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RÉSUMÉ 

L’énergie éolienne représente une ressource durable, essentielle à la transition énergétique en 

cours. Son exploitation efficace repose sur une estimation précise de sa disponibilité à long terme, 

ce qui nécessite des données fiables sur les vitesses du vent. Lorsque ces données sont 

manquantes, il est nécessaire de recourir à des méthodes d’estimation basées sur des approches 

physiques, statistiques, ou hybrides.  

Plusieurs méthodes statistiques d’estimation de la vitesse ont été développées au fil des années. 

Il était donc utile de procéder à une revue exhaustive de ces approches afin d’identifier leurs 

forces, leurs limites et les axes d’amélioration possibles. Dans notre premier article, une revue de 

littérature offrant un aperçu complet de ces méthodes a été réalisée. Cette synthèse permet 

d’établir un cadre de référence pour le développement de nouvelles méthodologies pour 

l’estimation de la vitesse du vent.  

Le deuxième article compare six méthodes de sélection de variables explicatives pour 

l’interpolation spatiale de plusieurs quantiles de vitesse de vent au Canada. En considérant des 

quantiles associés à différentes probabilités de dépassement, cette étude permet non seulement 

d’identifier les variables explicatives les plus pertinentes, mais aussi d’analyser leur influence 

relative sur les différentes plages de vitesse du vent (faibles, moyennes ou élèves).  

Dans le troisième article de cette thèse, nous proposons une nouvelle approche non paramétrique 

pour estimer la distribution de probabilité des vitesses du vent aux sites non échantillonnés. Cette 

approche est recommandée dans les régions où la variabilité spatiale des régimes du vent est 

importante et où une seule famille de distribution peut ne pas être suffisamment flexible pour 

représenter cette variabilité. 

Les vitesses de vents issues des données de réanalyses sont couramment utilisées pour estimer 

le potentiel éolien aux sites non échantillonnés.  Cependant, la résolution spatiale grossière de 

ces données, les rendent incapables de représenter avec précision les variations locales du relief 

et leur influence sur les vitesses de vent près du sol. Le quatrième article de cette thèse propose 

une étude comparative des méthodes de correction statistiques des vitesses du vent issues des 

données de réanalyse, incluant une nouvelle approche que nous avons développée.  Des 

recommandations ont été formulées quant aux méthodes les plus adaptées selon les contextes 

d'application et les objectifs spécifiques des études réalisées.  
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Un défi majeur des méthodes de correction existantes demeure l’amélioration de la variabilité 

temporelle des vitesses de vents estimées à partir des données de réanalyses. Le cinquième 

article introduit une nouvelle approche de correction basée sur l’apprentissage profond (Deep 

Learning). Cette méthode permet non seulement de corriger les biais systématiques, mais aussi 

d’améliorer significativement la variabilité temporelle des séries. 

Mots-clés : Apprentissage automatique ; Correction de biais ; Estimation par noyau ; Potentiel 

éolien ; Réanalyse atmosphérique ; Topographie, Variabilité temporelle. 
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ABSTRACT 

Wind energy represents a sustainable resource essential to the ongoing energy transition. Its 

efficient exploitation relies on accurately estimating its long-term availability, which requires 

reliable data on wind speeds. When such data are missing, estimation methods based on 

physical, statistical, or hybrid approaches become necessary. 

Several statistical methods for wind speed estimation have been developed over the years. 

Therefore, a comprehensive review of these approaches was necessary to identify their strengths, 

limitations, and potential areas for improvement. In our first paper, a literature review providing an 

extensive overview of these methods was conducted. This synthesis establishes a reference 

framework for the development of new methodologies for wind speed estimation. 

The second article compares six feature selection methods for interpolating multiple wind speed 

quantiles spatially across Canada. Considering quantiles associated with different exceedance 

probabilities allowed the study to identify the most relevant explanatory variables and analyze 

their relative influence across different wind speed ranges (e.g., low, medium, or high). 

In the third article of this thesis, we propose a nonparametric approach to estimating the 

probability distribution of wind speeds at unsampled sites. This approach is recommended in 

regions where the spatial variability of wind regimes is significant and where a single distribution 

family may not be flexible enough to represent this variability. 

Wind speeds derived from reanalysis data are commonly used to estimate wind potential at 

unsampled sites. However, the coarse spatial resolution of these datasets limits their ability to 

accurately represent local terrain variations and their influence on near-surface wind speeds. The 

fourth article of this thesis presents a comparative study of statistical correction methods for wind 

speeds derived from reanalysis data, including a new approach we have developed. Based on 

the application context and specific objectives of the studies conducted, recommendations are 

provided regarding the most suitable methods. 

A major challenge with existing correction methods remains improving the temporal variability of 

wind speeds estimated from reanalysis data. The fifth article introduces a new correction 

approach based on deep learning. This method not only corrects systematic biases but also 

significantly enhances the temporal variability of the time series. 
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GRU  Gated Recurrent Unit 

GWA Global Wind Atlas 

JMA Japan Meteorological Agency  

LASSO Least Absolute Shrinkage and Selection Operator 

LES Large Eddy Simulation 

LightGBM Light Gradient-Boosting Machine 

LSTM Long Short-Term Memory 

MERRA-2 Modern-Era Retrospective Analysis for Research and Applications, version 2  

MNEMR Modèle numérique d'élévation de moyenne résolution du Canada 

MNT Modèle numérique de terrain 

MRMR Maximum relevance minimum redundancy 

NASA  National Aeronautics and Space Administration 

NWA Numerical Weather Prediction 

p. ex. Par exemple 

Q-Q Méthode quantile-quantile 

RANS Reynolds-Averaged Navier-Stokes 

RF Random forest 

RNN Recurrent neural network 

WAsP Wind Atlas Analysis and Application Program 

WRF  Weather Research and Forecasting model 

XGBoost Extreme Gradient Boosting 
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Symboles 

𝐴, 𝐵 Paramètres liés à la stabilité de l’atmosphère 

𝐴𝐼𝐶  Critère d'information d'Akaike 

𝛼  Exposant de cisaillement 

𝜕

𝜕𝑡
  Dérivée partielle par rapport à 𝑡 

𝐷𝐾𝑆  Statistique de Kolmogorov-Smirnov 

𝐹(∙)  Fonction de répartition théorique 

𝐹̂(∙)   Estimateur de la fonction de répartition à noyau asymétrique 

𝐹−1(∙)  Fonction quantile 

𝑓𝑐  Paramètre de Coriolis 

𝑓𝑚(∙)  Prédiction du modèle de gradient boosting à l’itération 𝑚 

𝐹𝑛(∙)   Fonctions de repartition empirique 

𝐹𝑥, 𝐹𝑦, 𝐹𝑧 Composantes de la force de frottement dans chaque direction 

𝐺  Vitesse du vent géostrophique 

𝑔  Accélération de la pesanteur 

𝛤(∙)  Fonction gamma 

𝛾  Paramètre de forme d’une distribution de probabilité 

ℎ  Paramétre de lissage d’une fonction de noyau 

ℎ𝑚(∙)  Estimateur du modèle de gradient boosting à l’itération 𝑚 

𝐾(∙)  Fonction de répartition à noyau asymétrique 

𝑘  Constante de von Kármán (environ 0,4) 

𝐾𝐵𝑆  Fonction de répartition à noyau asymétrique de Birnbaum-Saunders 

𝐾𝑊  Fonction de répartition à noyau asymétrique de Weibull 

𝐿  Longueur d’Obukhov 

𝑙𝑖𝑘(∙)   Fonction de vraisemblance 

𝑀  Nombre de paramètres libres d’un modèle 

𝜇  Paramètre de position d’une distribution de probabilité 

∇⃗⃗   Nabla 

𝑃  Puissance instantanée 

𝑝  Pression atmosphérique 

Φ(∙)  Fonction de répartition de la loi normal centrée réduite 

∝  Proportionnel à 
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𝜓(
𝑧

𝐿
)  Fonction de correction liée à la stabilité atmosphérique selon la théorie de 

Monin-Obukhov 

𝜌  Masse volumique de l’air 

𝑅𝑚  Sous-ensemble de l’espace des variables explicatives résultant de la partition 

successives d’un arbre de décision 

𝑅𝑆𝑆  Somme des carrés des résidus 

𝜎  Paramètre d’échelle d’une distribution de probabilité 

𝑆𝑥  Indice d’exposition directionnel 

𝝉  Taux d'apprentissage du modèle gradient boosting trees 

𝜽̂  Vecteur des paramètres estimés 

𝜽  Paramètres d’une fonction de distribution de probabilité 

𝜽𝒊  Les paramètres associés à la composante 𝑖 d'une distribution mixte 

𝜃𝑚  Paramètres de l’estimateur ℎ𝑚(∙) du modèle de gradient boosting à l’itération 𝑚 

𝑈⃗⃗   Vecteur vent 

𝑈  Vitesse du vent 

𝑢  Composante zonale de la vitesse cartésienne 

𝑢𝑔  Composante zonale du vent géostrophique 

𝑢∗  Vitesse de frottement 

𝑣  Composante méridionale de la vitesse cartésienne 

𝑣𝑔  Composante méridionale du vent géostrophique 

𝑤  Composante verticale de la vitesse cartésienne 

𝑤𝑖  Poids associé à la composante 𝑖 d'une distribution mixte 

𝑧0  Longueur de rugosité de la surface 

  



 20 

1 INTRODUCTION 

1.1 Mise en contexte 

La disponibilité de source d’énergie renouvelable est primordiale à la réduction de la dépendance 

aux combustibles fossiles et la diminution des émissions de gaz à effet de serre (Hassan et al., 

2024). Parmi elles, l’énergie éolienne se distingue comme une solution « propre » et durable, qui 

a connu une forte croissante ces dernières années (Global Wind Energy Council, 2024). Cette 

progression est due à plusieurs facteurs, dont la disponibilité mondiale abondante (Archer et al., 

2005; Jung et al., 2022b), des avancées technologiques significatives qui améliorent les 

performances des turbines, ainsi qu’une réduction continue des coûts de production et 

d’exploitation (Veers et al., 2019; Wiser et al., 2021). Cette combinaison de facteurs rend cette 

ressource de plus en plus compétitive par rapport aux sources d’énergie traditionnelles. 

La variabilité de la production éolienne est principalement influencée par la vitesse du vent (𝑈), 

la puissance instantanée générée (𝑃) par une éolienne étant proportionnelle au cube de celle-ci 

(𝑃 ∝ 𝑈3). Cette relation non linéaire accentue l’impact des fluctuations de la vitesse du vent sur 

la production énergétique. l’intermittence de la ressource pose certains défis à son intégration à 

grande échelle dans les réseaux électriques (Ren et al., 2017). Cela met en évidence la nécessité 

de poursuivre les recherches pour affiner l’évaluation du potentiel éolien et améliorer les modèles 

prédictifs. 

La disponibilité de longues séries de données sur la vitesse du vent (p. ex., 30 ans)  avec une 

haute résolution spatiale et temporelle est nécessaire pour une estimation adéquate du potentiel 

éolien (Pelser et al., 2024). Or, ces données sont souvent limitées dans le temps et l’espace, 

requérant le développement de méthodes physiques, statistiques et hybride pour estimer les 

vitesses du vent aux sites non échantillonnés (Zhang et al., 2015). Un site non échantillonné fait 

référence à un emplacement géographique pour lequel aucune mesure directe de la vitesse du 

vent n’est disponible. 

Lors de l'évaluation des ressources éoliennes sur un vaste territoire, les méthodes physiques 

sont moins appropriées en raison de leur coût en temps de calcul élevé (Dupuy et al., 2023; Jung 

et al., 2023b). En revanche, les modèles empiriques (statistiques et d’apprentissage 

automatique), qui exploitent les données disponibles pour prédire les conditions du vent dans des 

zones non échantillonnées, offrent une solution plus pratique et abordable (Dujardin et al., 2022; 

Veronesi et al., 2016). Elles permettent d’intégrer des données issues de diverses sources, 
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notamment les mesures in situ, les réanalyses, les données topographiques et de couverture du 

sol. 

Les méthodes d’estimation des vitesses du vent aux sites non échantillonnés peuvent être 

classées selon le type de statistique à prédire : moyenne, valeur extrême, distribution de 

probabilité ou séries temporelles. Pour l’estimation de la moyenne, des méthodes traditionnelles 

d’interpolation spatiale, comme le krigeage, sont fréquemment employées (Lee, 2022; Luo et al., 

2008). Les valeurs extrêmes de vitesse du vent peuvent être estimées par une analyse 

fréquentielle régionale (Campos et al., 2018). Elles permettent d’évaluer les risques que les vents 

violents posent aux infrastructures (Pryor et al., 2021).  

Les études récentes accordent une attention accrue à l'estimation de la distribution complète des 

probabilités ou à la reconstruction de longues séries temporelles de vitesses du vent (Jung et al., 

2023a). Ces méthodes permettent une analyse plus approfondie de la variabilité de la ressource, 

un aspect essentiel pour assurer la viabilité économique des projets éoliens sur le long terme 

(Millstein et al., 2019).  

Les méthodes paramétriques sont souvent employées pour estimer la distribution des probabilités 

des vitesses du vent dans des zones non échantillonnées (Jung et al., 2020; Veronesi et al., 

2016). Elles reposent sur l’hypothèse selon laquelle les vitesses du vent dans l’ensemble d’une 

région donnée suivent une seule loi de distribution dont les paramètres varient dans l’espace 

géographique. Toutefois, dans les régions où la variation spatiale du régime des vents est 

significative, ces méthodes présentent des limites. Il est donc crucial d’adopter des techniques 

plus flexibles, comme les méthodes non paramétriques, qui ne contraignent pas l’ensemble de la 

région à une forme particulière de la loi de probabilité. 

Les progrès récents dans le développement des modèles de prévision numérique du temps 

(Numerical Weather Prediction, NWP), des méthodes d’assimilation de données climatiques et 

l’accroissement des capacités de calcul ont entraîné des améliorations significatives en termes 

de résolution spatiale, temporelle et de précision des données de réanalyse atmosphérique 

(Valmassoi et al., 2023).  

Par conséquent, l’interpolation spatiale des données de réanalyse, telles que ERA5 (cinquième 

génération de réanalyse atmosphérique du climat mondial du Centre européen pour les 

prévisions météorologiques à moyen terme; Hersbach et al. (2020)) et MERRA-2 (Modern-Era 

Retrospective Analysis for Research and Applications, version 2 ; Gelaro et al. (2017)) demeure 
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une méthode privilégiée pour reconstruire les séries temporelles de vitesse du vent dans les 

zones non échantillonnés (Olauson, 2018).  

Malgré ces progrès, les données brutes de réanalyse restent affectées par des biais 

systématiques en raison de leur résolution spatiale relativement grossière. Cette limitation 

entrave la représentation précise de phénomènes locaux, notamment ceux liés aux interactions 

entre le vent, le relief et d’autres phénomènes météorologiques à petite échelle, associés aux 

gradients de température (Gualtieri, 2022). Ces biais peuvent engendrer des écarts significatifs 

entre les vitesses du vent mesurées et celles estimées à partir des données brutes de réanalyse, 

notamment dans la couche limite atmosphérique, où sont installées les turbines éoliennes. Pour 

remédier à ces limitations, des méthodes de correction statistique ont été développées pour 

ajuster les estimations issues de ces modèles physiques aux observations locales (Dujardin et 

al., 2022; Winstral et al., 2017). 

Par ailleurs, des biais dans la variabilité temporelle des données de réanalyse ont également été 

signalés dans la littérature (Davidson et al., 2022; Ramon et al., 2019). La correction de ce type 

de biais reste encore peu explorée, mais le développement de telles approches pourrait 

significativement améliorer la corrélation temporelle à différentes échelles (p. ex., diurne, 

saisonnière et interannuelle) entre les données de réanalyse corrigées et les vitesses de vent 

observées. Cela permettrait d’obtenir une évaluation plus précise du potentiel éolien et une 

meilleure compréhension de sa variabilité temporelle, qui est cruciale pour la planification de la 

ressource. 

1.2 Généralité sur la dynamique du vent 

1.2.1 Équations régissant la dynamique du vent 

Le gradient de pression est la principale force responsable du mouvement de l'air dans 

l'atmosphère. L’inégale distribution du rayonnement solaire en fonction de la latitude, de la 

topographie et de la saison, provoque des variations spatiales de température. Les masses d’air 

chaudes et légères (moins denses) s’élèvent, ce qui entraîne une baisse de la pression à la 

surface. À l’inverse, les masses d’air plus froides et moins denses tendent à descendre, 

augmentant ainsi la pression au sol. Ces différences de pression donnent naissance à un gradient 

de pression horizontal, ce qui entraîne un déplacement de l’air des zones de haute pression vers 

celles de basse pression.  
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Les mouvements d’air causés par la variation de pression sont influencés par d’autres forces, 

telles que la force de Coriolis, la gravité et les frottements près de la surface terrestre. La force 

de Coriolis, résultant de la rotation de la Terre, dévie les masses d’air vers la droite dans 

l’hémisphère Nord et vers la gauche dans l’hémisphère Sud. À proximité du sol, la force de 

frottement, due à la rugosité de la surface, ralentit la vitesse du vent. De plus, la gravité agit 

comme une force verticale opposée au soulèvement de l’air. 

L’équation de bilan de quantité de mouvement pour l’écoulement d’une masse d’air dans 

l’atmosphère est donnée par (Andrews, 2010): 

Équation 1.1 

𝜕𝑢

𝜕𝑡
+ (𝑈⃗⃗ ∙ ∇⃗⃗ )𝑢 − 𝑓𝑐𝑣 +

1

𝜌

𝜕𝑝

𝜕𝑥
− 𝐹𝑥 = 0 

𝜕𝑣

𝜕𝑡
+ (𝑈⃗⃗ ∙ ∇⃗⃗ )𝑣 + 𝑓𝑐𝑢 +

1

𝜌

𝜕𝑝

𝜕𝑦
− 𝐹𝑦 = 0 

𝜕𝑤

𝜕𝑡
+ (𝑈⃗⃗ ∙ ∇⃗⃗ )𝑤 + 𝑔 +

1

𝜌

𝜕𝑝

𝜕𝑧
− 𝐹𝑦 = 0 

où 𝒖, 𝒗 et 𝒘 sont respectivement les composantes zonale (est-ouest), méridionale (nord-sud) et verticale du 

vecteur de vitesse 𝑼⃗⃗ , 𝒇𝒄 est le paramètre de Coriolis, 𝝆 est la densité de l’air, 𝒑 est la pression 

atmosphérique, 𝒈 est l’accélération gravitationnelle, 𝑭𝒙, 𝑭𝒚, 𝑭𝒛 sont les composantes de la 

force de frottement dans chaque direction, et 𝛁⃗⃗  est le vecteur nabla. 

En fonction des hypothèses physiques et des échelles spatiales et temporelles retenues, des 

simplifications peuvent être apportées aux équations de quantité de mouvement. Ces 

simplifications permettent d’isoler les mécanismes dominants à une échelle donnée, ce qui facilite 

l’analyse du phénomène.  

Dans l’atmosphère libre, où l’influence des frottements devient négligeable, le vent tend vers un 

état d’équilibre entre la force du gradient de pression et la force de Coriolis. Cet équilibre, nommé 

équilibre géostrophique, est décrit par les équations suivantes : 

Équation 1.2 

𝑢𝑔 = −
1

𝜌𝑓𝑐

𝜕𝑝

𝜕𝑦
 

𝑣𝑔 =
1

𝜌𝑓𝑐

𝜕𝑝

𝜕𝑥
 

où 𝒖𝒈 et 𝒗𝒈sont les composantes zonale et méridionale du vent géostrophique. 
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Cette relation permet d’estimer la vitesse du vent dans l’atmosphère libre à partir des champs de 

pression atmosphérique. Cependant, cet équilibre ne s’applique pas dans les couches basses de 

l’atmosphère, notamment la couche limite, où les effets de friction perturbent significativement 

l’écoulement. 

1.2.2 Effet de la topographie et de la rugosité du sol 

À proximité de la surface terrestre, les vents résultant de l’équilibre géostrophique constituent le 

forçage de grande échelle. La friction induite par la rugosité de surface (végétation, relief, 

bâtiments, etc.) modifie les vents géostrophiques en réduisant leur vitesse.  

En terrain plat, homogène et sans obstacle à proximité, la vitesse du vent près du sol, 𝑈(𝑧), peut 

être estimée à partir de la vitesse géostrophique 𝐺, de la vitesse de friction et du profil 

logarithmique de la vitesse du vent. À partir du gradient de pression, on peut calculer la vitesse 

du vent géostrophique 𝐺, puis en déduire la vitesse de friction 𝑢∗ grâce à l’Équation 1.3 

(Zilitinkevich et al., 1974). Une fois que 𝑢∗ est déterminé, le profil logarithmique de la vitesse du 

vent (Équation 1.4) peut être utilisé pour estimer la vitesse moyenne du vent à une hauteur 𝑧 

donnée : 

Équation 1.3 

𝐺 = 
𝑢∗
𝑘
√(ln (

𝑢∗
𝑓𝑐𝑧0

) − 𝐴)
2

+ 𝐵2 

Équation 1.4 

𝑈(𝑧) =
𝑢∗
𝑘
[ln (

𝑧

𝑧0
) − 𝜓 (

𝑧

𝐿
)] 

Où, 𝒖∗ représente la vitesse de frottement (qui mesure le degré de cisaillement du vent près du sol dû à la 

rugosité), 𝒌 correspond à la constante de von Kármán (environ 0,4), 𝒇𝒄 désigne le paramètre 

de Coriolis, 𝒛𝟎 correspond à la longueur de rugosité de la surface (hauteur moyenne du sol 

où la vitesse moyenne du vent est nulle), 𝑨 et 𝑩 sont des paramètres liés à la stabilité de 

l’atmosphère, 𝝍(
𝒛

𝑳
) est une fonction de correction liée à la stabilité atmosphérique selon la 

théorie de Monin-Obukhov, et 𝑳 désigne la longueur d’Obukhov, qui caractérise les conditions 
de stabilité thermique dans la couche limite. 

Dans les régions dont la topographie est irrégulière, le flux de l’air devient plus variable et il ne 

peut plus être décrit de manière adéquate par la méthode analytique ci-dessus. En effet, les 

variations du relief, les changements d’occupation du sol, ainsi que la présence d’obstacles, tels 



 25 

que les bâtiments, ou les forêts, influencent le mouvement de l’air près du sol (Petersen et al., 

1998).  

L’occupation du sol influence la dynamique du vent, notamment parce qu’elle entraine une friction 

avec les éléments de surface, comme la végétation ou les bâtiments. Cette friction se traduit par 

un ralentissement du vent, ainsi qu’une modification de la structure verticale du profil de vitesse 

caractérisé par le profil logarithmique du vent (Équation 1.4) ou la loi exponentielle de cisaillement 

du vent : 

Équation 1.5 

𝑈(𝑧2) = 𝑈(𝑧1) (
𝑧2
𝑧1
)
𝛼

 

Où 𝑼(𝒛𝟐) est la vitesse du vent à la hauteur 𝒛𝟐, 𝑼(𝒛𝟏) est la vitesse mesurée à une hauteur de référence 𝒛𝟏 et 𝜶 
est l’exposant de cisaillement, qui dépend de la rugosité de surface et de la stabilité 
atmosphérique. 

La rugosité de surface est mesurée par la longueur de rugosité (𝑧0), qui est proportionnelle à la 

hauteur des obstacles présents à la surface terrestre, comme la végétation et les bâtiments. Des 

valeurs élevées de longueur de rugosité indiquent généralement des surfaces entraînant un 

ralentissement plus important des vitesses du vent. Les milieux urbains et les zones végétalisées, 

comme les forêts, présentent généralement des longueurs de rugosité plus élevées que les 

surfaces couvertes de neige ou les terrains nus et peu accidentés. Le Tableau 1.1 présente des 

valeurs de la longueur de rugosité 𝑧0 et de l’exposant de cisaillement 𝛼 pour une stabilité 

atmosphérique neutre et pour différents types de surface. 

Tableau 1.1 Valeur de la longueur de rugosité 𝒛𝟎 et de l’exposant de cisaillement 𝜶 pour différents types 
de surface 

Type de surface Longueur de rugosité 𝑧0 Exposant de cisaillement 𝛼 

Eaux 0,001 0,11 

Herbes 0,01-0,05 0,16 

Arbustes 0,1-0,2 0,20 

Forêts 0,5 0,28 

Villes 1-2 0,4 

Les valeurs de 𝜶 sont données pour une stabilité atmosphérique neutre. Adapté de Emeis (2018). 

L’interaction entre le relief et le vent peut être de nature mécanique ou thermique (régime de 

brise)  (Whiteman, 2000). L’effet mécanique résulte de la modification du flux de vent synoptique 

par les caractéristiques orographiques locales. 
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Lorsqu’un flux d’air rencontre un obstacle orographique tel qu’une colline ou une chaîne de 

montagnes, plusieurs scénarios peuvent se produire selon les caractéristiques du relief 

(notamment sa hauteur, sa largeur et sa pente), la stabilité de l’atmosphère et la vitesse du vent 

(Jackson et al., 2013). La masse d’air peut s’élever et franchir l’obstacle, être déviée latéralement, 

canalisée à travers des vallées ou des passes, ou encore bloquée en amont. Une atmosphère 

stable tend à limiter les mouvements verticaux, ce qui favorise le contournement horizontal des 

reliefs. À l’inverse, une atmosphère instable facilite les mouvements ascendants, permettant à 

l’écoulement de franchir verticalement les obstacles. Cependant, même en conditions stables, 

une masse d’air dotée d’une forte inertie (vitesse suffisante) peut être capable de franchir certains 

reliefs. 

Les régimes de brises sont principalement induits par les contrastes de chauffage de surface 

générés par le relief, qui donnent lieu à des circulations thermiques locales, telles que les brises 

de pente et de vallée (Zardi et al., 2013). Ces régimes sont caractérisés par une inversion de la 

direction du vent au cours du cycle diurne.  

Pendant la journée, le rayonnement solaire réchauffe la surface du sol, entrainant un transfert 

d’énergie vers l’air situé au-dessus du sol sous forme de flux de chaleur sensible. Ce 

réchauffement favorise les mouvements ascendants du vent le long des pentes ou dans les 

vallées. À l’inverse, pendant la nuit, le sol se refroidit rapidement, ce qui refroidit l’air en contact 

avec sa surface, ce qui entraine des écoulements d’air descendants. 

Les régimes de brises, qui découlent de ces contrastes thermiques, peuvent se produire à 

différentes échelles spatiales. Il peut s’agir de phénomènes locaux, comme ceux qui se forment 

autour d’une colline isolée, ou bien de circulations régionales impliquant de grands systèmes 

montagneux (Whiteman, 2000). 

1.2.3 Simulation de l’écoulement atmosphérique 

La variation locale de la vitesse du vent est le fruit de l’interaction de divers processus opérants 

à différentes échelles. À l’échelle planétaire, les systèmes de pression synoptiques dominent et 

déterminent les régimes de vent dominants. À l’échelle régionale, des gradients de température 

dus aux caractéristiques orographiques ou à la proximité de masses d’eau (océans, lacs) peuvent 

générer des circulations thermiques, telles que les brises de mer, de terre, de vallée ou de 

montagne. À l’échelle locale, la rugosité du sol, la présence d’obstacles naturels ou artificiels 

exercent une influence prépondérante sur l’écoulement du vent. L’ensemble de ces processus 
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contribuent à une grande variabilité temporelle (avec des fluctuations allant de la minute à 

plusieurs jours) et spatiale du vent. 

En général, les équations qui régissent la dynamique du vent n’ont pas de solution analytique et 

sont généralement résolues numériquement à l’aide de modèles de prévision ou de simulation 

climatique. Ces derniers reposent sur des méthodes de discrétisation spatiale et temporelle. 

En fonction du phénomène étudié, différentes approches de modélisation numérique sont 

utilisées pour simuler le vent. Les modèles de circulation générale (GCMs) décrivent la 

dynamique atmosphérique à l’échelle globale, mais leur résolution spatiale relativement grossière 

(supérieure à 100 km) les rend inadéquats pour la simulation de phénomènes régionaux ou 

locaux (Jung et al., 2022c) 

Les modèles à méso-échelle, tels que le "Weather Research and Forecasting model" (WRF ; 

Powers et al. (2017)), sont largement utilisés avec l’assimilation des observations 

météorologiques pour produire des prévisions atmosphériques à haute résolution. Grâce à une 

résolution spatiale plus fine (de l’ordre de 10 à 100 km), ces modèles permettent de mieux simuler 

les circulations régionales induites par la topographie et les gradients thermiques. Ils intègrent 

aussi des schémas de paramétrisation représentant les processus non résolus à l’échelle de la 

grille. 

Cependant, ces modèles ne résolvent pas adéquatement les turbulences de l’écoulement de 

petite échelle générées par les variations topographiques et la présence d’obstacles 

(Zajaczkowski et al., 2011). Pour pallier ces limitations, des approches issues de la mécanique 

des fluides assistée par ordinateur (Computational Fluid Dynamics, CFD) sont utilisées. Elles 

permettent de représenter explicitement les turbulences à micro-échelle (Castorrini et al., 2021). 

L’approche de Reynolds (Reynolds-Averaged Navier-Stokes, RANS) repose sur une 

modélisation statistique de la turbulence en séparant les variables en une valeur moyenne et les 

fluctuations autour de cette moyenne. Pour mieux caractériser les vitesses instantanées, on peut 

recourir à la simulation directe des grandes échelles (Large Eddy Simulation, LES). Le LES 

permet de simuler directement la majorité des turbulences et de modéliser des structures dont 

l’échelle est inférieure à la taille des mailles (Mehta et al., 2014).   

Toutefois, en raison de leur coût computationnel particulièrement élevé, l’utilisation de ces 

modèles reste généralement limitée à des domaines spatiaux restreints et à des fenêtres 

temporelles réduites. Ils sont donc principalement utilisés durant les phases avancées des 
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projets, par exemple pour des analyses approfondies des sillages turbulents et des zones de 

séparations de l’écoulement (Thé et al., 2017). 

En alternative aux approches basée sur la mécanique des fluides assistée par ordinateur, il existe 

des modèles plus simples et moins exigeants en ressources de calcul, tels que WAsP (Wind Atlas 

Analysis and Application Program). Ces outils permettent de représenter certains effets de petite 

échelle à partir d’une formulation linéaire des équations de l’écoulement (Jackson et al., 1975). 

Leur rapidité de calcul en fait des outils bien adaptés aux premières phases de l’évaluation du 

potentiel éolien sur un vaste territoire (Dörenkämper et al., 2020). Néanmoins, ces modèles 

linéaires présentent des limites notables en terrain complexe, notamment lorsque les pentes sont 

abruptes (Ayotte et al., 2004). 

1.3 Données de réanalyses 

Les données de réanalyse, largement utilisées pour l’évaluation du potentiel éolien à l’échelle 

régionale, illustrent une application concrète des modèles à méso-échelle. Elles permettent de 

reconstituer de manière cohérente et continue l’état de l’atmosphère sur plusieurs décennies. 

Les données de réanalyses, telles que ERA5 et MERRA-2, sont produites à partir de modèles de 

prévision numérique du temps couplés à des systèmes d’assimilation d’observations 

météorologiques de diverses sources. Ces jeux de données présentent plusieurs avantages : ils 

sont disponibles sur de longues périodes, leur couverture spatiale est (quasiment) globale et leur 

fréquence temporelle est suffisante pour de nombreuses applications. Ils constituent donc une 

source importante de données pour l’analyse climatique (Gutiérrez et al., 2024), l’évaluation du 

potentiel éolien à grande échelle (Gualtieri, 2022; Olauson, 2018), et le forçage de modèles à 

méso-échelle (Lorenz et al., 2016). Le Tableau 1.2 présente une comparaison des principales 

caractéristiques de trois jeux de données de réanalyse couramment utilisés dans les études sur 

la ressource éolienne. 

Tableau 1.2 Aperçu des données de réanalyse utilisées dans les études de potentiel éolien à grande 
échelle 

Nom complet Abréviation Institution Résolution 

spatiale 

Résolution 

temporelle 

(heure) 

Période 

disponible 

European Centre for 

Medium-Range 

Weather Forecasts 

Reanalysis 5 

ERA5 European Centre for 

Medium-Range 

Weather Forecasts 

(ECMWF) 

0,25° × 

0,25° 

1 1940 à 

présent 
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Modern Era 

Retrospective-Analysis 

for Research and 

Applications version 2 

MERRA-2 National Aeronautics 

and Space 

Administration 

(NASA) 

0,5° latitude 

× 0,625° 

longitude 

1 1980 à 

présent 

Japanese 55-year 

Reanalysis 

JRA-55 Japan Meteorological 

Agency (JMA) 

1,25° × 

1,25° 

6 1978 à 

présent 

 

De nombreuses études ont été consacrées à l’évaluation des performances des jeux de données 

de réanalyse en ce qui a trait à l’estimation du potentiel éolien (Gualtieri, 2021; Jourdier, 2020; 

Molina et al., 2021; Olauson, 2018). Ces travaux s’appuient généralement sur la comparaison 

des vitesses du vent issues des réanalyses avec des observations in situ. Les résultats de ces 

comparaisons montrent que, même si les réanalyses permettent de caractériser les régimes de 

vent à l’échelle régionale, elles présentent souvent des biais au niveau local, en particulier dans 

les régions à topographie complexe ou côtière (Gualtieri, 2022). Ces biais peuvent entraîner une 

surestimation ou une sous-estimation significative de la vitesse du vent et, par le fait même, du 

potentiel éolien. 

La Figure 1.1 illustre des séries temporelles de vitesses du vent interpolées à partir de données 

ERA5 pour deux stations de mesure d’Environnement et Changement climatique Canada 

(ECCC). Cette figure met en évidence l’influence de l’environnement sur la précision des données 

ERA5. La station numéro 504K0NM, située au bord du lac Manitoba, se trouve dans une région 

où la topographie est relativement simple, avec peu de variation brusque du relief. En revanche, 

la station numéro 7041166, située en bordure de la rivière Saguenay, est implantée dans une 

zone caractérisée par une variabilité du relief plus marquée. Les différences de corrélation 

observées entre les séries temporelles mesurées et ERA5 des deux stations montrent que la 

variation du relief influence la précision des vitesses de vent issues des données de réanalyse. 

Dans les régions à relief accidenté, les différences entre les données ERA5 et les mesures 

directes sont habituellement plus marquées (Gualtieri, 2021).  
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Figure 1.1 Vitesses du vent mesurées et issues d’ERA5 

Séries temporelles des vitesses du vent horaires de l’année 2023 à la station numéro 504K0NM (panneau a) et 
à la station numéro 7041166 (panneau b). Les données mesurées sont représentées en rouge, 
tandis que les données ERA5 interpolées sont en bleu. Les nuages de points illustrant la 
relation entre les données mesurées et celles d’ERA5 aux deux stations sont présentés dans 
les panneaux d (504K0NM) et e (7041166). Enfin, les données d’élévation autour des stations 
sont présentées dans les panneaux c et f. 

La résolution spatiale des données de réanalyse, relativement grossière, constitue un facteur 

limitant à leur utilisation directe pour évaluer le potentiel éolien, notamment dans les régions à 

terrain complexe et où les régimes de vent peuvent varier considérablement. La correction des 

vitesses du vent issues de réanalyses améliore la représentation des phénomènes locaux à petite 

échelle. 

La correction du biais des vitesses du vent issues des réanalyses repose principalement sur 

l’Atlas mondial des ressources éoliennes (Global Wind Atlas, GWA), qui fournit des conditions de 

vent statiques (p. ex., moyennes et paramètres de distribution) à l’échelle quasi globale. Ces 

données intègrent les caractéristiques du terrain et de la couverture du sol à une résolution 

spatiale de 250 mètres carrés. Dans la littérature, on a utilisé deux principales approches pour 

corriger à partir du GWA les biais des vitesses du vent issues de réanalyse. La première est une 

méthode de type quantile-quantile (Q-Q; Cannon et al. (2015)) qui permet d’ajuster les quantiles 

de la distribution des vitesses de vent issues de réanalyse pour qu’ils correspondent à ceux des 

données de référence fournies par le GWA (González-Aparicio et al., 2017). La deuxième 

méthode de correction ajuste la moyenne des vitesses du vent de réanalyse pour la faire 

correspondre à celle issue du GWA (Gruber et al., 2019). 

La Figure 1.2 présente un exemple d’application des deux méthodes de correction aux données 

d’ERA5 interpolées à la station numéro 7041166 d’ECCC. Le Tableau 1.3 présente les vitesses 

moyennes et la corrélation avec les données mesurées avant et après les corrections. Les 
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vitesses du vent brutes d’ERA5 sous-estiment systématiquement les valeurs mesurées. Cette 

sous-estimation est partiellement corrigée par les méthodes de correction des biais, avec des 

résultats variables. La méthode Q-Q a tendance à surestimer les vents forts, tandis que la 

correction de la moyenne entraine une sous-estimation des vents forts. Il est important de 

souligner que ces observations ne peuvent pas être généralisées, car les performances des 

méthodes de correction dépendent fortement des caractéristiques locales du vent et des biais 

spécifiques des données de réanalyse. 

 

Figure 1.2 Correction des vitesses du vents d’ERA5 à partir du GWA 

Application des méthodes de correction de biais des vitesses du vents horaires de 2023 d’ERA5 à la station 
numéro 7041166 d’ECCC. Les panneaux (a) et (b) montrent la comparaison des vitesses du 
vent mesurées à la station numéro 7041166 avec les données d’ERA5 interpolées. Les 
panneaux (c) et (d) illustrent l'effet de la correction de la moyenne, tandis que les panneaux 
(e) et (f) montrent les résultats de la correction par la méthode quantile-quantile. 

Tableau 1.3 Correction des vitesses du vents d’ERA5 à partir du GWA 

Données Vitesses moyennes Coefficient de corrélation de 
Pearson  

Données mesurées 5,74 1,00 

Données brutes d’ERA5  2,98 0,67 

ERA5 + GWA (moyenne) 5,63 0,67 

ERA5 + GWA (Q-Q) 5,65 0.68 

Vitesses moyennes du vent à la station numéro 7041166 (ECCC) et corrélation entre les données ERA5 et 
celles mesurées, avant et après les corrections à partir du GWA. 

Les données du GWA sont particulièrement pertinentes pour corriger les biais des données de 

réanalyse, en raison de leur intégration de caractéristiques topographiques et de couverture 

terrestre à une résolution fine (Bosch et al., 2017). Ces caractéristiques permettent de capturer 
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les variations locales des régimes de vent, souvent mal représentées dans les données de 

réanalyse en raison de leur résolution plus grossière. Ces caractéristiques peuvent être estimées 

directement à partir d’un modèle numérique de terrain (MNT) et de cartes d'occupation du sol de 

haute résolution. Elles peuvent ensuite être utilisées comme variables explicatives pour ajuster 

un modèle de régression entre les vitesses du vent issues de réanalyse et celles mesurées 

directement. Ce modèle ajusté devrait permettre de corriger les données de réanalyse aux sites 

non échantillonnés. Cette méthode a l'avantage d'être plus flexible en matière de résolution 

spatiale du produit final par rapport à la résolution fixe imposée par l’utilisation du GWA. 

Par exemple, une méthode développée par Jung et al. (2023b) repose sur l’application d’une 

correction Q-Q aux données ERA5. Premièrement, les auteurs ont ajusté un modèle de 

régression prenant en compte les caractéristiques topographiques locales, la longueur de 

rugosité et les L-moments (Hosking, 1990) des vitesses du vent issues d’ERA5, pour estimer la 

distribution des vitesses du vent aux sites non échantillonnés. Ce modèle permet de prédire les 

L-moments corrigés des vitesses du vent aux sites non échantillonnés à partir desquels les 

paramètres des distributions statistiques sont estimés. Une fois la distribution estimée au site non 

échantillonné, les séries temporelles des vitesses du vent d’ERA5 sont corrigées à l’aide de la 

relation :  

Équation 1.6 

𝑈̂𝑡 = 𝐹𝜽̂
−1[𝐹𝑛(𝑈𝑡

𝐸𝑅𝐴5)] 

où 𝑭𝜽̂
−𝟏
 est la fonction quantile de la distribution estimée, 𝜽̂ est le vecteur des paramètres estimés au site non 

échantillonné par la méthode des L-moments et 𝑭𝒏(𝑼𝒕
𝑬𝑹𝑨𝟓) est la fonction de répartition 

empirique des données ERA5. 

1.4 Données in situ de vitesse du vent 

La disponibilité de longues séries de mesures de vitesses du vent obtenues à partir de stations 

météorologiques ou de tours instrumentées est essentielle pour évaluer rigoureusement la qualité 

des données simulées, telles que celles issues des jeux de réanalyse. En effet, ces mesures in 

situ constituent la référence la plus fiable pour caractériser les conditions locales du vent à un 

emplacement donné. 

De plus, les données in situ remplissent deux fonctions essentielles dans la modélisation 

empirique (statistique et apprentissage automatique) de la vitesse du vent. Premièrement, elles 

permettent d’ajuster les paramètres des modèles pour mieux représenter les conditions 
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observées. Deuxièmement, elles servent de référence pour évaluer la performance des données 

modélisées. 

Cependant, même si les données in situ sont très utiles, elles ont aussi des limites. En effet, leur 

représentativité spatiale est restreinte, puisque chaque station ou tour instrumentée ne fournit 

des informations qu’à un endroit très spécifique. De plus, leur disponibilité est souvent restreinte 

par les coûts élevés d’installation, l’entretien et la calibration régulière des instruments de mesure. 

La qualité des données peut aussi être altérée par divers facteurs, notamment le changement 

d’instrumentation, les effets de site non corrigés, ou les discontinuités dans les séries temporelles. 

Par ailleurs, la plupart des mesures disponibles sont prises à des hauteurs standards (souvent 

10 mètres), ce qui nécessite l’application de modèles de transfert vertical pour les adapter aux 

hauteurs caractéristiques des éoliennes modernes (100 m et plus). 

Dans le cadre de cette thèse, les données in situ de vitesse du vent analysé sont issues de la 

base de données climatiques historiques d’ECCC. Cette base de données est soumise à des 

procédures de contrôle de qualité qui permettent de détecter et de corriger les éventuelles erreurs 

ou incohérences. 

Les données de vitesse du vent de cette base sont généralement collectées à une hauteur 

standard de 10 mètres au-dessus du sol. Elles représentent des moyennes de vitesse calculées 

sur une période d’une à deux minutes, qui se terminent à l’heure d’observation. Pour minimiser 

les effets de perturbation, les stations de mesure sont implantées sur des sites plats, dégagés, et 

éloignés d’obstacles, comme les arbres, les bâtiments ou les collines (Environnement et 

Changement climatique Canada, 2025). 

1.5 Distributions de probabilités des vitesses du vent 

On compte plusieurs types de lois de distribution paramétriques dans la littérature pour 

représenter la distribution de la vitesse du vent (Jung et al., 2019b). Ces distributions jouent un 

rôle clé dans la modélisation statistique du vent, car elles permettent d’en caractériser la 

variabilité. 

Lorsque les composantes orthogonales (composante nord-sud et est-ouest) de la vitesse du vent 

remplissent certaines conditions, telles que l'indépendance statistique et suivent une distribution 

normale bivariée centrée, la distribution de Rayleigh émerge comme la candidate idéale pour la 

modélisation de la distribution du vent (Hennessey, 1978). En réalité, cette distribution à un seul 

paramètre manque de flexibilité et les circonstances qui la rendent appropriée ne sont pas 
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souvent remplis, principalement en raison de l'influence de la topographie sur le vent (Tuller et 

al., 1985). La fonction de densité de probabilité associée à la distribution de Rayleigh s’écrit : 

Équation 1.7 

𝑝(𝑈; 𝜎) =
𝑈

𝜎2
exp [−

1

2
(
𝑈

𝜎
)
2

] 

Où 𝑼 est la vitesse du vent et  𝝈 est un paramètre d’échelle. 

La distribution de Weibull à deux paramètres, une généralisation de la Rayleigh, dispose 

également de fondements théoriques pour son application (Tuller et al., 1984). Grâce à ses deux 

paramètres, elle est plus flexible et est devenue la distribution la plus populaire pour les vitesses 

du vent (Carta et al., 2009). La fonction de densité de probabilité associée à la distribution de 

Weibull à deux paramètres est donnée par : 

Équation 1.8 

𝑝(𝑈; 𝜎, 𝛾) =
𝛾

𝜎
(
𝑈

𝜎
)
𝛾−1

exp [− (
𝑈

𝜎
)
𝛾

] 

Où 𝝈 est le paramètre d’échelle et 𝜸 est le paramètre de forme. 

Dans les régimes de vent calme où la probabilité de valeurs nulles est significative, la distribution 

de Weibull à deux paramètres présente certaines limites (Wais, 2017). La distribution de Weibull 

à trois paramètres permet de pallier ces limites en intégrant un paramètre additionnel 

correspondant au seuil minimal. Ce paramètre permet de considérer les valeurs nulles ou très 

faibles. La fonction de densité de probabilité associée à cette distribution est exprimée comme 

suit : 

Équation 1.9 

𝑝(𝑈; 𝜎, 𝛾, 𝜇) =
𝛾

𝜎
(
𝑈 − 𝜇

𝜎
)
𝛾−1

exp [− (
𝑈 − 𝜇

𝜎
)
𝛾

] 

Où 𝝈 est le paramètre d’échelle, 𝜸 est le paramètre de forme et 𝝁 est le paramètre de position. 

Plusieurs études recommandent l’adoption d’approches axées sur les données pour la sélection 

de la distribution adéquate (Dong et al., 2022; Lins et al., 2023). Ces méthodes s’appuient sur 

des techniques statistiques d’évaluation de l’ajustement, telles que le test de Kolmogorov-

Smirnov et le critère d'information d'Akaike (AIC). Dans le cas univarié, le test de Kolmogorov-
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Smirnov permet de mesurer la plus grande différence absolue entre les fonctions de répartition 

des données observées 𝐹𝑛(𝑈) et la fonction de répartition théorique 𝐹(𝑈) associée à la 

distribution testée (par exemple, la loi de Weibull). La statistique du test Kolmogorov-Smirnov est 

définie par : 

Équation 1.10 

𝐷𝐾𝑆 = sup
𝑈
|𝐹𝑛(𝑈) − 𝐹(𝑈)| 

où 𝑫𝑲𝑺 est la statistique de Kolmogorov-Smirnov et 𝐬𝐮𝐩 représente le supremum (la borne supérieure) de 
l’ensemble des différences absolues. 

Le critère AIC permet de comparer les ajustements des distributions candidates en tenant compte 

de leurs parcimonies, le nombre de paramètres de la distribution: 

Équation 1.11 

𝐴𝐼𝐶 = −2 log 𝑙𝑖𝑘(𝑈; 𝜽) +  2𝑀 

Où 𝒍𝒊𝒌(𝑼; 𝜽) = ∏ 𝒑(𝑼𝒊; 𝜽
𝒏
𝒊=𝟏 ) est la vraisemblance du modèle évaluée sur les données observées 𝑼 avec les 

paramètres 𝜽 et 𝑴 représente le nombre de paramètres libres du modèle. 

Plusieurs types de distributions offrant une flexibilité accrue ont été explorées pour modéliser les 

vitesses du vent (Shi et al., 2021; Tsvetkova et al., 2023).  Cependant, dans les contextes où le 

régime des vent est hétérogène et présente un comportement bimodal ou multimodal, les 

distributions unimodales, comme la Weibull, montrent leurs limites (Ouarda et al., 2018). Les 

distributions mixtes, qui sont des combinaisons linéaires convexes de plusieurs distributions 

unimodales, permettent une meilleure représentation de la variabilité des vitesses du vent en 

tenant compte de la présence de plusieurs sous-populations ou régimes distincts. La fonction de 

densité de probabilité d'une distribution mixte à 𝐾 composantes peut s’écrire comme suit : 

Équation 1.12 

𝑝(𝑈) =  ∑𝑤𝑖𝑝𝑖(𝑈; 𝜽𝑖)

𝐾

𝑖=1

 

Où 𝒑𝒊(𝑼; 𝜽𝒊) est la densité de probabilité de la composante 𝒊, 𝜽𝒊 représente les paramètres de cette composante 

et 𝒘𝒊 est le poids associé à la composante 𝒊, avec 𝒘𝒊 ≥ 𝟎 et ∑ 𝒘𝒊
𝑲
𝒊=𝟏 = 𝟏. 

Jung et al. (2017b) ont évalué l’ajustement de 24 distributions unimodales et 21 distributions 

mixtes sur des données de vitesse du vent à l’échelle mondiale. Les résultats de l’étude ont révélé 
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que les distributions mixtes offrent un meilleur ajustement dans la partie centrale de la distribution 

que les distributions unimodales. Pour un ajustement optimal dans les queues de distribution, les 

auteurs recommandent la distribution de Wakeby, qui s’est avérée particulièrement efficace pour 

modéliser les valeurs extrêmes des vitesses du vent. 

En complément des distributions paramétriques, des méthodes non paramétriques, comme 

l’estimation par noyau, sont également utilisées pour capturer des formes de distributions 

atypiques (Qin et al., 2011).  

Dans le cas des vitesses du vent, des fonctions de noyau symétriques, comme le noyau gaussien, 

ont souvent été utilisées (Han et al., 2019; Zhang et al., 2019). Toutefois, ce type de noyau est 

connu pour entraîner un biais aux limites lorsque le support de la distribution est défini sur un 

ensemble borné [0,∞], comme c’est le cas pour les vitesses du vent. Pour résoudre  ce problème, 

des noyaux asymétriques ont été proposés (Chen, 2000). Récemment, Mombeni et al. (2021) ont 

proposé le noyau asymétrique Weibull et Birnbaum-Saunders pour l’estimation de la fonction de 

répartition et Lafaye de Micheaux et al. (2021) ont proposé le noyau Log-Normal.  

La formule générale de l’estimateur de la fonction de répartition à noyau asymétrique s’écrit 

comme suit : 

Équation 1.13 

𝐹̂(𝑈) =
1

𝑛
∑𝐾(𝑈𝑖; 𝑈, ℎ)

𝑛

𝑖=1

 

Où 𝒏 est le nombre d’observations, 𝑲(𝑼𝒊; 𝑼, 𝒉) est le noyau asymétrique évalué aux observation 𝑼𝒊 et 𝒉 est le 
paramétre de lissage. 

Le noyau asymétrique de Weibull est donné par :  

Équation 1.14 

𝐾𝑊 (𝑈𝑖; 𝜎 , γ ) =  exp (−(
𝑈𝑖
𝜎
)
𝛾

) 

Où 𝝈 = 𝑼𝜞(𝟏 + 𝒉), 𝜞(∙) est la fonction gamma et 𝜸 = 𝟏/𝒉. 

Le noyau asymétrique de Birnbaum-Saunders est donné par :  

Équation 1.15 
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𝐾𝐵𝑆 (𝑈𝑖; 𝑈, 𝜎) = 1 −  Φ(
1

𝜎
(√
𝑈𝑖
𝑈
−√

𝑈

𝑈𝑖
)) 

Où 𝝈 = √𝒉 et 𝚽(∙) représente la fonction de répartition de la loi normal centrée réduite 

Le noyau asymétrique de Log-Normal est donné par :  

Équation 1.16 

𝐾𝐿𝑁 (𝑈𝑖; μ , 𝜎) =  1 −  Φ (
log𝑈𝑖 − 𝜇

𝜎
) 

Où 𝝁 = 𝐥𝐨𝐠𝑼 et 𝝈 = √𝒉. 

1.6 Variables explicatives liées à la vitesse du vent 

1.6.1 Variables topographiques 

L'intégration des variables topographiques dans la modélisation empirique des vitesses du vent 

permet de mieux capter l'influence des éléments de la surface du sol sur la variabilité spatiale du 

vent. Des facteurs, tels que l'altitude, la pente, l’orientation du relief, la rugosité de surface ou 

encore la forme du terrain, jouent un rôle déterminant dans la modification des flux d’air, en 

favorisant par exemple leur canalisation, leur accélération ou leur atténuation. 

Dans les régions où le relief est peu accidenté, l’interpolation spatiale permet généralement 

d’estimer avec une précision acceptable les vitesses du vent à des sites non échantillonnés (Fick 

et al., 2017). Toutefois, dans les zones où le relief est marqué, l’influence de la topographie sur 

les vitesses de vent devient significative et ne peut pas être négligée (González-Longatt et al., 

2015; Petersen et al., 1998; Raupach et al., 1997). 

Par exemple, l’intégration de l’altitude comme variable explicative dans les approches 

d’interpolation spatiale a permis d’améliorer significativement la précision des estimations par 

rapport aux méthodes basées uniquement sur les distances entre les sites (Collados-Lara et al., 

2022; Lee, 2022; Palomino et al., 1995). Cependant, l’altitude seule ne suffit pas à capturer de 

manière exhaustive les interactions complexes entre le vent et le relief (Robert et al., 2013). En 

effet, divers autres facteurs liés à la topographie ont une influence significative sur les 

mouvements de masses d’air au sein de la couche limite atmosphérique (Whiteman, 2000). 

Les avancées en géomorphométrie et la disponibilité de MNT de haute résolution ont permis 

l’extraction de paramètres topographiques plus détaillés (Maxwell et al., 2022), améliorant ainsi 
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l’évaluation des interactions entre le vent et le relief.  Par exemple, Foresti et al. (2011) et Robert 

et al. (2013) ont appliqué l’algorithme de différence de Gaussiennes à un MNT pour mesurer la 

convexité du terrain dans le cadre de la modélisation des vitesses du vent en Suisse. De même, 

Jung et al. (2023b) ont mis en évidence l’importance de l’élévation relative (Lapen et al., 1993), 

une mesure de l’exposition d’un site au vent, dans l’interpolation spatiale des vitesses du vent en 

Allemagne. 

