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RESUME

L’énergie éolienne représente une ressource durable, essentielle a la transition énergétique en
cours. Son exploitation efficace repose sur une estimation précise de sa disponibilité a long terme,
ce qui nécessite des données fiables sur les vitesses du vent. Lorsque ces données sont
manquantes, il est nécessaire de recourir a des méthodes d’estimation basées sur des approches

physiques, statistiques, ou hybrides.

Plusieurs méthodes statistiques d’estimation de la vitesse ont été développées au fil des années.
Il était donc utile de procéder a une revue exhaustive de ces approches afin d’'identifier leurs
forces, leurs limites et les axes d’amélioration possibles. Dans notre premier article, une revue de
littérature offrant un apercu complet de ces méthodes a été réalisée. Cette synthése permet
d’établir un cadre de référence pour le développement de nouvelles méthodologies pour

I'estimation de la vitesse du vent.

Le deuxieme article compare six méthodes de sélection de variables explicatives pour
l'interpolation spatiale de plusieurs quantiles de vitesse de vent au Canada. En considérant des
quantiles associés a différentes probabilités de dépassement, cette étude permet non seulement
d’identifier les variables explicatives les plus pertinentes, mais aussi d’analyser leur influence

relative sur les différentes plages de vitesse du vent (faibles, moyennes ou éleves).

Dans le troisieme article de cette thése, nous proposons une nouvelle approche non paramétrique
pour estimer la distribution de probabilité des vitesses du vent aux sites non échantillonnés. Cette
approche est recommandée dans les régions ou la variabilité spatiale des régimes du vent est
importante et ol une seule famille de distribution peut ne pas étre suffisamment flexible pour

représenter cette variabilité.

Les vitesses de vents issues des données de réanalyses sont couramment utilisées pour estimer
le potentiel éolien aux sites non échantillonnés. Cependant, la résolution spatiale grossiére de
ces données, les rendent incapables de représenter avec précision les variations locales du relief
et leur influence sur les vitesses de vent prés du sol. Le quatrieme article de cette thése propose
une étude comparative des méthodes de correction statistiques des vitesses du vent issues des
données de réanalyse, incluant une nouvelle approche que nous avons développée. Des
recommandations ont été formulées quant aux méthodes les plus adaptées selon les contextes

d'application et les objectifs spécifiques des études réalisées.



Un défi majeur des méthodes de correction existantes demeure 'amélioration de la variabilité
temporelle des vitesses de vents estimées a partir des données de réanalyses. Le cinquiéme
article introduit une nouvelle approche de correction basée sur I'apprentissage profond (Deep
Learning). Cette méthode permet non seulement de corriger les biais systématiques, mais aussi

d’améliorer significativement la variabilité temporelle des séries.

Mots-clés : Apprentissage automatique ; Correction de biais ; Estimation par noyau ; Potentiel

éolien ; Réanalyse atmosphérique ; Topographie, Variabilité temporelle.

Vi



ABSTRACT

Wind energy represents a sustainable resource essential to the ongoing energy transition. lIts
efficient exploitation relies on accurately estimating its long-term availability, which requires
reliable data on wind speeds. When such data are missing, estimation methods based on

physical, statistical, or hybrid approaches become necessary.

Several statistical methods for wind speed estimation have been developed over the years.
Therefore, a comprehensive review of these approaches was necessary to identify their strengths,
limitations, and potential areas for improvement. In our first paper, a literature review providing an
extensive overview of these methods was conducted. This synthesis establishes a reference

framework for the development of new methodologies for wind speed estimation.

The second article compares six feature selection methods for interpolating multiple wind speed
quantiles spatially across Canada. Considering quantiles associated with different exceedance
probabilities allowed the study to identify the most relevant explanatory variables and analyze

their relative influence across different wind speed ranges (e.g., low, medium, or high).

In the third article of this thesis, we propose a nonparametric approach to estimating the
probability distribution of wind speeds at unsampled sites. This approach is recommended in
regions where the spatial variability of wind regimes is significant and where a single distribution

family may not be flexible enough to represent this variability.

Wind speeds derived from reanalysis data are commonly used to estimate wind potential at
unsampled sites. However, the coarse spatial resolution of these datasets limits their ability to
accurately represent local terrain variations and their influence on near-surface wind speeds. The
fourth article of this thesis presents a comparative study of statistical correction methods for wind
speeds derived from reanalysis data, including a new approach we have developed. Based on
the application context and specific objectives of the studies conducted, recommendations are

provided regarding the most suitable methods.

A major challenge with existing correction methods remains improving the temporal variability of
wind speeds estimated from reanalysis data. The fifth article introduces a new correction
approach based on deep learning. This method not only corrects systematic biases but also

significantly enhances the temporal variability of the time series.

Vi



Keywords: Machine Learning; Bias Correction; Kernel Estimation; Wind Potential; Atmospheric

Reanalysis; Topography; Temporal Variability.
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1 INTRODUCTION

11 Mise en contexte

La disponibilité de source d’énergie renouvelable est primordiale a la réduction de la dépendance
aux combustibles fossiles et la diminution des émissions de gaz a effet de serre (Hassan et al.,
2024). Parmi elles, I'énergie éolienne se distingue comme une solution « propre » et durable, qui
a connu une forte croissante ces derniéres années (Global Wind Energy Council, 2024). Cette
progression est due a plusieurs facteurs, dont la disponibilité mondiale abondante (Archer et al.,
2005; Jung et al.,, 2022b), des avancées technologiques significatives qui améliorent les
performances des turbines, ainsi qu’une réduction continue des colts de production et
d’exploitation (Veers et al., 2019; Wiser et al., 2021). Cette combinaison de facteurs rend cette

ressource de plus en plus compétitive par rapport aux sources d’énergie traditionnelles.

La variabilité de la production éolienne est principalement influencée par la vitesse du vent (U),
la puissance instantanée générée (P) par une éolienne étant proportionnelle au cube de celle-ci
(P o< U3). Cette relation non linéaire accentue I'impact des fluctuations de la vitesse du vent sur
la production énergétique. I'intermittence de la ressource pose certains défis a son intégration a
grande échelle dans les réseaux électriques (Ren et al., 2017). Cela met en évidence la nécessité
de poursuivre les recherches pour affiner I'évaluation du potentiel éolien et améliorer les modéles

prédictifs.

La disponibilité de longues séries de données sur la vitesse du vent (p. ex., 30 ans) avec une
haute résolution spatiale et temporelle est nécessaire pour une estimation adéquate du potentiel
éolien (Pelser et al., 2024). Or, ces données sont souvent limitées dans le temps et I'espace,
requérant le développement de méthodes physiques, statistiques et hybride pour estimer les
vitesses du vent aux sites non échantillonnés (Zhang et al., 2015). Un site non échantillonné fait
référence a un emplacement géographique pour lequel aucune mesure directe de la vitesse du

vent n’est disponible.

Lors de I'évaluation des ressources éoliennes sur un vaste territoire, les méthodes physiques
sont moins appropriées en raison de leur colt en temps de calcul élevé (Dupuy et al., 2023; Jung
et al., 2023b). En revanche, les modéles empiriques (statistiques et d’apprentissage
automatique), qui exploitent les données disponibles pour prédire les conditions du vent dans des
zones non échantillonnées, offrent une solution plus pratique et abordable (Dujardin et al., 2022;

Veronesi et al., 2016). Elles permettent d’intégrer des données issues de diverses sources,
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notamment les mesures in situ, les réanalyses, les données topographiques et de couverture du

sol.

Les méthodes d’estimation des vitesses du vent aux sites non échantillonnés peuvent étre
classées selon le type de statistique a prédire : moyenne, valeur extréme, distribution de
probabilité ou séries temporelles. Pour I'estimation de la moyenne, des méthodes traditionnelles
d’interpolation spatiale, comme le krigeage, sont frequemment employées (Lee, 2022; Luo et al.,
2008). Les valeurs extrémes de vitesse du vent peuvent étre estimées par une analyse
fréquentielle régionale (Campos et al., 2018). Elles permettent d’évaluer les risques que les vents

violents posent aux infrastructures (Pryor et al., 2021).

Les études récentes accordent une attention accrue a I'estimation de la distribution compléete des
probabilités ou a la reconstruction de longues séries temporelles de vitesses du vent (Jung et al.,
2023a). Ces méthodes permettent une analyse plus approfondie de la variabilité de la ressource,
un aspect essentiel pour assurer la viabilité économique des projets éoliens sur le long terme
(Millstein et al., 2019).

Les méthodes paramétriques sont souvent employées pour estimer la distribution des probabilités
des vitesses du vent dans des zones non échantillonnées (Jung et al., 2020; Veronesi et al.,
2016). Elles reposent sur I'hypothése selon laquelle les vitesses du vent dans I'ensemble d’une
région donnée suivent une seule loi de distribution dont les paramétres varient dans I'espace
géographique. Toutefois, dans les régions ou la variation spatiale du régime des vents est
significative, ces méthodes présentent des limites. Il est donc crucial d’adopter des techniques
plus flexibles, comme les méthodes non paramétriques, qui ne contraignent pas 'ensemble de la

région a une forme particulieére de la loi de probabilité.

Les progrés récents dans le développement des modeles de prévision numérique du temps
(Numerical Weather Prediction, NWP), des méthodes d’assimilation de données climatiques et
'accroissement des capacités de calcul ont entrainé des améliorations significatives en termes
de résolution spatiale, temporelle et de précision des données de réanalyse atmosphérique
(Valmassoi et al., 2023).

Par conséquent, I'interpolation spatiale des données de réanalyse, telles que ERA5 (cinquieme
génération de réanalyse atmosphérique du climat mondial du Centre européen pour les
prévisions météorologiques a moyen terme; Hersbach et al. (2020)) et MERRA-2 (Modern-Era

Retrospective Analysis for Research and Applications, version 2 ; Gelaro et al. (2017)) demeure
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une méthode privilégiée pour reconstruire les séries temporelles de vitesse du vent dans les

zones non échantillonnés (Olauson, 2018).

Malgré ces progrés, les données brutes de réanalyse restent affectées par des biais
systématiques en raison de leur résolution spatiale relativement grossiére. Cette limitation
entrave la représentation précise de phénoménes locaux, notamment ceux liés aux interactions
entre le vent, le relief et d’autres phénoménes météorologiques a petite échelle, associés aux
gradients de température (Gualtieri, 2022). Ces biais peuvent engendrer des écarts significatifs
entre les vitesses du vent mesurées et celles estimées a partir des données brutes de réanalyse,
notamment dans la couche limite atmosphérique, ou sont installées les turbines éoliennes. Pour
remédier a ces limitations, des méthodes de correction statistique ont été développées pour
ajuster les estimations issues de ces modéles physiques aux observations locales (Dujardin et
al., 2022; Winstral et al., 2017).

Par ailleurs, des biais dans la variabilité temporelle des données de réanalyse ont également été
signalés dans la littérature (Davidson et al., 2022; Ramon et al., 2019). La correction de ce type
de biais reste encore peu explorée, mais le développement de telles approches pourrait
significativement améliorer la corrélation temporelle a différentes échelles (p. ex., diurne,
saisonniére et interannuelle) entre les données de réanalyse corrigées et les vitesses de vent
observées. Cela permettrait d’obtenir une évaluation plus précise du potentiel éolien et une
meilleure compréhension de sa variabilité temporelle, qui est cruciale pour la planification de la

ressource.

1.2  Généralité sur la dynamique du vent

1.21 Equations régissant la dynamique du vent

Le gradient de pression est la principale force responsable du mouvement de l'air dans
I'atmosphére. L'inégale distribution du rayonnement solaire en fonction de la latitude, de la
topographie et de la saison, provoque des variations spatiales de température. Les masses d’air
chaudes et légéres (moins denses) s’élévent, ce qui entraine une baisse de la pression a la
surface. A linverse, les masses d’air plus froides et moins denses tendent a descendre,
augmentant ainsi la pression au sol. Ces différences de pression donnent naissance a un gradient
de pression horizontal, ce qui entraine un déplacement de I'air des zones de haute pression vers

celles de basse pression.
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Les mouvements d’air causés par la variation de pression sont influencés par d’autres forces,
telles que la force de Coriolis, la gravité et les frottements prés de la surface terrestre. La force
de Coriolis, résultant de la rotation de la Terre, dévie les masses d’air vers la droite dans
I'hémisphére Nord et vers la gauche dans I'hémisphére Sud. A proximité du sol, la force de
frottement, due a la rugosité de la surface, ralentit la vitesse du vent. De plus, la gravité agit

comme une force verticale opposée au soulévement de l'air.

L’équation de bilan de quantité de mouvement pour I'écoulement d’'une masse d’air dans

I'atmosphére est donnée par (Andrews, 2010):

Equation 1.1
Ju . 1dp
E (U V)u—fcv+5a— x—O
dv N p
T (U-V)v+ fu+ 5, B =0
™ (O Vw+g+-—ab—F, =0
act (U Vwrgt o —F =

ou u, v et w sont respectivement les composantes zonale (est-ouest), méridionale (nord-sud) et verticale du

vecteur de vitesse U, f. est le paramétre de Coriolis, p est la densité de I’air, p est la pression
atmosphérique, g est l'accélération gravitationnelle, F,, F,,F, sont les composantes de la

force de frottement dans chaque direction, et V est le vecteur nabla.

En fonction des hypothéses physiques et des échelles spatiales et temporelles retenues, des
simplifications peuvent étre apportées aux équations de quantité de mouvement. Ces
simplifications permettent d’isoler les mécanismes dominants a une échelle donnée, ce qui facilite

'analyse du phénomeéne.

Dans I'atmospheére libre, ou l'influence des frottements devient négligeable, le vent tend vers un
état d’équilibre entre la force du gradient de pression et la force de Coriolis. Cet équilibre, nommé

équilibre géostrophique, est décrit par les équations suivantes :

Equation 1.2
1 dp

U, = ———
9 pfeoy
1 dp

v, = ——
9 pfox

ou u, et v sont les composantes zonale et méridionale du vent géostrophique.
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Cette relation permet d’estimer la vitesse du vent dans I'atmosphére libre a partir des champs de
pression atmosphérique. Cependant, cet équilibre ne s’applique pas dans les couches basses de
'atmosphére, notamment la couche limite, ou les effets de friction perturbent significativement

I’écoulement.

1.2.2 Effet de la topographie et de la rugosité du sol

A proximité de la surface terrestre, les vents résultant de I'équilibre géostrophique constituent le
forcage de grande échelle. La friction induite par la rugosité de surface (végétation, relief,

batiments, etc.) modifie les vents géostrophiques en réduisant leur vitesse.

En terrain plat, homogéne et sans obstacle a proximité, la vitesse du vent prés du sol, U(z), peut
étre estimée a partir de la vitesse géostrophique G, de la vitesse de friction et du profil
logarithmique de la vitesse du vent. A partir du gradient de pression, on peut calculer la vitesse
du vent géostrophique G, puis en déduire la vitesse de friction u, grace a I'Equation 1.3
(Zilitinkevich et al., 1974). Une fois que u, est déterminé, le profil logarithmique de la vitesse du
vent (Equation 1.4) peut étre utilisé pour estimer la vitesse moyenne du vent & une hauteur z

donnée :

Equation 1.3

G=2& (1 (u) A)2+BZ
= — n —
k feZo

Equation 1.4

b= [n(2) v

Ou, u, représente la vitesse de frottement (qui mesure le degré de cisaillement du vent prés du sol da a la
rugosité), k correspond a la constante de von Karman (environ 0,4), f. désigne le paramétre
de Coriolis, z, correspond a la longueur de rugosité de la surface (hauteur moyenne du sol
ou la vitesse moyenne du vent est nulle), A et B sont des paramétres liés a la stabilité de

I’'atmospheére, Y (%) est une fonction de correction liée a la stabilité atmosphérique selon la
théorie de Monin-Obukhov, et L désigne la longueur d’Obukhov, qui caractérise les conditions
de stabilité thermique dans la couche limite.

Dans les régions dont la topographie est irréguliére, le flux de I'air devient plus variable et il ne
peut plus étre décrit de maniére adéquate par la méthode analytique ci-dessus. En effet, les

variations du relief, les changements d’occupation du sol, ainsi que la présence d’obstacles, tels
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que les batiments, ou les foréts, influencent le mouvement de I'air prés du sol (Petersen et al.,
1998).

L’occupation du sol influence la dynamique du vent, notamment parce qu’elle entraine une friction
avec les éléments de surface, comme la végétation ou les batiments. Cette friction se traduit par
un ralentissement du vent, ainsi qu’'une modification de la structure verticale du profil de vitesse
caractérisé par le profil logarithmique du vent (Equation 1.4) ou la loi exponentielle de cisaillement

du vent :

Equation 1.5

U(zz) = U(z1) C_i)a

Ou U(z,) est la vitesse du vent a la hauteur z,, U(z,) est la vitesse mesurée a une hauteur de référence z, et «
est I'exposant de cisaillement, qui dépend de la rugosité de surface et de la stabilité
atmosphérique.

La rugosité de surface est mesurée par la longueur de rugosité (z,), qui est proportionnelle a la
hauteur des obstacles présents a la surface terrestre, comme la végétation et les batiments. Des
valeurs élevées de longueur de rugosité indiquent généralement des surfaces entrainant un
ralentissement plus important des vitesses du vent. Les milieux urbains et les zones végétalisées,
comme les foréts, présentent généralement des longueurs de rugosité plus élevées que les
surfaces couvertes de neige ou les terrains nus et peu accidentés. Le Tableau 1.1 présente des
valeurs de la longueur de rugosité z, et de I'exposant de cisaillement a pour une stabilité

atmosphérique neutre et pour différents types de surface.

Tableau 1.1 Valeur de la longueur de rugosité z, et de I’exposant de cisaillement a pour différents types
de surface

Type de surface Longueur de rugosité z, Exposant de cisaillement «

Eaux 0,001 0,11

Herbes 0,01-0,05 0,16

Arbustes 0,1-0,2 0,20

Foréts 0,5 0,28

Villes 1-2 0,4

Les valeurs de a sont données pour une stabilité atmosphérique neutre. Adapté de Emeis (2018).

L’interaction entre le relief et le vent peut étre de nature mécanique ou thermique (régime de
brise) (Whiteman, 2000). L’effet mécanique résulte de la modification du flux de vent synoptique

par les caractéristiques orographiques locales.

25



Lorsqu’un flux d’air rencontre un obstacle orographique tel qu’une colline ou une chaine de
montagnes, plusieurs scénarios peuvent se produire selon les caractéristiques du relief
(notamment sa hauteur, sa largeur et sa pente), la stabilité de 'atmosphére et la vitesse du vent
(Jackson et al., 2013). La masse d’air peut s’élever et franchir I'obstacle, étre déviée latéralement,
canalisée a travers des vallées ou des passes, ou encore bloquée en amont. Une atmosphére
stable tend a limiter les mouvements verticaux, ce qui favorise le contournement horizontal des
reliefs. A l'inverse, une atmosphére instable facilite les mouvements ascendants, permettant a
I'écoulement de franchir verticalement les obstacles. Cependant, méme en conditions stables,
une masse d’air dotée d’une forte inertie (vitesse suffisante) peut étre capable de franchir certains

reliefs.

Les régimes de brises sont principalement induits par les contrastes de chauffage de surface
généreés par le relief, qui donnent lieu a des circulations thermiques locales, telles que les brises
de pente et de vallée (Zardi et al., 2013). Ces régimes sont caractérisés par une inversion de la

direction du vent au cours du cycle diurne.

Pendant la journée, le rayonnement solaire réchauffe la surface du sol, entrainant un transfert
d’énergie vers lair situé au-dessus du sol sous forme de flux de chaleur sensible. Ce
réchauffement favorise les mouvements ascendants du vent le long des pentes ou dans les
vallées. A l'inverse, pendant la nuit, le sol se refroidit rapidement, ce qui refroidit I'air en contact

avec sa surface, ce qui entraine des écoulements d’air descendants.

Les régimes de brises, qui découlent de ces contrastes thermiques, peuvent se produire a
différentes échelles spatiales. Il peut s’agir de phénoménes locaux, comme ceux qui se forment
autour d'une colline isolée, ou bien de circulations régionales impliquant de grands systémes

montagneux (Whiteman, 2000).

1.2.3 Simulation de I'’écoulement atmosphérique

La variation locale de la vitesse du vent est le fruit de I'interaction de divers processus opérants
a différentes échelles. A I'échelle planétaire, les systémes de pression synoptiques dominent et
déterminent les régimes de vent dominants. A I'échelle régionale, des gradients de température
dus aux caractéristiques orographiques ou a la proximité de masses d’eau (océans, lacs) peuvent
générer des circulations thermiques, telles que les brises de mer, de terre, de vallée ou de
montagne. A I'échelle locale, la rugosité du sol, la présence d’obstacles naturels ou artificiels

exercent une influence prépondérante sur I'écoulement du vent. L’ensemble de ces processus
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contribuent & une grande variabilité temporelle (avec des fluctuations allant de la minute a

plusieurs jours) et spatiale du vent.

En général, les équations qui régissent la dynamique du vent n’ont pas de solution analytique et
sont généralement résolues numériquement a l'aide de modéles de prévision ou de simulation

climatique. Ces derniers reposent sur des meéthodes de discrétisation spatiale et temporelle.

En fonction du phénomeéne étudié, différentes approches de modélisation numérique sont
utilisées pour simuler le vent. Les modéles de circulation générale (GCMs) décrivent la
dynamique atmosphérique a I'échelle globale, mais leur résolution spatiale relativement grossiére
(supérieure a 100 km) les rend inadéquats pour la simulation de phénoménes régionaux ou

locaux (Jung et al., 2022c)

Les modéles a méso-échelle, tels que le "Weather Research and Forecasting model" (WRF ;
Powers et al. (2017)), sont largement utilisés avec [Iassimilation des observations
météorologiques pour produire des prévisions atmosphériques a haute résolution. Grace a une
résolution spatiale plus fine (de I'ordre de 10 a 100 km), ces modéles permettent de mieux simuler
les circulations régionales induites par la topographie et les gradients thermiques. lls intégrent
aussi des schémas de paramétrisation représentant les processus non résolus a I'échelle de la

grille.

Cependant, ces modéles ne résolvent pas adéquatement les turbulences de I'écoulement de
petite échelle générées par les variations topographiques et la présence d’obstacles
(Zajaczkowski et al., 2011). Pour pallier ces limitations, des approches issues de la mécanique
des fluides assistée par ordinateur (Computational Fluid Dynamics, CFD) sont utilisées. Elles
permettent de représenter explicitement les turbulences a micro-échelle (Castorrini et al., 2021).
L’approche de Reynolds (Reynolds-Averaged Navier-Stokes, RANS) repose sur une
modélisation statistique de la turbulence en séparant les variables en une valeur moyenne et les
fluctuations autour de cette moyenne. Pour mieux caractériser les vitesses instantanées, on peut
recourir a la simulation directe des grandes échelles (Large Eddy Simulation, LES). Le LES
permet de simuler directement la majorité des turbulences et de modéliser des structures dont

I'échelle est inférieure a la taille des mailles (Mehta et al., 2014).

Toutefois, en raison de leur colt computationnel particuliérement élevé, I'utilisation de ces
modéles reste généralement limitée a des domaines spatiaux restreints et a des fenétres

temporelles réduites. lls sont donc principalement utilisés durant les phases avancées des

27



projets, par exemple pour des analyses approfondies des sillages turbulents et des zones de

séparations de I'écoulement (Thé et al., 2017).

En alternative aux approches basée sur la mécanique des fluides assistée par ordinateur, il existe
des modéles plus simples et moins exigeants en ressources de calcul, tels que WAsP (Wind Atlas
Analysis and Application Program). Ces outils permettent de représenter certains effets de petite
échelle a partir d’'une formulation linéaire des équations de I'écoulement (Jackson et al., 1975).
Leur rapidité de calcul en fait des outils bien adaptés aux premiéres phases de I'évaluation du
potentiel éolien sur un vaste territoire (Dérenkamper et al., 2020). Néanmoins, ces modeles
linéaires présentent des limites notables en terrain complexe, notamment lorsque les pentes sont
abruptes (Ayotte et al., 2004).

1.3 Données de réanalyses

Les données de réanalyse, largement utilisées pour I'évaluation du potentiel éolien a I'échelle
régionale, illustrent une application concréte des modéles a méso-échelle. Elles permettent de

reconstituer de maniére cohérente et continue I'état de I'atmosphére sur plusieurs décennies.

Les données de réanalyses, telles que ERA5 et MERRA-2, sont produites a partir de modéles de
prévision numérique du temps couplés a des systémes d’assimilation d'observations
météorologiques de diverses sources. Ces jeux de données présentent plusieurs avantages : ils
sont disponibles sur de longues périodes, leur couverture spatiale est (quasiment) globale et leur
fréquence temporelle est suffisante pour de nombreuses applications. lls constituent donc une
source importante de données pour I'analyse climatique (Gutiérrez et al., 2024), I'évaluation du
potentiel éolien a grande échelle (Gualtieri, 2022; Olauson, 2018), et le forcage de modéles a
méso-échelle (Lorenz et al., 2016). Le Tableau 1.2 présente une comparaison des principales
caractéristiques de trois jeux de données de réanalyse couramment utilisés dans les études sur

la ressource éolienne.

