.90	19.50
28832	601928.56	5017822.11	51.82			38.72
28844	602028.42	5017721.96	50.29			39.29
28847	602379.13	5017522.49	60.96		54.86	51.86
28853	601528.48	5017772.66	60.96		49.66	46.96
29235	603228.54	501637 <u>2.29</u>	51.82	49.12		40.52
30202	599678.87	5017322.24	50.29			34.39
30204	597828.83	5017271.80	42.67			27.77
30209	597059.08	5015432.49	45.72	,		9.22
30210	595828.37	5016922.57	39.62			31.42
30213	599738.81	5017702.34	51.82			41.82
30222	596128.51	5017022.16	39.62			28.62
30223	597829.04	5017421.80	42.67			36.67
30233	597179.27	501327 <u>1.77</u>	41.15			27.15
30254	596247.87	5014154.43	41.15			0.05
53558	602628.70	5014322.00	30.48	·		19.48
53560	602728.53	5014921.99	47.24			30.54
54398	600348.53	5017501.69	53.34			41.44
54399	599948.92	5017642.26	45.72			38.12
54400	599939.29	5017622.08	50.29			42.69
54419	595948.70	5017011.81	39.62			32.02
54422	600858.70	5018082.00	30.48			23.78
54428	599678.36	5017242.21	48.77			36.27
54429	599688.74	5017222.42	48.77	40.70		35.37
54459	598678.93	5013181.66	45.72	42.72		22.52
54460	599678.90	5013182.27	45.72			28.92
54512	597468.54	5013472.14	40.84	00.00		31.94
54514	595579.02	5013502.01	38.10	28.00		25.90
54516	596749.16	5012901.78	38.10			28.90
54518	597198.54	5013042.13	38.10	20.00		24.10
54515	596888.85	5012972.37	38.10	30.80		28.60
PO-94-8R	596321.57	5013144.00	41.23			34.03
54377	597729.10	5016722.00			-	33.77
54378	599128.50	5016322.00				30.12
54410	599108.44	5016271.63	ļ			30.17
54446	598938.54	5015/82.46				11.12
<u> </u>	598228.53	5013902.27				26.52
	599204.13	5016567.00	20.02		10.02	20.02
PO-94-3R	599866.81	5015016.00	30.23		19.93	CO.O

PUITS	UTM X	UTM Y	Argile	Sable et Gravier	Till	Roc
PO-94-4RP	597670.56	5014315.00	38.50		· · · · · · · · · · · · · · · · · · ·	10.45
PO-94-5R	598869.50	5013524.00	43.03	36.01	25.60	22.60
PO-94-6R	597138.88	5013856.00	46.06			27.77
PO-94-7R	598156.50	5013358.50	39.38		24.75	22.41
7011	599523.04	5015674.14				16.28
31778	599470.21	5015665.17				15.90
31809	599574.02	5015622.09				16.80
R-1	599298.63	5015212.98				11.60
R-2	599280.18	5015344.63				12.60
R-3	599325.41	5015332.47				12.50
R-4	599346.39	5015440.86				11.00
R-5	599343.74	5015529.81				13.80
R-6	599410.27	5015501.05				14.00
R-7	599390.95	5015571.68				12.80
03097041	598375.50	5014882.00	41.00	23.00	20.00	2.87
03097071	596668.56	5014720.00	42.90	26.90	24.97	-1.03
03097201	598875.00	5014371.00	40.90	36.90	31.90	15.46
5M81-B	598947.94	5014752.50	42.27	39.27	34.27	14.94
5M81-C	598947.94	5014752.50	42.27	39.27	34.27	15.09
6M81-B	599182.50	5015042.00	43.64	43.14	16.47	13.47
F-105B	598926.13	5015492.00	43.2	41.2	32.63	9.63
F-107	599054.06	5015441.50		· · · · · · · · · · · · · · · · · · ·		7.96
F-122C	599020.88	5015347.00	43	41	32.30	12.30
F-123B	598854.25	5015056.50	41.7	38.7	31.38	13.38
F-127B	598631.50	5015151.50	41.8	31.8	27.21	9.21
F-128B	598546.69	5014979.00	41.5	31.5	27.02	9.02

ANNEXE D

Données piézométriques régionales et locales

Pults			and the second second			and a submission	Piézométrie	(m)		and a survey of the				
	988-11-03 1988-11	-17 1989-02-01	1989-04-1	1 1989-04-28	1989-05-10	1989-05-31	1989-07-14	1989-07-21	1989-08-17	1989-09-22	1989-11-24	1990-09-13	1990-10-24	1990-11-09
1422														
1468														
1560														
2-81														
3-81														
5M-81-A														
5M-81-B														
5M-81-C														
6M-81-A														
6M-81-B														
6M-81-C														
7011														
7021														
7022												Ī		
7023														
7031											Ī			
7041									ľ	ľ				
7051											Ī	Ī		
7201					T				Ť			Ī		
02.04							Î				T			
10-70							Ť				Ì			
8/-02						Ī			Ì					
DW-19				_										
DW-25										-				
F-001													38.33	38.27
F-002			_										36.86	36.91
F-004													40.28	40.20
F-005						-							38.04	38.82
F-006								-					36.26	36.33
F-008													36.19	36.21
F-009													35.94	35.92
F-010													36.01	35.98
F-011													36.81	36.38
F-011A													36.60	36.70
F-011B													37.09	36.95
F-011C-S														
F-011C-1														
F-011D-S														
F-011D-1				r							_		36.11	36.05
F-012								-					36.67	36.57
F-013										-			35.67	35.57
F-014													37.32	37.32
F-016													35.56	35.46
F-017														36.95
F-018													37.01	37.01
F-019														
F-020-S														
F-020-I	_						_							

Puits 198	8-11-03 1988-1	1-17 1989-02-0	1 1989-04-1	1 1989-04-28	1989-05-10	1989-05-31	1989-07-14	1989-07-21	1989-08-17	1989-09-22	1989-11-24	1990-09-13	1990-10-24	1990-11-09	
F-101-A															
F-101-B															
F-102-A															
F-102-B								-							
F-102-C															
F-103-A															
F-103-B															
F-104-A															
F104-B															
F-105-A															
F-105-B															
F-105-C															
F-106-A															
F-106-B															
E-108-C									ľ						
F-107-A										T	ſ				
E-108-0		╞							Ī	Ī					
E-108-B															
							I		T	T	T				
ן-108-L															
F-109-A															
F-109-B	-	-													
F-109-C															
F-110															
F-110a-A				_				-							
F-110a-B															
F-111															
F-112-A			_												
F-112-B		-				-									
F-112-C				1											
F-113-A															
F-113-B															
F-113-C															
F-114-A		_													
F-114-B															
F-114-C															
F-115-A											_				
F-115-B	-														
F-115-C															
F-116-A															
F-117-A															
F-118-A															
F-119-A															
F-119-B															
F-119-C															
F-120-A															
F-120-B															
F-120-C															
F-121-A											1				
	1000 11 00	1000 11 17	1000 00 01	1000 01 11	1000 01 20	1000.05.10	1080.05.31	1080.07.14	1080 07.21	1989-08-17	1989-09-22	1989-11-24	1990-09-13	1990-10-24	1990-11-09
---------	------------	------------	------------	------------	----------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------
5 424 B	CD-11-0021	11-11-0021	10-20-2021	11-40-6061	n7-to-coci	21-20-2021		12 - 2021	12 10 2021						
E-101_C	ŀ	Ţ													
2		Ī													
F-122-A											T				
F-122-B		-													
F-122-C															
F-123-A															
F-123-B															
F-124-A															
F-124-B							-								
F-124-C															•
F-125-A															
F-125-B															
F-125-C															
F-126-A															
E-126-R															
E-127.A															
1212										ſ					
-171-J									Ī	ĺ	T	Ī			
F-128-A								T		Ī	T	Ì			
F-128-B										┨					
P-10															
PW-111											-				
PW-112															
DW-113															
PC-D															
12 0															
17-2							35 46	35.99	35.43	34.62	34.32	34.31	36.67		
	10,10		10.00	22.22	91.40	20.40	24 2E	35 33			30 07	20 E1			
R-01-2	27.95	19.00	31.0/	33.32	34.10 36.53	17:45	35,47	00.00		T	76.30	79.01	36.42		
1-20-21	40.40	10.70		80.HO	20.00		1.00	Ī							
R-02-2												Ī	T		
R-02-3									Ì						
R-02-4															
R-02-5	29.94	31.11			34.85	34.97	34.74	34.40	34.52	33.77	33.24	33.16	36.37		
R-03-1	32.25	32.72		34.81	35.15	35.30	35.63	35.62	35.47	35.10	34.91	34.58	31.78		
R-03-2	32.00	32.69	34.13	34.92	35.37	35.48	35.58	35.85	35.42	34.49	34.29	34.31	36.29		
R-03-3	31.17	32.01	33.52	34.44	34.91	35.01	35.36	35.43				32.09			1
R-03-4	28.28	29.63	31.75	33.10	33.73	33.80	33.71	34.63				31.90			
R-04-1	34.07	34.77		_			37.36	37.40	36.87	36.20			T		
R-04-2	34.00	34.62					37.14	37.28	36.75	36.06					
R-04-3	29.13	30.31			-		34.65		34.26	33.33					
R-05-1															
R-05-2							36.32	36.30	36.80	35.23	35.72	35.79			
R-05-3	34.31		34.65	35.66	36.48								38.03		
R-05-4															
R-05-5						-	36.79	35.88	36.16	35.73	35.31	35.39		-	
R-06-1	33.97	34.57	35.66	36.39	36.87		37.21	36.43	36.74	36.14	35.83	35.97	37.67		
R-06-2													38.09		
R-06-3				-								1			
R-06-4											_				