L’exposition d’un site peut également être évaluée selon la direction du vent. Winstral et al. (2002) 

ont proposé l’indice d’exposition directionnel 𝑆𝑥, qui mesure le niveau d’exposition ou d’abri d'un 

site en fonction des obstacles topographiques présents dans une direction spécifique, jusqu’à 

une distance maximale donnée. La Figure 1.3 illustre cet indice pour une même zone, en prenant 

en compte deux directions de vent distinctes : nord-sud et est-ouest. Cette illustration montre 

comment la topographie locale affecte l’exposition ou la protection au vent selon sa direction.  

 

Figure 1.3 Indice d’exposition directionnel (𝑺𝒙)  

L’indice d’exposition directionnel a été calculé à partir d’un MNT (a) pour une direction du vent nord-sud (b), 
et est-ouest (c).  Les flèches indiquent la direction du vent. Les valeurs négatives de l’indice 
(zones claires) signalent une exposition au vent provenant de la direction considérée, tandis 
que les valeurs positives (zones foncées) reflètent un effet d’abri dû à des obstacles 
topographiques. L’indice est calculé en considérant une distance maximale de 10 km. Les 
données d’élévation proviennent du Modèle numérique d'élévation de moyenne résolution 
(MNEMR) du Canada.  

L'échelle spatiale est un facteur clé à considérer lors de l'extraction des variables topographiques 

à partir d'un MNT (Etienne et al., 2010; Grohmann, 2015). L’échelle spatiale optimale pour la 

modélisation d’un processus donnée est souvent inconnue à priori (Maxwell et al., 2022; Newman 

et al., 2022). Une échelle trop fine peut capturer des détails non pertinents et négliger des 

caractéristiques du terrain à une plus grande échelle qui influencent les processus étudiés. Tandis 

qu’une échelle trop large peut lisser les variations locales importantes et réduire la capacité du 

modèle à représenter des phénomènes critiques liés au relief. Pour surmonter cette difficulté, des 
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approches multiéchelles sont fréquemment employées dans la modélisation des vitesses du vent 

(Etienne et al., 2010; Jung et al., 2020; Winstral et al., 2017). Ces approches consistent à extraire 

les variables topographiques à différentes résolutions spatiales et à analyser leur influence sur la 

variable cible.  

À titre illustratif, la Figure 1.4 présente l’élévation relative estimée à deux résolutions spatiales 

distinctes. La cellule marquée en rouge a une élévation relative normalisée de 0,59 à une 

résolution de 10 km, ce qui indique qu’elle est relativement plus élevée que les cellules voisines 

et est donc plus exposée au vent. Cependant, lorsque la résolution spatiale est plus fine à 1,5 

km, ladite cellule présente une élévation relative normalisée plus faible (0,18), indiquant une 

exposition au vent significativement moins élevée. Cette différence souligne l’importance de la 

résolution spatiale dans l’analyse de la topographie.  

En outre, Petersen et al. (1998) classent la rugosité de surface parmi les éléments 

topographiques influençant les vitesses du vent près du sol. La longueur de rugosité 𝑧0 est 

souvent dérivée de cartes d’occupation du sol à l’aide de relations empiriques établies entre les 

types d’occupation du sol et les valeurs de longueur de rugosité correspondantes (Davis et al., 

2023; Wiernga, 1993).  

 

Figure 1.4 Élévation relative normalisée  

L’élévation relative a été calculé à partir d’un MNT à une résolution spatiale de 10 km (panneau a) et de 1,5 km 
(panneau b).  

1.6.2 Variables météorologiques 

Le vent correspond aux mouvements de masse d’air résultant d’un gradient de pression, sa 

vitesse est donc étroitement liée aux variations de pression et de température dans l’atmosphère 
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(Ambach et al., 2017; Carrega, 2008). L'objectif des modèles d'estimation des vitesses du vent 

aux sites non échantillonnés est de fournir des prédictions dans des régions dépourvues de 

données de mesure directe. Dans ce contexte, l’utilisation de variables météorologiques comme 

prédicteur peut s’avérer inappropriée, car elles peuvent également être sujettes à des lacunes ou 

à des incertitudes similaires sur le plan de la disponibilité aux sites d’intérêts. Alternativement, 

des variables météorologiques issues de modèles numériques, notamment les données de 

réanalyse, sont souvent utilisées comme substituts. Les vitesses du vent issues de ces 

réanalyses sont généralement considérées comme des estimations fiables à l'échelle synoptique 

(Largeron et al., 2015).  

Par exemple, Jung et al. (2020) ont utilisé des caractéristiques statistiques, notamment les L-

moments, estimées à partir de séries temporelles de vitesses du vent issues de réanalyses pour 

représenter les vitesses du vent à l’échelle synoptique. Ces caractéristiques statistiques ont 

ensuite servi de variables explicatives pour l’estimation de la distribution de probabilité des 

vitesses du vent à des sites non échantillonnés. 

1.6.3 Variables temporelles  

Les variables temporelles, telles que l’heure de la journée et le mois de l’année, ont été utilisées 

pour modéliser les séries temporelles de vitesse du vent (Fadare, 2010; Jung et al., 2022a). Ces 

variables permettent de capturer les variations cycliques des régimes de vent, qui résultent de 

processus atmosphériques liés à l'ensoleillement, aux gradients de température et aux 

phénomènes climatiques locaux ou régionaux. Par exemple, l’heure de la journée est un facteur 

crucial pour représenter les variations diurnes, comme les brises terrestre et marine, qui se 

produisent dans les zones côtières.  

1.7 Modèles d’apprentissage automatique  

Les interactions entre le vent et la topographie forment un phénomène complexe, caractérisé par 

des dynamiques non linéaires (Whiteman, 2000). Ces interactions dépendent de plusieurs 

facteurs, notamment la rugosité de surface, le relief, et la stabilité atmosphérique, qui 

interagissent à différentes échelles. Cette complexité rend les approches simples, telles que la 

régression linéaire, inadaptées pour représenter la variabilité du processus.  

L’apprentissage automatique est une discipline qui vise à concevoir des systèmes informatiques 

capables d’améliorer automatiquement leurs performances à partir de l’expérience (Jordan et al., 

2015). Ces systèmes ne sont pas programmés de manière explicite pour chaque tâche, mais ils 
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apprennent directement à partir des données. En analysant les relations et les structures 

présentes dans les données, les algorithmes d’apprentissage construisent des modèles capables 

de faire des prédictions ou détecter des tendances.  

Les approches d’apprentissage automatique peuvent être classées selon leur complexité et la 

profondeur de leur architecture en deux grandes catégories : l’apprentissage automatique 

classique (ou shallow learning) et l’apprentissage profond (deep learning). Les méthodes d’ 

apprentissage automatique classique comprennent des algorithmes tels les forêts aléatoires 

(random forest, RF) (Breiman, 2001) et les algorithmes de boosting des arbres de décision 

(gradient boosting trees, GBT) (Hastie et al., 2009). Ces approches se basent généralement sur 

un ensemble limité d’étapes de transformation des données et nécessitent souvent en amont une 

ingénierie manuelle des variables les plus pertinentes à partir des données brutes. Contrairement 

aux techniques traditionnelles, les méthodes d’apprentissage profond reposent sur des 

architectures constituées de plusieurs couches hiérarchiques de traitement, permettant à chaque 

niveau d’extraire des représentations de plus en plus abstraites à partir des données brutes 

(Chollet, 2021).  

Les techniques d'apprentissage automatique classique, telles que les algorithmes RF et GBT, ont 

été employées pour la modélisation de la vitesse du vent en raison de leur aptitude à modéliser 

des relations non linéaires et des interactions complexes entre les variables explicatives 

favorables à la prédiction de la variable cible.  

Par exemple, Veronesi et al. (2016) ont appliqué un modèle RF pour estimer la distribution de la 

vitesse et de la direction du vent à des sites non échantillonnés au Royaume-Uni. La validation 

des résultats du modèle a révélé des performances supérieures à celles obtenues avec les 

méthodes d’interpolation spatiale classiques (Luo et al., 2008). Hu et al. (2023) ont proposé un 

modèle GBT intégrant des variables topographiques et météorologiques issues d’ERA5 pour 

prédire les vitesses du vent observées. Ce modèle a amélioré la précision des estimations, 

notamment dans les zones à topographie complexe, par rapport aux données brutes d’ERA5. 

Cependant, son influence s’est avérée moins prononcée dans les zones où la précision des 

données d’ERA5 était déjà élevée. Jung et al. (2020) ont indiqué que le modèle GBT surpassait 

la régression linéaire simple et le modèle RF pour la modélisation spatiale des L-moments de 

vitesse du vent à l’échelle mondiale.   

En régression, les modèles RF et GBT reposent sur des ensembles d'arbres de décision, appelés 

arbre de régression. La construction d’un arbre de décision consiste à partitionner récursivement 

l’espace des variables explicatives en sous-ensembles de manière à minimiser un critère de 
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variabilité au sein de chaque sous-ensemble résultant de la partition (Breiman et al., 1984). En 

régression, un critère couramment utilisé est la somme des carrés des résidus (Residual Sum of 

Squares, 𝑅𝑆𝑆) (Genuer et al., 2017): 

Équation 1.17 

𝑅𝑆𝑆 =  ∑(𝑈𝑖 − 𝑈̂𝑅𝑚)
2

𝑖ϵ𝑅𝑚

 

où 𝑼𝒊, 𝒊 𝛜 𝑹𝒎 représente les valeurs cibles des échantillons appartenant au sous-ensemble 𝑹𝒎 et 𝑼̂𝑹𝒎est la 

prédiction de la variable cible dans ce sous-ensemble, généralement obtenue par la moyenne 
empirique des observations. 

Les arbres de décision sont des modèles simples et faciles à interpréter, mais ils présentent une 

grande variabilité dans les prédictions. En effet, une petite modification des variables explicatives 

peut entraîner des changements significatifs dans la structure de l'arbre, ce qui rend les 

prédictions peu fiables (Hastie et al., 2009). Pour pallier ces limites, on privilégie des méthodes 

d’ensemble, comme les modèles RF et GBT. Le modèle RF permet de réduire la variance en 

combinant les prédictions de plusieurs arbres. Chaque arbre est construit à partir d’un échantillon 

aléatoire de données et de variables explicatives. L’échantillonnage aléatoire vise à minimiser la 

corrélation entre les arbres de la forêt.  

Les modèles GBT sont construits à l’aide d’arbres de régression peu profonds, appelés 

« apprenants de base ». Ils corrigent successivement les erreurs de prédiction des arbres 

antérieurs : 

Équation 1.18 

𝑓𝑚(𝑥) = 𝑓𝑚−1(𝑥) + 𝜏ℎ𝑚(𝑥; 𝜃𝑚) 

où 𝒇𝒎(𝒙) représente la prédiction du modèle à l’itération 𝒎, 𝒙 est le vecteur des variables explicatives, 𝝉 est 
un facteur de pondération (taux d'apprentissage) entre 0 et 1, qui contrôle la contribution de 
l’estimateur à l’itération 𝒎 et 𝒉𝒎(𝒙; 𝜽𝒎) est l’estimateur de correction à l’itération 𝑚. 

L’algorithme peut être initialisé avec la moyenne empirique de la variable cible. Aux itérations 

suivantes, les paramètres 𝜃𝑚 de l’estimateur ℎ𝑚(𝑥; 𝜃𝑚) sont déterminés en minimisant le gradient 

de la fonction de perte 𝐿(𝑦𝑖 , 𝑓(𝑥𝑖)) estimé à partir des prédictions de l’itération précédente : 

Équation 1.19 
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𝜃𝑚 = arg min
𝜃

∑ (
𝜕𝐿(𝑦𝑖 , 𝑓𝑚−1(𝑥𝑖))

𝜕𝑓𝑚−1(𝑥𝑖)
−  ℎ𝑚(𝑥𝑖; 𝜃))

2
𝑛

𝑖=1
 

Au fil des années, plusieurs variantes du modèle GBT ont été développées afin d’améliorer ses 

performances, son efficacité et sa flexibilité. Notamment, XGBoost (Chen et al., 2016) et 

LightGBM (Ke et al., 2017) ont démontré de très bonne performance dans divers domaines 

(Bentéjac et al., 2021; Tyralis et al., 2021). Ces versions optimisées introduisent diverses 

améliorations, notamment la construction d'histogrammes pour les variables explicatives 

continues lors de l’identification des points de division optimaux dans les arbres de régression. 

Cette approche consiste à regrouper les valeurs d’une variable explicative en classes, réduisant 

ainsi le nombre d’itérations nécessaires pour déterminer les seuils de partition les plus pertinents.  

XGBoost se distingue par l’ajout de termes de régularisation à la fonction de perte qui rendent le 

modèle plus robuste face au bruit dans les données, limitant ainsi le risque de surapprentissage. 

En outre, LightGBM introduit plusieurs autres optimisations pour le traitement efficace de données 

volumineuses et de haute dimension. Une de ces optimisations est le Gradient-based One-Side 

Sampling (GOSS), qui concentre les calculs sur les échantillons présentant les gradients les plus 

élevés, tout en incluant aléatoirement certains échantillons à faible gradient. Cet algorithme réduit 

considérablement la quantité de données à traiter à chaque itération. Le modèle LightGBM 

apporte également une solution au défi de la haute dimensionnalité des données en exploitant le 

regroupement des variables explicatives qui ne prennent pas simultanément des valeurs non 

nulles. Lorsque l’espace des variables explicatives est parcimonieux, il arrive souvent que de 

nombreuses variables soient mutuellement exclusives (p. ex., une variable associée à la 

présence ou l’absence d’un indicateur) et elles peuvent donc être groupées sans qu’il y ait une 

perte significative d’information (Ke et al., 2017).  

Dans le traitement de vastes quantités de données issues de diverses sources, les approches 

d’apprentissage profond se sont révélées particulièrement performantes (Karpatne et al., 2019). 

L’un des principaux avantages de ces modèles est leur capacité à intégrer des biais inductifs 

dans l’apprentissage de la fonction de prédiction. Ils identifient et extraient automatiquement les 

caractéristiques les plus pertinentes, sans nécessiter l’ingénierie manuelle des variables 

(Reichstein et al., 2019). Par exemple, les réseaux convolutifs (CNN) exploitent les structures 

spatiales des données, facilitant ainsi l’intégration d’informations topographiques et 

météorologiques à haute résolution pour la prédiction du vent (Dujardin et al., 2022; Höhlein et 

al., 2020). De même, les réseaux de neurones récurrents (RNN) et leurs variantes, comme les 
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LSTM (Long Short-Term Memory) et GRU (Gated Recurrent Unit), sont particulièrement adaptés 

à l’analyse des séries temporelles, permettant l’extraction automatique des caractéristiques 

temporelles de variable explicative pertinente à la prédiction de la variable cible (Wang et al., 

2021; Zhang et al., 2021).  

Les RNN traditionnels sont confrontés à des problèmes, tels que la disparition et l'explosion des 

gradients, ce qui limite leur capacité à conserver des informations sur des séquences étendues. 

En incorporant un mécanisme de régulation qui régule le flux d'informations, les LSTM peuvent 

conserver et utiliser efficacement les caractéristiques temporelles pertinentes sur des périodes 

plus longues (Yu et al., 2019).  

Le Tableau 1.4 présente une synthèse des différentes approches d’apprentissage automatique 

abordées précédemment, en soulignant leurs principaux avantages ainsi que leurs limites. 

Tableau 1.4 Synthèse des approches d’apprentissage automatique 

Type de 

modèle 

Algorithme  Atouts Limites 

Régression 

linéaire 

Modèle paramétrique simple 

qui ajuste une relation linéaire 

entre les variables. 

Interprétable et facile à 

entraîner. 

Restreint aux relations 

linéaires simples. 

Arbres à 

décision 

Modèle fondé sur une série de 

règles de décision. 

Interprétable, facile à 

entraîner et capable de 

modéliser des relations 

non linéaires. 

Performance limitée et 

très sensible aux 

variations des données 

d’entrée. 

Random 

forest 

Ensemble d’arbres de décision 

construits en parallèle, puis 

agrégés pour produire une 

prédiction plus robuste. 

Capable de modéliser 

des relations non 

linéaires, faciles à 

configurer et robustes 

face aux variables 

redondantes (Hastie et 

al., 2009). 

Interprétabilité réduite par 

rapport aux modèles 

linéaires ou aux arbres de 

décision simples. 

Gradient 

boosting 

trees 

Ensemble d’arbres de décision 

construits séquentiellement, où 

chaque nouvel arbre corrige 

les erreurs commises par des 

arbres antérieurs. 

Modèle très flexible, 

notamment en ce qui a 

trait au choix de la 

fonction de perte. 

Temps d’entraînement 

plus long et faible 

capacité de parallélisation 

par rapport au modèle 

Random Forest (Natekin 

et al., 2013).  
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XGBoost Implémentation optimisée de 

l’algorithme de gradient boosting 

avec régularisation de la fonction 

de perte. 

Plus rapide à entraîner et 

très efficace pour la 

classification et la 

régression sur données 

tabulaires (Grinsztajn et 

al., 2022a). 

Configuration complexe 

comparée à l'algorithme 

classique de gradient 

boosting. 

LightGBM Implémentation optimisée de 

l’algorithme de gradient 

boosting pour des jeux de 

données volumineux et à 

hautes dimensions. 

Très rapide à entraîner 

sur des jeux de données 

volumineux et à hautes 

dimensions (Bentéjac et 

al., 2021). 

Configuration complexe 

comparée à l'algorithme 

classique de gradient 

boosting. 

LSTM Réseau de neurones 

récurrents optimisé pour 

réduire le problème de 

disparition ou d’explosion du 

gradient dans les architectures 

récurrentes traditionnelles. 

Adapté aux données 

séquentielles, comme les 

séries temporelles. 

Nécessite de grandes 

quantités de données et 

reste difficile à interpréter. 

CNN Réseau de neurones 

convolutifs utilisant des 

couches de convolution pour 

extraire automatiquement des 

caractéristiques locales. 

Adapté au traitement des 

données structurées en 

grille. 

Long à entraîner, nécessite 

de grandes quantités de 

données et reste difficile 

à interpréter. 

 

1.8 Objectifs et structure de la thèse 

1.8.1 Objectifs de la thèse 

Dans le cadre d’étude sur l’estimation des vitesses du vent à grande échelle, les modèles 

empiriques sont mieux adaptés, car elles nécessitent moins de ressources computationnelles 

que les approches physiques et sont généralement plus simples à mettre en œuvre. L’objectif 

principal de cette thèse est de développer des méthodes d’apprentissage automatique pour 

l'estimation à long terme de la vitesse du vent aux sites non échantillonnés. Les méthodes 

proposées s’appuient sur celles qui sont existantes afin de les améliorer et de réduire les 

incertitudes liées à l'évaluation des ressources éoliennes. Ces avancées contribueront, dès les 

premières phases, à affiner la planification des projets éoliens. 
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Les objectifs spécifiques de cette thèse sont présentés ci-dessous. 

Objective n°1 : Revue de la littérature  

Le premier objectif de cette thèse est de recenser et d’analyser les méthodes actuelles. Cet 

objectif a été abordé dans le premier article de cette thèse, intitulé « Machine learning and 

statistical approaches for wind speed estimation at partially sampled and unsampled locations; 

review and open questions ».  

Dans un premier temps, nous avons procédé à une mise à jour de la revue des approches 

d’estimation à long terme des vitesses du vent aux sites disposant d’une courte série de données. 

Ensuite, nous avons passé en revue les méthodes d’estimation pour les sites non échantillonnés. 

Ces différentes méthodes ont été regroupées en fonction du type de variable cible pour une 

analyse plus structurée et une comparaison plus facile des approches. Enfin, la question de 

l’estimation des vitesses du vent dans un contexte non stationnaire a été abordée, en tenant 

compte des effets du changement climatique et des variations à long terme des régimes de vent. 

Cette étude nous a aidés à comprendre les avantages et les limites des méthodes actuelles. Ces 

limites soulignent le besoin de développer des méthodologies plus adaptées et plus précises pour 

mieux répondre aux défis liés à la variabilité spatiale et temporelle des régimes de vent. 

Objective n°2 : Identification de méthodes performantes pour la sélection des variables 

explicatives pertinentes dans la modélisation empirique de la vitesse du vent 

Le deuxième objectif de cette thèse est d’identifier les méthodes performantes pour la sélection 

des variables explicatives les plus pertinentes dans la modélisation empirique de la vitesse du 

vent. Cet objectif a été traité dans le deuxième article de cette thèse, intitulé « Comparative study 

of feature selection methods for wind speed estimation at ungauged locations ». 

Le nombre de variables explicatives utilisées dans la modélisation du vent a considérablement 

augmenté en raison de la disponibilité de MNT de haute résolution et de diverses autres données 

issues de la télédétection. De plus, l’intégration de ces variables à différentes échelles spatiales 

a amplifié ce phénomène. Bien que cette abondance d’informations puisse améliorer la précision 

des modèles, elle soulève aussi des questions d’interprétabilité et de risque de surajustement 

des modèles.   

Pour répondre à ces défis, des techniques de sélection de variables sont généralement 

employées comme étape de prétraitement afin de réduire la complexité des modèles tout en 

conservant les variables les plus pertinentes. Dans l’article 2, nous avons évalué les 

performances de plusieurs méthodes de sélection de variables explicatives, notamment la 



 47 

sélection pas à pas (forward stepwise regression), l’algorithme Least Absolute Shrinkage and 

Selection Operator (LASSO), le modèle Elastic Net, l’algorithme maximum relevance minimum 

redundancy (MRMR), l’algorithme génétique et l’élimination récursive de variable (recursive 

feature elimination).  

En outre, pour analyser l’influence des variables explicatives sur les différentes plages de vitesse 

du vent (faible moyenne et forte), plusieurs quantiles de vitesse ont été considérés avec des 

probabilités de dépassement variées. Cet aspect est crucial pour la modélisation de la distribution 

complète des vitesses du vent, car il permet une sélection plus adaptée des variables influentes 

en fonction du régime du vent.  

Objective n°3 : Développement d’une approche non paramétrique d’interpolation spatiale 

de la distribution des vitesses de vent  

Le troisième objectif de cette thèse est le développement d’une méthode non paramétrique pour 

l’estimation de la distribution de probabilité des vitesses du vent aux sites non échantillonnés. Cet 

objectif a été traité dans le troisième article, intitulé « A non-parametric approach for wind speed 

distribution mapping ».  

Les méthodes actuelles d’estimation de la distribution de probabilité du vent reposent sur 

l’hypothèse qu’une seule loi de probabilité s’applique à l’ensemble de la région étudiée. Cette 

hypothèse, souvent trop restrictive, peut réduire la précision des estimations, particulièrement 

dans les régions où les régimes de vents présentent une forte variabilité spatiale.  

Dans la méthodologie proposée dans l’article 3, on procède à une interpolation spatiale de 

plusieurs quantiles de vitesse du vent à l’aide d’un modèle de régression XGBoost. Ce modèle 

prend en entrée diverses variables liées à la topographie, aux conditions climatiques locales et à 

la longueur de rugosité. Une fois le modèle de régression établi, les quantiles de vitesse estimés 

aux sites non échantillonnés servent à estimer la fonction de répartition par noyaux asymétriques. 

Cette méthode permet d’obtenir une distribution de probabilité de la vitesse du vent aux sites non 

échantillonnés qui est suffisamment flexible pour s’accommoder des divers régimes de vent 

présents dans la région étudiée.  

Objective n°4 : Développement de méthodes de reconstruction de séries temporelles de 

vitesse de vent aux sites non échantillonnés.  

Le quatrième objectif de cette thèse vise à proposer de nouvelles méthodes statistiques pour la 

correction des biais des données de vitesse du vent issues de réanalyses. Cet objectif a été traité 

dans les articles 4 et 5 de cette thèse.  
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Dans l’article 4, intitulé « Prediction of hourly wind speed time series at unsampled locations using 

machine learning », nous proposons d’adapter la méthode quantile-quantile (quantile mapping) 

pour reconstruire, aux sites non échantillonnés, des séries temporelles de vitesse du vent à partir 

de séries temporelles de probabilité de non-dépassement. Ces dernières sont obtenues soit à 

partir de données de réanalyse, soit par interpolation spatiale d’observations in situ.  

La méthode quantile-quantile repose sur l’interpolation non paramétrique de la distribution du 

vent, développée dans l’article 3, pour estimer la distribution des vitesses du vent aux sites non 

échantillonnées. Cette approche permet de reconstruire des séries temporelles dont les quantiles 

estimés par régression représentent mieux les conditions locales des vitesses du vent. Une 

analyse comparative de la méthode proposée et d’autres techniques d’interpolation spatiale 

directe des observations in situ a été réalisée. Plusieurs critères ont été considérés, dont la 

distribution de probabilité et la variabilité temporelle.  

Enfin, l’article 5 intitulé « LSTM and Transformer-based framework for bias correction of ERA5 

hourly wind speeds » introduit une nouvelle approche de correction des données de vitesse du 

vent issues de réanalyse, basée sur l’apprentissage profond. La plupart des études existantes 

utilisent une méthode de correction de biais consistant à appliquer un facteur constant, calculé à 

partir des vitesses du vent moyennes fournies par le GWA. Bien que cette méthode permette de 

réduire le biais systématique dans les données de réanalyse, elle ne tient pas compte de leur 

variabilité temporelle. Le modèle proposé s’appuie sur les architectures LSTM et Transformer. Il 

prend comme entrée des variables météorologiques dynamiques issues de réanalyse, ainsi que 

des variables statiques liées à la topographie locale et à la longueur de rugosité, pour prédire un 

facteur de correction dynamique. Le facteur de correction estimé permet d’ajuster la variabilité 

temporelle des séries de vitesses du vent issues de réanalyse, tout en réduisant le biais 

systématique.  

1.8.2 Structure de la thèse 

Le premier chapitre de cette thèse présente le contexte de la recherche et une revue de littérature 

générale. Il énonce également les objectifs et l’organisation de l’ensemble de la thèse. Le 

deuxième chapitre porte sur l’article 1, qui passe en revue les méthodes statistiques et 

d’apprentissage automatique pour estimer les vitesses du vent aux sites partiellement 

échantillonnés (disposant d’une courte série de mesures) et non échantillonnés. Ces travaux 

représentent une étape importante pour évaluer les méthodologies existantes. Ils permettront de 

proposer de nouvelles approches dans les articles ultérieurs.  
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Le troisième chapitre porte sur l’article 2, qui compare six méthodes de sélection de variables 

explicatives pour l’estimation des quantiles de vitesse du vent au Canada. Les variables ainsi 

identifiées serviront d’entrée pour l’ensemble des modèles développés dans les travaux suivants.  

Le quatrième chapitre est dédié à l’article 3, qui propose une méthode non paramétrique 

d’interpolation spatiale de la distribution du vent. Le cinquième chapitre se concentre sur l’article 

4, qui s’appuie sur la méthode développée dans l’article 3 pour reconstruire des séries 

temporelles de vitesse du vent aux sites non échantillonnés. De plus, une analyse comparative 

détaillée des méthodes actuelles et de celle proposée dans l’étude a été réalisée.  

Le sixième chapitre est consacré à l’article 5, qui se concentre sur l’ajustement de la variabilité 

temporelle des séries de vitesse du vent issues de réanalyses.  

Enfin, le septième chapitre offre une discussion générale et une conclusion des travaux réalisés 

dans cette thèse. Il souligne les limites de l’étude et suggère des pistes de recherche pour des 

travaux futurs.  
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Abstract 

Wind resource assessment (WRA) depends on the availability of accurate, long-term wind speed 

data. In locations where such data is limited (partially sampled locations, PSL) or completely 

missing (unsampled locations, USL), various physical, statistical, and machine-learning methods 

have been developed to address these gaps. This paper presents a comprehensive and up-to-

date review of statistical and machine-learning methods for estimating long-term wind speed at 

PSLs and USLs.  

It was found that the “Measure Correlate Predict” (MCP) is still the method of choice for estimation 

at PSL. However, this approach has evolved with the adoption of machine learning, especially 

Artificial Neural Networks, and reanalysis wind data as the reference site. In general, reanalysis 

datasets have seen growing adoption for WRA at both PSLs and USLs due to their global 

coverage, high temporal resolution, and demonstrated accuracy.  At USLs, uncorrected and bias-

corrected reanalysis wind speed data are used for WRA, with the Global Wind Atlas 

predominantly used to correct reanalysis wind speed data. There is also a growing effort to 

develop machine learning models, including deep learning models for reanalysis bias correction 

at unsampled locations using explanatory variables derived from high-resolution topographic and 

land use datasets.  

Challenges to estimating long-term wind speed at PSLs and USLs are identified and discussed: 

data uncertainties, disparity in the accuracy of reanalysis wind data, model transferability, and 

nonstationary conditions. Finally, recommendations for future research and development 

directions are presented, including techniques that consider documented non-stationarity in wind 

speed data. 

Keywords: Machine learning; Measure correlate predict; Nonstationary; Wind resource 

assessment; Partially sampled; Unsampled 

2.1 Introduction 

The availability of clean energy is critical for meeting several of the United Nations’ sustainable 

development goals (Fuso Nerini et al., 2018). Present energy systems still have a high 

environmental footprint and are major contributors to greenhouse gas emissions (Ahmad et al., 

2020). Developing and adopting renewable energy sources are central to addressing the current 

climate crisis and fulfilling Goal seven of the United Nations’ Sustainable Development 

Goals,  “Ensure access to affordable, reliable, sustainable and modern energy for all”  (UN 
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General Assembly, 2015, p. 19). Wind energy represents a sustainable alternative to conventional 

energy sources and is projected to play a significant role in meeting global energy demands. By 

2030, wind resources are expected to contribute nearly 24% of global electricity generation 

(Gielen et al., 2021), up from just 8% of the total installed capacity worldwide in 2018 (International 

Renewable Energy Agency, 2022). Meeting this target will require accurate resource assessment 

(McKenna et al., 2022).  

In an ideal scenario, the assessment of the wind potential would rely on long-term (e.g., 30 years) 

wind speed data with high temporal resolution (Bosch et al., 2017). However, such extensive data 

are frequently unavailable. Accurate wind speed data is essential for a reliable assessment of the 

energy potential, given the cubic relationship between wind speed and wind power. Several 

studies have proposed statistical and machine learning (ML) methods to address wind resource 

assessment (WRA) in locations with limited (herein called partially sampled location, PSL) or no 

wind speed measurements (herein called unsampled location, USL). At PSLs, the preferred 

method is the “Measure Correlate Predict” (MCP) approach. This method extends the available 

data at a location by correlating it with measurements from a nearby station with overlapping and 

more extensive records. Carta et al. (2013) provided a review of the MCP approach. Over the 

past decade (2014 – 2023), advancements have been made in the MCP methodologies. These 

include the widespread adoption of reanalysis wind speed data as reference (Basse et al., 2021; 

Miguel et al., 2019; Yue et al., 2019), the application of ML models (Díaz et al., 2017; Kristianti et 

al., 2023; Schwegmann et al., 2023), and the use of multiple reference sites to improve accuracy 

(Carta et al., 2015; Zhang et al., 2014). In addition, the MCP technique has been extended to 

estimate other wind-related variables, such as wind power (Díaz et al., 2018) and peak gust 

(Kartal et al., 2023).  

Given these advancements, the literature review on wind speed estimation at PSL needs to be 

updated. This paper aims to provide a comprehensive review of these recent developments, 

highlighting their implications for the MCP approach and its broader applications.  

At USLs, installing a meteorological station to collect sufficient data (e.g., for one year) to 

implement the MCP approach is possible. However, alternative statistical and ML methods must 

be employed when such installations are impossible due to time or financial constraints. Over the 

years, various types of wind speed data have been estimated at USLs at different time scales, 

including mean wind speed (MWS), wind speed probability distribution (WSPD), extreme wind 

speed (EWS), and wind speed time series (WSTS). The choice of the estimation method depends 

on the specific wind speed variable of interest.  
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A growing body of research has relied on reanalysis data and ML models to interpolate wind 

speed at USLs, demonstrating significant potential with varying reported degrees of success. 

Despite these advances, to the best of the authors’ knowledge, no review systematically 

examined statistical and ML methods for estimating long-term wind speed at USLs. This literature 

review aims to bridge this gap by providing a detailed evaluation of the state-of-the-art methods 

used for long-term wind speed estimation at USLs.  

This paper comprehensively reviews statistical and ML methods for estimating wind speed at 

PSLs and USLs. It also examines comparative studies of existing methods and explores 

approaches that allow addressing documented non-stationarities in wind speed data. Additionally, 

the paper presents software and tools available for wind speed estimation.  

This review can have broad implications for the research community and the wind energy industry. 

By providing a comprehensive review of state-of-art methods and identifying research gaps, it 

encourages further development of methodologies for wind speed estimation at PSLs and USLs. 

These advancements can lead to several key benefits, such as the elaboration of improved 

methodologies for the reliable estimation of wind resources and the development of tailored 

techniques for various project phases, such as large-scale assessment during early exploration 

and small-scale assessment in the later development stage when higher accuracy is required. 

This review advances the understanding of wind speed estimation methodologies and contributes 

to accelerating the adoption of wind energy as a sustainable solution to global energy and climate 

challenges. 

The review is structured as follows: section 2.2 discusses various preprocessing procedures for 

wind speed data. Section 2.3 presents methods for long-term wind speed estimation at PSLs, 

while section 2.4 focuses on methods for long-term estimation at USLs. Section 2.5 explores 

nonstationary wind speed estimation. Section 2.6 outlines the software and tools available. 

Section 2.7 discusses current open questions and outlines future research directions. The last 

section concludes the paper.  

2.2 Wind speed data preprocessing 

Several issues affect data collected at meteorological stations and must be addressed prior to 

analysis. According to Pryor et al. (2009), common issues that affect the quality of near-surface 

wind speed measurements include station relocation, aging or malfunctioning of measurement 

instruments, upgrades to equipment or changes in measurement height, and alterations in the 

surrounding environment, which can induce a modification of surface roughness and wind 
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exposure. While metadata can provide helpful information for identifying these issues, they are 

not always exhaustive and reliable (Aguilar et al., 2003). Several statistical methods are available 

to address these concerns. Wind data preprocessing includes the following steps: 

2.2.1 Quality control and change point detection 

Quality control of wind speed data reported in the literature relies on one or several of the following 

methods: 1) Measurements that significantly deviate from those recorded at adjacent stations are 

flagged as inconsistent records (Azorin-Molina et al., 2018; Zahradníček et al., 2019). When an 

adjacent station with a strong correlation is unavailable, Numerical Weather Prediction (NWP) 

and reanalysis datasets are also used for quality control. 2) Measurements that deviate 

significantly from neighboring values in the time series are flagged as suspicious (Wan et al., 

2010). 3) Extreme values, such as daily gust or region-specific physical maxima, serve as 

thresholds to detect anomalies (Azorin-Molina et al., 2014; Minola et al., 2016; Wan et al., 2010). 

Discontinuities in wind speed data due to non-climatic factors are common, especially with 

lengthier records (Wan et al., 2010; World Meteorological Organization, 2020 ). Several statistical 

methods are available for detecting time series discontinuities (change points). Table 2.1 presents 

software/packages for change point detection and homogenization applied to wind speed data. 

Several other efficient techniques for change point detection and data homogenization are 

available in the literature and are commonly applied to other meteorological variables (see, for 

instance, Seidou et al. (2007a); Xiong et al. (2015)).  

Table 2.1 Software and packages for change point detection with application to wind speed data 

Software/package  Reference  Example(s) of application 
to wind speed data 

AnClim (Štěpánek et al., 2009) Standard normal homogeneity 
test (Alexandersson, 1986) 

(Azorin-Molina et al., 
2014; Minola et al., 
2016) 

Bayesian Changepoint Detection 
Procedure codes (Seidou et al., 
2007b) 

Recursion-based multiple 
changepoint detection procedure 
(Seidou et al., 2007b) 

(Naizghi et al., 2017) 

Climatol (Guijarro, 2018) Standard normal homogeneity 
test (Alexandersson, 1986).  

(Azorin-Molina et al., 
2016; Azorin-Molina et 
al., 2019; Zhang et al., 
2022a) 

HOMER (Mestre et al., 2013) Penalized maximum likelihood. 
The package uses the modified 
Bayes information criterion 
(MBIC) (Zhang et al., 2007) to 
penalize the likelihood  

(Laapas et al., 2017) 

Multiple Analysis of Series for 
Homogenization (MASH) (Szentimrey, 
1999) 

Relative breakpoint detection 
using non-homogeneous 
reference sites.  

(Németh et al., 2014) 
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RHtestV4 package in R   Penalized maximal t-test (Wang 
et al., 2007) 
Penalized Maximal f-test (Wang, 
2008) 

(Cui et al., 2018; Jung et 
al., 2015; Si et al., 2018) 

2.2.1 Measurement height adjustment  

Wind speed measurements are typically collected at a height of 10 m above ground level (a.g.l) 

following the World Meteorological Organization (WMO) guidelines. However, measurements 

taken at turbine hub heights (e.g., 100 m a.g.l) are essential for accurately assessing wind 

resource potential. The power law (Equation 2.1) and the logarithmic model (Equation 2.2) are 

widely used for wind speed vertical extrapolation: 

Equation 2.1 

𝑈𝑧 = 𝑈𝑧𝑟 (
𝑧

𝑧𝑟
)
𝛼

 

where 𝑼𝒛𝒓 is the wind speed at a reference height 𝒛𝒓 (e.g., 10 m a.g.l), 𝑼𝒛 is the extrapolated wind speed at a 

higher height 𝒛, 𝜶 is the power law exponent, and 𝒛𝟎 is the roughness length. 

Equation 2.2 

𝑈𝑧 = 𝑈𝑧𝑟 (
ln(𝑧 𝑧0⁄ )

ln(𝑧𝑟 𝑧0⁄ )
) 

where 𝑼𝒛𝒓 is the wind speed at a reference height 𝒛𝒓 (e.g., 10 m a.g.l), 𝑼𝒛 is the extrapolated wind speed at a 

higher height 𝒛, 𝜶 is the power law exponent, and 𝒛𝟎 is the roughness length. 

Gualtieri (2019) reviewed these models, indicating that the logarithmic model is inadequate for 

modern turbine heights, while the power law offers ease of use and greater reliability. Typically, 

a constant power law exponent is used, 𝛼 =
1

7
. This simplification does not account for the spatial 

and temporal variability of 𝛼, which limits the model’s accuracy (Crippa et al., 2021; Li et al., 2018; 

Yang et al., 2024). Some studies have suggested modeling time-dependent 𝛼 to improve the 

precision of wind speed extrapolation (Basse et al., 2020; Crippa et al., 2021; Jung et al., 2021).  

A significant challenge with this approach is the requirement for wind speed measurements at 

two different heights. To address this limitation, Jung et al. (2017a) used reanalysis wind speed 

data at 1000 m a.g.l to estimate the distributions of 𝛼 at 397 meteorological stations in Germany. 

They then used the Gaussian copula function to model the joint distribution of 𝛼 and wind speed 

measurement at 10 m a.g.l, enabling the extrapolation of 10 m wind speeds to turbine hub heights 

while accounting for the spatiotemporal variability of the 𝛼.  
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The logarithmic and power law models are considered parametric approaches for vertical wind 

speed extrapolation. In recent years, nonparametric approaches such as gradient boosting (GB) 

(Yu et al., 2022), symbolic regression (Valsaraj et al., 2020), and Artificial neural networks (ANNs) 

(Vassallo et al., 2020) have been explored as alternatives. These models establish a regression 

function between wind speeds at different heights.  

However, applying these regression models for vertical wind speed extrapolation at PSLs and 

USLs poses challenges due to the limited availability of wind speed measurement at multiple 

heights at these locations. Reanalysis data may be an alternative, but it introduces an additional 

layer of uncertainty. Future studies could examine the effectiveness of regression models using 

reanalysis wind speed data, compared to traditional methods (e.g., power law with 𝛼 =
1

7
) for the 

vertical extrapolation of wind speed at PSLs and USLs. This evaluation would help identify the 

trade-offs between model accuracy, complexity, and data requirements, ultimately guiding the 

selection of the most appropriate extrapolation methods at PSLs and USLs.  

2.3 Long-term wind speed estimation at partially sampled locations 

A PSL refers to a location where measurements are insufficient to accurately evaluate the long-

term wind potential, whereas USLs lack wind speed measurements. Methods for estimating the 

long-term wind potential at PSLs rely on high-quality, long-term wind data (reference data) from 

nearby meteorological stations or reanalysis datasets. Historically, the MCP approach was the 

standard method for estimating the long-term wind conditions at PSLs (Carta et al., 2013). This 

approach has evolved with the adoption of ML models and reanalysis wind data as reference 

data.  

The following subsections provide a review of studies published between 2014 and 2023 on long-

term wind speed estimation at PSLs, exploring the latest developments and comparative studies.  

2.3.1 Overview of studies on estimation at partially sampled locations 

Table 2.2 summarizes the reviewed studies (published between 2014 and 2023) on long-term 

wind speed estimation at PSLs. This section provides an overview of these studies and highlights 

new developments.  

Record length. A key factor in accurately estimating long-term wind resources at PSLs is the 

length of the available short-term wind records. Longer records typically lead to less uncertainty 

in MCP (Landberg et al., 1993; Miguel et al., 2019; Rogers et al., 2005b). Collecting at least one 
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year of wind data at the PSL is generally recommended to capture the resource seasonal 

variability. Figure 2.1 shows the distribution of minimum record lengths used at PSLs, as reported 

in the reviewed studies. In line with the recommendations, most studies (68%) reported using at 

least 12 months of wind speed data. 

Given the financial and time constraints of collecting year-long wind speed data at PSLs, some 

studies have investigated the uncertainty associated with shorter record lengths. Findings indicate 

that with shorter record lengths, the season covered by the data influences the model 

performance (Basse et al., 2021; Weekes et al., 2014b). For example, collecting data during a 

low wind speed season could result in underestimating the long-term wind potential during higher 

wind speed seasons.  

Reference site. The correlation between wind speed at the PSL and a reference station during 

the overlapping period is another key factor in long-term wind resource estimation.  To ensure a 

high level of accuracy, MCP traditionally requires a high Pearson correlation coefficient between 

wind speed data at the reference station and PSL. This requirement was mainly due to using 

linear regression (LR) as the prediction model. However, with non-linear regression and ML 

models, more complex relationships between the overlapping wind speed data could be 

accommodated (Díaz et al., 2018; Kristianti et al., 2023; Schwegmann et al., 2023).  

Adopting ML models has also enabled the development of methods that use multiple reference 

sites. Two such methods were identified in the literature. The most common method involves 

fitting a single regression model using wind speed data from multiple reference stations (Carta et 

al., 2015; Deo et al., 2018; Díaz et al., 2018).  An alternative method proposed by Zhang et al. 

(2014) involves fitting separate models for each reference site, with the final prediction determined 

by a weighted average of these individual predictions. The weights are based on the distance and 

difference in elevation between the PSL and the reference stations. 

Wind direction in MCP. With the LR model, a standard step involved partitioning the overlapping 

wind speed based on wind direction at the reference site and fitting separate LR models for each 

bin. This method helps relax the linearity assumptions and better capture directional variability in 

wind patterns. However, the effectiveness of this technique depends on having sufficient data in 

each wind direction bin to estimate the regression coefficients reliably.  The model accuracy may 

be hindered when data are sparse in specific wind directions (Addison et al., 2000; Dinler, 2013). 

Also, determining the optimal number of bins poses additional challenges (Rogers et al., 2005b).  

With the introduction of ML techniques in MCP, greater flexibility has been achieved, eliminating 

the need for manual binning. These models allow the wind direction to be used directly as an 
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explanatory variable (Carta et al., 2015; Mifsud et al., 2018), simplifying the process and 

potentially improving performance. 

Adoption of reanalysis wind speed data. As the availability of a suitable reference station 

located near the PSL is uncertain, reanalysis wind speed data are gaining attention as alternatives 

(Basse et al., 2021; Gottschall et al., 2021; Kim et al., 2022; Kim et al., 2016; Lee et al., 2019; 

Miguel et al., 2019; Saarnak et al., 2014; Schwegmann et al., 2023). The main advantages of 

modern reanalysis data include their extensive record lengths, typically spanning over 30 years 

of hourly measurements, completeness, global coverage, and the availability of wind speed data 

at wind turbine hub heights.  

In recent years, the accuracy of reanalysis data has significantly improved due to advancements 

in NWP models and data assimilation techniques that integrate satellite, ground-based, and 

remote sensing observations (Gualtieri, 2022; Hersbach et al., 2020).  These advancements have 

enhanced the reliability of reanalysis data for WRA.  

Table 2.2 Summary of the reviewed studies on wind speed estimation at PSLs 

Study  Study area Location type Minimum 
available 
record length 
at the PSL 
(months) 

Reference data 
source 

Prediction 
model 

(Ali et al., 2018) South Korea onshore 24  Measurements LR, VR 

(Basse et al., 
2021) 

Germany onshore 3 Reanalysis LR, VR 

(Brune et al., 
2022) 

Germany Onshore/offshore 6 Reanalysis ANN 

(Carta et al., 
2015) 

Spain Onshore 12 Measurements ANN 

(Cavaiola et al., 
2023) 

Italy onshore 12 Reanalysis RF 

(Díaz et al., 
2017) 

Spain onshore 12 Measurements SVR 

(Díaz et al., 
2018) 

Spain  Onshore 12 Measurements ANN, 
SVR, 
RF 

(Gottschall et al., 
2021) 

North Sea 
and Baltic 
Sea 

offshore 24 Reanalysis LR 

(Kang et al., 
2015) 

South Korea onshore 12 Measurements LR 

(Kartal et al., 
2023) 

United-
States of 
America 

onshore 12 Reanalysis RF, 
Others 

(Kim et al., 
2022) 

South Korea offshore 12 Reanalysis LR 

(Ko et al., 2015) South Korea onshore 12 Measurements LR 
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(Kristianti et al., 
2023) 

Switzerland Onshore 3 Measurements ANN 

(Mifsud et al., 
2018) 

Malta Onshore 12 Measurements ANN, 
SVR, 
LR, 
RF 

(Mifsud et al., 
2020) 

Malta Onshore 12 Measurements ANN, 
SVR, 
LR, RF 

(Miguel et al., 
2019) 

Brazil Onshore 24 Reanalysis Others 

(Morales-
Ruvalcaba et al., 
2020) 

Mexico Onshore 12 Reanalysis Others 

(Salehi Borujeni 
et al., 2021) 

USA onshore 12 Reanalysis ANN 

(Schwegmann et 
al., 2023) 

Germany, 
France 

Offshore/onshore 24 Reanalysis LR, 
RF, 
ANN 

(Weekes et al., 
2014b) 

UK onshore 3 Measurements LR, 
VR 

(Weekes et al., 
2014a) 

UK onshore 1 Measurements Others 

(Weekes et al., 
2014c) 

UK onshore 3 Measurements LR, 
VR 

(Weekes et al., 
2015) 

UK Onshore 1 Operational 
forecast data 

LR, VR 

(Yue et al., 
2019) 

Taiwan Offshore 12 Reanalysis / 
measurements 

LR 

(Zhang et al., 
2014) 

USA onshore 3 measurements LR, 
VR, 
ANN, 
SVR, 
Others 
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Figure 2.1 Distribution of minimum record lengths used for wind speed estimation at PSLs in the 
reviewed studies 

2.3.1 Estimation methods at partially sampled locations 

Figure 2.2 shows the proportion of the different prediction models used for long-term wind speed 

estimation at PSLs. The LR model has been widely applied in MCP (Carta et al., 2013) and 

continues to serve as a benchmark in recent studies (Díaz et al., 2017; Mifsud et al., 2018; 

Weekes et al., 2014a; Zhang et al., 2014).  Another linear model, the variance ratio regression 

(VR), was introduced by Rogers et al. (2005a) after they observed that LR tends to underestimate 

the prediction variance. The equation of the VR is expressed as follows: 

Equation 2.3 

𝑦̂ = ( 
𝜎𝑦
𝜎𝑥⁄ ) 𝑥 + (𝜇𝑦 − (

𝜎𝑦
𝜎𝑥⁄ )𝜇𝑥) 

where 𝒚̂ is the predicted wind speed, 𝝈𝒚,  and 𝝈𝒙 are the standard deviation of the wind speed at the PSL and 

the reference site, respectively, 𝝁𝒚, and 𝝁𝒙 are the PSL’s and reference site’s mean wind 

speeds respectively, and 𝒙 is the observed wind speed at the reference site 
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ML models such as ANN (Carta et al., 2015; Díaz et al., 2018; Koo et al., 2015; Kristianti et al., 

2023; Mifsud et al., 2018; Mifsud et al., 2020; Salehi Borujeni et al., 2021; Schwegmann et al., 

2023; Zhang et al., 2014), support vector regression (SVR) (Díaz et al., 2017; Díaz et al., 2018; 

Mifsud et al., 2018), random forest (RF) (Díaz et al., 2018; Kartal et al., 2023; Mifsud et al., 2018; 

Schwegmann et al., 2023) and GB (Kartal et al., 2023) have been employed in the reviewed 

studies. 

The multilayer perceptron (MLP) neural network was the most used ANN architecture. The MLP 

consists of an input layer, one or more hidden layers, and an output layer. Each layer contains 

hidden units (neurons), followed by a non-linear activation function used to model non-linear 

relationships between inputs and outputs. In matrix notation, the predictions from an MLP model 

are given by:  

Equation 2.4 

𝑦̂ = 𝑔(𝑙)(𝒃(𝑙) +  𝑾(𝑙)𝒉(𝑙−1)) 

where the hidden vector  ℎ(𝑙−1)  is defined as:  

Equation 2.5 

𝒉(𝑙−1) = 𝑔(𝑙−1)(𝒃(𝑙−1) +  𝑾(𝑙−1)𝒉(𝑙−2)) 

where 𝑾(𝒍), 𝒃(𝒍) and 𝒈(𝒍) represent the weight matrix, bias vector, and activation function for the l-th layer of the 

neural network, respectively. The vector 𝒉(𝟎) = 𝒙 is the input of the MLP and the weight 

matrices 𝑾(𝒍) and the bias vectors 𝒃(𝒍) are the learnable parameters of the models, which are 
typically optimized using the backpropagation algorithm (Goodfellow et al., 2016). 

Various MLP architectures were implemented across the reviewed studies. Some studies (Carta 

et al., 2015; Díaz et al., 2018; Mifsud et al., 2018) used MLPs with a single hidden layer and the 

sigmoid activation function. However, the use of the sigmoid activation function has declined in 

recent years due to the vanishing gradient problem, which impairs the training of deeper networks 

(Apicella et al., 2021). The selection of the adequate activation function is critical for model 

performance, and in modern ANN architectures, rectified-based activation functions (Apicella et 

al., 2021) have become more common, particularly as the number of hidden layers increases. For 

instance, Kristianti et al. (2023) used the Continuously Differentiable Exponential Linear Units 

(CELU) activation function to train an MLP with four hidden layers. The CELU activation function 

is a more recent development designed to maintain the advantages of rectified-based functions 
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while offering smoother gradients, which enhances performance and convergence in deep 

networks.  

Selecting a suitable loss function is critical in training ANNs, as it penalizes the difference between 

predicted outputs and actual target values. The mean squared error (MSE) was the most 

frequently used loss function in the reviewed studies. However, MSE has been reported to 

potentially distort the prediction distribution (Jung et al., 2013). To address this issue, Kristianti et 

al. (2023) scaled MSE by the inverse probability of occurrence of the actual target value in the 

training set. A similarly scaled MSE was proposed by Jung et al. (2013) to assign greater 

importance to less frequent wind speed values during training.  

 

 

Figure 2.2 Proportion of the different models used for long-term wind speed estimation at PSLs in the 
reviewed studies 

2.3.1 Comparative studies at partially sampled locations  

Statistical and ML models exist in many varieties, and their performance can differ based on the 

specific prediction task at hand. Therefore, it is crucial to evaluate multiple models to identify the 

most suitable for a given application. In the context of wind speed estimation at PSLs, several 
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comparative studies have analyzed the performance of statistical and ML models, as summarized 

in Table 2.3.  

The criteria for evaluating model performance included standard regression metrics such as Mean 

Absolute Error (MAE), MSE, Root Mean Squared Error (RMSE), and the coefficient of 

determination (R2). MAE, MSE, and RMSE are scale-dependent metrics. To conduct evaluations 

that are independent of the magnitude of the target variable, Basse et al. (2021) used relative 

bias in mean (𝐸𝑟𝑟𝑚𝑒𝑎𝑛) and variance (𝐸𝑟𝑟𝑣𝑎𝑟), while Díaz et al. (2018) employed the Mean 

Absolute Relative Error (MARE). These metrics are described in  

Table 2.4.  

Ultimately, the goal of the MCP method is to assess the wind energy potential of the PSL. 

Although wind speed is the main input for this analysis, it is crucial to consider the cubic 

relationship between wind speed and power output. Some researchers have directly evaluated 

the models by calculating metrics based on the derived power output (Basse et al., 2021; Díaz et 

al., 2018; Mifsud et al., 2020). While the approach may offer a more direct estimate of model 

performance, which is relevant to the project, it requires the selection of a power curve associated 

with the wind turbine at this stage. In their study, Basse et al. (2021) reported that variations in 

results due to the use of different power curves was marginal.  

The findings from comparative studies (see Table 2.3) highlight the importance of testing various 

models, as no single model consistently outperforms the others. For example,  Díaz et al. (2018) 

found that RF and SVR outperformed ANN, while Mifsud et al. (2020) reported the opposite, 

indicating that ANN surpassed both RF and SVR.  Additionally, Schwegmann et al. (2023) 

indicated that the K-nearest neighbor (KNN) algorithm outperformed ANN, Gaussian process, RF, 

and SVR, particularly excelling in reproducing the wind speed distribution.  

Differences in model configurations can explain the varying conclusions of these studies. Factors 

such as model hyperparameters, feature selection, data preprocessing techniques, and the length 

of training periods can all significantly influence model performance. The effectiveness of a 

particular model often depends on how well it is tuned to fit the specific characteristics of the 

dataset being used.  