Tableau 1.2 Apercu des données de réanalyse utilisées dans les études de potentiel éolien a grande
échelle
Nom complet Abréviation Institution Résolution Résolution Période
spatiale temporelle disponible
(heure)

European Centre for ERA5S European Centre for 0,25° x 1 1940 a
Medium-Range Medium-Range 0,25° présent
Weather Forecasts Weather Forecasts
Reanalysis 5 (ECMWF)
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Modern Era MERRA-2 National Aeronautics | 0,5° latitude | 1 1980 a

Retrospective-Analysis and Space x 0,625° présent
for Research and Administration longitude

Applications version 2 (NASA)

Japanese 55-year JRA-55 Japan Meteorological | 1,25° x 6 1978 a

Reanalysis Agency (JMA) 1,25° présent

De nombreuses études ont été consacrées a I'évaluation des performances des jeux de données
de réanalyse en ce qui a trait a I'estimation du potentiel éolien (Gualtieri, 2021; Jourdier, 2020;
Molina et al., 2021; Olauson, 2018). Ces travaux s’appuient généralement sur la comparaison
des vitesses du vent issues des réanalyses avec des observations in situ. Les résultats de ces
comparaisons montrent que, méme si les réanalyses permettent de caractériser les régimes de
vent a I'échelle régionale, elles présentent souvent des biais au niveau local, en particulier dans
les régions a topographie complexe ou cétiére (Gualtieri, 2022). Ces biais peuvent entrainer une
surestimation ou une sous-estimation significative de la vitesse du vent et, par le fait méme, du

potentiel éolien.

La Figure 1.1 illustre des séries temporelles de vitesses du vent interpolées a partir de données
ERA5 pour deux stations de mesure d’Environnement et Changement climatique Canada
(ECCC). Cette figure met en évidence l'influence de I'environnement sur la précision des données
ERAS. La station numéro 504KONM, située au bord du lac Manitoba, se trouve dans une région
ou la topographie est relativement simple, avec peu de variation brusque du relief. En revanche,
la station numéro 7041166, située en bordure de la riviere Saguenay, est implantée dans une
zone caractérisée par une variabilité du relief plus marquée. Les différences de corrélation
observées entre les séries temporelles mesurées et ERA5 des deux stations montrent que la
variation du relief influence la précision des vitesses de vent issues des données de réanalyse.
Dans les régions a relief accidenté, les différences entre les données ERA5 et les mesures

directes sont habituellement plus marquées (Gualtieri, 2021).
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Figure 1.1 Vitesses du vent mesurées et issues d’ERAS

Séries temporelles des vitesses du vent horaires de I'année 2023 a la station numéro 504KONM (panneau a) et
a la station numéro 7041166 (panneau b). Les données mesurées sont représentées en rouge,
tandis que les données ERAS interpolées sont en bleu. Les nuages de points illustrant la
relation entre les données mesurées et celles d’ERA5 aux deux stations sont présentés dans
les panneaux d (504KONM) et e (7041166). Enfin, les données d’élévation autour des stations
sont présentées dans les panneaux c et f.

La résolution spatiale des données de réanalyse, relativement grossiére, constitue un facteur
limitant a leur utilisation directe pour évaluer le potentiel éolien, notamment dans les régions a
terrain complexe et ou les régimes de vent peuvent varier considérablement. La correction des
vitesses du vent issues de réanalyses améliore la représentation des phénomeénes locaux a petite

échelle.

La correction du biais des vitesses du vent issues des réanalyses repose principalement sur
I'Atlas mondial des ressources éoliennes (Global Wind Atlas, GWA), qui fournit des conditions de
vent statiques (p. ex., moyennes et parameétres de distribution) a I'échelle quasi globale. Ces
données intégrent les caractéristiques du terrain et de la couverture du sol a une résolution
spatiale de 250 meétres carrés. Dans la littérature, on a utilisé deux principales approches pour
corriger a partir du GWA les biais des vitesses du vent issues de réanalyse. La premiere est une
méthode de type quantile-quantile (Q-Q; Cannon et al. (2015)) qui permet d’ajuster les quantiles
de la distribution des vitesses de vent issues de réanalyse pour qu’ils correspondent a ceux des
données de référence fournies par le GWA (Gonzalez-Aparicio et al., 2017). La deuxiéme
méthode de correction ajuste la moyenne des vitesses du vent de réanalyse pour la faire
correspondre a celle issue du GWA (Gruber et al., 2019).

La Figure 1.2 présente un exemple d’application des deux méthodes de correction aux données
d’ERADS interpolées a la station numéro 7041166 d’ECCC. Le Tableau 1.3 présente les vitesses

moyennes et la corrélation avec les données mesurées avant et aprés les corrections. Les
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vitesses du vent brutes d’ERA5 sous-estiment systématiquement les valeurs mesurées. Cette
sous-estimation est partiellement corrigée par les méthodes de correction des biais, avec des
résultats variables. La méthode Q-Q a tendance a surestimer les vents forts, tandis que la
correction de la moyenne entraine une sous-estimation des vents forts. Il est important de
souligner que ces observations ne peuvent pas étre généralisées, car les performances des
méthodes de correction dépendent fortement des caractéristiques locales du vent et des biais

spécifiques des données de réanalyse.
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Figure 1.2 Correction des vitesses du vents d’ERAS5 a partir du GWA

Application des méthodes de correction de biais des vitesses du vents horaires de 2023 d’ERAS a la station
numéro 7041166 d’ECCC. Les panneaux (a) et (b) montrent la comparaison des vitesses du
vent mesurées a la station numéro 7041166 avec les données d’ERAS5 interpolées. Les
panneaux (c) et (d) illustrent I'effet de la correction de la moyenne, tandis que les panneaux
(e) et (f) montrent les résultats de la correction par la méthode quantile-quantile.

Tableau 1.3 Correction des vitesses du vents d’ERAS a partir du GWA

Données Vitesses moyennes Coefficient de corrélation de
Pearson

Données mesurées 574 1,00

Données brutes d’ERAS 2,98 0,67

ERAS5 + GWA (moyenne) 5,63 0,67

ERAS + GWA (Q-Q) 5,65 0.68

Vitesses moyennes du vent a la station numéro 7041166 (ECCC) et corrélation entre les données ERA5 et
celles mesurées, avant et aprés les corrections a partir du GWA.

Les données du GWA sont particulierement pertinentes pour corriger les biais des données de
réanalyse, en raison de leur intégration de caractéristiques topographiques et de couverture

terrestre a une résolution fine (Bosch et al., 2017). Ces caractéristiques permettent de capturer
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les variations locales des régimes de vent, souvent mal représentées dans les données de
réanalyse en raison de leur résolution plus grossiére. Ces caractéristiques peuvent étre estimées
directement a partir d’'un modéle numérique de terrain (MNT) et de cartes d'occupation du sol de
haute résolution. Elles peuvent ensuite étre utilisées comme variables explicatives pour ajuster
un modéle de régression entre les vitesses du vent issues de réanalyse et celles mesurées
directement. Ce modéle ajusté devrait permettre de corriger les données de réanalyse aux sites
non échantillonnés. Cette méthode a l'avantage d'étre plus flexible en matiére de résolution

spatiale du produit final par rapport a la résolution fixe imposée par I'utilisation du GWA.

Par exemple, une méthode développée par Jung et al. (2023b) repose sur I'application d’'une
correction Q-Q aux données ERA5. Premiérement, les auteurs ont ajusté un modéle de
régression prenant en compte les caractéristiques topographiques locales, la longueur de
rugosité et les L-moments (Hosking, 1990) des vitesses du vent issues d’ERAS5, pour estimer la
distribution des vitesses du vent aux sites non échantillonnés. Ce modéle permet de prédire les
L-moments corrigés des vitesses du vent aux sites non échantillonnés a partir desquels les
parameétres des distributions statistiques sont estimés. Une fois la distribution estimée au site non
échantillonné, les séries temporelles des vitesses du vent d’ERAS sont corrigées a 'aide de la

relation :

Equation 1.6
0, = 5 [, (0]

ou Fgl est la fonction quantile de la distribution estimée, 8 est le vecteur des paramétres estimés au site non
échantillonné par la méthode des L-moments et F,(UFR4%) est la fonction de répartition
empirique des données ERAS.

14 Données in situ de vitesse du vent

La disponibilité de longues séries de mesures de vitesses du vent obtenues a partir de stations
météorologiques ou de tours instrumentées est essentielle pour évaluer rigoureusement la qualité
des données simulées, telles que celles issues des jeux de réanalyse. En effet, ces mesures in
situ constituent la référence la plus fiable pour caractériser les conditions locales du vent a un

emplacement donné.

De plus, les données in situ remplissent deux fonctions essentielles dans la modélisation
empirique (statistique et apprentissage automatique) de la vitesse du vent. Premiérement, elles

permettent d’ajuster les paramétres des modeéles pour mieux représenter les conditions
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observées. Deuxiémement, elles servent de référence pour évaluer la performance des données

modélisées.

Cependant, méme si les données in situ sont trés utiles, elles ont aussi des limites. En effet, leur
représentativité spatiale est restreinte, puisque chaque station ou tour instrumentée ne fournit
des informations qu’a un endroit trés spécifique. De plus, leur disponibilité est souvent restreinte
par les colts élevés d’installation, I'entretien et la calibration réguliére des instruments de mesure.
La qualité des données peut aussi étre altérée par divers facteurs, notamment le changement
d’instrumentation, les effets de site non corrigés, ou les discontinuités dans les séries temporelles.
Par ailleurs, la plupart des mesures disponibles sont prises a des hauteurs standards (souvent
10 métres), ce qui nécessite I'application de modéles de transfert vertical pour les adapter aux

hauteurs caractéristiques des éoliennes modernes (100 m et plus).

Dans le cadre de cette thése, les données in situ de vitesse du vent analysé sont issues de la
base de données climatiques historiques d’ECCC. Cette base de données est soumise a des
procédures de contréle de qualité qui permettent de détecter et de corriger les éventuelles erreurs

ou incohérences.

Les données de vitesse du vent de cette base sont généralement collectées a une hauteur
standard de 10 meétres au-dessus du sol. Elles représentent des moyennes de vitesse calculées
sur une période d’une a deux minutes, qui se terminent a I'heure d’observation. Pour minimiser
les effets de perturbation, les stations de mesure sont implantées sur des sites plats, dégagés, et
éloignés d’obstacles, comme les arbres, les batiments ou les collines (Environnement et

Changement climatique Canada, 2025).

1.5 Distributions de probabilités des vitesses du vent

On compte plusieurs types de lois de distribution paramétriques dans la littérature pour
représenter la distribution de la vitesse du vent (Jung et al., 2019b). Ces distributions jouent un
réble clé dans la modélisation statistique du vent, car elles permettent d’en caractériser la
variabilité.

Lorsque les composantes orthogonales (composante nord-sud et est-ouest) de la vitesse du vent
remplissent certaines conditions, telles que l'indépendance statistique et suivent une distribution
normale bivariée centrée, la distribution de Rayleigh émerge comme la candidate idéale pour la
modélisation de la distribution du vent (Hennessey, 1978). En réalité, cette distribution a un seul

paramétre manque de flexibilité et les circonstances qui la rendent appropriée ne sont pas
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souvent remplis, principalement en raison de l'influence de la topographie sur le vent (Tuller et

al., 1985). La fonction de densité de probabilité associée a la distribution de Rayleigh s’écrit :

Equation 1.7

1= om0

Ou U est la vitesse du vent et ¢ est un parameétre d’échelle.

La distribution de Weibull a deux paramétres, une généralisation de la Rayleigh, dispose
également de fondements théoriques pour son application (Tuller et al., 1984). Grace a ses deux
parameétres, elle est plus flexible et est devenue la distribution la plus populaire pour les vitesses
du vent (Carta et al., 2009). La fonction de densité de probabilité associée a la distribution de

Weibull & deux paramétres est donnée par :

Equation 1.8

o =22 " en|-0]

Ou o est le paramétre d’échelle et y est le paramétre de forme.

Dans les régimes de vent calme ou la probabilité de valeurs nulles est significative, la distribution
de Weibull a deux parametres présente certaines limites (Wais, 2017). La distribution de Weibull
a trois paramétres permet de pallier ces limites en intégrant un paramétre additionnel
correspondant au seuil minimal. Ce paramétre permet de considérer les valeurs nulles ou trés
faibles. La fonction de densité de probabilité associée a cette distribution est exprimée comme

suit :

Equation 1.9

punn 505 ool

Ou o est le paramétre d’échelle, y est le paramétre de forme et u est le paramétre de position.

Plusieurs études recommandent 'adoption d’approches axées sur les données pour la sélection
de la distribution adéquate (Dong et al., 2022; Lins et al., 2023). Ces méthodes s’appuient sur
des techniques statistiques d’évaluation de l'ajustement, telles que le test de Kolmogorov-

Smirnov et le critére d'information d'Akaike (AIC). Dans le cas univari€, le test de Kolmogorov-
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Smirnov permet de mesurer la plus grande différence absolue entre les fonctions de répartition
des données observées F,(U) et la fonction de répartition théorique F(U) associée a la
distribution testée (par exemple, la loi de Weibull). La statistique du test Kolmogorov-Smirnov est
définie par:

Equation 1.10
Dgs = Sgpan(U) - F(U)|

ou Dy est la statistique de Kolmogorov-Smirnov et sup représente le supremum (la borne supérieure) de
I’ensemble des différences absolues.

Le critére AIC permet de comparer les ajustements des distributions candidates en tenant compte

de leurs parcimonies, le nombre de paramétres de la distribution:

Equation 1.11

AIC = —2loglik(U;0) + 2M

Ou lik(U; 0) =[], p(U;; ) est la vraisemblance du modéle évaluée sur les données observées U avec les
parameétres 0 et M représente le nombre de paramétres libres du modéle.

Plusieurs types de distributions offrant une flexibilité accrue ont été explorées pour modéliser les
vitesses du vent (Shi et al., 2021; Tsvetkova et al., 2023). Cependant, dans les contextes ou le
régime des vent est hétérogéne et présente un comportement bimodal ou multimodal, les
distributions unimodales, comme la Weibull, montrent leurs limites (Ouarda et al., 2018). Les
distributions mixtes, qui sont des combinaisons linéaires convexes de plusieurs distributions
unimodales, permettent une meilleure représentation de la variabilité des vitesses du vent en
tenant compte de la présence de plusieurs sous-populations ou régimes distincts. La fonction de

densité de probabilité d'une distribution mixte a K composantes peut s’écrire comme suit :

Equation 1.12

K
pU) = ) wipi(U; 8)
i=1

Ou p;(U; 6)) est la densité de probabilité de la composante i, 8; représente les paramétres de cette composante
et w; est le poids associé a la composante i, avec w; > 0 et 25‘:1 w; =1.

Jung et al. (2017b) ont évalué I'ajustement de 24 distributions unimodales et 21 distributions

mixtes sur des données de vitesse du vent a I'’échelle mondiale. Les résultats de I'’étude ont révélé
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que les distributions mixtes offrent un meilleur ajustement dans la partie centrale de la distribution
que les distributions unimodales. Pour un ajustement optimal dans les queues de distribution, les
auteurs recommandent la distribution de Wakeby, qui s’est avérée particulierement efficace pour

modéliser les valeurs extrémes des vitesses du vent.

En complément des distributions paramétriques, des méthodes non paramétriques, comme
I'estimation par noyau, sont également utilisées pour capturer des formes de distributions
atypiques (Qin et al., 2011).

Dans le cas des vitesses du vent, des fonctions de noyau symétriques, comme le noyau gaussien,
ont souvent été utilisées (Han et al., 2019; Zhang et al., 2019). Toutefois, ce type de noyau est
connu pour entrainer un biais aux limites lorsque le support de la distribution est défini sur un
ensemble borné [0, o], comme c’est le cas pour les vitesses du vent. Pour résoudre ce probléme,
des noyaux asymeétriques ont été proposeés (Chen, 2000). Récemment, Mombeni et al. (2021) ont
proposé le noyau asymétrique Weibull et Birnbaum-Saunders pour I'estimation de la fonction de

répartition et Lafaye de Micheaux et al. (2021) ont proposé le noyau Log-Normal.

La formule générale de l'estimateur de la fonction de répartition a noyau asymétrique s’écrit

comme suit :

Equation 1.13

n

~ 1

FU) = 1—12 K(Us; U, )
i=1

Ou n est le nombre d’observations, K(U;; U, h) est le noyau asymétrique évalué aux observation U; et h est le
paramétre de lissage.

Le noyau asymétrique de Weibull est donné par :

Equation 1.14

Ky (Ui0,y) = exp (— (ﬂ)y)

o

Ou o =Ur(1+ h), Ir() est la fonction gammaet y = 1/h.

Le noyau asymétrique de Birnbaum-Saunders est donné par :

Equation 1.15
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1 U; U
Kgs (Uj;U,0)=1— @ S\ T |7

Ou o = Vh et ®(°) représente la fonction de répartition de la loi normal centrée réduite

Le noyau asymétrique de Log-Normal est donné par :

Equation 1.16

logU; —
o Wi 00 = 1— (8L

Ouu= logUeto=h.
1.6  Variables explicatives liées a la vitesse du vent

1.6.1 Variables topographiques

L'intégration des variables topographiques dans la modélisation empirique des vitesses du vent
permet de mieux capter l'influence des éléments de la surface du sol sur la variabilité spatiale du
vent. Des facteurs, tels que l'altitude, la pente, 'orientation du relief, la rugosité de surface ou
encore la forme du terrain, jouent un réle déterminant dans la modification des flux d’air, en

favorisant par exemple leur canalisation, leur accélération ou leur atténuation.

Dans les régions ou le relief est peu accidenté, Iinterpolation spatiale permet généralement
d’estimer avec une précision acceptable les vitesses du vent a des sites non échantillonnés (Fick
et al., 2017). Toutefois, dans les zones ou le relief est marqué, l'influence de la topographie sur
les vitesses de vent devient significative et ne peut pas étre négligée (Gonzalez-Longatt et al.,
2015; Petersen et al., 1998; Raupach et al., 1997).

Par exemple, lintégration de [laltitude comme variable explicative dans les approches
d’interpolation spatiale a permis d’améliorer significativement la précision des estimations par
rapport aux méthodes basées uniquement sur les distances entre les sites (Collados-Lara et al.,
2022; Lee, 2022; Palomino et al., 1995). Cependant, l'altitude seule ne suffit pas a capturer de
maniére exhaustive les interactions complexes entre le vent et le relief (Robert et al., 2013). En
effet, divers autres facteurs liés a la topographie ont une influence significative sur les

mouvements de masses d’air au sein de la couche limite atmosphérique (Whiteman, 2000).

Les avancées en géomorphométrie et la disponibilité de MNT de haute résolution ont permis

I'extraction de parameétres topographiques plus détaillés (Maxwell et al., 2022), améliorant ainsi
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I'évaluation des interactions entre le vent et le relief. Par exemple, Foresti et al. (2011) et Robert
et al. (2013) ont appliqué I'algorithme de différence de Gaussiennes a un MNT pour mesurer la
convexité du terrain dans le cadre de la modélisation des vitesses du vent en Suisse. De méme,
Jung et al. (2023b) ont mis en évidence I'importance de I'élévation relative (Lapen et al., 1993),
une mesure de I'exposition d’'un site au vent, dans I'interpolation spatiale des vitesses du vent en

Allemagne.

L’exposition d'un site peut également étre évaluée selon la direction du vent. Winstral et al. (2002)
ont proposé l'indice d’exposition directionnel S,., qui mesure le niveau d’exposition ou d’abri d'un
site en fonction des obstacles topographiques présents dans une direction spécifique, jusqu’a
une distance maximale donnée. La Figure 1.3 illustre cet indice pour une méme zone, en prenant
en compte deux directions de vent distinctes : nord-sud et est-ouest. Cette illustration montre

comment la topographie locale affecte I'exposition ou la protection au vent selon sa direction.

1500 2000 2500 3000 3500 —60 —40 —20 0 20 40 60
Altitude (meter) Sx

Figure 1.3 Indice d’exposition directionnel (S,)

L’indice d’exposition directionnel a été calculé a partir d’'un MNT (a) pour une direction du vent nord-sud (b),
et est-ouest (c). Les fleches indiquent la direction du vent. Les valeurs négatives de I'indice
(zones claires) signalent une exposition au vent provenant de la direction considérée, tandis
que les valeurs positives (zones foncées) refletent un effet d’abri di a des obstacles
topographiques. L’indice est calculé en considérant une distance maximale de 10 km. Les
données d’élévation proviennent du Modéle numérique d'élévation de moyenne résolution
(MNEMR) du Canada.

L'échelle spatiale est un facteur clé a considérer lors de I'extraction des variables topographiques
a partir d'un MNT (Etienne et al., 2010; Grohmann, 2015). L’échelle spatiale optimale pour la
modélisation d’'un processus donnée est souvent inconnue a priori (Maxwell et al., 2022; Newman
et al., 2022). Une échelle trop fine peut capturer des détails non pertinents et négliger des
caractéristiques du terrain a une plus grande échelle qui influencent les processus étudiés. Tandis
qu’une échelle trop large peut lisser les variations locales importantes et réduire la capacité du
modeéle a représenter des phénomeénes critiques liés au relief. Pour surmonter cette difficulté, des
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approches multiéchelles sont frequemment employées dans la modélisation des vitesses du vent
(Etienne et al., 2010; Jung et al., 2020; Winstral et al., 2017). Ces approches consistent a extraire
les variables topographiques a différentes résolutions spatiales et a analyser leur influence sur la

variable cible.

A titre illustratif, la Figure 1.4 présente I'élévation relative estimée & deux résolutions spatiales
distinctes. La cellule marquée en rouge a une élévation relative normalisée de 0,59 a une
résolution de 10 km, ce qui indique qu’elle est relativement plus élevée que les cellules voisines
et est donc plus exposée au vent. Cependant, lorsque la résolution spatiale est plus fine a 1,5
km, ladite cellule présente une élévation relative normalisée plus faible (0,18), indiquant une
exposition au vent significativement moins élevée. Cette différence souligne I'importance de la

résolution spatiale dans I'analyse de la topographie.

En outre, Petersen et al. (1998) classent la rugosité de surface parmi les éléments
topographiques influencant les vitesses du vent prés du sol. La longueur de rugosité z, est
souvent dérivée de cartes d’occupation du sol a l'aide de relations empiriques établies entre les
types d’occupation du sol et les valeurs de longueur de rugosité correspondantes (Davis et al.,
2023; Wiernga, 1993).

0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
Normalized relative elevation Normalized relative elevation
Figure 1.4 Elévation relative normalisée

L’élévation relative a été calculé a partir d’un MNT a une résolution spatiale de 10 km (panneau a) et de 1,5 km
(panneau b).

1.6.2 Variables météorologiques

Le vent correspond aux mouvements de masse d’air résultant d’'un gradient de pression, sa

vitesse est donc étroitement liée aux variations de pression et de température dans I'atmosphére
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(Ambach et al., 2017; Carrega, 2008). L'objectif des modéles d'estimation des vitesses du vent
aux sites non échantillonnés est de fournir des prédictions dans des régions dépourvues de
données de mesure directe. Dans ce contexte, I'utilisation de variables météorologiques comme
prédicteur peut s’avérer inappropriée, car elles peuvent également étre sujettes a des lacunes ou
a des incertitudes similaires sur le plan de la disponibilité aux sites d’intéréts. Alternativement,
des variables météorologiques issues de modeéles numériques, notamment les données de
réanalyse, sont souvent utilisées comme substituts. Les vitesses du vent issues de ces
réanalyses sont généralement considérées comme des estimations fiables a I'échelle synoptique
(Largeron et al., 2015).

Par exemple, Jung et al. (2020) ont utilisé des caractéristiques statistiques, notamment les L-
moments, estimées a partir de séries temporelles de vitesses du vent issues de réanalyses pour
représenter les vitesses du vent a I'échelle synoptique. Ces caractéristiques statistiques ont
ensuite servi de variables explicatives pour I'estimation de la distribution de probabilité des

vitesses du vent a des sites non échantillonnés.

1.6.3 Variables temporelles

Les variables temporelles, telles que I'heure de la journée et le mois de I'année, ont été utilisées
pour modéliser les séries temporelles de vitesse du vent (Fadare, 2010; Jung et al., 2022a). Ces
variables permettent de capturer les variations cycliques des régimes de vent, qui résultent de
processus atmosphériques liés a l'ensoleillement, aux gradients de température et aux
phénomeénes climatiques locaux ou régionaux. Par exemple, I'heure de la journée est un facteur
crucial pour représenter les variations diurnes, comme les brises terrestre et marine, qui se

produisent dans les zones cétiéres.

1.7 Modéles d’apprentissage automatique

Les interactions entre le vent et la topographie forment un phénoméne complexe, caractérisé par
des dynamiques non linéaires (Whiteman, 2000). Ces interactions dépendent de plusieurs
facteurs, notamment la rugosité de surface, le relief, et la stabilité atmosphérique, qui
interagissent a différentes échelles. Cette complexité rend les approches simples, telles que la

régression linéaire, inadaptées pour représenter la variabilité du processus.

L’apprentissage automatique est une discipline qui vise a concevoir des systémes informatiques
capables d’améliorer automatiquement leurs performances a partir de I'expérience (Jordan et al.,

2015). Ces systémes ne sont pas programmeés de maniere explicite pour chaque tache, mais ils
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apprennent directement a partir des données. En analysant les relations et les structures
présentes dans les données, les algorithmes d’apprentissage construisent des modeéles capables

de faire des prédictions ou détecter des tendances.