Puits	1988-11-03	1988-11-17	1989-02-01	1989-04-11	1989-04-28	1989-05-10	1989-05-31	1989-07-14	1989-07-21	1989-08-17	1989-09-22	1989-11-24	1990-09-13	1990-10-24	1990-11-09
R-06-5	33.71	34.29	35.40	36.75	36.71		37.05	36.26	36.53	35.92	35.61	35.69	37.94		
R-06-6															
R-07-1									36.86	36.34	35.88		37.93		
R-07-2		34.83	35.97	36.58	37.10			36.54							-
R-07-3															
R-07-4									35.06	34.12	33.58		36.37		
R-07-5	32.77	33.01	34.08					34.86		33.47			31.28		
S-01-1															
S-01-2	27.86		31.71	33.29	34.09	34.19	34.08			32.46	32.36		35.99	35.01	35.01
S-01-3	27.90		31.73	33.31	34.10	34.20	34.08			32.49	32.40		35.99	35.03	35.00
S-02-1	27.95	29.55	31.78	33.29	34.10	34.22								35.07	34.86
S-02-2	27.95	29.55	31.77	33.29	34.10	34.23								35.04	34.86
S-02-3	27.96	29.54	31.76	33.29	34.10	34.22	34.09			31.75	32.24		35.98	35.03	34.86
S-03-1	27.99	29.52	31.78	33.40	34.14	34.26	34.12			32.52	32.41		36.03	35.01	35.58
S-03-2	27.99	29.52	31.79	33.39	34.14	34.25	34.12			32.52	32.42		36.03	35.01	35.12
S-04-1							33.76			32.87	32.63				
S-04-2	29.24	29.79								32.84	32.62				
S-04-3	28.75	29.94					36.63			32.87	32.61				
S-04-4							34.40								
S-05-1														36.18	
S-05-2	33.16	33.16	33.90	35.05			35.76			34.51			36.48	36.17	36.10
S-05-3															40.21
S-05-4	33.46	33.78	34.21	35.55			35.92			34.72		•	34.74		36.00
S-05-5	34.18	34.35	34.53	36.00			35.56			32.92			36.06	36.63	36.00
S-06-1	31.07	31.84	33.24	36.86	35.35		36.15			33.93	33.90		36.99	36.31	36.13
S-06-2	30.13	31.02	35.69	36.42	34.78		35.59			33.43	33.25		36.51	35.72	35.74
S-06-3	29.98	30.92	32.65	36.35	34.73		35.53			33.38	33.17		36.45	35.64	35.69
S-06-4	29.96	30.08	32.55	36.31	34.67		35.46			33.33	33.12		36.41	35.69	35.65
S-07-1	33.12	33.20	34.50	35.79			36.83								
S-07-2	33.66	33.22	48.52	48.73	49.00		48.11			34.26			36.65	29.58	33.38
S-07-3	32.87	32.98	33.63	34.42	35.86		35.61							36.21	36.73
S-07-4	32.53	32.52	33.19												
T-05	48.57		49.80	48.21											

PIÉZOMÈTRE	UTM X NAD83	UTM Y NAD83	PIÉZOMÉTRIE UTILISÉE	PIÉZOMÉTRIE (SÉDAC)	PIÉZOMÉTRIE (MENV)	10-12 AVRIL
			NOV. 2001	DU 1 AU 4 NOV. 2001	DU 8 AU 10 NOV. 2001	2001
03097011	599525.750	5015673.000	37.240	37.240	•	37.925
03097041	598375.500	5014882.000	36.186	36.186	36.181	36.451
03097062	596252.375	5012362.500	32.337	32.337	31.452	33.712
03097071	596668.563	5014720.000	35.566	35.566		36.111
03097082	595449.438	5011447.500	31.155	31.155	31.910	32.960
03097083	595449.438	5011447.500	32.455	32.455	32.320	33.400
03097094	595026.313	5012689.500	30.360	30.360		32.211
03097095	595026.313	5012689.500	30.528	30.528	B	
03097102	607360.188	5013019.000	45.221		-	44.184
03097131	601802.500	5011815.500	42.313	42.313	1	42.826
03097171	596455.563	5011116.000	33.699	33.699		•
03097182	597969.875	5010344.500	34.404	34.404	-	36.561
03097191	595395.000	5008996.500	35.164	35.164		36.270
03097201	598875.000	5014371.000	36.130	36.130		36.369
5M81-B	598947.938	5014752.500	36.078	36.078	36.208	36.498
5M81-C	598947.938	5014752.500	36.270	36.270	36.250	36.430
6M81-B	599182.500	5015042.000	35.294	35.294	35.244	36.504
6M81-C	599182.500	5015042.000	35.870	35.870	31.260	36.255
F-102B	599307.625	5015414.000	36.763	36.763	•	37.648
F-102C	599307.625	5015414.000	37.113	37.113	-	37.908
F-104B	599177.063	5015389.500	37.118	37.118		37.768
F-105B	598926.125	5015492.000	37.561	37.561	37.541	38.118
F-105C	598926.125	5015492.000	37.223	37.223	37.193	38.890
F-106C	599277.750	5015460.500	37.389	37.389	T	38.204
F-107	599054.063	5015441.500	37.794	37.794	8	38.394
F-108C	599215.313	5015430.500	37.336	37.336		38.146
F-109C	599229.375	5015370.500	36.442	36.442	•	37.097
F-110	599292.375	5015374.000			I	37.504
F-111	599359.250	5015379.000	35.962	35.962	B	36.822
F-112C	599395.688	5015354.000	36.410	36.410	ſ	38.585
F-113C	599245.875	5015238.000	35.957	35.957	J	36.437
F-114C	599199.438	5015261.000	35.833	35.833		36.358
F-119C	599209.375	5015479.500	37.574	37.574		38.299