Table 2.3 Comparative studies of statistical and ML methods for long-term wind speed estimation at 
PSLs 

Study Performance 
metrics 

Evaluation 
strategy 

Results Comments  
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(Basse et al., 2021) 𝐸𝑟𝑟𝑚𝑒𝑎𝑛,  𝐸𝑟𝑟𝑣𝑎𝑟  Cross-
validation 

VR and LR 
produces different 
seasonal bias  

Only three months 
of wind records at 
the PSL was used 
to evaluate 
seasonal biases 

(Díaz et al., 2017) MAE, MARE, R2  SVR > LR The performance 
metrics were 
calculated from 
estimated power 
output 

(Díaz et al., 2018) MAE, MARE, R2 Cross-
validation 

[RF, SVR] > ANN The performance 
metrics were 
calculated from 
estimated power 
output 

(Kartal et al., 2023) Bias, MAE, MSE 
and R2 

Cross-
validation 

RF = GB  The peak wind 
gusts were 
estimated using 
the MCP 
approach.  

(Mifsud et al., 2018) MAE, MSE, R2 Test set [ANN, RF] > [LR, 
SVR] 
 

 

n.a 

(Mifsud et al., 2020) MAE (normalized), 
MSE (normalized), 
and percentage 
error  

Test set [LR, ANN] > [SVR, 
RF] 

The performance 
metrics were 
calculated from 
the estimated 
power output 

(Schwegmann et al., 
2023) 

MAE, R2 , RMSE Test set K-NN > [LR, RF, 
ANN, Gaussian 
process] 

n.a 

 

Table 2.4 Evaluation metrics used in the review studies to compare different prediction models 

Metric Formula Perfect score 

Bias 1

𝑛
∑ (𝑝𝑖 − 𝑜𝑖)

𝑛

𝑖=1
 

0 

MAE 1

𝑛
∑ |𝑝𝑖 − 𝑜𝑖|

𝑛

𝑖=1
 

0 

MARE 1

𝑛
∑ |

𝑜𝑖 − 𝑝𝑖
𝑜𝑖

|
𝑛

𝑖=1
 

0 

MSE 1

𝑛
∑ (𝑝𝑖 − 𝑜𝑖)

𝑛

𝑖=1

2

 
0 

RMSE 

√
1

𝑛
∑ (𝑝𝑖 − 𝑜𝑖)

𝑛

𝑖=1

2

  

0 

R2 
1 −

∑ (𝑜𝑖 − 𝑝𝑖)
𝑛
𝑖=1

2
 

∑ (𝑜𝑖 − 𝑜̅)
𝑛
𝑖=1

2
 
 

1 

𝑬𝒓𝒓𝒎𝒆𝒂𝒏 𝑝̅ − 𝑜̅

𝑜̅
 

0 



 66 

𝑬𝒓𝒓𝒗𝒂𝒓  ∑ (𝑝𝑖 − 𝑝̅)
𝑛
𝑖=1

2
− ∑ (𝑜𝑖 − 𝑜̅)

𝑛
𝑖=1

2

∑ (𝑜𝑖 − 𝑜̅)
𝑛
𝑖=1

2
 

 
0 

Note: 𝒐 represents the observed variable, 𝒑 the predicted variable, 𝒏 the sample size 

2.4 Long-term wind speed estimation at unsampled locations 

Figure 2.3 presents an overview of important factors when estimating long-term wind speeds at 

USL. These key factors are covered in detail in the following subsections: a review of the 

prediction time scales identified in the literature, a presentation of commonly used explanatory 

variables, the estimation methods, and comparative studies. 

 

Figure 2.3 Important factors to consider when estimating long-term wind speeds at USLs 

2.4.1 Prediction time scale 

Wind speed is a continuous variable, and for practical reasons, researchers often work with 

aggregated values over specified time scales. The choice of the time scale and aggregation 

function depends on the study’s objectives. In the literature, the time scales for predicted wind 

speeds at USLs range from hourly means (Cellura et al., 2008a; Cellura et al., 2008b; Cirrincione 

et al., 2009) to annual maximum values (Modarres, 2008). Some authors have predicted monthly 
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(Fadare, 2010) and daily (Jung et al., 2023a) mean wind speeds. The mean is the most frequently 

calculated statistic when aggregating wind speed time series. In studies on EWS, researchers 

have used wind speed quantiles (Etienne et al., 2010; Fischer et al., 2015; Jung et al., 2022a) 

and maximum wind speeds (Goel et al., 2004). The 50-year return period wind speed is an 

important design parameter for ensuring the safety of wind turbines (Palutikof et al., 1999).  

Effenberger et al. (2024) examined how different temporal resolutions and aggregation methods 

(average vs. instantaneous) affect wind speed distribution compared to instantaneous data (e.g., 

10-minute averages).  Their findings indicated that using three- or six-hourly instantaneous values 

better preserved the observed 10-minute wind speed distribution than averaged values over a 

specified time scale. Petersen et al. (1981) discussed the implications of various averaging time 

scales and the resulting variance loss for WRA. They highlighted that variance loss is significant 

when averaging wind speed data over periods longer than a few hours. 

High temporal resolution wind speed data is essential for understanding resource variability for 

WRA (Pfenninger et al., 2014). However, processing and storing large volumes of wind speed 

data can present some challenges. Mapping wind speed distributions can help summarize the 

data while retaining important information about variability (Houndekindo et al., 2023b; Jung, 

2016; Veronesi et al., 2016).  

2.4.1 Explanatory variables 

In the literature, five categories of explanatory variables have been used for wind speed 

estimation at USLs: geographical variables (e.g., longitude, latitude), temporal variables (e.g., 

time of day, month of the year), meteorological variables (e.g., air temperature, atmospheric 

pressure, humidity), topographical variables (e.g., elevation, exposure) and surface roughness 

length (SRL).  

Geographical and temporal variables. In spatial interpolation (SI) techniques, geographical 

coordinates are the primary variable for estimating wind speed at USLs. In the absence of 

complex terrain features, a high correlation is expected between neighboring sites, especially 

when aligned with prevailing wind direction, and this correlation should decrease with distance. 

With data-driven feature selection, Robert et al. (2013) identified geographical coordinates as 

important predictors of wind speed. Additionally, geographical coordinates could serve as proxies 

for other factors affecting wind speed, such as altitude or proximity to the sea. For example, higher 

latitudes (or longitudes) may correspond to higher (or lower) altitudes or proximity to the sea. 

Proximity to the sea significantly impacts the local wind climate through mechanisms such as sea 
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and land breezes. Additionally, low surface friction over the sea typically results in stronger winds 

near coastal regions (Brinckmann et al., 2016).  Houndekindo et al. (2023a) reported that the 

distance from the coast was important for mapping various wind speed quantiles across Canada.  

Wind speed also exhibits diurnal, seasonal, and interannual variations. To account for these 

temporal variations, researchers have included time-related variables in their models (Fadare, 

2010; Jung et al., 2022a) when predicting WSTS.   

Meteorological variables. Wind speed is primarily driven by the movement of air resulting from 

pressure differences, which are caused mainly by variations in solar irradiation (Emeis, 2018). 

Meteorological variables, such as temperature and pressure, are typically well correlated with 

wind speed through underlying physical processes (Şahin et al., 2006), but these variables are 

also missing at USLs.  Reanalysis and regional climate model (RCM) data serve as alternative 

sources of meteorological variables for wind speed estimation at USLs. Inaccuracies in reanalysis 

wind data are partly due to the limited ability of NWP models to accurately capture the interactions 

between large-scale winds (e.g., geostrophic winds) and local topographic features and surface 

roughness. However, reanalysis wind fields are generally considered representative of large-

scale wind patterns, unaffected by surface friction (González-Aparicio et al., 2017; Houndekindo 

et al., 2024; Hu et al., 2023; Jung et al., 2020; Kirchmeier et al., 2014).  

Topographic variables and surface roughness. Local topography influences near-surface 

wind speed through topography-induced acceleration, deceleration, and deflection (Emeis, 2018; 

Petersen et al., 1998; Raupach et al., 1997). Elevation is the most commonly used explanatory 

variable in estimating wind speed (Collados-Lara et al., 2022; Fick et al., 2017). However, 

elevation alone only captures part of the local topography's effect on near-surface wind speeds. 

The availability of high-resolution digital elevation models (DEM) allows for the extraction of 

additional topographic variables that more accurately describe terrain complexity, such as the 

topographic position index, which measures terrain ruggedness and topographic wind exposure, 

such as the maximum upwind slope (Winstral et al., 2017). These variables can be derived at 

multiple spatial scales, reflecting the varying degrees of influence that topographic features exert 

over different distances (Dujardin et al., 2022; Etienne et al., 2010; Foresti et al., 2011; 

Houndekindo et al., 2023a; Houndekindo et al., 2023b; Jung, 2016; Jung et al., 2018a; Jung et 

al., 2020; Jung et al., 2023b; Robert et al., 2013; Winstral et al., 2017).  

For example, in Switzerland, Etienne et al. (2010) identified elevation from a 1 km resolution DEM 

and landform classes from a 2 km resolution DEM as significant predictors of wind speed at USLs. 

Similarly, in Germany, Jung (2016) found that a location’s relative elevation at a spatial scale of 
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2.5 km was the most important predictor of wind speed. The Relative elevation is the difference 

between the location’s elevation and the mean elevation of surrounding cells within a specified 

radius. Recent advancements in ML, particularly Convolutional Neural Networks (CNNs), have 

shown promise in automatically extracting multiscale topographic features from high-resolution 

DEMs (Dujardin et al., 2022; Zhong et al., 2024). 

Another crucial variable in wind speed estimation at USLs is the SRL. SRL values are typically 

derived from land cover maps (Davis et al., 2023; Etienne et al., 2010; Houndekindo et al., 2023a; 

Houndekindo et al., 2023b; Jung, 2016; Jung et al., 2018a; Jung et al., 2020; Jung et al., 2023b) 

by associating different land cover types (e.g., vegetation, urban infrastructure) with 

corresponding SRL values based on established empirical relationships (Wiernga, 1993). These 

SRL values reflect the influence of the terrain surface and its roughness elements on the frictional 

forces acting on wind near the ground. Higher SRL values typically indicate rougher surfaces, 

slowing wind speeds down (Petersen et al., 1998). For instance, vegetated areas such as forests 

typically exhibit higher SRL values, leading to more pronounced wind attenuation than smoother 

surfaces like open water or flat, barren land. 

2.4.1 Estimation methods at unsampled locations 

The methods for estimating wind speed at USLs can be categorized based on the type of 

predicted data: 

1. Summary wind speed statistics, typically representing central tendencies (e.g., MWS), 

have been mapped using SI or regression models with explanatory variables.  

2. Some studies have estimated the WSPD at USLs to capture the wind resource 

variability. Both parametric and nonparametric methods have been proposed for this 

purpose.  

3. Bias-corrected and uncorrected reanalysis wind data are frequently used to obtain wind 

WSTS at USLs. Also, SI (Zhang et al., 2022b), regression (Robert et al., 2013), and 

hybrid models (Collados-Lara et al., 2022) have been explored to interpolate WSTS at 

USLs. 

4. EWS data are necessary for evaluating wind turbine suitability in a region (Pryor et al., 

2021). Uncorrected reanalysis wind data, regression models with explanatory variables, 

regional frequency analysis (RFA), and SI have been applied to estimate EWS at USLs.  

Table 2.5 provides an overview of the various methods used for wind speed estimation at USLs, 

which are reviewed in detail in the following subsections. 
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Table 2.5 Summary of the different methods for wind speed estimation at USLs 

Type of predicted wind speed 
data 

Method/model Study 

MWS Hybrid (SI and regression) (Cellura et al., 2008a) 

SI  (Baydaroğlu et al., 2019; 
Fick et al., 2017; Keskin et 
al., 2017; Lee, 2022; Luo et 
al., 2008; Sliz-Szkliniarz et 
al., 2011; Van Ackere et al., 
2015) 

WSPD 
 

Parametric (Jung, 2016; Laib et al., 
2016; Veronesi et al., 2016) 

(Jung et al., 2020; Jung et 
al., 2023b) 

Nonparametric (Houndekindo et al., 2023b) 

WSTS 
 

Reanalysis wind speed mean bias 
correction  

(Bosch et al., 2018; 
González-Aparicio et al., 
2017; Gruber et al., 2019; 
Gruber et al., 2022; Murcia 
et al., 2022; Nefabas et al., 
2021; Ryberg et al., 2019; 
Schicker et al., 2023) 

Quantile mapping (QM) with 
reanalysis wind speed 

(Jung et al., 2023b) 

Reanalysis wind speed bias 
correction with ML 

(Dujardin et al., 2022; Hu et 
al., 2023) 

SI (Zhang et al., 2022b) 

SI and 
Hybrid (SI and regression)  

(Brinckmann et al., 2016; 
Collados-Lara et al., 2022; 
Li et al., 2014; Reinhardt et 
al., 2018; Zhao et al., 2022) 

Regression  (Philippopoulos et al., 2012; 
Robert et al., 2013) 

EWS 
 

Regression model with explanatory 
variables  

(Etienne et al., 2010; Jung 
et al., 2022a) 

SI  (Ye et al., 2015) 

RFA  (Ahmad et al., 2024; 
Campos et al., 2018; Fawad 
et al., 2018; Goel et al., 
2004; Hong et al., 2014) 
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2.4.1 Estimation methods at unsampled locations 

Long-term MWS has been mapped across large regions for WRA at USLs using SI as the primary 

modeling approach (Baydaroğlu et al., 2019; Cellura et al., 2008a; Van Ackere et al., 2015). 

Studies have demonstrated that incorporating anisotropy (Lee, 2022) and additional explanatory 

variables should improve model performance, with elevation being the most frequently used 

explanatory variable (Keskin et al., 2017; Luo et al., 2008; Sliz-Szkliniarz et al., 2011).  

Cellura et al. (2008a) proposed a hybrid approach combining MLP and SI models for MWS 

mapping. An MLP was used to establish a regression function between explanatory variables 

(e.g., geographical coordinates and elevation) and the observed MWS in Sicily, Italy. Kriging was 

then applied to the regression model residuals to refine the predictions. The model can be 

expressed as: 

Equation 2.6 

𝑊̂(𝑠0) = 𝑓(𝑥(𝑠0), 𝑦(𝑠0), 𝑧(𝑠0)) + ∑ 𝜆𝑖𝑒(𝑠𝑖)
𝑘

𝑖=1
 

where 𝑾̂(𝒔𝟎) is the predicted wind speed at location 𝒔𝟎, 𝒙(𝒔𝟎), 𝒚(𝒔𝟎), and 𝒛(𝒔𝟎) are the location’s longitude, 
latitude, and elevation, respectively. The function 𝒇(∙) is the MLP-derived regression function, 

𝒆(𝒔𝒊) represents the residuals at sampled locations 𝒔𝒊, and 𝝀𝒊 are the kriging weights.  

2.4.1.1 Estimation of wind speed distribution 

Relying exclusively on MWS to evaluate long-term energy potential may lead to an 

underestimation of the available resource’s potential (Nelson et al., 2018). To address this 

limitation, it is crucial to estimate the WSPD at USLs. This approach allows for a more accurate 

evaluation of the resource’s long-term variability.  

Some studies have been conducted to map WSPD across large regions (Houndekindo et al., 

2023b; Jung, 2016; Jung et al., 2020; Jung et al., 2023b; Laib et al., 2016; Veronesi et al., 2016). 

The statistical methods employed in these studies can broadly be categorized into parametric and 

nonparametric methods.  

In the parametric method, the parameters of the WSPD are estimated at USLs using a regression 

model along with various explanatory variables. The Weibull distribution has been employed due 

to its widespread adoption in the field (Veronesi et al., 2016). Some studies have explored the 

use of more flexible probability distributions. For example, Jung et al. (2020) proposed a 

parametric method that involves mapping L-moments of wind speed. They then used the L-
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moment method to estimate the parameters of the four-parameter Kappa and five-parameter 

Wakeby distributions at USLs.  

L-moments introduce by Hosking (1990), serve as alternatives to traditional moments (such as 

mean and variance) for summarizing the shape of a probability distribution. As linear combinations 

of order statistics, L-moments exhibit more robustness to outliers than conventional sample 

moments when estimating from finite samples (Hosking, 1990). Similar to the method of moments, 

which is used to derive estimators of probability distribution parameters from sample moments, 

the L-moment method can also be used to estimate these parameters from sample L-moments. 

The sample L-Moments are given by (Hosking, 1990):  

Equation 2.7 

𝜆̂𝑟 =
1

𝑟
 ∑ [

∑ (−1)𝑗 (𝑟−1
𝑗
)𝑟−1

𝑗=0 ( 𝑖−1
𝑟−1−𝑗

) (𝑛−1
𝑗
)

(𝑛𝑟)
]𝑋𝑖:𝑛 

𝑛

𝑖=1
 

where 𝒓 is the L-moment order and 𝑿𝟏:𝒏 ≤ 𝑿𝟐:𝒏 ≤ ⋯ ≤ 𝑿𝒏:𝒏   denote the sample order statistics.  

In another study, Houndekindo et al. (2023b) proposed a nonparametric method for WSPD 

mapping. This method does not rely on the assumption of a specific parametric distribution, thus 

offering a more flexible and data-driven approach for estimating WSPD at USLs. The 

nonparametric approach uses a regression model to map multiple wind speed quantiles across a 

region. Subsequently, kernel estimators are fitted to the estimated quantiles at USLs to obtain the 

entire WSPD. This approach was recommended for large regions where a single family of 

probability distributions may fail to adequately represent the region’s complex and diverse wind 

speed patterns. To address boundary effects that appear when using symmetric kernels for 

modeling bounded random variables like wind speeds, Houndekindo et al. (2023b) adopted 

asymmetric kernel estimators. The Birnbaum-Saunders (Mombeni et al., 2021) and Log-Normal 

kernels (Lafaye de Micheaux et al., 2021) provided a better fit among the evaluated kernels. The 

CDFs of the Log-Normal (𝐹̂𝐿𝑁(∙)) and Birnbaum-Saunders (𝐹̂𝐵𝑆(∙)) kernels are expressed as 

follows:  

Equation 2.8  

𝐹̂𝐿𝑁(𝑥) =
1

𝑛
∑ 𝐾𝐿𝑁(𝑋𝑖; log 𝑥 , √𝑏)

𝑛

𝑖=1
 

Equation 2.9  
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𝐹̂𝐵𝑆(𝑥) =
1

𝑛
∑ 𝐾𝐵𝑆(𝑋𝑖; 𝑥, √𝑏)

𝑛

𝑖=1
 

where 𝑏 > 0 is the kernel bandwidth, and the kernel functions are defined as: 

Equation 2.10 

𝐾𝐿𝑁 (𝑥; 𝜇 , 𝜎) = 1 −  Φ(
log𝑥 − 𝜇

𝜎
) 

Equation 2.11 

𝐾𝐵𝑆 (𝑥;  𝛽, 𝜎) = 1 −  Φ(
1

𝜎
(√
𝑥

𝛽
−√

𝛽

𝑥
)) 

The function 𝚽(∙) denotes the CDF of the standard normal distribution.  

2.4.1.2 Estimation of wind speed time series 

The availability of WSPD at USLs provides valuable insights into the variability of the resource. 

However, to fully assess wind speed variability across different temporal scales, such as diurnal, 

seasonal, and inter-annual variability, time series data are essential.  

To generate gridded WSTS, Zhang et al. (2022b) used a three-dimensional thin plate smoothing 

spline with longitude, latitude, and elevation as explanatory variables to interpolate observed daily 

wind speeds at a spatial resolution of 0.05 × 0.05° across Australia. In a similar study, Li et al. 

(2014) interpolated six-hourly WSTS in China at a spatial resolution of 1 km × 1 km. they used a 

two-dimensional thin-plate smoothing spine combined with kriging applied to the residuals. The 

authors further examined the effect of including reanalysis wind speed data as an additional 

explanatory variable but found no significant reduction in the cross-validation RMSE.  

Collados-Lara et al. (2022) compared various kriging methods for hourly WSTS interpolation at 

300 m × 300 m spatial resolution in Granada, Spain. Their results demonstrated that regression 

kriging outperformed ordinary kriging, kriging with external drift, and a simple regression model 

(without kriging of the residuals). In addition, the authors observed that the interpolated WSTS 

exhibited lower RMSE values compared to wind speeds derived from the European Center for 

Medium-Range Weather Forecasts Reanalysis v5 (ERA5; Hersbach et al., 2020).  
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A key limitation of SI methods for estimating wind speeds at USL is their dependence on a dense 

network of meteorological stations in the region of interest. In regions with sparse station 

coverage, the accuracy of interpolated wind speeds tends to decline due to low station density 

(Fick et al., 2017). Additionally, terrain complexity presents further challenges to interpolation 

accuracy. In areas with complex topography, standard interpolation methods that rely solely on 

geographical coordinates and elevation often fail to capture the spatial variability of wind speeds, 

leading to significant estimation errors.  

To address these challenges, Robert et al. (2013) incorporated additional topographic explanatory 

variables, such as terrain convexity, slope, and wind exposure, to improve wind speed estimation 

in Switzerland's complex Alpine orography. The authors used the General regression neural 

network (GRNN) to model the complex, non-linear relationship between the explanatory variables 

and monthly wind speed values.  

Recent advancements in data assimilation techniques and model physics (Hersbach et al., 2020) 

have significantly improved the accuracy and spatial resolution of reanalysis wind speed data. 

Therefore, many recent studies have relied on reanalysis datasets to obtain WSTS at USLs (Ayik 

et al., 2021; Davidson et al., 2022; de Aquino Ferreira et al., 2022; Gualtieri, 2021; Gualtieri, 2022; 

Jourdier, 2020; Olauson, 2018; Rabbani et al., 2020; Ramon et al., 2019; Thomas et al., 2021).  

Reanalysis datasets, such as ERA5 and the Modern-Era Retrospective Analysis for Research 

and Applications, Version 2 (MERRA-2; Gelaro et al., 2017), provide global coverage of 

meteorological variables at hourly intervals over extended periods. However, their relative coarse 

spatial resolution can be a limiting factor for studies that require fine-scale analysis, particularly in 

regions with complex terrain where wind patterns can vary considerably.  

To address this limitation, efforts have been made to downscale and bias-correct reanalysis wind 

speeds, enhancing their spatial resolution and addressing the discrepancies between reanalysis 

outputs and local measurements. The bias correction (BC) of reanalysis wind speeds has 

primarily relied on the Global Wind Atlas (GWA; Davis et al., 2023), which provides quasi-global 

static wind conditions (e.g., MWS, Weibull scale, and shape parameters) integrating microscale 

terrain and land cover features. 

González-Aparicio et al. (2017) applied a parametric QM method to correct the distribution of 

MERRA-2 wind speeds using the following equation:   

Equation 2.12 
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𝑦̂𝑡 = 𝛼
𝐺𝑊𝐴 (

𝑦𝑡
𝑀𝐸𝑅𝑅𝐴

𝛼𝑀𝐸𝑅𝑅𝐴
)

𝑘𝑀𝐸𝑅𝑅𝐴

𝑘𝐺𝑊𝐴

 

where 𝒚̂𝒕 is the corrected wind speed at time 𝒕, 𝜶𝑮𝑾𝑨 and 𝒌𝑮𝑾𝑨 are the Weibull scale and shape parameters 

from the GWA, and 𝜶𝑴𝑬𝑹𝑹𝑨, 𝒌𝑴𝑬𝑹𝑹𝑨,  and 𝒚𝒕
𝑴𝑬𝑹𝑹𝑨 are the corresponding parameters and wind 

speed value from MERRA-2.   

Other studies (Gruber et al., 2019; Gruber et al., 2022; Houndekindo et al., 2024; Langer et al., 

2023; Murcia et al., 2022; Ryberg et al., 2019) used linear scaling for BC, where a multiplicative 

factor is applied to the reanalysis wind speeds: 

Equation 2.13 

𝑦̂𝑡 =
𝑦𝐺𝑊𝐴̅̅ ̅̅ ̅̅ ̅

𝑦𝑀𝐸𝑅𝑅𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑦𝑡
𝑀𝐸𝑅𝑅𝐴 

where 𝒚𝑮𝑾𝑨̅̅ ̅̅ ̅̅ ̅ and 𝒚𝑴𝑬𝑹𝑹𝑨̅̅ ̅̅ ̅̅ ̅̅ ̅̅  are the MWS from the GWA and MERRA, respectively.  

Figure 2.4 shows an example of the linear scaling method applied to bias correct ERA5 wind 

speed data at a station in Canada.  

Typically, a time-invariant scaling factor was applied, which improved the long-term MWS 

accuracy without improving the temporal properties of the reanalysis time series. Schicker et al. 

(2023) attempted to address this limitation by estimating hourly scaling factors to account for 

diurnal biases, but this approach degraded the performance of the uncorrected reanalysis data.  
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Figure 2.4 Example of application of the linear scaling method for BC of ERA5 wind speeds using the 
GWA version 3.  

The measured hourly wind speed data were obtained from Environment and Climate Change Canada (ECCC) 
historical climate data archives (Climate ID: 8403255, period: 2016).   

The GWA is commonly used for BC due to its incorporation of microscale topographic and land 

cover features, which are not fully resolved by reanalysis data. Alternatively, these features can 

be directly obtained from high-resolution DEM and land cover maps and used as additional 

explanatory variables to establish a regression function between reanalysis and observed wind 

speeds. This method offers greater flexibility in the spatial resolution of the downscaled wind 

speeds compared to the fixed resolution of 250 m × 250 m expected when bias-correcting with 

the GWA. For example, Hu et al. (2023) developed a regression model that integrated topographic 

and ERA5 meteorological variables to predict observed wind speeds. This model improved ERA5 

accuracy in areas with complex topography, though it had a less pronounced impact in areas 

where ERA5 accuracy was already high.  

Jung et al. (2023b) applied QM to correct ERA5 wind speeds. Their approach, illustrated in Figure 

2.5, involved the following steps: First, they established a regression model to map wind speed 

L-moments in the study region using local topographic features, surface roughness length, and 

L-moments from ERA5 wind speeds. Then, the trained regression model was used to predict L-
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moments at USLs. Using the L-moment method, these predicted L-moments were used to 

estimate the four parameters of the Kappa distribution. Finally, the quantile function of the fitted 

Kappa distribution was used for QM. The QM equation is given by: 

Equation 2.14 

𝒚𝒕̂ = 𝑸𝜽̂[𝑭𝒏(𝒚𝒕
𝑬𝑹𝑨𝟓)] 

where 𝑸𝜽̂(∙) is the quantile function of the Kappa distribution with parameters 𝜽̂ estimated using the L-moment 

method, and 𝑭𝒏(∙) is the empirical CDF of the ERA5 wind speed data. 

Dujardin et al. (2022) proposed a novel approach that uses CNNs to interpolate hourly wind 

speeds in Switzerland. Their model operates at the grid level, using a CNN to predict observed 

wind components at meteorological stations. The input data for the CNN consist of patches of 

gridded meteorological and topographic variables centered on each station.  

The results from the study indicated that the proposed model improved both the correlation and 

bias of COSMO-1 (Kruyt et al., 2018) outputs when compared to measured wind speeds. 

Although the CNN architecture was not directly compared to standard regression models, it is 

expected to outperform traditional methods as it can effectively process multiscale spatial 

information related to topography and meteorological variables. For example, in standard 

regression models, gridded meteorological variables are typically interpolated at station locations 

using rigid methods, such as nearest neighbor or bilinear interpolation. In contrast, the CNN 

architecture employs a data-driven approach that interpolates gridded meteorological variables 

at station locations. Also, this method can potentially consider a broader spatial extent of these 

variables, which may enhance the accuracy of bias-corrected wind speed predictions.  The CNN 

method presents a promising alternative for wind speed modeling in complex terrains. 
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Figure 2.5 Illustration of the different steps of the QM process for ERA5 wind speeds’ BC at USLs.  

This BC method was proposed by [121].  

2.4.1.3 Extreme wind speed estimation 

EWSs are evaluated to determine the suitability of specific wind turbines in a given region. This 

assessment considers factors such as structural integrity, safety, and performance in challenging 

weather conditions. It ensures that wind turbines are appropriately designed and located to 

withstand the severe wind conditions they may encounter during their operational lifespan.  

Reanalysis wind speeds have been used to estimate EWSs on a global scale (Jung et al., 2017c; 

Pryor et al., 2021). However, researchers have employed alternative methods to estimate EWSs 

with higher spatial resolutions at national (Etienne et al., 2010; Ye et al., 2015) and continental 

scales (Jung et al., 2022a).  

For example, Etienne et al. (2010) mapped the 98th percentile of daily maximum wind speed 

across Switzerland. They used a generalized additive model (Hastie, 2017), which is a nonlinear 

regression model, to capture the relationship between topographic variables and observed EWS 

quantiles. Similarly,  Jung et al. (2022a) developed a regression model to map the 90th percentile 

of monthly wind speed across North America and Europe.  This model used the ERA5 90th 
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percentile of monthly wind speeds, MWS from a global model (Jung et al., 2020), along with 

geographical coordinates and the month of the year as input. 

In other studies, RFA was applied to predict EWS at USLs. The RFA procedure involves two main 

steps, as shown in Figure 2.6: 1) formation of homogeneous regions, and 2) information transfer 

within the regions. Establishing homogeneous regions based on the wind generation mechanisms 

is essential for ensuring that information can be reliably transferred within the region. There are 

some statistical tools to evaluate the homogeneity of the regions. For EWS, studies have primarily 

relied on the statistical tests proposed by Hosking et al. (1997).  

The "index flood" method (Hosking et al., 1997), based on L-Moments, was the most commonly 

used RFA procedure, which has been adapted and referred to as the "local-index" method for 

EWS modeling (Campos et al., 2018). The primary assumption of this method is that all sites 

within a homogenous region share the same wind speed distribution (the regional distribution), 

except for a site-specific scaling factor. This scaling factor, known as the local index, represents 

a statistical measure of the central tendency (e.g., mean, median) of EWS at each location within 

the region. The local index is usually estimated with a regression model using some explanatory 

variables (e.g., topographic and land cover features).  

Determining a region’s adequate size presents some challenges. Generally, as the region’s size 

increases, its homogeneity tends to decrease. In contrast, a smaller region (limited sample size) 

may produce unreliable local index estimates using a regression model. For estimating EWS, 

Goel et al. (2004) recommended that a region include at least 5T station years of data, where T 

represents the return period of interest. A similar recommendation was provided for regional flood 

frequency analysis (Jakob et al., 1999).  

Another important factor to consider when forming regions is their identifiability (Burn et al., 2000; 

Goel et al., 2004). Identifiability refers to the ability to assign a new USL to a region based solely 

on specific explanatory variables independently of the target variable. Therefore, regions should 

not be defined using variables derived from observed wind speed data, as this would prevent the 

assignment of USLs to that region (Campos et al., 2018; Hong et al., 2014). However, it is 

acceptable to form regions using variables derived from measured wind speed data if the RFA is 

applied at PSLs to improve the estimation of EWS.  

Several methods for region formation were used in the literature. Goel et al. (2004) and Fawad et 

al. (2018) used a pooling method based on geographical proximity. Campos et al. (2018) formed 

homogeneous regions using similarity in L-moment ratios estimated from observed wind speed 
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data. Alternatively, Hong et al. (2014) used a clustering algorithm with some explanatory variables 

to form homogeneous regions.  

Most studies have relied on a parametric distribution function to estimate EWS from the available 

wind speed time series. Table 2.6 summarizes the various parametric distribution functions used 

to estimate EWS at USLs.  

 

Figure 2.6 The different steps of the RFA 

Table 2.6 Parametric distribution functions used for EWS estimation at USLs 

Study Selected parametric distribution 
function 

Type of EWS  

Ahmad et al. 
(2024) 

Generalized logistic distribution Daily Annual Maximum Wind Speed quantiles 
(2, 5, 10, 20, 50, 100, 500, 1000-year return 
periods)  

Campos et 
al. (2018) 

Weibull distribution (Three 
parameters) 

Annual maximum wind speed quantiles (5, 10, 
20-year return periods) 

Fawad et al. 
(2018) 

Generalized logistic distribution annual maximum wind speed quantiles (2, 5, 
10, 20, 50, 100, 500, 1000-year return 
periods) 

Goel et al. 
(2004) 

Generalized logistic distribution and 
generalized extreme value 
distribution  

Annual maximum wind speed quantiles (10, 
20, 50, 100, 500-year return periods)  

Hong et al. 
(2014) 

Generalized extreme value 
distribution 

annual maximum wind speed quantiles (50, 
500, 1000-year return periods) 

Jung et al. 
(2017c) 

Wakeby distribution  wind gust speed quantiles (30, 50 and 100 
year30-, 50- and 100-year return period)  

Jung et al. 
(2022a) 

Generalized extreme value 
distribution and Wakey distribution 

Monthly annual maximum wind speed 
quantiles (10-year return period) 

Pryor et al. 
(2021) 

Gumbel distribution Wind speed quantiles (50-year return period) 

2.4.1.4 Comparative studies at unsampled locations 

Several studies have compared SI methods for mapping wind speed across large regions (Berndt 

et al., 2018; Collados-Lara et al., 2022; Lee, 2022; Luo et al., 2008; Reinhardt et al., 2018; Van 

Ackere et al., 2015). The findings from these studies indicate that there is no clear choice between 

deterministic methods and geostatistical methods for SI of wind speeds. The relative performance 
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of these methods varies based on several factors, such as the magnitude of the interpolated wind 

speed (e.g., EWS vs. MWS) and the specific region of study. Incorporating elevation in the kriging 

models (e.g., co-kriging) does not consistently improve its accuracy (Ye et al., 2015). In some 

studies, regression kriging models outperformed standard SI methods (Collados-Lara et al., 2022; 

Lee, 2022; Reinhardt et al., 2018). 

Some studies have reported that MLP models outperform SI methods for wind speed mapping 

(Cellura et al., 2008a; Öztopal, 2006; Philippopoulos et al., 2012). In contrast, Reinhardt et al. 

(2018) found that regression kriging with LR was more accurate than MLP and SVR for mapping 

wind speed components at various heights.   

Houndekindo et al. (2023b) compared LR and GB for mapping various wind speed quantiles. 

Their results demonstrated that GB was more effective than LR in capturing the relationship 

between the explanatory variables and the wind speed quantiles. Similarly, Jung et al. (2020) 

reported that GB outperformed LR for mapping wind speed L-moments on a global scale. In their 

research, the authors evaluated a variant of the GB algorithm against LR, RF, SVR, and Gaussian 

process regression, concluding that GB exhibited the highest level of accuracy.   

2.5 Long-term wind speed estimation under nonstationary conditions 

The literature reports three causes of non-stationarity in WSTS. Several studies conducted in 

various countries have reported a declining trend in near-surface wind speeds (Azorin-Molina et 

al., 2014; Cui et al., 2018; Klink, 2002; McVicar et al., 2008; Minola et al., 2016; Vautard et al., 

2010a; Wan et al., 2010; Zahradníček et al., 2019). Roderick et al. (2007) introduced the term 

"stilling" to describe the observed trend. One of the identified causes of the stilling phenomenon 

is an increase in surface roughness (Klink, 2002; Pryor et al., 2009; Vautard et al., 2010b). 

However, Zeng et al. (2019) observed a reversal of the stilling trend by 2010 in a global study, 

concluding that the previously reported decreasing trend could be attributed to interannual, 

decadal ocean-atmosphere oscillations. Several authors have also studied the interannual 

variability of wind speeds due to ocean-atmosphere oscillations (Azorin-Molina et al., 2016; 

Azorin-Molina et al., 2018; Klink, 2007; Ouarda et al., 2021; Pryor et al., 2006a; Woldesellasse et 

al., 2020).  

Climate change is another significant factor contributing to the long-term variability of wind 

resources (Jung et al., 2022c; Pryor et al., 2010). Several studies have examined the impact of 

climate change on wind speeds (Bloom et al., 2008; Jung et al., 2019a; Pryor et al., 2011; Pryor 
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et al., 2012; Pryor et al., 2006b; Sailor et al., 2008). Jung et al. (2022c) provided a comprehensive 

review of studies on the impact of climate change on wind energy. 

Non-stationarity in WSTS can undermine the reliability of wind farm projects. Evaluating the 

resource's long-term variability during the project's initial phase can provide the data needed to 

build a more resilient energy system. 

To evaluate the impact of climate change on wind resources, researchers primarily used Global 

climate models (GCM) and RCMs (Jung et al., 2022c; Pryor et al., 2010). GCM experiments are 

conducted globally to understand Earth’s climate system dynamics and to project future climate 

conditions under various scenarios (Eyring et al., 2016). However, one limitation of GCMs is their 

coarse spatial resolution, which limits their ability to represent mesoscale and microscale wind 

patterns (Shen et al., 2022).   

To address this limitation, downscaling techniques are often employed to refine the coarse-

resolution output of GCMs into a finer spatial scale that is more relevant to specific regions of 

interest. RCM simulations, which represent the dynamical downscaling of GCMs, operate at a 

higher spatial resolution, enabling a more detailed representation of regional climate features. By 

nesting RCMs within GCMs, researchers capture finer-scale processes that influence local wind 

patterns, thus improving the accuracy of climate projections at the local levels (Tobin et al., 2016).  

As an alternative to RCM, statistical downscaling methods are also employed to bridge the gap 

between coarse-scale GCM outputs and local wind conditions. These methods involve 

establishing a relationship between the historical simulation outputs of GCMs and measured data 

(Schoof, 2013). The main advantage of using statistical downscaling over RCMs is its 

computational efficiency, making it particularly useful for large-scale studies. In some studies 

(Bartók et al., 2019; Costoya et al., 2020; Li et al., 2020; Luzia et al., 2023; Moemken et al., 2018; 

Nabipour et al., 2020; Vu Dinh et al., 2022), statistical downscaling was applied as an additional 

step to post-process RCM simulations. However, a significant limitation of statistical downscaling 

is its reliance on long-term measured data for model training and validation (Jeong et al., 2012). 

At PSLs, MCP can be applied to extend the short-term wind speed records, which can serve as 

the measured data for statistical downscaling. Alternatively, outputs from GCM or RCM can be 

adjusted using wind speed data from the reference site and further corrected using MCP at the 

PSL. For example, Rajczak et al. (2016) proposed a two-step statistical approach for bias-

correcting RCM outputs at PSLs. The RCM output is corrected at the reference site in the first 

step, followed by a subsequent BC at the PSL. For both BC steps, the authors used QM. This 
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method relies on the availability of a meteorological station (reference site) with long-term 

observation data and a stationary relationship with the PSL, which is not guaranteed.  

 At USLs, reanalysis datasets often serve as the primary source of historical ‘quasi-observational’ 

data for statistical downscaling (Jung et al., 2022c).  These datasets provide consistent records 

of past weather conditions spanning several decades and typically offer finer spatial resolution 

than GCM simulations. However, it is important to recognize the potential limitations of reanalysis 

data as a substitute for observational data, primarily due to biases introduced during the 

assimilation process and the uncertainties inherent to the modeling techniques and assumptions 

(Gualtieri, 2022). To mitigate the uncertainties associated with individual datasets, it has been 

recommended to utilize multiple reanalysis datasets (Torralba et al., 2017). In addition, Moradian 

et al. (2023) validated the reliability of the reanalysis data in their study region by comparing it 

with available observational data before conducting further analysis at USLs. 

Using reanalysis datasets as the target, various statistical methods have been used to downscale 

wind speed data from GCMs and RCMs at USLs. 

- QM (Bartók et al., 2019; Costoya et al., 2020; de Souza Ferreira et al., 2024; 

Hdidouan et al., 2017; Li et al., 2020; Moemken et al., 2018; Vu Dinh et al., 2022) 

- ML models (Lin et al., 2023; Nabipour et al., 2020; Zhang et al., 2021) 

- Copula functions (Moradian et al., 2023)  

- Linear scaling based on the GWA (Luzia et al., 2023) 

QM was the most widely used statistical downscaling technique, followed by ML models. Various 

forms of QMs were explored for wind speed downscaling. Li et al. (2019) conducted a comparative 

study of different QM techniques. Their findings indicated that parametric QM based on the 

Weibull distribution performed slightly better than empirical distribution QM and CDF 

transformation (Michelangeli et al., 2009). The CDF transformation aims to improve QM by 

accounting for changes in WSPD between historical and future projection periods.  

In the context of ML models, CNN and recurrent neural networks have been applied due to their 

ability to capture complex spatial and temporal patterns in climate data. Lin et al. (2023) 

demonstrated that CNNs can enhance the spatial resolution of RCM outputs by extracting spatial 

features from gridded wind speed data. Meanwhile, Zhang et al. (2021) showcased the suitability 

of recurrent neural networks in capturing the relationships between wind speed datasets with 

different spatial resolutions.    
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Copula functions offer a flexible way to model the joint distribution of multiple variables while 

allowing for different marginal distributions (Harry, 2014). Moradian et al. (2023) applied copula 

functions to model the dependency between GCM outputs and reanalysis wind speed data, 

demonstrating the superior performance of copula functions compared to the ensemble mean 

method, which combines multiple GCM outputs into a single estimate. 

Despite their advantages, statistical downscaling methods have limitations. One significant 

constraint is the assumption of stationarity in the relationships between the GCM and RCM 

outputs and local climate variables. Addressing these limitations remains a crucial area of ongoing 

climate modeling and projection research. 

2.6 Software and tools 

This section presents the software and tools for wind speed estimation at PSLs and USLs. Table 

2.7 lists the software available for the MCP method.  The software and tools reported in the 

literature for wind speed estimation at USLs are either SI software or ML packages available in 

one of the programming languages commonly used in the scientific community. Table 2.8 lists 

the software used for wind speed estimation at USLs. No specific software for the application of 

RFA has been reported in the literature. 

Table 2.7 Software and tools for MCP 

Software tool Methods 
implemented/features  

Latest 
version  

Availability 

Continuum Orthogonal Regression; 
VR; 
Method of Bins; 
Matrix; 
Reanalysis data 
(reference site) 

Version 
3 

Open source 
https://www.continuumwind.com/   

MINT  LR; 
quantile regression; 
orthogonal regression; 
multiple reference sites 

Version 
1.1 

Licence 
https://www.sander-
partner.com/en/products/mint.html  

WindFarm LR; 
Orthogonal regression  

Version 
5 

Licence 
https://www.resoft.co.uk/English/index.htm  

WindFarmer SLR; 
PCA regression 

n/a Licence 
https://www.dnv.com/services/wind-resource-
assessment-software-windfarmer-analyst-3766  

WindoGrapher LR;  
VR; 
Matrix Time Series 
method (Lambert et al., 
2012); 
Orthogonal least 
squares, 

Version 
5 

Licence  
https://www.ul.com/services/windographer-
wind-data-analytics-and-visualization-solution  

https://www.continuumwind.com/
https://www.sander-partner.com/en/products/mint.html
https://www.sander-partner.com/en/products/mint.html
https://www.resoft.co.uk/English/index.htm
https://www.dnv.com/services/wind-resource-assessment-software-windfarmer-analyst-3766
https://www.dnv.com/services/wind-resource-assessment-software-windfarmer-analyst-3766
https://www.ul.com/services/windographer-wind-data-analytics-and-visualization-solution
https://www.ul.com/services/windographer-wind-data-analytics-and-visualization-solution
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SpeedSort (King et al., 
2005);  
Vertical Slice (Leblanc 
et al., 2009), ; 
Weibull fit (Van 
Lieshout, 2010); 
ERA5 and MERRA-2 
reference data 

WindPro  Artificial neural network;  
Matrix MCP Modeling 
(Thøgersen et al., 2007) 
LR; 
WSM  

Version 
3.5 

Licence   
https://www.emd-international.com/windpro/  

WindSim  LR; 
MLP 

Version 
11 

Licence  
https://windsim.com/   

 

Table 2.8 Software and tools for estimation at USLs 

Package/extension method Programming 
language/ Software 

Reference 

Geostatistical analyst SI  ArcGIS (Ali et al., 2012; Luo 
et al., 2008; Sliz-
Szkliniarz et al., 
2011; Van Ackere et 
al., 2015; Ye et al., 
2015) 

mgcv Statistical  R (Li et al., 2014; 
Reinhardt et al., 
2018) 

Surfer SI  (Sapuan et al., 2011) 

Geostatistical Software 
Library (GSLIB) 

SI FORTRAN (Berndt et al., 2018) 

gstat SI R (Reinhardt et al., 
2018) 

e1071 ML R (Reinhardt et al., 
2018) 

nnet ML R (Reinhardt et al., 
2018) 

scikit-learn ML Python (Höglund, 2020) 

Neural Toolbox ML MATLAB (Fadare, 2010) 

NN Toolbox ML MATLAB (Lawan et al., 2016; 
Muhammad et al., 
2014) 

nftool ML MATLAB (Kumar et al., 2016a) 

Statistics Toolbox ML MATLAB (Jung, 2016) 

SVM and Kernel Methods ML MATLAB (Foresti et al., 2011) 

GRASP ML Splus (Etienne et al., 2010) 

XGBoost ML Python (Houndekindo et al., 
2023b) 

LSBoost ML Matlab (Jung et al., 2022a; 
Jung et al., 2020; 
Jung et al., 2023b) 

https://www.emd-international.com/windpro/
https://windsim.com/
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2.7 Challenges and future directions 

A significant barrier to increasing wind energy penetration in many regions is the lack of high-

quality datasets for assessing the temporal and spatial variability of this resource (Pelser et al., 

2024). During the previous decades, progress has been made toward developing statistical and 

ML methods for wind speed estimation at PSLs and USLs. This paper reviewed these methods 

to highlight recent advances and identify areas where further research and development are 

necessary. 

2.7.1 Challenges and advances in long-term estimation at partially sampled 
locations 

The MCP approach has traditionally been used to extend short-term wind speed records at PSLs. 

One major challenge of this method is its reliance on a high-quality reference site near the PSL. 

In recent years, the availability of reanalysis data has mitigated this limitation by providing 

consistent, long-term wind speed data across broader geographic areas. However, using 

reanalysis data introduces other challenges: the data quality can vary significantly depending on 

the region (Miao et al., 2020) and the complexity of the terrain (Gualtieri, 2021; Potisomporn et 

al., 2023). Due to their coarse resolution, reanalysis datasets often struggle to accurately 

represent localized wind patterns, particularly in complex terrain, resulting in increased 

uncertainty in wind speed estimates.  

At PSLs, using available wind speed records to correct and improve the quality of reanalysis data 

can effectively reduce uncertainty in long-term wind speed estimation. Additionally, the adoption 

of nonlinear models, such as ANNs, and the introduction of additional explanatory variables (e.g., 

wind direction and other meteorological variables) can further improve the models’ ability to 

capture the complex, nonlinear relationship present in the overlapping data between the reference 

site and the PSL. 

The MCP approach is based on the assumption that the relationship derived from the overlapping 

wind speed data remains stationary. This assumption may not always be valid, particularly in 

regions where the wind regime exhibits notable temporal variability due to teleconnections and 

climate change. This challenge is further amplified by the reliance on a single reanalysis wind 

speed dataset as reference data. Some studies have reported inconsistencies in interannual 

variability (Ramon et al., 2019) and trends (Fan et al., 2021; Miao et al., 2020) across different 

reanalysis wind speed datasets.  
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In such a situation, extending the wind speed records at the PSL could help reduce the uncertainty 

in long-term estimations. However, due to time and financial constraints, collecting additional wind 

measurements at the PSL may not always be feasible. In such cases, multiple reanalysis datasets 

are recommended (Jung et al., 2023a). This approach can provide multiple scenarios of the long-

term wind resource or be combined into an ensemble to improve the robustness of the estimates.  

Additionally, adopting a probabilistic modeling technique can effectively quantify the uncertainties 

associated with long-term wind resource estimates.  

2.7.2 Challenges and advances in long-term estimation at unsampled 
locations 

At USLs, no direct wind speed records could be used to correct biases in reanalysis wind speed 

data. As a result, there is a growing reliance on corrected and uncorrected reanalysis data for 

WRA at USLs. Simple BC methods, such as the linear scaling using the GWA, have improved 

the accuracy of reanalysis wind speeds. While this method can improve the long-term MWS and 

is applicable to virtually any USL, it does not sufficiently address the discrepancies in the temporal 

variability of reanalysis wind speeds, as reported by several studies (Brune et al., 2021; Davidson 

et al., 2022; Jourdier, 2020; McKenna et al., 2022; Ramon et al., 2019).  

Consequently, there is a need to develop more advanced techniques that can improve both the 

MWS and the temporal variability of reanalysis wind speed data. ML models were developed to 

meet this requirement in regions with a well-established network of meteorological stations. 

However, the global distribution of meteorological stations is uneven; even within a country, 

coverage can be inconsistent. This disparity in data availability highlights the need for developing 

reanalysis BC methods that can improve the long-term MWS and the temporal variability while 

being transferable across diverse regions and terrains. These models should generalize beyond 

specific geographic areas, ensuring that WRA in under-sampled or unsampled regions can benefit 

from accurate and reliable wind speed predictions. 

2.7.3 Future directions 

Both reanalysis and measured wind speed data contain inherent uncertainties, which the 

modeling processes can further compound. Accurately estimating these uncertainties is critical 

for a reliable WRA. Probabilistic modeling techniques, such as Bayesian inference and quantile 

regression, are often employed to quantify the uncertainties in model outputs. These techniques 

provide a range of possible outcomes or prediction intervals instead of a single deterministic 

prediction. This probabilistic information is essential for informed decision-making in wind energy 



 88 

projects, enabling stakeholders to consider the variability and risks associated with wind energy 

potential. Despite its importance, uncertainty quantification at PSLs and USLs has received 

limited attention in the literature.  

Future research should focus on developing methods for uncertainty quantification at both PSLs 

and USLs. For example, at PSLs, ANN models could be designed to output parameters of a 

probability distribution function (Salinas et al., 2020) rather than single-point predictions, providing 

a more comprehensive representation of the inherent uncertainty and variability in wind speed 

predictions. At USLs, GB models, which are widely used, can be adapted by altering the loss 

function to predict either parameters of a probability distribution function (Duan et al., 2020) or 

conditional quantiles (Waldmann, 2018), allowing for the construction of prediction intervals. 

Moreover, wind speed data is often subject to significant noise. Preprocessing the data with signal 

decomposition techniques, such as wavelet analysis and variational mode decomposition 

(Dragomiretskiy et al., 2014), is expected to improve the modeling procedure. These 

decomposition techniques are increasingly applied in wind speed forecasting, with numerous 

studies demonstrating improved model performance (Wang et al., 2021). By decomposing WSTS 

into different subseries, these methods can effectively filter out noise and capture both short-term 

fluctuations and long-term trends, leading to more accurate predictions.  

Furthermore, the non-stationarity of WSTS poses a challenge for the long-term sustainability of 

wind farm projects. Despite the significance of this issue, few studies have focused on 

nonstationary wind speed estimation at PSLs and USLs. The availability of multiple reanalysis 

datasets and GCM outputs provides valuable insights into the impacts of several sources of non-

stationarity. However, these datasets often come with high levels of uncertainty and coarse 

resolution. More research is necessary to address these challenges, particularly in light of climate 

change impacts on wind energy projections (Jung et al., 2022c).  

2.8 Conclusion 

Wind energy development is crucial to achieving Goal 7 of the United Nations’ Sustainable 

Development Goals, which focuses on affordable and clean energy. Accurate methods for 

estimating wind speed at partially sampled and unsampled locations, including assessments of 

its long-term variability, are critical for informed decision-making. These methods help build 

stakeholders’ confidence in adopting wind energy as a reliable renewable resource. This paper 

reviews statistical and ML approaches for wind speed estimation at PSLs and USLs.   
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At PSLs, the MCP method is commonly used to extend the available short-term wind speed 

record, with most studies recommending at least a year of wind speed data at the PSL. Some 

studies have shown that longer records can significantly reduce uncertainty, whereas shorter 

records risk overestimating or underestimating resource potential due to seasonal variability. In 

cases where nearby reference stations are unavailable for the MCP method, many studies have 

turned to reanalysis wind speed data as a substitute. However, few of these studies validate the 

accuracy of reanalysis data for their specific region, and even fewer assess the interannual 

variability of the dataset. Discrepancies between the interannual variability of reanalysis data and 

the actual wind speed variability in a region can lead to errors in estimating the resource potential 

from hindcasted wind records at the PSL. Generally, more efforts are needed to evaluate the 

predictions’ uncertainties at both PSL and USLs. While various uncertainty estimation methods 

exist that can be incorporated into current frameworks, their adoption remains limited in practice. 

At USLs, the standard method for wind speed analysis has traditionally been based on the SI of 

observed wind speeds, which depends on the availability of dense meteorological station 

networks. In contrast, BC of reanalysis wind speeds is less reliant on such networks, particularly 

when utilizing the GWA. ML methods incorporating reanalysis wind speed data and high-

resolution topographic and land use data have shown promising results in predicting wind speed 

at USLs. However, there remains a need to develop transferable models that can be applied in 

regions with a sparse network of stations.  

The findings and recommendations outlined in this analysis have significant implications for the 

wind energy industry and research. Accurate wind speed estimation directly supports the 

optimization of site selection for wind farm projects, ensuring higher energy yields and improved 

project efficiency. This review can assist in selecting the most effective methods depending on 

different factors, such as the stage of the project, the data availability, and the complexity of the 

terrain. 