Les approches d’apprentissage automatique peuvent étre classées selon leur complexité et la
profondeur de leur architecture en deux grandes catégories : I'apprentissage automatique
classique (ou shallow learning) et I'apprentissage profond (deep learning). Les méthodes d’
apprentissage automatique classique comprennent des algorithmes tels les foréts aléatoires
(random forest, RF) (Breiman, 2001) et les algorithmes de boosting des arbres de décision
(gradient boosting trees, GBT) (Hastie et al., 2009). Ces approches se basent généralement sur
un ensemble limité d’étapes de transformation des données et nécessitent souvent en amont une
ingénierie manuelle des variables les plus pertinentes a partir des données brutes. Contrairement
aux techniques ftraditionnelles, les méthodes d’apprentissage profond reposent sur des
architectures constituées de plusieurs couches hiérarchiques de traitement, permettant a chaque
niveau d’extraire des représentations de plus en plus abstraites a partir des données brutes
(Chollet, 2021).

Les techniques d'apprentissage automatique classique, telles que les algorithmes RF et GBT, ont
été employées pour la modélisation de la vitesse du vent en raison de leur aptitude a modéliser
des relations non linéaires et des interactions complexes entre les variables explicatives

favorables a la prédiction de la variable cible.

Par exemple, Veronesi et al. (2016) ont appliqué un modéle RF pour estimer la distribution de la
vitesse et de la direction du vent a des sites non échantillonnés au Royaume-Uni. La validation
des résultats du modele a révélé des performances supérieures a celles obtenues avec les
méthodes d’interpolation spatiale classiques (Luo et al., 2008). Hu et al. (2023) ont proposé un
modele GBT intégrant des variables topographiques et météorologiques issues d’ERA5 pour
prédire les vitesses du vent observées. Ce modéle a amélioré la précision des estimations,
notamment dans les zones a topographie complexe, par rapport aux données brutes d’ERAS5.
Cependant, son influence s’est avérée moins prononcée dans les zones ou la précision des
données d’ERAS était déja élevée. Jung et al. (2020) ont indiqué que le modéle GBT surpassait
la régression linéaire simple et le modéle RF pour la modélisation spatiale des L-moments de

vitesse du vent a I'échelle mondiale.

En régression, les modeles RF et GBT reposent sur des ensembles d'arbres de décision, appelés
arbre de régression. La construction d’'un arbre de décision consiste a partitionner récursivement

'espace des variables explicatives en sous-ensembles de maniére a minimiser un critere de
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variabilité au sein de chaque sous-ensemble résultant de la partition (Breiman et al., 1984). En
régression, un critére couramment utilisé est la somme des carrés des résidus (Residual Sum of
Squares, RSS) (Genuer et al., 2017):

Equation 1.17

RSS = z (U, - T,

i€Rm

ou U;, i e R, représente les valeurs cibles des échantillons appartenant au sous-ensemble R,, et ﬁRmest la
prédiction de la variable cible dans ce sous-ensemble, généralement obtenue par la moyenne
empirique des observations.

Les arbres de décision sont des modeles simples et faciles a interpréter, mais ils présentent une
grande variabilité dans les prédictions. En effet, une petite modification des variables explicatives
peut entrainer des changements significatifs dans la structure de l'arbre, ce qui rend les
prédictions peu fiables (Hastie et al., 2009). Pour pallier ces limites, on privilégie des méthodes
d’ensemble, comme les modéles RF et GBT. Le modéle RF permet de réduire la variance en
combinant les prédictions de plusieurs arbres. Chaque arbre est construit a partir d’'un échantillon
aléatoire de données et de variables explicatives. L’échantillonnage aléatoire vise a minimiser la

corrélation entre les arbres de la forét.

Les modéles GBT sont construits a l'aide d’arbres de régression peu profonds, appelés
« apprenants de base ». lls corrigent successivement les erreurs de prédiction des arbres

antérieurs :

Equation 1.18

fm (X)) = fn—1(x) + Thy (x; 61)

ou f..(x) représente la prédiction du modéle a I'itération m, x est le vecteur des variables explicatives, t est
un facteur de pondération (taux d'apprentissage) entre 0 et 1, qui contréle la contribution de
I'estimateur a I'itération m et h,,,(x; 6,,,) est ’estimateur de correction a I'itération m.

L’algorithme peut étre initialisé avec la moyenne empirique de la variable cible. Aux itérations
suivantes, les paramétres 6,, de I'estimateur h,,(x; 8,,) sont déterminés en minimisant le gradient

de la fonction de perte L(yl-,f(xl-)) estimé a partir des prédictions de l'itération précédente :

Equation 1.19
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Au fil des années, plusieurs variantes du modéle GBT ont été développées afin d’améliorer ses
performances, son efficacité et sa flexibilitt. Notamment, XGBoost (Chen et al., 2016) et
LightGBM (Ke et al., 2017) ont démontré de trés bonne performance dans divers domaines
(Bentéjac et al., 2021; Tyralis et al., 2021). Ces versions optimisées introduisent diverses
améliorations, notamment la construction d'histogrammes pour les variables explicatives
continues lors de l'identification des points de division optimaux dans les arbres de régression.
Cette approche consiste a regrouper les valeurs d’'une variable explicative en classes, réduisant

ainsi le nombre d’itérations nécessaires pour déterminer les seuils de partition les plus pertinents.

XGBoost se distingue par I'ajout de termes de régularisation a la fonction de perte qui rendent le
modéle plus robuste face au bruit dans les données, limitant ainsi le risque de surapprentissage.
En outre, LightGBM introduit plusieurs autres optimisations pour le traitement efficace de données
volumineuses et de haute dimension. Une de ces optimisations est le Gradient-based One-Side
Sampling (GOSS), qui concentre les calculs sur les échantillons présentant les gradients les plus
élevés, tout en incluant aléatoirement certains échantillons a faible gradient. Cet algorithme réduit
considérablement la quantité de données a traiter a chaque itération. Le modéle LightGBM
apporte également une solution au défi de la haute dimensionnalité des données en exploitant le
regroupement des variables explicatives qui ne prennent pas simultanément des valeurs non
nulles. Lorsque I'espace des variables explicatives est parcimonieux, il arrive souvent que de
nombreuses variables soient mutuellement exclusives (p. ex., une variable associée a la
présence ou I'absence d’un indicateur) et elles peuvent donc étre groupées sans qu'il y ait une

perte significative d’information (Ke et al., 2017).

Dans le traitement de vastes quantités de données issues de diverses sources, les approches
d’apprentissage profond se sont révélées particulierement performantes (Karpatne et al., 2019).
L’'un des principaux avantages de ces modeéles est leur capacité a intégrer des biais inductifs
dans l'apprentissage de la fonction de prédiction. lls identifient et extraient automatiquement les
caractéristiques les plus pertinentes, sans nécessiter l'ingénierie manuelle des variables
(Reichstein et al., 2019). Par exemple, les réseaux convolutifs (CNN) exploitent les structures
spatiales des données, facilitant ainsi [lintégration d’informations topographiques et
météorologiques a haute résolution pour la prédiction du vent (Dujardin et al., 2022; Hohlein et

al., 2020). De méme, les réseaux de neurones récurrents (RNN) et leurs variantes, comme les

43



LSTM (Long Short-Term Memory) et GRU (Gated Recurrent Unit), sont particuliérement adaptés
a lanalyse des séries temporelles, permettant I'extraction automatique des caractéristiques
temporelles de variable explicative pertinente a la prédiction de la variable cible (Wang et al.,
2021; Zhang et al., 2021).

Les RNN traditionnels sont confrontés a des problemes, tels que la disparition et I'explosion des
gradients, ce qui limite leur capacité a conserver des informations sur des séquences étendues.
En incorporant un mécanisme de régulation qui régule le flux d'informations, les LSTM peuvent
conserver et utiliser efficacement les caractéristiques temporelles pertinentes sur des périodes

plus longues (Yu et al., 2019).

Le Tableau 1.4 présente une synthése des différentes approches d’apprentissage automatique

abordées précédemment, en soulignant leurs principaux avantages ainsi que leurs limites.

Tableau 1.4 Synthése des approches d’apprentissage automatique
Type de Algorithme Atouts Limites
modé¢le
Régression | Modéle paramétrique simple Interprétable et facile a Restreint aux relations
linéaire qui ajuste une relation linéaire | entrainer. linéaires simples.
entre les variables.
Arbres a Modele fondé sur une série de | Interprétable, facile a Performance limitée et
décision régles de décision. entrainer et capable de trés sensible aux
modéliser des relations variations des données
non linéaires. d’entrée.
Random Ensemble d’arbres de décision | Capable de modéliser Interprétabilité réduite par
forest construits en paralléle, puis des relations non rapport aux modeles
agrégés pour produire une linéaires, faciles a linéaires ou aux arbres de
prédiction plus robuste. configurer et robustes décision simples.
face aux variables
redondantes (Hastie et
al., 2009).
Gradient Ensemble d’arbres de décision | Modele trés flexible, Temps d’entrainement
boosting construits séquentiellement, ou | notamment en ce qui a plus long et faible
trees chaque nouvel arbre corrige trait au choix de la capacité de parallélisation
les erreurs commises par des fonction de perte. par rapport au modele
arbres antérieurs. Random Forest (Natekin
etal., 2013).
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XGBoost Implémentation optimisée de Plus rapide a entrainer et | Configuration complexe
l'algorithme de gradient boosting | trés efficace pour la comparée a l'algorithme
avec régularisation de la fonction | classification et la classique de gradient
de perte. régression sur données boosting.

tabulaires (Grinsztajn et
al., 2022a).

LightGBM Implémentation optimisée de Tres rapide a entrainer Configuration complexe
l'algorithme de gradient sur des jeux de données | comparée a l'algorithme
boosting pour des jeux de volumineux et a hautes classique de gradient
données volumineux et a dimensions (Bentéjac et | boosting.
hautes dimensions. al., 2021).

LSTM Réseau de neurones Adapté aux données Nécessite de grandes
récurrents optimisé pour séquentielles, comme les | quantités de données et
réduire le probléme de séries temporelles. reste difficile a interpréter.
disparition ou d’explosion du
gradient dans les architectures
récurrentes traditionnelles.

CNN Réseau de neurones Adapté au traitement des | Long a entrainer, nécessite

convolutifs utilisant des
couches de convolution pour
extraire automatiquement des

caractéristiques locales.

données structurées en

grille.

de grandes quantités de
données et reste difficile

a interpréter.

1.8  Objectifs et structure de la thése

1.8.1

Objectifs de la thése

Dans le cadre d’étude sur I'estimation des vitesses du vent a grande échelle, les modéles

empiriques sont mieux adaptés, car elles nécessitent moins de ressources computationnelles

que les approches physiques et sont généralement plus simples a mettre en ceuvre. L’objectif

principal de cette thése est de développer des méthodes d’apprentissage automatique pour

l'estimation a long terme de la vitesse du vent aux sites non échantillonnés. Les méthodes

proposées s’appuient sur celles qui sont existantes afin de les améliorer et de réduire les

incertitudes liées a I'évaluation des ressources éoliennes. Ces avancées contribueront, dés les

premieres phases, a affiner la planification des projets éoliens.
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Les objectifs spécifiques de cette thése sont présentés ci-dessous.
Objective n°1 : Revue de la littérature

Le premier objectif de cette thése est de recenser et d’analyser les méthodes actuelles. Cet
objectif a été abordé dans le premier article de cette these, intitulé « Machine learning and
statistical approaches for wind speed estimation at partially sampled and unsampled locations;

review and open questions ».

Dans un premier temps, nous avons procédé a une mise a jour de la revue des approches
d’estimation a long terme des vitesses du vent aux sites disposant d’'une courte série de données.
Ensuite, nous avons passé en revue les méthodes d’estimation pour les sites non échantillonnés.
Ces différentes méthodes ont été regroupées en fonction du type de variable cible pour une
analyse plus structurée et une comparaison plus facile des approches. Enfin, la question de
'estimation des vitesses du vent dans un contexte non stationnaire a été abordée, en tenant
compte des effets du changement climatique et des variations a long terme des régimes de vent.
Cette étude nous a aidés a comprendre les avantages et les limites des méthodes actuelles. Ces
limites soulignent le besoin de développer des méthodologies plus adaptées et plus précises pour

mieux répondre aux défis liés a la variabilité spatiale et temporelle des régimes de vent.

Objective n°2 : Identification de méthodes performantes pour la sélection des variables

explicatives pertinentes dans la modélisation empirique de la vitesse du vent

Le deuxiéme objectif de cette thése est d’'identifier les méthodes performantes pour la sélection
des variables explicatives les plus pertinentes dans la modélisation empirique de la vitesse du
vent. Cet objectif a été traité dans le deuxiéme article de cette thése, intitulé « Comparative study

of feature selection methods for wind speed estimation at ungauged locations ».

Le nombre de variables explicatives utilisées dans la modélisation du vent a considérablement
augmenteé en raison de la disponibilité de MNT de haute résolution et de diverses autres données
issues de la télédétection. De plus, I'intégration de ces variables a différentes échelles spatiales
a amplifié ce phénomeéne. Bien que cette abondance d’informations puisse améliorer la précision
des modéles, elle souléve aussi des questions d'interprétabilité et de risque de surajustement

des modéles.

Pour répondre a ces défis, des techniques de sélection de variables sont généralement
employées comme étape de prétraitement afin de réduire la complexité des modéles tout en
conservant les variables les plus pertinentes. Dans larticle 2, nous avons évalué les

performances de plusieurs méthodes de sélection de variables explicatives, notamment la
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sélection pas a pas (forward stepwise regression), I'algorithme Least Absolute Shrinkage and
Selection Operator (LASSO), le modéle Elastic Net, I'algorithme maximum relevance minimum
redundancy (MRMR), l'algorithme génétique et I'élimination récursive de variable (recursive

feature elimination).

En outre, pour analyser I'influence des variables explicatives sur les différentes plages de vitesse
du vent (faible moyenne et forte), plusieurs quantiles de vitesse ont été considérés avec des
probabilités de dépassement variées. Cet aspect est crucial pour la modélisation de la distribution
compléte des vitesses du vent, car il permet une sélection plus adaptée des variables influentes

en fonction du régime du vent.

Objective n°3 : Développement d’'une approche non paramétrique d’interpolation spatiale

de la distribution des vitesses de vent

Le troisitme objectif de cette thése est le développement d’'une méthode non paramétrique pour
I'estimation de la distribution de probabilité des vitesses du vent aux sites non échantillonnés. Cet
objectif a été traité dans le troisieme article, intitulé « A non-parametric approach for wind speed

distribution mapping ».

Les méthodes actuelles d’estimation de la distribution de probabilité du vent reposent sur
'hypothése qu’une seule loi de probabilité s’applique a 'ensemble de la région étudiée. Cette
hypothése, souvent trop restrictive, peut réduire la précision des estimations, particulierement

dans les régions ou les régimes de vents présentent une forte variabilité spatiale.

Dans la méthodologie proposée dans l'article 3, on procéde a une interpolation spatiale de
plusieurs quantiles de vitesse du vent a l'aide d’'un modéle de régression XGBoost. Ce modéle
prend en entrée diverses variables liées a la topographie, aux conditions climatiques locales et a
la longueur de rugosité. Une fois le modéle de régression établi, les quantiles de vitesse estimés
aux sites non échantillonnés servent a estimer la fonction de répartition par noyaux asymétriques.
Cette méthode permet d’obtenir une distribution de probabilité de la vitesse du vent aux sites non
échantillonnés qui est suffisamment flexible pour s’accommoder des divers régimes de vent

présents dans la région étudiée.

Objective n°4 : Développement de méthodes de reconstruction de séries temporelles de

vitesse de vent aux sites non échantillonnés.

Le quatrieme objectif de cette thése vise a proposer de nouvelles méthodes statistiques pour la
correction des biais des données de vitesse du vent issues de réanalyses. Cet objectif a été traité

dans les articles 4 et 5 de cette thése.
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Dans l'article 4, intitulé « Prediction of hourly wind speed time series at unsampled locations using
machine learning », nous proposons d’adapter la méthode quantile-quantile (quantile mapping)
pour reconstruire, aux sites non échantillonnés, des séries temporelles de vitesse du vent a partir
de séries temporelles de probabilité de non-dépassement. Ces derniéres sont obtenues soit a

partir de données de réanalyse, soit par interpolation spatiale d’observations in situ.

La méthode quantile-quantile repose sur linterpolation non paramétrique de la distribution du
vent, développée dans l'article 3, pour estimer la distribution des vitesses du vent aux sites non
échantillonnées. Cette approche permet de reconstruire des séries temporelles dont les quantiles
estimés par régression représentent mieux les conditions locales des vitesses du vent. Une
analyse comparative de la méthode proposée et d’autres techniques d'interpolation spatiale
directe des observations in situ a été réalisée. Plusieurs critéres ont été considérés, dont la

distribution de probabilité et la variabilité temporelle.

Enfin, l'article 5 intitulé « LSTM and Transformer-based framework for bias correction of ERA5
hourly wind speeds » introduit une nouvelle approche de correction des données de vitesse du
vent issues de réanalyse, basée sur I'apprentissage profond. La plupart des études existantes
utilisent une méthode de correction de biais consistant a appliquer un facteur constant, calculé a
partir des vitesses du vent moyennes fournies par le GWA. Bien que cette méthode permette de
réduire le biais systématique dans les données de réanalyse, elle ne tient pas compte de leur
variabilité temporelle. Le modéle proposé s’appuie sur les architectures LSTM et Transformer. Il
prend comme entrée des variables météorologiques dynamiques issues de réanalyse, ainsi que
des variables statiques liées a la topographie locale et a la longueur de rugosité, pour prédire un
facteur de correction dynamique. Le facteur de correction estimé permet d’ajuster la variabilité
temporelle des séries de vitesses du vent issues de réanalyse, tout en réduisant le biais

systématique.

1.8.2 Structure de la thése

Le premier chapitre de cette thése présente le contexte de la recherche et une revue de littérature
générale. Il énonce également les objectifs et I'organisation de I'ensemble de la thése. Le
deuxiéme chapitre porte sur larticle 1, qui passe en revue les méthodes statistiques et
d’apprentissage automatique pour estimer les vitesses du vent aux sites partiellement
échantillonnés (disposant d’'une courte série de mesures) et non échantillonnés. Ces travaux
représentent une étape importante pour évaluer les méthodologies existantes. lls permettront de

proposer de nouvelles approches dans les articles ultérieurs.
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Le troisiéeme chapitre porte sur I'article 2, qui compare six méthodes de sélection de variables
explicatives pour l'estimation des quantiles de vitesse du vent au Canada. Les variables ainsi

identifiées serviront d’entrée pour 'ensemble des modéles développés dans les travaux suivants.

Le quatrieme chapitre est dédié a larticle 3, qui propose une méthode non paramétrique
d’interpolation spatiale de la distribution du vent. Le cinquiéme chapitre se concentre sur l'article
4, qui s’appuie sur la méthode développée dans larticle 3 pour reconstruire des séries
temporelles de vitesse du vent aux sites non échantillonnés. De plus, une analyse comparative

détaillée des méthodes actuelles et de celle proposée dans I'étude a été réalisée.

Le sixieme chapitre est consacré a l'article 5, qui se concentre sur I'ajustement de la variabilité

temporelle des séries de vitesse du vent issues de réanalyses.

Enfin, le septiéme chapitre offre une discussion générale et une conclusion des travaux réalisés
dans cette thése. Il souligne les limites de I'étude et suggére des pistes de recherche pour des

travaux futurs.
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Abstract

Wind resource assessment (WRA) depends on the availability of accurate, long-term wind speed
data. In locations where such data is limited (partially sampled locations, PSL) or completely
missing (unsampled locations, USL), various physical, statistical, and machine-learning methods
have been developed to address these gaps. This paper presents a comprehensive and up-to-
date review of statistical and machine-learning methods for estimating long-term wind speed at
PSLs and USLs.

It was found that the “Measure Correlate Predict” (MCP) is still the method of choice for estimation
at PSL. However, this approach has evolved with the adoption of machine learning, especially
Artificial Neural Networks, and reanalysis wind data as the reference site. In general, reanalysis
datasets have seen growing adoption for WRA at both PSLs and USLs due to their global
coverage, high temporal resolution, and demonstrated accuracy. At USLs, uncorrected and bias-
corrected reanalysis wind speed data are used for WRA, with the Global Wind Atlas
predominantly used to correct reanalysis wind speed data. There is also a growing effort to
develop machine learning models, including deep learning models for reanalysis bias correction
at unsampled locations using explanatory variables derived from high-resolution topographic and

land use datasets.

Challenges to estimating long-term wind speed at PSLs and USLs are identified and discussed:
data uncertainties, disparity in the accuracy of reanalysis wind data, model transferability, and
nonstationary conditions. Finally, recommendations for future research and development
directions are presented, including techniques that consider documented non-stationarity in wind

speed data.

Keywords: Machine learning; Measure correlate predict; Nonstationary; Wind resource

assessment; Partially sampled; Unsampled

2.1 Introduction

The availability of clean energy is critical for meeting several of the United Nations’ sustainable
development goals (Fuso Nerini et al, 2018). Present energy systems still have a high
environmental footprint and are major contributors to greenhouse gas emissions (Ahmad et al.,
2020). Developing and adopting renewable energy sources are central to addressing the current
climate crisis and fulfilling Goal seven of the United Nations’ Sustainable Development

Goals, “Ensure access to affordable, reliable, sustainable and modern energy for all” (UN
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General Assembly, 2015, p. 19). Wind energy represents a sustainable alternative to conventional
energy sources and is projected to play a significant role in meeting global energy demands. By
2030, wind resources are expected to contribute nearly 24% of global electricity generation
(Gielen et al., 2021), up from just 8% of the total installed capacity worldwide in 2018 (International
Renewable Energy Agency, 2022). Meeting this target will require accurate resource assessment
(McKenna et al., 2022).

In an ideal scenario, the assessment of the wind potential would rely on long-term (e.g., 30 years)
wind speed data with high temporal resolution (Bosch et al., 2017). However, such extensive data
are frequently unavailable. Accurate wind speed data is essential for a reliable assessment of the
energy potential, given the cubic relationship between wind speed and wind power. Several
studies have proposed statistical and machine learning (ML) methods to address wind resource
assessment (WRA) in locations with limited (herein called partially sampled location, PSL) or no
wind speed measurements (herein called unsampled location, USL). At PSLs, the preferred
method is the “Measure Correlate Predict” (MCP) approach. This method extends the available
data at a location by correlating it with measurements from a nearby station with overlapping and
more extensive records. Carta et al. (2013) provided a review of the MCP approach. Over the
past decade (2014 — 2023), advancements have been made in the MCP methodologies. These
include the widespread adoption of reanalysis wind speed data as reference (Basse et al., 2021;
Miguel et al., 2019; Yue et al., 2019), the application of ML models (Diaz et al., 2017; Kristianti et
al., 2023; Schwegmann et al., 2023), and the use of multiple reference sites to improve accuracy
(Carta et al., 2015; Zhang et al., 2014). In addition, the MCP technique has been extended to
estimate other wind-related variables, such as wind power (Diaz et al., 2018) and peak gust
(Kartal et al., 2023).

Given these advancements, the literature review on wind speed estimation at PSL needs to be
updated. This paper aims to provide a comprehensive review of these recent developments,

highlighting their implications for the MCP approach and its broader applications.

At USLs, installing a meteorological station to collect sufficient data (e.g., for one year) to
implement the MCP approach is possible. However, alternative statistical and ML methods must
be employed when such installations are impossible due to time or financial constraints. Over the
years, various types of wind speed data have been estimated at USLs at different time scales,
including mean wind speed (MWS), wind speed probability distribution (WSPD), extreme wind
speed (EWS), and wind speed time series (WSTS). The choice of the estimation method depends

on the specific wind speed variable of interest.

53



A growing body of research has relied on reanalysis data and ML models to interpolate wind
speed at USLs, demonstrating significant potential with varying reported degrees of success.
Despite these advances, to the best of the authors’ knowledge, no review systematically
examined statistical and ML methods for estimating long-term wind speed at USLs. This literature
review aims to bridge this gap by providing a detailed evaluation of the state-of-the-art methods

used for long-term wind speed estimation at USLs.

This paper comprehensively reviews statistical and ML methods for estimating wind speed at
PSLs and USLs. It also examines comparative studies of existing methods and explores
approaches that allow addressing documented non-stationarities in wind speed data. Additionally,

the paper presents software and tools available for wind speed estimation.

This review can have broad implications for the research community and the wind energy industry.
By providing a comprehensive review of state-of-art methods and identifying research gaps, it
encourages further development of methodologies for wind speed estimation at PSLs and USLs.
These advancements can lead to several key benefits, such as the elaboration of improved
methodologies for the reliable estimation of wind resources and the development of tailored
techniques for various project phases, such as large-scale assessment during early exploration
and small-scale assessment in the later development stage when higher accuracy is required.
This review advances the understanding of wind speed estimation methodologies and contributes
to accelerating the adoption of wind energy as a sustainable solution to global energy and climate

challenges.

The review is structured as follows: section 2.2 discusses various preprocessing procedures for
wind speed data. Section 2.3 presents methods for long-term wind speed estimation at PSLs,
while section 2.4 focuses on methods for long-term estimation at USLs. Section 2.5 explores
nonstationary wind speed estimation. Section 2.6 outlines the software and tools available.
Section 2.7 discusses current open questions and outlines future research directions. The last

section concludes the paper.