PIÉZOMÈTRE	UTM X NAD83	UTM Y NAD83	PIÉZOMÉTRIE UTILISÉE	PIÉZOMÉTRIE (SÉDAC)	PIÉZOMÉTRIE (MENV)	10-12 AVRIL
			NOV. 2001	DU 1 AU 4 NOV. 2001	DU 8 AU 10 NOV. 2001	2001
F-120C	599397.688	5015731.000	38.359	38.359		39.034
F-121C	599290.188	5015760.000	38.487	38.487		39.202
F-123B	598854.250	5015056.500	35.771	35.771		36.546
F-124C	599308.125	5015333.000	34.156	34.156		36.906
F-127B	598631.500	5015151.500	37.519	37.519	•	37.864
F-128B	598546.688	5014979.000	36.711	36.711	36.666	36.866
F-16	599250.688	5015571.000	36.351	36.351	t	37.176
F-18	599399.938	5015449.000	36.428	36.428	1	37.298
F-19	599305.813	5015510.000	36.479	36.479	-	37.424
P-17	599204.125	5016567.000	40.096	40.096	28.481	37.871
PO-94-3R	599866.813	5015016.000	37.095	37.095	-	37.055
PO-94-4R	597669.250	5014314.000		31.010	33.970	36.200
PO-94-4RP	597670.563	5014315.000	36.030	36.030	36.010	
PO-94-5R	598869.500	5013524.000	35.429	35.429	16.504	•
PO-94-6R	597138.875	5013856.000	35.494	35.494	35.489	35.739
PO-94-7R	598156.500	5013358.500	35.252	35.252	35.287	35.752
GR-2	600617.844	5019391.403	48.438	-	48.438	
BS-1	603819.851	5017588.446	47.750	•	47.750	-
BS-2	603156.850	5017935.437	47.066	-	47.066	1
MD-1	602103.836	5014318.418	42.598	1	42.598	-
MD-2	601371.829	5011575.406	41.480	-	41.480	
GF-1	602158.830	5011878.416	42.294	-	42.294	ł
YC-1	604278.831	5011935.445	45.296	-	45.296	
GL-1	608015.857	5016047.503	48.704	1	48.704	
SL-1	606683.855	5016406.485	48.951	-	48.951	-
SL-2	605813.855	5016963.474	48.967	•	48.967	-
EV-1	605951.845	5014656.472	46.632		46.632	ı
MV-1	610522.836	5012333.530	61.966		61.966	
RD-1	607419.845	5014298.492	47.200	-	47.200	1
GP-1	606373.816	5010279.462	61.229		61.229	1
co-1	605669.809	5009576.447	55.019		55.019	4
PAC-1	604681.751	5004220.398	50.191	1	50.191	1
TV-1	608673.827	5011268.500	60.854		60.854	

ENV) 10-12 AVRIL 2001 2001	T	E	t						
PIÉZOMÉTRIE (ME DU 8 AU 10 NOV. 3	61.978		•						
PIÉZOMÉTRIE (SÉDAC) DU 1 AU 4 NOV. 2001			•			-			
PIÉZOMÉTRIE UTILISÉE NOV. 2001	61.978	47.7	46.4	65	22	45	42	38	35
UTM Y NAD83	5010708.506	5015500.444	5015888.470	5001475.520	5000147.470	5001504.410	5007757.220	5009317.79	5019143.1
UTM X NAD83	609613.822	603867.844	605689.850	605103.020	595725.770	590930.730	592170.540	592957.51	595246.68
PIÉZOMÈTRE	TV-2	STE-THÉRÈSE	LEFRANÇOIS	Aj 1	Aj 2	Aj 3	Aj 4	Aj 5	Aj 6

Erreur probable

			Piezométrie	Piézométrie	Piézométrie		Différence	Différence	Différence	Piezométrie	Piezométrie DM
Puits	UTM X	UTM Y	MENV (m)	Lepage (m)	Enquêtes (m)	Unité crépinée	MENV-Lepage	MENV-Enquêtes	Enquêtes -Lepage	DM brute (m)	finale (m)
	NAD 83	NAD 83	2001-oct	1996	2001-oct		(m)	(m)	(m)	96 et oct-01	2001-oct
03097051	598366.688	5014281.500	36.13							36.13	36.93
5M81-A	598947.938	5014752.500	35.94							35.94	36.74
6M81-A	599182.500	5015042.000	35.31							35.31	36.11
F-1	599431.375	5015694.500		37.64	37.39	e			-0.25	37.39	37.39
F-10	599355.270	5015573.270		35.98	36.08	e			0.10	36.08	36.08
F-102A	599307.625	5015414.000	34.77							34.77	35.57
F-103A	599420.813	5015295.500									
F-104A	599177.063	5015389.500		35.37	35.84	3-4a			0.47	35.84	35.84
F-109A	599229.375	5015370.500	35.13	35.37	35.85	e	-0.24	-0.72	0.48	35.85	35.85
F-109B	599229.375	5015370.500	35.13	35.34	35.81	e	-0.21	-0.67	0.47	35.81	35.81
F-110A-A	599292.375	5015374.000	36.69	35.32	35.82	3	1.37	0.87	0.50	35.82	35.82
F-110a-B	599286.170	5015375.190			42.20	05-mars				42.20	42.20
F-112A	599395.688	5015354.000	33.99	35.17	35.86	3	-1.18	-1.87	0.69	35.86	35.86
F-112B	599395.688	5015354.000	34.76	35.17	35.87	3	-0.41	-1.12	0.70	35.87	35.87
F-113A	599245.875	5015238.000		35.13	35.77	3			0.64	35.77	35.77
F-113B	599245.875	5015238.000			41.19	4a				41.19	41.19
F-114A	599199.438	5015261.000	35.14	35.38	35.84	3	-0.24	-0.70	0.46	35.84	35.84
F-114B	599199.438	5015261.000		35.27	35.70	3-4a			0.43	35.70	35.70
F-116	599300.563	5015469.000	34.88	35.18	35.81	e	-0.30	-0.94	0.63	35.81	35.81
F-117	599284.938	5015503.500	35.06							35.06	35.85
F-118	599376.875	5015451.500	34.90	35.34	35.87	3	-0.45	-0.98	0.53	35.87	35.87
F-119A	599209.375	5015479.500		35.89		3-4a				35.89	36.27
F-119B	599209.375	5015479.500		36.05	36.26	4a			0.21	36.26	36.26
F-120A	599397.688	5015731.000			38.55	4a				38.55	38.55
F-120B	599397.688	5015731.000			38.54	4a-4b				38.54	38.54
F-124A	599308.125	5015333.000	34.51	34.87	35.76	3	-0.36	-1.26	0.89	35.76	35.76
F-124B	599308.125	5015333.000	34.35	34.75	35.76	3	-0.40	-1.42	1.01	35.76	35.76
F-13	599325.890	5015548.580			36.45	4b				36.45	36.45
E-17	599368.500	5015474.500		35.55	35.89	3			0.34	35.89	35.89
F-2	599440.438	5015637.500	36.66	37.27	37.18	3	-0.61	-0.52	-0.09	37.18	37.18
F-4	599379.930	5015646.000		39.95	40.01	1-3			0.06	40.01	40.01
F-5	599437.188	5015597.500			37.11	4b				37.11	37.11
F-6	599407.063	5015604.000		36.25	36.39	3-4a			0.14	36.39	36.39
F-8	599428.875	5015561.500	36.22	36.35	36.49	3	-0.13	-0.27	0.14	36.49	36.49
6-3	599386.250	5015539.500			49.67	4a				49.67	49.67
L-10-A	599404.500	5015570.130		36.11	36.33	3			0.22	36.33	36.33
L-12-A	599407.550	5015654.070			43.24	1				43.24	43.24
L-13-A	599430.090	5015515.760		35.80	36.20	3			0.40	36.20	36.20
L-13-B	599430.390	5015520.410			36.42	3-4b				36.42	36.42
L-14-A	599399.820	5015515.230		35.72	36.11	3		-	0.39	36.11	36.11
L-14-B	599403.940	5015517.010		35.74	36.12	3-(4a)			0.38	36.12	36.12
L-16-A	599382.300	5015589.860			47.99	-				47.99	47.99
L-19-A	599397.010	5015625.730		36.95	36.86	3-(4a)			-0.10	36.86	36.86