In addition to aiding the energy industry, the findings of this paper have broader implications for 

research. Researchers can build on the reviewed methodologies to address current limitations, 

such as improving uncertainty estimation and model transferability and developing nonstationary 

wind speed estimation techniques at PSLs and USLs. Addressing these challenges can lead to 

the development of more robust and scalable models capable of capturing wind speed variability 

across different spatial and temporal scales. Furthermore, enhancing model interpretability and 

transparency will be critical to building stakeholder trust, particularly when decisions have 

significant economic and environmental impacts.
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Nomenclature 

Abbreviations 

a.g.l Above ground level 

ANN Artificial neural networks  

BC Bias correction  

CDF  Cumulative distribution function  

CELU Continuously differentiable exponential linear units  

CNN Convolutional neural network 

DEM Digital elevation models  

ERA5 European Center for Medium-Range Weather Forecasts Reanalysis v5  

EWS Extreme wind speeds  

GB Gradient boosting  

GCM Global climate models 

GRNN General regression neural network 

GWA Global wind atlas  

K-NN K-nearest neighbor  

LR Linear regression  

MAE Mean absolute error  

MARE Mean Absolute Relative Error 

MCP Measure correlate predict 

MERRA-2 Modern-Era Retrospective Analysis for Research and Applications, Version 

2  

ML Machine learning 

MLP  Multilayer perceptron  

MSE Mean squared error 

MWS Mean wind speed 

NWP  Numerical weather prediction  

PSL Partially sampled location 

QM Quantile mapping 

R2 Coefficient of determination 

RCM Regional climate model  

RF Random forest  

RFA regional frequency analysis 
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RMSE Root mean squared error  

SI Spatial interpolation  

SRL Surface roughness length 

SVR Support vector regression  

USL Unsampled location 

VR Variance ratio regression  

WMO World Meteorological Organization 

WRA Wind resource assessment  

WSPD Wind speed probability distribution  

WSTS Wind speed time series  

Symbols 

𝛼  Power law exponent 

𝛼𝐺𝑊𝐴  Weibull scale parameter from the GWA 

𝛼𝑀𝐸𝑅𝑅𝐴  Weibull scale parameter from MERRA-2 

𝑏  Kernel bandwidth 

𝑏(𝑙)  Multilayer perceptron bias vector of the 𝑙-th layer 

𝑒(𝑠𝑖)  Residuals at sampled locations 𝑠𝑖 

𝐸𝑟𝑟𝑚𝑒𝑎𝑛  Relative bias in the prediction mean  

𝐸𝑟𝑟𝑣𝑎𝑟  Relative bias in the prediction variance 

𝐹̂𝐵𝑆(∙)  Birnbaum-Saunders CDF kernel 

𝐹̂𝐿𝑁(∙)  Log-Normal CDF kernel 

𝐹𝑛(∙)  Empirical Cumulative distribution function 

𝑔(𝑙)(∙)  Multilayer perceptron activation function of the 𝑙-th layer 

ℎ(𝑙)  Multilayer perceptron hidden vector of the 𝑙-th layer 

𝐾𝐵𝑆(∙)  Birnbaum-Saunders kernel function 

𝑘𝐺𝑊𝐴  Weibull scale parameter from the GWA 

𝐾𝐿𝑁(∙)  Log-Normal kernel function 

𝑘𝑀𝐸𝑅𝑅𝐴  Weibull scale parameter from MERRA-2 

𝜆𝑖  Kriging weights 

𝜆̂𝑟  Sample L-Moments of order 𝑟 

𝜇  Mean wind speeds 

𝑜̅  Mean of the observed values 
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𝑜𝑖  Observed value 

𝑝̅  Mean of the predicted values 

Φ(∙)  Cumulative distribution function of the standard normal distribution.  

𝑝𝑖  Predicted value 

𝑄𝜃̂(∙)  Quantile function of the Kappa distribution 

𝑟  L-moment order 

σ  Standard deviation of the wind speed 

𝜃  Estimated of the Kappa distribution 

𝑈𝑧  Wind speed at a height of 𝑧 

𝑈𝑧𝑟  Wind speed at a reference height 𝑧𝑟 

 𝑊(𝑙)  Multilayer perceptron weight matrix of the 𝑙-th layer 

𝑋𝑖:𝑛  Sample order statistics 

𝑦̂  Estimated wind speed 

𝑦𝑡
𝐸𝑅𝐴5  Wind speed value from ERA5 

𝑦𝐺𝑊𝐴̅̅ ̅̅ ̅̅ ̅  Mean wind speed from the GWA 

𝑦𝑡
𝑀𝐸𝑅𝑅𝐴  Wind speed value from MERRA-2 

𝑦𝑀𝐸𝑅𝑅𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅̅   Mean wind speed from MERRA-2 

𝑧0  Roughness length 
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Au cours de la revue de littérature, nous avons constaté une absence de consensus sur les 

variables explicatives, en particulier topographiques, pour l’estimation des vitesses du vent aux 

sites non échantillonnés. Nous avons donc procédé, dans l’article 2, à une analyse comparative 

des variables explicatives identifiées dans la littérature, en analysant leur influence sur les 

différentes plages de vitesse du vent. En plus de répondre à l’une des pistes de recherche mises 

en évidence dans la revue de littérature, cet article représente une étape clé dans le 

développement des approches proposées dans les travaux suivants, car il permet d’identifier les 

facteurs les plus pertinents et a optimisé leur intégration dans les modèles d’estimation du vent 

aux sites non échantillonnés.
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Abstract  

Wind speed estimation at ungauged locations is one of the preliminary steps for wind resource 

assessment. With the availability of high-resolution Digital Elevation Models (DEM) and remote 

sensing data, the number of potential wind speed predictors has grown substantially. The 

adequate spatial scale of these predictors is unknown a priori, leading to the use of multiple spatial 

scales of predictors in wind speed estimation models. Implementing a feature selection method 

as a pre-processing step of the analysis is necessary to avoid overfitting and the resulting potential 

model underperformance. This paper evaluated six feature selection methods (forward stepwise 

regression, Least Absolute Shrinkage and Selection Operator (LASSO), Elastic Net, Maximum 

relevance Minimum redundancy (MRMR), Genetic algorithm, and recursive feature elimination 

using support vector regression) for the estimation of different wind speed quantiles across 

Canada. The selected features were used to fit a regression-kriging model, and the importance 

of the predictors was evaluated with their associated regression coefficients. The results of the 

study showed that LASSO and MRMR are the most efficient algorithms with the least number of 

parameters to tune and good generalization performance. The study found that some predictors 

were more important for specific exceedance probabilities. The most important predictors were 

the distance from the coast and surface roughness length, regardless of exceedance probability. 

Keywords: Exceedance probability, Feature selection, Machine learning, Topographic feature, 

ungauged location, Wind speed. 
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3.1 Introduction 

The global energy system significantly contributes to greenhouse gas emissions, with a share of 

approximately 34% (Lamb et al., 2021). Alternative energy sources, such as wind, can help 

mitigate the environmental footprint of our energy system (Jung et al., 2018b; Shin et al., 2016). 

Wind energy production has experienced substantial growth during the last decades, accounting 

for 8% (594 GW) of the 7 400 GW of installed generating capacity worldwide as of 2019 

(International Renewable Energy Agency, 2022). Unlike conventional energy sources such as 

coal and nuclear energy, wind energy is intermittent and heavily reliant on wind speed (WS). A 

sound understanding of the WS variability at a location of interest for wind energy production is 

necessary to integrate the energy source effectively into the energy mix (Aries et al., 2018). A 

significant step in wind energy planning is identifying a good location for resource exploitation. 

Potential sites of interest often do not coincide with a location where extensive WS measurements 

are available. Therefore, it is helpful to implement approaches that estimate wind resources at 

ungauged locations.  

The challenge of WS estimation at ungauged locations has initially been tackled with spatial 

interpolation models. In recent studies, machine learning models have gained more popularity, 

and some researchers have suggested combining spatial interpolation models and machine 

learning (see Houndekindo et al. (2023c)) for a detailed review of WS estimation at ungauged 

locations). These developments have led to the experimentation of new predictors, notably 

topographical features extracted from a Digital elevation model (DEM). Many topographical 

features can be used for WS modelling (Maxwell et al., 2022).  One such feature is terrain 

curvature, which has been identified as one of the most effective WS predictors in regions with 

complex terrain, according to a study conducted in Switzerland by Robert et al. (2013). Several 

land surface parameters (e.g., plan curvature, gaussian curvature, minimum curvature) extracted 

from DEM can be used to describe the terrain curvature (Wilson, 2018), leading to several 

possible features to include in the model. Some of these features will undoubtedly be redundant 

(Maxwell et al., 2022). The selection of the spatial scales of the topographical features represents 

another significant challenge. Two potential downsides of incorporating too many features into 

the model are overfitting the model's parameters to the training data and compromising the 

model’s interpretability. To address this issue, feature selection (FS) can be used as a 

preprocessing step to build more accurate and concise models while minimizing computation time 

(Guyon et al., 2003).  
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FS methods are often categorized as filter-based, wrapper, or embedded methods (Guyon et al., 

2003). Filter-based methods are more computationally efficient and less prone to overfitting 

compared to wrappers and embedded methods (Zhou et al., 2021b). A drawback of most filter 

methods compared to wrappers and embedded methods is their inability to consider feature 

interactions (Urbanowicz et al., 2018).  The filter approach selects predictors based on their 

relevance to the dependent variable. In the case of regression, the correlation coefficient can be 

used to assess the relevance of features.  

On the other hand, wrappers and embedded methods rely on the model performance to select an 

optimal set of features. The wrapper methods search for the feature subset, which gives the best 

performance with a predefined learning algorithm. Wrapper methods can be used with any model, 

while embedded methods rely on models that inherently rank the features’ importance (e.g., 

random forest) or eliminate irrelevant features (e.g., penalization methods).  

Most studies have applied a data-driven approach to solving the feature selection challenge for 

WS estimation. For example, Robert et al. (2013) applied a modified version of the general 

regression neural networks to select the best spatial scale and topographical features for monthly 

WS interpolation. Jung (2016) employed feature importance ranking with random forest and a 

forward stepwise feature selection to identify suitable predictors for WS estimation. In the second 

step, the author used the variance inflation factor to evaluate feature redundancy in the study. For 

extreme WS mapping, Etienne et al. (2010) used the linear correlation between predictors to 

evaluate their redundancy and backward elimination to retain the most important predictors in the 

model. Foresti et al. (2011) applied a multiple kernel learning model for FS in WS mapping. 

Veronesi et al. (2016) employed the Least Absolute Shrinkage and Selection Operator (LASSO) 

technique to select relevant features to implement a statistical model for estimating WS 

distribution at ungauged sites.   

To the best of our knowledge, no studies compared the performance of FS methods for WS 

estimation at ungauged locations. Nevertheless, such comparison is necessary as the number of 

available WS predictors increases, and so is the risk of redundancy and overfitting. Comparative 

studies are essential as they allow for a systematic comparison of various approaches with 

diverse complexity and performance levels. They serve as a basis to identify the strengths and 

weaknesses of each approach and better understand their performance in different conditions. 

Several comparative studies of features selections methods have been conducted in studies 

related to environmental variables. For instance, Carta et al. (2015) compared a wrapper method 

to a filter approach for FS for long-term WS prediction at locations with a short record. The authors 
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found that the filter method produced sparser feature subsets, while the wrapper method had a 

better predictive ability. In that study, FS increased the interpretability of the final model while 

improving its performance. Seven FS methods were compared for river flow quantile estimation 

in ungauged basins (Fouad et al., 2020). The authors found that the FS methods performed better 

than dimension reduction techniques (principal component analysis) to reduce multicollinearity in 

the feature subsets. The same study observed similar performance between FS using experts' 

knowledge and data-driven FS methods. Rodriguez-Galiano et al. (2018) evaluated the 

performance of various FS methods to predict the probability of the occurrence of nitrates above 

a threshold value in groundwater. The study revealed that FS helped isolate and identify the main 

drivers of nitrate pollution in groundwater. Chen et al. (2019) conducted a comparative study of 

statistical models with various FS methods to predict fine particles and nitrogen dioxide 

concentration across Europe. The study found that regularization algorithms such as LASSO and 

Elastic Net (ENET) efficiently selected relevant predictors despite high multicollinearity in the 

feature set. Also, the regularization algorithms had the additional benefit of model interpretability.  

This study compared six different FS methods for WS quantile estimation. These methods 

included forward stepwise regression (FSWR), LASSO, ENET, Maximum relevance Minimum 

redundancy (MRMR), Genetic algorithm (GALG), and recursive feature elimination using support 

vector regression (RFES). The selected algorithms are composed of filter-based (e.g., MRMR), 

wrappers (e.g., FSWR, GALG), and embedded methods (e.g., LASSO, ENET, RFES). The 

selected predictors or features were used with a regression kriging (RK) model (Hengl et al., 2007) 

to estimate various WS quantiles. The RK model has previously shown promising results for WS 

estimation (Alsamamra et al., 2010; Lee, 2022). Reinhardt et al. (2018) also found that RK 

performed better than Artificial Neural Networks (ANN) and Support Vector Machines (SVM) for 

WS interpolation. RK is an attractive approach for interpolating environmental variables (Hengl et 

al., 2007). It allows the use of relevant predictors, and unlike universal kriging and kriging with 

external drift, RK can be adapted with various types of regression models (e.g., Random Forest, 

Generalized Additive Models).  

The study also evaluated the importance of various predictors for estimating WS quantiles with 

different exceedance probabilities. Most features used in previous studies were derived and 

compared within the same framework. In addition, alternative features related to conventional WS 

predictors used in the literature were also evaluated. These alternative features may provide 

additional information and insights into WS behaviour at different exceedance probabilities and 

could improve the accuracy of WS predictions. 
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The paper is organized as follows. The dataset used is described in section 3.2. In section 3.3, 

the six FS methods evaluated are presented. Section 3.4 presents the results of the analysis. The 

discussion and the conclusion are given in sections 3.5 and 3.6, respectively. 

3.2 Data 

3.2.1 Wind speed data 

The data analyzed in the study are hourly WS data at 10m above ground from measurement 

stations across Canada. The data were obtained from Environment and Climate Change Canada 

(ECCC) historical climate database. Stations with at least 20 years of record available until 2010 

were selected, and only those with at least ten years of record with less than two months of 

missing data were used. Figure 3.1 shows the spatial distribution of the selected stations, which 

amounted to 207. 

 

Figure 3.1 Study region and locations of the 207 selected stations 

From the hourly records, empirical WS quantiles were estimated using the Weibull plotting 

position formula: 
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Equation 3.1 

𝑃𝑖 = 𝑃(𝑊𝑠 > 𝑊𝑠𝑖) =
𝑖

𝑛 + 1
 

where 𝑷𝒊 is the probability of exceedance associated with the observed hourly wind speed ( 𝑾𝒔𝒊), 𝒊  is the rank 

of the observed wind speed 𝑾𝒔𝒊 sorted in descending order,  𝒊 = 𝟏 corresponds to the highest 

observed WS, and 𝒊 = 𝒏 corresponds to the lowest observed WS, with 𝒏 the number of 
observations.  

Monotonic decreasing penalized splines (P-Splines: Paul et al., 1996; Pya et al., 2015) were fitted 

between the exceedance probabilities and their associated observed WS quantiles to construct 

the empirical complementary cumulative distribution function (survival function). The fitted curve 

was used to estimate WS quantiles at 14 fixed percentile points at each location in the study area. 

The following 14 fixed percentile points were selected: p = 0.01%, 0.1%, 1%, 5%, 10%, 20%, 

30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% to cover an extensive range of WS quantiles. The 

P-Splines is a non-parametric model that allows fitting a smooth and flexible curve to data. 

Monotonic decreasing constraints were imposed on the P-Splines to respect the monotonic nature 

of complementary cumulative distribution functions. 

3.2.2 Predictors 

The predictors used in the study are topographical, surface roughness length, geographical 

coordinates, and the location distance from the coast. Table 3.1 provides more details on these 

predictors. The topographical variables were extracted from a resampled (100 m spatial 

resolution) ALOS DEM (Tadono et al., 2014) and computed with the WhiteboxTools (Lindsay, 

2014) developed at the University of Guelph, Canada. Information on the land cover type obtained 

from a 2015 land use map of Canada (Latifovic et al., 2017) was used to estimate the surface 

roughness length according to Wiernga (1993). The land use map was resampled to produce 

multiple spatial resolutions, with majority resampling (mode) providing information on the most 

common land use type for the given spatial scale. 

Some of the features selected for the study were previously studied because they describe 

physical processes that influence wind movement. This study also introduced alternative features 

describing similar physical processes. For instance, Jung (2016) used slope (SLPE), curvature, 

aspect (ASPC), roughness length (RGLH) and relative elevation for WS mapping in Germany. In 

the present study, relative elevation measures used were deviation and difference from mean 

elevation (DVME and DFME), relative topographic position (RTGP) and elevation percentile 

(ELVP). Also, seven surface curvature measures (gaussian, maximal, mean, minimal, plan, 



 101 

tangential, and total curvature) were extracted from the DEM and used as WS predictors. In 

Switzerland, Foresti et al. (2011) used altitude (ELVT), geographic coordinates (XGEO and 

YGEO), and Differences of Gaussians (DOGS) to map WS. DOGS serves as a measure of terrain 

convexity and approximates the Laplacian of Gaussian (LPGS: Lowe, 2004).  In the current study, 

DOGS and LPGS were both evaluated. Veronesi et al. (2015) employed topographical surface 

roughness from a DEM to interpolate the parameters of the Weibull distribution for wind resource 

mapping. Alternative topographical surface roughness measures employed in the present study 

were the ruggedness index (RUGI), the surface area ratio (SART) and the standard deviation of 

the slope (STDS). Etienne et al. (2010) generated landform classes (e.g., canyons, ridges, 

valleys) from a DEM to model WS. Geomorphologic phenotypes (GMPG) and the Pennock 

landform class (PNCL) were two alternative landform classifications used in the present study. 

The distance from the coast (DSEA) was also used as a WS predictor in the current study, as 

done by Aniskevich et al. (2017).  

Table 3.1 Description of the predictors and their spatial scale 

Predictor  Abbreviation  Description  Spatial scale  

Altitude  ELVT Altitude of the location in m.   

Aspect  ASPC Slope orientation in degree.  100m, 500m, 1000m, 
1500m, 2000m 

Deviation from mean 
elevation  

DVME Difference between the grid 
cell elevation and the mean of 
its neighbouring cells 
normalized by the standard 
deviation.  

100m, 500m, 1000m, 
1500m, 2000m 

Difference from cell 
mean elevation  

DFME Difference between the grid 
cell elevation and the mean of 
its neighbouring cells.  

100m, 500m, 1000m, 
1500m, 2000m 

Difference of Gaussian  DOGS Difference between two copies 
of the DEM smoothed with two 
different gaussian kernel. 
Measure land surface 
curvature.  

(100m, 500m), (100m, 
1000m), (500m, 
1000m), (300m, 
500m), (1000m, 
2000m), (1000m, 
1500m), (100m, 
2000m), (500m, 
2000m) 

Distance to coast  DSEA The location distance to the 
coast   

 

Elevation percentile  ELVP Percentile of the grid cell 
elevation relative to the 
neighbouring cells.  

100m, 500m, 1000m, 
1500m, 2000m 

Gaussian curvature  GSCV Product between the maximal 
and the minimal curvature. 
Measure of surface curvature 
(Florinsky, 2017).  

100m, 500m, 1000m, 
1500m, 2000m 

Geographical 
coordinates 

XGEO, YGEO Geographical coordinates of 
the location.  
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Geomorphologic 
phenotypes 
(geomorphons) 

GMPG Landform element 
classification with the 
geomorphons-based method 
(Jasiewicz et al., 2013). 

 

Laplacian of Gaussian  LPGS Derivative filter used to 
highlight location of rapid 
elevation change. 

100m, 500m, 1000m, 
1500m, 2000m 

Maximal curvature  MXCV Measure of surface curvature  
(Wilson, 2018). 

100m, 500m, 1000m, 
1500m, 2000m 

Mean curvature  MNCV Measure of surface curvature  
(Wilson, 2018). 

100m, 500m, 1000m, 
1500m, 2000m 

Minimal curvature MICV Measure of surface curvature 
(Florinsky, 2017). 

100m, 500m, 1000m, 
1500m, 2000m 

Pennock landform class PNCL Landform classification based 
on the slope and curvature of 
the grid cell (Pennock et al., 
1987). 

 

Plan curvature PLCV Measure of surface curvature 
(Florinsky, 2017). 

100m, 500m, 1000m, 
1500m, 2000m 

Relative topographical 
position  

RTGP Normalized measure of the 
grid cell elevation relative to its 
neighbouring cells. 

100m, 500m, 1000m, 
1500m, 2000m 

Ruggedness index RUGI A measure of the local terrain 
heterogeneity (Jasiewicz et al., 
2013; Riley et al., 1999). 

100m, 500m, 1000m, 
1500m, 2000m 

Slope  SLPE Slope at the grid cell. 100m, 500m, 1000m, 
1500m, 2000m 

Standard deviation of 
slope 

STDS Measure of surface roughness 
(Grohmann et al., 2011). 

100m, 500m, 1000m, 
1500m, 2000m 

Surface area ratio SART Measure of the surface 
roughness (Jenness, 2004). 

100m, 500m, 1000m, 
1500m, 2000m 

Surface roughness 
length  

RGLH Surface roughness length 
estimated from land use map.  

100m, 500m, 1000m, 
1500m, 2000m 

Tangential curvature TGCV Measure of surface curvature 
(Florinsky, 2017). 

100m, 500m, 1000m, 
1500m, 2000m 

Total curvature TLCV Measure of surface curvature.  100m, 500m, 1000m, 
1500m, 2000m 

3.3 Materials and method 

3.3.1 Feature selection methods 

3.3.1.1 Forward stepwise regression 

The stepwise regression is a greedy FS algorithm extensively covered in the literature. Three 

variants of the method exist backward, forward, and bi-directional stepwise regression. Backward 

stepwise regression builds a model with all potential predictors and eliminates the least relevant 

predictors at each iteration. Forward selection begins with a “null” model containing only a 

constant term and adds the most relevant predictors to the regression model at each iteration. Bi-
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directional stepwise regression combines backward and forward stepwise regression. Various 

criteria have been used in the literature to measure the predictors’ relevancy (e.g., AIC, P-value, 

R²-adjusted).  

There is a thorough discussion in the literature about the shortcomings of stepwise regression 

(Whittingham et al., 2006), with Smith (2018) advising against its use. The author found that 

stepwise regression underperformed as potential predictors increased.  However, the method 

remains widely used in the scientific community. In this paper, a forward stepwise regression 

(FSWR) was applied as a benchmark. The algorithm was initiated with the null model, and 

potential predictors that led to the most significant increase in R²-adjusted were added at each 

iteration. This procedure is repeated until no candidate variables left could improve the R²-

adjusted. A similar forward stepwise regression approach was implemented by Chen et al. (2019) 

and performed better than backward stepwise regression for annual average fine particle (PM2.5) 

and nitrogen dioxide (NO2) concentrations prediction.  

3.3.1.2 Least Absolute Shrinkage and Selection Operator 

LASSO algorithm is a penalty-based linear model developed by Tibshirani (1996), which imposes 

an L1-norm penalization on the regression coefficient forcing some coefficients to zero and thus 

producing a sparse solution. The LASSO regression coefficient estimates are given by: 

Equation 3.2 

𝛽̂ = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽(𝑌 − 𝑋𝛽)
𝑇(𝑌 − 𝑋𝛽) + 𝛼∑|𝛽𝑗|

1

𝑝

𝑗=1

 

where 𝒀 is the response vector, 𝑿 is the matrix of predictors, 𝜷 are the regression coefficients, 𝒑 is the number 

of predictors, 𝜶 is a tuning parameter that controls the degree of penalization, 𝜶∑ |𝜷𝒋|
𝟏𝒑

𝒋=𝟏  is 

the penalization term and |. |𝟏  represents the L1-norm of a vector. 

Zou et al. (2005) discussed some limitations of LASSO regression, which renders the algorithm 

inappropriate for FS in some situations. A particularly relevant limitation in this study is the inferior 

prediction performance of LASSO regression compared to Ridge regression when there is a high 

correlation between the predictors. 
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3.3.1.3 Elastic Net 

LASSO regression can be seen as a particular case of the Bridge regression introduced by Frank 

et al. (1993). In Bridge regression, the penalization term in Equation 3.2 becomes  

𝛼∑ |𝛽𝑗|
𝛾𝑝

𝑗=1  𝑤𝑖𝑡ℎ 𝛾 ≥ 0. LASSO regression is equivalent to Bridge regression when  𝛾 = 1. 

Another well-known case of Bridge regression is Ridge regression with 𝛾 = 2. With Ridge 

regression, the regression coefficients are shrunk depending on the predictors’ importance, but 

they are not set to zero if the variables are irrelevant to the regression.   

The ENET model combines the Ridge and the LASSO penalty. The Elastic net algorithm 

minimizes the following equation: 

Equation 3.3  

𝑚𝑖𝑛𝛽(𝑌 − 𝑋𝛽)
𝑇(𝑌 − 𝑋𝛽) + 𝛼𝜆∑|𝛽𝑗|

1
+ 𝛼(1 − 𝜆)∑|𝛽𝑗|

2

𝑝

𝑗=1

𝑝

𝑗=1

 

where 𝜶 𝒂𝒏𝒅 𝝀 (𝟎 ≤ 𝝀 ≤ 𝟏) are two hyperparameters of the model that can be selected using cross-validation. 

3.3.1.4 Genetic Algorithms 

GAGL is an optimization algorithm that emulates natural evolution and selection to find an optimal 

solution. It has been implemented in several studies for FS (Amini et al., 2021; Eseye et al., 2019; 

Gokulnath et al., 2019; Leardi et al., 1992). The algorithm starts with a population of solutions 

(individuals) initialized randomly. A fitness measure is defined to evaluate every solution in the 

population. A new population is formed by producing offspring from the best solutions of the old 

population (by reproduction and genetic mutation). This procedure is repeated until a stopping 

criterion is reached. Several variations of the algorithm control, among others, how the offspring 

of the population are bred. The different steps of the genetic algorithm implemented in this study 

are described as follows: 

Step 1: A population was initialized randomly with 50 potential solutions. The solutions were 

encoded as a sequence of binary strings (the genes), with each gene associated with a particular 

feature among the candidate features. A selected gene (a feature) was represented by “1” and a 

none selected gene by “0”. The population is represented by a binary matrix where the rows 

represent the potential solutions, and an entry represents a feature or a gene.  
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Step 2: The 50 solutions in the population were evaluated (fitness score), and the best solution 

was copied without modification to the next generation.  

Step 3: The next generation's parents were selected with the roulette wheel selection method: the 

solutions with the highest fitness score have more chances to be selected as parents for 

reproduction to produce offspring. The reproduction process was performed through two genetic 

operators, uniform crossover and mutation.  

Step 4: Step 3 was repeated until the new population size equalled the initial population size. 

Step 5: Steps 2 to 4 were repeated until the maximum number of iterations was reached.  

Table 3.2 presents different parameters of the algorithm used in this study. The performance of 

the solutions was evaluated with a 10-fold cross-validation root mean squared error (RMSE) 

estimated with a simple linear regression model: 

Equation 3.4 

𝑅𝑀𝑆𝐸(𝐶𝑉) =  
1

10
∑√

1

𝑛𝑘
∑(𝑦𝑖 − 𝑦̂𝑖)

𝑛𝑘

𝑖=1

210

𝑘=1

 

where 𝒏𝒌 is the size of the kth fold, and 𝒚𝒊 and 𝒚̂𝒊 are the observed and predicted WS values. 

The fitness score was estimated as a weighted sum of the solution performance (RMSE) and its 

cardinality (Card) as follows: 

Equation 3.5 

𝐹𝑖 =
𝑤1

𝑅𝑀𝑆𝐸𝑖
+
(1 − 𝑤1)

𝐶𝑎𝑟𝑑𝑖
 

where  𝟎 < 𝒘𝟏 < 𝟏   

The probability of selection of a solution for the reproduction process was assigned based on: 

Equation 3.6 

𝑃𝑠𝑒𝑙𝑖 =
𝐹𝑖

∑ 𝐹𝑖
50
𝑖=1

 

Table 3.2 Selected parameters of the genetic algorithm 

GA parameter  Value/method  

Initial population size  50 
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Crossover type Uniform  

Crossover probability  0.9 

Mutation probability 0.05 

Selection process  roulette wheel selection 

Maximum number of iterations 100 

𝒘𝟏 0.1, 0.5, 0.7 

3.3.1.5 Minimum redundance – Maximum relevance 

Filter-based FS approaches such as maximal relevancy (e.g., correlation) do not require the 

regression model to be evaluated multiple times (e.g., in cross-validation); they are relatively 

computationally efficient and less prone to overfitting. One of their drawbacks is their failure to 

ignore redundant predictors correlated to the response variable.  

The MRMR algorithm is an iterative approach developed by Ding et al. (2005) to improve 

conventional filter-based FS approaches. MRMR benefits from the advantages of the filter-based 

FS approach while ignoring redundant features in the process. At each iteration of the MRMR 

algorithm, a function measuring the redundancy and relevancy is computed, and the feature that 

maximizes this function is selected. Several measures of relevancy and redundancy have been 

proposed in the literature depending on the type of variables (discrete vs. continuous), the desired 

level of trade-off between relevancy and redundancy (Zhao et al., 2019), and the type of 

relationship (linear or nonlinear). In this study, the relevancy is measured with the F-statistic 

(𝐹(𝑦, 𝑥𝑖)). The redundancy of a non-selected feature is measured as the inverse of the sum of the 

correlation between the feature and the selected features (Ding et al., 2005), and the MRMR 

optimization criterion function is:  

Equation 3.7 

𝑓(𝑥𝑖) =
𝐹(𝑦, 𝑥𝑖)

1
𝑠
∑ 𝜌(𝑥𝑠, 𝑥𝑖)
𝑠
𝑗=1

 

where 𝝆(𝒙𝟏, 𝒙𝟐) is the Pearson correlation coefficient between features 𝒙𝟏 and 𝒙𝟐, and  𝒔 is the number of 
selected features. 

Equation 3.8 

𝐹(𝑦, 𝑥𝑖) =  
𝜌(𝑦, 𝑥𝑖)

2

[1 − 𝜌(𝑦, 𝑥𝑖)
2]
× (𝑛 − 2) 

where 𝒏 − 𝟐 is the degree of freedom of a simple linear regression model fitted with 𝒏 samples, one predictor 
and a constant term 



 107 

At each iteration, the algorithm seeks to find the feature (𝑥𝑖) which maximizes 𝑓(𝑥𝑖). The stopping 

criterion of the algorithm (number of selected features to include in the model) is a hyperparameter 

that can be determined using cross-validation. 

3.3.1.6 Recursive Feature Elimination Support Vector 

Regression 

The RFES algorithm (Guyon et al., 2002) is a backward elimination algorithm. The model is fitted 

to the data at each iteration, and the least important predictor is removed from the feature set. 

This process is repeated until a stopping criterion (e.g., minimum size of feature set) is reached. 

The stopping criterion can be determined through cross-validation. In the RFES algorithm, the 

importance of a predictor is measured by the square of its associated coefficient in the weight 

vector (𝑤 : Equation 3.17) using the epsilon-insensitive SVR formulation (Vapnik, 2000), with 

epsilon the maximum tolerable deviation between the predictions and the observed values.  

Let 𝑓(𝑥) be the linear function used to approximate the relationship between the predictors (𝑥) 

and the response variables 𝑦: 

Equation 3.9 

𝑓(𝑥) = 〈𝑤. 𝑥〉 +  𝑏 

In the epsilon-insensitive SVR formulation (Vapnik, 2000), the loss function is defined as follows: 

Equation 3.10 

𝐿𝑜𝑠𝑠 =  {
0                 𝑖𝑓 |𝑦 − 𝑓(𝑥)| ≤ 𝜀

 |𝑦 − 𝑓(𝑥)| −  𝜀       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

It is desirable to find a solution to Equation 3.9 having 𝑤 with minimum norm to reduce the model 

complexity. The optimization problem can be re-written as follows: 

Equation 3.11 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐽(𝑤) =  
1

2
‖𝑤‖2 

Subject to: 

Equation 3.12 
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|𝑦𝑖  −  〈𝑤, 𝑥𝑖〉 +  𝑏| ≤  𝜀 

With noisy data, 𝑓(𝑥) may not satisfy the epsilon-insensitive constraint. Therefore, slack variables 

(𝜉𝑖𝜉𝑖
∗) are introduced for each point to allow less restrictive constraints leading to the following 

formulation (Vapnik, 2000): 

Equation 3.13 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐽(𝑤) =  
1

2
‖𝑤‖2 + 𝐶 ∑(𝜉𝑖 + 𝜉𝑖

∗)

𝑛

𝑖=1

 

Equation 3.14 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: {

𝑦𝑖  − 〈𝑤. 𝑥𝑖〉 −  𝑏 ≤ 𝜀 + 𝜉𝑖 
〈𝑤, 𝑥𝑖〉 +  𝑏 − 𝑦𝑖  ≤ 𝜀 + 𝜉𝑖

∗

𝜉𝑖𝜉𝑖
∗                                  ≥ 0 

 

where 𝑪 is a regularization parameter  

From the objective function and the constraints (Equation 3.13 and Equation 3.14), a Lagrange 

function 𝐿 is defined by introducing non-negative Lagrange multipliers 𝛼𝑖𝛼𝑖
∗, 𝜂𝑖𝜂𝑖

∗:  

Equation 3.15 

𝐿 =  
1

2
‖𝑤‖2 + 𝐶 ∑(𝜉𝑖 + 𝜉𝑖

∗)

𝑛

𝑖=1

−∑(𝜂𝑖𝜉𝑖 + 𝜂𝑖
∗𝜉𝑖
∗)

𝑛

𝑖=1

− ∑𝛼𝑖(𝜀 + 𝜉𝑖 − 𝑦𝑖 + 〈𝑤, 𝑥𝑖〉 +  𝑏

𝑛

𝑖=1

)

− ∑𝛼𝑖
∗(𝜀 + 𝜉𝑖

∗ + 𝑦𝑖  −  〈𝑤, 𝑥𝑖〉 −  𝑏)

𝑛

𝑖=1

 

At the saddle point, the partial derivatives of 𝐿 in all directions are null, giving the following 

equations in 𝑤 direction: 

Equation 3.16 

𝜕𝐿 𝜕𝑤⁄ = 𝑤 −∑(𝛼𝑖 + 𝛼𝑖
∗)𝑥𝑖 = 0

𝑛

𝑖=1

 

Equation 3.17 
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𝑤 =∑(𝛼𝑖 + 𝛼𝑖
∗)𝑥𝑖

𝑛

𝑖=1

 

3.3.2 Performance evaluation 

The RK model was implemented to estimate the WS quantiles using the selected predictors. The 

RK model can be expressed as follows (Hengl et al., 2007): 

Equation 3.18 

𝑦̂(𝑠0) =  ∑𝛽𝑘 × 𝑥𝑘(𝑠0)

𝑝

𝑘=0

+ ∑𝜆𝑖 ×  𝜀 (𝑠𝑖)

𝑛

𝑖=1

 

Where 𝒚̂(𝒔𝟎) is the estimated WS quantile at the target location (𝒔𝟎), 𝒙𝒌(𝒔𝟎) are the values of the predictors at 

the target location, and  𝜷𝒌 are the regression coefficients. 𝝀𝒊 are the ordinary kriging weights, 

and  𝜺(𝒔𝒊) are the regression residuals at the sampled locations. 

 From the available data (207 samples), 155 samples (training set) were randomly selected for 

FS and fitting the RK model. The remaining 57 samples (test set) were used for the model 

evaluation. This procedure is a common practice in statistical modelling for the validation of the 

results (for instance, Qiu et al. (2022); Sun et al. (2023b)). It helps ensure unbiased assessment 

and generalization of the model's predictive capability. In addition, 10-fold cross-validation was 

performed on the training set, and the results were presented. Veronesi et al. (2016) used a similar 

validation procedure to validate their models for predicting WS distribution parameters at 

unsampled locations in the UK.  

The coefficient of determination (R²), the RMSE, the Relative Root Mean Squared Error 

(RRMSE), and the Mean Absolute error (MAE) were computed separately for each percent point 

considered in the study to evaluate the performance of the RK models during the cross-validation 

and with the test set: 

Equation 3.19 

𝑅2 = 1 − 
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅)
2𝑛

𝑖=1

 

Equation 3.20 
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𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

 

Equation 3.21 

𝑅𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(

𝑦𝑖 − 𝑦𝑖̂
𝑦̅

)
2𝑛

𝑖=1

 

Equation 3.22 

𝑀𝐴𝐸 = 
∑ |𝑦𝑖 − 𝑦̂𝑖|
𝑛
𝑖=1

𝑛
 

3.4 Results 

3.4.1 Wind speed quantiles 

WS quantiles corresponding to 14 fixed percentile points for each location were estimated using 

shape-constrained P-Splines and the Weibull plotting position formula. Table 3.3 illustrates some 

statistics of the estimated WS quantiles in the training set.   

Table 3.3 WS quantile statistics (P-Splines) 

Percentile Abbreviation mean std min 25% 50% 75% max 

%  m/s m/s m/s m/s m/s m/s m/s 

0.01 P1 19.68 5.72 7.92 15.49 19.54 23.29 45.58 

0.1 P2 18.42 5.16 7.67 14.81 18.24 21.55 40.75 

1 P3 12.72 3.92 5.75 9.90 12.17 15.07 29.75 

5 P4 10.05 3.16 3.79 7.83 9.80 12.14 20.65 

10 P5 8.63 2.65 3.15 6.84 8.43 10.48 17.51 

20 P6 6.96 2.15 2.39 5.43 6.85 8.44 14.11 

30 P7 5.85 1.84 2.00 4.61 5.73 7.08 11.88 

40 P8 4.98 1.59 1.75 3.92 4.91 5.93 10.11 

50 P9 4.24 1.39 1.56 3.33 4.17 5.12 8.61 

60 P10 3.57 1.21 1.34 2.79 3.46 4.35 7.30 

70 P11 2.92 1.02 1.07 2.28 2.77 3.53 6.08 

80 P12 2.28 0.82 0.80 1.74 2.15 2.73 4.94 

90 P13 1.55 0.58 0.51 1.19 1.45 1.87 3.41 

95 P14 1.08 0.42 0.35 0.79 1.03 1.30 2.34 
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3.4.2 Model performances 

The average R², RMSE, RRMSE, and MAE of the cross-validation with the training and the test 

set are listed in Table 3.4 and Table 3.5, respectively. When evaluated by cross-validation, the 

average R² ranges between 0.18 and 0.50, and the average RRMSE ranges between 22.4% and 

33.1%. On the test set, the average R² ranges between 0.14 and 0.60, and the average RRMSE 

ranges between 20.7% and 35.5%. Model performance measured by cross-validation showed 

that GAGL was the best-performing FS algorithm, followed by MRMR, ENET and LASSO. On the 

test set, ENET, LASSO, and MRMR were the best-performing FS methods, and GALG and RFES 

had relatively medium performances. FSWR was the worst-performing FS method during cross-

validation and with the test set.  

A two-sample t-test ( 𝐻0: 𝜇Δ𝑅𝑅𝑀𝑆𝐸 ≥ 𝜇0, 𝐻1: 𝜇Δ𝑅𝑅𝑀𝑆𝐸 < 𝜇0) was conducted to assess the 

difference between the expected RRMSE (𝜇Δ𝑅𝑅𝑀𝑆𝐸 = 𝜇1𝑅𝑅𝑀𝑆𝐸 − 𝜇2𝑅𝑅𝑀𝑆𝐸) of pairs of FS methods 

on the test set. The results are presented in Table 3.6. The expected RRMSE of FSWR is 

significantly superior to the expected RRMSE of all the other FS methods. Also, ENET, LASSO, 

and MRMR performances were not significantly different when considering the RRMSE. However, 

ENET, LASSO, and MRMR performances were significantly superior (lower RRMSE) to GALG 

and RFES at the significance level of α = 0.05. There was no statistically significant difference 

between the expected RRMSE of GAGL and RFES. 

Table 3.4 Performance of FS methods with cross-validation on the training set 

FS method R² RMSE RRMSE MAE 

 -  m/s -  m/s 

ENET 0.410 1.668 0.246 1.238 

FSWR 0.125 2.978 0.347 1.699 

GALG 0.510 1.432 0.222 1.120 

LASSO 0.408 1.659 0.246 1.239 

MRMR 0.417 1.645 0.244 1.230 

RFES 0.317 1.702 0.272 1.238 

 

Table 3.5 Performance of FS methods on the test set 

FS method R² RMSE RRMSE MAE 

 -  m/s -  m/s 

ENET 0.559 1.312 0.21 0.911 

FSWR 0.137 2.307 0.353 1.555 

GALG 0.491 1.438 0.233 1.002 

LASSO 0.596 1.231 0.207 0.869 
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MRMR 0.602 1.226 0.211 0.847 

RFES 0.459 1.506 0.24 1.053 

 

Table 3.6 Results of the t-test between the expected RRMSE of pairs of FS methods 

𝝁𝟐𝑹𝑹𝑴𝑺𝑬 
 

 FS method ENET FSWR GALG LASSO MRMR RFES 

𝝁
𝟏
𝑹
𝑹
𝑴
𝑺
𝑬
 

ENET 
 

-4.69 -2.03 0.59 -0.18 -1.88 

FSWR 4.69* 
 

3.46* 4.77* 4.51* 3.14* 

GALG 2.03* -3.46 
 

2.26* 2.21* -0.78 

LASSO -0.59 -4.77 -2.26 
 

-0.91 -2.09 

MRMR 0.18 -4.51 -2.21 0.91 
 

-1.99 

RFES 1.88* -3.14 0.78 2.09* 1.99 
 

*: 𝝁𝟏𝑹𝑹𝑴𝑺𝑬 − 𝝁𝟐𝑹𝑹𝑴𝑺𝑬 is significantly greater than 0 at α = 0.05 

The RRMSE of the FS methods is presented in Figure 3.2 for the standalone multilinear 

regression model (REG) and the regression-kriging model (ROK). The kriging of the regression 

model residuals led to a slight improvement in the performance metric. On average, the residual 

kriging decreased the RRMSE by 4%.  

Figure 3.3 presents the RRMSE of the different WS quantiles. The model performance 

deteriorated as the probability of exceedance increased. For example, the mean RRMSE for the 

estimation of P1 is 17.0% (excluding FSWR), 21.4% for P9 (excluding FSWR), and 29.3% for P14 

(excluding FSWR). FSWR performed relatively poorly for the estimation of P1 to P8 and improved 

for the estimation of P9 to P14.  
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Figure 3.2 RRMSE of the standalone multilinear regression model (REG) and the regression-kriging 
model (ROK) 

 

Figure 3.3 RRMSE of the FS methods for the estimation of different WS quantiles 
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3.4.3 Parsimony and multicollinearity 

Figure 3.4 presents the mean number of selected features for each FS method. On average, the 

FSWR (44) method was the least sparse of the algorithm, followed by RFES (18) and GAGL (17). 

LASSO selected, on average, five features and was the sparsest FS method, followed by ENET 

(9) and MRMR (11). Figure 3.5 illustrates the mean number of selected features against the mean 

RRMSE. In general, the performance of the FS methods decreased (the RRMSE increased) as 

the number of selected features increased.  Although FSWR selected many features, the model’s 

performance remained relatively poor. As seen previously, the performance of ENET, LASSO 

and MRMR were not statistically different (two-sample t-test of the expected RRMSE), but LASSO 

was, on average, slightly more parsimonious.  

 

Figure 3.4 Mean number of selected features of each FS method 
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Figure 3.5 Mean number of selected features vs. mean RRMSE 

 

The condition number (C) is a measure used to evaluate the presence of multicollinearity in a set 

of predictors. It is defined as the square root of the ratio between the maximum and the minimum 

eigenvalue of the predictor’s correlation matrix. It is a single value summarising the likelihood of 

multicollinearity. Figure 3.6 shows the condition number estimated from the correlation matrix of 

the selected feature sets. From empirical observations, Chatterjee et al. (2013) suggested a cut-

off of 15 to detect multicollinearity and recommended corrective action if C exceeds 30. All the 

feature sets estimated with LASSO had a condition number below 15. In the case of MRMR, the 

condition numbers were less than 15 in 13 cases out of 14 (92.8%) and were consistently below 

30. For ENET and GAGL, the condition number was less than 15 in 11 cases out of 14 (78.6%). 

RFES condition numbers were inferior to 15 in 8 cases out of 14 (57.1%), and FSWR condition 

numbers consistently exceeded 15. 
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Figure 3.6 Condition number (C) of the selected feature sets 

3.4.4 Residual analysis and visual inspection 

Model residual analyses compare observed data with predicted values to evaluate a model's 

precision and reliability. Examining residuals can reveal patterns, outliers, and areas for 

improvement in the model's assumptions. Figure 3.7 compares the observed and predicted WS 

quantiles for the top-performing FS methods (MRMR and LASSO), indicating a strong agreement 

between the observed and estimated quantile for both methods with an R² of approximately 0.92. 

LASSO performed slightly better than MRMR, as indicated by the RRMSE. Two outliers were 

identified in the bottom-right section of the plots, with an underestimation of the WS quantiles for 

both outliers. The residual plot in Figure 3.8 confirmed that the models did not perform as well for 

high exceedance probabilities as they did for the lower ones. 
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Figure 3.7 Plot of observed vs. estimated WS quantiles for MRMR and LASSO.  

The R² was calculated without averaging across the percent points 

 

 

Figure 3.8 Plot of observed WS quantiles vs. the residuals for MRMR and LASSO 

3.4.5 Predictor importance 

Figure 3.9 shows the ten most selected features for each WS quantile and the number of times 

they were selected. Overall, the most selected features were RGLH and DSEA. DSEA was 

consistently selected by every FS method. For the surface roughness length (RGLH), 2000m and 

1000m (RGLH_2000m and RGLH_1000m) were the most selected spatial scales. RGLH at 100m 

spatial scale (RGLH_100m) was mostly selected for medium to high exceedance probabilities. 

DVME at a spatial scale of 2000m (DVME_2000m) was often selected for high exceedance 
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probabilities (P10 to P14) and less often selected for lower exceedance probabilities (P1 to P9). 

Predictors describing the land surface curvature (MXCV, MNCV, TLCV, TGCV, GSCV) seemed 

important for predicting WS quantiles corresponding to very low exceedance probabilities (P1 to 

P5) and less important for medium and high exceedance probabilities. PNCL was also among the 

most selected predictors, especially class 7 of PNCL (PNLC_7), which indicates a level terrain at 

the grid cell with a low slope gradient. The location coordinates (XGEO and YGEO) were also 

often selected for different WS quantiles in the region.   

The predictors selected by the FS methods were used to fit a simple linear regression model. An 

advantage of the simple linear regression model is the interpretability of the model. Without 

multicollinearity, the regression coefficient magnitude and direction provide useful information to 

assess the relationship between the predictors and the dependent variable. Figure 3.10 shows 

the regression coefficient of the predictors selected with LASSO. The predictors were 

standardized to a zero mean and a unit variance prior to fitting the regression model. LASSO was 

the most parsimonious FS method with good predictive ability. In addition, the estimated condition 

numbers of all the feature sets selected by LASSO were below 15, indicating the absence of 

multicollinearity. It is observed that DSEA regression coefficients were often the strongest and 

were always negative. DSEA represents the location distance from the coast; the direction of the 

regression coefficient showed that WS quantiles, irrespective of their exceedance probabilities, 

were higher near the coast than inland. The surface roughness length (RGLH) showed relatively 

high regression coefficients with every WS quantile. The negative direction of the regression 

coefficient of RGLH is intuitive. An increase in surface roughness results in more friction between 

the land surface and the wind, decreasing WS near the ground. For P1 and P2, the maximum 

curvature (MXCV) had the second-highest regression coefficient with a positive direction. Note 

that higher values of MXCV correspond to elongated convex landforms such as ridges, and 

negative values are associated with concave landforms (Florinsky, 2017). The positive magnitude 

of the MXCV regression coefficient showed that the WS quantiles P1 and P2 were higher at 

locations where the landforms are convex and decreased as the landform concavity increased.  
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Figure 3.9 Selected predictors for each WS quantile 
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Figure 3.10 Regression coefficients of the WS quantile predictors 

3.5 Discussion 

This study compared six FS methods for WS quantile estimation in Canada. The results showed 

that LASSO, MRMR, and ENET had comparable performances on the test set and were the most 

effective FS methods. GAGL and RFES performed slightly worse than LASSO, MRMR, and ENET 

but outperformed FSWR. The FSWR method does not seem to ignore redundant features, leading 

to an unstable estimation of regression coefficients and poor performance during testing. This 

situation seems more pronounced for low than high exceedance probabilities (P10 to P14). There 

was less collinearity among the relevant predictors associated with high exceedance probabilities 

than for lower ones. Kriging of the regression residual slightly improved the model performances 

(4%), indicating that the selected predictors and the linear regression model could account for a 

significant portion of the spatial variability of WS quantiles in the region. 

The models’ performances were higher for low to medium exceedance probabilities and declined 

for high exceedance probabilities. This decline in performance could be attributed to several 

factors. One possible explanation is that there is a significant non-linear relationship between high 

exceedance probabilities WS and the predictors, requiring the implementation of non-linear 
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models for improved performance. Another possible explanation is the exclusion of significant 

predictors of high exceedance probabilities from the models. For example, the models did not 

include climate-related predictors such as mean temperature or pressure. Climatic variables are 

often collected at meteorological stations where WS is also measured; thus, they should also be 

missing at locations with unavailable WS data. The results highlight the need for further research 

to enhance the performance of models in predicting high exceedance probability WS. 

LASSO was found to produced, on average, the sparsest feature sets, followed by ENET and 

MRMR. In addition, LASSO could select relevant predictors without multicollinearity as evaluated 

by the feature set correlation matrix condition number. MRMR also eliminated multicollinearity in 

most cases (13 out of 14 cases), while ENET, RFES, GAGL, and FSWR were less effective at 

solving the issue of multicollinearity in their selected feature sets. These findings are consistent 

with existing literature on RFES, Xie et al. (2006) showed that this implementation does not 

consider feature redundancy. Overall, LASSO and MRMR were the most effective FS methods 

due of the following reasons:  

• LASSO and MRMR exhibited high predictive ability, with no significant difference in 

performance between the two methods based on t-test results and residual analysis.  

• Both FS methods could select relevant predictors while also reducing multi-collinearity 

within the feature subset.  

• LASSO and MRMR are attractive because they are efficient to implement with a single 

parameter to tune, unlike ENET, which produced comparable performance. In the case of 

LASSO, the degree of penalization (𝛼) is the only parameter that needs to be tuned. With 

MRMR, the number of features to select is the single tuning parameter of the algorithm. 

ENET requires the tuning of two parameters.  

LASSO and MRMR have different approaches to feature selection. However, their good 

performance in the study could be explained by their inbuilt capability to select relevant features 

while ignoring redundant ones. LASSO is a penalization algorithm based on linear regression that 

promotes sparsity by imposing a penalty on the sum of the absolute values of the feature 

coefficients. In a group of redundant predictors, LASSO chooses one predictor among the group 

and shrinks towards zero the coefficients of the other predictors (Hammami et al., 2012; Zou et 

al., 2005), making it effective in dealing with collinear features.   

On the other hand, MRMR ranks features from the most relevant and least redundant to the least 

relevant and most redundant, allowing for efficient selection of the smallest subset of the most 

relevant and least redundant features that provides the best cross-validation score. In addition, 
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MRMR is a filter-based approach that is agnostic to any specific regression model, as it is based 

on the correlation coefficient. This coefficient is well suited for the linear regression model used 

in this study. However, other correlation metrics, such as mutual information, can be used for 

nonlinear models. 

It is worth noting that GAGL showed superior performance during cross-validation on the training 

sets, and there was no significant decline in its performance on the test set. However, in some 

feature subsets selected by GAGL, the issue of multicollinearity remained unresolved. In addition, 

compared to LASSO and MRMR, GAGL has more parameters that require tuning, making it less 

efficient to implement.  

In the present study, the location distance from the coast (DSEA) and the surface roughness 

length (RGHL) were the two most significant predictors of WS quantiles. The regression model 

coefficients for both DSEA and RGHL were physically consistent. In the case of DSEA, the 

regression coefficients were negative, indicating a decrease in the WS quantiles from coastal to 

inland areas. Few studies have used the distance from the coast to estimate WS, but it could be 

a valuable addition to models, particularly in larger study areas. For low exceedance probabilities 

(e.g., 1%), surface convexity (concavity) was a significant predictor of WS, but it was less relevant 

for higher exceedance probabilities.  

There are some limitations to this study. The dataset contained only 207 samples (155 training 

and 52 testing samples), and some regions of Canada were naturally less densely represented 

(see Figure 3.1). Consequently, some results could be particular to the studied region or the 

analyzed dataset and may only be generalized after extensive analysis.   

Among the various feature selection (FS) methods examined, the FSWR approach was the least 

effective. It is possible to improve the FSWR method performance by adding the variance inflation 

factor as a post-processing step. It should be noted that, the FSWR method in this study was 

mainly used as a benchmark for assessing the performance of other proposed FS methods as it 

remains one of the most common FS methods.  

In the present study, the time series were considered stationary when estimating WS quantiles. 

Nevertheless, increased evidence points to non-stationarities in WS series and the importance of 

incorporating them in the analysis (see, for instance, Ouarda et al. (2021)). For instance, several 

authors observed significant correlations between low-frequency climate oscillation indices and 

annual mean WS in different regions of the world (see, for instance, Naizghi et al. (2017); 

Woldesellasse et al. (2020)); Including these climate oscillation indices in quantile estimation or 
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regional transfer models could significantly improve their performances. Indeed, in a given region, 

WS stations are impacted by the same climate oscillation indices, and their incorporation in the 

models used to estimate WS at ungauged locations should lead to performance improvements. 

The issue of incorporation of teleconnections in WS estimation models is an important one but 

remains mainly unexplored in the literature. Future efforts should focus on incorporating non-

stationarities in regional WS estimation models.  

3.6 Conclusion 

This paper evaluated six FS methods for WS quantile estimation. LASSO and MRMR were the 

most efficient algorithms in the study. It was found that the importance of some WS quantile 

predictors depends on their exceedance probability. The location distance from the coast and the 

surface roughness length were significant WS quantile predictors irrespective of the exceedance 

probability.  