2.2 Wind speed data preprocessing

Several issues affect data collected at meteorological stations and must be addressed prior to
analysis. According to Pryor et al. (2009), common issues that affect the quality of near-surface
wind speed measurements include station relocation, aging or malfunctioning of measurement
instruments, upgrades to equipment or changes in measurement height, and alterations in the

surrounding environment, which can induce a modification of surface roughness and wind
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exposure. While metadata can provide helpful information for identifying these issues, they are
not always exhaustive and reliable (Aguilar et al., 2003). Several statistical methods are available

to address these concerns. Wind data preprocessing includes the following steps:

2.21 Quality control and change point detection

Quality control of wind speed data reported in the literature relies on one or several of the following
methods: 1) Measurements that significantly deviate from those recorded at adjacent stations are
flagged as inconsistent records (Azorin-Molina et al., 2018; Zahradnicek et al., 2019). When an
adjacent station with a strong correlation is unavailable, Numerical Weather Prediction (NWP)
and reanalysis datasets are also used for quality control. 2) Measurements that deviate
significantly from neighboring values in the time series are flagged as suspicious (Wan et al.,
2010). 3) Extreme values, such as daily gust or region-specific physical maxima, serve as
thresholds to detect anomalies (Azorin-Molina et al., 2014; Minola et al., 2016; Wan et al., 2010).

Discontinuities in wind speed data due to non-climatic factors are common, especially with
lengthier records (Wan et al., 2010; World Meteorological Organization, 2020 ). Several statistical
methods are available for detecting time series discontinuities (change points). Table 2.1 presents
software/packages for change point detection and homogenization applied to wind speed data.
Several other efficient techniques for change point detection and data homogenization are
available in the literature and are commonly applied to other meteorological variables (see, for
instance, Seidou et al. (2007a); Xiong et al. (2015)).

Table 2.1 Software and packages for change point detection with application to wind speed data
Software/package Reference Example(s) of application
to wind speed data
AnClim (Stépanek et al., 2009) Standard normal homogeneity (Azorin-Molina et al.,
test (Alexandersson, 1986) 2014; Minola et al.,
2016)
Bayesian Changepoint Detection Recursion-based multiple (Naizghi et al., 2017)
Procedure codes (Seidou et al., changepoint detection procedure
2007b) (Seidou et al., 2007b)
Climatol (Guijarro, 2018) Standard normal homogeneity (Azorin-Molina et al.,
test (Alexandersson, 1986). 2016; Azorin-Molina et
al., 2019; Zhang et al.,
2022a)
HOMER (Mestre et al., 2013) Penalized maximum likelihood. (Laapas et al., 2017)

The package uses the modified
Bayes information criterion
(MBIC) (Zhang et al., 2007) to
penalize the likelihood

Multiple Analysis of Series for Relative breakpoint detection (Németh et al., 2014)
Homogenization (MASH) (Szentimrey,  using non-homogeneous
1999) reference sites.
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RHtestV4 package in R Penalized maximal t-test (Wang (Cui et al., 2018; Jung et
et al., 2007) al., 2015; Si et al., 2018)
Penalized Maximal f-test (Wang,
2008)

221 Measurement height adjustment

Wind speed measurements are typically collected at a height of 10 m above ground level (a.g.l)
following the World Meteorological Organization (WMO) guidelines. However, measurements
taken at turbine hub heights (e.g., 100 m a.g.l) are essential for accurately assessing wind
resource potential. The power law (Equation 2.1) and the logarithmic model (Equation 2.2) are

widely used for wind speed vertical extrapolation:

Equation 2.1

Z a
Uz = Uz (z—)
T

where U, _is the wind speed at a reference height z, (e.g., 10 m a.g.l), U, is the extrapolated wind speed at a
higher height z, a is the power law exponent, and z, is the roughness length.

Equation 2.2

B In(z/z,)
Uz = Ue, (ln(zr/z0)>

where U, _is the wind speed at a reference height z, (e.g., 10 m a.g.l), U, is the extrapolated wind speed at a
higher height z, a is the power law exponent, and z, is the roughness length.

Gualtieri (2019) reviewed these models, indicating that the logarithmic model is inadequate for

modern turbine heights, while the power law offers ease of use and greater reliability. Typically,
a constant power law exponent is used, a = % This simplification does not account for the spatial

and temporal variability of @, which limits the model’s accuracy (Crippa et al., 2021; Li et al., 2018;
Yang et al., 2024). Some studies have suggested modeling time-dependent a to improve the

precision of wind speed extrapolation (Basse et al., 2020; Crippa et al., 2021; Jung et al., 2021).

A significant challenge with this approach is the requirement for wind speed measurements at
two different heights. To address this limitation, Jung et al. (2017a) used reanalysis wind speed
data at 1000 m a.g.l to estimate the distributions of @ at 397 meteorological stations in Germany.
They then used the Gaussian copula function to model the joint distribution of « and wind speed
measurement at 10 m a.g.l, enabling the extrapolation of 10 m wind speeds to turbine hub heights

while accounting for the spatiotemporal variability of the «.
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The logarithmic and power law models are considered parametric approaches for vertical wind
speed extrapolation. In recent years, nonparametric approaches such as gradient boosting (GB)
(Yu et al., 2022), symbolic regression (Valsaraj et al., 2020), and Artificial neural networks (ANNSs)
(Vassallo et al., 2020) have been explored as alternatives. These models establish a regression

function between wind speeds at different heights.

However, applying these regression models for vertical wind speed extrapolation at PSLs and
USLs poses challenges due to the limited availability of wind speed measurement at multiple
heights at these locations. Reanalysis data may be an alternative, but it introduces an additional

layer of uncertainty. Future studies could examine the effectiveness of regression models using
reanalysis wind speed data, compared to traditional methods (e.g., power law with a = %) for the

vertical extrapolation of wind speed at PSLs and USLs. This evaluation would help identify the
trade-offs between model accuracy, complexity, and data requirements, ultimately guiding the

selection of the most appropriate extrapolation methods at PSLs and USLs.

2.3 Long-term wind speed estimation at partially sampled locations

A PSL refers to a location where measurements are insufficient to accurately evaluate the long-
term wind potential, whereas USLs lack wind speed measurements. Methods for estimating the
long-term wind potential at PSLs rely on high-quality, long-term wind data (reference data) from
nearby meteorological stations or reanalysis datasets. Historically, the MCP approach was the
standard method for estimating the long-term wind conditions at PSLs (Carta et al., 2013). This
approach has evolved with the adoption of ML models and reanalysis wind data as reference

data.

The following subsections provide a review of studies published between 2014 and 2023 on long-

term wind speed estimation at PSLs, exploring the latest developments and comparative studies.

231 Overview of studies on estimation at partially sampled locations

Table 2.2 summarizes the reviewed studies (published between 2014 and 2023) on long-term
wind speed estimation at PSLs. This section provides an overview of these studies and highlights

new developments.

Record length. A key factor in accurately estimating long-term wind resources at PSLs is the
length of the available short-term wind records. Longer records typically lead to less uncertainty
in MCP (Landberg et al., 1993; Miguel et al., 2019; Rogers et al., 2005b). Collecting at least one
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year of wind data at the PSL is generally recommended to capture the resource seasonal
variability. Figure 2.1 shows the distribution of minimum record lengths used at PSLs, as reported
in the reviewed studies. In line with the recommendations, most studies (68%) reported using at

least 12 months of wind speed data.

Given the financial and time constraints of collecting year-long wind speed data at PSLs, some
studies have investigated the uncertainty associated with shorter record lengths. Findings indicate
that with shorter record lengths, the season covered by the data influences the model
performance (Basse et al., 2021; Weekes et al., 2014b). For example, collecting data during a
low wind speed season could result in underestimating the long-term wind potential during higher

wind speed seasons.

Reference site. The correlation between wind speed at the PSL and a reference station during
the overlapping period is another key factor in long-term wind resource estimation. To ensure a
high level of accuracy, MCP traditionally requires a high Pearson correlation coefficient between
wind speed data at the reference station and PSL. This requirement was mainly due to using
linear regression (LR) as the prediction model. However, with non-linear regression and ML
models, more complex relationships between the overlapping wind speed data could be
accommodated (Diaz et al., 2018; Kristianti et al., 2023; Schwegmann et al., 2023).

Adopting ML models has also enabled the development of methods that use multiple reference
sites. Two such methods were identified in the literature. The most common method involves
fitting a single regression model using wind speed data from multiple reference stations (Carta et
al., 2015; Deo et al., 2018; Diaz et al., 2018). An alternative method proposed by Zhang et al.
(2014) involves fitting separate models for each reference site, with the final prediction determined
by a weighted average of these individual predictions. The weights are based on the distance and

difference in elevation between the PSL and the reference stations.

Wind direction in MCP. With the LR model, a standard step involved partitioning the overlapping
wind speed based on wind direction at the reference site and fitting separate LR models for each
bin. This method helps relax the linearity assumptions and better capture directional variability in
wind patterns. However, the effectiveness of this technique depends on having sufficient data in
each wind direction bin to estimate the regression coefficients reliably. The model accuracy may
be hindered when data are sparse in specific wind directions (Addison et al., 2000; Dinler, 2013).
Also, determining the optimal number of bins poses additional challenges (Rogers et al., 2005b).
With the introduction of ML techniques in MCP, greater flexibility has been achieved, eliminating

the need for manual binning. These models allow the wind direction to be used directly as an
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explanatory variable (Carta et al, 2015; Mifsud et al., 2018), simplifying the process and

potentially improving performance.

Adoption of reanalysis wind speed data. As the availability of a suitable reference station
located near the PSL is uncertain, reanalysis wind speed data are gaining attention as alternatives
(Basse et al., 2021; Gottschall et al., 2021; Kim et al., 2022; Kim et al., 2016; Lee et al., 2019;
Miguel et al., 2019; Saarnak et al., 2014; Schwegmann et al., 2023). The main advantages of
modern reanalysis data include their extensive record lengths, typically spanning over 30 years
of hourly measurements, completeness, global coverage, and the availability of wind speed data

at wind turbine hub heights.

In recent years, the accuracy of reanalysis data has significantly improved due to advancements
in NWP models and data assimilation techniques that integrate satellite, ground-based, and
remote sensing observations (Gualtieri, 2022; Hersbach et al., 2020). These advancements have

enhanced the reliability of reanalysis data for WRA.

Table 2.2 Summary of the reviewed studies on wind speed estimation at PSLs
Study Study area Location type Minimum Reference data Prediction
available source model
record length
at the PSL
(months)
(Ali et al., 2018)  South Korea  onshore 24 Measurements LR, VR
(Basse et al., Germany onshore 3 Reanalysis LR, VR
2021)
(Brune et al., Germany Onshore/offshore 6 Reanalysis ANN
2022)
(Carta et al., Spain Onshore 12 Measurements ANN
2015)
(Cavaiola et al., ltaly onshore 12 Reanalysis RF
2023)
(Diaz et al., Spain onshore 12 Measurements SVR
2017)
(Diaz et al., Spain Onshore 12 Measurements ANN,
2018) SVR,
RF
(Gottschall et al., North Sea offshore 24 Reanalysis LR
2021) and Baltic
Sea
(Kang et al., South Korea  onshore 12 Measurements LR
2015)
(Kartal et al., United- onshore 12 Reanalysis RF,
2023) States of Others
America
(Kim et al., South Korea  offshore 12 Reanalysis LR
2022)
(Ko et al., 2015)  South Korea  onshore 12 Measurements LR
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(Kristianti et al., Switzerland Onshore 3 Measurements ANN

2023)

(Mifsud et al., Malta Onshore 12 Measurements ANN,

2018) SVR,
LR,
RF

(Mifsud et al., Malta Onshore 12 Measurements ANN,

2020) SVR,
LR, RF

(Miguel et al., Brazil Onshore 24 Reanalysis Others

2019)

(Morales- Mexico Onshore 12 Reanalysis Others

Ruvalcaba et al.,

2020)

(Salehi Borujeni  USA onshore 12 Reanalysis ANN

et al., 2021)

(Schwegmann ef Germany, Offshore/onshore 24 Reanalysis LR,

al., 2023) France RF,
ANN

(Weekes et al., UK onshore 3 Measurements LR,

2014b) VR

(Weekes et al., UK onshore 1 Measurements Others

2014a)

(Weekes et al., UK onshore 3 Measurements LR,

2014c) VR

(Weekes et al., UK Onshore 1 Operational LR, VR

2015) forecast data

(Yue et al., Taiwan Offshore 12 Reanalysis / LR

2019) measurements

(Zhang et al., USA onshore 3 measurements LR,

2014) VR,
ANN,
SVR,
Others
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Figure 2.1 Distribution of minimum record lengths used for wind speed estimation at PSLs in the
reviewed studies

231 Estimation methods at partially sampled locations

Figure 2.2 shows the proportion of the different prediction models used for long-term wind speed
estimation at PSLs. The LR model has been widely applied in MCP (Carta et al., 2013) and
continues to serve as a benchmark in recent studies (Diaz et al., 2017; Mifsud et al., 2018;
Weekes et al., 2014a; Zhang et al., 2014). Another linear model, the variance ratio regression
(VR), was introduced by Rogers et al. (2005a) after they observed that LR tends to underestimate

the prediction variance. The equation of the VR is expressed as follows:

Equation 2.3

y= (Gy/ax) x+ (ﬂy - (Jy/ax) .Ux)

where y is the predicted wind speed, ¢,, and g, are the standard deviation of the wind speed at the PSL and
the reference site, respectively, u,, and p, are the PSL’s and reference site’s mean wind
speeds respectively, and x is the observed wind speed at the reference site
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ML models such as ANN (Carta et al., 2015; Diaz et al., 2018; Koo et al., 2015; Kristianti et al.,
2023; Mifsud et al., 2018; Mifsud et al., 2020; Salehi Borujeni et al., 2021; Schwegmann et al.,
2023; Zhang et al., 2014), support vector regression (SVR) (Diaz et al., 2017; Diaz et al., 2018;
Mifsud et al., 2018), random forest (RF) (Diaz et al., 2018; Kartal et al., 2023; Mifsud et al., 2018;
Schwegmann et al., 2023) and GB (Kartal et al., 2023) have been employed in the reviewed

studies.

The multilayer perceptron (MLP) neural network was the most used ANN architecture. The MLP
consists of an input layer, one or more hidden layers, and an output layer. Each layer contains
hidden units (neurons), followed by a non-linear activation function used to model non-linear
relationships between inputs and outputs. In matrix notation, the predictions from an MLP model

are given by:

Equation 2.4
9 = gO(b® + WORL-D)
where the hidden vector A~V is defined as:

Equation 2.5

(=D = gU=D(pU-D 4 W-Dp(-2))

where WO, b® and g represent the weight matrix, bias vector, and activation function for the I-th layer of the
neural network, respectively. The vector h(® = x is the input of the MLP and the weight
matrices W and the bias vectors b0 are the learnable parameters of the models, which are
typically optimized using the backpropagation algorithm (Goodfellow et al., 2016).

Various MLP architectures were implemented across the reviewed studies. Some studies (Carta
et al., 2015; Diaz et al., 2018; Mifsud et al., 2018) used MLPs with a single hidden layer and the
sigmoid activation function. However, the use of the sigmoid activation function has declined in
recent years due to the vanishing gradient problem, which impairs the training of deeper networks
(Apicella et al., 2021). The selection of the adequate activation function is critical for model
performance, and in modern ANN architectures, rectified-based activation functions (Apicella et
al., 2021) have become more common, particularly as the number of hidden layers increases. For
instance, Kristianti et al. (2023) used the Continuously Differentiable Exponential Linear Units
(CELU) activation function to train an MLP with four hidden layers. The CELU activation function

is @ more recent development designed to maintain the advantages of rectified-based functions
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while offering smoother gradients, which enhances performance and convergence in deep
networks.

Selecting a suitable loss function is critical in training ANNs, as it penalizes the difference between
predicted outputs and actual target values. The mean squared error (MSE) was the most
frequently used loss function in the reviewed studies. However, MSE has been reported to
potentially distort the prediction distribution (Jung et al., 2013). To address this issue, Kristianti et
al. (2023) scaled MSE by the inverse probability of occurrence of the actual target value in the
training set. A similarly scaled MSE was proposed by Jung et al. (2013) to assign greater

importance to less frequent wind speed values during training.

SVR

Others

11.1% RF

IR VR

ANN

Figure 2.2 Proportion of the different models used for long-term wind speed estimation at PSLs in the
reviewed studies

2.31 Comparative studies at partially sampled locations

Statistical and ML models exist in many varieties, and their performance can differ based on the
specific prediction task at hand. Therefore, it is crucial to evaluate multiple models to identify the

most suitable for a given application. In the context of wind speed estimation at PSLs, several
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comparative studies have analyzed the performance of statistical and ML models, as summarized
in Table 2.3.

The criteria for evaluating model performance included standard regression metrics such as Mean
Absolute Error (MAE), MSE, Root Mean Squared Error (RMSE), and the coefficient of
determination (R?). MAE, MSE, and RMSE are scale-dependent metrics. To conduct evaluations
that are independent of the magnitude of the target variable, Basse et al. (2021) used relative
bias in mean (Erty.q.n,) and variance (Err,,,-), While Diaz et al. (2018) employed the Mean

Absolute Relative Error (MARE). These metrics are described in
Table 2.4.

Ultimately, the goal of the MCP method is to assess the wind energy potential of the PSL.
Although wind speed is the main input for this analysis, it is crucial to consider the cubic
relationship between wind speed and power output. Some researchers have directly evaluated
the models by calculating metrics based on the derived power output (Basse et al., 2021; Diaz et
al., 2018; Mifsud et al., 2020). While the approach may offer a more direct estimate of model
performance, which is relevant to the project, it requires the selection of a power curve associated
with the wind turbine at this stage. In their study, Basse et al. (2021) reported that variations in

results due to the use of different power curves was marginal.

The findings from comparative studies (see Table 2.3) highlight the importance of testing various
models, as no single model consistently outperforms the others. For example, Diaz et al. (2018)
found that RF and SVR outperformed ANN, while Mifsud et al. (2020) reported the opposite,
indicating that ANN surpassed both RF and SVR. Additionally, Schwegmann et al. (2023)
indicated that the K-nearest neighbor (KNN) algorithm outperformed ANN, Gaussian process, RF,

and SVR, particularly excelling in reproducing the wind speed distribution.

Differences in model configurations can explain the varying conclusions of these studies. Factors
such as model hyperparameters, feature selection, data preprocessing techniques, and the length
of training periods can all significantly influence model performance. The effectiveness of a
particular model often depends on how well it is tuned to fit the specific characteristics of the

dataset being used.

Table 2.3 Comparative studies of statistical and ML methods for long-term wind speed estimation at
PSLs
Study Performance Evaluation Results Comments
metrics strategy
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(Basse et al., 2021) ETTmeans ETTyar Cross- VR and LR Only three months
validation produces different  of wind records at
seasonal bias the PSL was used
to evaluate
seasonal biases
(Diaz et al., 2017) MAE, MARE, R? SVR > LR The performance
metrics were
calculated from
estimated power
output
(Diaz et al., 2018) MAE, MARE, R? Cross- [RF, SVR] > ANN  The performance
validation metrics were
calculated from
estimated power
output
(Kartal et al., 2023) Bias, MAE, MSE Cross- RF =GB The peak wind
and R2 validation gusts were
estimated using
the MCP
approach.
(Mifsud et al., 2018) MAE, MSE, R2 Test set [ANN, RF] > [LR, n.a
SVR]
(Mifsud et al., 2020) MAE (normalized), Test set [LR, ANN] > [SVR, The performance
MSE (normalized), RF] metrics were
and percentage calculated from
error the estimated
power output
(Schwegmann et al., MAE, R2, RMSE Test set K-NN > [LR, RF, n.a
2023) ANN, Gaussian
process]

Table 2.4 Evaluation metrics used in the review studies to compare different prediction models
Metric Formula Perfect score
1 n
Bias %Zi:1(pi o) 0
MAE 1o 0
;Xmlpi — ol
MARE lz" 0 — P 0
n i=1 0;
MSE 1 n 2 0
gzizl(Pi —0;)
RMSE 1—n 2 0
\/;Zizl(m —0;)
R? _ izi(0; — pi)z 1
I, (o — 0)°
ETT pmean p—0 0
0
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ETTypqr Z?ﬂ(pi - ﬁ)z - ?:1(01' - 5)2 0
(o, — 0)°

Note: o represents the observed variable, p the predicted variable, n the sample size

2.4 Long-term wind speed estimation at unsampled locations

Figure 2.3 presents an overview of important factors when estimating long-term wind speeds at
USL. These key factors are covered in detail in the following subsections: a review of the
prediction time scales identified in the literature, a presentation of commonly used explanatory

variables, the estimation methods, and comparative studies.

Long-term wind speed
estimation at USLs

Type of predicted Type of explanatory

wind speed data e variables DEIE) SRTEss
- Mean == Spatial interpolation j== Geographical and | Reanalysis
temporal
P.rol:?abll.lty | Reanaly5|§ bias- | __ Meteorological | Digital elevation
distribution correction model
Regression model
— Time series == With explanatory |J==  Topographical == |and cover map
variables
— Quantile/Maximum e Regional freguency h— Surface roughness e Global Wind Atlas
analysis length
Figure 2.3 Important factors to consider when estimating long-term wind speeds at USLs

2.41 Prediction time scale

Wind speed is a continuous variable, and for practical reasons, researchers often work with
aggregated values over specified time scales. The choice of the time scale and aggregation
function depends on the study’s objectives. In the literature, the time scales for predicted wind
speeds at USLs range from hourly means (Cellura et al., 2008a; Cellura et al., 2008b; Cirrincione

et al., 2009) to annual maximum values (Modarres, 2008). Some authors have predicted monthly
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(Fadare, 2010) and daily (Jung et al., 2023a) mean wind speeds. The mean is the most frequently
calculated statistic when aggregating wind speed time series. In studies on EWS, researchers
have used wind speed quantiles (Etienne et al., 2010; Fischer et al., 2015; Jung et al., 2022a)
and maximum wind speeds (Goel et al., 2004). The 50-year return period wind speed is an

important design parameter for ensuring the safety of wind turbines (Palutikof et al., 1999).

Effenberger et al. (2024) examined how different temporal resolutions and aggregation methods
(average vs. instantaneous) affect wind speed distribution compared to instantaneous data (e.g.,
10-minute averages). Their findings indicated that using three- or six-hourly instantaneous values
better preserved the observed 10-minute wind speed distribution than averaged values over a
specified time scale. Petersen et al. (1981) discussed the implications of various averaging time
scales and the resulting variance loss for WRA. They highlighted that variance loss is significant

when averaging wind speed data over periods longer than a few hours.

High temporal resolution wind speed data is essential for understanding resource variability for
WRA (Pfenninger et al., 2014). However, processing and storing large volumes of wind speed
data can present some challenges. Mapping wind speed distributions can help summarize the
data while retaining important information about variability (Houndekindo et al., 2023b; Jung,
2016; Veronesi et al., 2016).

241 Explanatory variables

In the literature, five categories of explanatory variables have been used for wind speed
estimation at USLs: geographical variables (e.g., longitude, latitude), temporal variables (e.g.,
time of day, month of the year), meteorological variables (e.g., air temperature, atmospheric
pressure, humidity), topographical variables (e.g., elevation, exposure) and surface roughness
length (SRL).

Geographical and temporal variables. In spatial interpolation (Sl) techniques, geographical
coordinates are the primary variable for estimating wind speed at USLs. In the absence of
complex terrain features, a high correlation is expected between neighboring sites, especially
when aligned with prevailing wind direction, and this correlation should decrease with distance.
With data-driven feature selection, Robert et al. (2013) identified geographical coordinates as
important predictors of wind speed. Additionally, geographical coordinates could serve as proxies
for other factors affecting wind speed, such as altitude or proximity to the sea. For example, higher
latitudes (or longitudes) may correspond to higher (or lower) altitudes or proximity to the sea.

Proximity to the sea significantly impacts the local wind climate through mechanisms such as sea
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and land breezes. Additionally, low surface friction over the sea typically results in stronger winds
near coastal regions (Brinckmann et al., 2016). Houndekindo et al. (2023a) reported that the

distance from the coast was important for mapping various wind speed quantiles across Canada.

Wind speed also exhibits diurnal, seasonal, and interannual variations. To account for these
temporal variations, researchers have included time-related variables in their models (Fadare,
2010; Jung et al., 2022a) when predicting WSTS.

Meteorological variables. Wind speed is primarily driven by the movement of air resulting from
pressure differences, which are caused mainly by variations in solar irradiation (Emeis, 2018).
Meteorological variables, such as temperature and pressure, are typically well correlated with
wind speed through underlying physical processes (Sahin et al., 2006), but these variables are
also missing at USLs. Reanalysis and regional climate model (RCM) data serve as alternative
sources of meteorological variables for wind speed estimation at USLs. Inaccuracies in reanalysis
wind data are partly due to the limited ability of NWP models to accurately capture the interactions
between large-scale winds (e.g., geostrophic winds) and local topographic features and surface
roughness. However, reanalysis wind fields are generally considered representative of large-
scale wind patterns, unaffected by surface friction (Gonzalez-Aparicio et al., 2017; Houndekindo
et al., 2024; Hu et al., 2023; Jung et al., 2020; Kirchmeier et al., 2014).

Topographic variables and surface roughness. Local topography influences near-surface
wind speed through topography-induced acceleration, deceleration, and deflection (Emeis, 2018;
Petersen et al., 1998; Raupach et al., 1997). Elevation is the most commonly used explanatory
variable in estimating wind speed (Collados-Lara et al., 2022; Fick et al., 2017). However,
elevation alone only captures part of the local topography's effect on near-surface wind speeds.
The availability of high-resolution digital elevation models (DEM) allows for the extraction of
additional topographic variables that more accurately describe terrain complexity, such as the
topographic position index, which measures terrain ruggedness and topographic wind exposure,
such as the maximum upwind slope (Winstral et al., 2017). These variables can be derived at
multiple spatial scales, reflecting the varying degrees of influence that topographic features exert
over different distances (Dujardin et al.,, 2022; Etienne et al.,, 2010; Foresti et al., 2011;
Houndekindo et al., 2023a; Houndekindo et al., 2023b; Jung, 2016; Jung et al., 2018a; Jung et
al., 2020; Jung et al., 2023b; Robert et al., 2013; Winstral et al., 2017).