Puits	UTM X NAD 83	UTM Y NAD 83	Piezométrie MENV (m) 2001-oct	Plézométrie Lepage (m) 1996	Piézométrie Enquêtes (m) 2001-oct	Unité crépinée	Différence MENV-Lepage (m)	Différence MENV-Enquêtes (m)	Différence Enquêtes -Lepage - (m)	Piezométrie DM brute (m) 96 et oct-01	Piezométrie DM finale (m) 2001-oct
L-1-A	599386.190	5015656.220			38.86	3-4b				38.86	38.86
L-20-A	599365.090	5015581.850			45.39	1				45.39	45.39
L-2-A	599401.780	5015640.440			40.42	3-4a				40.42	40.42
L-3-A	599363.950	5015609.870			37.82	4b				37.82	37.82
L-6-A	599380.570	5015593.710			36.43	4a-4b				36.43	36.43
L-7-A	599374.040	5015571.630		35.92	36.19	1b-3			0.27	36.19	36,19
L-8-A	599397.250	5015542.770		35.81	36.13	3			0.32	36.13	36.13
L-8-B	599392.700	5015543.850			36.33	4b				36.33	36.33
L-9-A	599391.990	5015575.730		36.03	36.26	m			0.23	36.26	36.26
P-24	598383.188	5013932.000	36.00							36.00	36.80
P-27	598608.813	5014166.000	36.11							36.11	36.91
PO-94-1S	599369.813	5015234.000	34.56							34.56	35.36
PO-94-2S	598924.000	5015497.500	35.24							35.24	36.04
PO-94-5S	598870.813	5013525.500	35.17							35.17	35.97
PW-111	599327.350	5015275.650			32.13	ю				32.13	32.13
PW-112	599293.250	5015276.110		32.97	35.06	3-5	-		2.09	35.06	35.06
PW-113	599252.040	5015279.750		33.47	33.97	3-5			0.50	33.97	33.97
Z-10-A	599327.790	5015533.810		36.74	36.19	3			-0.55	36.19	36.19
Z-10-B	599323.310	5015535.520			36.29	4b				36.29	36.29
Z-11-A	599466.280	5015676.340		37.58	37.47	3			-0.11	37.47	37.47
Z-11-B	599474.590	5015672.920		37.64	37.53	3-4a			-0.11	37.53	37.53
Z-12-A	599427.920	5015642.690		37.24	36.88	3			-0.36	36.88	36.88
Z-13-A	599378.750	5015711.960		39.20	38.97	2b-3			-0.23	38.97	38.97
Z-1-A	599362.420	5015519.030		35.80	36.05	4a			0.25	36.05	36.05
Z-2-A	599381.530	5015511.270		35.61	35.97	3			0.36	35.97	35.97
Z-2-B	599388.560	5015508.740		35.63	36.04	3			0.40	36.04	36.04
Z-2-C	599384.420	5015510.290		35.63	35.98	4a			0.35	35.98	35.98
Z-3-A	599377.650	5015501.340		35.47	35.93	3			0.46	35.93	35.93
Z-3-B	599382.230	5015499.970		35.55	38.00	3			2.45	38.00	38.00
Z-4-A	599406.310	5015500.930		35.70	36.11	3			0.41	36.11	36.11
Z-4-B	599402.580	5015503.080		35.68	36.11	3			0.43	36.11	36.11
Z-5-A	599420.850	5015495.330		. 35.75	36.17	1b-3			0.42	36.17	36.17
Z-5-B	599425.070	5015493.670		36.01	36.36	3			0.35	36.36	36.36
Z-5-C	599416.100	5015497.350		35.81	36.20	3			0.39	36.20	36.20
Z-6-A	599445.200	5015485.330		35.78	36.19	3			0.41	36.19	36.19
Z-6-B	599449.330	5015483.830		36.16	36.48	3	-		0.32	36.48	36.48
Z-7-A	599473.060	5015473.960		35.81	36.21	3			0.40	36.21	36.21
Z-8-A	599493.070	5015465.620		35.88	36.25	3			0.37	36.25	36.25
Z-9-A	599542.660	5015643.060		37.63	37.51	3			-0.12	37.51	37.51
÷	Bamhlaic					moyenne	-0.26	-0.80	0.38		
2a-2b	Sables argileu	x-araile	4	ta-4b	Till sunérieur-in	ıférieiır					
3	Sable et Gravi	er		2	Roc						

1 2a-2b 3

Piezométrie roc finale (m) 2001-oct	37.24	36.19	32.34	35.57	31.16	32.46	30.36	30.53	42.31	33.70	34.40	35.16	36.13	36.08	36.27	35.29	35.87	37.02	47.87	47.19	55.14	46.75	36.76	37.11	37.59	37.12	37.56	37.22	37.39	37.79	37.34	36.44	36.73	35.96	36.41	35.96	35.83	35.04	37.57	38.36	38.49	35.44	35.77	34.16	37.52	36.71	36.35	36.43
Piezométrie brute 2001-oct	37.24	36.19	32.34	35.57	31.16	32.46	30.36	30.53	42.31	33.70	34.40	35.16	36.13	36.08	36.27	35.29	35.87	37.43	47.75	47.07	55.02	46.63	36.76	37.11	38.00	37.12	37.56	37.22	37.39	37.79	37.34	36.44	37.26	35.96	36.41	35.96	35.83	35.45	37.57	38.36	38.49	35.85	35.77	34.16	37.52	36.71	36.35	36.43
Différence Lepage-Enquêtes (m)																										-0.19	2					1.43	-0.14	-0.44		-0.27	-0.48		0.10	0.14	0.83			-0.20			0.16	-0.29
Différence SEDAC-Lepage (m)														-0.16		0.32							-0.32			-0.10	-0.03		-0.41	-0.32	-0.38	-0.43		-0.31		-0.22	-0.10		-0.41	-0.40	-1.00		-0.31	-2.45	-0.58	-0.18	-0.64	-0.36
Différence SEDAC-Enquêtes (m)																										-0.29						1.00		-0.74	-0.66	-0.50	-0.57		-0.30	-0.26	-0.17			-2.65			-0.48	-0.65
Différence MENV-Lepage (m)														-0.03		0.27											-0.05																			-0.22		
Différence MENV-SEDAC (m)		-0.01	-0.88	· .	0.75	-0.13								0.13	-0.02	-0.05	-4.61	0.00							-		-0.02	-0.03																		-0.05		
Piezométrie Lepage (m) 1996														36.24		34.97		37.43					37.08		38.00	37.22	37.59		37.80	38.11	37.72	36.87	37.12	36.27		36.18	35.93	35.45	37.98	38.76	39.49	35.85	36.08	36.61	38.10	36.89	36.99	36.79
Piezométrie Enquêtes (m) 2001-oct																										37.41						35.44	37.26	36.71	37.07	36.45	36.41		37.88	38.62	38.66			36.81			36.83	37.08
Piezométrie MENV (m) 2001-oct		36.18	31.45		31.91	32.32								36.21	36.25	35.24	31.26		47.75	47.07	55.02	46.63					37.54	37.19																		36.67		
Piezométrie SEDAC (m) 2001-oct	37.24	36.19	32.34	35.57	31.16	32.46	30.36	30.53	42.31	33.70	34.40	35.16	36.13	36.08	36.27	35.29	35.87						36.76	37.11	,	37.12	37.56	37.22	37.39	37.79	37.34	36.44	:	35.96	36.41	35.96	35.83		37.57	38.36	38.49		35.77	34.16	37.52	36.71	36.35	36.43
UTM-Y	5015673.000	5014882.000	5012362.500	5014720.000	5011447.500	5011447.500	5012689.500	5012689.500	5011815.500	5011116.000	5010344.500	5008996.500	5014371.000	5014752.500	5014752.500	5015042.000	5015042.000	5015622.09	5017588.446	5017935.437	5009576.447	5014656.472	5015414.000	5015414 000	5015295.500	5015389.500	5015492.000	5015492.000	5015460.500	5015441.500	5015430.500	5015370.500	5015374.000	5015379.000	5015354.000	5015238.000	5015261.000	5015294.8	5015479.500	5015731.000	5015760.000	5015347.000	5015056.500	5015333.000	5015151.500	5014979.000	5015571.000	5015449.000
NTM-X	599525.750	598375.500	596252.375	596668.563	595449.438	595449.438	595026.313	595026.313	601802.500	596455.563	597969.875	595395.000	598875.000	598947.938	598947.938	599182.500	599182.500	599574.02	603819.851	603156.850	605669.809	605951 845	598307 625	599307 625	599420.813	599177 063	598926.125	598926.125	599277.750	599054,063	599215.313	599229.375	599292.375	599359.250	599395.688	599245.875	599199.438	599128.11	599209.375	599397.688	599290.188	599020.875	598854.250	599308.125	598631.500	598546.688	599250.688	599399.938
Puits	03097011	03097041	03097062	03097071	03097082	03097083	03097094	03097095	03097131	03097171	03097182	03097191	03097201	5M81-B	5M81-C	6M81-B	6M81-C	87-02	BS-1	BS-2	C0-1	EV-1	F-102B	F-102C	F-103B	F-104B	F-105B	F-105C	F-106C	F-107	F-108C	F-109C	F-110	E-111	F-112C	F-113C	F-114C	F-115-C	F-119C	F-120C	F-121C	F-122C	F-123B	F-124C	F-127B	F-128B	F-16	F-18