Future research should focus on the extrapolation of this study to other geographic regions, 

databases with different characteristics, and other FS methods.  The diversity in the 

characteristics needs to be ensured to obtain guidelines for the relative performance and the 

applicability of different techniques based on such considerations as the number of sites, the 

length of the series, the number of features, the types of wind, the data variability and quality, etc. 
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Nomenclature 

Abbreviations 

ALOS Advanced Land Observing Satellite 

ANN Artificial Neural Networks 

ASPC Aspect 

DEM Digital Elevation Models 

DFME Difference from mean elevation 

DOGS Differences of Gaussians 

DSEA Distance from the coast 

DVME Deviation from mean elevation 

ECCC Environment and Climate Change Canada 

ELVP Elevation percentile 

ENET Elastic Net 

FS Feature selection 

FSWR forward stepwise regression 

GALG Genetic algorithm 

GMPG Geomorphologic phenotypes 

GSCV Gaussian curvature 

GW Giga watt 

LASSO Least Absolute Shrinkage and Selection Operator 

LPGS Laplacian of Gaussian 

MAE Mean Absolute error 

MICV Minimal curvature 

MNCV Mean curvature  

MRMR Maximum relevance Minimum redundancy 

MXCV Maximal curvature 

PLCV Plan curvature 

PNCL Pennock landform class 

P-Splines Penalized splines 

R2 Coefficient of determination 

REG Standalone multilinear regression model 

RFES Recursive feature elimination using support vector regression 

RGLH Roughness length 
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RK Regression kriging 

RMSE Root mean squared error 

ROK Regression-kriging model 

RRMSE Relative Root Mean Squared Error 

RTGP Relative topographic position 

RTGP Relative topographical position 

RUGI Ruggedness index 

SART Surface area ratio 

SLPE Slope 

STDS Standard deviation of the slope 

SVM Support Vector Machines 

SVR Support vector regression 

TGCV Tangential curvature 

TLCV Total curvature 

vs. Versus 

WS Wind speed 

XGEO Longitude  

YGEO Latitude 

 

Symbols 

𝛼  Tuning parameter that controls the degree of penalization in the LASSO 

model 

𝑏  Bias in the epsilon-insensitive SVR model 

𝛽  Regression coefficients 

𝐶  Regularization parameter in the epsilon-insensitive SVR formulation 

𝜀  Tolerance margin in the epsilon-insensitive SVR model 

𝐹(𝑥, 𝑦)  F-statistic measuring the relationship between 𝑥 and 𝑦 

𝑓(∙)  Function to optimize 

𝐹𝑖  Fitness score of the 𝑖-th solution of the genetic algorithm 

𝐽(𝑤)  Norm of weight vector 𝑤 in the epsilon-insensitive SVR model 

𝐿  Lagrange function in the epsilon-insensitive SVR formulation 

𝛼𝑖𝛼𝑖
∗, 𝜂𝑖𝜂𝑖

∗     Non-negative Lagrange multipliers in the epsilon-insensitive SVR 

formulation 
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𝜆  Tuning parameter in the elastic net model 

𝜇Δ𝑅𝑅𝑀𝑆𝐸   Mean of the expected RRMSE differences in the t-test. 

𝜇0  Population mean in the t-test ( 𝜇0 = 0) 

NO2 Nitrogen dioxide 

P1 Wind speed quantile at 0.01% percentile-level 

P10 Wind speed quantile at 60% percentile-level 

P11 Wind speed quantile at 70% percentile-level 

P12 Wind speed quantile at 80% percentile-level 

P13 Wind speed quantile at 90% percentile-level 

P14 Wind speed quantile at 95% percentile-level 

P2 Wind speed quantile at 0.1% percentile-level 

P3 Wind speed quantile at 1% percentile-level 

P4 Wind speed quantile at 5% percentile-level 

P5 Wind speed quantile at 10% percentile-level 

P6 Wind speed quantile at 20% percentile-level 

P7 Wind speed quantile at 30% percentile-level 

P8 Wind speed quantile at 40% percentile-level 

P9 Wind speed quantile at 50% percentile-level 

𝑃𝑖  Probability of exceedance associated with wind speed value of rank 𝑖 

PM2.5 Fine particle matter 

𝑃𝑠𝑒𝑙𝑖  Probability of selecting the 𝑖-th solution in the genetic algorithm 

𝜌(𝑥, 𝑦)   Pearson correlation coefficient between 𝑥 and 𝑦 

𝑤  Weight vector in the epsilon-insensitive SVR model 

𝑤1  Genetic algorithm weight parameter that controls the balance between 

performance and the number of selected features 

𝜉𝑖𝜉𝑖
∗  slack variables in the epsilon-insensitive SVR formulation 
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Dans la revue de littérature, nous avons constaté que les méthodes actuelles d’estimation de la 

distribution de probabilité de la vitesse du vent se basent sur l’utilisation d’un seul type de loi de 

distribution pour toute la région étudiée. Cette approche peut s’avérer moins fiable dans les 

régions où la variabilité spatiale du régime des vents est importante. L’article 3 propose une 

méthode plus flexible, basée sur l’interpolation spatiale des quantiles de vitesse du vent et 

l’estimation par noyau asymétrique, une méthode non paramétrique. Cette approche découle en 

partie de notre exploration, dans l’article 2, de la possibilité d’interpoler spatialement les quantiles 

de vitesse du vent à partir de différentes variables explicatives.



 129 

Abstract 

Statistical methods to estimate wind resources at unsampled locations in a region can serve as 

an initial step to identify locations that warrant further investigation. There has been an ongoing 

effort to develop approaches for mapping the parameters of the wind speed distribution with 

statistical methods. This approach enables a comprehensive understanding of the wind resource 

variability across the entire region by considering the full wind speed distribution rather than 

focusing solely on mean values. The present study proposes a non-parametric approach to map 

the wind speed distribution. The method's main advantage is that it avoids constraining the region 

to a single distribution family and is thus more flexible than existing methods. In the proposed 

approach, a number of wind speed quantiles are first mapped in the region using machine learning 

techniques. Afterwards, the wind speed distribution is estimated by fitting an asymmetric kernel 

estimator to the estimated wind speed quantiles at unsampled locations. The new approach was 

compared to the standard statistical method based on mapping the regional wind speed 

distribution parameters. The results indicate that the non-parametric approach leads in the best 

scenario to a 9% and 6% drop in the Kolmogorov-Smirnov statistic on average during cross-

validation and validation, respectively. The Birnbaum-Saunders and the Log-Normal kernels gave 

a better fit to the estimated wind speed quantiles than the Weibull kernel. The proposed approach 

is recommended in regions with high wind regime variability. 

Keywords: Asymmetric kernel estimator, Non-parametric, Quantile, Wind speed distribution, 

wind variability, ungauged location, regional estimation.  
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4.1 Introduction 

Wind energy has the potential to become a crucial source of power worldwide (Zhou et al., 2012). 

In 2021, worldwide wind energy installed capacity reached 837 GW, with an estimated offset of 

over 1.2 billion tons of CO2 (Council, 2022). However, more effort is needed to raise the 

contribution of wind energy in the world energy mix to achieve a more sustainable and low-carbon 

future (Jung et al., 2018b).  

One of the initial stages of building a wind farm involves finding a suitable location with sufficient 

wind resources to generate electricity. This objective typically involves conducting an in-depth 

assessment of the wind regime, which requires a long-term dataset of wind speed measurements. 

However, this data is often only available at irregular points in space rather than at the location of 

interest for wind energy production. It may not be feasible to install a monitoring station to gather 

sufficient data during the preliminary site selection due to time and financial constraints. Using 

methods that can estimate wind resources at unsampled locations is more suitable. Although 

these methods may not be as accurate as a monitoring station, they can help identify potential 

sites that warrant further investigation. 

Numerous wind speed (WS) estimation studies have been conducted at unsampled locations, as 

detailed in the review by Houndekindo et al. (2023c). These studies typically estimate an 

aggregated WS value (Luo et al., 2008; Ye et al., 2015), such as the mean and occasionally the 

WS distribution, via mapping the parameters of a theoretical probability distribution function. Both 

approaches have some downsides. First, using the mean WS for wind resource assessment may 

underestimate the long-term resource depending on the frequency distribution's shape (Nelson 

et al., 2018). Second, when estimating the WS distribution at unsampled locations, authors 

typically select a unique family of distributions with different parameters for the entire region (the 

regional distribution (RD)). For example, Veronesi et al. (2016) mapped WS distribution in the UK 

using random forests and assumed that the Weibull distribution (W) was adequate across the 

study region. Although the W is the most commonly used distribution for WS modelling, some 

studies have found that other types of distributions may provide a better fit depending on the wind 

regime at a location. For instance, the three-parameter W distribution (an additional location 

parameter) is better suited for calm wind regimes (Jung et al., 2019b). Tsvetkova et al. (2023) 

reported that the heavy-tailed Halphen distribution family provided a better fit than the two-

parameter W distribution in all 125 WS stations considered in Eastern Canada.  
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In another study, Jung (2016) mapped WS distribution parameters in Southwest Germany. First, 

the author evaluated the goodness of fit (GOF) of 67 theoretical distributions to select the RD. 

Then, a gradient-boosting model was employed to map the parameters of the selected 

distribution. Similarly, Laib et al. (2016) conducted a study in Switzerland for extreme WS. The 

authors used the quantiles plot to evaluate the GOF of three theoretical distributions and select a 

RD. Then, with a machine learning model, they mapped the parameters of the RD. This approach 

can be tedious, requiring the testing of multiple distributions, and there is no guarantee that the 

selected distribution would be adequate at the unsampled locations of interest. Previous studies 

evaluated the goodness of fit of different theoretical distributions for WS modelling in a given 

region (Alavi et al., 2016; Aries et al., 2018; Ouarda et al., 2018; Ouarda et al., 2015; Safari, 2011; 

Zhou et al., 2010) and found that no single distribution family provided the best fit at all locations 

in the region. Thus, using a single family of distributions may not be appropriate for characterizing 

the WS distribution in an entire region.  

This work proposes a new approach for WS distribution mapping that does not constrain the 

region to a single distribution family (i.e., a regional distribution). The proposed approach consists 

of estimating several WS quantiles (WSQ) at a location of interest. Then, a distribution function 

can be fitted to the estimated WS quantiles using the Least Square Estimation (LSE) method.  

It can be tedious to test several distributions with the LSE method. Indeed, in most cases, the 

LSE method does not have an analytical solution. Thus, optimization algorithms may be required 

with an initial guess of the parameters, which can lead to suboptimal solutions. To address this 

issue, it is proposed to fit a kernel estimator of cumulative distribution function (KCDF) to the 

estimated WSQ. Kernel estimators are, in general, rather flexible and do not require prior 

knowledge of the family of distributions of the data. The literature shows a growing interest in 

kernel estimators for WS distribution modelling (Han et al., 2019). In most of these studies, 

symmetric kernels (e.g., gaussian) were used to estimate the probability distribution function. WS 

values are non-negative, while symmetric kernels have unbounded support leading to probability 

leakage below zero (Węglarczyk, 2018). This is a well-known problem called the boundary effect, 

and several solutions have been proposed (Mombeni et al., 2021). In this study, one of these 

solutions based on asymmetric kernel estimators (Hirukawa, 2018) is adopted and introduced for 

WS distribution modelling. According to Hirukawa (2018), asymmetric kernels are weight 

functions with support on the unit interval [0, 1] or the positive half-line. The effectiveness of the 

proposed approach was assessed by comparing it to another method based on mapping the W 

parameters in the study region.  
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The paper's novelty can be summarized as follows: First, a methodology to map WS distribution 

is proposed based on mapping WSQ. Quantiles are relatively easy to estimate from time series, 

while selecting an adequate RD can be tedious, requiring the fitting and evaluation of multiple 

distributions. Secondly, to the author's knowledge, this is the first study employing asymmetric 

kernels to model WS distribution. By combining the mapping of WSQ and asymmetric kernels, a 

fully non-parametric approach for WS distribution mapping is proposed in this study. The main 

advantage of the non-parametric approach is that it does not require specifying a unique 

distribution family to the region of interest. This allows to effectively combine all the available data 

in the region to build a more robust model in case the region does not have a homogenous wind 

regime which can be described by a single family of distribution functions. 

The current paper is structured as follows. Section 4.2 illustrates the methodology of the proposed 

approach with the evaluation procedure. The study area and the dataset are presented in section 

4.3. The results obtained are shown in section 4.4. In sections 4.5 and 4.6, the discussion of the 

findings and the conclusion are given, respectively. 

4.2 Methodology 

This study proposes a new approach for mapping WS distribution using regional information 

without constraining the region to a single distribution family. First, various WSQ are estimated at 

sampled locations in the region. Then, machine learning and WS covariates are used to map the 

quantiles, allowing the estimation of these WSQ at any unsampled location in the region. Finally, 

parametric, and non-parametric approaches are implemented to recover the WS distribution at 

unsampled locations from estimated quantiles. The proposed approach will be referred to as 

Quantile-based WS probability distribution Mapping (QWSM) in the next sections. The QWSM 

approach will be compared to another approach based on directly mapping the W parameters 

(Veronesi et al., 2016). This method will be referred to as the W parameters mapping (WPM) in 

the next sections. A flowchart of the methodology is available in Figure 4.1. 



 133 

 

Figure 4.1 Methodology of the comparative analysis of WS probability distribution mapping 
approaches  

4.2.1 Quantile-based WS probability distribution mapping  

At the sampled locations in the region, WSQ at some fixed percentile points can be estimated 

from the sorted values of the hourly time series with the following general formula (Hyndman et 

al., 1996): 

Equation 4.1 

𝑊(𝑃) = (1 −  𝛾)𝑋(𝑗) + 𝛾𝑋(𝑗+1) 

Where 𝑷 is the percentile point of interest, 𝑿(𝒋) and 𝑿(𝒋+𝟏) are j-th order statistics. 𝜸 is a weight (𝟎 ≤ 𝜸 ≤ 𝟏) that 

is function of 𝒋 = 𝒇𝒍𝒐𝒐𝒓(𝑷𝒏 +𝒎), 𝒎 =  𝜶 + 𝑷(𝟏 −  𝜶 −  𝜷) and 𝒈 = 𝒏𝑷+𝒎− 𝒋 

In case it is desired to obtain 𝑊(𝑃) as a continuous function of 𝑃, then 𝛾 = 𝑔 and selecting 𝛾 

reduces to selecting 𝛼, 𝛽. Typical values of 𝛼, 𝛽 are available in (Hyndman et al., 1996). In this 

study, 𝛼, 𝛽 were both set to 1/3 given quantiles that are approximately median-unbiased 

regardless of the WS true probability distribution (Reiss, 1989). Using Equation 4.1, WSQ 

associated with the following 13 percentile points were estimated at the sampled locations: 5.0% 

(P1), 12.5% (P2), 20.0% (P3), 27.5% (P4), 35.0% (P5), 42.5% (P6), 50.0% (P7), 57.5.0% (P8), 
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65.0% (P9), 72.5% (P10), 80.0% (P11), 87.5% (P12), and 95.0% (P13). Table 8.1 in the Appendix 

(Section 8) gives an overview of the distribution of the estimated WSQ.  

These percentile points were chosen to cover the WS cumulative distribution functions (CDF) 

evenly, ensuring a representative estimation of the WSQ at various points along the distribution. 

In previous studies employing a similar modelling approach, varying numbers of percentile points 

have been modelled to estimate the probability distribution of a target variable. For instance, to 

forecast power load probability distribution, (He et al., 2017) modelled 20 percentiles evenly 

spaced between 1% and 96%. In another study, to map wind speed shear distribution, (Jung et 

al., 2018a) estimated 11 percentiles evenly spaced between 1% and 99%. Additionally, to 

regionalize river temperature at ungauged locations, (Ouarda et al., 2022) estimated 17 

percentiles non-evenly spaced between 0.05% and 99.95%. This diversity in the number of 

percentile point selections highlights a lack of consensus in the literature regarding the optimal 

number to ensure a comprehensive target distribution coverage. Nevertheless, it is worth noting 

that the number of percentiles selected in the current study falls within the range of those used in 

previous research.  

A regression function was constructed between the observed WSQ and WS covariates. Two 

regression models were compared, the multilinear regression (LR) and Gradient boosting trees  

(GBT: Friedman, 2001) model. Feature selection (FS) was performed using the minimum 

redundancy maximum relevance (MRMR) method (Ding et al., 2005) to reduce the complexity of 

the models and improve their performance. A comparative study of FS methods was carried out 

by Houndekindo et al. (2023a). They found that MRMR was among the most effective FS methods 

for WSQ estimation. Houndekindo et al. (2023a) used MRMR with simple linear regression. 

However, the approach can be adapted to non-linear models such as tree-based gradient 

boosting. The FS method (MRMR) and the GBT model are presented in more detail in the 

following subsections.  

4.2.1.1 MRMR approach for covariate selection 

MRMR is a filter-based FS approach with the benefit of considering both the covariates' relevancy 

and redundancy during selection. Filter-based FS methods are computationally efficient 

algorithms and are agnostic to the regression model (Guyon et al., 2003). The MRMR algorithm 

uses an iterative approach to select the covariate (𝑋𝑖) at each step with the best trade-off between 

its relevancy to the response variable (𝑌) and its redundancy relative to selected features from 
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previous iterations. At the first step of the algorithm, the most relevant covariate is selected based 

on a measure of relevancy (𝑅𝑒𝑙(𝑋𝑖 , 𝑌)).  

Let 𝑅𝑒𝑑(𝑋𝑖 , 𝑋𝑗) be a measure of the dependency between the covariates 𝑋𝑖 and 𝑋𝑗 and let 𝑆 be 

the set of covariates selected during previous iterations. After the first step of the algorithm, 𝑆 

contains only the most relevant covariate (max 
𝑋𝑖
[𝑅𝑒𝑙(𝑋𝑖 , 𝑌)]) and the objective criterion at each 

subsequent iteration of the MRMR algorithm can be formulated in two ways: 

Equation 4.2 

max 
𝑋𝑖∉𝑆

[𝑅𝑒𝑙(𝑋𝑖, 𝑌) 𝑅𝑒𝑑(𝑋𝑖, 𝑋𝑗)⁄ ] 

Equation 4.3 

max 
𝑋𝑖∉𝑆

[𝑅𝑒𝑙(𝑋𝑖 , 𝑌) −  𝑅𝑒𝑑(𝑋𝑖, 𝑋𝑗)] 

Several measures of relevancy and redundancy can be applied. In this study the following 

formulations of the MRMR objective criterion were compared: 

Equation 4.4 

𝑀𝑅𝑀𝑅 − 𝑃𝐶: max 
𝑋𝑖∉𝑆

[𝐹(𝑋𝑖, 𝑌) (
1

𝑆
∑ 𝜌(𝑋𝑖 , 𝑋𝑗)

𝑋𝑗∈𝑆

)⁄ ] 

Equation 4.5 

𝑀𝑅𝑀𝑅 −𝑀𝐼: max 
𝑋𝑖∉𝑆

[𝐼(𝑋𝑖 , 𝑌) (
1

𝑆
∑ 𝐼(𝑋𝑖 , 𝑋𝑗)

𝑋𝑗∈𝑆

)⁄ ] 

Where 𝑭(𝑿𝒊, 𝒀) is the F-statistic used to measure the relevancy, 𝝆(𝑿𝒊, 𝑿𝒋)  is the Pearson correlation coefficient 

(PC) used to measure redundancy, 𝑰(𝑿𝒊, 𝒀)  is the mutual information (MI) used to measure 

relevancy and 𝑰(𝑿𝒊, 𝑿𝒋)  is the MI used to measure redundancy.  

The MI between two random variables X and Y can be defined as follows: 

Equation 4.6 

𝐼(𝑋, 𝑌) =  ∬𝑝(𝑋, 𝑌) log (
𝑝(𝑋, 𝑌)

𝑝(𝑋)𝑝(𝑌)
)𝑑𝑥𝑑𝑦 
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The Python package scikit-learn (Pedregosa et al., 2011) was used to calculate the MI between 

the variables. 

4.2.1.2 Regression models 

The LR model was implemented and used as a benchmark for the GBT model. Tree-based 

regression models such as GBT perform better than deep learning models on tabular data and 

often outperform other regression models (Grinsztajn et al., 2022b). The GBT algorithm works by 

fitting sequentially decision trees to the residuals from previous iterations. Contrary to the LR 

model, the GBT model can learn nonlinear relationships between the covariates and the response 

variable and is robust against non-informative covariates (Hastie et al., 2009). The GBT model is 

a popular regression model that has been successfully applied in studies for short-term wind 

power prediction (Ye et al., 2022), wind resource mapping (Jung et al., 2018a), the selection of 

solar power plant location (Sun et al., 2023b) and short-term prediction of solar irradiance (Lee et 

al., 2020).  

The eXtreme Gradient Boosting package (XGB: Chen et al., 2016) is a popular machine-learning 

library that implements the GBT algorithm efficiently. Several regularization strategies are 

available in XGB to improve the model performance and reduce computational time. To find 

adequate values for the parameters of XGB, a random search with 1000 iterations was 

implemented. Grid search and random search are popular algorithms used for hyperparameter 

tuning (Turner et al., 2021). Grid search is a brute force algorithm that systematically tries all 

possible combinations of hyperparameter values within specified ranges. The algorithm can find 

the optimal hyperparameter values within the defined search space at the cost of increased 

computational resources and time. On the other hand, random search is a more efficient algorithm 

that does not guarantee the optimal solution but can find good hyperparameters (Bergstra et al., 

2012b). Table 4.1 presents the hyperparameters of the XGB model that were tuned in the study.  

Table 4.1 Hyperparameters of the XGB model 

Hyperparameters used during training   Search space (Min, Max, Step) 

Learning rate (Boosting learning rate)  (0.01, 0.1, 0.01) 

Minimum loss reduction (gamma) (0.0, 1.0, 0.1) 

Maximum depth of the trees (max_depth) (3, 10, 1) 

Ratio of predictor to use during training 
(colsample_bytree) 

(0.1, 0.7, 0.1) 

Subsample ratio of the training data (subsample) (0.1, 0.5, 0.1) 

Number of trees (n_estimators)  (20, 300, 10) 
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4.2.1.3 Recovery of the WS distribution from WSQ 

With estimated WSQ available at any non-sampled location, it is possible to fit different theoretical 

distribution functions using the LSE method. The LSE method is widely used for fitting WS 

probability distributions (Ouarda et al., 2021). In their study, Jung et al. (2018a) applied the LSE 

method to recover the probability distribution of wind shear exponent from estimated quantiles of 

the same variable. LSE involves minimizing the sum of the square error (SSE) between the 

empirical cumulative probability (ECDF) and the theoretical CDF to determine the best-fitting 

parameters of the theoretical distribution function. Let 𝑊𝑖̂ be the predicted WSQ and 𝐹̂(𝑊𝑖) their 

associated CDF, the SSE can be written as follows:   

Equation 4.7 

𝑆𝑆𝐸 =  ∑[𝐹̂(𝑊𝑖) − 𝐹(𝑊𝑖̂;  𝜽̂)]
2

13

𝑖=1

 

where 𝑭(𝑾𝒊̂; 𝜽̂) corresponds to the cumulative probability function of 𝑾𝒊̂ with estimated parameter 𝜽̂. The W, 

Log-Normal (LN), Rayleigh (R) and Generalized Gamma (GG) distribution were fitted to the 
estimated WSQ.  

Additionally, it is proposed to recover the WS distribution at unsampled locations using 

asymmetric KCDF. The asymmetric kernels method represents one of the solutions to the 

boundary effects that appear when using symmetric kernels with bounded random variables (e.g., 

WS values are bounded on [0,∞]). By combining WSQ mapping and asymmetric kernel fitting, 

this study proposes a fully non-parametric method for wind speed distribution mapping. Traditional 

parametric methods might introduce bias if the selected RD does not align with the data. The non-

parametric approach can adapt to various WS distribution patterns without being restricted by 

specific parametric assumptions. This flexibility is necessary for a region with complex and diverse 

wind behaviors. In addition, combining the WSQ mapping and asymmetric kernel fitting avoids 

the tedious process of testing and evaluating different probability distribution functions to model 

WS. 

The general expression for the asymmetric KCDF is given by (Mombeni et al., 2021): 

Equation 4.8 

𝐹̂(𝑤) =  
1

𝑛
∑𝐾̅(𝑊𝑖; 𝑤, 𝑏)

𝑛

𝑖=1
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where 𝒃 > 𝟎 is the bandwidth and 𝑲̅(∙) is the CDF of an asymmetric kernel function. 

In this work, the Birnbaum-Saunders (BS), the Log-Normal (LN) and W asymmetric kernel 

functions were tested (Lafaye de Micheaux et al., 2021; Mombeni et al., 2021):  

Equation 4.9 

𝐹̂𝐵𝑆(𝑤) =  
1

𝑛
∑𝐾̅𝐵𝑆(𝑊𝑖;  𝑤, √𝑏)

𝑛

𝑖=1

 

Equation 4.10 

𝐹̂𝐿𝑁(𝑤) =  1 𝑛⁄ ∑𝐾̅𝐿𝑁(𝑊𝑖; log𝑤 , √𝑏)

𝑛

𝑖=1

 

Equation 4.11 

𝐹̂𝑊𝐵(𝑤) =  1 𝑛⁄ ∑𝐾̅𝑊𝐵 (𝑊𝑖; 𝑤 Γ(1 + 𝑏)⁄ ,
1

𝑏
)

𝑛

𝑖=1

 

Equation 4.12 

𝐾̅𝐵𝑆(𝑥;  𝛽, 𝜎) = 1 −  Φ

(

 
 
(√
𝑥
𝛽
− √

𝛽
𝑥)

𝜎

)

 
 
  𝛽, 𝜎 > 0 

Equation 4.13 

𝐾̅𝐿𝑁(𝑥; 𝜇, 𝜎) =  1 −  Φ(
(log 𝑥 − 𝜇)

𝛼
)   𝜇, 𝜎 > 0 

Equation 4.14 

𝐾̅𝑊𝐵(𝑥; 𝛼, 𝛽) = exp (−(
𝑥

𝛽
)
𝛼

)   𝛼, 𝛽 > 0 

Where 𝚽(∙) is the CDF of the standard normal distribution and 𝚪(∙) is the gamma function.  

The optimal bandwidths can be selected by minimizing the Mean Integrated Square Error (MISE): 

Equation 4.15 
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𝑀𝐼𝑆𝐸 = ∫ 𝑀𝑆𝐸 (𝐹̂(𝑤))
∞

0

𝑑𝑤 

Equation 4.16 

𝑀𝑆𝐸 (𝐹̂(𝑤)) = 𝐸 [(𝐹̂(𝑤) −  𝐹(𝑤))
2
] 

Mombeni et al. (2021) derived the asymptotical optimal bandwidth of 𝐾̅𝐵𝑆 and 𝐾̅𝑊𝐵 with respect to 

the MISE: 

Equation 4.17 

𝑏𝑜𝑝𝑡
𝐵𝑆 ≈ {∫ 𝑥𝑓(𝑥)𝑑𝑥

∞

0

}

2 3⁄

{𝜋
1
2∫ (𝑥𝑓(𝑥) + 𝑥2𝑓′(𝑥))

2
𝑑𝑥

∞

0

}

−2 3⁄

𝑛−2 3⁄  

Equation 4.18 

𝑏𝑜𝑝𝑡
𝑊𝐵 ≈ {36 ln 2 ∫ 𝑥𝑓(𝑥)𝑑𝑥

∞

0

}

1
3

{𝜋4∫ (𝑥2𝑓′(𝑥))
2
𝑑𝑥

∞

0

}

−
1
3

𝑛−
1
3 

Lafaye de Micheaux et al. (2021) proposed the following asymptotical optimal bandwidth with 

respect to the MISE for 𝐾̅𝐿𝑁:  

Equation 4.19 

𝑏𝑜𝑝𝑡
𝐿𝑁 ≈ {

1

√𝜋
∫ 𝑥
∞

0

𝑓(𝑥)𝑑𝑥}

2
3

{4∫
𝑥2

4
(𝑓(𝑥) + 𝑥𝑓′(𝑥))

2
𝑑𝑥

∞

0

}

−
2
3

𝑛−
2
3 

The optimal bandwidth with respect to the MISE was selected under the assumption that the W 

with parameters estimated using the predicted WSQ and the LSE method was the target 

distribution. The reason for employing the W distribution in the paper is two-fold: First, it is the 

parametric probability distribution function most commonly used to model WS; Secondly, it is 

convenient because its CDF can be linearized with respect to its parameters and the WSQ. As a 

result, finding the best-fitting parameters with the LSE method is equivalent to solving a linear 

equation and does not require an optimization algorithm.  
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4.2.2 Weibull parameter mapping  

In previous studies, to estimate the WS probability distribution at unsampled locations, machine 

learning models were used to map the parameters of a RD. The approach selects a single 

distribution family for the entire region. Then, the distribution function parameters are fitted at the 

sampled locations, and a regression model is built between the parameters and WS covariates. 

Jung (2016) selected the Wakeby distribution as the RD in southwest Germany based on two 

goodness of fit measures: Kolmogorov-Smirnov statistic and the coefficient of determination. For 

a review of criteria used for the identification of adequate WS distributions the reader is referred 

to Ouarda et al. (2016). Veronesi et al. (2016) selected the W as the RD in the UK due to its 

widespread use in modelling WS, and convenience as it requires only two parameters to 

characterize the WS probability distribution. The W was also adopted as the RD in this study to 

evaluate the QWSM approach. The W parameters were estimated with the LSE method and the 

best-fitting parameters were mapped in the region using the WS covariates described in section 

4.3 and the LR and XGB regression models described in section 4.2.1.2. The MRMR algorithm 

was also applied to identify the best set of covariates to include in the regression models.  

4.2.3 Model validation  

To evaluate the QWSM and the WPM, holdout and 5-fold cross-validation were implemented with 

the available samples. During the holdout procedure, parts of the samples were withheld (the 

validation set) before model training and parameter tuning and used to evaluate the final model 

generalization performance. During 5-fold cross-validation, the training samples were divided into 

five approximately equal subsets. Then, the holdout method was implemented five times by 

considering each subset as the validation set and training the model on the remaining subsets.  

The following metrics were calculated based on the observed (𝑦𝑖) and estimated (𝑦̂𝑖) values:  

Equation 4.20 

𝑅2 = 1 − 
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅)
2𝑛

𝑖=1

 

Equation 4.21 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1
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Equation 4.22 

𝑀𝐴𝐸 = 
1

𝑛
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

 

The evaluation of the GOF of the estimated WS probability distribution was based on the 

percentage probability plot (PP plot: Wilk et al., 1968). The PP plot compares the ECDF to the 

estimated CDF. During cross-validation and validation, the R², the RMSE and the MAE defined in 

Equation 4.20, Equation 4.21, and Equation 4.22, respectively, were used to evaluate the degree 

of association between the ECDF and the CDF. Horst (2008) noted that the PP plot has strong 

discriminatory power in high-density regions of the distribution (i.e., the middle of a distribution), 

where the CDF changes more rapidly with the WS values compared to low-density regions (i.e., 

the tails). Regions of the probability distribution with high density are the most crucial for wind 

energy production. Also, in their reviews on WS distribution selection, Jung et al. (2019b) 

observed that the most widely used GOF metrics were based on the PP plot. 

The Kolmogorov–Smirnov statistic (D) is an alternative measure that was used to compare the 

ECDF and the CDF:   

Equation 4.23 

𝐷 = max |𝐹𝑛(𝑊𝑖) − 𝐹̂(𝑊𝑖)| 

where 𝑭𝒏(𝑾𝒊) is the ECDF and 𝑭̂(𝑾𝒊) is the estimated CDF. 

The ECDF  was calculated with the Weibull plotting position (Akgül et al., 2016) giving unbiased 

non-exceedance probabilities regardless of the underlying distribution of the data (Morgan et al., 

2011): 

Equation 4.24 

𝐹𝑛(𝑊𝑖)  =
𝑖

(𝑛 + 1)
 

where 𝒊 = 𝟏,… , 𝒏 is the rank of the WS values after sorting them in ascending order. 

4.3 Study area and dataset  

The study was conducted on data from Canada with a total area of 9,984,670 square kilometers. 

Hourly WS data from 207 meteorological stations located throughout the country were used for 
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the research. From Environment and Climate Change Canada (ECCC) historical climate 

database, stations with at least 20 years of recent WS record were selected. Additional filtering 

was performed to eliminate stations with more than ten years of record having two months of 

missing data. Figure 4.2 illustrates the geographical location of the 207 stations that were selected 

after filtering. From the available stations, 155 (white triangles in Figure 4.2) were used for FS, 

model training and cross-validation and the remaining stations (black dots in Figure 4.2) were 

used to validate the final model as explained in 4.2.3. 

 

Figure 4.2 Spatial distribution of the training and validation stations used in this study 

 

The following four types of covariates were used with the regression models to either estimate 

the WSQ or the W parameters: topographic, climatic, geographic, and surface roughness length. 

The topographical covariates were created using the WhiteboxTools (Lindsay, 2014) and a 30 m 

resolution global DEM (Tadono et al., 2014). Seasonal and annual trends of mean temperature 

data were acquired from the Canadian gridded temperature and precipitation anomalies 

(CANGRD) dataset (available at https://climate-change.canada.ca/climate-data/#/historical-

https://climate-change.canada.ca/climate-data/#/historical-gridded-data
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gridded-data). Surface roughness length was extracted from a 2015 Canada land use map 

(Latifovic et al., 2017) resampled at different spatial resolutions using majority resampling (i.e., 

most popular value in a defined radius). A surface roughness length was associated with each 

land use type based on a lookup table proposed by Wiernga (1993). Table 8.2 in the Appendix 

(Section 8) provides more details about the covariates.  

4.4 Results 

4.4.1 Performance of regression models 

The LR and the XGB models were fitted with covariates selected using MRMR-PC and MRMR-

MI. The results of comparing the different combinations of regression models and FS methods 

are presented in Table 4.2 and Table 4.3 for QWSM and the WPM, respectively. Figure 4.3 details 

the average R² for estimating the 13 WSQ and the two W parameters (shape and scale). The 

comparisons using cross-validation and validation lead to very similar results, indicating, in 

general, that XGB with MRMR-PC outperforms the other combinations of regression models and 

FS methods. Indeed, XGB gave better results than LR in most cases, and MRMR-PC was more 

effective than MRMR-MI for FS in the study. In the few cases where LR outperformed XGB, the 

performance difference was marginal and inconsistent during cross-validation and validation (see, 

for instance, P8 in Figure 4.3a and Figure 4.3b). Table 4.2 and Table 4.3 indicate that the 

improved performance of XGB with MRMR-PC is consistent across all metrics. Hereon, only the 

results obtained with estimations from the top-performing FS and regression model (MRMR-PC 

+ XGB) will be presented.  

Figure 4.4 displays the spatial distribution of the RMSE (WSQ) scaled by the actual WS median 

for the validation set. This representation allows for comprehensive visualization of the accuracy 

and variability of the model's predictions across different locations. Scaling the RMSE with the 

actual median provides a relative measure of error that can be compared and interpreted 

meaningfully. The spatial distribution of the scaled RMSE revealed that the model exhibited 

acceptable performances in estimating the WSQ in regions with sparse training samples 

highlighting its generalization capability. 

Table 4.2 Average performance metrics for the estimation of WSQ 

Validation Methods Regression model MRMR MAE R² RMSE 

   km/h  km/h 

Cross-validation LR MI 3.59 0.23 4.90 

Cross-validation LR PC 3.40 0.26 6.11 

https://climate-change.canada.ca/climate-data/#/historical-gridded-data
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Cross-validation XGB MI 3.24 0.42 4.30 

Cross-validation XGB PC 3.08 0.47 4.07 

Validation LR MI 3.64 0.36 4.48 

Validation LR PC 3.24 0.46 4.19 

Validation XGB MI 3.30 0.46 4.22 

Validation XGB PC 3.00 0.57 3.74 

 

Table 4.3 Average performance metrics for the estimation of the W parameters 

Validation Methods Regression model MRMR MAE R² RMSE 

      

Cross-validation  LR MI 1.88 0.27 2.47 

Cross-validation  LR PC 2.02 - 4.79 

Cross-validation  XGB MI 1.83 0.45 2.27 

Cross-validation  XGB PC 1.61 0.48 2.12 

Validation LR MI 2.07 0.32 2.42 

Validation LR PC 1.76 0.37 2.27 

Validation XGB MI 1.75 0.42 2.16 

Validation XGB PC 1.58 0.48 1.97 
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Figure 4.3 Performance of LR and XGB for the estimation of the WSQ (a and b) and the W parameters 
(c and d) during cross-validation (a and c) and validation (b and d).  

Note: Negative values of R² were set to zero 

 

Figure 4.4 Spatial distribution of the scaled RMSE (WSQ) of the validation set 

 

4.4.2 Wind speed distribution mapping  

This section presents the results of the comparative analysis between the QWSM and WPM. 

Table 4.4 shows the mean values of the GOF metrics. In general, it is observed that the QWSM 

gave a better fit than WPM for the considered metrics. Also, QWSM/W gave better fit than WPM. 

According to the R², RMSE and MAE criteria, QWSM/W and QWSM/GG were the best-performing 

methods, and their performances are very similar to QWSM/KCDF/BS and QWSM/KCDF/LN. 

However, during cross-validation and validation, the Kolmogorov-Smirnov statistic (D) seemed to 

favor QWSM/KCDF/LN and QWSM/KCDF/BS. The distribution of the GOF measures was 

represented using boxplots in Figure 4.5. The most noticeable difference in the distribution of the 

GOF measures was observed with D when comparing the different approaches. The methods 

based on QWSM/KCDF/LN and QWSM/KCDF/BS resulted in smaller D values and less variability 

in the same GOF measure compared to other approaches.  
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Furthermore, the different methods were evaluated by comparing the observed and estimated 

WSQ across ten equidistant percentiles ranging from 0.1 to 0.9. The outcome of this analysis 

(Figure 4.6) indicated that the QWSM methods often outperformed the WPM for the considered 

WSQ. Methods based on QWSM with the asymmetric kernels tend to give comparable 

performances to the parametric methods in the middle of the distribution (e.g., 0.4, 0.5, 0.6 

percentiles). While in the tails (e.g., percentiles 0.1 and 0.9) the parametric methods showcased 

a better performance than the non-parametric methods.  

Table 4.4 Mean value of the GOF measures 

Distribution Validation Methods D MAE R² RMSE 

QWSM/GG Cross-validation 0.137 0.039 0.938 0.058 

QWSM/GG Validation 0.147 0.041* 0.922* 0.062* 

QWSM/KCDF/BS Cross-validation 0.131 0.043 0.938 0.059 

QWSM/KCDF/BS Validation 0.143* 0.045 0.920 0.063 

QWSM/KCDF/LN Cross-validation 0.131 0.044 0.937 0.059 

QWSM/KCDF/LN Validation 0.143* 0.045 0.920 0.063 

QWSM/KCDF/W Cross-validation 0.137 0.046 0.932 0.061 

QWSM/KCDF/W Validation 0.150 0.046 0.911 0.064 

QWSM/LN Cross-validation 0.165 0.042 0.93 0.064 

QWSM/LN Validation 0.165 0.043 0.913 0.065 

QWSM/R Cross-validation 0.157 0.042 0.926 0.065 

QWSM/R Validation 0.168 0.044 0.908 0.069 

QWSM/W Cross-validation 0.136 0.039 0.939 0.058 

QWSM/W Validation 0.147 0.041* 0.921 0.062* 

WPM Cross-validation 0.144 0.042 0.93 0.062 

WPM Validation 0.152 0.043 0.910 0.065 

Note: The best-performing methods are indicated in bold for the cross-validation and marked with * for the 
validation. 
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Figure 4.5 GOF of estimated WS probability distribution. Negative values of R² were set to zero 

 

 

Figure 4.6 Performance metrics for observed WSQ and estimated WSQ using QWSM and WPM 
(validation set) 

 

In Figure 4.7, the P-P plot, the CDF, and the probability density function (PDF) plot of 3 validation 

samples are presented for illustration purposes. These plots offer a comprehensive visual 

analysis of the actual and estimated WS distribution agreement. Recall that QWSM/W was 

selected as the target distribution to estimate the optimal bandwidth for all KCDF. However, it is 

observed that the kernel PDFs exhibited more flexibility than QWSM/W. The W kernel 

demonstrated more flexibility than the BS and LN kernels, while both gave an almost identical 

PDF.  
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Figure 4.7 PP plot, CDF plot and PDF plot of estimated wind speed probability distributions 

4.5 Discussion 

The comparison of the regression models indicates that the non-linear model (XGB) outperformed 

the linear model (LR) for the estimation of WSQ and the W parameters. The superior performance 

of the XGB model suggests that there are non-linear associations and interactions between the 

covariates and the WS response variables (WSQ and W parameters). The XGB model can 

effectively capture these non-linear relationships, leading to more accurate and precise estimates 

than the linear model. There is potential for further improvement in the performance of the XGB 

model by conducting a more comprehensive hyperparameter tuning. A random search was 

employed for the XGB hyperparameter tuning and proved sufficient to demonstrate the superiority 

of the XGB model over the LR model. However, a more extensive hyperparameter tuning process, 

such as grid search or Bayesian optimization (Wu et al., 2019), could be conducted to thoroughly 

search for the optimal combination of hyperparameters that maximizes the model's performance. 
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The study also found that MRMR-PC was more effective for FS than MRMR-MI. MI can assess 

linear and nonlinear dependencies between variables, and it was initially expected that combining 

MRMR-MI with XGB would outperform the combination of MRMR-PC with XGB. However, similar 

results were observed by Ren et al. (2020) in the field of hydrology. The authors discovered that 

a FS method based on the partial Pearson correlation outperformed FS methods based on MI 

(including MRMR-MI) when applied with linear and nonlinear regression models for monthly 

streamflow forecasting. The study attributed these results to the possibility that the relationship 

between the covariates and the target variable in their models exhibited more linearity than 

nonlinearity. Similar conclusions may be formulated in this study, suggesting that the gain in 

performance achieved using the XGB could also be attributed to other characteristics of the 

models, such as its robustness against redundant features and collinearity within the features set. 

Despite these findings, it is still recommended to evaluate different FS methods. Different 

scenarios or datasets may yield different results.  

It is well known that wind speed and other climatic variables like humidity, pressure, and 

temperature are interconnected. The main challenge in using climatic variables for estimating 

wind speed at unsampled locations is that those variables should also be unavailable. Gridded 

climate data can be used as an alternative source of climatic covariates. This study only used 

gridded climate data of long-term temperature trends as climatic covariates. Investigating the 

applicability of other gridded climate data as covariates for WS distribution mapping in future 

studies is recommended. 

Veronesi et al. (2016) reviewed the performance of physical and statistical methods for wind 

resources assessment. They found that most studies applying statistical methods reported an 

RMSE of around 1 m/s on their validation set when considering the central tendency of the wind 

speed distribution (ex.: mean). In the current study, the average RMSE for estimating the median 

wind speed obtained was 3.28 km/h (0.87 m/s), and the average MAE was 2.62 km/h (0.69 m/s). 

These results seem to agree with previous studies. However, as was pointed out by Veronesi et 

al. (2016), results from different studies are generally difficult to compare as different datasets, 

regions and techniques were covered in these studies. 

In general, based on the evaluation of the GOF, QWSM demonstrated a better fit compared to 

WPM. This result may be explained by the fact that the estimation of the WS distribution from 

WSQ may be less sensitive to mapping error compared to WPM. For instance, in the case of the 

WPM, minor errors in mapping the W parameter could have disproportionate effects on the overall 

resulting shape of the wind speed distribution. In contrast, with the QWSM, the implications of 
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mapping errors are less severe, as inaccuracies in wind speed quantile mapping seemed to have 

a smaller impact on the overall distribution's shape. Consequently, the QWSM approach exhibits 

enhanced robustness against errors in mapping, rendering it a more dependable framework for 

wind speed distribution mapping. 

The non-parametric approach with the BS and LN KCDF gave slightly better results than the 

parametric approach when considering the Kolmogorov-Smirnov statistic. The non-parametric 

method does not require fixing a regional distribution and can adequately recover the WS 

distribution from the estimated quantiles. Parametric methods require fitting the data to a specific 

probability distribution family, which may introduce bias if the assumed distribution does not align 

with the underlying distribution. Another potential source of bias common to both methods (i.e., 

QWSM, WPM) is related to the regression models used to estimate either the WSQ or the RD 

parameters. It should be noted that the bulk of the bias of the QWSM + KCDF method arises from 

the regression model used to map the WSQ in the region. Thus, the non-parametric approach 

can reduce potential biases by minimizing the assumptions. The proposed approach becomes 

particularly interesting in regions where the wind regime exhibits significant variations, and no 

single distribution family is suitable for all locations within the region. With their constraints, 

parametric methods may struggle to capture the diversity of complex patterns that can be present 

in such regions. In contrast, with its flexibility, the non-parametric approach can be more 

appropriate and should yield more accurate results. Alternatively, it is possible to segregate the 

regions into sub-regions and select a different RD for each sub-region. However, this would 

reduce the number of samples used to learn the relationship between the covariates and the RD 

parameters, potentially leading to a loss in performance. For WS values located in the 

distribution's tails (for instance, extreme values), opting for the QWSM method with parametric 

distribution functions would be more suitable. This recommendation is based on the finding that 

these parametric approaches exhibited superior performance compared to non-parametric 

approaches in this case. 

Mapping the WSQ in this study involved extracting the quantiles from the time series and then 

using a regression model that estimates the conditional mean of the quantiles given the 

covariates. An alternative approach could be directly estimating the conditional quantiles using a 

quantile regression (Koenker, 2017; Meinshausen et al., 2006; Nasri et al., 2017; Ouali et al., 

2016) model incorporating the covariates. Quantile regression is a statistical technique that allows 

estimating specific quantiles of the response variable rather than focusing solely on the 

conditional mean.  
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The main drawback of the QWSM approach is that the number of independent variables 

(quantiles) that need to be mapped to recover the WS distribution would often be superior to the 

number of the RD parameters that require mapping in the WPM approach. Fitting these individual 

regression models can become time-consuming and resource intensive. However, some quantile 

regression models can simultaneously estimate multiple quantiles (Liu et al., 2011; Meinshausen 

et al., 2006), providing a more efficient approach compared to building separate regression 

models for each quantile. Also, when estimating multiple quantiles simultaneously, additional 

constraints can be formulated to enforce monotonicity (Cannon, 2018) and avoid the issue of 

quantile crossing that arises when estimating the quantiles independently. It is worth mentioning 

that a gradient-boosting model (Duan et al., 2020) was recently proposed to simultaneously 

estimate the parameters of a probability distribution conditioned on some covariates. This model 

could be used to estimate the parameters of a RD simultaneously rather than building an 

independent model for each parameter.   

Modern wind turbine hub heights vary between 80 m and 100 m, while wind speed data are 

conventionally collected at 10 m at meteorological stations. As a result, a technique for 

extrapolating wind speed data to hub height becomes necessary (e.g., the power law). Such 

techniques can extend the method proposed in this study to map wind speed distribution at hub 

height. Nevertheless, it is worth noting that such extrapolation introduces a notable increment in 

the uncertainty of the outcomes.   

Jung et al. (2018a) proposed a technique for mapping wind shear distribution, allowing the wind 

speed distribution to be mapped at any standard hub height. Jung et al. (2018a) selected the 

Dagum family distribution to represent the wind shear distribution. In future research, the non-

parametric approach proposed in this study could be adapted to map wind shear distribution 

without prior assumptions about its distribution. Also, future studies can explore the possibility of 

extending the proposed approach to other types of climatic variables, such as temperature and 

solar irradiation.  

The approach proposed in this study can provide valuable information to estimate wind resources 

over a large area during a prospecting phase. Once an area that meets the necessary socio-

economic requirements and showcases sufficient wind potential is identified, alternative methods 

are available to evaluate the wind flow at the microscale. An example of such an approach 

involves conducting wind flow simulations via Computational Fluid Dynamics (CFD), especially in 

complex terrain (Tang et al., 2019). The implementation of a CFD model requires the provision of 

initial wind data, which can be sourced from outputs generated by Numerical Weather Prediction 
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(NWP: Beaucage et al., 2014; Keck et al., 2020; Simões et al., 2016). NWP models entail 

considerable computational costs compared to statistical methodologies proposed herein. A 

compelling avenue of research would involve comparing the performance of NWP and statistical 

models for CFD model input and developing methods to combine statistical and CFD models to 

assess microscale wind flow dynamics.  

4.6 Conclusion 

A fully non-parametric approach was developed to map wind speed distribution. The new method 

was compared to a more traditional approach based on mapping the parameters of a regional 

distribution. The results of the comparative analysis highlighted the superiority of the proposed 

approach. The main conclusions of the paper are summarized as follow: 

• The non-parametric approach is more practical as it does not require fitting and evaluating 

several distribution functions to the available wind speed data. In the proposed method, 

wind speed quantiles can be easily extracted from the time series and mapped using 

suitable machine-learning techniques. At any location in the study area, the entire wind 

speed distribution can be recovered from the estimated wind speed quantile by fitting 

asymmetric kernel estimators. The proposed approach is free from any assumption on the 

wind speed probability distribution family in the region that can bias the analysis. The non-

parametric approach is recommended for mapping wind speed distribution in regions with 

a highly variable wind regime. The analysis indicates that the fully non-parametric 

approach improved the Kolmogorov-Smirnov statistic by 9% on average during validation.  

• Compared to the regional distribution parameter mapping approach, quantile-based wind 

speed distribution mapping can be slower to implement as it requires the estimation of 

multiple wind speed quantiles. However, with the advancement in quantile regression 

models, it is possible to build a single regression model to predict multiple quantiles. This 

type of quantile regression model should reduce the computational burden associated with 

the proposed approach.  

• The Gradient boosting trees model outperformed the multilinear regression model for 

mapping wind speed quantiles and the Weibull parameters. At the same time, feature 

selection based on the Pearson correlation coefficient was more effective than the Mutual 

information. Utilizing the Gradient Boosting Trees model and feature selection based on 

the Pearson correlation coefficient resulted in a 23% improvement in R2 during validation 

compared to the second-best model for estimating wind speed quantiles. 
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• It should be noted that symmetric kernels could also be fitted to the estimated wind speed 

quantiles, with some probabilities associated to small negative wind speed values. Using 

an asymmetric kernel effectively avoids probability leakage at the boundary of the lower 

tail of the wind speed probability distribution.  

• The proposed approach is easily portable to regions with sparsely available wind speed 

measuring stations. The other data sources used in the study (e.g., DEM and land use 

map) are often freely accessible from global datasets covering most regions of the world. 
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Nomenclature 

Abbreviations 

BS Birnbaum-Saunders 

CANGRD Canadian gridded temperature and precipitation anomalies dataset 

CDF Cumulative probability function 

CFD Computational Fluid Dynamics 

CO2 Carbon dioxide 

DEM Digital elevation model 

ECDF Empirical cumulative probability function 

FS Feature selection 

GBT Gradient boosting trees  

GG Generalized Gamma 

GOF Goodness of fit 

GW Giga watt 

KCDF Kernel estimator of cumulative distribution function 

LN Log-Normal 

LR Linear regression 

LSE Least Square Estimation 

MAE Mean Absolute Error 

MI Mutual information 

MISE Mean Integrated Square Error 

MRMR Minimum redundancy maximum relevance 

MRMR-MI Minimum redundancy maximum relevance with Mutual information 

MRMR-PC Minimum redundancy maximum relevance with Pearson correlation coefficient 

MSE Mean squared error 

NWP Numerical Weather Prediction 

PC Pearson correlation coefficient 

PDF Probability distribution function 

PP plot Percentage probability plot 

QWSM Quantile-based wind speed probability distribution mapping 

R Rayleigh 

R2 Coefficient of determination 

RD Regional distribution 
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RMSE root mean square error 

SSE Sum of the square error 

UK United Kingdom 

W Weibull distribution 

WPM Weibull parameters mapping 

WS Wind speed 

WSQ Wind speed quantiles 

XGB Extreme Gradient Boosting 

 

Symbols 

𝛼, 𝛽, 𝜇, 𝜎  Parameters of asymmetric kernel function 

𝑏  Kernel function bandwidth 

𝑏𝑜𝑝𝑡
𝐵𝑆   Asymptotical Birnbaum-Saunders Kernel optimal bandwidth 

𝑏𝑜𝑝𝑡
𝐿𝑁   Asymptotical Log-Normal Kernel optimal bandwidth 

𝑏𝑜𝑝𝑡
𝑊𝐵  Asymptotical Weibull Kernel optimal bandwidth 

𝐷  Kolmogorov–Smirnov statistic 

𝐹(𝑥, 𝑦)  F-statistic between 𝑥 and 𝑦 

𝐹̂(∙)  Cumulative distribution function of estimated wind speed quantiles 

𝐹(∙; 𝜃)  Fitted cumulative distribution function, where 𝜃 are the estimated parameters 

𝐹̂𝐵𝑆(∙)  Birnbaum-Saunders Kernel estimator of cumulative distribution function 

𝐹̂𝐿𝑁(∙)  Log-Normal Kernel estimator of cumulative distribution function 

𝐹𝑛(∙)  Empirical cumulative distribution function 

𝐹̂𝑊𝐵(∙)  Weibull Kernel estimator of cumulative distribution function 

𝛾  Weight term in the empirical quantile estimation formula  

Γ(∙)  Gamma function 

𝐼(𝑥, 𝑦)   Mutual information between 𝑥 and 𝑦 

𝐾̅𝑤,𝑏(∙)  Cumulative distribution function of an asymmetric kernel function 

𝐾̅(∙)  Cumulative distribution function of an asymmetric kernel function 

𝐾̅𝐵𝑆  Cumulative distribution function of the Birnbaum-Saunders asymmetric kernel 

function 

𝐾̅𝐿𝑁  Cumulative distribution function of the Log-Normal asymmetric kernel function 

𝐾̅𝑊𝐵  Cumulative distribution function of the Weibull asymmetric kernel function 
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𝑃  Percentile point 

P1 5% percentile-level 

P10 72.5% percentile-level 

P11 80% percentile-level 

P12 87.5% percentile-level 

P13 95% percentile-level 

P2 12.5% percentile-level 

P3 20% percentile-level 

P4 27.5% percentile-level 

P5 35% percentile-level 

P6 42.5% percentile-level 

P7 50% percentile-level 

P8 57.5% percentile-level 

P9 65% percentile-level 

Φ(∙)  Standard normal distribution 

𝑅𝑒𝑙(𝑥, 𝑦), 

𝑅𝑒𝑑(𝑥, 𝑦)  

Measure of dependency between 𝑥 and 𝑦 

𝜌(𝑥, 𝑦)  Pearson correlation coefficient between 𝑥 and 𝑦 
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Dans l’article 3, nous avons proposé une méthode non paramétrique d’estimation de la 

distribution du vent. Dans l’article 4, cette approche est étendue afin de reconstruire des séries 

temporelles de vitesse du vent aux sites non échantillonnés. La disponibilité de ces séries 

temporelles permet d’évaluer la variabilité temporelle des vitesses de vents à différentes échelles 

temporelles. 
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Abstract 

Various models for wind speed mapping have been developed, with increasing attention on 

models focusing on mapping wind speed distribution. This study extends these models to predict 

hourly wind speed time series at unsampled locations. A model based on the quantile mapping 

(QM) procedure was compared to a traditional and machine-learning model to interpolate wind 

speed spatially. These proposed models were also used with inputs from the ERA5 reanalysis 

dataset, enabling them to consider local variation in orography and large-scale wind fields. A 

widely used procedure for mean bias correction of reanalysis based on the Global Wind Atlas 

(GWA) was implemented and compared to the proposed models. It was found that the QM and 

machine learning model, both using input from ERA5, significantly outperformed GWA bias 

correction in terms of time series correlation and probability distribution. Despite being more 

computationally intensive than GWA bias correction, both models are recommended due to their 

significantly (in a statistical sense) superior performance. 