For example, in Switzerland, Etienne et al. (2010) identified elevation from a 1 km resolution DEM
and landform classes from a 2 km resolution DEM as significant predictors of wind speed at USLs.

Similarly, in Germany, Jung (2016) found that a location’s relative elevation at a spatial scale of
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2.5 km was the most important predictor of wind speed. The Relative elevation is the difference
between the location’s elevation and the mean elevation of surrounding cells within a specified
radius. Recent advancements in ML, particularly Convolutional Neural Networks (CNNs), have
shown promise in automatically extracting multiscale topographic features from high-resolution
DEMs (Dujardin et al., 2022; Zhong et al., 2024).

Another crucial variable in wind speed estimation at USLs is the SRL. SRL values are typically
derived from land cover maps (Davis et al., 2023; Etienne et al., 2010; Houndekindo et al., 2023a;
Houndekindo et al., 2023b; Jung, 2016; Jung et al., 2018a; Jung et al., 2020; Jung et al., 2023b)
by associating different land cover types (e.g., vegetation, urban infrastructure) with
corresponding SRL values based on established empirical relationships (Wiernga, 1993). These
SRL values reflect the influence of the terrain surface and its roughness elements on the frictional
forces acting on wind near the ground. Higher SRL values typically indicate rougher surfaces,
slowing wind speeds down (Petersen et al., 1998). For instance, vegetated areas such as forests
typically exhibit higher SRL values, leading to more pronounced wind attenuation than smoother

surfaces like open water or flat, barren land.

241 Estimation methods at unsampled locations

The methods for estimating wind speed at USLs can be categorized based on the type of

predicted data:

1. Summary wind speed statistics, typically representing central tendencies (e.g., MWS),
have been mapped using Sl or regression models with explanatory variables.

2. Some studies have estimated the WSPD at USLs to capture the wind resource
variability. Both parametric and nonparametric methods have been proposed for this
purpose.

3. Bias-corrected and uncorrected reanalysis wind data are frequently used to obtain wind
WSTS at USLs. Also, Sl (Zhang et al., 2022b), regression (Robert et al., 2013), and
hybrid models (Collados-Lara et al., 2022) have been explored to interpolate WSTS at
USLs.

4. EWS data are necessary for evaluating wind turbine suitability in a region (Pryor et al.,
2021). Uncorrected reanalysis wind data, regression models with explanatory variables,

regional frequency analysis (RFA), and S| have been applied to estimate EWS at USLs.

Table 2.5 provides an overview of the various methods used for wind speed estimation at USLs,

which are reviewed in detail in the following subsections.
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Table 2.5 Summary of the different methods for wind speed estimation at USLs

Type of predicted wind speed Method/model Study
data
MWS Hybrid (Sl and regression) (Cellura et al., 2008a)
Sl (Baydaroglu et al., 2019;
Fick et al., 2017; Keskin et
al., 2017; Lee, 2022; Luo et
al., 2008; Sliz-Szkliniarz et
al., 2011; Van Ackere et al.,
2015)
WSPD Parametric (Jung, 2016; Laib et al.,
2016; Veronesi et al., 2016)
(Jung et al., 2020; Jung et
al., 2023b)
Nonparametric (Houndekindo et al., 2023b)
WSTS Reanalysis wind speed mean bias (Bosch et al., 2018;
correction Gonzalez-Aparicio et al.,
2017; Gruber et al., 2019;
Gruber et al., 2022; Murcia
et al., 2022; Nefabas et al.,
2021; Ryberg et al., 2019;
Schicker et al., 2023)
Quantile mapping (QM) with (Jung et al., 2023b)
reanalysis wind speed
Reanalysis wind speed bias (Dujardin et al., 2022; Hu et
correction with ML al., 2023)
SI (Zhang et al., 2022b)
Sl and (Brinckmann et al., 2016;
Hybrid (Sl and regression) Collados-Lara et al., 2022;
Li et al., 2014; Reinhardt et
al., 2018; Zhao et al., 2022)
Regression (Philippopoulos et al., 2012;
Robert et al., 2013)
EWS Regression model with explanatory (Etienne et al., 2010; Jung
variables et al., 2022a)
Sl (Ye et al., 2015)
RFA (Ahmad et al., 2024;

Campos et al., 2018; Fawad
et al., 2018; Goel et al.,
2004; Hong et al., 2014)
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241 Estimation methods at unsampled locations

Long-term MWS has been mapped across large regions for WRA at USLs using Sl as the primary
modeling approach (Baydaroglu et al., 2019; Cellura et al., 2008a; Van Ackere et al., 2015).
Studies have demonstrated that incorporating anisotropy (Lee, 2022) and additional explanatory
variables should improve model performance, with elevation being the most frequently used
explanatory variable (Keskin et al., 2017; Luo et al., 2008; Sliz-Szkliniarz et al., 2011).

Cellura et al. (2008a) proposed a hybrid approach combining MLP and S| models for MWS
mapping. An MLP was used to establish a regression function between explanatory variables
(e.g., geographical coordinates and elevation) and the observed MWS in Sicily, Italy. Kriging was
then applied to the regression model residuals to refine the predictions. The model can be

expressed as:

Equation 2.6

- k
W(s0) = Fx(s0),¥(50).250) + ) Aies)

where W(s,) is the predicted wind speed at location sq, x(sq),¥(s¢), and z(s,) are the location’s longitude,
latitude, and elevation, respectively. The function f(-) is the MLP-derived regression function,
e(s;) represents the residuals at sampled locations s;, and 4; are the kriging weights.

2411 Estimation of wind speed distribution

Relying exclusively on MWS to evaluate long-term energy potential may lead to an
underestimation of the available resource’s potential (Nelson et al., 2018). To address this
limitation, it is crucial to estimate the WSPD at USLs. This approach allows for a more accurate

evaluation of the resource’s long-term variability.

Some studies have been conducted to map WSPD across large regions (Houndekindo et al.,
2023b; Jung, 2016; Jung et al., 2020; Jung et al., 2023b; Laib et al., 2016; Veronesi et al., 2016).
The statistical methods employed in these studies can broadly be categorized into parametric and

nonparametric methods.

In the parametric method, the parameters of the WSPD are estimated at USLs using a regression
model along with various explanatory variables. The Weibull distribution has been employed due
to its widespread adoption in the field (Veronesi et al., 2016). Some studies have explored the
use of more flexible probability distributions. For example, Jung et al. (2020) proposed a

parametric method that involves mapping L-moments of wind speed. They then used the L-
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moment method to estimate the parameters of the four-parameter Kappa and five-parameter
Wakeby distributions at USLs.

L-moments introduce by Hosking (1990), serve as alternatives to traditional moments (such as
mean and variance) for summarizing the shape of a probability distribution. As linear combinations
of order statistics, L-moments exhibit more robustness to outliers than conventional sample
moments when estimating from finite samples (Hosking, 1990). Similar to the method of moments,
which is used to derive estimators of probability distribution parameters from sample moments,
the L-moment method can also be used to estimate these parameters from sample L-moments.

The sample L-Moments are given by (Hosking, 1990):

Equation 2.7

r

e RO () () ()
D e

where r is the L-moment order and X;., < X,.,, < - < X,., denote the sample order statistics.

Xi:n

In another study, Houndekindo et al. (2023b) proposed a nonparametric method for WSPD
mapping. This method does not rely on the assumption of a specific parametric distribution, thus
offering a more flexible and data-driven approach for estimating WSPD at USLs. The
nonparametric approach uses a regression model to map multiple wind speed quantiles across a
region. Subsequently, kernel estimators are fitted to the estimated quantiles at USLs to obtain the
entire WSPD. This approach was recommended for large regions where a single family of
probability distributions may fail to adequately represent the region’s complex and diverse wind
speed patterns. To address boundary effects that appear when using symmetric kernels for
modeling bounded random variables like wind speeds, Houndekindo et al. (2023b) adopted
asymmetric kernel estimators. The Birnbaum-Saunders (Mombeni et al., 2021) and Log-Normal
kernels (Lafaye de Micheaux et al., 2021) provided a better fit among the evaluated kernels. The
CDFs of the Log-Normal (F,y (")) and Birnbaum-Saunders (Fgs(-)) kernels are expressed as

follows:

Equation 2.8

. 1"
FLN(x) = EZ 1KLN(Xi; logx,\/z)
l:

Equation 2.9
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N 1
Fas(x) = —Z Kgs(Xi; x,Vb)
n i=1
where b > 0 is the kernel bandwidth, and the kernel functions are defined as:

Equation 2.10
logx —
Ky (p,0)=1- q;(M)
g

Equation 2.11

) _ 1( [x I
KBS(x:ﬂ;O-)—l—CD E E_ ;

The function ®(-) denotes the CDF of the standard normal distribution.
241.2 Estimation of wind speed time series

The availability of WSPD at USLs provides valuable insights into the variability of the resource.
However, to fully assess wind speed variability across different temporal scales, such as diurnal,

seasonal, and inter-annual variability, time series data are essential.

To generate gridded WSTS, Zhang et al. (2022b) used a three-dimensional thin plate smoothing
spline with longitude, latitude, and elevation as explanatory variables to interpolate observed daily
wind speeds at a spatial resolution of 0.05 x 0.05° across Australia. In a similar study, Li et al.
(2014) interpolated six-hourly WSTS in China at a spatial resolution of 1 km x 1 km. they used a
two-dimensional thin-plate smoothing spine combined with kriging applied to the residuals. The
authors further examined the effect of including reanalysis wind speed data as an additional

explanatory variable but found no significant reduction in the cross-validation RMSE.

Collados-Lara et al. (2022) compared various kriging methods for hourly WSTS interpolation at
300 m x 300 m spatial resolution in Granada, Spain. Their results demonstrated that regression
kriging outperformed ordinary kriging, kriging with external drift, and a simple regression model
(without kriging of the residuals). In addition, the authors observed that the interpolated WSTS
exhibited lower RMSE values compared to wind speeds derived from the European Center for
Medium-Range Weather Forecasts Reanalysis v5 (ERAS; Hersbach et al., 2020).
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A key limitation of SI methods for estimating wind speeds at USL is their dependence on a dense
network of meteorological stations in the region of interest. In regions with sparse station
coverage, the accuracy of interpolated wind speeds tends to decline due to low station density
(Fick et al., 2017). Additionally, terrain complexity presents further challenges to interpolation
accuracy. In areas with complex topography, standard interpolation methods that rely solely on
geographical coordinates and elevation often fail to capture the spatial variability of wind speeds,

leading to significant estimation errors.

To address these challenges, Robert et al. (2013) incorporated additional topographic explanatory
variables, such as terrain convexity, slope, and wind exposure, to improve wind speed estimation
in Switzerland's complex Alpine orography. The authors used the General regression neural
network (GRNN) to model the complex, non-linear relationship between the explanatory variables

and monthly wind speed values.

Recent advancements in data assimilation techniques and model physics (Hersbach et al., 2020)
have significantly improved the accuracy and spatial resolution of reanalysis wind speed data.
Therefore, many recent studies have relied on reanalysis datasets to obtain WSTS at USLs (Ayik
et al., 2021; Davidson et al., 2022; de Aquino Ferreira et al., 2022; Gualtieri, 2021; Gualtieri, 2022;
Jourdier, 2020; Olauson, 2018; Rabbani et al., 2020; Ramon et al., 2019; Thomas et al., 2021).

Reanalysis datasets, such as ERA5 and the Modern-Era Retrospective Analysis for Research
and Applications, Version 2 (MERRA-2; Gelaro et al., 2017), provide global coverage of
meteorological variables at hourly intervals over extended periods. However, their relative coarse
spatial resolution can be a limiting factor for studies that require fine-scale analysis, particularly in

regions with complex terrain where wind patterns can vary considerably.

To address this limitation, efforts have been made to downscale and bias-correct reanalysis wind
speeds, enhancing their spatial resolution and addressing the discrepancies between reanalysis
outputs and local measurements. The bias correction (BC) of reanalysis wind speeds has
primarily relied on the Global Wind Atlas (GWA; Davis et al., 2023), which provides quasi-global
static wind conditions (e.g., MWS, Weibull scale, and shape parameters) integrating microscale

terrain and land cover features.

Gonzalez-Aparicio et al. (2017) applied a parametric QM method to correct the distribution of

MERRA-2 wind speeds using the following equation:

Equation 2.12
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kMERRA

yMERRA “KCWA
5, = qfWA |t
Ve qMERRA

where 7, is the corrected wind speed at time t, a¥4 and k"4 are the Weibull scale and shape parameters
from the GWA, and aMERRA| [ MERRA = and yMERRA gre the corresponding parameters and wind
speed value from MERRA-2.

Other studies (Gruber et al., 2019; Gruber et al., 2022; Houndekindo et al., 2024; Langer et al.,
2023; Murcia et al., 2022; Ryberg et al., 2019) used linear scaling for BC, where a multiplicative

factor is applied to the reanalysis wind speeds:

Equation 2.13

yGWA
9, = yMERRA
t yMERRA t

where yéW4 and yMERRA gre the MWS from the GWA and MERRA, respectively.

Figure 2.4 shows an example of the linear scaling method applied to bias correct ERA5 wind

speed data at a station in Canada.

Typically, a time-invariant scaling factor was applied, which improved the long-term MWS
accuracy without improving the temporal properties of the reanalysis time series. Schicker et al.
(2023) attempted to address this limitation by estimating hourly scaling factors to account for

diurnal biases, but this approach degraded the performance of the uncorrected reanalysis data.
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Figure 2.4 Example of application of the linear scaling method for BC of ERA5 wind speeds using the

GWA version 3.

The measured hourly wind speed data were obtained from Environment and Climate Change Canada (ECCC)
historical climate data archives (Climate ID: 8403255, period: 2016).

The GWA is commonly used for BC due to its incorporation of microscale topographic and land
cover features, which are not fully resolved by reanalysis data. Alternatively, these features can
be directly obtained from high-resolution DEM and land cover maps and used as additional
explanatory variables to establish a regression function between reanalysis and observed wind
speeds. This method offers greater flexibility in the spatial resolution of the downscaled wind
speeds compared to the fixed resolution of 250 m x 250 m expected when bias-correcting with
the GWA. For example, Hu et al. (2023) developed a regression model that integrated topographic
and ERA5 meteorological variables to predict observed wind speeds. This model improved ERA5
accuracy in areas with complex topography, though it had a less pronounced impact in areas

where ERA5 accuracy was already high.

Jung et al. (2023b) applied QM to correct ERAS wind speeds. Their approach, illustrated in Figure
2.5, involved the following steps: First, they established a regression model to map wind speed
L-moments in the study region using local topographic features, surface roughness length, and
L-moments from ERA5 wind speeds. Then, the trained regression model was used to predict L-
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moments at USLs. Using the L-moment method, these predicted L-moments were used to
estimate the four parameters of the Kappa distribution. Finally, the quantile function of the fitted

Kappa distribution was used for QM. The QM equation is given by:

Equation 2.14

Ve = QalFu(yi™S)]

where Q, (") is the quantile function of the Kappa distribution with parameters 0 estimated using the L-moment
method, and F,,(-) is the empirical CDF of the ERA5 wind speed data.

Dujardin et al. (2022) proposed a novel approach that uses CNNs to interpolate hourly wind
speeds in Switzerland. Their model operates at the grid level, using a CNN to predict observed
wind components at meteorological stations. The input data for the CNN consist of patches of

gridded meteorological and topographic variables centered on each station.

The results from the study indicated that the proposed model improved both the correlation and
bias of COSMO-1 (Kruyt et al., 2018) outputs when compared to measured wind speeds.
Although the CNN architecture was not directly compared to standard regression models, it is
expected to outperform traditional methods as it can effectively process multiscale spatial
information related to topography and meteorological variables. For example, in standard
regression models, gridded meteorological variables are typically interpolated at station locations
using rigid methods, such as nearest neighbor or bilinear interpolation. In contrast, the CNN
architecture employs a data-driven approach that interpolates gridded meteorological variables
at station locations. Also, this method can potentially consider a broader spatial extent of these
variables, which may enhance the accuracy of bias-corrected wind speed predictions. The CNN

method presents a promising alternative for wind speed modeling in complex terrains.
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2413 Extreme wind speed estimation

EWSs are evaluated to determine the suitability of specific wind turbines in a given region. This
assessment considers factors such as structural integrity, safety, and performance in challenging
weather conditions. It ensures that wind turbines are appropriately designed and located to

withstand the severe wind conditions they may encounter during their operational lifespan.

Reanalysis wind speeds have been used to estimate EWSs on a global scale (Jung et al., 2017¢;
Pryor et al., 2021). However, researchers have employed alternative methods to estimate EWSs
with higher spatial resolutions at national (Etienne et al., 2010; Ye et al., 2015) and continental
scales (Jung et al., 2022a).

For example, Etienne et al. (2010) mapped the 98th percentile of daily maximum wind speed
across Switzerland. They used a generalized additive model (Hastie, 2017), which is a nonlinear
regression model, to capture the relationship between topographic variables and observed EWS
quantiles. Similarly, Jung et al. (2022a) developed a regression model to map the 90th percentile
of monthly wind speed across North America and Europe. This model used the ERA5 90th
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percentile of monthly wind speeds, MWS from a global model (Jung et al., 2020), along with

geographical coordinates and the month of the year as input.

In other studies, RFA was applied to predict EWS at USLs. The RFA procedure involves two main
steps, as shown in Figure 2.6: 1) formation of homogeneous regions, and 2) information transfer
within the regions. Establishing homogeneous regions based on the wind generation mechanisms
is essential for ensuring that information can be reliably transferred within the region. There are
some statistical tools to evaluate the homogeneity of the regions. For EWS, studies have primarily

relied on the statistical tests proposed by Hosking et al. (1997).

The "index flood" method (Hosking et al., 1997), based on L-Moments, was the most commonly
used RFA procedure, which has been adapted and referred to as the "local-index" method for
EWS modeling (Campos et al., 2018). The primary assumption of this method is that all sites
within a homogenous region share the same wind speed distribution (the regional distribution),
except for a site-specific scaling factor. This scaling factor, known as the local index, represents
a statistical measure of the central tendency (e.g., mean, median) of EWS at each location within
the region. The local index is usually estimated with a regression model using some explanatory

variables (e.g., topographic and land cover features).

Determining a region’s adequate size presents some challenges. Generally, as the region’s size
increases, its homogeneity tends to decrease. In contrast, a smaller region (limited sample size)
may produce unreliable local index estimates using a regression model. For estimating EWS,
Goel et al. (2004) recommended that a region include at least 5T station years of data, where T
represents the return period of interest. A similar recommendation was provided for regional flood

frequency analysis (Jakob et al., 1999).

Another important factor to consider when forming regions is their identifiability (Burn et al., 2000;
Goel et al., 2004). Identifiability refers to the ability to assign a new USL to a region based solely
on specific explanatory variables independently of the target variable. Therefore, regions should
not be defined using variables derived from observed wind speed data, as this would prevent the
assignment of USLs to that region (Campos et al., 2018; Hong et al., 2014). However, it is
acceptable to form regions using variables derived from measured wind speed data if the RFA is

applied at PSLs to improve the estimation of EWS.

Several methods for region formation were used in the literature. Goel et al. (2004) and Fawad et
al. (2018) used a pooling method based on geographical proximity. Campos et al. (2018) formed

homogeneous regions using similarity in L-moment ratios estimated from observed wind speed
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data. Alternatively, Hong et al. (2014) used a clustering algorithm with some explanatory variables

to form homogeneous regions.

Most studies have relied on a parametric distribution function to estimate EWS from the available
wind speed time series. Table 2.6 summarizes the various parametric distribution functions used
to estimate EWS at USLs.
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Figure 2.6 The different steps of the RFA
Table 2.6 Parametric distribution functions used for EWS estimation at USLs
Study Selected parametric distribution Type of EWS
function
Ahmad etal.  Generalized logistic distribution Daily Annual Maximum Wind Speed quantiles
(2024) (2, 5,10, 20, 50, 100, 500, 1000-year return
periods)
Campos et Weibull distribution (Three Annual maximum wind speed quantiles (5, 10,
al. (2018) parameters) 20-year return periods)
Fawad etal.  Generalized logistic distribution annual maximum wind speed quantiles (2, 5,
(2018) 10, 20, 50, 100, 500, 1000-year return
periods)
Goel et al. Generalized logistic distribution and Annual maximum wind speed quantiles (10,
(2004) generalized extreme value 20, 50, 100, 500-year return periods)
distribution

Hong et al. Generalized extreme value annual maximum wind speed quantiles (50,
(2014) distribution 500, 1000-year return periods)
Jung et al. Wakeby distribution wind gust speed quantiles (30, 50 and 100
(2017¢c) year30-, 50- and 100-year return period)
Jung et al. Generalized extreme value Monthly annual maximum wind speed
(2022a) distribution and Wakey distribution quantiles (10-year return period)
Pryor et al. Gumbel distribution Wind speed quantiles (50-year return period)
(2021)

2414

Comparative studies at unsampled locations

Several studies have compared SI methods for mapping wind speed across large regions (Berndt
et al., 2018; Collados-Lara et al., 2022; Lee, 2022; Luo et al., 2008; Reinhardt et al., 2018; Van
Ackere et al., 2015). The findings from these studies indicate that there is no clear choice between

deterministic methods and geostatistical methods for Sl of wind speeds. The relative performance
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of these methods varies based on several factors, such as the magnitude of the interpolated wind
speed (e.g., EWS vs. MWS) and the specific region of study. Incorporating elevation in the kriging
models (e.g., co-kriging) does not consistently improve its accuracy (Ye et al., 2015). In some
studies, regression kriging models outperformed standard SI methods (Collados-Lara et al., 2022;
Lee, 2022; Reinhardt et al., 2018).

Some studies have reported that MLP models outperform S| methods for wind speed mapping
(Cellura et al., 2008a; Oztopal, 2006; Philippopoulos et al., 2012). In contrast, Reinhardt et al.
(2018) found that regression kriging with LR was more accurate than MLP and SVR for mapping

wind speed components at various heights.

Houndekindo et al. (2023b) compared LR and GB for mapping various wind speed quantiles.
Their results demonstrated that GB was more effective than LR in capturing the relationship
between the explanatory variables and the wind speed quantiles. Similarly, Jung et al. (2020)
reported that GB outperformed LR for mapping wind speed L-moments on a global scale. In their
research, the authors evaluated a variant of the GB algorithm against LR, RF, SVR, and Gaussian

process regression, concluding that GB exhibited the highest level of accuracy.

2.5 Long-term wind speed estimation under nonstationary conditions

The literature reports three causes of non-stationarity in WSTS. Several studies conducted in
various countries have reported a declining trend in near-surface wind speeds (Azorin-Molina et
al., 2014; Cui et al., 2018; Klink, 2002; McVicar et al., 2008; Minola et al., 2016; Vautard et al.,
2010a; Wan et al., 2010; Zahradnicek et al., 2019). Roderick et al. (2007) introduced the term
"stilling" to describe the observed trend. One of the identified causes of the stilling phenomenon
is an increase in surface roughness (Klink, 2002; Pryor et al., 2009; Vautard et al., 2010b).
However, Zeng et al. (2019) observed a reversal of the stilling trend by 2010 in a global study,
concluding that the previously reported decreasing trend could be attributed to interannual,
decadal ocean-atmosphere oscillations. Several authors have also studied the interannual
variability of wind speeds due to ocean-atmosphere oscillations (Azorin-Molina et al., 2016;
Azorin-Molina et al., 2018; Klink, 2007; Ouarda et al., 2021; Pryor et al., 2006a; Woldesellasse et
al., 2020).

Climate change is another significant factor contributing to the long-term variability of wind
resources (Jung et al., 2022c; Pryor et al., 2010). Several studies have examined the impact of

climate change on wind speeds (Bloom et al., 2008; Jung et al., 2019a; Pryor et al., 2011; Pryor
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etal., 2012; Pryor et al., 2006b; Sailor et al., 2008). Jung et al. (2022c) provided a comprehensive

review of studies on the impact of climate change on wind energy.

Non-stationarity in WSTS can undermine the reliability of wind farm projects. Evaluating the
resource's long-term variability during the project's initial phase can provide the data needed to

build a more resilient energy system.

To evaluate the impact of climate change on wind resources, researchers primarily used Global
climate models (GCM) and RCMs (Jung et al., 2022c; Pryor et al., 2010). GCM experiments are
conducted globally to understand Earth’s climate system dynamics and to project future climate
conditions under various scenarios (Eyring et al., 2016). However, one limitation of GCMs is their
coarse spatial resolution, which limits their ability to represent mesoscale and microscale wind
patterns (Shen et al., 2022).

To address this limitation, downscaling techniques are often employed to refine the coarse-
resolution output of GCMs into a finer spatial scale that is more relevant to specific regions of
interest. RCM simulations, which represent the dynamical downscaling of GCMs, operate at a
higher spatial resolution, enabling a more detailed representation of regional climate features. By
nesting RCMs within GCMs, researchers capture finer-scale processes that influence local wind

patterns, thus improving the accuracy of climate projections at the local levels (Tobin et al., 2016).