Piezométrie roc finale (m)	2001-oct	36.48	42.42	48.83	61.35	48.56	42.72	41.60	62.09	40.10	50.31	37.10	31.01	36.03	35.43	35.49	35.25	47.32	49.07	49.09	60.98	62.10	45,42	37.41	
Piezométrie brute	2001-oct	36.48	42.29	48.70	61.23	48.44	42.60	41.48	61.97	40.10	50.19	37.10	31.01	36.03	35.43	35.49	35.25	47.20	48.95	48.97	60.85	61.98	45.30	37.94	
Différence Lepace-Encuêtes	(m)																								0.06
Différence SEDAC-Lepage	(E)	-0.18																							-0.41
Différence SEDAC-Enouêtes	(E)																								-0.52
Différence MENV-Lepage	Ê (E)																								-0.01
Différence MENV-SEDAC	(E)												2.96	-0.02		0.00	0.04								-0.12
Piezométrie Lepage (m)	1996	36.66																							moyenne
Piezométrie Enguêtes (m)	2001-oct																							37.94	
Piezométrie MENV (m)	2001-oct		42.29	48.70	61.23	48.44	42.60	41.48	61.97	28.48	50.19		33.97	36.01	16.50	35.49	35.29	47.20	48.95	48.97	60.85	61.98	45.30		
Piezométrie SEDAC (m)	2001-oct	36.48								40.10		37.10	31.01	36.03	35.43	35.49	35.25			1					
UTM-Y		5015510.000	5011878.416	5016047.503	5010279.462	5019391.403	5014318.418	5011575.406	5012333.530	5016567.000	5004220.398	5015016.000	5014314.000	5014315.000	5013524.000	5013856.000	5013358.500	5014298.492	5016406.485	5016963.474	5011268.500	5010708.506	5011935.445	5015674.59	
X-MTU		599305.813	602158.830	608015.857	606373.816	600617.844	602103.836	601371.829	610522.836	599204.125	604681.751	599866.813	597669.250	597670.563	598869.500	597138.875	598156.500	607419.845	606683.855	605813.855	608673.827	609613.822	604278.831	599470.52	
Puits		F-19	GF-1	GL-1	GP-1	GR-2	MD-1	MD-2	MV-1	P-17	PAC-1	PO-94-3R	PO-94-4R	PO-94-4RP	PO-94-5R	PO-94-6R	PO-94-7R	RD-1	SL-1	SL-2	TV-1	TV-2	Yc-1	Z-11-C	

					Crépir	ne
Puits	UTM-X	UTM-Y	Piezo oct-2001	Base	Sommet	élévation milieu
5M81-B	598947.94	5014752.50	36.08	13.02	14.02	13.52
5M81-C	598947.94	5014752.50	36.27	4.17	5.17	4.67
6M81-B	599182.50	5015042.00	35.29	11.97	12.97	12.47
6M81-C	599182.50	5015042.00	35.87	0.57	1.57	1.07
87-02	599574.02	5015622.09	37.02	29.87	31.39	30.63
F-102B	599307.63	5015414.00	36.76	3.10	9.10	6.10
F-102C	599307.63	5015414.00	37.11	-16.90	-2.90	-9.90
F-103B	599420.81	5015295.50	37.59	-17.70	0.40	-8.65
F-104B	599177.06	5015389.50	37.12	-23.90	-5.80	-14.85
F-106C	599277.75	5015460.50	37.39	-3.30	5.90	1.30
F-108C	599215.31	5015430.50	37.34	-3.00	9.20	3.10
F-109C	599229.38	5015370.50	36.44	-4.40	4.80	0.20
F-110	599292.38	5015374.00	36.73	-3.00	8.90	2.95
F-111	599359.25	5015379.00	35.96	-10.30	11.00	0.35
F-112C	599395.69	5015354.00	36.41	-0.27	8.90	4.32
F-113C	599245.88	5015238.00	35.96	-2.90	6.30	1.70
F-114C	599199.44	5015261.00	35.83	-1.50	7.60	3.05
F-115-C	599128.11	5015294.80	35.04	10.30	13.30	11.80
F-119C	599209.38	5015479.50	37.57	-2.07	10.13	4.03
F-120C	599397.69	5015731.00	38.36	-1.02	9.62	4.30
F-124C	599308.13	5015333.00	34.16	-1.30	9.40	4.05
F-16	599250.69	5015571.00	36.35	10.89	13.94	12.42
F-18	599399.94	5015449.00	36.43	10.22	13.27	11.75
F-19	599305.81	5015510.00	36.48	9.82	12.87	11.35
PO-94-3R	599866.81	5015016.00	37.10	2.56	5.56	4.06
PO-94-4RP	597670.56	5014315.00	36.03	-1.13	1.87	0.37
PO-94-5R	598869.50	5013524.00	35.43	10.71	13.71	12.21
PO-94-6R	597138.88	5013856.00	35.49	12.83	15.83	14.33
PO-94-7R	598156.50	5013358.50	35.25	8.28	11.28	9.78
Z-11-C	599470.52	_5015674.59	37.41	12.11	13.63	12.87
03097011	599525.75	5015673.00	37.24	15.89	21.69	18.79
03097041	598375.50	5014882.00	36.19	0.41	2.91	1.66
03097201	598875.00	5014371.00	36.13	13.51	14.51	14.01
F-105B	598926.13	5015492.00	37.56	-4.84	7.16	1.16
F-105C	598926.13	5015492.00	37.22	-18.84	-12.64	-15.74
F-107	599054.06	5015441.50	37.79	-5.46	6.11	0.33
F-121C	599290.19	5015760.00	38.49	-2.77	9.75	3.49
F-122C	599020.88	5015347.00	35.44	-2.66	9.63	3.49
F-123B	598854.25	5015056.50	35.77	-1.51	4.69	1.59
F-12/B	598631.50	5015151.50	37.52	-5.90	0.41	-2.75
F-128B	598546.69	5014979.00	36.71	-3.23	2.99	-0.12
SIM81-A	598947.94	5014/52.50	36.74	19.97	20.97	20.47
	599182.50	5015042.00	36.11	18.89	19.89	19.39
<u>F-1</u>	599431.38	5015694.50	37.39	36.76	39.81	38.29
	500207.02	50155/3.2/	36.08	35.08	38.13	36.61
F-102A	500000 20	5015414.00	35.57	12.60	19.10	15.85
E 1000	500000 29	5015370.50	30.80	32.50	38.60	30.00
F-1104_A	500202 29	5015370.00	30.01	20.90	27.00	20.90
E_112A	500205 60	5015374.00	33.8Z	34.90	38.00	30.45
Г-112А	299292.09	3013334.00	35.80	20.00	32.70	29.65