Keywords: Bias-correction, ERA5, Light gradient-boosting machine, Quantile regression, 

Reanalysis, Wind resource assessment 
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5.1 Introduction  

The past decades have witnessed a significant uptake of wind energy in various parts of the world 

(Cherp et al., 2021). This growth reflects a global shift toward more renewable energy sources, 

with wind power playing a prominent role in energy supply (Wiser et al., 2021). The intermittent 

nature of wind speed still poses some challenges to the development of the renewable energy 

source (Ren et al., 2017). Due to the cubic relationship between wind speed and power output, 

inaccuracies in estimating wind speed are amplified when estimating the energy production, 

leading to suboptimal design of wind energy infrastructure and jeopardizing the profitability and 

sustainability of the project (Lee et al., 2021).   

Prospective studies to evaluate the wind resource across a large region at a high spatial and 

temporal resolution provide valuable sources of information for the expansion of wind energy 

(Lopez et al., 2021; Niermann et al., 2019). In-situ wind speed (WS) data are generally accepted 

as the most reliable data source for wind resource assessment (WRA). However, measuring 

stations are often sparsely available in a given region and have limited record length for WRA.  

Several publicly available datasets exist that give access to wind data at the global scale with 

high temporal resolution and extensive record length. The European Centre for Medium-Range 

Weather Forecasts (ECMWF) reanalysis v5 (ERA5: Hersbach et al., 2020), and the NASA’s 

Modern Era Retrospective Analysis for Research and Applications-2 (MERRA-2: Molod et al., 

2015) have been used extensively to conduct WRA across large regions (Gruber et al., 2022; 

Gualtieri, 2022). Samal (2021) evaluated the adequacy of MERRA-2 for WRA in India. The author 

compared the wind data from the reanalysis dataset with observed data collected at 

meteorological stations. The study found that the reanalysis dataset was more suitable for long-

term than short-term planning. In another study, MERRA-2 was used to perform a preliminary 

evaluation of the wind resource in South Sudan (Ayik et al., 2021). The authors identified areas 

in the region with high wind potential. Five global reanalysis datasets including ERA5 and 

MERRA-2 were evaluated for WRA by comparing them with measured WS data from 

meteorological stations distributed worldwide (Ramon et al., 2019). The comparative study was 

based on estimated mean WS, variability, and trends. From the study results, the ERA5 dataset 

was recommended for wind energy applications.  

Direct application of reanalysis datasets for WRA still has some drawbacks. Notably, the coarse 

spatial resolution of reanalysis datasets renders them unable to resolve local variations in 

orography and surface roughness influencing near-surface WS (Gualtieri, 2021). A review of the 
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uncertainties associated with the application of reanalysis data for WRA was presented by 

Gualtieri (2022). Several studies endeavoured to increase the spatial resolution and bias-correct 

reanalysis datasets using ground measurements and other datasets with higher spatial resolution. 

The Global Wind Atlas (GWA) is a popular dataset used to correct the bias in reanalysis WS data 

(Gruber et al., 2019). In this procedure, the mean WS from the reanalysis dataset is corrected to 

match the GWA mean WS by applying a correction factor estimated during the overlapping period 

of both datasets.  

Alternatively, to reanalysis datasets, spatial interpolation and machine learning models have been 

used to map wind data at a high spatial resolution using in-situ observations. The main advantage 

of this approach over the use of reanalysis data is its ability to account for the rapid change in the 

topography and surface roughness by using covariates extracted from DEM and land use maps. 

A comparative analysis of several spatial interpolation methods for hourly WS mapping was 

performed by Collados-Lara et al. (2022). The authors found that the regression kriging model 

produced the best results and was selected to generate hourly wind speed time series (WSTS) 

between 1996 and 2016 in The Granada province, Spain.  In another study, Cellura et al. (2008a) 

developed a machine-learning model to interpolate mean WS in Sicily, Italy. The author 

recommended the approach for its ease of application and transferability to other regions. A 

similar study was conducted in Venezuela (González-Longatt et al., 2015) to create a regional 

mean WS map. It should be noted that wind speed distribution (WSD) is often skewed, and the 

mean is not a good representative of the most typical value of the distribution. 

In recent studies, authors have been interested in mapping the entire WSD, allowing a better 

evaluation of the wind resource variability at unsampled locations of interest. For example, 

Veronesi et al. (2016) mapped the parameters of the Weibull distribution fitted to WS data across 

the United Kingdom (UK). Jung (2016) mapped the parameter of the Wakeby distribution fitted to 

WS data to estimate the annual wind energy yield with a high spatial resolution in Germany. In 

another study, Jung et al. (2020) developed a global model that estimates the parameters of the 

Kappa and Wakeby distribution for WS variability assessment using estimated L-moments. 

Houndekindo et al. (2023b) recently proposed a nonparametric approach for WSD mapping. The 

approach does not restrict the region to a single WSD distribution family. The availability of 

methods to map the entire WSD is a crucial step forward compared to past studies where only 

aggregated values of WS were estimated. However, For the evaluation of WS variability at 

different temporal resolutions (e.g., daily, seasonal, annual), WSTS with a high temporal 

resolution (e.g., ten min. or one hour) are still required. 
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This study proposes expanding upon previously developed techniques for mapping WSD to 

predict hourly WSTS at unsampled locations. The proposed method named the Wind Duration 

Curve (WDC) is inspired by an approach commonly used for environmental variables (see, for 

instance, Castellarin et al. (2013) and Requena et al. (2017) for application to streamflow data 

and Ouarda et al. (2022) for application to daily river temperature) and can be seen as an 

adaptation of the quantile mapping (QM) technique often used to downscale global circulation 

models and regional climate model outputs (Ben Alaya et al., 2016; Cannon et al., 2015). A 

comprehensive evaluation of  the WDC method is performed and the approach is compared to 

other methods for WSTS estimation at unsampled locations.  

The paper is structured as follows: Section 5.2 describes the study area and the datasets. The 

methodology employed is presented in section 5.3. The results of the comprehensive evaluation 

of the different approaches are presented in section 5.4. The discussion follows in section 5.5, 

and section 5.6 gives the conclusions of the study.  

5.2 Study area and dataset  

Experimental data for the study were obtained from Environment and Climate Change Canada 

(ECCC) historical climate database (https://climate.weather.gc.ca/). Stations with less than 10% 

missing values between 2011 and 2021 (11 years of mean hourly WS) were selected from the 

database, resulting in 303 meteorological stations available for the study. WS data at the 

meteorological stations were typically collected at 10 m above ground level according to ECCC. 

The measured WS data was considered the most representative of the actual WS condition. 

Figure 5.1 illustrates the study area and the location of the 303 meteorological stations. In the 

figure, stations represented with circles were used during the training of the models and those 

represented with triangles were solely used as test samples.   

Reanalysis WS data were obtained from ERA5 dataset. Wind speed data from ERA5 are provided 

in a grid format with a temporal resolution of 1 h available between 1980 and the present.  The 

eastward and northward WS components at 10 m were obtained from the dataset 

(https://doi.org/10.24381/cds.adbb2d47), and the 10 m horizontal WS was calculated and 

interpolated at the 303 meteorological stations using nearest neighbor interpolation.  

The WS covariates used in the study are presented in detail in Table 9.1 of the supporting material 

(Section 9). Topographical covariates were calculated from the Advanced Land Observing 

Satellite (ALOS)  Digital Elevation model (DEM) of 30 m resolution (ALOS DEM: Tadono et al., 

2014) obtained freely from the Japan Aerospace Exploration Agency. The surface roughness 

https://climate.weather.gc.ca/
https://doi.org/10.24381/cds.adbb2d47


 163 

length was estimated from a 2015 land use map of Canada (Latifovic et al., 2017) obtained from 

Natural Resource Canada.   

 

Figure 5.1 Study area and location of the 303 meteorological stations used in the study 

5.3 Methods 

5.3.1 Wind speed distribution mapping  

In recent studies, different methodologies to map WSD were introduced. Most of these 

approaches relied on mapping the parameters of a distribution function fitted to WS data.  More 

recently, a nonparametric method was developed by Houndekindo et al. (2023b) to map hourly 

WSD. The approach starts by mapping hourly wind speed quantiles (WSQ) using a machine 

learning model and WS covariates. Then, the estimated WSQ are used as input of an asymmetric 

kernel function to estimate the WS cumulative distribution function (CDF) at unsampled locations. 

The approach is flexible and does not restrict the region to a unique WSD family. In their study, 

Houndekindo et al. (2023b) extracted 13 quantiles from observed WSTS and then built a 

regression model between the covariates and each WSQ. The present study proposes a quantile 
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regression (QR) model to directly estimate 13 conditional WSQ. Although QR models have been 

used in previous studies for WS forecasting (He et al., 2018) and for the estimation of other hydro-

climatic variables at unsampled locations (Ouali et al., 2016), to the author's knowledge, it is the 

first time they are applied to estimate conditional WSQ at unsampled locations. As done by 

Houndekindo et al. (2023b), WSQ at the following 13 percentile points were considered: 5.0% 

(P1), 12.5% (P2), 20.0% (P3), 27.5% (P4), 35.0% (P5), 42.5% (P6), 50.0% (P7), 57.5.0% (P8), 

65.0% (P9), 72.5% (P10), 80.0% (P11), 87.5% (P12), and 95.0% (P13). 

The Light Gradient-Boosting Machine (LGBM: Ke et al., 2017) with the pinball loss function 

(Equation 5.1) was used as the QR model (herein referred to as LGBMQR). The LGBM was 

adopted based on its efficiency, scalability for large datasets, and proven high prediction accuracy 

(Fan et al., 2019; Genov et al., 2024; Park et al., 2020). The LGBM is a histogram-based gradient-

boosting model that sequentially builds additive decision trees to minimize a loss function. By 

discretizing the continuous values of the covariates into a fixed number of bins, the LGBM can 

significantly reduce the training time and memory usage for large datasets (e.g., N > 10,000) while 

maintaining good prediction accuracy. In addition, the LGBM adopts a leaf-wise tree expansion 

with a fixed maximum depth, improving the model's training performance. Table 5.1 shows the 

different model parameters that were tuned. Random search with 1000 iterations was used to 

select the best parameters for the QR model. Random search is not an optimal algorithm for 

parameter tuning but can still find suitable parameters when allocated a sufficient number of 

iterations (Feurer et al., 2019).  LGBMQR is a single-output QR model. Thus, it needs to be trained 

separately for each conditional WSQ of interest. Also, parameter searches can be performed 

independently for each considered quantile. To reduce the computation burden associated with 

performing parameter tuning independently for every quantile of interest, the best parameters 

selected when training the model to predict the median (P7) were used for all quantiles. 

Equation 5.1 

𝜌𝜏(𝑤 − 𝑤𝜏) =  {
(𝜏 − 1)|𝑤 − 𝑤𝜏|               (𝑤 − 𝑤𝜏) < 0

𝜏|𝑤 − 𝑤𝜏|                          (𝑤 − 𝑤𝜏) ≥ 0
 

where 𝑤𝜏 is the 𝜏 − 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒 defined as follows: 

Equation 5.2 

𝑤𝜏 = inf{𝑤 ∶ 𝐹(𝑤|𝑋 = 𝑥) ≥ 𝜏 }  

with 𝑭(𝒘| 𝑿 = 𝒙) the conditional cumulative distribution function of the random variable 𝒘.   
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In addition to the covariates presented in Table 9.1 of the supporting material (Section 9), hourly 

WSQ extracted from the ERA5 dataset (ERA5-WSQ) were assessed as covariates in the current 

study. As stated by Jung et al. (2020), covariates from the ERA5 reanalysis dataset can represent 

the large-scale wind field unaffected by local surface properties. The LGBMQR that uses the 

ERA5-WSQ will be referred to as LGBMQR-ERA5, and the benefit of using the ERA5-WSQ as 

covariates will be evaluated and discussed in the following sections of the paper. 

Furthermore, to select the optimal number of covariates to include in the model, the available 

covariates were ranked according to their relevance and redundancy using the minimum 

redundancy maximum relevancy algorithm (MRMR: Ding et al., 2005). Then, the number of 

covariates to use with LGBMQR and LGBMQR-ERA5 was treated as an additional 

hyperparameter during the implementation of the random search algorithm. The MRMR algorithm 

has already demonstrated good performance for WSQ mapping in a comparative study of 

covariate selection techniques (Houndekindo et al., 2023a). 

The estimated conditional WSQs were used as input for the Birnbaum-Saunders asymmetric 

kernel estimator of CDF (Mombeni et al., 2021) to estimate the WS CDF at unsampled locations. 

For more details on fitting the Birnbaum-Saunders kernel using the WSQ as input, the readers 

are referred to Houndekindo et al. (2023b). 

 Table 5.1 Parameters of LGBMQR and LGBMQR-ERA5 

Model parameter Description Range  

learning_rate Learning rate  0.02-0.1 

max_depth Maximum depth of the 
regression trees  

3-8 

feature_fraction Fraction of covariate to use to 
build each tree  

0.1-0.9 

bagging_fraction Fraction of data to sample to 
build each tree 

0.1-0.9 

extra_trees Use of extremely randomized 
trees (Geurts et al., 2006)  

True, False 

lambda_l2 L2 regularization 0-1000 

lambda_l1 L1 regularization 0-1000 

num_leaves maximum number of leaves per 
regression tree 

2-50 

max_bin max number of bins for the 
discretization of the covariates   

50-400 

min_data_in_leaf minimal amount of data in one 
leaf   

100-20000 

num_boost_round Number of trees to build 
(boosting iteration)  

90-400 

n_features Number of features to include in 
the model  

5-30 

The same set of randomly selected parameters was tested for LGBMQR and LGBMQR-ERA5 to implement the 
random search 
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5.3.2 Prediction of wind speed time series at unsampled locations  

It is proposed to adapt the QM (Wood et al., 2002) procedure to predict WSTS at unsampled 

locations using the following general formula (Cannon et al., 2015):  

Equation 5.3 

𝑤̂𝑡(𝑠0) = 𝐹̂𝑆0
−1
[𝐹̂(𝑤𝑡)] 

where: 𝒘̂𝒕(𝒔𝟎) is the estimated WS at time 𝒕 and unsampled location 𝒔𝟎. 𝑭̂𝑺𝟎 is the estimated WS CDF at the 

unsampled location 𝒔𝟎, and  𝑭̂𝑺𝟎
−𝟏

 is its inverse. 𝑭̂(𝒘𝒕) is the estimated wind speed non-

exceedance probabilities (WSNEP) at time 𝒕. 

The methodology to estimate 𝐹̂𝑆0at any unsampled location in the region was described in section 

5.3.1.  For the estimation of 𝐹̂(𝑤𝑡) two approaches have been put forward in previous studies: 

1. Some authors (Ouarda et al., 2022; Shu et al., 2012) proposed using information from 

nearby locations to estimate 𝐹̂(𝑤𝑡) at any unsampled location. This technique assumes 

that observed non-exceedance probabilities (or exceedance probabilities) between 

nearby locations are correlated. Thus, a spatial interpolation method could be applied to 

estimate the WSNEP at unsampled locations. The Inverse Distance Weighting (IDW) was 

used to interpolate the WSNEP. The method was named the flow duration curve and the 

temperature duration curve for streamflow and temperature modelling. Following this 

nomenclature, the technique was referred to as the Wind Duration Curve (WDC) in the 

context of WS modelling.   

2.  Jung et al. (2023b) derived the non-exceedance probabilities 𝐹̂(𝑤𝑡) directly from a 

reanalysis dataset, thereby performing bias correction. This approach will be applied with 

ERA5 and named quantile mapping bias correction of ERA5 (QM-ERA5) in the following 

sections.  

The Weibull plotting position was used to estimate the WSNEP from the WSTS as follows: 

Equation 5.4 

𝐹𝑛(𝑤𝑡) =  
𝑖𝑡

𝑛 + 1
 

where 𝒊𝒕 = 𝟏, 𝟐, 𝟑, … , 𝒏 is the rank of the WS value observed at time t (𝒘𝒕) after sorting the time series in 
ascending order.  
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5.3.3 Spatial interpolation methods 

Two spatial interpolation methods were selected and evaluated to interpolate the WSTS directly. 

The IDW technique was selected for its ease of application and set as the baseline method in the 

study. The general formula of the IDW methods is: 

Equation 5.5 

𝑤̂𝑡(𝑠0) =  ∑ 𝜆𝑖𝑤𝑡(𝑠𝑖)
𝑘

𝑖=1
 

Equation 5.6 

𝜆𝑖 = 
𝑑𝑖
−𝑝

∑ 𝑑𝑗
−𝑝𝑘

𝑗=1

 

where 𝒘𝒕(𝒔𝒊=𝟏: 𝒌) is the observed WS value at time t and the nearest location 𝒔𝒊, located at a distance 𝒅𝒊 from 

the target location 𝒔𝟎. The parameters 𝒑 and 𝒌 are the exponent and the number of nearest 
neighbours to consider. 

It should be noted that the IDW was used in the study to interpolate observed WSTS and WSNEP 

(during the implementation of the WDC method). In both cases, the optimal number of nearest 

locations and the exponent were selected based on 1) the time series (TS) evaluation using the 

Pearson correlation coefficient between observed and estimated WSTS and 2) the probability 

distribution (PD) evaluation by calculating the coefficient of determination (R2) between observed 

and estimated WSQ derived from the WSTS. The R2 is presented in Equation 9.4 of the supporting 

material (Section 9). The results of the models were presented for each evaluation metric (TS and 

PD) separately. 

The second spatial interpolation method implemented in the study was the Random Forest for 

Spatial Interpolation model (RFSI: Sekulić et al., 2020). The model uses nearby observations and 

their distance from the target location as covariates with a random forest regression model to 

interpolate at unsampled locations. The general formula of the model is (Sekulić et al., 2020):  

Equation 5.7 

𝑤̂𝑡(𝑠0) = 𝑓(𝑥1(𝑠0),… , 𝑥𝑚(𝑠0),𝑤𝑡(𝑠1), 𝑑1, … , 𝑤𝑡(𝑠𝑘), 𝑑𝑘) 

where  𝒙𝒊=𝟏:𝒎(𝒔𝟎) are covariates available at the target location 𝒔𝟎, 𝒇(. ) is a regression function linking the 
covariates and the WS values at the unsampled location. 
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A comparative analysis carried out by Sekulić et al. (2020) revealed that in real-world conditions, 

the RFSI model outperformed Space-time regression kriging, and the approach can scale and 

perform better than another spatial interpolation method based on the random forest model (Hengl 

et al., 2018). Furthermore, as RFSI does not require semi-variogram modelling, it is easier to 

implement than kriging methods with less restrictive assumptions (e.g., stationarity and linearity). 

In the original RFSI model, the authors used the random forest model to learn the regression 

function. Due to its efficiency and scalability for large datasets, the LGBM implementation of the 

gradient boosting algorithm was used in place of the random forest model, and the approach was 

renamed LGBMSI for this study. The tuned LGBMSI parameters were the same parameters 

presented in Table 5.1 of the present paper. These parameters were also tuned using a random 

search with 1000 iterations. As done for the QR model, the available covariates were ranked using 

the MRMR algorithm. The number of covariates to include in the model was treated as a 

parameter to be tuned during random search. Two versions of LGBMSI were tested: The version 

presented in Equation 5.7 (it will be referred to as simply LGBMSI in the following sections) and 

a version which uses as additional covariate the WS values from the nearest ERA5 grid point to 

the unsampled location (𝑤𝑡(𝐸𝑅𝐴5𝑆0)). The LGBMSI model with the ERA5 covariates will be 

referred to as LGBMSI-ERA5 in the following sections of the paper and is presented in Equation 

5.8: 

Equation 5.8 

𝑤̂𝑡(𝑠0) = 𝑓 (𝑥1(𝑠0),… , 𝑥𝑚(𝑠0), 𝑤𝑡(𝑠1), 𝑑1, … , 𝑤𝑡(𝑠𝑘), 𝑑𝑘 , 𝑤𝑡(𝐸𝑅𝐴5𝑆0)) 

5.3.4 Global Wind Atlas mean bias correction  

The GWA version 3 (https://globalwindatlas.info/) feeds the output from a mesoscale atmospheric 

model into a microscale model to downscale the ERA5 wind data. The resulting wind data has a 

spatial resolution of 250 m × 250 m and accounts for the effect of the local topography and surface 

roughness. Several studies used the GWA to bias-correct reanalysis WS data (de Aquino Ferreira 

et al., 2022; Luzia et al., 2023; Murcia et al., 2022). The procedure involves applying a scaling 

factor to the reanalysis WS data to ensure that their mean matches the mean WS from GWA. The 

scaling factor is computed as the ratio between the mean WS from GWA and the reanalysis during 

the overlapping period of both datasets. The mean WS from GWA and ERA5 at 10 m estimated 

for the period between 2008 and 2017 were used to calculate the scaling factor. Nearest 

https://globalwindatlas.info/en/about/method
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neighbour interpolation was used to interpolate the GWA data at locations of interest. The bias-

corrected ERA5 using GWA will be referred to as GWA-ERA5 in the remainder of the paper. 

5.3.5 Validation  

The model validation strategy adopted in this study is aligned with the modelling procedure's 

primary task, which consisted of predicting WSTS at unsampled locations. During the models 

tuning, random k-fold cross-validation across the training locations was implemented to estimate 

the model's performance for prediction at (pseudo) unsampled locations. In 5-fold cross-

validation, the training locations are randomly split into five groups. Training is carried out with the 

data of 4 groups, and the model is evaluated on the remaining group. This procedure was 

repeated five times, using each group once as the validation set. The final evaluation of the 

selected model was performed on a group of locations (test samples) held back and comprising 

approximately 30% (97 locations) of the available locations (303) for the entire study.  

The estimated WSTS at locations of the test samples were evaluated according to the following 

criteria:  

1. Time series evaluation: The Pearson correlation (PC), mean absolute error (MAE) and root-

mean-squared error (RMSE) were calculated between observed and estimated WSTS. The 

PC, MAE and RMSE are presented in Equation 9.1, Equation 9.2, and Equation 9.3 of the 

supporting material (Section 9), respectively.  

2. Probability distribution evaluation: Two approaches were used to evaluate the probability 

distribution of the estimate WSTS. First, quantiles with non-exceedance probabilities between 

10% and 90% and a spacing of 10% were calculated from the WSTS using Equation 9.8 in 

the supporting material (Section 9). The R2, MAE and RMSE were used to compare the 

observed and estimated WSQ. Lastly, the Overlap percentage (OP: Perkins et al., 2007) was 

used to assess the overlap between estimated and observed empirical probability distribution 

function (PDF). The OP is presented in Equation 9.6 of the supporting material (Section 9). 

For a review of criteria used for the selection of PD for WS data the reader is referred to 

(Ouarda et al., 2016). 

3. Interannual variability (IAV) evaluation: The robust coefficient of variation (RCov: Watson, 

2019) of annual median WS was calculated to assess IAV. RCov serves as a robust and 

resistant measure of variability analogue to the coefficient of variation, which lacks robustness 

and resistance to outliers. The MAE and mean error (ME) between observed and estimated 

RCov were used to evaluate the performance of the models in reproducing the observed IAV. 
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The RCov and the ME are presented in Equation 9.7 and Equation 9.5 of the supporting 

material (Section 9), respectively.  

5.4 Results  

5.4.1 Quantile regression models 

A thousand random combinations of the LGBM hyperparameters (Table 5.1) were tested with 

LGBMQR and LGBMQR-ERA5 models. Table 9.2 in the supporting material shows the best 

parameters found using a random search, including the number of selected covariates. Figure 

5.2 illustrates the R2, MAE, and RMSE between estimated and observed WSQ from the test 

samples. For reference, the same metrics between ERA5-WSQ and observed WSQ are also 

presented in Figure 5.2. Figure 5.3 shows boxplots of the metrics calculated over the different 

percentile points (P1 – P13) at each test sample. The Wilcoxon signed-rank test was used to test 

the statistical significance of these metrics between pairs of models (the test P-values are shown 

in Table 9.3 of the supporting material (Section 9)). The P-values associated with LGBMQR-ERA5 

are all less than 0.05, and the P-values between LGBMQR and ERA5-WSQ are more significant 

than 0.05. LGBMQR and ERA5-WSQ had significantly lower median R2 and higher median MAE 

and RMSE than LGBMQR-ERA5. LGBMQR underperformed compared to ERA5-WSQ, but the 

difference between the methods was not significant according to the Wilcoxon signed-rank test. 

LGBMQR outperformed ERA5-WSQ for WSQ with low exceedance probabilities (P1, P2, P3) 

while ERA5-WSQ were more accurate in the middle and upper tail of the distributions. It is evident 

from these results that the inclusion of the ERA5-WSQ improves the QR model performance; 

thus, WSQs from LGBMQR-ERA5 were used in subsequent analyses of the study.  
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Figure 5.2 Results of the R2, RMSE and MAE between estimated and predicted WSQ at various 
percentile points (P1-P13) 

The metrics were calculated across the test samples for each percentile point 
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Figure 5.3 Result of the R2, MAE and RMSE between observed and estimated WSQ 

The metrics were calculated across the percentile points (P1-P13) at each location in the test samples 

5.4.2 Inverse distance weighting parameters  

Table 5.2 shows the optimal parameters (p and k) for IDW based on the TS and PD evaluation. 

The selection of the best parameters was performed with the training set. The optimal k and p 

was contingent upon the evaluation criteria. For the interpolation of WSNEP, the optimal number 

of nearest neighbours (optimal k = 1) based on the PD evaluation is equated to the nearest 

neighbour interpolation. Generally, it was observed smaller values of k were optimal for the PD 

criteria. The results of the different evaluation criteria will be presented and discussed separately 

in the following section.  

Table 5.2  Optimal parameters of the IDW for WSTS and WSNEP interpolation 

Interpolated variable  Evaluation criteria  Optimal k Optimal p Abbreviation used 
for the model 
herein  

WSTS PD 6 0.3 IDW-PD 

TS 11 1.7 IDW-TS 

WSNEP  PD 1 - WDC-PD 

TS 9 1 WDC-TS 
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5.4.3 Time series evaluation  

Figure 5.4 shows a boxplot of the PC, MAE and RMSE between observed and estimated WSTS 

from the test samples, while the median values of the metrics are given in Table 5.3. LGBMSI-

ERA5 had the highest median PC alongside the lowest median MAE and RMSE. In contrast, 

WDC-PD had the lowest median PC and the highest median MAE and RMSE. WDC-TS 

performed better than WDC-PD, with performances comparable to the IDW model. The ERA5 

WSTS showed a relatively high median PC and methods directly exploiting this dataset (GWA-

ERA5, LGMBSI-ERA5, QM-ERA5) maintained a higher median PC with less variability in the 

distribution of the metric in comparison to methods solely using observations from nearby 

locations (WDC-PD, WDC-TS, LGBMSI, IDW-PD and IDW-TS). Despite QM-ERA5 showing a 

relatively high median PC, it also had a high median MAE and RMSE.  

Table 9.4 in the supporting material (Section 9) gives the P-value of the Wilcoxon signed-rank 

test between pairs of models for the different evaluation metrics. From the results of the Wilcoxon 

test, it was found that LGBMSI-ERA5 was the only method with an MAE and RMSE statistically 

inferior to IDW-TS. For the time series evaluation criteria, LGBMSI-ERA5 was the best-performing 

method, WDC-PD was the least effective method and most other models had performances 

comparable (in a statistical sense) to IDW-TS.  

Table 5.3 Median PC, MAE and RMSE between observed and estimated WSTS 

Model PC MAE (m/s) RMSE (m/s) 

WDC-TS 0.73 1.26 1.59 

WDC-PD 0.64 1.62 2.19 

ERA5 0.75 1.22 1.60 

QM-ERA5 0.76 1.34 1.80 

GWA-ERA5 0.75 1.32 1.68 

IDW-TS 0.74 1.29 1.68 

IDW-PD 0.72 1.31 1.66 

LGBMSI 0.72 1.28 1.59 

LGBMSI-ERA5 0.78 1.13 1.47 
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Figure 5.4 Result of the PC, MAE and RMSE between observed and estimated WSTS 

5.4.4 Probability distribution evaluation  

Figure 5.5 shows matrices detailing the R2, MAE and RMSE calculated between the estimated 

and observed WSQ across various percentile points. The last row of these matrices (labelled M) 

presents the median value (calculated over the different percentile points). QM-ERA5 and WDC-

PD were the top-performing methods overall, mainly due to their relatively strong performance in 

estimating WSQ in the lower and middle tail of the distribution. Both LGBMSI-ERA5 and LGBMSI 

performed relatively well in the middle of the distribution but were less effective in estimating WSQ 

in the lower tail. GWA-ERA5 was the best method for estimating WSQ in the upper tail of the 

distribution, yet it performed poorly for low exceedance probabilities WSQ. The IDW methods 

demonstrated an overall lack of effectiveness in estimating WSQ across the distribution. 

The OP metric measured the overlap between the empirical PDF computed from the estimated 

and observed WSTS. Figure 5.6 presents boxplots illustrating the distribution of the OP metric. 

QM-ERA5 had the highest median OP at 80%, followed by ERA5 at 77%, GWA-ERA5 at 77% 

and WDC-PD at 76%. Also, QM-ERA5 and WDC-PD displayed less spread in the distribution of 

the metric compared to ERA5 and GWA-ERA5. LGBMSI and LGBMSI-ERA5 had the lowest 

median OP values at 65% and 72% respectively. The statistical significance of the results was 

tested with the Wilcoxon signed-ranked test between pairs of models (Table 9.5 of the supporting 

material (Section 9)). The P-values associated with QM-ERA5, LGBMSI, LGBMSI-ERA5 and 

WDC-TS were always small (e.g., less than 0.05). The differences between IDW, ERA5, GWA-

ERA5 and WDC-PD were not statistically significant (P-values greater than 0.05) for the OP 

metric. Overall, QM-ERA5 was the top performer for the OP metric, followed by (listed in no 

particular order) IDW, ERA5, GWA-ERA5 and WDC-PD. WDC-TS performed slightly better than 

LGBMSI-ERA5, while LGBMSI was the least effective method. 
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Figure 5.5 Result of the R2, MAE and RMSE between observed and estimated WSQ.  

The last row of the matrices gives the median of the metric calculated across the different percentile points. 
Values of R2 less than 0 were omitted from the matrices. 

 

 

Figure 5.6 Boxplots of OP metrics calculated between observed and estimated empirical PDF. 

5.4.5 Interannual variability evaluation 

The IAV assesses the fluctuation of wind speed across multiple years. Studies have indicated 

that wind speed exhibits IAV in many parts of the world (Bett et al., 2017; Jung et al., 2019c; 

Ouarda et al., 2021). The IAV has been linked to atmospheric teleconnections (Naizghi et al., 

2017; Ouarda et al., 2021; Zhou et al., 2022) such as the El Niño-Southern Oscillation and the 

North Atlantic Oscillation. Accurately assessing the IAV of wind resources is essential for 

providing adequate information for the long term planning of wind energy projects (Pryor et al., 

2018). Some attempts have been made to develop teleconnection-based long term forecasting 

models for wind speed that use low frequency atmospheric circulation patterns as covariates 

(Woldesellasse et al., 2020). 

Figure 5.7 presents a bar plot representing the MAE and ME between observed and estimated 

RCov of median annual WS. WDC-PD gave the smaller MAE at 2%, while the other methods 

gave a slightly higher MAE at 3%. Notably, WDC-PD was the only method that overestimated, on 

average, the IAV (positive ME). The other methods showed, on average, an underestimation of 
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the IAV (negative ME). There was no substantial difference in the performance among the various 

methods based on the IAV. 

 

Figure 5.7 Result of MAE and ME between observed and estimated RCov of median annual WS. 

 

5.5 Discussion 

The study results indicate that no single method excelled according to all evaluation criteria, 

suggesting potential for improvement through combining specific methods. For instance, it was 

found that WSQ derived from the GWA-ERA5 time series was the most accurate in the upper tail 

of the distribution. Conversely, in the lower tail, WSQs from GWA-ERA5 were inaccurate 

compared to QM-ERA5 and WDC-PD. Based on these outcomes, future studies are 

recommended to explore using the mean WS from the GWA dataset as covariates of the QR 

model to potentially improve the estimation of the conditional WSQ in the upper tail of the 

distribution, thus enhancing the performance of QM-ERA5 and WDC-PD. 

LGBMSI-ERA5 was the top performer based on the time series evaluation. In the case of the 

evaluation based on the PD, QM-ERA5 was the top performer. Generally, more complex methods 

yielded superior performances compared to the baseline model (IDW), suggesting some benefits 

in implementing complex methods in part due to their ability to integrate various WS covariates. 
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The ERA5 dataset was a valuable covariate. For instance, ERA5 WSTSs are well correlated with 

ground measurements, and this correlation could be improved significantly (in a statistical sense) 

by using the dataset as a covariate with LGBMSI. Also, ERA-WSQ significantly improved (in a 

statistical sense) the performance of the QR model. It should be noted that other covariates used 

as input of the QR models demonstrated a higher ability to predict WSQ in the distribution's lower 

tail than ERA5-WSQ, which seemed less accurate in the lower tail. 

QM-ERA5 improved the performance of ERA5 in most cases. The approach is relatively easy to 

implement and relies on a reasonable estimation of the WSD at unsampled locations. One reason 

that could explain the improved performance of QM-ERA5 is its higher accuracy in the lower tail 

of the distribution compared to ERA5 wind data. It was also revealed that the WDC method was 

competitive. However, the approach is sensitive to the evaluation criteria used to select the 

optimal parameters of the IDW for interpolating the WSNEP. Different evaluation criteria lead to 

different optimal parameters, which leads, in turn, to different performances during evaluation. 

For instance, WDC-PD performed relatively well based on the evaluation of PD, while it performed 

poorly based on the TS evaluation. In contrast, WDC-TS performed relatively well based on the 

TS evaluation and was less effective than WDC-PD based on the evaluation of the PD. In future 

studies, it is recommended that different methods to interpolate the WSNEP are explored to 

improve the performance of the WDC method. For instance, a more complex interpolation 

method, such as RFSI, could be applied to interpolate the WSNEP.  

In this study, LGBM with the pinball lost function was used as the QR model (LGBMQR). Other 

quantile regression models could be viable alternatives, such as quantile regression forests 

(Meinshausen et al., 2006) and quantile regression neural networks (Cannon, 2011). LGBMQR 

was adopted because it is efficient during training, and in general, gradient-boosting models have 

demonstrated superior performance on tabular data (Grinsztajn et al., 2022a). In upcoming 

research, a comparative analysis can be performed to evaluate the performance of different QR 

models for conditional WSQ mapping.  

For practical reasons, the analysis in the present study was carried out at the World 

Meteorological Organization (WMO) recommended wind speed measurement height of 10 m. 

Modern wind turbines operate at hub heights of 100 m and beyond. It would be ideal to assess 

the wind resource directly at these hub heights. However, there is lack of extensive wind speed 

time series data at these heights and even when available, accessing such data from private wind 

farm operators can pose challenges. To account for this disparity, vertical wind profile equations 

such as the logarithmic and power law are employed to extrapolate the estimated wind speed 
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from 10 m to the hub height (Gruber et al., 2019; Jung et al., 2020). This procedure inevitably 

introduces additional uncertainty to the estimated wind resource. Future research should be 

conducted to evaluate and quantify this layer of uncertainty more comprehensively.   

5.6 Conclusions and future research 

This study conducted a comprehensive evaluation of various approaches for the prediction of 

wind speed time series at unsampled locations. It was found that no single method consistently 

outperformed the other methods according to all evaluation criteria. However, complex methods 

that include various covariates were more effective than the baseline method. Mainly, two 

approaches (QM-ERA5 and LGBMSI-ERA5) applied to bias-correct ERA5 wind speed data 

seemed promising and showed improved results compared to the most common ERA5 bias 

correction method (GWA-ERA5). It should be noted that both methods are more complex and 

computationally demanding than GWA-ERA5. However, LGBMSI-ERA5 significantly improved 

the accuracy of the ERA5 data when evaluating the time series correlations, while QM-ERA5 

significantly improved the overlap percentage between the observed and estimated empirical 

PDF. In future studies, it is recommended that the performance of LGBMSI-ERA5 and QM-ERA5 

be explored further in different regions with different wind regimes. Another promising research 

route is the potential to combine different approaches to produce a more accurate model across 

multiple evaluation criteria.  

Also, with the QR model, there is a potential to account for the non-stationarity of the WSD by 

using related covariates. For instance, Ouarda et al. (2021) found that the North-Atlantic 

Oscillation and the Pacific North American indices of atmospheric circulation were good predictors 

of the IAV of WS in the province of Québec, Canada. In future studies, these climate indices can 

be used as covariates with a QR model in the region to map conditional WSQ that accounts for 

the resource's IAV. This analysis could lead to a better evaluation of the wind resources at 

unsampled locations, thus reducing the risk associated with future projects.  

The comprehensive evaluation provided in the present study aims to assist practitioners in 

choosing the most suitable methodologies for their specific projects. Furthermore, it is anticipated 

that this research will inspire future studies to systematically evaluate various approaches for 

predicting wind speed time series at unsampled locations. This will foster in the long run a better 

understanding of the strengths and limitations of these approaches and encourage their 

refinement and the development of more robust techniques for the prediction of wind speed time 

series at unsampled locations. 
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Nomenclature 

Abbreviations 

a.g.l Above ground level  

ALOS Advanced Land Observing Satellite 

CDF Cumulative distribution function  

DEM  Digital elevation model 

ECCC Environment and Climate Change Canada  

ECMWF European Centre for Medium-Range Weather Forecasts 

ERA5 European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis v5 

ERA5-WSQ Wind speed quantiles extracted from the ERA5 dataset (m/s) 

GWA Global wind atlas  

GWA-ERA5  Bias-corrected ERA5 using GWA (m/s) 

IAV Interannual variability  

IDW Inverse distance weighting  

LGBM  Light gradient-boosting machine 

LGBMQR Lightgbm for quantile regression 

LGBMQR-ERA5 LGBMQR using ERA5 wind speed quantiles as covariates 

LGBMSI  LGBM for spatial interpolation 

LGBMSI-ERA5 LGBMSI using the ERA5 wind data as covariates  

MAE Mean absolute error (m/s) 

ME Mean error (m/s) 

MERRA-2 Modern Era Retrospective Analysis for Research and Applications-2 

MRMR  Minimum redundancy maximum relevancy algorithm  

OP Overlap percentage (%) 

PC Pearson correlation  

PD Probability distribution 

PDF Probability distribution function 

QM Quantile mapping  

QM-ERA5 Quantile mapping bias correction of ERA5 wind data 

QR Quantile regression  

R2 Coefficient of determination  

RCov Robust coefficient of variation  

RFSI Random forest for spatial interpolation  
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RMSE Root-mean-squared error (m/s) 

TS time series 

WDC Wind Duration Curve method 

WMO World Meteorological Organization 

WRA Wind resource assessment  

WS Wind speed 

WSD Wind speed distribution  

WSNEP Wind speed non-exceedance probabilities  

WSQ Wind speed quantiles  

WSTS Wind speed time series  

Symbols 

𝑑𝑖  Distance of location 𝑠𝑖 from the target location 𝑠0 

𝑓(∙)  Regression function 

𝐹(∙ | 𝑋 = 𝑥)  Conditional cumulative distribution function 

𝐹𝑛(∙)  Empirical cumulative distribution function 

𝐹̂𝑆0(∙)  Estimated cumulative distribution function at location 𝑆0 

𝐹̂𝑆0
−1
(∙)  Inverse of the estimated cumulative distribution function at location 𝑆0 

𝑘  Number of nearest neighbours to consider in the inverse distance weighting 

method 

𝜆𝑖  Interpolation weight associated with location 𝑠𝑖 

𝑝  Exponent in the inverse distance weighting formula 

P1 5% percentile-level 

P10 72.5% percentile-level 

P11 80% percentile-level 

P12 87.5% percentile-level 

P13 95% percentile-level 

P2 12.5% percentile-level 

P3 20% percentile-level 

P4 27.5% percentile-level 

P5 35% percentile-level 

P6 42.5% percentile-level 

P7 50% percentile-level 

P8 57.5% percentile-level 
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P9 65% percentile-level 

𝜌𝜏(∙) Quantile loss function 

𝜏  Quantile-level 

𝑤𝑡(𝐸𝑅𝐴5𝑆0)  ERA5 wind speed value at time 𝑡  interpolated at location 𝑠0 

𝑤̂𝑡(𝑠0)  Estimated wind speed value at time 𝑡 and unsampled location 𝑠0 

𝑤𝑡(𝑠𝑖)  Observed wind speed value at time 𝑡 and location 𝑠𝑖 
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Abstract 

Reanalysis-derived wind speeds are central to large-scale wind resource assessment (WRA). 

However, their coarse spatial resolution often introduces significant biases, particularly in complex 

terrains and coastal areas. A deep learning (DL) framework using LSTMs or Transformers was 

introduced to correct systematic biases and temporal variability in reanalysis-derived wind speeds 

by modeling a time-resolved scaling factor, which is then used to adjust ERA5 wind speeds. The 

proposed framework's spatiotemporal generalization capability was rigorously evaluated using a 

test set of 170 independent stations distributed throughout Canada in diverse environmental 

conditions. Results showed that the DL framework outperformed a standard bias correction 

method based on the Global Wind Atlas. It improved the median wind speed, the temporal 

variability, and the probability distributions of ERA5 wind speeds in coastal areas and complex 

terrains. Specifically, in coastal regions, the DL models increased the explained variability of 

median wind speed by over 70% relative to ERA5. In regions characterized by high surface 

roughness length, such as forests and urban areas, these models achieved average 

improvements of more than 10% in MAE and RMSE of the time series. While the DL models 

performed well in representing the probability distribution of the most typical wind speed values, 

some challenges remain in improving the distribution of extreme wind speeds. Overall, this 

framework represents a promising advancement in enhancing the accuracy of reanalysis-derived 

wind speeds in large-scale WRA. By reducing biases in ERA5 wind data, the DL framework 

supports more reliable site selection and estimation of long-term energy production.  

Keywords: Bias correction, Deep learning, ERA5, High-resolution, Wind resource assessment. 
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6.1 Introduction  

Addressing climate change and mitigating its risks to humanity requires significantly expanding 

renewable energy sources, such as wind and solar, to replace fossil fuel-based energy systems 

(Shang et al., 2024). Wind energy, in particular, has emerged as a promising and scalable solution 

driven by technological progress (Kumar et al., 2016b; McKenna et al., 2016) and rapidly declining 

costs (Wiser et al., 2021). Improving the accuracy of wind resource assessment (WRA) is crucial 

to increasing wind energy’s contribution to the global energy mix (McKenna et al., 2022; Pelser 

et al., 2024). Preliminary assessment of wind energy resources typically involves evaluating their 

meteorological potential (Manwell et al., 2010). In addition to considering the meteorological 

potential, comprehensive WRA studies also integrate economic, environmental, land-use, and 

technological constraints (Pelser et al., 2024). 

Accurate wind data is essential for WRA studies (Pelser et al., 2024). The data required for large-

scale meteorological wind potential assessments can be classified as time-invariant (static) or 

time-resolved (McKenna et al., 2022). Time-invariant data provides an overview of long-term 

average wind conditions across a large region, typically with high spatial resolution (e.g., wind 

atlas). In contrast, time-resolved data (e.g., meteorological reanalysis) captures the temporal 

variability of wind resources, including diurnal, seasonal, and interannual variations.  

The high temporal resolution of time-resolved data comes at the expense of relatively low spatial 

resolution, limiting its effectiveness for analysis that requires fine spatial detail (Gualtieri, 2022). 

Some studies have sought to integrate time-invariant and time-resolved wind data, enhancing 

spatial and temporal resolution (McKenna et al., 2022). A commonly used method within this 

framework is a simple mean bias correction (BC), where the long-term mean wind speed from a 

reanalysis dataset is corrected to match the mean wind speed from a wind atlas.  

The Global Wind Atlas (GWA) provides time-invariant wind data quasi-globally (excluding 

Antarctica) with a spatial resolution of 250 m × 250 m (Davis et al., 2023). The dataset’s global 

availability, relatively high spatial resolution, and free accessibility contribute to its widespread 

adoption for BC of reanalysis-derived wind speeds (Gualtieri, 2022). The dataset was generated 

by applying numerical weather prediction (NWP) models to downscale large-scale wind speeds 

from reanalysis datasets, followed by microscale modeling to account for high-resolution 

topography and land use.  

Numerical models like NWP are often associated with high computational costs (Ben Bouallègue 

et al., 2024; Schultz et al., 2021). In contrast, machine learning (ML) and statistical models have 
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emerged as effective alternatives to numerical models in some fields (Höhlein et al., 2020; 

Kratzert et al., 2018; Reichstein et al., 2019) and typically require fewer computation resources. 

Given sufficient sample sizes, ML models can learn complex relationships between input 

variables and the target variable. For instance, in the context of WRA, ML has been applied to 

model mean wind speeds (Cellura et al., 2008a), wind speed quantiles (Houndekindo et al., 

2023b), wind speed L-moments (Jung et al., 2020), and parameters of wind speed distribution 

(Veronesi et al., 2016).  

To the authors' knowledge, no previous attempts have been made to use ML to directly predict a 

scaling factor that could adjust the long-term mean wind speed from reanalysis data. An ML-

derived scaling factor could provide an alternative to the scaling factor typically estimated from 

the GWA, allowing for greater flexibility in the resulting spatial resolution of the downscaled wind 

data. Biases in reanalysis-derived wind speed partially stem from their coarse spatial resolutions, 

which limit their ability to resolve detailed terrain features and surface roughness (Petersen et al., 

1998). ML can effectively reduce these biases by establishing a relationship between high-

resolution topography, land use, and the corresponding scaling factor. This approach leverages 

the capacity of ML algorithms to learn complex, nonlinear relationships between input variables 

and outputs.  

Due to the static nature of data from wind atlases, time-invariant scaling factors have been used 

primarily for BC of reanalysis-derived wind speeds. While a time-invariant scaling factor can 

improve reanalysis data's long-term mean wind speed, it does not modify its temporal variability 

(Bosch et al., 2018). Discrepancies have been reported between the temporal variations in 

reanalysis and measured wind speeds (Brune et al., 2021; Davidson et al., 2022; Jourdier, 2020; 

McKenna et al., 2022; Ramon et al., 2019). These discrepancies hinder understanding the data 

temporal variability, such as diurnal, seasonal, and inter- and intra-annual variations, essential for 

effective WRA. Developing a model that dynamically adjusts the scaling factor could address 

these issues. By leveraging deep learning (DL) architectures for sequence modeling, such as 

Long Short-Term Memory (LSTM; Hochreiter et al., 1997) networks or Transformers (Vaswani et 

al., 2017), time-resolved scaling factors can be modeled, enabling both the adjustment of the 

long-term mean wind speed and the improvement of the temporal correlations between 

reanalysis-derived and measured wind speeds.  

This paper introduces an innovative ML framework for predicting time-invariant and time-resolved 

scaling factors for BC of reanalysis-derived wind speeds. The proposed framework uses 

covariates related to the topography, the surface roughness length (SRL), and reanalysis-derived 
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past weather conditions to predict a scaling factor. The time-invariant scaling factor is modeled 

using a standard ML model, such as gradient boosting trees (GB). DL models suitable for 

sequence modeling, such as LSTM or Transformers, were used to model the time-resolved 

scaling factor. 

The proposed framework was compared to a commonly used BC method based on the GWA. 

The GWA correction method relies on a time-invariant scaling factor that can only adjust the 

systematic bias of reanalysis-derived wind speeds. However, as mentioned above, the temporal 

variability may not be well represented in the reanalysis data. The time-resolved scaling factor 

proposed in this study can correct systematic bias in reanalysis-derived wind speeds while 

adjusting the temporal variability to better match the measured wind speeds. This novel approach 

significantly departs from conventional methods by introducing a time-resolved, data-driven 

framework capable of capturing complex wind-topography interaction and complex temporal 

dependencies to improve the accuracy of reanalysis-derived wind speeds. 

To ensure a comprehensive evaluation, several criteria relevant to WRA, including median wind 

speed (to represent the typical wind speed condition), temporal variability, and probability 

distribution, were considered.  Furthermore, the framework spatiotemporal generalization 

capabilities were assessed across 170 independent test stations located in diverse environmental 

conditions that impact reanalysis accuracy, such as coastal areas, complex terrain (hilly and 

mountainous), and regions with varying SRL. This comprehensive analysis is essential to 

demonstrate the framework’s applicability in various environments and identify potential areas for 

refinement. 

In the following sections, a survey of related work is presented (Section 6.2), followed by a 

description of the dataset (section 6.3), the methodology (Section 6.4), and the presentation of 

the results (Section 6.5), which are discussed in Section 6.6. Finally, the conclusion of the paper 

is provided in Section 6.7. 

6.2 Related work 

Various techniques for BC of reanalysis-derived wind speeds have been explored in the literature. 

A commonly used method is mean BC, which aligns the long-term mean wind speed from the 

reanalysis data with the GWA (Bosch et al., 2017; Bosch et al., 2018; de Aquino Ferreira et al., 

2022; Gruber et al., 2019; Gruber et al., 2022; Houndekindo et al., 2024; Langer et al., 2023; 

Luzia et al., 2023; Murcia et al., 2022; Ryberg et al., 2019). This technique applies a time-invariant 

scaling factor estimated as the ratio between the reanalysis and the atlas mean wind speeds. The 
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time-invariant scaling factor can adjust the reanalysis long-term mean wind speed while 

preserving its temporal characteristics. 

Beyond mean BC, parametric quantile mapping using the Weibull scale and shape parameters 

from the GWA has been applied (González-Aparicio et al., 2017; Nefabas et al., 2021). This 

method assumes that the Weibull distribution adequately represents wind speed distributions 

across the region of interest. However, a growing body of literature advocates considering 

alternative or mixed distributions in wind speed modeling (Jung et al., 2019b; Ouarda et al., 2018; 

Ouarda et al., 2015; Tsvetkova et al., 2023).  

Methods that rely on the GWA for reanalysis-derived wind speed BC are limited to the atlas’ 

spatial resolution. Some studies have implemented ML for wind speed BC to achieve greater 

flexibility in the resulting spatial resolution. For instance, Jung et al. (2023b) applied a parametric 

quantile mapping procedure to downscale wind speeds from a regional reanalysis dataset across 

Germany. To estimate the wind speed distribution at unsampled locations, they developed a 

gradient-boosting regression model that uses high-resolution terrain and land use data to predict 

wind speed statistics in the form of L-Moments (Hosking, 1990). The predicted wind speed L-

Moments were then used to derive the parameters of the Kappa distribution function at unsampled 

locations. This method successfully increased the spatial resolution of the reanalysis data from 

11 km × 11 km to 25 m × 25 m.  

Similarly, Hu et al. (2023) employed the eXtreme gradient boosting algorithm (XGBOOST, Chen 

et al. (2016)) to downscale hourly wind speed from the European Centre for Medium-Range 

Weather Forecasts (ECMWF) reanalysis version 5 (ERA5, Hersbach et al. (2020)). The model 

used meteorological variables (wind speed, wind direction, and gravity wave dissipation) from 

ERA5 and high-resolution topography data to predict observed wind speed. Houndekindo et al. 

(2024) compared various ML methods for the BC of ERA5 wind speeds. The findings 

demonstrated that quantile mapping and ML-based spatial interpolation, using ERA5 wind speed 

data, high-resolution topography, and SRL as covariates, improved the probability distribution and 

temporal variability of ERA5 wind speeds.  

Dujardin et al. (2022) classified statistical downscaling methods based on input and output types, 

distinguishing between point-level (Director et al., 2015) and gridded data. This classification 

resulted in three categories of methods: point-to-point, 2D-to-point (Dujardin et al., 2022), and 2D-

to-2D (Dupuy et al., 2023; Höhlein et al., 2020; Zhong et al., 2024). The 2D-to-point and 2D-to-

2D methods are designed with DL architectures for computer vision tasks such as convolutional 

neural networks (CNNs). These architectures use gridded meteorological and topography 
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features as inputs to predict wind data either at a point location (e.g., the center of the grid) or at 

the grid level, i.e., super-resolution.  