As an alternative to RCM, statistical downscaling methods are also employed to bridge the gap
between coarse-scale GCM outputs and local wind conditions. These methods involve
establishing a relationship between the historical simulation outputs of GCMs and measured data
(Schoof, 2013). The main advantage of using statistical downscaling over RCMs is its
computational efficiency, making it particularly useful for large-scale studies. In some studies
(Barték et al., 2019; Costoya et al., 2020; Li et al., 2020; Luzia et al., 2023; Moemken et al., 2018;
Nabipour et al., 2020; Vu Dinh et al., 2022), statistical downscaling was applied as an additional
step to post-process RCM simulations. However, a significant limitation of statistical downscaling

is its reliance on long-term measured data for model training and validation (Jeong et al., 2012).

At PSLs, MCP can be applied to extend the short-term wind speed records, which can serve as
the measured data for statistical downscaling. Alternatively, outputs from GCM or RCM can be
adjusted using wind speed data from the reference site and further corrected using MCP at the
PSL. For example, Rajczak et al. (2016) proposed a two-step statistical approach for bias-
correcting RCM outputs at PSLs. The RCM output is corrected at the reference site in the first
step, followed by a subsequent BC at the PSL. For both BC steps, the authors used QM. This
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method relies on the availability of a meteorological station (reference site) with long-term

observation data and a stationary relationship with the PSL, which is not guaranteed.

At USLs, reanalysis datasets often serve as the primary source of historical ‘quasi-observational’
data for statistical downscaling (Jung et al., 2022c). These datasets provide consistent records
of past weather conditions spanning several decades and typically offer finer spatial resolution
than GCM simulations. However, it is important to recognize the potential limitations of reanalysis
data as a substitute for observational data, primarily due to biases introduced during the
assimilation process and the uncertainties inherent to the modeling techniques and assumptions
(Gualtieri, 2022). To mitigate the uncertainties associated with individual datasets, it has been
recommended to utilize multiple reanalysis datasets (Torralba et al., 2017). In addition, Moradian
et al. (2023) validated the reliability of the reanalysis data in their study region by comparing it

with available observational data before conducting further analysis at USLs.

Using reanalysis datasets as the target, various statistical methods have been used to downscale
wind speed data from GCMs and RCMs at USLs.

- QM (Barték et al., 2019; Costoya et al., 2020; de Souza Ferreira et al., 2024,
Hdidouan et al., 2017; Li et al., 2020; Moemken et al., 2018; Vu Dinh et al., 2022)

- ML models (Lin et al., 2023; Nabipour et al., 2020; Zhang et al., 2021)

- Copula functions (Moradian et al., 2023)

- Linear scaling based on the GWA (Luzia et al., 2023)

QM was the most widely used statistical downscaling technique, followed by ML models. Various
forms of QMs were explored for wind speed downscaling. Li et al. (2019) conducted a comparative
study of different QM techniques. Their findings indicated that parametric QM based on the
Weibull distribution performed slightly better than empirical distribution QM and CDF
transformation (Michelangeli et al., 2009). The CDF transformation aims to improve QM by

accounting for changes in WSPD between historical and future projection periods.

In the context of ML models, CNN and recurrent neural networks have been applied due to their
ability to capture complex spatial and temporal patterns in climate data. Lin et al. (2023)
demonstrated that CNNs can enhance the spatial resolution of RCM outputs by extracting spatial
features from gridded wind speed data. Meanwhile, Zhang et al. (2021) showcased the suitability
of recurrent neural networks in capturing the relationships between wind speed datasets with

different spatial resolutions.
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Copula functions offer a flexible way to model the joint distribution of multiple variables while
allowing for different marginal distributions (Harry, 2014). Moradian et al. (2023) applied copula
functions to model the dependency between GCM outputs and reanalysis wind speed data,
demonstrating the superior performance of copula functions compared to the ensemble mean

method, which combines multiple GCM outputs into a single estimate.

Despite their advantages, statistical downscaling methods have limitations. One significant
constraint is the assumption of stationarity in the relationships between the GCM and RCM
outputs and local climate variables. Addressing these limitations remains a crucial area of ongoing

climate modeling and projection research.

2.6 Software and tools

This section presents the software and tools for wind speed estimation at PSLs and USLs. Table
2.7 lists the software available for the MCP method. The software and tools reported in the
literature for wind speed estimation at USLs are either S| software or ML packages available in
one of the programming languages commonly used in the scientific community. Table 2.8 lists
the software used for wind speed estimation at USLs. No specific software for the application of

RFA has been reported in the literature.

Table 2.7 Software and tools for MCP
Software tool Methods Latest Availability
implemented/features version
Continuum Orthogonal Regression;  Version Open source
VR; 3 https://www.continuumwind.com/
Method of Bins;

Matrix;
Reanalysis data
(reference site)

MINT LR; Version Licence

quantile regression; 1.1 https://www.sander-

orthogonal regression; partner.com/en/products/mint.html

multiple reference sites
WindFarm LR; Version Licence

Orthogonal regression 5 https://www.resoft.co.uk/English/index.htm
WindFarmer SLR; n/a Licence

PCA regression https://www.dnv.com/services/wind-resource-

assessment-software-windfarmer-analyst-3766

WindoGrapher LR; Version Licence

VR; 5 https://www.ul.com/services/windographer-

Matrix Time Series wind-data-analytics-and-visualization-solution

method (Lambert et al.,

2012);

Orthogonal least

squares,

84


https://www.continuumwind.com/
https://www.sander-partner.com/en/products/mint.html
https://www.sander-partner.com/en/products/mint.html
https://www.resoft.co.uk/English/index.htm
https://www.dnv.com/services/wind-resource-assessment-software-windfarmer-analyst-3766
https://www.dnv.com/services/wind-resource-assessment-software-windfarmer-analyst-3766
https://www.ul.com/services/windographer-wind-data-analytics-and-visualization-solution
https://www.ul.com/services/windographer-wind-data-analytics-and-visualization-solution

SpeedSort (King et al.,
2005);

Vertical Slice (Leblanc
et al., 2009), ;

Weibull fit (Van
Lieshout, 2010);
ERA5 and MERRA-2
reference data

WindPro Artificial neural network;  Version Licence
Matrix MCP Modeling 3.5 https://www.emd-international.com/windpro/
(Thagersen et al., 2007)
LR;
WSM
WindSim LR; Version Licence
MLP 11 https://windsim.com/

Table 2.8 Software and tools for estimation at USLs
Package/extension method Programming Reference
language/ Software

Geostatistical analyst SI ArcGIS (Ali et al., 2012; Luo
et al., 2008; Sliz-
Szkliniarz et al.,
2011; Van Ackere et
al., 2015; Ye et al.,
2015)

mgcv Statistical R (Li et al., 2014;
Reinhardt et al.,
2018)

Surfer Sl (Sapuan et al., 2011)

Geostatistical Software Sl FORTRAN (Berndt et al., 2018)

Library (GSLIB)

gstat Si R (Reinhardt et al.,
2018)

e1071 ML R (Reinhardt et al.,
2018)

nnet ML R (Reinhardt et al.,
2018)

scikit-learn ML Python (HAglund, 2020)

Neural Toolbox ML MATLAB (Fadare, 2010)

NN Toolbox ML MATLAB (Lawan et al., 2016;
Muhammad et al.,
2014)

nftool ML MATLAB (Kumar et al., 2016a)

Statistics Toolbox ML MATLAB (Jung, 2016)

SVM and Kernel Methods ML MATLAB (Foresti et al., 2011)

GRASP ML Splus (Etienne et al., 2010)

XGBoost ML Python (Houndekindo et al.,
2023b)

LSBoost ML Matlab (Jung et al., 20223;

Jung et al., 2020;
Jung et al., 2023b)
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2.7 Challenges and future directions

A significant barrier to increasing wind energy penetration in many regions is the lack of high-
quality datasets for assessing the temporal and spatial variability of this resource (Pelser et al.,
2024). During the previous decades, progress has been made toward developing statistical and
ML methods for wind speed estimation at PSLs and USLs. This paper reviewed these methods
to highlight recent advances and identify areas where further research and development are

necessary.

271 Challenges and advances in long-term estimation at partially sampled
locations

The MCP approach has traditionally been used to extend short-term wind speed records at PSLs.
One major challenge of this method is its reliance on a high-quality reference site near the PSL.
In recent years, the availability of reanalysis data has mitigated this limitation by providing
consistent, long-term wind speed data across broader geographic areas. However, using
reanalysis data introduces other challenges: the data quality can vary significantly depending on
the region (Miao et al., 2020) and the complexity of the terrain (Gualtieri, 2021; Potisomporn et
al., 2023). Due to their coarse resolution, reanalysis datasets often struggle to accurately
represent localized wind patterns, particularly in complex terrain, resulting in increased

uncertainty in wind speed estimates.

At PSLs, using available wind speed records to correct and improve the quality of reanalysis data
can effectively reduce uncertainty in long-term wind speed estimation. Additionally, the adoption
of nonlinear models, such as ANNs, and the introduction of additional explanatory variables (e.qg.,
wind direction and other meteorological variables) can further improve the models’ ability to
capture the complex, nonlinear relationship present in the overlapping data between the reference
site and the PSL.

The MCP approach is based on the assumption that the relationship derived from the overlapping
wind speed data remains stationary. This assumption may not always be valid, particularly in
regions where the wind regime exhibits notable temporal variability due to teleconnections and
climate change. This challenge is further amplified by the reliance on a single reanalysis wind
speed dataset as reference data. Some studies have reported inconsistencies in interannual
variability (Ramon et al., 2019) and trends (Fan et al., 2021; Miao et al., 2020) across different

reanalysis wind speed datasets.
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In such a situation, extending the wind speed records at the PSL could help reduce the uncertainty
in long-term estimations. However, due to time and financial constraints, collecting additional wind
measurements at the PSL may not always be feasible. In such cases, multiple reanalysis datasets
are recommended (Jung et al., 2023a). This approach can provide multiple scenarios of the long-
term wind resource or be combined into an ensemble to improve the robustness of the estimates.
Additionally, adopting a probabilistic modeling technique can effectively quantify the uncertainties

associated with long-term wind resource estimates.

2.7.2 Challenges and advances in long-term estimation at unsampled
locations

At USLs, no direct wind speed records could be used to correct biases in reanalysis wind speed
data. As a result, there is a growing reliance on corrected and uncorrected reanalysis data for
WRA at USLs. Simple BC methods, such as the linear scaling using the GWA, have improved
the accuracy of reanalysis wind speeds. While this method can improve the long-term MWS and
is applicable to virtually any USL, it does not sufficiently address the discrepancies in the temporal
variability of reanalysis wind speeds, as reported by several studies (Brune et al., 2021; Davidson
et al., 2022; Jourdier, 2020; McKenna et al., 2022; Ramon et al., 2019).

Consequently, there is a need to develop more advanced techniques that can improve both the
MWS and the temporal variability of reanalysis wind speed data. ML models were developed to
meet this requirement in regions with a well-established network of meteorological stations.
However, the global distribution of meteorological stations is uneven; even within a country,
coverage can be inconsistent. This disparity in data availability highlights the need for developing
reanalysis BC methods that can improve the long-term MWS and the temporal variability while
being transferable across diverse regions and terrains. These models should generalize beyond
specific geographic areas, ensuring that WRA in under-sampled or unsampled regions can benefit

from accurate and reliable wind speed predictions.

2.7.3 Future directions

Both reanalysis and measured wind speed data contain inherent uncertainties, which the
modeling processes can further compound. Accurately estimating these uncertainties is critical
for a reliable WRA. Probabilistic modeling techniques, such as Bayesian inference and quantile
regression, are often employed to quantify the uncertainties in model outputs. These techniques
provide a range of possible outcomes or prediction intervals instead of a single deterministic

prediction. This probabilistic information is essential for informed decision-making in wind energy
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projects, enabling stakeholders to consider the variability and risks associated with wind energy
potential. Despite its importance, uncertainty quantification at PSLs and USLs has received

limited attention in the literature.

Future research should focus on developing methods for uncertainty quantification at both PSLs
and USLs. For example, at PSLs, ANN models could be designed to output parameters of a
probability distribution function (Salinas et al., 2020) rather than single-point predictions, providing
a more comprehensive representation of the inherent uncertainty and variability in wind speed
predictions. At USLs, GB models, which are widely used, can be adapted by altering the loss
function to predict either parameters of a probability distribution function (Duan et al., 2020) or

conditional quantiles (Waldmann, 2018), allowing for the construction of prediction intervals.

Moreover, wind speed data is often subject to significant noise. Preprocessing the data with signal
decomposition techniques, such as wavelet analysis and variational mode decomposition
(Dragomiretskiy et al., 2014), is expected to improve the modeling procedure. These
decomposition techniques are increasingly applied in wind speed forecasting, with numerous
studies demonstrating improved model performance (Wang et al., 2021). By decomposing WSTS
into different subseries, these methods can effectively filter out noise and capture both short-term

fluctuations and long-term trends, leading to more accurate predictions.

Furthermore, the non-stationarity of WSTS poses a challenge for the long-term sustainability of
wind farm projects. Despite the significance of this issue, few studies have focused on
nonstationary wind speed estimation at PSLs and USLs. The availability of multiple reanalysis
datasets and GCM outputs provides valuable insights into the impacts of several sources of non-
stationarity. However, these datasets often come with high levels of uncertainty and coarse
resolution. More research is necessary to address these challenges, particularly in light of climate

change impacts on wind energy projections (Jung et al., 2022c).

2.8 Conclusion

Wind energy development is crucial to achieving Goal 7 of the United Nations’ Sustainable
Development Goals, which focuses on affordable and clean energy. Accurate methods for
estimating wind speed at partially sampled and unsampled locations, including assessments of
its long-term variability, are critical for informed decision-making. These methods help build
stakeholders’ confidence in adopting wind energy as a reliable renewable resource. This paper

reviews statistical and ML approaches for wind speed estimation at PSLs and USLs.
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At PSLs, the MCP method is commonly used to extend the available short-term wind speed
record, with most studies recommending at least a year of wind speed data at the PSL. Some
studies have shown that longer records can significantly reduce uncertainty, whereas shorter
records risk overestimating or underestimating resource potential due to seasonal variability. In
cases where nearby reference stations are unavailable for the MCP method, many studies have
turned to reanalysis wind speed data as a substitute. However, few of these studies validate the
accuracy of reanalysis data for their specific region, and even fewer assess the interannual
variability of the dataset. Discrepancies between the interannual variability of reanalysis data and
the actual wind speed variability in a region can lead to errors in estimating the resource potential
from hindcasted wind records at the PSL. Generally, more efforts are needed to evaluate the
predictions’ uncertainties at both PSL and USLs. While various uncertainty estimation methods

exist that can be incorporated into current frameworks, their adoption remains limited in practice.

At USLs, the standard method for wind speed analysis has traditionally been based on the Sl of
observed wind speeds, which depends on the availability of dense meteorological station
networks. In contrast, BC of reanalysis wind speeds is less reliant on such networks, particularly
when utilizing the GWA. ML methods incorporating reanalysis wind speed data and high-
resolution topographic and land use data have shown promising results in predicting wind speed
at USLs. However, there remains a need to develop transferable models that can be applied in

regions with a sparse network of stations.

The findings and recommendations outlined in this analysis have significant implications for the
wind energy industry and research. Accurate wind speed estimation directly supports the
optimization of site selection for wind farm projects, ensuring higher energy yields and improved
project efficiency. This review can assist in selecting the most effective methods depending on
different factors, such as the stage of the project, the data availability, and the complexity of the

terrain.

In addition to aiding the energy industry, the findings of this paper have broader implications for
research. Researchers can build on the reviewed methodologies to address current limitations,
such as improving uncertainty estimation and model transferability and developing nonstationary
wind speed estimation techniques at PSLs and USLs. Addressing these challenges can lead to
the development of more robust and scalable models capable of capturing wind speed variability
across different spatial and temporal scales. Furthermore, enhancing model interpretability and
transparency will be critical to building stakeholder trust, particularly when decisions have

significant economic and environmental impacts.
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Nomenclature

Abbreviations

a.g.l
ANN
BC
CDF
CELU
CNN
DEM
ERA5
EWS
GB
GCM
GRNN
GWA
K-NN
LR
MAE
MARE
MCP
MERRA-2

ML
MLP
MSE
MWS
NWP
PSL
QM
R2
RCM
RF
RFA

Above ground level

Artificial neural networks

Bias correction

Cumulative distribution function

Continuously differentiable exponential linear units
Convolutional neural network

Digital elevation models

European Center for Medium-Range Weather Forecasts Reanalysis v5
Extreme wind speeds

Gradient boosting

Global climate models

General regression neural network

Global wind atlas

K-nearest neighbor

Linear regression

Mean absolute error

Mean Absolute Relative Error

Measure correlate predict

Modern-Era Retrospective Analysis for Research and Applications, Version
2

Machine learning

Multilayer perceptron

Mean squared error

Mean wind speed

Numerical weather prediction

Partially sampled location

Quantile mapping

Coefficient of determination

Regional climate model

Random forest

regional frequency analysis
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RMSE
Sl
SRL
SVR
USL
VR
WMO
WRA
WSPD
WSTS

Symbols

GWA

MERRA

p@®
e(sy)
ETTmean
Err,ar
Fgs()
FLN )
E.()
A0
h®

KBS(')
kGWA

Kin()
kMERRA

s

= >
<3

Qi

Root mean squared error

Spatial interpolation

Surface roughness length

Support vector regression
Unsampled location

Variance ratio regression

World Meteorological Organization
Wind resource assessment

Wind speed probability distribution

Wind speed time series

Power law exponent

Weibull scale parameter from the GWA

Weibull scale parameter from MERRA-2

Kernel bandwidth

Multilayer perceptron bias vector of the [-th layer
Residuals at sampled locations s;

Relative bias in the prediction mean

Relative bias in the prediction variance
Birnbaum-Saunders CDF kernel

Log-Normal CDF kernel

Empirical Cumulative distribution function
Multilayer perceptron activation function of the [-th layer
Multilayer perceptron hidden vector of the [-th layer
Birnbaum-Saunders kernel function

Weibull scale parameter from the GWA
Log-Normal kernel function

Weibull scale parameter from MERRA-2

Kriging weights

Sample L-Moments of order r

Mean wind speeds

Mean of the observed values
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0; Observed value

14 Mean of the predicted values

o) Cumulative distribution function of the standard normal distribution.
D; Predicted value

Qa() Quantile function of the Kappa distribution

r L-moment order

o Standard deviation of the wind speed

3] Estimated of the Kappa distribution

U, Wind speed at a height of z

Uy, Wind speed at a reference height z,

w® Multilayer perceptron weight matrix of the [-th layer
Xin Sample order statistics

y Estimated wind speed

yERAS Wind speed value from ERA5

yGWa Mean wind speed from the GWA

yMERRA Wind speed value from MERRA-2

yMERRA Mean wind speed from MERRA-2

Z Roughness length
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Au cours de la revue de littérature, nous avons constaté une absence de consensus sur les
variables explicatives, en particulier topographiques, pour I'estimation des vitesses du vent aux
sites non échantillonnés. Nous avons donc procédé, dans I'article 2, a une analyse comparative
des variables explicatives identifiées dans la littérature, en analysant leur influence sur les
différentes plages de vitesse du vent. En plus de répondre a I'une des pistes de recherche mises
en evidence dans la revue de littérature, cet article représente une étape clé dans le
développement des approches proposées dans les travaux suivants, car il permet d’identifier les
facteurs les plus pertinents et a optimisé leur intégration dans les modeles d’estimation du vent

aux sites non échantillonnés.
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Abstract

Wind speed estimation at ungauged locations is one of the preliminary steps for wind resource
assessment. With the availability of high-resolution Digital Elevation Models (DEM) and remote
sensing data, the number of potential wind speed predictors has grown substantially. The
adequate spatial scale of these predictors is unknown a priori, leading to the use of multiple spatial
scales of predictors in wind speed estimation models. Implementing a feature selection method
as a pre-processing step of the analysis is necessary to avoid overfitting and the resulting potential
model underperformance. This paper evaluated six feature selection methods (forward stepwise
regression, Least Absolute Shrinkage and Selection Operator (LASSO), Elastic Net, Maximum
relevance Minimum redundancy (MRMR), Genetic algorithm, and recursive feature elimination
using support vector regression) for the estimation of different wind speed quantiles across
Canada. The selected features were used to fit a regression-kriging model, and the importance
of the predictors was evaluated with their associated regression coefficients. The results of the
study showed that LASSO and MRMR are the most efficient algorithms with the least number of
parameters to tune and good generalization performance. The study found that some predictors
were more important for specific exceedance probabilities. The most important predictors were

the distance from the coast and surface roughness length, regardless of exceedance probability.

Keywords: Exceedance probability, Feature selection, Machine learning, Topographic feature,

ungauged location, Wind speed.
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3.1 Introduction

The global energy system significantly contributes to greenhouse gas emissions, with a share of
approximately 34% (Lamb et al., 2021). Alternative energy sources, such as wind, can help
mitigate the environmental footprint of our energy system (Jung et al., 2018b; Shin et al., 2016).
Wind energy production has experienced substantial growth during the last decades, accounting
for 8% (594 GW) of the 7 400 GW of installed generating capacity worldwide as of 2019
(International Renewable Energy Agency, 2022). Unlike conventional energy sources such as
coal and nuclear energy, wind energy is intermittent and heavily reliant on wind speed (WS). A
sound understanding of the WS variability at a location of interest for wind energy production is
necessary to integrate the energy source effectively into the energy mix (Aries et al., 2018). A
significant step in wind energy planning is identifying a good location for resource exploitation.
Potential sites of interest often do not coincide with a location where extensive WS measurements
are available. Therefore, it is helpful to implement approaches that estimate wind resources at

ungauged locations.

The challenge of WS estimation at ungauged locations has initially been tackled with spatial
interpolation models. In recent studies, machine learning models have gained more popularity,
and some researchers have suggested combining spatial interpolation models and machine
learning (see Houndekindo et al. (2023c)) for a detailed review of WS estimation at ungauged
locations). These developments have led to the experimentation of new predictors, notably
topographical features extracted from a Digital elevation model (DEM). Many topographical
features can be used for WS modelling (Maxwell et al., 2022). One such feature is terrain
curvature, which has been identified as one of the most effective WS predictors in regions with
complex terrain, according to a study conducted in Switzerland by Robert et al. (2013). Several
land surface parameters (e.g., plan curvature, gaussian curvature, minimum curvature) extracted
from DEM can be used to describe the terrain curvature (Wilson, 2018), leading to several
possible features to include in the model. Some of these features will undoubtedly be redundant
(Maxwell et al., 2022). The selection of the spatial scales of the topographical features represents
another significant challenge. Two potential downsides of incorporating too many features into
the model are overfitting the model's parameters to the training data and compromising the
model’'s interpretability. To address this issue, feature selection (FS) can be used as a
preprocessing step to build more accurate and concise models while minimizing computation time
(Guyon et al., 2003).
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FS methods are often categorized as filter-based, wrapper, or embedded methods (Guyon et al.,
2003). Filter-based methods are more computationally efficient and less prone to overfitting
compared to wrappers and embedded methods (Zhou et al., 2021b). A drawback of most filter
methods compared to wrappers and embedded methods is their inability to consider feature
interactions (Urbanowicz et al., 2018). The filter approach selects predictors based on their
relevance to the dependent variable. In the case of regression, the correlation coefficient can be

used to assess the relevance of features.

On the other hand, wrappers and embedded methods rely on the model performance to select an
optimal set of features. The wrapper methods search for the feature subset, which gives the best
performance with a predefined learning algorithm. Wrapper methods can be used with any model,
while embedded methods rely on models that inherently rank the features’ importance (e.g.,

random forest) or eliminate irrelevant features (e.g., penalization methods).

Most studies have applied a data-driven approach to solving the feature selection challenge for
WS estimation. For example, Robert et al. (2013) applied a modified version of the general
regression neural networks to select the best spatial scale and topographical features for monthly
WS interpolation. Jung (2016) employed feature importance ranking with random forest and a
forward stepwise feature selection to identify suitable predictors for WS estimation. In the second
step, the author used the variance inflation factor to evaluate feature redundancy in the study. For
extreme WS mapping, Etienne et al. (2010) used the linear correlation between predictors to
evaluate their redundancy and backward elimination to retain the most important predictors in the
model. Foresti et al. (2011) applied a multiple kernel learning model for FS in WS mapping.
Veronesi et al. (2016) employed the Least Absolute Shrinkage and Selection Operator (LASSO)
technique to select relevant features to implement a statistical model for estimating WS

distribution at ungauged sites.

To the best of our knowledge, no studies compared the performance of FS methods for WS
estimation at ungauged locations. Nevertheless, such comparison is necessary as the number of
available WS predictors increases, and so is the risk of redundancy and overfitting. Comparative
studies are essential as they allow for a systematic comparison of various approaches with
diverse complexity and performance levels. They serve as a basis to identify the strengths and
weaknesses of each approach and better understand their performance in different conditions.
Several comparative studies of features selections methods have been conducted in studies
related to environmental variables. For instance, Carta et al. (2015) compared a wrapper method

to afilter approach for FS for long-term WS prediction at locations with a short record. The authors
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found that the filter method produced sparser feature subsets, while the wrapper method had a
better predictive ability. In that study, FS increased the interpretability of the final model while
improving its performance. Seven FS methods were compared for river flow quantile estimation
in ungauged basins (Fouad et al., 2020). The authors found that the FS methods performed better
than dimension reduction techniques (principal component analysis) to reduce multicollinearity in
the feature subsets. The same study observed similar performance between FS using experts'
knowledge and data-driven FS methods. Rodriguez-Galiano et al. (2018) evaluated the
performance of various FS methods to predict the probability of the occurrence of nitrates above
a threshold value in groundwater. The study revealed that FS helped isolate and identify the main
drivers of nitrate pollution in groundwater. Chen et al. (2019) conducted a comparative study of
statistical models with various FS methods to predict fine particles and nitrogen dioxide
concentration across Europe. The study found that regularization algorithms such as LASSO and
Elastic Net (ENET) efficiently selected relevant predictors despite high multicollinearity in the

feature set. Also, the regularization algorithms had the additional benefit of model interpretability.