Puits	UTM-X	UTM-Y	Piezo oct-2001	Base	Sommet	élévation milieu
F-112B	599395.69	5015354.00	35.87	18.80	24.90	21.85
F-113A	599245.88	5015238.00	35.77	30.60	36.70	33.65
F-114A	599199.44	5015261.00	35.84	30.50	36.60	33.55
F-114B	599199.44	5015261.00	35.70	16.40	22.50	19.45
F-118	599376.88	5015451.50	35.87	31.30	37.40	34.35
F-119A	599209.38	5015479.50	36.27	30.03	39.13	34.58
F-119B	599209.38	5015479.50	36.26	21.43	27.53	24.48
F-124A	599308.13	5015333.00	35.76	29.30	35.40	32.35
F-124B	599308.13	5015333.00	35.76	18.60	24.70	21.65
F-17	599368.50	5015474.50	35.89	15.46	21.56	18.51
F-2	599440.44	5015637.50	37.18	34.27	37.32	35.80
F-4	599379.93	5015646.00	40.01	36.70	39.75	38.23
F-6	599407.06	5015604.00	36.39	33.27	36.31	34.79
F-8	599428.88	5015561.50	36.49	<u>34.</u> 61	37.65	36.13
L-10-A	599404.50	5015570.13	36.33	<u>30.18</u>	33.23	31.71
L-13-A	599430.09	5015515.76	36.20	30.25	31.77	31.01
L-14-A	599399.82	5015515.23	36.11	30.31	31.83	31.07
L-19-A	599397.01	5015625.73	36.86	33.55	35.07	34.31
L-7-A	599374.04	5015571.63	36.19	32.08	33.60	32.84
L-8-A	599397.25	5015542.77	36.13	30.30	31.82	31.06
L-9-A	599391.99	5015575.73	36.26	32.21	35.26	33.74
PO-94-1S	599369.81	5015234.00	35.36	29.12	32.12	30.62
PO-94-2S	598924.00	5015497.50	36.04	31.34	34.34	32.84
PO-94-5S	598870.81	5013525.50	35.97	23.86	26.86	25.36
PW-111	599327.35	5015275.65	32.13	8.37	20.92	14.65
PW-112	599293.25	5015276.11	35.06	8.53	21.03	14.78
PW-113	599252.04	5015279.75	33.97	8.63	20.83	14.73
Z-10-A	599327.79	5015533.81	36.19	34.83	36.35	35.59
Z-11-A	599466.28	5015676.34	37.47	33.39	34.91	34.15
Z-12-A	599427.92	5015642.69	36.88	33.75	35.27	34.51
Z-13-A	599378.75	5015711.96	38.97	31.32	32.84	32.08
<u>Z-2-A</u>	599381.53	5015511.27	35.97	30.47	31.99	
<u>Z-2-B</u>	599388.56	5015508.74	36.04	<u>25.92</u>	27.44	26.68
Z-3-A	599377.65	_5015501.34	35.93	31.04	32.56	31.80
Z-3-B	599382.23	5015499.97	38.00	23.07	24.59	23.83
Z-4-A	599406.31	_5015500.93	36.11	27.43	<u>28.95</u>	28.19
<u>Z-4-B</u>	599402.58	5015503.08	36.11	21.34	22.86	22.10
Z-5-B	599425.07	5015493.67	36.36	15.47	16.99	16.23
Z-5-C	599416.10	_5015497.35	36.20	24.54	26.06	25.30
Z-6-A	599445.20	_5015485.33	36.19	29.56	31.08	30.32
Z-0-B	599449.33	5015483.83	36.48	19.74	21.26	20.50
Z-1-A	599473.06	5015473.96	36.21	27.94	29.46	28.70
<u> </u>	599493.07	5015465.62	36.25	22.39	23.91	23.15
2-9-A	599542.66	5015643.06	37.51	26.16	27.68	26.92
03097031	508300.09	5014281.50	36.93	20.68	21.29	20.99
P-24	509600.04	5013932.00	36.80	17.13	18.58	17.86
F-2/	290008.81	5014166.00	36.91	15.43	16.04	15.73

ANNEXE E

Hydrogrammes de puits au roc

Hydrogrammes des puits surveillés par le MENV

ANNEXE F

Article publié à l'AIH, 2002

Erratum :

La Figure 2 de l'article doit être remplacée par la Figure 2.5 du Chapitre 2.

REGIONAL GROUNDWATER MODELLING TO SUPPORT AQUIFER SYSTEM MANAGEMENT IN THE VILLE MERCIER AREA, QUEBEC, CANADA

Olivier Pontlevoy, Institut National de la Recherche Scientifique-Eau, Terre et Environnement, Quebec René Lefebvre, Institut National de la Recherche Scientifique-Eau, Terre et Environnement, Quebec René Therrien, Université Laval, Département de géologie et génie géologique, Quebec Richard Martel, Institut National de la Recherche Scientifique-Eau, Terre et Environnement, Quebec Michel Ouellet, Ministère de l'Environnement du Québec, Quebec Charles Lamontagne, Ministère de l'Environnement du Quebec, Quebec

ABSTRACT

The contamination of a fractured rock aquifer by DNAPL and dissolved contaminants at Ville-Mercier has been present in the area for 30 years. The original migration of DNAPL and dissolved organic compounds occurred through a sand and gravel unit locally in contact with the underlying rock aquifer and through windows in the till overlying the bedrock. The Quebec Environment Ministry controlled this problem with a pump-and-treat system intercepting the dissolved contaminant plume, and by the definition of a controlled area within which groundwater pumping is prohibited. The area surrounding Ville-Mercier, within and outside the controlled zone, is a very active agricultural area dedicated mostly to vegetable culture and groundwater is needed to support this growing industry. The regional fractured rock aquifer in the area is thus increasingly used and long-term groundwater management is required. Numerical simulations of groundwater flow in the aquifer, with MODFLOW, have focused on reproducing the current flow system and investigating alternative withdrawal regimes to support the definition of a set of aquifer management guidelines.

RÉSUMÉ

Le cas de la contamination de l'aquifère de roc fracturé de Ville-Mercier par des liquides organiques immiscibles denses (DNAPL) et dissous existe depuis maintenant près de 30 ans. À l'origine la migration des DNAPL et du panache de contaminants dissous émis par des lagunes d'entreposage dans l'unité de sable et gravier s'est faite localement par l'intermédiaire de fenêtres dans le till recouvrant le roc. Pour enrayer la contamination de l'aquifère, le ministère de l'Environnement du Québec a mis en place une usine de pompage et de traitement des eaux contaminées et a délimité une zone dans laquelle le pompage est interdit. La région entourant Ville Mercier a développé une très forte activité maraîchère avec des besoins en eau croissants qui nécessitent une gestion de l'aquifère. Un modèle numérique à l'aide du logiciel MODFLOW a donc été développé afin de simuler le comportement de la nappe dans les conditions actuelles et hypothétiques pour soutenir la définition de règles d'exploitation de l'aquifère.

1. INTRODUCTION

The town of Ville-Mercier is located 20 km to the southwest of Montreal (Figure 1). Agriculture of this region is well developed and groundwater is an important source of potable water. In the 1970's, storage lagoons for organic liquids were excavated near a fluvio-glacial sand and gravel pit. All around the pit, marine clay is present and overlies the sand and gravel unit (Lasalle, 1981). Two different tills unit underlie this sand and gravel and local studies show that windows exist in the tills that enable direct hydraulic exchange between bedrock and the overlying sand and gravel units (CNFS, 1993). The rock unit under the till is composed of fractured sedimentary sandstone and dolomite rocks of the Cambrian and Ordovician Eras (Globensky, 1986). The original migration of DNAPL and dissolved organic compounds occurred through the sand and gravel fluvio-glacial system that communicated locally with the underlying rock aquifer through windows in the till overlying the bedrock. These contaminants then reached neighbouring private wells. The Ministère de l'Environnement du Québec (MENV) controlled the contamination by putting in place a pumping station and a water treatment plant that intercepted the dissolved contaminant plume. The MENV also extended the municipal water system to affected houses and delineated an area within which groundwater pumping is prohibited or limited.

Figure 1: map localisation

The increase of agricultural activities in this region creates drawdowns and local declines of existing well productivity have been reported. This problem and the risk of an extension of the contaminant plume due to increased pumping rates requires a long-term regional groundwater management plan.

This paper presents a 2D groundwater flow model developed in order to better understand the groundwater system and to support the development of a management plan including aquifer exploitation rules. A review of the numerous local studies that have been done for the Ville-Mercier contaminated site or for municipal groundwater supply helped us determine the hydraulic properties required for the model.

2. GEOLOGY

2.1 Bedrock

The rock aquifer consists of fractured sedimentary rock of the Cambrian and Ordovician Eras (Globensky, 1986). The Cambrian rocks are represented by sandstone of the Postdam Group while sandstone, dolomite and shale of the Beekmantown Group represent the Ordovician rocks. Tectonic events induced a succession of faults as well as large amplitude and low angle anticlines and synclines. Structural studies show two major subvertical fracture families oriented N120 and N30 in decreasing order of density (GREGI, 1993; Denis, 1991).

2.2 Quaternary deposits

Glacial events which occurred during the Wisconsinian allowed the deposition of two tills (Lasalle, 1981) on the rock unit. The basal till is very compact and dense while the upper till is reworked and more permeable (Parent, personal communication). A fluvio-glacial sand and gravel unit overlies these two tills and outcrops as an 11 km long crest near Ville-Mercier. Finally, during the Champlain sea period, marine clay was deposited over both the fluvio-glacial formation and the tills.