Given the conceptual alignment of DL architectures for computer vision with the problem of 

downscaling wind fields (Baño-Medina et al., 2020; Höhlein et al., 2020), these methods are 

expected to outperform point-to-point techniques. However, this improvement often requires 

significantly more computational and memory resources, which can present significant challenges 

for practical applications, particularly when analyzing large regions and extensive time series data 

(e.g., 30 years of hourly data for WRA).  

A limited number of studies have applied DL architectures for sequence modeling to the problem 

of reanalysis-derived wind speed BC. However, models like LSTM and Transformers (Vaswani et 

al., 2017) were often used to model the temporal characteristics of meteorological data. The 

LSTM was introduced to address the limitations of vanilla recurrent neural networks (RNNs) in 

capturing long-term dependencies (Goodfellow et al., 2016). Several studies have shown that 

LSTMs outperform traditional statistical methods for wind speed forecasting (Chen et al., 2021a; 

Elsaraiti et al., 2021; Gao et al., 2023). Zhang et al. (2021) applied the Gated Recurrent Unit 

(GRU) to downscale wind speed from global climate models (GCMs). GRUs have a similar 

architecture to LSTMs but with fewer parameters, making them more computationally efficient. 

Beyond wind speed forecasting, LSTMs were also successfully applied in hydrology for rainfall-

runoff modeling (Kratzert et al., 2018), a task traditionally handled by physics-based models.  

Despite the improvements introduced by the LSTM architecture in sequence modeling, it still 

faces limitations due to its sequential processing, which can be time-consuming for long 

sequences. Researchers have explored several alternatives and enhancements to LSTMs to 

address this challenge. One prominent alternative is the Transformer architecture, which replaces 

the sequential nature of LSTMs with a parallelizable self-attention mechanism (Vaswani et al., 

2017). It allows Transformers to process entire sequences simultaneously, improving 

computational efficiency (Dao et al., 2022) and effectively capturing long-range dependencies 

(Lim et al., 2021b). Recent studies have applied Transformers for wind speed forecasting 

(Bentsen et al., 2023; Jiang et al., 2024; Nascimento et al., 2023; Wu et al., 2022), wind power 

forecasting (Sun et al., 2023a), and global solar radiation prediction (Zhou et al., 2023). 

Nascimento et al. (2023) reported that Transformers outperformed LSTMs, offering better 

generalization in wind speed forecasting. In contrast, Jiang et al. (2024) found that LSTMs and 

GRUs outperformed Transformers in their proposed DL framework for wind speed forecasting.  
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This study proposes using standard ML to model a time-invariant scaling factor for adjusting the 

long-term mean wind speed from reanalysis data. This approach offers an alternative to the time-

invariant scaling factor typically derived from the GWA. The key advantage of using ML lies in its 

flexibility, enabling finer spatial resolution in the output compared to the fixed spatial resolution 

offered by the GWA.  

Additionally, a novel DL framework is introduced for BC of reanalysis-derived wind speeds. This 

framework uses a DL model to learn the temporal correlation between meteorological variables 

from ERA5 dataset and a time-resolved scaling factor. The time-resolved scaling factor is used 

to adjust ERA5 wind speeds.   

6.3 Dataset  

6.3.1 Measured wind speed data 

For the experiments conducted in this study, hourly wind speed measurements at 10 m above 

ground level (a.g.l) were obtained from Environment and Climate Change Canada (ECCC) 

historical climate data archives. Stations included in this study were selected based on the 

following criteria. 1) Stations with at least one valid year between 2008 and 2023 were selected. 

A valid year has at least 80% data availability, and each day has a complete 24-hour record (no 

missing values). 2) A minimum distance of 1 km between the stations was used to filter out 

potential duplicate stations, and only the station with the longest data record was retained.  

The 10 years from 2008 to 2017 were used to train the models to match the temporal coverage 

of the GWA version 3 [GWA3; 9], while testing was conducted with data from 2018 to 2023. Figure 

6.1 shows a map of the selected stations in Canada and their median wind speed from 2008 to 

2023. The measured wind speeds were considered as the reference for model evaluation. 

6.3.2 Dynamic covariates 

Various meteorological variables from ERA5 hourly data on single levels were downloaded 

(https://doi.org/10.24381/cds.adbb2d47) and used as time-resolved covariates. ERA5 hourly data 

are consistent and available from 1940 to present with no missing values and a spatial resolution 

of 0.25 degrees on a regular latitude and longitude grid. The 10 m wind speed was derived from 

the 10 m u- and 10 m v-components (i.e., √𝑢2 + 𝑣2). The time-resolved covariates employed in 

this study included 10 m u- and 10 m v-wind components, 10 m wind speed, 2 m temperature 

(2t), boundary layer height (blh), and surface pressure (sp). They were selected based on a review 

https://doi.org/10.24381/cds.adbb2d47
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of previous studies on wind speed downscaling (Dujardin et al., 2022; Dupuy et al., 2023; Höhlein 

et al., 2020). Additionally, wind speed quantiles (5th, 50th, and 95th percentiles) estimated from 

ERA5 hourly wind speeds between 2008 and 2017 were used as covariates to represent long-

term wind conditions. Houndekindo et al. (2024) found that incorporating wind speed quantiles as 

covariates improved model performance for wind speed distribution mapping in Canada.   

6.3.3 Static covariates 

Static covariates derived from the Advanced Land Observing Satellite (ALOS) Digital 

Elevation Model (DEM) (Tadono et al., 2014) and Canada 2020 land cover map (Latifovic et al., 

2017) were also used as predictors. These covariates provide valuable information on fine-scale 

terrain features and SRL, which may not be captured in coarse-resolution reanalysis data. Table 

10.2 in the supplementary material (Section 10) provides the assigned SRL based on the land 

cover class. A detailed list of the static covariates is presented in Table 10.1 in the supplementary 

materials (Section 10), and their importance for wind speed modeling is discussed in detail by 

Houndekindo et al. (2023a).  
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Figure 6.1 Locations of ECCC meteorological stations included in the study.  

All the station are located onshore in Canada. The stations were randomly split into training (circle symbol) 
and test (triangle symbol) sets. The colors indicate the median 10 m wind speeds from 2008 
–2023. 

6.4 Method 

The study flow diagram is illustrated in Figure 6.2 and includes the following main steps: (1) data 

acquisition, as detailed in section 6.3; (2) data processing, also described in section 6.3; (3) 

development and training of time-invariant and time-resolved models, outlined in section 6.4.1 

and 6.4.2; (4) prediction of test data; and (5) evaluation of models, detailed in section 6.4.3.  
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This section is structured into three parts. First, the methodology for modeling the time-invariant 

scaling factor using standard ML is presented. Second, the procedure for modeling the time-

resolved scaling factor using DL is outlined. Finally, the procedure for comprehensively evaluating 

the proposed methods is described.
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Figure 6.2  Study workflow. 

The input data are preprocessed to derive static and dynamic covariates. The static covariates are derived from the DEM, land cover map, and ERA5 10 
m wind speed quantiles, while the dynamic covariates are obtained from the ERA5 dataset. ERA5 data are interpolated to the station 
locations using nearest neighbor interpolation. Measured wind speeds from ECCC historical climate data archives serve as the target 
variable. The ECCC stations are randomly split into training and test sets. The training set is used to train the time-invariant and time-
resolved model, which are evaluated on the test set. The GWA bias-correction method serves as a baseline during the evaluation. The 
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bias-correction methods predict scaling factors —either time-invariant (TI-GWA, TI-GBOOST) or time-resolved (TR-LSTM, TR-
Transformer)—which are applied to ERA5 10 m wind speeds before the evaluation. 
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6.4.1 Time-invariant scaling factor  

A common method for BC of reanalysis wind speed involves estimating a time-invariant scaling 

factor at the target location 𝑠𝑖 using the following equation: 

Equation 6.1 

𝑦̂(𝑠𝑖) =  
𝑈̅𝐺𝑊𝐴(𝑠𝑖)

𝑈̅𝐸𝑅𝐴5(𝑠𝑖)
 

where 𝑼̅𝑬𝑹𝑨𝟓(𝒔𝒊)  and 𝑼̅𝑮𝑾𝑨(𝒔𝒊) represent the mean wind speed from ERA5 and GWA dataset, respectively.  

This scaling factor is then used to adjust the long-term mean wind speed from ERA5 as follows:  

Equation 6.2 

𝑈̂𝑡(𝑠𝑖) = 𝑈𝑡
𝐸𝑅𝐴5(𝑠𝑖) × 𝑦̂(𝑠𝑖) 

where 𝑼𝒕
𝑬𝑹𝑨𝟓(𝒔𝒊) and 𝑼̂𝒕(𝒔𝒊) denote the wind speed from ERA5 and the adjusted wind speed at time 𝒕, 

respectively. 

In this study, it is proposed to model the time-invariant scaling factor as a function of static 

covariates (denoted 𝒌(𝑠𝑖), throughout the remainder of the paper, vectors and matrices in 

equations are represented by boldface letters) related to the location topography and SRL, along 

with the long-term wind speed condition derived from ERA5: 

Equation 6.3 

𝑦̂(𝑠𝑖) =  𝑓(𝒌(𝑠𝑖)) 

where 𝒇(∙) represents the regression function that maps the static covariates to the time-invariant scaling 
factor. 

The gradient boosting regressor (herein referred to as GBOOST) from the Scikit-learn package 

(Pedregosa et al., 2011) was employed to model the regression function. Gradient boosting is an 

ensemble technique that iteratively combines weak learners (regression trees) to form a robust 

predictive model. In this approach, each regression tree is fitted to the negative gradient of the 

loss function from the preceding iteration. The final prediction is obtained by summing the outputs 

of all regression trees (Jerome, 2001). Various studies have applied gradient-boosting models for 

wind speed modeling (Houndekindo et al., 2023b; Houndekindo et al., 2024; Hu et al., 2023; Jung 

et al., 2023b). Moreover, these models have demonstrated superior performance than DL models 
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when applied to tabular data and require less tuning (Grinsztajn et al., 2022a; Shwartz-Ziv et al., 

2022). The parameters of GBOOST (Table 6.1) were optimized using random search (Bergstra 

et al., 2012a). Other optimisation algorithms are available in the literature (Abdollahzadeh et al., 

2024; El-kenawy et al., 2024; Mona Ahmed Yassen et al., 2024) and may be explored in future 

studies. The covariates included in the final regression model were selected based on the 

permutation feature importance technique (Breiman, 2001). 

Table 6.1 List of GBOOST parameters that were tuned. 

Parameters Description  Tested values 

learning_rate Weighting factor applied to the 
contribution of each individual tree 

0.01, 0.02, 0.05, 0.1, 0.2 

subsample  Ratio of the training data to randomly 
sample for training 

0.5, 0.6, 0.7, 0.8, 0.9 

max_depth Maximum depth of tree  2, 3, 4, 5, 6, 8 

max_features Maximum number of covariates to 
consider when looking for the best split 

0.1, 0.2, 0.3, 0.4, 0.5 

n_estimators Number of boosting iterations  50, 100, 200, 400, 800, 
1000 

n_iter_no_change 
 

The number of iterations after which 
training is stopped if the model's 
performance on the validation set does 
not improve. 

10, 20, 50, 100 

min_samples_split The minimum number of samples 
required to split an internal node of the 
tree 

0.001, 0.01, 0.02, 0.05, 
0.1 

6.4.2 Time-resolved scaling factor  

A time-invariant scaling factor can only correct systematic biases in reanalysis-derived wind 

speed data without improving its temporal variability. To overcome this limitation, a DL framework 

is proposed to predict a time-resolved scaling factor. This framework aims to correct systematic 

biases and enhance the temporal correlation between reanalysis-derived and actual wind speed. 

The task of predicting a time-resolved scaling factor using static and time-resolved covariates can 

be formulated as follows. Let 𝑦𝑡(𝑠𝑖) represent the scaling factor between observed wind speeds 

𝑈𝑡(𝑠𝑖) and ERA5 wind speeds 𝑈𝑡
𝐸𝑅𝐴5(𝑠𝑖) at time 𝑡 and location 𝑠𝑖:  

Equation 6.4 

𝑦𝑡(𝑠𝑖) =  
𝑈𝑡(𝑠𝑖)

𝑈𝑡
𝐸𝑅𝐴5(𝑠𝑖)

 

The modeling of the time-resolved scaling factor 𝑦𝑡(𝑠𝑖) can then be expressed as:  

Equation 6.5 
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𝑦̂𝑡(𝑠𝑖) = 𝑓 (𝒌(𝑠𝑖), 𝒗𝑡−𝑝:𝑡(𝑠𝑖)) 

where 𝒚̂𝒕(𝒔𝒊) is the estimated scaling factor at time 𝒕 and location 𝒔𝒊, 𝒑 represents the length of the finite look-

back window for the time-resolved reanalysis covariates 𝒗𝒕(𝒔𝒊), and 𝒇(∙) denotes the 
prediction function. 

6.4.2.1 Model architecture 

The prediction function of the time-resolved models was parameterized using a two-branch DL 

architecture (Figure 6.3). One branch processes the static covariates (herein referred to as the 

static branch), while the other processes the time-resolved covariates (herein referred to as the 

dynamic branch).  

The static covariates 𝒌(𝑠𝑖) are encoded in the static branch through a two-layer feed-forward 

neural network (FFN) with the Gaussian Error Linear Unit (GELU) activation function: 

Equation 6.6 

𝝌(𝑠𝑖) = 𝐹𝐹𝑁(𝒌(𝑠𝑖)) 

where 𝑭𝑭𝑵(𝒙) =  𝑮𝑬𝑳𝑼(𝒙𝑾𝟏 + 𝒃𝟏)𝑾𝟐 + 𝒃𝟐, with learnable parameters 𝑾𝟏, 𝑾𝟐, 𝒃𝟏, 𝒃𝟐, and 𝝌(𝒔𝒊) represents the 
hidden vector from the static branch.  

In the dynamic branch, the time-resolved meteorological covariates are concatenated with the 

static covariates, which are replicated through time. This integration of static covariates into the 

dynamic branch provides location-specific context for the temporal model. The concatenated 

static and time-resolved covariates are then linearly projected and combined with embedded hour, 

day, and month timestamps, which provide the temporal context necessary for effective time 

series modeling (Wen et al., 2023). This is expressed as: 

Equation 6.7 

𝜻𝑡
′(𝑠𝑖) = 𝐿𝑃1([𝒌(𝑠𝑖), 𝒗𝑡(𝑠𝑖)]) + 𝑇𝐸𝑚𝑏𝑒𝑑(𝝉𝒕) 

where 𝑻𝑬𝒎𝒃𝒆𝒅(∙) denotes the temporal embedding layer that maps the timestamp vector 𝝉𝒕 into hidden 

features, and 𝑳𝑷𝟏(𝒙) =  𝒙𝑾𝟑 + 𝒃𝟑 is a linear projection with learnable parameters 𝑾𝟑 and 𝒃𝟑.  

Although timestamp embeddings were initially proposed for Transformer architectures (Zhou et 

al., 2021a), they were also found to improve the performance of the LSTM in this study. For the 

Transformers, in addition to the embedded timestamps, fixed sinusoidal positional encoding 
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(Vaswani et al., 2017) was also added to the projected covariates, enabling the model to account 

for sequence order. 

In the next step of the dynamic branch, the hidden features 𝜻𝑡
′ (𝑠𝑖) are fed into the temporal model: 

Equation 6.8 

𝜻𝑡(𝑠𝑖) =  𝑇𝑀𝑜𝑑𝑒𝑙 (𝜻𝑡−𝑝:𝑡
′ (𝑠𝑖)) 

where 𝑻𝑴𝒐𝒅𝒆𝒍(∙) represents the temporal model that learns the temporal patterns within the encoded time-
revolved covariates that influence the target variable, subsections 6.4.2.2 and 6.4.2.3 describe 
in detail the different architectures of the temporal model explored. 

Finally, the outputs from the static and dynamic branches are concatenated, and the model’s 

prediction is obtained through a linear projection (denoted as 𝐿𝑃2), followed by the Softplus 

activation function to ensure that the predicted scaling factors are non-negative: 

Equation 6.9 

𝑦̂𝑡(𝑠𝑖) =  𝑆𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝐿𝑃2([𝝌(𝑠𝑖), 𝜻𝑡(𝑠𝑖)])) 

where 𝒚̂𝒕(𝒔𝒊) denotes the predicted scaling factors, and S𝒐𝒇𝒕𝒑𝒍𝒖𝒔(∙) is the Softplus activation function.  

 

Figure 6.3 Overview of the DL framework. 

The static covariates are embedded using a feed-forward neural network (FFN). The time-resolved 
meteorological covariates are combined with the static covariates and processed by a 
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temporal model, which is either an LSTM or a Transformer. The output from the static 
covariates FFN and the temporal model are combined, passed through a linear projection 
layer, and finally transformed using a softplus activation function.  

6.4.2.2 LSTM  

Traditional RNNs face issues such as vanishing and exploding gradients, which limits their ability 

to retain information over extended sequences (Goodfellow et al., 2016). By incorporating a gating 

mechanism that regulates the flow of information, LSTMs can effectively maintain and use 

relevant data over more extended periods. The equations describing LSTMs are given by: 

Equation 6.10 

𝒇𝑡 =  𝜎(𝑾𝑓[𝒉𝑡−1, 𝒙𝑡] + 𝒃𝑓) 

Equation 6.11 

𝒊𝑡 =  𝜎(𝑾𝑖[𝒉𝑡−1, 𝒙𝑡] + 𝒃𝑖) 

Equation 6.12 

𝒄̃𝑡 = tanh(𝑾𝑐[𝒉𝑡−1, 𝒙𝑡] + 𝒃𝑐) 

Equation 6.13 

𝒄𝑡 = 𝒇𝑡⊙ 𝑐𝑡−1 + 𝒊𝑡⊙ 𝒄̃𝑡 

Equation 6.14 

𝒐𝑡 =  𝜎(𝑾𝑜[𝒉𝑡−1, 𝒙𝑡] + 𝒃𝑜) 

Equation 6.15 

𝒉𝑡 = tanh 𝒄𝑡⊙𝒐𝑡 

where 𝒇𝒕, 𝒊𝒕, 𝒄̃𝒕 and 𝒐𝒕 represents the forget, input, cell and output gates, respectively. The vector 𝒙𝒕 is the LSTM 

input, the matrices 𝑾𝒋  and vectors 𝒃𝒋  (where 𝒋 𝝐 {𝒇, 𝒊, 𝒄, 𝒐}) are the set of learnable parameters, 

𝒉𝒕−𝟏 is the previous hidden states, and 𝒉𝒕 is the updated hidden states. The vector 𝒄𝒕−𝟏 is the 

previous cell state, and 𝒄𝒕 is the updated cell state. The element-wise functions 𝝈(∙) and 𝐭𝐚𝐧𝐡(∙) 
denotes the sigmoid and hyperbolic tangent activation functions, respectively, and the 
notation ⊙ denotes the element-wise product. 
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6.4.2.3 Transformer model 

The original Transformer architecture with an encoder-decoder setup was designed for sequence-

to-sequence tasks, such as translation. In this study, an encoder-only Transformer architecture 

was implemented (Figure 6.4). This model is composed of multiple identical encoder layers 

stacked with residual connections to ensure the smooth flow of information between inputs and 

outputs. Each encoder layer has two main components: (1) a multi-head self-attention (MHA) 

mechanism and (2) a FFN. The MHA module enables the model to attend to different parts of the 

input sequence by simultaneously performing the attention mechanism across multiple subspace 

representations. The scaled dot-product attention was used as the attention mechanism and is 

defined as follows: 

Equation 6.16 

𝐻𝑖 =  𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑖, 𝐾𝑖 , 𝑉𝑖) =  softmax(
𝑄𝑖𝐾𝑖

𝑇

√𝑑𝑎𝑡𝑡𝑛
)𝑉𝑖 

where 𝑸𝒊 = 𝑸𝑾𝒊
𝑸

, 𝑲𝒊 = 𝑲𝑾𝒊
𝑲, and 𝑽𝒊 = 𝑽𝑾𝒊

𝑽 represent the queries, keys and values associated with the attention 

head 𝑯𝒊 (where 𝒊 = 𝟏, 𝟐, … , 𝒏𝒉). In the self-attention, 𝑸, 𝑲 and 𝑽 are all equal to the Transformer 
input.  

The final output of the MHA module is obtained by linearly projecting the concatenated attention 

heads 𝐻𝑖:  

Equation 6.17 

MHA(𝑄,𝐾, 𝑉) = [𝐻1, … , 𝐻𝑛ℎ]𝑊
𝑂 

The matrices 𝑾𝒊
𝑸

, 𝑾𝒊
𝑲, 𝑾𝒊

𝑽 and 𝑾𝑶 are the learnable parameters of the MHA module. 

The output from the MHA module is passed through a FFN with a GELU activation function. The 

Pre-norm Transformer architecture (Wang et al., 2019) was implemented in this study. In this 

configuration, the input to each encoder sub-layer undergoes layer-normalization (𝐿𝑁) before 

being passed through the sub-layer, and a residual connection is added to the output of the sub-

layer: 

Equation 6.18 

𝒉 = 𝒙 + ℱ(𝐿𝑁(𝒙)) 
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where 𝓕(∙) represents one of the sub-layers of the Transformer encoder, 𝒙 is the input of the sub-layer, and 𝒉 
is the output.  

 

Figure 6.4 Overview of the Transformer architecture. 

Positional encoding and temporal embedding are first added to the inputs, which are then passed through four 
encoder layers. Each encoder layer consists of multi-head self-attention (MHA), a feed-
forward neural network (FFN), and skip connections. Layer normalization is applied to the 
input of each component within the encoder layers. 

6.4.2.4 Data preprocessing and model training  

The static and time-resolved covariates used as inputs to the model were preprocessed to 

improve training performance. The static covariates were normalized to a range between 0 and 1 

using the min-max scaling, and the time-resolved covariates were standardized using a mean 

and standard deviation estimated separately for each grid point of the reanalysis dataset, except 

for the wind components (𝑢, 𝑣) which were normalized by dividing by their magnitude to preserve 

information about wind direction. The observed scaling factors, which serve as the target variable, 

were derived from ECCC and ERA5 wind speeds ratio. ERA5 data were interpolated to each 

station’s location using nearest-neighbor interpolation.   
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The deep learning models were implemented with PyTorch (Paszke et al., 2019) and optimized 

using the Adam optimizer (Kingma et al., 2015). The Adam optimizer is widely used for neural 

network optimization, and it is relatively robust for hyperparameter selection (Goodfellow et al., 

2016). Early stopping was employed to mitigate overfitting, halting training when the validation 

loss did not improve for ten consecutive epochs. The parameters used to train the models are 

presented in Table 6.2, which were selected based on best practices and manual tuning. 

The proposed deep learning models were trained by minimizing the Huber loss function (Huber, 

1964) between the model prediction and the target variable. The Huber loss function is defined 

as: 

Equation 6.19 

𝐿𝛼 (𝑦, 𝑦̂) =  {

1

2
(𝑦 − 𝑦̂)2               |𝑦 − 𝑦̂| ≤ 𝛼

𝛼 (|𝑦 − 𝑦̂| −
1

2
𝛼)  |𝑦 − 𝑦̂| > 𝛼

 

where 𝜶 is a parameter that controls the transition between the quadratic and linear behavior of the loss 
function.  

Standard loss functions for regression tasks include mean square error (MSE) and mean absolute 

error (MAE). The MSE loss function is differentiable everywhere but sensitive to outliers, while 

the MAE is less sensitive to outliers but non-differentiable at zero. The Huber loss function 

balances MSE and MAE by behaving quadratically for minor errors and linearly for significant 

errors. it offers a level of robustness against outliers while being differentiable everywhere. 

Table 6.2  List of selected parameters of the DL models 

Parameters Temporal model 

LSTM Transformer 

Learning rate 2e-5 1e-5 

Static branch dropout rate 0.05 0.05 

Dynamic branch dropout rate 0.2 0.1 

Look-back window 120 hours 120 hours 

Static branch hidden size 32 32 

Dynamic branch hidden size 256 256 

Number of heads n.a 4 

Number of layers 1 4 

Batch size 128 128 

Huber loss parameter (𝜶) 1.5 1.5 

Early stopping round 10 10 

Adam parameters (𝜷𝟏, 𝜷𝟐) 0.9, 0.999 0.9, 0.999 
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6.4.3 Evaluation 

The performance of reanalysis-derived wind speeds varies depending on the type of location 

(onshore, coastal, or offshore) and the complexity of the terrain (flat, hilly, or mountainous). 

Evaluations were conducted across different area types to comprehensively assess model 

performance, including coastal, hilly, and mountainous areas and regions with low or high SRL.  

Table 10.3 in the supplementary material lists the criteria used to classify the different ECCC 

stations within the study area.  

Furthermore, the available stations were randomly divided into training (565 stations) and test 

(170 stations) sets, with the training set represented by circle symbols and the test set by triangle 

symbols in Figure 6.1. The test set was reserved exclusively for the final evaluation of the models. 

Model training and parameter tuning were performed using k-fold cross-validation with the training 

set with data from 2008 to 2017. The selected models were then evaluated with the test sets from 

2018 to 2023 to assess their spatiotemporal generalization capabilities.  

The analysis included evaluating the median wind speed, temporal variability, and probability 

distribution, using various scoring metrics to ensure a comprehensive evaluation of the models in 

the context of WRA. The median wind speed was selected as the measure of central tendency 

because it is robust and resistant, unlike the mean (Wilks, 2011). For skewed distributions, like 

wind speed, the median offers a more accurate representation of the typical wind speed value.  

Table 6.3 presents the equations for the different scoring metrics used. The coefficient of 

determination (R²), MAE, mean bias error (MBE), and root mean squared error (RMSE) were 

used to compare the predicted and observed median wind speeds. The R² served as a more 

interpretable metric, with values between 0 (indicating the worst performance) and 1 (indicating 

the best performance). It measures the model's effectiveness in capturing the spatial variability of 

the median wind speeds.  

The MAE, MBE, Pearson correlation coefficient (PCC), and RMSE were used to compare the 

predicted and observed wind speed time series. The MAE and RMSE metrics are commonly used 

for time series model evaluation (Hodson, 2022). They complement each other in assessing 

different aspects of model performance (Chai et al., 2014). The MAE directly measures the 

average error magnitude, making it valuable in assessing the overall bias correction effectiveness. 

The RMSE, which heavily penalizes more significant errors, highlights extreme deviations in the 

wind speed predictions. The MBE provides insight into the systematic tendency of the model to 

overestimate or underestimate. Meanwhile, the PCC quantifies the linear relationship between 
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predicted and observed wind speeds, measuring how well the model captures the up-down trends 

(temporal variation) of the observed wind speeds (Liemohn et al., 2021).  

In addition, to assess the relative accuracy of the BC methods in comparison to the ERA5 wind 

speeds, the percentage improvement or skill scores for the time series MAE and RMSE were 

calculated. The percentage improvement is defined by Wilks (2011) as follows: 

Equation 6.20 

Percentage Improvement =  
𝑆𝑀𝑚𝑜𝑑𝑒𝑙 − 𝑆𝑀𝐸𝑅𝐴5
𝑆𝑀𝑝𝑒𝑟𝑓 − 𝑆𝑀𝐸𝑅𝐴5

× 100% 

where 𝑺𝑴𝒎𝒐𝒅𝒆𝒍 and 𝑺𝑴𝑬𝑹𝑨𝟓 are the scoring metrics of the model and ERA5 (the reference), respectively, and 

𝑺𝑴𝒑𝒆𝒓𝒇 denotes the value of the scoring metric for a perfect prediction (0 in the case of MAE 

and RMSE).   

The Perkins skill score (PSS; Perkins et al., 2007) was employed to evaluate the model 

performance regarding probability density functions (PDFs). The PSS was used in various wind 

speed modeling and BC studies (Belušić et al., 2018; Carvalho et al., 2021; Costoya et al., 2020; 

Houndekindo et al., 2024; Jung et al., 2023a; Molina et al., 2021). This metric can evaluate the 

PDF across the entire range of wind speeds and in specific parts of the distribution (e.g., lower or 

upper tails) (Keellings, 2016; Zhang et al., 2024). Given that data in the distribution's tails are less 

frequent, the PSS calculated across the full range of wind speeds may not accurately represent 

model performance in these tails. Therefore, in addition to computing the PSS across the entire 

wind speed range (herein referred to as PSS-ALL), the PSS was also computed separately for 

wind speed values below the 10th percentile in the lower tail (herein referred to as PSS-LWT) and 

above the 90th percentile in the upper tail (herein referred to as PSS-UPT). The percentiles were 

estimated from the distribution of observed wind speeds and have been used in previous studies 

to characterize high and low wind speeds (see, e.g., Torralba, et al. [96]).  

In addition to the PSS metrics, wind speed quantiles at percentile levels ranging from 10% to 

90%, in 10% increments, were computed from the predicted and measured wind speed time 

series. These quantiles were compared using MAE, MBE, RMSE, and R2. This evaluation 

provides a detailed assessment of the model performance across different wind speed levels, 

offering insight on how accurately the models represent low, moderate, and high wind conditions. 

Table 6.3 Equations of the different scoring metrics used to evaluate the BC methods. 

Scoring metric  Equation  Evaluation component 

Coefficient of determination 𝑅2 = 1 − 
∑ (𝑜𝑖−𝑝𝑖)

2𝑛
𝑖=1

∑ (𝑜−𝑜̅)2𝑛
𝑖=1

  Wind speed quantiles  
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Mean absolute error 𝑀𝐴𝐸 = 
1

𝑛
∑ |𝑜𝑖 − 𝑝𝑖|
𝑛
𝑖=1   Wind speed quantiles and 

time series  

Mean bias error 𝑀𝐵𝐸 = 
1

𝑛
∑ 𝑜𝑖 − 𝑝𝑖
𝑛
𝑖=1   Wind speed quantiles and 

time series 

Pearson correlation coefficient 𝑃𝐶𝐶 =   
∑ (𝑜𝑖−𝑜̅)
𝑛
𝑖=1 (𝑝𝑖−𝑝̅) 

√∑ (𝑜𝑖−𝑜̅)
2 𝑛

𝑖=1 √∑ (𝑝𝑖−𝑝̅)
2𝑛

𝑖=1

   Time series 

Perkins’ skill score 𝑃𝑆𝑆 =  ∑ min(𝑍̂𝑖 , 𝑍𝑖) × 100
𝐵
𝑖=1      Probability distribution  

Root mean squared error 
𝑅𝑀𝑆𝐸 = √

1

𝑛
∑ (𝑜𝑖 − 𝑝𝑖)

2𝑛
𝑖=1   

Wind speed quantiles and 

time series 

Note: 𝒐 represents the observed variable, 𝒑 the predicted variable, 𝑩 the number of bins, 𝒏 the sample size, 𝒁 

the observed wind speed frequency, and 𝒁̂ the predicted wind speed frequency 

6.5 Results 

This section presents the results of the evaluation of the BC methods. The distributions of the 

scoring metrics are visualized using boxplots, while their summary statistics (median values) are 

listed in tables for clarity. To ensure a comprehensive assessment, the model performance is 

evaluated across various regions, including coastal areas, regions with high and low SRL, and 

hilly and mountainous areas. 

In the following subsections, the following abbreviations are used to refer to the evaluated models: 

Time-invariant BC with GBOOST (TI-GBOOST), Time-invariant BC with GWA3 (TI-GWA3), Time-

resolved BC with LSTM (TR-LSTM), Time-resolved BC with Transformer (TR-Transformer), and 

uncorrected ERA5 wind speed data (UC-ERA5).  

6.5.1 Mean wind speed evaluation 

The median wind speed indicates the central tendency and represents typical wind speed 

conditions at a given location. Table 6.4 lists the scoring metrics (MAE, MBE, R2, and RMSE) 

used to evaluate the median wind speed. Figure 6.5 presents scatter plots comparing the 

observed and predicted median wind speeds.  

The ML-based BC methods achieved the lowest MAE, RMSE, and the highest R2. In coastal 

areas, TR-Transformer was the best-performing model, slightly outperforming TR-LSTM. In 

regions with high and low SRL and hilly and mountainous areas, the TI-GBOOST model emerged 

as the top performer. The TR-LSTM model exhibited the lowest overall MBE, though all models 

tended to overestimate the median wind speeds (positive MBE) across most regions. However, 

in regions with High SRL, the TR-LSTM and TR-Transformer models tended to underestimate the 

median wind speeds. These patterns are also evident in Figure 6.5. 
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Table 6.4 Evaluation metrics for median wind speed. 

Metric Area UC-ERA5 TI-GWA3 TI-GBOOST TR-LSTM TR-Transformer 

MAE 
 

Coastal (n=45) 1.13 0.91 0.91 0.85 0.83 

High SRL (n=36) 0.64 0.74 0.40 0.43 0.47 

Hilly and mountainous (n=29) 1.03 1.16 0.92 0.96 0.99 

Low SRL (n=60) 0.61 0.56 0.50 0.51 0.54 

Overall (n=170) 0.83 0.79 0.66 0.66 0.68 

MBE 
 

Coastal (n=45) 0.55 0.64 0.47 0.26 0.25 

High SRL (n=36) 0.40 0.58 0.04 -0.19 -0.12 

Hilly and mountainous (n=29) 0.40 0.50 0.40 0.00 0.07 

Low SRL (n=60) -0.12 0.43 0.16 0.07 0.07 

Overall (n=170) 0.25 0.53 0.26 0.05 0.08 

R2 
 

Coastal (n=45) 0.11 0.43 0.43 0.46 0.47 

High SRL (n=36) 0.12 -0.13 0.56 0.25 0.43 

Hilly and mountainous (n=29) 0.57 0.46 0.64 0.62 0.57 

Low SRL (n=60) 0.40 0.46 0.57 0.57 0.52 

Overall (n=170) 0.39 0.45 0.58 0.56 0.56 

RMSE 
 

Coastal (n=45) 1.44 1.15 1.14 1.12 1.10 

High SRL (n=36) 0.77 0.87 0.54 0.71 0.61 

Hilly and mountainous (n=29) 1.26 1.40 1.15 1.18 1.25 

Low SRL (n=60) 0.81 0.77 0.68 0.68 0.72 

Overall (n=170) 1.08 1.03 0.89 0.92 0.92 

The table presents the scoring metrics for each area type, along with the overall performance. The best results 
are highlighted in bold, and n represents the sample size for each area.  
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Figure 6.5 Scatter plots between observed and predicted median wind speeds. 

The scatter plots are presented across different models (rows) and area types (columns). The 45° line is 
included for reference, indicating perfect agreement between observed and predicted values. 
Deviations from this line highlight the discrepancy between the predicted and actual wind 
speeds. These plots provide a visual representation of how well each model captures the 
central tendency of wind speeds in diverse settings. Overall, the best agreement between the 
predicted and observed median wind speeds are in regions with high and low SRL. 

6.5.2 Time series evaluation 

Figure 6.6 displays boxplots of the time series metrics (rows) for different area types (columns), 

while Table 6.5 lists the median metrics calculated across the test stations. The TR-LSTM and 

TR-Transformer emerged as the top performers, achieving the lowest median MAE and RMSE 

values and the highest median PCC. The ML-based BC methods consistently improved the 

overall median metrics compared to UC-ERA5. In contrast, TI-GWA3 often showed lower overall 

performance relative to UC-ERA5. In addition, the spatial variability of the metrics, as shown by 
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the interquartile range in Figure 6.6, was generally more pronounced in coastal, hilly, and 

mountainous regions compared to inland regions with low or high SRL.  

To further examine the performance of the time-resolved models (TR-LSTM and TR-

Transformer), Figure 6.7 presents maps showing the spatial distribution of the percentage 

improvements over UC-ERA5 for MAE (leftmost column) and RMSE (rightmost column), with the 

corresponding boxplots provided in Figure 10.2 of the supplementary material (Section 10). The 

percentage improvements in time series metrics exhibit spatial heterogeneity without a distinct 

spatial pattern. In some instances, UC-ERA5 offered more reliable estimates, highlighting the 

importance of identifying conditions in which time-resolved models outperform UC-ERA5.  

A further analysis was conducted to examine the Spearman correlations, which is a 

nonparametric measure of statistical dependence between two variables, between the most 

important static covariates identified through permutation feature importance (see Figure 10.1 in 

the supplementary material, Section 10) and percentage improvements in time series MAE and 

RMSE over UC-ERA5 for TR-LSTM. The leftmost correlation matrix in Figure 6.8 displays the 

correlations for TR-LSTM, while the rightmost matrix shows those for TR-Transformer.  

Three groups of static covariates —standard deviation of slope (SDS), SRL, and UC-ERA5 

quantiles —showed a relatively high correlation with percentage improvements in MAE and 

RMSE. The SRL was the covariate most strongly correlated with the performance metrics. The 

direction of the correlation indicates that higher SRL values are associated with more significant 

improvements in time series MAE and RMSE. SDS showed a consistent mild correlation with 

improvements in these time series metrics. 

Section 10.1 of the supplementary material presents additional figures (Figure 10.3 to Figure 

10.10) for visual inspection of the time-resolved model. These figures present the uncorrected 

and corrected wind speed time series at four selected stations of the test set, each representing 

a different area type. 

Table 6.5 Summary of the time series evaluation metrics (MAE, MBE, PCC, and RMSE). 

Metric Area UC-ERA5 TI-GWA3 TI-GBOOST TR-LSTM TR-Transformer 

MAE 
 

Coastal (n=45) 1.74 1.61 1.63 1.55 1.56 

High SRL (n=36) 1.13 1.20 1.05 0.90 0.94 

Hilly and mountainous (n=29) 1.71 1.60 1.57 1.51 1.44 

Low SRL (n=60) 1.25 1.31 1.22 1.17 1.19 

Overall (n=170) 1.32 1.35 1.29 1.19 1.23 

MBE 
 

Coastal (n=45) 0.37 0.44 0.48 0.24 0.09 
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High SRL (n=36) 0.32 0.46 -0.04 -0.11 0.00 

Hilly and mountainous (n=29) 0.54 0.47 0.17 0.19 0.15 

Low SRL (n=60) -0.32 0.17 -0.03 0.00 -0.01 

Overall (n=170) 0.10 0.35 0.04 0.09 0.06 

PCC 
 

Coastal (n=45) 0.77 0.77 0.77 0.79 0.79 

High SRL (n=36) 0.74 0.74 0.74 0.79 0.79 

Hilly and mountainous (n=29) 0.72 0.72 0.72 0.74 0.74 

Low SRL (n=60) 0.78 0.78 0.78 0.80 0.80 

Overall (n=170) 0.76 0.76 0.76 0.79 0.79 

RMSE 
 

Coastal (n=45) 2.25 2.08 2.06 1.97 2.03 

High SRL (n=36) 1.41 1.50 1.31 1.19 1.23 

Hilly and mountainous (n=29) 2.01 2.04 2.03 1.96 1.91 

Low SRL (n=60) 1.61 1.68 1.56 1.51 1.54 

Overall (n=170) 1.69 1.74 1.65 1.54 1.60 

The table presents the median value of the scoring metrics computed across the test stations for each area 
type, along with the overall performance. The best results are highlighted in bold, and n 
represents the sample size for each area.  
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Figure 6.6 Boxplots of the time series metrics. 

The boxplots are displayed separately for different types of environments and models. The boxes represent 
distribution quartiles, while the whiskers indicate the 10-90% range. The horizontal red dotted 
lines mark the median metrics of UC-ERA5, serving as a reference, while the horizontal green 
dotted line represents the zero MBE threshold. 
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Figure 6.7 Maps illustrating the percentage improvement over UC-ERA5 (skill scores) at the test 
locations. 

The leftmost column shows the MAE skill metric and the rightmost column shows the RMSE skill metrics. The 
top row displays the spatial distribution of the skill metrics for the TR-LSTM model, while the 
bottom row presents the same information for the TR-Transformer model. Red shades 
indicate a decline in the skill metric, while blue shades represent an improvement compared 
to UC-ERA5. No spatial patterns in the skill scores were observed, and the models were able 
to improve UC-ERA5 performance in sparsely sampled locations. 
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Figure 6.8 Spearman correlation between static covariates and percentage improvement over UC-
ERA5 for time series MAE and RMSE.  

The static covariates were the most important covariates identified using permutation feature importance. The 
abbreviations used for the static covariates are as follows. ELV-100m: Altitude estimated from 
a DEM with 100 m spatial resolution, DME-1km: deviation from mean elevation in a 
neighborhood of 1 km, ERA5-P5%: UC-ERA5 5th percentile, ERA5-P50%: UC-ERA5 50th 
percentile, ERA5-P95%: UC-ERA5 95th percentile; SDS-100m: standard deviation of slope in 
a neighborhood of 100 m, SDS-10km: standard deviation of slope in a neighborhood of 10 km, 
SDS-200m: standard deviation of slope in a neighborhood of 200 m, SRL-1km: dominant SRL 
in a neighborhood of 1 km,  SRL-500m: dominant SRL in a neighborhood of 500 m, TACV-
1km: tangential curvature in a neighborhood of 1 km.  

6.5.3 Probability distribution evaluation 

Figure 6.9 presents the distributions of PSS across the full range of wind speeds (top row, PSS-

ALL), as well as for values in the lower (middle row, PSS-LWT) and upper tails (bottom row, PSS-

UPT) across different area types (columns). Table 6.6 lists the median PSS metrics computed 

across all test locations.  

Overall, the PSS-ALL values were higher than both PSS-LWT and PSS-UPT values. This 

indicates that all models, including UC-ERA5, were more effective at representing the frequency 

of typical wind speeds rather than extreme values. The spatial variability of PSS-ALL as shown 
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by the interquartile range in Figure 6.9, was particularly pronounced in hilly and mountainous 

regions compared to other areas. Overall, the TR-LSTM model emerged as the top performer for 

PSS-ALL, followed by the TI-GBOOST model. 

For the frequency of low wind speed values (PSS-LWT), none of the models showed an 

improvement over UC-ERA5 performance in regions with low SRL. In regions with high SRL and 

hilly and mountainous areas, the time-resolved models significantly improved UC-ERA5 PSS-

LWT. In coastal areas, the TI-GBOOST model was the best-performing model, followed closely 

by the TR-Transformer model. For the frequency of high wind speed values (PSS-UPT), most 

models were ineffective in regions with high SRL, but the TR-LSTM model emerged as the best-

performing model overall, followed closely by TI-GWA3.  

The evaluation of wind speed quantiles across different percentile levels is presented in Figure 

6.10. TI-GWA3 demonstrated the highest accuracy at the upper percentile levels (80% and 90%). 

Meanwhile, ML-based methods performed best for quantiles in the central part of the distribution 

(40%, 50%, and 60% percentile levels), with TR-LSTM and TR-Transformer exhibiting the least 

bias, as indicated by an MBE close to zero. Overall, the BC methods tended to overestimate lower 

quantiles while underestimating higher quantiles. 

Table 6.6 Summary of the Perkins’ skill score (PSS). 

PSS Area UC-ERA5 TI-GWA3 TI-GBOOST TR-LSTM TR-Transformer 

PSS-ALL Coastal (n=45) 81.90 82.38 83.32 81.38 81.57 

High SRL (n=36) 78.42 77.71 79.74 83.25 80.86 

Hilly and mountainous 

(n=29) 

76.69 73.30 73.26 75.77 75.34 

Low SRL (n=60) 80.54 82.99 82.73 82.85 81.90 

Overall (n=170) 79.75 80.42 81.66 82.47 80.93 

PSS-LWT Coastal (n=45) 32.16 27.80 35.06 29.88 32.82 

High SRL (n=36) 19.05 22.30 29.66 43.78 37.38 

Hilly and mountainous 

(n=29) 

29.22 27.61 25.58 43.72 39.89 

Low SRL (n=60) 42.04 29.43 32.89 30.27 31.21 

Overall (n=170) 33.34 27.56 32.80 35.15 33.87 

PSS-UPT Coastal (n=45) 55.67 54.08 50.31 55.87 53.63 

High SRL (n=36) 61.26 55.61 40.93 50.61 54.50 

Hilly and mountainous 

(n=29) 

40.10 39.07 44.90 53.27 52.09 

Low SRL (n=60) 36.02 59.58 50.19 56.31 54.41 

Overall (n=170) 44.48 54.26 48.10 54.82 53.82 
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The table presents the median value of the PSS metrics computed across the test stations for each area type, 
along with the overall performance. The best results are highlighted in bold, and n represents 
the sample size for each area.  

 

 

Figure 6.9 Boxplots of Perkins’ skill scores (PSS). 

The PSS metric was computed across the full range of wind speeds (PSS-ALL) for values below the 10th 
percentile (PSS-LWT) and above the 90th percentile (PSS-UPT). The boxplots are displayed 
separately for different types of environments and models. The boxes represent distribution 
quartiles, while the whiskers indicate the 10-90% range. The horizontal red dotted line marks 
the median metrics of UC-ERA5, serving as a reference.  
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Figure 6.10 . Wind speed quantiles evaluation. 

The panels display RMSE (top-left), MAE (top-right), R2 (bottom-left), and MBE (bottom-right) between predicted 
and observed wind speed quantiles. The quantiles were computed at intervals between the 
10th and the 90th percentiles, with 10% increments (columns). 

6.6 Discussion   

Modern reanalysis products like ERA5 are increasingly used in large-scale WRA studies. This 

work introduced a DL framework to correct systematic bias and temporal variability in ERA5 hourly 

wind speeds. The proposed models are applied to learn a time-resolved scaling factor between 

reanalysis and observed wind speeds. 

6.6.1 Limitations of time-invariant methods 

The evaluation of UC-ERA5 performance in the study region revealed that scale-dependent 

metrics, such as MAE and RMSE, for median wind speed and time series, were notably higher in 

coastal, hilly, and mountainous areas than in other regions. UC-ERA5 struggled to explain median 
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wind speed spatial variability (as measured by R2) across coastal areas and showed poor 

performance in terms of temporal variability (as measured by PCC) in hilly and mountainous 

regions. Additionally, in hilly and mountainous regions, PSS-ALL for UC-ERA5 showed significant 

spatial variability (as measured by the interquartile range) and a lower median than in other 

regions. These results highlight the challenges of ERA5 in accurately representing wind speed in 

regions with predominant complex terrain features and localized atmospheric dynamics. They 

align with previous studies' findings (e.g., Gualtieri (2022) for a review).  

The evaluation of the time-invariant scaling factor estimated through the GWA (TI-GWA3) and an 

alternative time-invariant scaling factor estimated using ML (TI-GBOOST) revealed that, although 

these methods can improve the reanalysis median wind speed, they perform relatively poorly on 

time series metrics. TI-GWA3 and TI-GBOOST rely on time-invariant scaling factors, which do 

not account for diurnal and seasonal variation in the reanalysis biases.  

To address this limitation, Schicker et al. (2023) estimated an hourly scaling factor between 

reanalysis-derived wind speeds and the GWA. Their findings indicated that this approach did not 

improve the performance of the reanalysis-derived wind speeds and, in some cases, even 

degraded it. While this method considers the diurnal variability of reanalysis mean wind speed, it 

still depends on a static mean wind speed from the GWA to compute the hourly scaling factor.  

An extension of TI-GBOOST could be explored to account for diurnal biases by incorporating the 

hour of the day as an additional covariate, with the hourly observed scaling factor as the target 

variable. This method provides a balanced solution between fully time-resolved models, such as 

TR-LSTM and TR-Transformer, and the complete time-invariant methods. It can be beneficial 

when computational resources or data availability are limited while allowing for moderate 

improvements in capturing temporal variability. 

6.6.2 Effective and scalable time-resolved bias correction framework 

The time-resolved models (TR-LSTM and TR-Transformer) demonstrated strong performance in 

enhancing median wind speed and temporal variability of ERA5 across various regions. TR-LSTM 

and TR-Transformer showed significant improvements in coastal areas, explaining 46-47% of the 

spatial variability in median wind speed, compared to just 11% achieved by UC-ERA5. 

Additionally, TR-LSTM and TR-Transformer significantly reduced MAE and RMSE of median wind 

speed in these areas by more than 20% relative to UC-ERA5. In hilly and mountainous areas, the 

time-resolved models marginally increased UC-ERA5’s median PCC, demonstrating their ability 

to address some of the challenges posed by complex terrain. The time-resolved models were 
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particularly effective in regions with high SRL, such as forests and urban areas, where TR-

Transformer achieved a median PCC of 0.79 (compared to just 0.74 for UC-ERA5) and an 

average reduction of 12% in MAE and 10% in RMSE relative to UC-ERA5. These findings indicate 

that UC-ERA5’s coarse spatial resolution limits its ability to represent temporal variability in 

regions with high SRL. Incorporating small-scale SRL, topographic information, and reanalysis-

derived past weather conditions into the time-resolved models mitigated this limitation, improving 

the representation of the temporal variability of wind speed in these regions. 

Accurately estimating the wind speed probability distribution is essential for WRA. Results from 

the evaluation of PDFs across the full range of wind speeds indicate that the ML-based models 

were overall more effective than TI-GWA3 and UC-ERA5. Both time-resolved models significantly 

improved PSS-ALL in high SRL regions at most test stations. However, the time-resolved models 

did not consistently outperform UC-ERA5 for extreme wind speeds across all areas and exhibited 

a trade-off between improvements in low and high-wind speed PDFs. There were few locations 

(between 14.82% and 18.82% of test stations) where the time-resolved models improved low- 

and high-wind speed PDFs.  

There is still potential to improve the performance of the time-resolved models, as their 

implementation has resulted in a decline in UC-ERA5 scoring metrics in some cases. A spatial 

analysis of model performances revealed no consistent trends that could explain this 

deterioration. However, SRL was strongly correlated with how well the time-resolved models 

performed, while the topographic covariates exhibited a weaker correlation. The direction of the 

correlation suggests that time-resolved models are likely to improve UC-ERA5's performance in 

areas with high SRL.  

Analyzing the nonlinear interactions between terrain complexity, SRL, and proximity to the coast 

could improve the understanding of the model’s performance. It would ensure that the models are 

applied in scenarios where improvements are likely while avoiding their use in cases where the 

UC-ERA5 may provide more reliable results. Additionally, increasing data availability —especially 

with broader spatial coverage —could improve the model’s performance across all regions. For 

example, hilly and mountainous areas are underrepresented in the training dataset compared to 

coastal areas and region with high or low SRL. This imbalance may have contributed to the 

model's relative underperformance in hilly and mountainous areas. Addressing this data 

imbalance could improve model robustness and generalizability in complex terrains. 

While the proposed deep learning (DL) framework, particularly the TR-Transformer architecture, 

exhibits higher computational demands than the time-invariant methods, its implementation 
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remains feasible on standard personal computing hardware. The TR-Transformer, which has 

approximately 3 million parameters, required around 30 minutes to complete one training epoch 

when trained on an Nvidia T600 GPU (with 4GB of VRAM) using a dataset of about 17 million 

samples and a batch size of 128. In contrast, the TR-LSTM, which has around 600,000 

parameters, finished a training epoch in just 6 minutes under the same conditions. While the 

computational costs for inference are significantly lower than during training, the scalability of both 

training and inference times indicates that the approach can be applied to larger datasets. In 

situations where resource constraints are a concern, the TR-LSTM provides a more 

computationally efficient alternative. 

6.6.3 Limitations and future directions 

The proposed framework has certain limitations that could be addressed in future studies. 

Additionally, this section highlights several research directions. 

Various topographic covariates were identified from the literature and extracted from a DEM. To 

account for the scale dependency of these covariates, they were extracted at multiple spatial 

scales, and the most relevant covariates were identified using the permutation feature importance 

algorithm. This cumbersome approach may not reliably select the most appropriate covariates 

and associated spatial scales, especially in hilly and mountainous regions with sharp variations 

in the topography.  Future studies could explore CNNs for automatically extracting topographic 

covariates from high-resolution DEMs, enabling end-to-end training, and extracting more effective 

topographic features that could significantly enhance model performance, particularly in complex 

terrains. However, it is essential to recognize that this approach requires increased computational 

resources and larger datasets to optimize the CNN trainable parameters.  

In addition, other machine learning models, such as XGBOOST (Chen et al., 2016) and LightGBM 

(Ke et al., 2017), as well as deep learning architectures like Temporal Fusion Transformer (TFT; 

Lim et al. (2021a)) and Mamba (Wang et al., 2025), could be explored to improve the performance 

of the proposed framework. 

The evaluation of the framework indicates that there is still room for performance improvement, 

particularly for extreme wind speeds. Due to their limited representation in the training set, 

extreme values may be neglected as the model prioritizes more frequently occurring values 

(Schultz et al., 2021; Wilson et al., 2022). It is a well-known issue when applying deep learning 

models for downscaling and forecasting environmental variables (Dujardin et al., 2022; Reichstein 

et al., 2019). Prior studies have proposed modifications to the loss function to mitigate this issue 
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(Dujardin et al., 2022; Jung et al., 2013; Kristianti et al., 2023); however, there is no consensus 

on the optimal approach. Future research should focus on testing various loss functions and 

exploring new loss functions and techniques, such as data augmentation and sample balancing 

strategies, that may enhance model performance for extreme wind speeds. Additionally, 

incorporating probabilistic methods, such as quantile regression (Olivier et al., 2024), could help 

capture the uncertainty associated with extreme wind speed predictions. Future studies could 

explore using extreme value theory (EVT)-based methods (Wilson et al., 2022) to better 

characterize the tails of the wind speed distribution, ensuring that rare but critical events are well 

estimated. 

Developing BC models, such as the time-resolved models in this work, requires a robust network 

of meteorological stations in the study region that provide high-quality wind speed records. This 

network is essential for learning the relationship between reanalysis-derived wind speeds and 

ground-truth observations, and in regions where such a network is unavailable, employing transfer 

learning from data-rich areas could serve as a practical alternative. This approach would enable 

the application of models developed in well-monitored regions to areas with limited ground-truth 

data. However, it remains crucial to conduct careful validation to ensure that the model 

generalizes well in the new environment, as variations in SRL, terrain complexity, and 

meteorological conditions could significantly influence generalization performance. 