This study compared six different FS methods for WS quantile estimation. These methods
included forward stepwise regression (FSWR), LASSO, ENET, Maximum relevance Minimum
redundancy (MRMR), Genetic algorithm (GALG), and recursive feature elimination using support
vector regression (RFES). The selected algorithms are composed of filter-based (e.g., MRMR),
wrappers (e.g., FSWR, GALG), and embedded methods (e.g., LASSO, ENET, RFES). The
selected predictors or features were used with a regression kriging (RK) model (Hengl et al., 2007)
to estimate various WS quantiles. The RK model has previously shown promising results for WS
estimation (Alsamamra et al., 2010; Lee, 2022). Reinhardt et al. (2018) also found that RK
performed better than Artificial Neural Networks (ANN) and Support Vector Machines (SVM) for
WS interpolation. RK is an attractive approach for interpolating environmental variables (Hengl et
al., 2007). It allows the use of relevant predictors, and unlike universal kriging and kriging with
external drift, RK can be adapted with various types of regression models (e.g., Random Forest,
Generalized Additive Models).

The study also evaluated the importance of various predictors for estimating WS quantiles with
different exceedance probabilities. Most features used in previous studies were derived and
compared within the same framework. In addition, alternative features related to conventional WS
predictors used in the literature were also evaluated. These alternative features may provide
additional information and insights into WS behaviour at different exceedance probabilities and

could improve the accuracy of WS predictions.
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The paper is organized as follows. The dataset used is described in section 3.2. In section 3.3,
the six FS methods evaluated are presented. Section 3.4 presents the results of the analysis. The

discussion and the conclusion are given in sections 3.5 and 3.6, respectively.

3.2 Data

3.21 Wind speed data

The data analyzed in the study are hourly WS data at 10m above ground from measurement
stations across Canada. The data were obtained from Environment and Climate Change Canada
(ECCC) historical climate database. Stations with at least 20 years of record available until 2010
were selected, and only those with at least ten years of record with less than two months of
missing data were used. Figure 3.1 shows the spatial distribution of the selected stations, which

amounted to 207.
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Figure 3.1 Study region and locations of the 207 selected stations

From the hourly records, empirical WS quantiles were estimated using the Weibull plotting

position formula:
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Equation 3.1

i
P,=PWs>Ws;) =——
i Ws 5;) n+1

where P; is the probability of exceedance associated with the observed hourly wind speed ( Ws;), i is the rank
of the observed wind speed Ws; sorted in descending order, i = 1 corresponds to the highest
observed WS, and i = n corresponds to the lowest observed WS, with n the number of
observations.

Monotonic decreasing penalized splines (P-Splines: Paul et al., 1996; Pya et al., 2015) were fitted
between the exceedance probabilities and their associated observed WS quantiles to construct
the empirical complementary cumulative distribution function (survival function). The fitted curve
was used to estimate WS quantiles at 14 fixed percentile points at each location in the study area.
The following 14 fixed percentile points were selected: p = 0.01%, 0.1%, 1%, 5%, 10%, 20%,
30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% to cover an extensive range of WS quantiles. The
P-Splines is a non-parametric model that allows fitting a smooth and flexible curve to data.
Monotonic decreasing constraints were imposed on the P-Splines to respect the monotonic nature

of complementary cumulative distribution functions.

3.2.2 Predictors

The predictors used in the study are topographical, surface roughness length, geographical
coordinates, and the location distance from the coast. Table 3.1 provides more details on these
predictors. The topographical variables were extracted from a resampled (100 m spatial
resolution) ALOS DEM (Tadono et al., 2014) and computed with the WhiteboxTools (Lindsay,
2014) developed at the University of Guelph, Canada. Information on the land cover type obtained
from a 2015 land use map of Canada (Latifovic et al., 2017) was used to estimate the surface
roughness length according to Wiernga (1993). The land use map was resampled to produce
multiple spatial resolutions, with majority resampling (mode) providing information on the most

common land use type for the given spatial scale.

Some of the features selected for the study were previously studied because they describe
physical processes that influence wind movement. This study also introduced alternative features
describing similar physical processes. For instance, Jung (2016) used slope (SLPE), curvature,
aspect (ASPC), roughness length (RGLH) and relative elevation for WS mapping in Germany. In
the present study, relative elevation measures used were deviation and difference from mean
elevation (DVME and DFME), relative topographic position (RTGP) and elevation percentile

(ELVP). Also, seven surface curvature measures (gaussian, maximal, mean, minimal, plan,
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tangential, and total curvature) were extracted from the DEM and used as WS predictors. In
Switzerland, Foresti et al. (2011) used altitude (ELVT), geographic coordinates (XGEO and
YGEO), and Differences of Gaussians (DOGS) to map WS. DOGS serves as a measure of terrain
convexity and approximates the Laplacian of Gaussian (LPGS: Lowe, 2004). In the current study,
DOGS and LPGS were both evaluated. Veronesi et al. (2015) employed topographical surface
roughness from a DEM to interpolate the parameters of the Weibull distribution for wind resource
mapping. Alternative topographical surface roughness measures employed in the present study
were the ruggedness index (RUGI), the surface area ratio (SART) and the standard deviation of
the slope (STDS). Etienne et al. (2010) generated landform classes (e.g., canyons, ridges,
valleys) from a DEM to model WS. Geomorphologic phenotypes (GMPG) and the Pennock
landform class (PNCL) were two alternative landform classifications used in the present study.
The distance from the coast (DSEA) was also used as a WS predictor in the current study, as
done by Aniskevich et al. (2017).

Table 3.1 Description of the predictors and their spatial scale
Predictor Abbreviation Description Spatial scale
Altitude ELVT Altitude of the location in m.
Aspect ASPC Slope orientation in degree. 100m, 500m, 1000m,

1500m, 2000m

Deviation from mean DVME Difference between the grid 100m, 500m, 1000m,

elevation cell elevation and the mean of 1500m, 2000m
its neighbouring cells
normalized by the standard
deviation.

Difference from cell DFME Difference between the grid 100m, 500m, 1000m,

mean elevation cell elevation and the mean of 1500m, 2000m
its neighbouring cells.

Difference of Gaussian DOGS Difference between two copies  (100m, 500m), (100m,
of the DEM smoothed with two  1000m), (500m,
different gaussian kernel. 1000m), (300m,
Measure land surface  500m), (1000m,
curvature. 2000m), (1000m,

1500m), (100m,
2000m), (500m,
2000m)

Distance to coast DSEA The location distance to the
coast

Elevation percentile ELVP Percentile of the grid cell 100m, 500m, 1000m,
elevation relative to the 1500m, 2000m
neighbouring cells.

Gaussian curvature GSCV Product between the maximal 100m, 500m, 1000m,
and the minimal curvature. 1500m, 2000m
Measure of surface curvature
(Florinsky, 2017).

Geographical XGEO, YGEO Geographical coordinates of

coordinates

the location.
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Geomorphologic GMPG Landform element

phenotypes classification with the

(geomorphons) geomorphons-based method
(Jasiewicz et al., 2013).

Laplacian of Gaussian  LPGS Derivative filter used to 100m, 500m, 1000m,
highlight location of rapid 1500m, 2000m
elevation change.

Maximal curvature MXCV Measure of surface curvature 100m, 500m, 1000m,
(Wilson, 2018). 1500m, 2000m

Mean curvature MNCV Measure of surface curvature 100m, 500m, 1000m,
(Wilson, 2018). 1500m, 2000m

Minimal curvature MICV Measure of surface curvature 100m, 500m, 1000m,
(Florinsky, 2017). 1500m, 2000m

Pennock landform class PNCL Landform classification based
on the slope and curvature of
the grid cell (Pennock et al.,

1987).

Plan curvature PLCV Measure of surface curvature 100m, 500m, 1000m,
(Florinsky, 2017). 1500m, 2000m

Relative topographical RTGP Normalized measure of the 100m, 500m, 1000m,

position grid cell elevation relative toits  1500m, 2000m
neighbouring cells.

Ruggedness index RUGI A measure of the local terrain  100m, 500m, 1000m,
heterogeneity (Jasiewicz et al., 1500m, 2000m
2013; Riley et al., 1999).

Slope SLPE Slope at the grid cell. 100m, 500m, 1000m,

1500m, 2000m

Standard deviation of STDS Measure of surface roughness 100m, 500m, 1000m,

slope (Grohmann et al., 2011). 1500m, 2000m

Surface area ratio SART Measure of the surface 100m, 500m, 1000m,
roughness (Jenness, 2004). 1500m, 2000m

Surface roughness RGLH Surface roughness length 100m, 500m, 1000m,

length estimated from land use map.  1500m, 2000m

Tangential curvature TGCV Measure of surface curvature 100m, 500m, 1000m,
(Florinsky, 2017). 1500m, 2000m

Total curvature TLCV Measure of surface curvature.  100m, 500m, 1000m,

1500m, 2000m

3.3 Materials and method

3.31 Feature selection methods

3.3.1.1

Forward stepwise regression

The stepwise regression is a greedy FS algorithm extensively covered in the literature. Three

variants of the method exist backward, forward, and bi-directional stepwise regression. Backward

stepwise regression builds a model with all potential predictors and eliminates the least relevant

predictors at each iteration. Forward selection begins with a “null” model containing only a

constant term and adds the most relevant predictors to the regression model at each iteration. Bi-
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directional stepwise regression combines backward and forward stepwise regression. Various
criteria have been used in the literature to measure the predictors’ relevancy (e.g., AIC, P-value,
R2-adjusted).

There is a thorough discussion in the literature about the shortcomings of stepwise regression
(Whittingham et al., 2006), with Smith (2018) advising against its use. The author found that
stepwise regression underperformed as potential predictors increased. However, the method
remains widely used in the scientific community. In this paper, a forward stepwise regression
(FSWR) was applied as a benchmark. The algorithm was initiated with the null model, and
potential predictors that led to the most significant increase in R%-adjusted were added at each
iteration. This procedure is repeated until no candidate variables left could improve the R2-
adjusted. A similar forward stepwise regression approach was implemented by Chen et al. (2019)
and performed better than backward stepwise regression for annual average fine particle (PMas)

and nitrogen dioxide (NO) concentrations prediction.

3.31.2 Least Absolute Shrinkage and Selection Operator

LASSO algorithm is a penalty-based linear model developed by Tibshirani (1996), which imposes
an L1-norm penalization on the regression coefficient forcing some coefficients to zero and thus

producing a sparse solution. The LASSO regression coefficient estimates are given by:

Equation 3.2

p
B = argminB(Y - X,B)T(Y - Xﬁ) + aZ|ﬁf|1
=1

]

where Y is the response vector, X is the matrix of predictors, f are the regression coefficients, p is the number
of predictors, a is a tuning parameter that controls the degree of penalization, a2f=1|ﬁl-|1 is
the penalization term and |.|* represents the L1-norm of a vector.

Zou et al. (2005) discussed some limitations of LASSO regression, which renders the algorithm
inappropriate for FS in some situations. A particularly relevant limitation in this study is the inferior
prediction performance of LASSO regression compared to Ridge regression when there is a high

correlation between the predictors.
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3.31.3 Elastic Net

LASSO regression can be seen as a particular case of the Bridge regression introduced by Frank

et al. (1993). In Bridge regression, the penalization term in Equation 3.2 becomes
azf.’=1|ﬁj|y withy > 0. LASSO regression is equivalent to Bridge regression when y = 1.

Another well-known case of Bridge regression is Ridge regression with y = 2. With Ridge
regression, the regression coefficients are shrunk depending on the predictors’ importance, but

they are not set to zero if the variables are irrelevant to the regression.

The ENET model combines the Ridge and the LASSO penalty. The Elastic net algorithm

minimizes the following equation:

Equation 3.3

14 14
ming (¥ = XB)' (v = XB) + a2 Y || + a1 =2 ) |8
= =

where a and 1 (0 < 4 < 1) are two hyperparameters of the model that can be selected using cross-validation.
3.314 Genetic Algorithms

GAGL is an optimization algorithm that emulates natural evolution and selection to find an optimal
solution. It has been implemented in several studies for FS (Amini et al., 2021; Eseye et al., 2019;
Gokulnath et al., 2019; Leardi et al., 1992). The algorithm starts with a population of solutions
(individuals) initialized randomly. A fitness measure is defined to evaluate every solution in the
population. A new population is formed by producing offspring from the best solutions of the old
population (by reproduction and genetic mutation). This procedure is repeated until a stopping
criterion is reached. Several variations of the algorithm control, among others, how the offspring
of the population are bred. The different steps of the genetic algorithm implemented in this study

are described as follows:

Step 1: A population was initialized randomly with 50 potential solutions. The solutions were
encoded as a sequence of binary strings (the genes), with each gene associated with a particular
feature among the candidate features. A selected gene (a feature) was represented by “1” and a
none selected gene by “0”. The population is represented by a binary matrix where the rows

represent the potential solutions, and an entry represents a feature or a gene.
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Step 2: The 50 solutions in the population were evaluated (fitness score), and the best solution

was copied without modification to the next generation.

Step 3: The next generation's parents were selected with the roulette wheel selection method: the
solutions with the highest fitness score have more chances to be selected as parents for
reproduction to produce offspring. The reproduction process was performed through two genetic

operators, uniform crossover and mutation.
Step 4: Step 3 was repeated until the new population size equalled the initial population size.
Step 5: Steps 2 to 4 were repeated until the maximum number of iterations was reached.

Table 3.2 presents different parameters of the algorithm used in this study. The performance of
the solutions was evaluated with a 10-fold cross-validation root mean squared error (RMSE)

estimated with a simple linear regression model:

Equation 3.4

10

1 | 2
RMSE(CV) = > |=> (= 9)
=14 Fimt

where ny, is the size of the kth fold, and y; and y; are the observed and predicted WS values.

The fitness score was estimated as a weighted sum of the solution performance (RMSE) and its

cardinality (Card) as follows:

Equation 3.5

w 1-—w
po W = w)
RMSE; Card;

where 0 <w; <1

The probability of selection of a solution for the reproduction process was assigned based on:

Equation 3.6
Psel; = ———
50
i=1 Fi
Table 3.2 Selected parameters of the genetic algorithm
GA parameter Value/method
Initial population size 50
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Crossover type Uniform

Crossover probability 0.9
Mutation probability 0.05
Selection process roulette wheel selection
Maximum number of iterations 100
wy 0.1,0.5,0.7
3.3.1.5 Minimum redundance — Maximum relevance

Filter-based FS approaches such as maximal relevancy (e.g., correlation) do not require the
regression model to be evaluated multiple times (e.g., in cross-validation); they are relatively
computationally efficient and less prone to overfitting. One of their drawbacks is their failure to

ignore redundant predictors correlated to the response variable.

The MRMR algorithm is an iterative approach developed by Ding et al. (2005) to improve
conventional filter-based FS approaches. MRMR benefits from the advantages of the filter-based
FS approach while ignoring redundant features in the process. At each iteration of the MRMR
algorithm, a function measuring the redundancy and relevancy is computed, and the feature that
maximizes this function is selected. Several measures of relevancy and redundancy have been
proposed in the literature depending on the type of variables (discrete vs. continuous), the desired
level of trade-off between relevancy and redundancy (Zhao et al., 2019), and the type of
relationship (linear or nonlinear). In this study, the relevancy is measured with the F-statistic
(F(y,x;))- The redundancy of a non-selected feature is measured as the inverse of the sum of the
correlation between the feature and the selected features (Ding et al., 2005), and the MRMR

optimization criterion function is:

Equation 3.7
F(y'x')
f(xi) = 1 .
S
S &j=1 p(xs, x;)

where p(x4,x,) is the Pearson correlation coefficient between features x; and x,, and s is the number of
selected features.

Equation 3.8
p (v, x:)?
[1-p(y, x)?]

where n — 2 is the degree of freedom of a simple linear regression model fitted with n samples, one predictor
and a constant term

F(y,x) = X (n—2)
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At each iteration, the algorithm seeks to find the feature (x;) which maximizes f (x;). The stopping
criterion of the algorithm (number of selected features to include in the model) is a hyperparameter

that can be determined using cross-validation.

3.3.1.6 Recursive Feature Elimination Support Vector

Regression

The RFES algorithm (Guyon et al., 2002) is a backward elimination algorithm. The model is fitted
to the data at each iteration, and the least important predictor is removed from the feature set.
This process is repeated until a stopping criterion (e.g., minimum size of feature set) is reached.
The stopping criterion can be determined through cross-validation. In the RFES algorithm, the
importance of a predictor is measured by the square of its associated coefficient in the weight
vector (w : Equation 3.17) using the epsilon-insensitive SVR formulation (Vapnik, 2000), with

epsilon the maximum tolerable deviation between the predictions and the observed values.

Let f(x) be the linear function used to approximate the relationship between the predictors (x)

and the response variables y:

Equation 3.9
fx)=(w.x)+ b

In the epsilon-insensitive SVR formulation (Vapnik, 2000), the loss function is defined as follows:

Equation 3.10

(0 ifly—fl<e
Loss = { ly — f(x)| — € otherwise

It is desirable to find a solution to Equation 3.9 having w with minimum norm to reduce the model

complexity. The optimization problem can be re-written as follows:

Equation 3.11
. 1 2
minimize J(w) = E”W”

Subject to:

Equation 3.12
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lyi — (w,x;)+ b| < ¢

With noisy data, f(x) may not satisfy the epsilon-insensitive constraint. Therefore, slack variables
(&;¢;) are introduced for each point to allow less restrictive constraints leading to the following
formulation (Vapnik, 2000):

Equation 3.13
1 n
minimize J[(w) = 2 lwl|? + C Z(fi +¢0)
i=1

Equation 3.14

vi — (w.x))— b <e+¢
subject to: { (W, x;))+ b—y; <e+¢
§i&i =0

where C is a regularization parameter

From the objective function and the constraints (Equation 3.13 and Equation 3.14), a Lagrange

function L is defined by introducing non-negative Lagrange multipliers a;a;,n;7n;:

Equation 3.15

n

1 n n
L= SIWIZ+C ) (46D = ) i +mi6) = ) aile+§—yi+ (wx) + b)
i=1 i=1 i

=1

— 2af(s+f{"+yi — (w,x;) — b)

i=1

At the saddle point, the partial derivatives of L in all directions are null, giving the following

equations in w direction:
Equation 3.16

n
oL/ow =w —z(ai +a)x; =0
i=1

Equation 3.17
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n
w= Z(ai + a))x;
i=1

3.3.2 Performance evaluation

The RK model was implemented to estimate the WS quantiles using the selected predictors. The

RK model can be expressed as follows (Hengl et al., 2007):

Equation 3.18

p n
9(s0) = D B xxilsp) + ) A% & (s)
k=0 i=1

Where y(sq) is the estimated WS quantile at the target location (s;), x,(so) are the values of the predictors at
the target location, and B, are the regression coefficients. 4; are the ordinary kriging weights,
and &£(s;) are the regression residuals at the sampled locations.

From the available data (207 samples), 155 samples (training set) were randomly selected for
FS and fitting the RK model. The remaining 57 samples (test set) were used for the model
evaluation. This procedure is a common practice in statistical modelling for the validation of the
results (for instance, Qiu et al. (2022); Sun et al. (2023b)). It helps ensure unbiased assessment
and generalization of the model's predictive capability. In addition, 10-fold cross-validation was
performed on the training set, and the results were presented. Veronesi et al. (2016) used a similar
validation procedure to validate their models for predicting WS distribution parameters at

unsampled locations in the UK.

The coefficient of determination (R?), the RMSE, the Relative Root Mean Squared Error
(RRMSE), and the Mean Absolute error (MAE) were computed separately for each percent point
considered in the study to evaluate the performance of the RK models during the cross-validation

and with the test set:

Equation 3.19

it i —9)°

R?=1- -
Y (i = 3)?

Equation 3.20
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n
1
RMSE = | =3 (= 9))?
i=1

Equation 3.21

n

1 A%
RRMSE = —Z(”_”)
n y

i=1

Equation 3.22

Z?:ﬂ}’i — ¥l
n

MAE =

3.4 Results

3.41 Wind speed quantiles

WS quantiles corresponding to 14 fixed percentile points for each location were estimated using
shape-constrained P-Splines and the Weibull plotting position formula. Table 3.3 illustrates some

statistics of the estimated WS quantiles in the training set.

Table 3.3 WS quantile statistics (P-Splines)

Percentile Abbreviation mean std min 25% 50% 75% max
% m/s m/s m/s m/s m/s m/s m/s
0.01 P1 19.68 5.72 7.92 15.49 19.54 23.29 45.58
0.1 P2 18.42 5.16 7.67 14.81 18.24 21.55 40.75
1 P3 12.72 3.92 5.75 9.90 12.17 15.07 29.75
5 P4 10.05 3.16 3.79 7.83 9.80 12.14 20.65
10 P5 8.63 2.65 3.15 6.84 8.43 10.48 17.51
20 P6 6.96 2.15 2.39 5.43 6.85 8.44 14.11
30 P7 5.85 1.84 2.00 4.61 5.73 7.08 11.88
40 P8 4.98 1.59 1.75 3.92 4.9 5.93 10.11
50 P9 4.24 1.39 1.56 3.33 4.17 5.12 8.61
60 P10 3.57 1.21 1.34 2.79 3.46 4.35 7.30
70 P11 2.92 1.02 1.07 2.28 2.77 3.53 6.08
80 P12 2.28 0.82 0.80 1.74 2.15 2.73 4.94
90 P13 1.55 0.58 0.51 1.19 1.45 1.87 3.41

95 P14 1.08 0.42 0.35 0.79 1.03 1.30 2.34
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3.4.2 Model performances

The average R?, RMSE, RRMSE, and MAE of the cross-validation with the training and the test
set are listed in Table 3.4 and Table 3.5, respectively. When evaluated by cross-validation, the
average R? ranges between 0.18 and 0.50, and the average RRMSE ranges between 22.4% and
33.1%. On the test set, the average R? ranges between 0.14 and 0.60, and the average RRMSE
ranges between 20.7% and 35.5%. Model performance measured by cross-validation showed
that GAGL was the best-performing FS algorithm, followed by MRMR, ENET and LASSO. On the
test set, ENET, LASSO, and MRMR were the best-performing FS methods, and GALG and RFES
had relatively medium performances. FSWR was the worst-performing FS method during cross-

validation and with the test set.

A two-sample t-test ( Hy:pUarrmse = Mo, Hi:larrmse < Ho) was conducted to assess the
difference between the expected RRMSE (uarrmse = Hirrmse — Hzrruse) O pairs of FS methods
on the test set. The results are presented in Table 3.6. The expected RRMSE of FSWR is
significantly superior to the expected RRMSE of all the other FS methods. Also, ENET, LASSO,
and MRMR performances were not significantly different when considering the RRMSE. However,
ENET, LASSO, and MRMR performances were significantly superior (lower RRMSE) to GALG
and RFES at the significance level of a = 0.05. There was no statistically significant difference
between the expected RRMSE of GAGL and RFES.

Table 3.4 Performance of FS methods with cross-validation on the training set
FS method R2 RMSE RRMSE MAE
- m/s - m/s
ENET 0.410 1.668 0.246 1.238
FSWR 0.125 2.978 0.347 1.699
GALG 0.510 1.432 0.222 1.120
LASSO 0.408 1.659 0.246 1.239
MRMR 0.417 1.645 0.244 1.230
RFES 0.317 1.702 0.272 1.238
Table 3.5 Performance of FS methods on the test set
FS method R2 RMSE RRMSE MAE
- m/s - m/s
ENET 0.559 1.312 0.21 0.911
FSWR 0.137 2.307 0.353 1.555
GALG 0.491 1.438 0.233 1.002

LASSO 0.596 1.231 0.207 0.869
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MRMR 0.602 1.226 0.211 0.847

RFES 0.459 1.506 0.24 1.053
Table 3.6 Results of the t-test between the expected RRMSE of pairs of FS methods
HU2RRMSE
FS method ENET FSWR GALG LASSO MRMR RFES
ENET -4.69 -2.03 0.59 -0.18 -1.88
FSWR 4.69 3.46° 4.77 4.517 3.14°
E GALG 2.03" -3.46 2.26" 2.21° -0.78
§ LASSO -0.59 -4.77 -2.26 -0.91 -2.09
= MRMR 0.18 -4.51 -2.21 0.91 -1.99
RFES 1.88" -3.14 0.78 2.09° 1.99

" WirrmsE — M2rrusk IS significantly greater than 0 at a = 0.05

The RRMSE of the FS methods is presented in Figure 3.2 for the standalone multilinear
regression model (REG) and the regression-kriging model (ROK). The kriging of the regression
model residuals led to a slight improvement in the performance metric. On average, the residual
kriging decreased the RRMSE by 4%.