3. HYDROLOGY

The average annual precipitation of the region is about 1262 mm/year. There are two main rivers in contact with the rock aquifer in the study area: the Châteauguay River and the Esturgeon River (Figure 2). Other minor streams flow on clay and are used for the crop irrigation. Spring and fall see the main recharge events of the rock aquifer and will be discussed later. The recharge has been calculated using meteorological data and flow-rates of the Châteauguay River. Summer flow-rate is assumed to equal the water loss by the rock aquifer (Freeze, 1965). The monthly mean of summer flow-rates for the period 1971-2000 indicates that the water loss is equal to 92,7 mm/vear over the basin. Based on mass conservation, the water loss equals the recharge of the rock aquifer, and the recharge then equals 7,3% of the annual precipitation. This value is on the same order of

magnitude as those proposed in other studies, which estimate a recharge about 5% (Hamel, 2001) to 15% (Freeze, 1965) of the annual precipitation in similar contexts.

4. HYDROGEOLOGY

A hydrogeological study of the drainage basin of the Châteauguay River by McCormack (1981) shows the high potential for the rock to be a good aquifer with well flow rates above 5,5 m3/h. The hydrogeological system is considered confined because clay and thick till deposits cover 85% of the region. Figure 2 shows confined and unconfined conditions based on the comparison between the hydraulic heads and clay thickness exceeding 2 m. Previous hydrogeological studies (Hydrogeo Canada, 1981; Poulin, 1977) conclude that the first 3 m of the rock aquifer are intensely fractured and constitute a good aquifer. Specific studies (CNFS, 1993; Denis, 1991) show that bedrock permeability is also important up to depths of about 20 m. The unconsolidated deposits (till and clav) are generally considered as impermeable or low permeability sediments while the sand and gravel unit is considered to be one of the most permeable sand and gravel formations of the region (McCormack, 1981).

Figure 2: Delimitation of confined and unconfined conditions

Figure 3 is a piezometric map of the rock aquifer. Groundwater generally flows from the east to the west with higher piezometric levels associated to higher rock topography shown in Figure 4. The Esturgeon River seems to be in contact with the rock aquifer near its junction with Châteauguay River because the flow lines converge there to create a piezometric depression. This piezometric low is not due to a well since the nearest well is Aliment Carrières Ltd and it operates only three month a year (Technorem, 1998).

Figure 3 : Piezometric map of the rock aquifer (meters above mean sea level, AMSL)

Figure 4: Topography of the bedrock surface

The comparison of the Châteauguay River flow-rate with the piezometric data taken near the junction of the two rivers clearly shows a link between piezometric levels and river flow rates (on this river stage) (Figure 5). In this figure the summer piezometric data variations are attenuated because of the seasonal local pumping for crop irrigation.

The main hydrogeological properties of the rock unit are summarised in Table 1. The mean arithmetic transmissivity of the rock is $1,3x10^3$ m²/s. The porosity varies between 0,026 and 0,096 (laboratory measurement by Rouleau et al., 1996; Denis, 1991). Other studies (CNFS, 1993; Poulin, 1977) suggest 0,05 as a porosity value. The storage coefficient measured by pumping tests is generally on the order of 10^{-4} , which confirms the hypothesis of a confined aquifer.

Table 1: Sur	nmarv of rock	properties
--------------	---------------	------------

Parameter	Max	Min	Mean
Porosity	0,096	0,026	0,05
Transmissivity (m ² /s)	8,5x10 ⁻³	3,9x10 ⁻⁷	1,1x10 ⁻³
Storage coefficient	3,29x10 ⁻²	1x10 ⁻⁵	3,3x10 ⁻³

5. MODEL DESCRIPTION

5.1 Limit and boundary conditions

The Châteauguay River was chosen as the western limit of the model because of its contact with the rock aquifer and a constant head limit is imposed along the river. The exposed rock and the exposed reworked till associated to the highest rock topography, the limits of hydrographic basin, and the piezometric map have been used to define the North, East and South limits of the groundwater flow system. No flow is imposed to these limits (Figure 6). A constant head is imposed to the Esturgeon River from its junction with Châteauguay River to the upstream outcropping rock. The flow out of this limit corresponds to the discharge rate measured in summer by D'Anjou (1990).

5.2 Numerical grid

The study region covers almost 250 km². The numerical grid of the region consists of 1051 cells with a maximum of 40 cells in x direction and 40 cells in y direction with uniform dimensions (dx=dy) of 500 m.

5.3 Bedrock hydrogeological parameters

In order to cover all the regional well depths, we chose a 100 m rock thickness within which groundwater flow is active. This estimation allowed us to also consider the vertical and the horizontal flow that supply the wells. The model focuses only on the flow in the rock aquifer, so a 2D model was developed using MODFLOW. We assume that the flow conditions are steady state. The rock aquifer is considered as an equivalent porous medium to simplify the model. We assumed that the transmissivity varies

Figure 5 : Comparison of the Chateauguay river flow-rate with adjacent piezometric data

with the type of deformation because anticline fractures are more open than syncline fractures. Then, the axes of these folds (Globensky, 1986) allowed the delimitation of three zones with a different transmissivity (Figures 6 and 8). The porosity used for the aquifer is 0,05 and the storage coefficient is 10^{-4} .

Figure 6 : Quaternary deposits, main bedrock structures and flow boundary conditions (Lasalle, 1981 and Globensky, 1986)

5.4 Groundwater recharge

Based on well hydrographs, in Spring the snow accumulated during winter melts in one month (April) and constitutes about 90% of the recharge. A small recharge event occurs also in October with about 10% of the recharge because evapotranspiration is low during this period. The spatial distribution of the recharge depends of the deposits outcropping at the surface and their contact with the bedrock. Table 2 summarises the infiltration values selected for each exposed deposits of the study region (Figure 6) and are adapted from Hamel (2001) and previous studies. We consider that infiltration is not the same for the two tills, which was not assumed in other studies. The values summarised in Table 2 were slightly modified to obtain a total infiltration equal to that calculated previously.

Table 2: Area and	estimated initial	infiltration val	lues of
	each unit		

	1	
Unit	Area (km ²)	Infiltration (mm/y)
Clay	112,7	3
Sand & gravel	12	210
Reworked till	55,7	190
Till	65,8	140
Rock	0,11	210
Total	246,31	92

6. SIMULATIONS

6.1 Calibration

The calibration of the model is accomplished by finding a set of parameters that matches the simulated heads with the observed heads. Results of the calibration are shown on Figures 7 and 8. Three transmissivity zones (Table 3) were used: a first zone occurs near Ville-Mercier with $T=1,3x10^{-3}$ m²/s, a N-S St-Remi zone with $T=1,8x10^{-3}$ m²/s and a final zone that covers the rest of the region with $T=9,2x10^{-3}$ m²/s (Figure 8). These zones are the result of the different simulations done during the calibration of the model in steady-state conditions. All these values are on the same order of magnitude and two values close to the mean arithmetic transmissivity equal to $1,3x10^{-3}$ m²/s.

Table 3: Bedrock calibrated properties

Zone	Transmissivity (m²/s)	Porosity	Storage coefficient
1	1,1x10 ⁻³	0,05	10 ⁻⁴
2	1,8x10 ⁻³	0,05	10 ⁻⁴
3	9,2x10 ⁻³	0,05	10 ⁻⁴

The calibration of the model shows the important role played by the sand and gravel unit in the recharge of the rock aquifer. The first infiltration value (210 mm/y) was not enough and had to be increased to 600 mm/y to obtain the same local piezometric distribution. This could be explained by the hydraulic exchange that exists through the till windows between the rock aquifer and the sand and gravel pit aquifer. A recharge of 600 mm/y is an acceptable value because it is lower than the annual precipitation in the Ville-Mercier area. It appears that the infiltration values for the two tills had to be decreased too, then only half of the estimated recharge reaches the rock. We tried to apply the values shown in Table 2 with no success, the simulated hydraulic heads were always much higher than the observed heads. But even with a recharge divided by two, it is still in the range of the estimated recharge values of Hamel (2001) who found an average recharge of 45 mm/y in a similar context. Table 4 shows the calibrated values for the recharge.