Future studies could explore the application of the proposed framework to other reanalysis 

datasets, such as the Modern-Era Retrospective analysis for Research and Applications, Version 

2 (MERRA-2) and to improve solar irradiance data from reanalysis datasets. Since reanalysis-

derived solar radiation often suffer from biases due to cloud cover misrepresentation, 

implementing a BC framework could enhance the assessment of solar energy potential (Frank et 

al., 2018). Improving the temporal variability of wind speed and solar irradiance can allow a more 

accurate assessment of the co-variability between these two renewable energy sources, which is 

crucial for hybrid energy system design (Pedruzzi et al., 2023). Future studies could explore 

adapting the framework to additional meteorological variables, such as temperature and 

precipitation, which are also known to exhibit biases in reanalysis datasets (Gleixner et al., 2020), 

particularly in regions with complex terrain (Cavalleri et al., 2024; Chen et al., 2021b). Enhancing 

temperature and precipitation data accuracy could have significant implications for climate 

modeling, hydrological studies, and disaster risk assessments.  

Operational forecasts are crucial for the wind energy sector (Liu et al., 2022). Future studies could 

investigate the application of the proposed framework to bridge the gap between NWP forecasts 
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and observations (Sweeney et al., 2020). This integration can enhance the accuracy of wind 

power forecasting for grid stability and energy market operations.  

Due to computational constraints, this study performed model parameter optimization using best 

practices and manual tuning. Future research could explore the implementation of more advanced 

hyperparameter optimization techniques, such as Bayesian optimization or genetic algorithms, in 

operational settings. These methods could systematically refine model parameters, improving 

predictive performance. 

Although the proposed approach was validated across a large region (Canada) with diverse wind 

patterns and topography complexity, further research is still encouraged to assess its 

generalizability performance across various climatic conditions and geographical settings. 

Expanding validation efforts to include additional regions would provide a more comprehensive 

assessment of the framework’s robustness and adaptability. The framework is built upon globally 

accessible datasets like ERA5 and ALOS DEM; its application in other regions is feasible and 

could be explored in future studies.  

Furthermore, the study only considered inland regions, where reanalysis wind speeds are more 

prone to bias due to the topography and land surface heterogeneity. However, future studies 

could explore the effectiveness of the BC framework in offshore regions influenced by seabed 

topography, straits, and islands. Unique factors in these regions may introduce different biases 

compared to inland regions. 

6.7 Conclusion  

Wind speeds derived from modern reanalysis datasets have become central to large-scale WRA 

studies due to their global coverage, extensive record length, and consistent records. However, 

the coarse spatial resolution of these datasets and limitations in data assimilation techniques and 

NWP models lead to varying accuracy across different locations (e.g., onshore, offshore, and 

coastal) and terrain complexities (e.g., flat, hilly, and mountainous). Therefore, developing and 

refining bias correction techniques for reanalysis-derived wind speeds are essential to ensure 

their accuracy across a broader range of environments, enabling more reliable resource 

assessments in diverse geographic and topographic settings.  

A novel bias correction method using DL models for sequence modeling was proposed and 

evaluated across Canada. This method advances the commonly used mean BC technique, based 

on the GWA, by enhancing median wind speed and temporal variability accuracy across diverse 
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environments. It leverages optimized DL architectures, making it a scalable option for large-scale 

applications. 

Results from comprehensive evaluations indicate that this framework significantly improves ERA5 

wind speeds at most test stations, performing particularly well in high SRL areas such as forest 

and urban regions. Notable improvements were observed in coastal, hilly, and mountainous 

areas, where reanalysis datasets typically perform poorly. Several potential enhancements to the 

DL framework have been proposed for future studies. Overall, this framework represents a 

promising advancement in improving the accuracy of reanalysis-derived wind data for WRA 

studies, helping to reduce uncertainties in predicting energy yields. In addition, the proposed 

framework can enhance the downscaling of Global Climate Models (GCMs). This improvement is 

important for understanding future wind patterns and developing effective climate adaptation 

strategies. Furthermore, the framework's ability to improve wind speed estimates could be 

beneficial for conducting risk assessments related to extreme wind events. 

. 
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Nomenclature 

Abbreviations 

a.g.l Above ground level  

ALOS Advanced land observing satellite  

BC Bias correction  

CNN Convolutional Neural Network 

DEM Digital Elevation Model 

DL Deep learning  

ECCC Environment and Climate Change Canada  

ECMWF European Centre for Medium-Range Weather Forecasts 

ERA5 ECMWF reanalysis version 5  

FFN Feed-forward neural network  

GB Gradient boosting 

GBOOST Gradient boosting regressor from the Scikit-learn package  

GCM Global Climate Model 

GELU Gaussian error linear unit  

GRU Gated recurrent unit  

GWA Global Wind Atlas  

GWA3 GWA version 3  

hpa Hectopascal 

LSTM Long short-term memory  

MAE Mean absolute error  

MHA Multi-head self-attention  

ML Machine learning  

MSE Mean square error  

NWP Numerical Weather Prediction  

PCC Pearson correlation coefficient 

PDF Probability density function 

PSS Perkins skill score  

PSS-ALL PSS computed for the full range of wind speed values 

PSS-LWT PSS computed for wind speed values below the 10th percentile  

PSS-UPT PSS computed for wind speed values above the 90th percentile  

R² Coefficient of determination  
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RMSE Root mean squared error  

RNN Recurrent neural network 

SRL Surface roughness length  

TI-GBOOST Time-invariant BC with GBOOST 

TI-GWA3 Time-invariant BC with GWA3  

TR-LSTM Time-resolved BC with LSTM  

TR-Transformer Time-resolved BC with Transformer 

UC-ERA5 Uncorrected ERA5 wind speed data  

WRA Wind resource assessment  

XGBOOST eXtreme gradient boosting algorithm  

 

Symbols 

𝛼 Parameter that controls the transition between the quadratic and linear behavior 

of the Huber loss function 

𝑏 Bias vector 

𝛽1, 𝛽2  Adam optimizer parameters 

𝑐̃𝑡 LSTM’s cell gate 

𝑐𝑡 LSTM’s cell state 

𝑓(∙) Regression function 

ℱ(∙) Sub-layers of the Transformer encoder 

𝑓𝑡 LSTM’s forget gate 

⊙ Element-wise product 

𝐻𝑖 Attention head 

𝑖𝑡 LSTM’s input gate 

𝑘(𝑠𝑖) Static covariates estimated at location 𝑠𝑖 

𝐾𝑖 Keys matrix associated with the attention head 𝐻𝑖 

𝐿𝛼 (∙,∙) Huber loss function 

𝐿𝑁(∙) Layer-normalisation 

𝐿𝑃  Linear projection layer 

𝑜𝑡 LSTM’s output gate 

𝑝 Length of the finite look-back window 

𝜒, 𝜁𝑡
′, 𝜁𝑡 Hidden vectors of the deep learning model 

𝑄𝑖 Queries matrix associated with the attention head 𝐻𝑖 
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𝜎(∙) Sigmoid activation function 

𝑆𝑀𝐸𝑅𝐴5 Scoring metrics value of ERA5 data 

𝑆𝑀𝑚𝑜𝑑𝑒𝑙 Scoring metric value of the model predictions 

𝑆𝑀𝑝𝑒𝑟𝑓 Scoring metric value for a perfect prediction 

softmax(∙) Softmax activation function 

𝑆𝑜𝑓𝑡𝑝𝑙𝑢𝑠(∙) Softplus activation function 

tanh(∙) Hyperbolic tangent activation functions 

𝜏𝑡 Timestamp vector 

𝑇𝐸𝑚𝑏𝑒𝑑(∙) Temporal embedding layer 

𝑇𝑀𝑜𝑑𝑒𝑙(∙) Deep learning temporal model (LSTM or Transformer) 

𝑢 Zonal component of wind speed 

𝑈̅𝐸𝑅𝐴5 Mean wind speed from ERA5 

𝑈𝑡
𝐸𝑅𝐴5(𝑠𝑖) ERA5 wind speeds at time 𝑡 and location 𝑠𝑖 

𝑈̅𝐺𝑊𝐴 Mean wind speed from the Global Wind Atlas 

𝑣 Meridional component of wind speed 

𝑉𝑖 Values matrix associated with the attention head 𝐻𝑖 

𝑣𝑡(𝑠𝑖) Reanalysis meteorological covariates at time 𝑡, and interpolated at location 𝑠𝑖 

𝑊 Weights matrix 

𝑦̂(𝑠𝑖) Estimated static scaling factor at location 𝑠𝑖 

𝑦𝑡(𝑠𝑖) Scaling factor at time 𝑡 and location 𝑠𝑖 
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7 DISCUSSION GENERALE ET CONCLUSION 

Ce dernier chapitre, qui conclut cette thèse, se concentre sur la synthèse des principaux résultats 

présentés dans les articles, suivie par la présentation des limites de l’étude et des pistes pour de 

futurs travaux de recherche.  

7.1 Synthèse 

La croissance de la part des énergies éoliennes dans les systèmes énergétiques actuels requiert 

la disponibilité de données de vitesse du vent de haute qualité pour l’évaluation de la variabilité 

temporelle et spatiale de la ressource (McKenna et al., 2022). Cette thèse vise à proposer de 

nouvelles méthodes d’estimation des vitesses du vent aux sites non échantillonnés basées sur 

l’apprentissage automatique. 

La revue de la littérature (Article 1) a mis en évidence un intérêt croissant pour le développement 

d’approches d’estimation de la distribution de probabilité complète et de reconstruction de séries 

temporelles de vitesse du vent aux sites non échantillonnés. Cette tendance se justifie par la 

nécessité de tenir davantage compte de la variabilité des vitesses du vent qui reste un défi majeur 

à l’évaluation précise de la ressource éolienne (Pelser et al., 2024). De plus, les défis additionnels 

introduits par la non-stationnarité des vitesses du vent lors de l’estimation aux sites non 

échantillonnés ont été soulevés dans cette revue. Par exemple, lors de la mise à l’échelle des 

sorties des modèles climatiques globaux, les données de réanalyse sont souvent utilisées comme 

référence aux sites non échantillonnés (Jung et al., 2022c). On observe un manque de validation 

de ces données dans ces études, ce qui peut compromettre la validité des résultats. Par exemple, 

il existe des écarts entre les variabilités temporelles présentes dans les données de réanalyses 

et les observations in situ (Ramon et al., 2019). Les conclusions de la revue de littérature ont 

démontré la nécessité de poursuivre la recherche dans le développement de méthodes plus 

précises et plus flexibles pour l'estimation des vitesses du vent aux sites non échantillonnés. 

La littérature ne présente pas de consensus quant aux variables explicatives les plus pertinentes 

pour la modélisation empirique des vitesses de vent. Les variables utilisées ainsi que les 

méthodes de sélection varient d’un auteur à l’autre (voir, par exemple, Etienne et al. (2010) ; Jung 

(2016)). Dans l’article 2, on a effectué une étude comparative des principales variables 

explicatives identifiées dans la littérature. Cette étude a été accompagnée d’une analyse des 

performances de six méthodes de sélection de variables. Les résultats de cette étude ont révélé 

que l’influence des variables explicatives varie selon les différentes plages de vitesse du vent. 



 230 

Par exemple, pour les vitesses élevées, la convexité du terrain a un impact plus important que 

pour les vitesses plus faibles. En revanche, la distance par rapport à la côte maritime et la 

longueur de rugosité ont un impact significatif sur l’ensemble des plages de vitesses de vent. Les 

algorithmes LASSO et MRMR ont été identifiés comme les techniques de sélection de variables 

les plus performantes en termes de précision des prédictions, de parcimonie et de réduction de 

la multicolinéarité. De plus, ces deux méthodes présentent l’avantage d’être assez simples à 

mettre en œuvre, puisqu’elles nécessitent uniquement l’optimisation d’un seul paramètre. 

Les méthodes d’estimation de la distribution complète des vitesses du vent sont plus attrayantes 

que celles axées sur la prédiction de statistiques récapitulatives, telles que la moyenne ou un 

quantile spécifique. La distribution complète permet une analyse plus approfondie de la variabilité 

de la ressource, un facteur crucial pour une meilleure gestion des risques liés aux fluctuations à 

long et à court terme, qui peuvent affecter la rentabilité des projets. 

Dans ce contexte, les approches existantes reposent généralement sur l’hypothèse restrictive 

selon laquelle une seule loi de probabilité s’appliquerait à l’ensemble de la région d’étude (voir, 

par exemple, Veronesi et al. (2016) ; Jung et al. (2023b)). Le développement d’une approche non 

paramétrique d’estimation de la distribution du vent aux sites non échantillonnés (article 3) a 

permis de surmonter cette limitation. Cette nouvelle approche offre une plus grande flexibilité 

pour représenter la variabilité spatiale des régimes de vent en s’ajustant aux particularités des 

conditions climatiques et topographiques locales. Cette approche s’appuie sur l’apprentissage 

automatique pour l’interpolation spatiale de plusieurs quantiles de la vitesse du vent, qui sont 

ensuite utilisés pour reconstruire la distribution de probabilité complète à l’aide de méthodes à 

noyau asymétrique. L’utilisation de l’apprentissage automatique, notamment des modèles de 

régression comme XGBoost, améliore la capacité de l’approche à gérer des relations non 

linéaires complexes entre les variables explicatives et les quantiles de vitesse du vent. 

L’analyse comparative a révélé que la méthode non paramétrique fondée sur les noyaux 

asymétriques est supérieure aux approches paramétriques, selon le critère d’ajustement de 

Kolmogorov-Smirnov. En outre, l’approche non paramétrique est plus simple à implémenter, car 

elle ne nécessite pas un processus complexe de sélection d’une distribution régionale, qui 

impliquerait l’évaluation de plusieurs lois de distribution selon différents critères d’ajustement 

(voir, par exemple, Jung (2016)). Les noyaux asymétriques Birnbaum-Saunders et Log-Normale 

ont donné des résultats similaires et se sont avérés plus efficaces que le noyau asymétrique de 

Weibull. Cette nouvelle approche est particulièrement recommandée pour les régions présentant 

une forte variabilité spatiale du régime des vents. 
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Les approches de reconstruction des séries temporelles de vitesse du vent aux sites non 

échantillonnés reposent sur l'interpolation de données de réanalyse corrigées ou non corrigées 

(Gualtieri, 2022; Niermann et al., 2019). Les limites des données de réanalyse non corrigées pour 

l’évaluation du potentiel éolien ont été soulignées dans plusieurs études (Davidson et al., 2022; 

Staffell et al., 2016). Il parait donc pertinent de recourir à des approches de correction de biais de 

ces données pour améliorer leur précision (Langer et al., 2023).  

Les méthodes de correction actuelles s’appuient soit sur le GWA (Bosch et al., 2018; Gruber et 

al., 2022), soit sur des modèles de régression (Hu et al., 2023; Jung et al., 2020). Ces modèles 

de régression, qui s’appuient sur l’apprentissage automatique, utilisent comme entrée les vitesses 

de vent issues des données de réanalyse, ainsi que des variables explicatives liées à la 

topographie et à la longueur de rugosité pour prédire les vitesses de vent observées.  Dans 

l’article 4, plusieurs des méthodes proposées dans la littérature ont été rigoureusement 

comparées selon plusieurs critères essentiels pour l’évaluation du potentiel éolien, notamment la 

distribution de probabilité, la variabilité temporelle et le biais systématique.   

Aucune des méthodes examinées ne s’est démarquée de manière uniforme en fonction de tous 

les critères d’évaluation. Par exemple, l’évaluation de la distribution de probabilité a révélé une 

préférence pour la méthode quantile-quantile appliquée aux séries temporelles de probabilités de 

non-dépassement issues des données de réanalyse. Toutefois, cette même méthode s’est 

avérée moins efficace lorsqu’elle a été appliquée à des séries temporelles de probabilités de non-

dépassement interpolées à partir d’observations de sites voisins. L’analyse de la variabilité 

temporelle a révélé une préférence pour une méthode d’interpolation spatiale basée sur 

l’apprentissage automatique, qui combine les données de réanalyses et les observations 

mesurées sur des sites voisins. La combinaison de différentes approches semble donc être une 

stratégie prometteuse pour améliorer la précision de la reconstruction des séries temporelles de 

vitesse du vent. Effectivement, l’intégration des méthodes de type « quantile-quantile » et des 

techniques d’interpolation fondées sur l’apprentissage automatique permettrait de compenser les 

limites de chacune.  

Comme cela a été mentionné précédemment, de nombreuses études ont utilisé les données du 

GWA pour corriger les biais dans les données de réanalyse. Bien que cette approche contribue 

à réduire les biais systématiques, elle ne permet pas de modifier ni d’améliorer la représentation 

de la variabilité temporelle des vitesses du vent (Bosch et al., 2017). En effet, le GWA fournit des 

statistiques climatiques à long terme, telles que la vitesse moyenne entre 2008 et 2017, qui ne 
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capturent pas les fluctuations temporelles à des échelles plus résolues (p. ex., diurne et 

saisonnière). 

L’article 5 propose un cadre méthodologique intégrant des architectures LSTM et Transformer 

pour corriger les données de réanalyses à partir d’un facteur de correction dynamique. L’examen 

de cette méthode a révélé une amélioration significative par rapport aux méthodes fondées sur 

un facteur de correction invariant dans le temps. En outre, dans les zones côtières et les régions 

à relief marqué, où les performances des données de réanalyses sont souvent dégradées 

(Gualtieri, 2021), l’approche proposée permet d’améliorer sensiblement la qualité des 

estimations. Une amélioration notable de la représentation de la distribution de probabilité a été 

observée, en particulier dans la partie centrale de la distribution. Cela reflète une meilleure 

adéquation avec les observations in situ. Les architectures LSTM et Transformer se sont avérées 

efficaces pour capturer la dynamique temporelle complexe des vitesses du vent, grâce à leur 

capacité à modéliser des dépendances à long terme dans les séries temporelles issues des 

données de réanalyse. Ces résultats soulignent le potentiel des approches basées sur 

l’apprentissage profond pour surmonter les limitations des méthodes de correction de biais 

traditionnelles. 

Enfin, les différents modèles développés dans le cadre de cette thèse contribuent à une meilleure 

compréhension des processus qui gouvernent la dynamique du vent. Ils permettent notamment 

une meilleure compréhension des interactions entre les facteurs météorologiques et 

topographiques, d’identifier les principaux déterminants de la variabilité spatio-temporelle du vent, 

et d’améliorer les capacités de prédiction dans des zones non échantillonnées. 

7.2 Limites et perspectives 

La non-stationnarité des séries temporelles constitue un défi majeur pour les modèles empiriques 

(Manuca et al., 1996). En ce qui concerne la vitesse du vent, la non-stationnarité des séries peut 

être attribuée à divers facteurs, tels que la variabilité interannuelle liée aux oscillations climatiques 

(Pryor et al., 2020; Zeng et al., 2019), les tendances à la baisse parfois causées par 

l’accroissement de la rugosité de la surface (Vautard et al., 2010a), ainsi que les effets du 

changement climatique (Martinez et al., 2024). 

L’incorporation de signaux de non-stationnarité dans les divers modèles élaborés dans cette 

thèse représente un axe de recherche prometteur pour accroître la fiabilité des estimations de la 

ressource éolienne. Par exemple, on peut intégrer aux modèles de régression utilisés pour 

l’interpolation spatiale des quantiles de vitesses du vent des variables liées aux oscillations 
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climatiques, comme l’oscillation nord-atlantique (NAO). Les quantiles conditionnels estimés à 

partir de ces modèles tiendront compte non seulement des caractéristiques topographiques 

locales, mais aussi des variations interannuelles attribuables aux oscillations climatiques. 

En outre, la rugosité de surface, telle qu’estimée dans nos travaux, est considérée comme étant 

constante durant la période d’analyse. Cette hypothèse peut limiter la précision des estimations, 

car la rugosité de surface peut évoluer au fil du temps en raison de changements dans l’utilisation 

des sols, de l’expansion urbaine, de la croissance de la végétation ou de la déforestation 

(Petersen et al., 1998; Vautard et al., 2010a). L’intégration de la rugosité de surface comme une 

variable dynamique dans les modèles pourrait ainsi améliorer la représentation des conditions 

locales de vent. Par exemple, l’utilisation de séries temporelles de données provenant de la 

télédétection, telles que Landsat (Zhu, 2017), permettrait de capturer les fluctuations temporelles 

de la rugosité de surface. 

L’incertitude associée aux estimations des vitesses du vent est un sujet qui reste peu abordé 

dans la littérature (McKenna et al., 2022). Les méthodes proposées dans ces travaux peuvent 

être adaptées pour intégrer des mécanismes d’évaluation et de quantification de cette incertitude. 

Par exemple, les fonctions objectives utilisées dans les modèles d’apprentissage, tels que les 

LSTM et les Transformers, peuvent être adaptées pour obtenir des estimations probabilistes par 

l’intermédiaire de quantiles conditionnels ou de paramètres d’une loi de distribution (Lim et al., 

2021b). Ces approches fourniraient des informations additionnelles pour la gestion des risques 

dans le cadre du développement de projets éoliens. Effectivement, la prise en compte de 

l’incertitude permettrait aux décideurs d’évaluer non seulement les prévisions moyennes, mais 

aussi les marges d’erreur associées. L’intégration de l’incertitude dans les approches 

développées représente donc une piste prometteuse pour améliorer la fiabilité des modèles 

d’évaluation de la ressource éolienne.  

Les données in situ des vitesses du vent utilisées dans cette thèse ont été collectées à 10 mètres 

au-dessus du sol. Toutefois, les éoliennes modernes fonctionnent à des hauteurs beaucoup plus 

élevées (p. ex., 80-150 mètres). La vitesse du vent variant selon l’altitude, il serait préférable 

d’évaluer directement la ressource éolienne à ces hauteurs. Toutefois, il y a un manque de séries 

temporelles des vitesses du vent à ces hauteurs (Ramon et al., 2020). Pour contourner cette 

limite, des méthodes d’extrapolation verticale, telles que la loi de puissance ou la loi 

logarithmique, sont couramment utilisées (Gruber et al., 2022). Ces approches sont fondées sur 

des hypothèses simples qui peuvent ne pas être valables dans certaines conditions (Gualtieri, 

2019). Par conséquent, l’extrapolation verticale introduit inévitablement des incertitudes 
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additionnelles dans l’estimation de la ressource éolienne. Des recherches futures devraient être 

menées pour évaluer et quantifier de manière plus approfondie cette source d’incertitude. De 

plus, des approches plus avancées d’extrapolation verticale, qui s’appuient sur l’apprentissage 

automatique, ont été proposées (p. ex., Yu et al. (2022); Vassallo et al. (2020)). Dans leur forme 

actuelle, ces approches plus complexes requièrent néanmoins la disponibilité de mesures de 

vitesse du vent à au moins deux hauteurs, ce qui est problématique à des sites non 

échantillonnés. 

Le développement des méthodes d’estimation proposées dans nos travaux dépend de la 

disponibilité d’un réseau dense de stations de mesure dans la région d’étude. Ce réseau est 

essentiel pour formuler la relation entre les variables explicatives et les vitesses de vents à 

prédire. Toutefois, la répartition des stations de mesure à l’échelle mondiale est très inégale, et 

même au sein d’une même région, des disparités locales peuvent exister. Le développement de 

modèles transférables d’une région à l’autre représente donc une solution potentielle à ce défi. 

Ces modèles, développés dans des régions disposant d’un réseau dense de stations de mesure, 

pourront être appliqués à des zones où le réseau de stations de mesures est limité, voire 

inexistant. Des recherches futures devraient explorer l’optimisation de ces modèles transférables, 

en évaluant leur performance dans différents milieux, comme les zones côtières ou les régions 

montagneuses, où les conditions climatiques et topographiques sont particulièrement 

hétérogènes.
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8 ANNEXE DE L’ARTICLE 3 

Table 8.1 Statistics of the estimated wind speed quantiles 

Percentile (%) Mean (km/h) Std (km/h) Min (km/h) 25% (km/h) 50% (km/h) 75% (km/h) Max (km/h) 

5 4.2 1.6 1 3 4 5 9 

12.5 6.4 2.2 2 5 6 7 13 

20 8.2 2.9 3 6 7 9.5 18 

27.5 9.9 3.4 4 7 9 12 20 

35 11.6 4.0 4 9 11 14.5 24 

42.5 13.4 4.4 5 11 13 16.5 28 

50 15.2 4.9 6 12 15 19 31 

57.5 17.1 5.4 6 13 17 20 35 

65 19.4 6.1 7 15 19 23.5 39 

72.5 21.9 6.7 7 17 21 26 44 

80 24.8 7.6 9 19 24 30 51 

87.5 29.0 8.7 11 22.5 28 35 59 

95 36.2 10.9 14 28.5 35 44 74 

 

 

Table 8.2 Overview of the WS covariates 

Predictor  Description  Spatial scale  

Altitude  Altitude of the location in m.   

Aspect  Slope orientation in degree.  100m, 500m, 1000m, 1500m, 
2000m 

Deviation from mean 
elevation  

Difference between the grid cell elevation and the 
mean of its neighbouring cells normalized by the 
standard deviation.  

100m, 500m, 1000m, 1500m, 
2000m 

Difference from cell 
mean elevation  

Difference between the grid cell elevation and the 
mean of its neighbouring cells.  

100m, 500m, 1000m, 1500m, 
2000m 

Difference of Gaussian  Difference between two copies of the DEM 
smoothed with two different gaussian kernel. 
Measure land surface curvature.  

(100m, 500m), (100m, 1000m), 
(500m, 1000m), (300m, 500m), 
(1000m, 2000m), (1000m, 1500m), 
(100m, 2000m), (500m, 2000m) 

Distance to coast  The location distance to the coast    

Elevation percentile  Percentile of the grid cell elevation relative to the 
neighbouring cells.  

100m, 500m, 1000m, 1500m, 
2000m 

Gaussian curvature  Product between the maximal and the minimal 
curvature. Measure of surface curvature  
(Florinsky, 2017).  

100m, 500m, 1000m, 1500m, 
2000m 

Geographical 
coordinates 

Geographical coordinates of the location.   

geomorphologic 
phonotypes 
(geomorphons) 

Landform element classification with the 
geomorphons-based method (Jasiewicz et al., 
2013). 

 

Laplacian of Gaussian  Derivative filter used to highlight location of rapid 
elevation change. 

100m, 500m, 1000m, 1500m, 
2000m 

Maximal curvature  Measure of surface curvature (Wilson, 2018). 100m, 500m, 1000m, 1500m, 
2000m 

Mean curvature  Measure of surface curvature (Wilson, 2018). 100m, 500m, 1000m, 1500m, 
2000m 
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minimal curvature Measure of surface curvature (Florinsky, 2017). 100m, 500m, 1000m, 1500m, 
2000m 

Pennock landform 
class 

Landform classification based on the slope and 
curvature of the grid cell (Pennock et al., 1987). 

 

plan curvature Measure of surface curvature (Florinsky, 2017). 100m, 500m, 1000m, 1500m, 
2000m 

Relative topographical 
position  

Normalized measure of the grid cell elevation 
relative to its neighbouring cells. 

100m, 500m, 1000m, 1500m, 
2000m 

Ruggedness index A measure of the local terrain heterogeneity 
(Jasiewicz et al., 2013; Riley et al., 1999) 

100m, 500m, 1000m, 1500m, 
2000m 

Slope  Slope at the grid cell. 100m, 500m, 1000m, 1500m, 
2000m 

Standard deviation of 
slope 

Measure of surface roughness (Grohmann et al., 
2011). 

100m, 500m, 1000m, 1500m, 
2000m 

Surface area ratio Measure of the surface roughness (Jenness, 
2004). 

100m, 500m, 1000m, 1500m, 
2000m 

Surface roughness 
length  

Surface roughness length estimated from land use 
map.  

100m, 500m, 1000m, 1500m, 
2000m 

tangential curvature Measure of surface curvature (Florinsky, 2017). 100m, 500m, 1000m, 1500m, 
2000m 

Total curvature Measure of surface curvature.  100m, 500m, 1000m, 1500m, 
2000m 

Temperature trend  Seasonal and annual trends of mean temperature 
change between 1948-2018.  
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9 INFORMATION SUPPLÉMENTAIRE POUR L’ARTICLE 4 

Supporting material for “Prediction of hourly wind speed time series at 

unsampled locations using machine learning”  

Contents  

1. Table 9.1 Wind speed covariates 

2. Evaluation metrics  

3. Estimation of wind speed quantiles at defined percentile points  

4. Table 9.2 Best parameters for LGBMQR and LGBMQR-ERA5 found during Random 

Search.  

5. Table 9.3 P-values from Wilcoxon signed-rank test for the quantile regression models. 

 

6. Table 9.4 P-values from Wilcoxon signed-rank test for the time series evaluation. 

7. Table 9.5 P-values from Wilcoxon signed-rank test for the OP metric. 

Table 9.1 Wind speed covariates  

Predictor  Description  Spatial scale  

Altitude  Altitude of the location in meter.   

Aspect  Slope orientation in degree.  100m, 500m, 1000m, 1500m, 
2000m 

Deviation from mean 
elevation  

Difference between the grid cell elevation and the 
mean of its neighbouring cells normalized by the 
standard deviation.  

100m, 500m, 1000m, 1500m, 
2000m 

Difference from cell 
mean elevation  

Difference between the grid cell elevation and the 
mean of its neighbouring cells.  

100m, 500m, 1000m, 1500m, 
2000m 

Difference of Gaussian  Difference between two copies of the DEM 
smoothed with two different gaussian kernel. 
Measure land surface curvature.  

(100m, 500m), (100m, 1000m), 
(500m, 1000m), (300m, 500m), 
(1000m, 2000m), (1000m, 1500m), 
(100m, 2000m), (500m, 2000m) 

Distance to coast  The location distance to the coast    

Elevation percentile  Percentile of the grid cell elevation relative to the 
neighbouring cells.  

100m, 500m, 1000m, 1500m, 
2000m 

Gaussian curvature  Product between the maximal and the minimal 
curvature. Measure of surface curvature.  

100m, 500m, 1000m, 1500m, 
2000m 

Geographical 
coordinates 

Geographical coordinates of the location.   

geomorphologic 
phonotypes 
(geomorphons) 

Landform element classification with the 
geomorphons-based method. 

 

Laplacian of Gaussian  Derivative filter used to highlight location of rapid 
elevation change. 

100m, 500m, 1000m, 1500m, 
2000m 

Maximal curvature  Measure of surface curvature. 100m, 500m, 1000m, 1500m, 
2000m 

Mean curvature  Measure of surface curvature. 100m, 500m, 1000m, 1500m, 
2000m 

minimal curvature Measure of surface curvature. 100m, 500m, 1000m, 1500m, 
2000m 
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Pennock landform 
class 

Landform classification based on the slope and 
curvature of the grid cell. 

 

plan curvature Measure of surface curvature. 100m, 500m, 1000m, 1500m, 
2000m 

Relative topographical 
position  

Normalized measure of the grid cell elevation 
relative to its neighbouring cells. 

100m, 500m, 1000m, 1500m, 
2000m 

Ruggedness index A measure of the local terrain heterogeneity  100m, 500m, 1000m, 1500m, 
2000m 

Slope  Slope at the grid cell. 100m, 500m, 1000m, 1500m, 
2000m 

Standard deviation of 
slope 

Measure of surface roughness. 100m, 500m, 1000m, 1500m, 
2000m 

Surface area ratio Measure of the surface roughness. 100m, 500m, 1000m, 1500m, 
2000m 

Surface roughness 
length  

Surface roughness length estimated from land use 
map.  

100m, 500m, 1000m, 1500m, 
2000m 

tangential curvature Measure of surface curvature. 100m, 500m, 1000m, 1500m, 
2000m 

Total curvature Measure of surface curvature.  100m, 500m, 1000m, 1500m, 
2000m 

 

Evaluation metrics  

The Pearson correlation coefficient was used to evaluate the correlation between observed and 

estimated time series:  

Equation 9.1 

𝑃𝐶(𝑤𝑡 , 𝑤̂𝑡) =   
∑ (𝑤𝑡𝑖 −
𝑛
𝑖=1 𝑤̅)∑ (𝑤̂𝑡𝑖 − 𝑤̅̂)

𝑛
𝑖=1

√∑ (𝑤𝑡𝑖 − 𝑤̅)
2
∑ (𝑤̂𝑡𝑖 − 𝑤̅̂)

2𝑛
𝑖=1  𝑛

𝑖=1  

 

In addition, the following metric were used during evaluation:  

Equation 9.2 

𝑀𝐴𝐸 = 
1

𝑛
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

 

Equation 9.3 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

 

Equation 9.4 

𝑅2 = 1 − 
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅)
2𝑛

𝑖=1
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Equation 9.5 

𝑀𝐸 = 
1

𝑛
∑𝑦𝑖 − 𝑦̂𝑖

𝑛

𝑖=1

 

The OP (Equation 9.6) is used to evaluate the overlap between two probability distribution function 

(PDF). An OP value equal to 100% implies a perfect match between the PDFs and an OP close 

to zero implied a poor overlap between the PDFs.  

Equation 9.6 

𝑂𝑃 = ∑ min (𝑍𝑖̂, 𝑍𝑖)
𝐵

𝑖=1
 

Where B is the number of bins used to empirically estimate the PDF, 𝒁𝒊̂ and 𝒁𝒊 are the frequency of the wind 

speed values in 𝒊𝒕𝒉 bin from the estimated and observed wind speed data respectively. A bin 
width of 0.5 m/s was selected as done by Jung et al. (2023a) study.  

To assess the IAV of annual median wind speed, the RCov was calculated as follows:  

Equation 9.7 

𝑅𝐶𝑜𝑣 =  
𝑚𝑒𝑑𝑖𝑎𝑛(|𝑋𝑖 − 𝑋̃|)

𝑋̃
 

where 𝑿̃ = 𝒎𝒆𝒅𝒊𝒂𝒏(𝑿) 

Estimation of wind speed quantiles at defined percentile points   

Quantiles at the fixe percentile point 𝑝 were calculated from observed and estimated WSTS using 

the following general formula (Hyndman et al., 1996): 

Equation 9.8 

𝑤𝑝 = (1 −  𝛾)𝑋(𝑗) + 𝛾𝑋(𝑗+1) 

Where 𝑿(𝒋) and 𝑿(𝒋+𝟏) are j-th order statistics. 𝜸 is a weight (𝟎 ≤ 𝜸 ≤ 𝟏) that is function of 𝒋 = 𝒇𝒍𝒐𝒐𝒓(𝒑𝒏 +𝒎), 

𝒎 =  𝜶 + 𝒑(𝟏 −  𝜶 −  𝜷) and 𝒈 = 𝒏𝒑+𝒎− 𝒋. 𝜸 was set equal to 𝒈 and 𝜶 = 𝜷 = 𝟏/𝟑 given 
quantiles that are approximately median-unbiased regardless of the WS true probability 
distribution (Reiss, 1989).  

Table 9.2 Best parameters for LGBMQR and LGBMQR-ERA5 found during Random Search.  

Model parameter LGBMQR  LGBMAR-ERA5   

learning_rate 0.03 0.04 

max_depth 4 3 

feature_fraction 0.4 0.5 

bagging_fraction 0.3 0.8 

extra_trees False True 

lambda_l2 296.8 525 

lambda_l1 292.8 469.3 
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num_leaves 162 22 

max_bin 160 140 

min_data_in_leaf 600 16800 

num_boost_round 230 200 

n_features 19 26 

Note: The same sets of randomly selected parameters were tested for LGBMQR and LGBMAR-ERA5   

Table 9.3 P-values from Wilcoxon signed-rank test for the quantile regression models.  

R2 
 

ERA5-WSQ LGBMQR-ERA5 LGBMQR 

ERA5-WSQ 
 

2.38E-02 7.39E-01 

LGBMQR-ERA5 2.38E-02 
 

5.24E-03 

LGBMQR 7.39E-01 5.24E-03  

MAE 
 

ERA5-WSQ LGBMQR-ERA5 LGBMQR 

ERA5-WSQ 
 

8.85E-03 7.91E-01 

LGBMQR-ERA5 8.85E-03 
 

1.51E-03 

LGBMQR 7.91E-01 1.51E-03  

RMSE 
 

ERA5-WSQ LGBMQR-ERA5 LGBMQR 

ERA5-WSQ 
 

4.60E-03 5.11E-01 

LGBMQR-ERA5 4.60E-03 
 

2.55E-03 

LGBMQR 5.11E-01 2.55E-03 
 

 

Table 9.4 P-values from Wilcoxon signed-rank test for the time series evaluation.  

PC 

 
WDC-TS WDC-PD ERA5 QM-ERA5 GWA3-ERA5 IDW-TS IDW-PD LGBMSI LGBMSI-ERA5 

WDC-TS  4.09E-14 1.04E-02 5.56E-03 1.04E-02 1.14E-01 1.96E-02 3.82E-05 5.20E-11 

WDC-PD 4.09E-14 
 

1.03E-12 5.20E-13 1.03E-12 1.86E-15 3.13E-11 4.15E-12 1.60E-16 

ERA5 1.04E-02 1.03E-12 
 

9.21E-06 8.06E-01 1.98E-02 1.59E-03 4.36E-04 2.23E-05 

QM-ERA5 5.56E-03 5.20E-13 9.21E-06 
 

9.21E-06 1.06E-02 8.24E-04 1.66E-04 9.96E-05 

GWA3-ERA5 1.04E-02 1.03E-12 8.06E-01 9.21E-06 
 

1.98E-02 1.59E-03 4.36E-04 2.23E-05 

IDW-TS 1.14E-01 1.86E-15 1.98E-02 1.06E-02 1.98E-02 
 

3.37E-06 2.98E-11 3.29E-10 

IDW-PD 1.96E-02 3.13E-11 1.59E-03 8.24E-04 1.59E-03 3.37E-06 
 

2.00E-01 4.44E-13 

LGBMSI 3.82E-05 4.15E-12 4.36E-04 1.66E-04 4.36E-04 2.98E-11 2.00E-01 
 

6.79E-15 

LGBMSI-ERA5 5.20E-11 1.60E-16 2.23E-05 9.96E-05 2.23E-05 3.29E-10 4.44E-13 6.79E-15 
 

MAE 

 
WDC-TS WDC-PD ERA5 QM-ERA5 GWA3-ERA5 IDW-TS IDW-PD LGBMSI LGBMSI-ERA5 

WDC-TS 
 

3.28E-16 6.78E-01 8.46E-05 5.16E-01 1.91E-01 2.49E-02 1.24E-01 1.28E-05 

WDC-PD 3.28E-16 
 

1.26E-11 2.98E-13 4.15E-10 1.75E-10 2.85E-08 1.17E-11 2.04E-14 

ERA5 6.78E-01 1.26E-11 
 

3.91E-04 1.84E-01 2.91E-01 5.27E-02 3.85E-01 1.78E-03 

QM-ERA5 8.46E-05 2.98E-13 3.91E-04 
 

1.63E-03 1.02E-01 3.77E-01 5.27E-02 3.71E-11 
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GWA3-ERA5 5.16E-01 4.15E-10 1.84E-01 1.63E-03 
 

9.70E-01 4.55E-01 7.02E-01 7.15E-03 

IDW-TS 1.91E-01 1.75E-10 2.91E-01 1.02E-01 9.70E-01 
 

1.80E-02 9.30E-01 1.20E-05 

IDW-PD 2.49E-02 2.85E-08 5.27E-02 3.77E-01 4.55E-01 1.80E-02 
 

2.94E-01 4.25E-07 

LGBMSI 1.24E-01 1.17E-11 3.85E-01 5.27E-02 7.02E-01 9.30E-01 2.94E-01 
 

3.10E-08 

LGBMSI-ERA5 1.28E-05 2.04E-14 1.78E-03 3.71E-11 7.15E-03 1.20E-05 4.25E-07 3.10E-08 
 

RMSE 

 
WDC-TS WDC-PD ERA5 QM-ERA5 GWA3-ERA5 IDW-TS IDW-PD LGBMSI LGBMSI-ERA5 

WDC-TS 
 

4.55E-16 8.14E-01 2.41E-04 9.70E-01 4.28E-01 6.21E-02 5.21E-01 8.02E-07 

WDC-PD 4.55E-16 
 

2.98E-13 6.36E-14 6.10E-13 6.38E-12 1.26E-09 1.99E-13 1.39E-15 

ERA5 8.14E-01 2.98E-13 
 

9.21E-06 3.15E-01 1.41E-01 1.36E-02 3.22E-01 9.62E-04 

QM-ERA5 2.41E-04 6.36E-14 9.21E-06 
 

7.04E-06 4.01E-02 2.30E-01 5.21E-03 1.21E-09 

GWA3-ERA5 9.70E-01 6.10E-13 3.15E-01 7.04E-06 
 

6.72E-01 1.96E-01 5.93E-01 1.01E-02 

IDW-TS 4.28E-01 6.38E-12 1.41E-01 4.01E-02 6.72E-01 
 

1.49E-02 6.75E-01 1.52E-06 

IDW-PD 6.21E-02 1.26E-09 1.36E-02 2.30E-01 1.96E-01 1.49E-02 
 

9.39E-02 3.16E-08 

LGBMSI 5.21E-01 1.99E-13 3.22E-01 5.21E-03 5.93E-01 6.75E-01 9.39E-02 
 

1.05E-08 

LGBMSI-ERA5 8.02E-07 1.39E-15 9.62E-04 1.21E-09 1.01E-02 1.52E-06 3.16E-08 1.05E-08 
 

 

Table 9.5 P-values from Wilcoxon signed-rank test for the OP metric.   

OP 

 
WDC-TS WDC-PD ERA5 QM-ERA5 GWA-ERA5 IDW-TS IDW-PD LGBMSI LGBMSI-ERA5 

WDC-TS 
 

9.83E-03 6.60E-04 1.12E-12 9.11E-05 7.31E-03 9.04E-03 1.59E-14 2.75E-02 

WDC-PD 9.83E-03 
 

4.05E-01 1.17E-12 1.03E-01 9.90E-01 9.81E-01 6.49E-16 5.94E-06 

ERA5 6.60E-04 4.05E-01 
 

1.49E-05 4.13E-01 4.89E-01 5.18E-01 1.89E-13 8.76E-06 

QM-ERA5 1.12E-12 1.17E-12 1.49E-05 
 

4.16E-03 6.91E-07 5.04E-07 3.38E-17 5.40E-15 

GWA-ERA5 9.11E-05 1.03E-01 4.13E-01 4.16E-03 
 

1.17E-01 1.13E-01 2.93E-14 2.73E-06 

IDW-TS 7.31E-03 9.90E-01 4.89E-01 6.91E-07 1.17E-01 
 

4.80E-01 1.84E-13 1.34E-04 

IDW-PD 9.04E-03 9.81E-01 5.18E-01 5.04E-07 1.13E-01 4.80E-01 
 

1.06E-12 2.27E-05 

LGBMSI 1.59E-14 6.49E-16 1.89E-13 3.38E-17 2.93E-14 1.84E-13 1.06E-12 
 

6.38E-12 

LGBMSI-ERA5 2.75E-02 5.94E-06 8.76E-06 5.40E-15 2.73E-06 1.34E-04 2.27E-05 6.38E-12 
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Table 10.1 Covariates used in the study. 

Type of 

covariate  

Covariates  Description Scaling or 

interpolation 

method  

Spatial scale  

Static Distance from the 

coast (Dcoast) 

Distance from the coast  n.a n.a 

Surface 

roughness length 

(SRL) 

Dominant Surface roughness length  Mode resampling 100 m, 1 km, 5 

km, 10 km 20 

km,  

Elevation 

percentile (ELP) 

Percentile of the grid cell elevation 

relative to the neighbouring cells.  

 

Gaussian filter 100 m, 200 m, 

1 km, 2 km, 5 

km, 10 km 

Elevation ((ELV)  Elevation above sea level at the 

location of the meteorological station 

n.a 100 m 

Ruggedness 

index (RGN) 

 

Measure the local terrain heterogeneity Gaussian filter 100 m, 200 m, 

1 km, 2 km, 5 

km, 10 km 

Standard 

deviation of slope 

(SDS) 

Measure of surface roughness. Gaussian filter 50 m, 200 m, 1 

km, 2 km, 5 

km, 10 km 

Deviation from 

mean elevation 

(DME) 

Difference between the grid cell 

elevation and the mean of its 

neighbouring cells normalized by the 

standard deviation. 

Gaussian filter 50 m, 200 m, 1 

km, 2 km, 5 

km, 10 km 

Aspect (ASP) Slope orientation  Gaussian filter 50 m, 200 m, 1 

km, 2 km, 5 

km, 10 km 

Slope (SLP) Slope at the grid cell. Gaussian filter 50 m, 200 m, 1 

km, 2 km, 5 

km, 10 km 

tangential 

curvature (TAC) 

Measure of surface curvature. Gaussian filter 50 m, 200 m, 1 

km, 2 km, 5 

km, 10 km 

Total curvature 

(TOC) 

Measure of surface curvature. Gaussian filter 50 m, 200 m, 1 

km, 2 km, 5 

km, 10 km 

Wind speed 

quantiles  

5th, 50th, and 95th ERA5 wind speed 

percentiles estimated from 2008 to 

2017 

Nearest neighbor n.a 

Time 

resolved  

blh Boundary layer height Nearest neighbor  n.a 

sp Surface pressure Nearest neighbor  n.a 
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10u U component of wind at 10 m  Nearest neighbor  n.a 

10v V component of wind at 10 m Nearest neighbor  n.a 

√𝑢2 + 𝑣2  wind speed at 10 m Nearest neighbor  n.a 

2t 2 m temperature Nearest neighbor  n.a 

Two types of covariates were used: static and time resolved. The time-resolved covariates are reanalysis 
meteorological variables from ERA5.  

 

Table 10.2 Assigned surface roughness length (SRL) to land cover classes. 

Land cover class  Pixel ID  SRL (m) 

Temperate or sub-polar 

needleleaf forest 

1 0.9 

Sub-polar taiga needleleaf 

forest 

2 0.9 

Temperate or sub-polar broadleaf 

deciduous forest 

5 0.9 

Temperate or sub-polar 

Shrubland 

8 0.01 

Temperate or sub-polar 

grassland 

10 0.01 

Sub-polar or polar shrubland- 

lichen-moss 

11 0.01 

Sub-polar or polar grassland- 

lichen-moss 

12 0.01 

Sub-polar or polar barren-lichen- 

moss 

13 0.01 

Wetland 14 0.04 

Cropland 15 0.1 

Barren lands 16 0.005 

Urban 17 0.8 

Water 18 0.0002 

Snow and ice 19 0.0002 

The table presents the land cover classes derived from the 2020 Canada land cover dataset, along with the 
assigned 



 

 

 

Figure 10.1 Covariate importance based on permutation features importance (PFI, (Breiman, 2001)). 

The PFI score distribution was estimated by computing the PFI scores for the most optimal hyperparameter configurations of the gradient boosting 
algorithm using a cross-validation approach with the training set. The vertical axis represents the PFI score, while the horizontal axis 
lists the covariates. Refer to Table S1 for covariate name abbreviations, followed by the corresponding spatial scale. 

 

 



 

 

 

Table 10.3 Criteria used to classify test stations in coastal, hilly, mountainous, low SRL and high SRL 
areas. 

Area type Area delimitation 
criterions  

Data source  

Hilly and mountainous  Located in one of 
Canada ecodistricts 
dominated (more than 
80%) by hills and 
mountains 

https://open.canada.ca/data/en/dataset/546f1a67-5f22-
4af9-8618-b94e1d33c52f (accessed 29 October 2024) 

Coastal  Located less than 10 km 
from Canada coastal 
waters (excluding 
mountainous and hilly 
areas) 

https://open.canada.ca/data/en/dataset/6c78fb2f-d23b-
45b4-b3af-cc6f6cc4fff8 (accessed 29 October 2024) 

High SRL Surface roughness 

length greater than 0.5 

m in a radius of 1 km 

(excluding mountainous, 

hilly, and coastal areas) 

https://open.canada.ca/data/en/dataset/ee1580ab-a23d-
4f86-a09b-79763677eb47  (accessed 29 October 2024) 

Low SRL  Surface roughness 

length less than 0.5 m in 

a radius of 1 km 

(excluding mountainous, 

hilly, and coastal areas) 

https://open.canada.ca/data/en/dataset/ee1580ab-a23d-
4f86-a09b-79763677eb47  (accessed 29 October 2024) 

The link to the data source used for the classification are provided in the last column of the table. 

 

Figure 10.2 Boxplot of the skill scores.  

https://open.canada.ca/data/en/dataset/546f1a67-5f22-4af9-8618-b94e1d33c52f
https://open.canada.ca/data/en/dataset/546f1a67-5f22-4af9-8618-b94e1d33c52f
https://open.canada.ca/data/en/dataset/6c78fb2f-d23b-45b4-b3af-cc6f6cc4fff8
https://open.canada.ca/data/en/dataset/6c78fb2f-d23b-45b4-b3af-cc6f6cc4fff8
https://open.canada.ca/data/en/dataset/ee1580ab-a23d-4f86-a09b-79763677eb47
https://open.canada.ca/data/en/dataset/ee1580ab-a23d-4f86-a09b-79763677eb47
https://open.canada.ca/data/en/dataset/ee1580ab-a23d-4f86-a09b-79763677eb47
https://open.canada.ca/data/en/dataset/ee1580ab-a23d-4f86-a09b-79763677eb47
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The skills scores are the percentage improvements relative to UC-ERA5 in time series MAE and RMSE. The 
boxplots are displayed separately for different types of environments and models. The boxes 
represent distribution quartiles, while the whiskers indicate the 10-90% range. The horizontal 
red dotted lines mark the 0% percentage improvement over UC-ERA5. 

10.1 Additional results on selected stations 

Four stations, each representing a different area type, were selected from the test set to illustrate 

the uncorrected and corrected wind speed time series through multiple perspectives, including 

time series, 2D kernel density, and distribution plots.  

Station ECCC Climate ID No. 7056202 is located in a coastal area. The uncorrected ERA5 wind 

speeds (UC-ERA5) tend to overestimate the observed wind speeds across the entire distribution 

(Figure 10.3 and Figure 10.4). The corrected wind speed using the time-resolved LSTM model 

(TR-LSTM) show improvements by reducing the bias; However, the model tends to overcorrect 

high wind speeds, leading to an underestimation of extreme wind events. 

Station ECCC Climate ID No. 8202592 is located in a high surface roughness length (SRL) area. 

UC-ERA5 tends to substantially overestimate the observed wind speeds (Figure 10.5 and Figure 

10.6). TR-LSTM shows improvement across the entire distribution.  

Station ECCC Climate ID No. 3030200 is situated in a low SRL area. UC-ERA5 generally 

underestimates the observed wind speeds, particularly in the mid-to-upper range of the 

distribution (Figure 10.7 and Figure 10.8). TR-LSTM effectively reduces this bias with a less 

pronounced effect in the upper part of the distribution where an underestimation tendency is still 

observable. 

Station ECCC Climate ID No. 7091299 is located in a hilly and mountainous area. UC-ERA5 

exhibits significant overestimation across the entire distribution, likely due to the complex 

topography that ERA5 struggles to resolve at its coarse resolution (Figure 10.9 and Figure 10.10). 

TR-LSTM improved the accuracy by reducing the overall bias and better aligning with observed 

wind speed variations. However, despite this improvement, TR-LSTM still shows some biases, 

particularly in capturing extreme wind speeds, where it tends to slightly overestimate peak values. 
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Figure 10.3 Time series and 2D kernel density plot for station ECCC Climate ID No. 7056202 for 2023. 

The station is located in a coastal area. The top-left and bottom-left panels present the time series of UC-ERA5, 
and TR-LSTM overlaid on the measured hourly wind speeds, respectively. The top-right and 
bottom-right panels display the 2D kernel density plot comparing measured wind speeds with 
UC-ERA5 and TR-LSTM, respectively. 
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Figure 10.4 Density plot for station ECCC Climate ID No. 7056202. 

The station is located in a coastal area. The probability density function (pdf) was estimated by fitting the two 
parameters of the Weibull distribution to the data using the maximum likelihood estimation 
method. 

 



251 

 

Figure 10.5 Time series and 2D kernel density plot for station ECCC Climate ID No. 8202592 for 2023. 

The station is located in a region with high surface roughness length. The top-left and bottom-left panels 
present the time series of UC-ERA5, and TR-LSTM overlaid on the measured hourly wind 
speeds, respectively. The top-right and bottom-right panels display the 2D kernel density plot 
comparing measured wind speeds with UC-ERA5 and TR-LSTM, respectively. 
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Figure 10.6 Density plot for station ECCC Climate ID No. 8202592. 

The station is located in a region with high surface roughness length. The probability density function (pdf) 
was estimated by fitting the two parameters of the Weibull distribution to the data using the 
maximum likelihood estimation method. 
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Figure 10.7 Time series and 2D kernel density plot for station ECCC Climate ID No. 3030200 for 2023. 

The station is located in a region with low surface roughness length. The top-left and bottom-left panels present 
the time series of UC-ERA5, and TR-LSTM overlaid on the measured hourly wind speeds, 
respectively. The top-right and bottom-right panels display the 2D kernel density plot 
comparing measured wind speeds with UC-ERA5 and TR-LSTM, respectively. 
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Figure 10.8 Density plot for station ECCC Climate ID No. 3030200. 

The station is located in a region with low surface roughness length. The probability density function (pdf) was 
estimated by fitting the two parameters of the Weibull distribution to the data using the 
maximum likelihood estimation method. 
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Figure 10.9 Time series and 2D kernel density plot for station ECCC Climate ID No. 7091299 for 2023. 

The station is located in a hilly and mountainous area. The top-left and bottom-left panels present the time 
series of UC-ERA5, and TR-LSTM overlaid on the measured hourly wind speeds, respectively. 
The top-right and bottom-right panels display the 2D kernel density plot comparing measured 
wind speeds with UC-ERA5 and TR-LSTM, respectively. 
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Figure 10.10 Density plot for station ECCC Climate ID No. 3030200. 

The station is located in a hilly and mountainous area. The probability density function (pdf) was estimated by 
fitting the two parameters of the Weibull distribution to the data using the maximum likelihood 
estimation method. 
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