Unit	Area (km ²)	Infiltration (mm/y)
Clay	112,7	3
Sand & gravel	7	210
Sand & gravel pit	5	600
Reworked till	55,7	100
Till	65,8	30
Rock	0,11	210
Total	246,31	50

Гab	le 4:	Calibrated	recharge	values	for	the	mode
-----	-------	------------	----------	--------	-----	-----	------

6.2 Impact of regional groundwater pumping

Simulations were also done under transient conditions in order to assess the impact of seasonal agricultural pumping for crop irrigation. We started the simulation on January 1st because we assume that the hydraulic heads then correspond to the mean annual heads. In this simulation there is 4 stress periods (Table 5), each period corresponds to a particular event: start or end of the

recharge (April, October), start or end of the agricultural pumping.

Stress period	Recharge (m ³ /d)	Pumping (m ³ /d)
01/01-04/01	0	5369
04/01-04/30	371408,4	5369
06/01-10/01	0	18631
10/01-10/31	41267,6	5369

Table 5: Main events of the model

The municipal wells for groundwater supply are considered in steady-state conditions and operate all year. The simulation shows that pumping for the St-Remi water supply generates a 6,5 m drawdown after one year (Figure 9). The mean drawdown generated by the agricultural pumping after 4 months on the region is almost 1,5 m with a maximum of 3 m reached near St-Remi. The actual annual agricultural pumping represents 7% of the recharge. As we saw before, in our model only half of the recharge is considered, so in this case the annual agricultural pumping represents 14% of the model recharge. This value is reasonable even if the pumping occurs in summer. Most of the important wells are situated in the recharge areas which minimises the pumping impact on the aquifer.

Figure 9: Drawdowns caused by 4 months of agricultural pumping and 10 months of municipal pumping, simulated under transient conditions

6.3 Particle tracking

The contaminant plume of Ville-Mercier is contained by a hydraulic trap but some wells south of the source area indicate that contaminants are present outside of the zone influenced by the pumping of the MENV station. This contamination could be ancient contamination that was present before the installation of the pump and treat system. A simulation was made in steady-state conditions to perform particle tracking. We release particles at the localisation of these contaminated wells to simulate their migration. Results after 10 and 20 years are shown in Figures 10 and 11. It shows that the contaminant pathways are toward Ste-Martine wells that supply the population in groundwater. However the Esturgeon River may well constitute a hydraulic barrier between Ste-

Figure 10 : Particles migration after 10 years from contaminated areas

Figure 11 : Particles migration after 20 years from contaminated areas

Marine and the contaminant plume. However, it is assumed that this part of the Esturgeon River is a constant head in our model. Different simulations have been done using different values of porosity to estimate the water use. In each case, particles reach the river in 20 years but that estimate does not consider any retardation.

6.4 Aquifer sensitivity

Simulations were also done to estimate the aquifer sensitivity to a hypothetical temporal variation of the recharge. Figure 12 shows a comparison for the simulated results obtained with the actual recharge and pumping conditions and a recharge decreased by 20% and actual pumping conditions. It shows that a 1 m additional decrease in the heads is generated in the recharge zone. Such drawdowns in low groundwater recharge years could affect wells that are not deeply drilled into the bedrock aquifer.

Figure 12: Drawdown generated for actual and 20% less recharge

7. EXPLOITATION RULES

Results of simulations allowed the definition of exploitation rules for the regional aquifer. First, all the wells must be drilled to a depth of at least 10 m into the bedrock to minimise their eventual drying if they are located near a high pumping rate well. Figure 13 shows one of the 15 graphs made with the Theis method to estimate the drawdown generated at different distances and times from a well for a $1,1x10^{-3}$ m²/s rock transmissivity, a 10^{-4} storage coefficient and a 0,05 porosity value. These graphs were done for different transmissivity and different pumping rates. They helped work out the maximum pumping rate allowed (800 m³/d) and the distance to respect between wells according to their pumping rates to limit the decrease of their productivity.

Between the controlled area of Ville-Mercier and the Châteauguay River, a buffer zone was delineated. Here, groundwater flows from the area of the former lagoons to the Châteauguay River, so the installation of a pumping well in this area should be allowed under the condition of a permanent water quality monitoring program.

Figure 13: Drawdown estimation with the Theis method for a 1,3x10⁻³ m²/s transmissivity

Simulations to estimate the sensitivity of the aquifer to a variation of the recharge indicate that the actual exploitation does not reach 20% of the recharge. In fact, municipal and agricultural aquifer exploitation reach 15% of the recharge. Such exploitation levels seem sustainable but water level monitoring should be maintained in the area to further assess piezometric equilibrium.

8. CONCLUSION

Although just half of the estimated recharge is considered in our model, it appears that this model gives us a better understanding of the hydrogeological system. It highlights the important role played by the sand and gravel unit in the recharge of the rock aquifer. It shows that the actual agricultural groundwater exploitation is reasonable with only 7% of the recharge rate used over all year that generates a mean drawdown of 1,5 m. Simulations allowed the definition of exploitation rules for the aquifer to prevent the overuse of the groundwater resource and potential conflicting groundwater users. minimise Simulations for particles pathways near Ste-Martine have been done with different values of porosity and highlight the crucial role played by the Esturgeon River, which seems to be an outlet of the aquifer and a hydraulic barrier against contaminant migration from the former lagoons of Ville-Mercier towards Ste-Martine. A specific study should be done to better understand the role of this river in the aquifer system.

9. REFERENCES

BACHAND, G., 1987. Simulation de la charge hydraulique à Ville Mercier. M.Sc. Thesis, Université de Sherbrooke, Québec, 179 p.

CNFS, 1993. Caractérisation exhaustive du panache de contamination des anciennes lagunes de Ville-Mercier. Volumes 1-5, Ministère de l'Environnement du Québec.

D'ANJOU, N., 1991. Simulation de pièges hydrauliques par éléments finis pour l'aquifère fracturé de Ville Mercier. M.Sc. Thesis, Université Laval, Québec, 99 p.

DENIS, C., 1991. Caractérisation hydrogéologique du substratum rocheux fracturé du site pollué de Ville-Mercier. M.Sc. Thesis, Université du Québec à Chicoutimi, 177 p.

FREEZE, A.R., 1965. Hydrogéologie de la région de Lachine-St-Jean, Québec (au Sud du Saint-Laurent). Commission géologique du Canada, bulletin 112, 21 p.

GELINAS, P., ISABEL, D., ROULEAU, A., 1989. Aquifer decontamination for toxic organics: the case of Mercier, Québec. Contract KE405-8-6001/01-SS, Université Laval et Université du Québec à Chicoutimi, 271 p.

GLOBENSKY, Y., 1986. Géologie de la région de St-Chrysostome et de Lachine. Rapport MM 84-02, Ministère de l'Energie et des ressources du Québec, 166 p.

GREGI, 1993. Aquifer decontamination for toxic organics: the case study of Ville-Mercier, Québec. Final report, Volume II. Université Laval, 270 p.

HYDROGÉO CANADA INC., 1981. Hydrogéologie et contamination des eaux souterraines, Ville Mercier. Rapport hydrogéologique, Ministère de l'Environnement du Québec, 30 p.

HAMEL, A., 2001. Groundwater recharge of fractured rock aquifers in South-Western Quebec. The International Association of Hydrogeologists, pp.1078-1084.

LASALLE, P., 1981. Géologie des dépôts meubles de la région de Saint-Jean-Lachine. DPV-780, Ministère de l'Énergie et des ressources du Québec, 13 p.

MCCORMACK, R., 1981. Étude hydrogéologique du Bassin versant de la Châteauguay. Rapport E.F.-2, Ministère de l'Environnement du Québec, 170 p.

POULIN, M., 1977. Groundwater contamination near a liquid waste lagoon, Ville Mercier, Québec. M.Sc. Thesis, University of Waterloo. 158 p.

ROULEAU, A., DENIS, C., COUSINEAU, P., LAPCEVIC, P., 1996. The estimation of hydraulic parameters of a fractured orthoquartzite formation at the laboratory and field scales. 2nd North American Rock Mechanics Symposium, Montreal, 8 p.

TECHNOREM INC., juillet 1998. Remise en service du puits municipal de Saint-Martine - Évaluation des impacts sur la protection des eaux souterraines de la région de Mercier. Ministère de l'Environnement et de la Faune du Québec, 49 p.