Figure 3.3 presents the RRMSE of the different WS quantiles. The model performance
deteriorated as the probability of exceedance increased. For example, the mean RRMSE for the
estimation of P1 is 17.0% (excluding FSWR), 21.4% for P9 (excluding FSWR), and 29.3% for P14
(excluding FSWR). FSWR performed relatively poorly for the estimation of P1 to P8 and improved
for the estimation of P9 to P14.
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Figure 3.2 RRMSE of the standalone multilinear regression model (REG) and the regression-kriging
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Figure 3.3 RRMSE of the FS methods for the estimation of different WS quantiles
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343 Parsimony and multicollinearity

Figure 3.4 presents the mean number of selected features for each FS method. On average, the
FSWR (44) method was the least sparse of the algorithm, followed by RFES (18) and GAGL (17).
LASSO selected, on average, five features and was the sparsest FS method, followed by ENET
(9) and MRMR (11). Figure 3.5 illustrates the mean number of selected features against the mean
RRMSE. In general, the performance of the FS methods decreased (the RRMSE increased) as
the number of selected features increased. Although FSWR selected many features, the model’s
performance remained relatively poor. As seen previously, the performance of ENET, LASSO
and MRMR were not statistically different (two-sample t-test of the expected RRMSE), but LASSO

was, on average, slightly more parsimonious.

50 +
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10 - 17 18

11

Mean number of selected features

5

ENET FSWR GALG LASSO MRMR RFES
FS methods

Figure 3.4 Mean number of selected features of each FS method
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Figure 3.5 Mean number of selected features vs. mean RRMSE

The condition number (C) is a measure used to evaluate the presence of multicollinearity in a set
of predictors. It is defined as the square root of the ratio between the maximum and the minimum
eigenvalue of the predictor’s correlation matrix. It is a single value summarising the likelihood of
multicollinearity. Figure 3.6 shows the condition number estimated from the correlation matrix of
the selected feature sets. From empirical observations, Chatterjee et al. (2013) suggested a cut-
off of 15 to detect multicollinearity and recommended corrective action if C exceeds 30. All the
feature sets estimated with LASSO had a condition number below 15. In the case of MRMR, the
condition numbers were less than 15 in 13 cases out of 14 (92.8%) and were consistently below
30. For ENET and GAGL, the condition number was less than 15 in 11 cases out of 14 (78.6%).
RFES condition numbers were inferior to 15 in 8 cases out of 14 (57.1%), and FSWR condition

numbers consistently exceeded 15.
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Figure 3.6 Condition number (C) of the selected feature sets

344 Residual analysis and visual inspection

Model residual analyses compare observed data with predicted values to evaluate a model's
precision and reliability. Examining residuals can reveal patterns, outliers, and areas for
improvement in the model's assumptions. Figure 3.7 compares the observed and predicted WS
quantiles for the top-performing FS methods (MRMR and LASSO), indicating a strong agreement
between the observed and estimated quantile for both methods with an R? of approximately 0.92.
LASSO performed slightly better than MRMR, as indicated by the RRMSE. Two outliers were
identified in the bottom-right section of the plots, with an underestimation of the WS quantiles for
both outliers. The residual plot in Figure 3.8 confirmed that the models did not perform as well for

high exceedance probabilities as they did for the lower ones.
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345 Predictor importance

Figure 3.9 shows the ten most selected features for each WS quantile and the number of times

they were selected. Overall, the most selected features were RGLH and DSEA. DSEA was

consistently selected by every FS method. For the surface roughness length (RGLH), 2000m and
1000m (RGLH_2000m and RGLH_1000m) were the most selected spatial scales. RGLH at 100m
spatial scale (RGLH_100m) was mostly selected for medium to high exceedance probabilities.

DVME at a spatial scale of 2000m (DVME_2000m) was often selected for high exceedance
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probabilities (P10 to P14) and less often selected for lower exceedance probabilities (P1 to P9).
Predictors describing the land surface curvature (MXCV, MNCV, TLCV, TGCV, GSCV) seemed
important for predicting WS quantiles corresponding to very low exceedance probabilities (P1 to
P5) and less important for medium and high exceedance probabilities. PNCL was also among the
most selected predictors, especially class 7 of PNCL (PNLC_7), which indicates a level terrain at
the grid cell with a low slope gradient. The location coordinates (XGEO and YGEO) were also

often selected for different WS quantiles in the region.

The predictors selected by the FS methods were used to fit a simple linear regression model. An
advantage of the simple linear regression model is the interpretability of the model. Without
multicollinearity, the regression coefficient magnitude and direction provide useful information to
assess the relationship between the predictors and the dependent variable. Figure 3.10 shows
the regression coefficient of the predictors selected with LASSO. The predictors were
standardized to a zero mean and a unit variance prior to fitting the regression model. LASSO was
the most parsimonious FS method with good predictive ability. In addition, the estimated condition
numbers of all the feature sets selected by LASSO were below 15, indicating the absence of
multicollinearity. It is observed that DSEA regression coefficients were often the strongest and
were always negative. DSEA represents the location distance from the coast; the direction of the
regression coefficient showed that WS quantiles, irrespective of their exceedance probabilities,
were higher near the coast than inland. The surface roughness length (RGLH) showed relatively
high regression coefficients with every WS quantile. The negative direction of the regression
coefficient of RGLH is intuitive. An increase in surface roughness results in more friction between
the land surface and the wind, decreasing WS near the ground. For P1 and P2, the maximum
curvature (MXCV) had the second-highest regression coefficient with a positive direction. Note
that higher values of MXCV correspond to elongated convex landforms such as ridges, and
negative values are associated with concave landforms (Florinsky, 2017). The positive magnitude
of the MXCV regression coefficient showed that the WS quantiles P1 and P2 were higher at

locations where the landforms are convex and decreased as the landform concavity increased.
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Figure 3.9 Selected predictors for each WS quantile
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Figure 3.10 Regression coefficients of the WS quantile predictors

3.5 Discussion

This study compared six FS methods for WS quantile estimation in Canada. The results showed
that LASSO, MRMR, and ENET had comparable performances on the test set and were the most
effective FS methods. GAGL and RFES performed slightly worse than LASSO, MRMR, and ENET
but outperformed FSWR. The FSWR method does not seem to ignore redundant features, leading
to an unstable estimation of regression coefficients and poor performance during testing. This
situation seems more pronounced for low than high exceedance probabilities (P10 to P14). There
was less collinearity among the relevant predictors associated with high exceedance probabilities
than for lower ones. Kriging of the regression residual slightly improved the model performances
(4%), indicating that the selected predictors and the linear regression model could account for a

significant portion of the spatial variability of WS quantiles in the region.

The models’ performances were higher for low to medium exceedance probabilities and declined
for high exceedance probabilities. This decline in performance could be attributed to several
factors. One possible explanation is that there is a significant non-linear relationship between high

exceedance probabilities WS and the predictors, requiring the implementation of non-linear
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models for improved performance. Another possible explanation is the exclusion of significant
predictors of high exceedance probabilities from the models. For example, the models did not
include climate-related predictors such as mean temperature or pressure. Climatic variables are
often collected at meteorological stations where WS is also measured; thus, they should also be
missing at locations with unavailable WS data. The results highlight the need for further research

to enhance the performance of models in predicting high exceedance probability WS.

LASSO was found to produced, on average, the sparsest feature sets, followed by ENET and
MRMR. In addition, LASSO could select relevant predictors without multicollinearity as evaluated
by the feature set correlation matrix condition number. MRMR also eliminated multicollinearity in
most cases (13 out of 14 cases), while ENET, RFES, GAGL, and FSWR were less effective at
solving the issue of multicollinearity in their selected feature sets. These findings are consistent
with existing literature on RFES, Xie et al. (2006) showed that this implementation does not
consider feature redundancy. Overall, LASSO and MRMR were the most effective FS methods

due of the following reasons:

e LASSO and MRMR exhibited high predictive ability, with no significant difference in
performance between the two methods based on t-test results and residual analysis.

o Both FS methods could select relevant predictors while also reducing multi-collinearity
within the feature subset.

o LASSO and MRMR are attractive because they are efficient to implement with a single
parameter to tune, unlike ENET, which produced comparable performance. In the case of
LASSO, the degree of penalization («) is the only parameter that needs to be tuned. With
MRMR, the number of features to select is the single tuning parameter of the algorithm.

ENET requires the tuning of two parameters.

LASSO and MRMR have different approaches to feature selection. However, their good
performance in the study could be explained by their inbuilt capability to select relevant features
while ignoring redundant ones. LASSO is a penalization algorithm based on linear regression that
promotes sparsity by imposing a penalty on the sum of the absolute values of the feature
coefficients. In a group of redundant predictors, LASSO chooses one predictor among the group
and shrinks towards zero the coefficients of the other predictors (Hammami et al., 2012; Zou et

al., 2005), making it effective in dealing with collinear features.

On the other hand, MRMR ranks features from the most relevant and least redundant to the least
relevant and most redundant, allowing for efficient selection of the smallest subset of the most

relevant and least redundant features that provides the best cross-validation score. In addition,
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MRMR is a filter-based approach that is agnostic to any specific regression model, as it is based
on the correlation coefficient. This coefficient is well suited for the linear regression model used
in this study. However, other correlation metrics, such as mutual information, can be used for

nonlinear models.

It is worth noting that GAGL showed superior performance during cross-validation on the training
sets, and there was no significant decline in its performance on the test set. However, in some
feature subsets selected by GAGL, the issue of multicollinearity remained unresolved. In addition,
compared to LASSO and MRMR, GAGL has more parameters that require tuning, making it less

efficient to implement.

In the present study, the location distance from the coast (DSEA) and the surface roughness
length (RGHL) were the two most significant predictors of WS quantiles. The regression model
coefficients for both DSEA and RGHL were physically consistent. In the case of DSEA, the
regression coefficients were negative, indicating a decrease in the WS quantiles from coastal to
inland areas. Few studies have used the distance from the coast to estimate WS, but it could be
a valuable addition to models, particularly in larger study areas. For low exceedance probabilities
(e.g., 1%), surface convexity (concavity) was a significant predictor of WS, but it was less relevant

for higher exceedance probabilities.

There are some limitations to this study. The dataset contained only 207 samples (155 training
and 52 testing samples), and some regions of Canada were naturally less densely represented
(see Figure 3.1). Consequently, some results could be particular to the studied region or the

analyzed dataset and may only be generalized after extensive analysis.

Among the various feature selection (FS) methods examined, the FSWR approach was the least
effective. It is possible to improve the FSWR method performance by adding the variance inflation
factor as a post-processing step. It should be noted that, the FSWR method in this study was
mainly used as a benchmark for assessing the performance of other proposed FS methods as it

remains one of the most common FS methods.

In the present study, the time series were considered stationary when estimating WS quantiles.
Nevertheless, increased evidence points to non-stationarities in WS series and the importance of
incorporating them in the analysis (see, for instance, Ouarda et al. (2021)). For instance, several
authors observed significant correlations between low-frequency climate oscillation indices and
annual mean WS in different regions of the world (see, for instance, Naizghi et al. (2017);

Woldesellasse et al. (2020)); Including these climate oscillation indices in quantile estimation or
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regional transfer models could significantly improve their performances. Indeed, in a given region,
WS stations are impacted by the same climate oscillation indices, and their incorporation in the
models used to estimate WS at ungauged locations should lead to performance improvements.
The issue of incorporation of teleconnections in WS estimation models is an important one but
remains mainly unexplored in the literature. Future efforts should focus on incorporating non-

stationarities in regional WS estimation models.

3.6 Conclusion

This paper evaluated six FS methods for WS quantile estimation. LASSO and MRMR were the
most efficient algorithms in the study. It was found that the importance of some WS quantile
predictors depends on their exceedance probability. The location distance from the coast and the
surface roughness length were significant WS quantile predictors irrespective of the exceedance

probability.

Future research should focus on the extrapolation of this study to other geographic regions,
databases with different characteristics, and other FS methods. The diversity in the
characteristics needs to be ensured to obtain guidelines for the relative performance and the
applicability of different techniques based on such considerations as the number of sites, the

length of the series, the number of features, the types of wind, the data variability and quality, etc.
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Nomenclature

Abbreviations

ALOS Advanced Land Observing Satellite

ANN Artificial Neural Networks

ASPC Aspect

DEM Digital Elevation Models

DFME Difference from mean elevation

DOGS Differences of Gaussians

DSEA Distance from the coast

DVME Deviation from mean elevation

ECCC Environment and Climate Change Canada
ELVP Elevation percentile

ENET Elastic Net

FS Feature selection

FSWR forward stepwise regression

GALG Genetic algorithm

GMPG Geomorphologic phenotypes

GSCV Gaussian curvature

GW Giga watt

LASSO Least Absolute Shrinkage and Selection Operator
LPGS Laplacian of Gaussian

MAE Mean Absolute error

MICV Minimal curvature

MNCV Mean curvature

MRMR Maximum relevance Minimum redundancy
MXCV Maximal curvature

PLCV Plan curvature

PNCL Pennock landform class

P-Splines Penalized splines

R? Coefficient of determination

REG Standalone multilinear regression model
RFES Recursive feature elimination using support vector regression
RGLH Roughness length
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RK
RMSE
ROK
RRMSE
RTGP
RTGP
RUGI
SART
SLPE
STDS
SVM
SVR
TGCV
TLCV
VS.
WS
XGEO
YGEO

Symbols

b

B

C

&
F(x,y)
f0)

F;
J(w)

L

* *
a;a;,nin;

Regression kriging

Root mean squared error
Regression-kriging model
Relative Root Mean Squared Error
Relative topographic position
Relative topographical position
Ruggedness index

Surface area ratio

Slope

Standard deviation of the slope
Support Vector Machines
Support vector regression
Tangential curvature

Total curvature

Versus

Wind speed

Longitude

Latitude

Tuning parameter that controls the degree of penalization in the LASSO
model

Bias in the epsilon-insensitive SVR model

Regression coefficients

Regularization parameter in the epsilon-insensitive SVR formulation
Tolerance margin in the epsilon-insensitive SVR model

F-statistic measuring the relationship between x and y

Function to optimize

Fitness score of the i-th solution of the genetic algorithm

Norm of weight vector w in the epsilon-insensitive SVR model
Lagrange function in the epsilon-insensitive SVR formulation
Non-negative Lagrange multipliers in the epsilon-insensitive SVR

formulation
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A

HARRMSE
Ho
NO:
P1
P10
P11
P12
P13
P14
P2
P3
P4
P5
P6
P7
P8
P9

P;
PM25s
Psel;

p(x,y)

&i&i

Tuning parameter in the elastic net model

Mean of the expected RRMSE differences in the t-test.
Population mean in the t-test ( u, = 0)

Nitrogen dioxide

Wind speed quantile at 0.01% percentile-level

Wind speed quantile at 60% percentile-level

Wind speed quantile at 70% percentile-level

Wind speed quantile at 80% percentile-level

Wind speed quantile at 90% percentile-level

Wind speed quantile at 95% percentile-level

Wind speed quantile at 0.1% percentile-level

Wind speed quantile at 1% percentile-level

Wind speed quantile at 5% percentile-level

Wind speed quantile at 10% percentile-level

Wind speed quantile at 20% percentile-level

Wind speed quantile at 30% percentile-level

Wind speed quantile at 40% percentile-level

Wind speed quantile at 50% percentile-level

Probability of exceedance associated with wind speed value of rank i
Fine particle matter

Probability of selecting the i-th solution in the genetic algorithm
Pearson correlation coefficient between x and y

Weight vector in the epsilon-insensitive SVR model

Genetic algorithm weight parameter that controls the balance between
performance and the number of selected features

slack variables in the epsilon-insensitive SVR formulation
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Dans la revue de littérature, nous avons constaté que les méthodes actuelles d’estimation de la
distribution de probabilité de la vitesse du vent se basent sur I'utilisation d’'un seul type de loi de
distribution pour toute la région étudiée. Cette approche peut s’avérer moins fiable dans les
régions ou la variabilité spatiale du régime des vents est importante. L’article 3 propose une
méthode plus flexible, basée sur linterpolation spatiale des quantiles de vitesse du vent et
I'estimation par noyau asymétrique, une méthode non paramétrique. Cette approche découle en
partie de notre exploration, dans l'article 2, de la possibilité d’'interpoler spatialement les quantiles

de vitesse du vent a partir de différentes variables explicatives.
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Abstract

Statistical methods to estimate wind resources at unsampled locations in a region can serve as
an initial step to identify locations that warrant further investigation. There has been an ongoing
effort to develop approaches for mapping the parameters of the wind speed distribution with
statistical methods. This approach enables a comprehensive understanding of the wind resource
variability across the entire region by considering the full wind speed distribution rather than
focusing solely on mean values. The present study proposes a non-parametric approach to map
the wind speed distribution. The method's main advantage is that it avoids constraining the region
to a single distribution family and is thus more flexible than existing methods. In the proposed
approach, a number of wind speed quantiles are first mapped in the region using machine learning
techniques. Afterwards, the wind speed distribution is estimated by fitting an asymmetric kernel
estimator to the estimated wind speed quantiles at unsampled locations. The new approach was
compared to the standard statistical method based on mapping the regional wind speed
distribution parameters. The results indicate that the non-parametric approach leads in the best
scenario to a 9% and 6% drop in the Kolmogorov-Smirnov statistic on average during cross-
validation and validation, respectively. The Birnbaum-Saunders and the Log-Normal kernels gave
a better fit to the estimated wind speed quantiles than the Weibull kernel. The proposed approach

is recommended in regions with high wind regime variability.

Keywords: Asymmetric kernel estimator, Non-parametric, Quantile, Wind speed distribution,

wind variability, ungauged location, regional estimation.
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4.1 Introduction

Wind energy has the potential to become a crucial source of power worldwide (Zhou et al., 2012).
In 2021, worldwide wind energy installed capacity reached 837 GW, with an estimated offset of
over 1.2 billion tons of CO2 (Council, 2022). However, more effort is needed to raise the
contribution of wind energy in the world energy mix to achieve a more sustainable and low-carbon
future (Jung et al., 2018b).

One of the initial stages of building a wind farm involves finding a suitable location with sufficient
wind resources to generate electricity. This objective typically involves conducting an in-depth
assessment of the wind regime, which requires a long-term dataset of wind speed measurements.
However, this data is often only available at irregular points in space rather than at the location of
interest for wind energy production. It may not be feasible to install a monitoring station to gather
sufficient data during the preliminary site selection due to time and financial constraints. Using
methods that can estimate wind resources at unsampled locations is more suitable. Although
these methods may not be as accurate as a monitoring station, they can help identify potential

sites that warrant further investigation.

Numerous wind speed (WS) estimation studies have been conducted at unsampled locations, as
detailed in the review by Houndekindo et al. (2023c). These studies typically estimate an
aggregated WS value (Luo et al., 2008; Ye et al., 2015), such as the mean and occasionally the
WS distribution, via mapping the parameters of a theoretical probability distribution function. Both
approaches have some downsides. First, using the mean WS for wind resource assessment may
underestimate the long-term resource depending on the frequency distribution's shape (Nelson
et al., 2018). Second, when estimating the WS distribution at unsampled locations, authors
typically select a unique family of distributions with different parameters for the entire region (the
regional distribution (RD)). For example, Veronesi et al. (2016) mapped WS distribution in the UK
using random forests and assumed that the Weibull distribution (W) was adequate across the
study region. Although the W is the most commonly used distribution for WS modelling, some
studies have found that other types of distributions may provide a better fit depending on the wind
regime at a location. For instance, the three-parameter W distribution (an additional location
parameter) is better suited for calm wind regimes (Jung et al., 2019b). Tsvetkova et al. (2023)
reported that the heavy-tailed Halphen distribution family provided a better fit than the two-

parameter W distribution in all 125 WS stations considered in Eastern Canada.
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In another study, Jung (2016) mapped WS distribution parameters in Southwest Germany. First,
the author evaluated the goodness of fit (GOF) of 67 theoretical distributions to select the RD.
Then, a gradient-boosting model was employed to map the parameters of the selected
distribution. Similarly, Laib et al. (2016) conducted a study in Switzerland for extreme WS. The
authors used the quantiles plot to evaluate the GOF of three theoretical distributions and select a
RD. Then, with a machine learning model, they mapped the parameters of the RD. This approach
can be tedious, requiring the testing of multiple distributions, and there is no guarantee that the
selected distribution would be adequate at the unsampled locations of interest. Previous studies
evaluated the goodness of fit of different theoretical distributions for WS modelling in a given
region (Alavi et al., 2016; Aries et al., 2018; Ouarda et al., 2018; Ouarda et al., 2015; Safari, 2011;
Zhou et al., 2010) and found that no single distribution family provided the best fit at all locations
in the region. Thus, using a single family of distributions may not be appropriate for characterizing

the WS distribution in an entire region.

This work proposes a new approach for WS distribution mapping that does not constrain the
region to a single distribution family (i.e., a regional distribution). The proposed approach consists
of estimating several WS quantiles (WSQ) at a location of interest. Then, a distribution function

can be fitted to the estimated WS quantiles using the Least Square Estimation (LSE) method.

It can be tedious to test several distributions with the LSE method. Indeed, in most cases, the
LSE method does not have an analytical solution. Thus, optimization algorithms may be required
with an initial guess of the parameters, which can lead to suboptimal solutions. To address this
issue, it is proposed to fit a kernel estimator of cumulative distribution function (KCDF) to the
estimated WSQ. Kernel estimators are, in general, rather flexible and do not require prior
knowledge of the family of distributions of the data. The literature shows a growing interest in
kernel estimators for WS distribution modelling (Han et al., 2019). In most of these studies,
symmetric kernels (e.g., gaussian) were used to estimate the probability distribution function. WS
values are non-negative, while symmetric kernels have unbounded support leading to probability
leakage below zero (Weglarczyk, 2018). This is a well-known problem called the boundary effect,
and several solutions have been proposed (Mombeni et al., 2021). In this study, one of these
solutions based on asymmetric kernel estimators (Hirukawa, 2018) is adopted and introduced for
WS distribution modelling. According to Hirukawa (2018), asymmetric kernels are weight
functions with support on the unit interval [0, 1] or the positive half-line. The effectiveness of the
proposed approach was assessed by comparing it to another method based on mapping the W

parameters in the study region.
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The paper's novelty can be summarized as follows: First, a methodology to map WS distribution
is proposed based on mapping WSQ. Quantiles are relatively easy to estimate from time series,
while selecting an adequate RD can be tedious, requiring the fitting and evaluation of multiple
distributions. Secondly, to the author's knowledge, this is the first study employing asymmetric
kernels to model WS distribution. By combining the mapping of WSQ and asymmetric kernels, a
fully non-parametric approach for WS distribution mapping is proposed in this study. The main
advantage of the non-parametric approach is that it does not require specifying a unique
distribution family to the region of interest. This allows to effectively combine all the available data
in the region to build a more robust model in case the region does not have a homogenous wind

regime which can be described by a single family of distribution functions.

The current paper is structured as follows. Section 4.2 illustrates the methodology of the proposed
approach with the evaluation procedure. The study area and the dataset are presented in section
4 3. The results obtained are shown in section 4.4. In sections 4.5 and 4.6, the discussion of the

findings and the conclusion are given, respectively.

4.2 Methodology

This study proposes a new approach for mapping WS distribution using regional information
without constraining the region to a single distribution family. First, various WSQ are estimated at
sampled locations in the region. Then, machine learning and WS covariates are used to map the
quantiles, allowing the estimation of these WSQ at any unsampled location in the region. Finally,
parametric, and non-parametric approaches are implemented to recover the WS distribution at
unsampled locations from estimated quantiles. The proposed approach will be referred to as
Quantile-based WS probability distribution Mapping (QWSM) in the next sections. The QWSM
approach will be compared to another approach based on directly mapping the W parameters
(Veronesi et al., 2016). This method will be referred to as the W parameters mapping (WPM) in

the next sections. A flowchart of the methodology is available in Figure 4.1.
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Figure 4.1 Methodology of the comparative analysis of WS probability distribution mapping
approaches

421 Quantile-based WS probability distribution mapping

At the sampled locations in the region, WSQ at some fixed percentile points can be estimated
from the sorted values of the hourly time series with the following general formula (Hyndman et
al., 1996):

Equation 4.1

WP) =0 - y)Xy +vXj+n

Where P is the percentile point of interest, X;) and X(;, 1) are j-th order statistics. y is a weight (0 <y < 1) that
is function of j = floor(Pn+m), m= a+ P(1— a— B)andg=nP+m—j

In case it is desired to obtain W(P) as a continuous function of P, then y = g and selecting y
reduces to selecting a, 5. Typical values of a, 8 are available in (Hyndman et al., 1996). In this
study, a,8 were both set to 1/3 given quantiles that are approximately median-unbiased
regardless of the WS true probability distribution (Reiss, 1989). Using Equation 4.1, WSQ
associated with the following 13 percentile points were estimated at the sampled locations: 5.0%
(P1), 12.5% (P2), 20.0% (P3), 27.5% (P4), 35.0% (P5), 42.5% (P6), 50.0% (P7), 57.5.0% (P8),
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65.0% (P9), 72.5% (P10), 80.0% (P11), 87.5% (P12), and 95.0% (P13). Table 8.1 in the Appendix

(Section 8) gives an overview of the distribution of the estimated WSQ.

These percentile points were chosen to cover the WS cumulative distribution functions (CDF)
evenly, ensuring a representative estimation of the WSQ at various points along the distribution.
In previous studies employing a similar modelling approach, varying numbers of percentile points
have been modelled to estimate the probability distribution of a target variable. For instance, to
forecast power load probability distribution, (He et al., 2017) modelled 20 percentiles evenly
spaced between 1% and 96%. In another study, to map wind speed shear distribution, (Jung et
al., 2018a) estimated 11 percentiles evenly spaced between 1% and 99%. Additionally, to
regionalize river temperature at ungauged locations, (Ouarda et al., 2022) estimated 17
percentiles non-evenly spaced between 0.05% and 99.95%. This diversity in the number of
percentile point selections highlights a lack of consensus in the literature regarding the optimal
number to ensure a comprehensive target distribution coverage. Nevertheless, it is worth noting
that the number of percentiles selected in the current study falls within the range of those used in

previous research.

A regression function was constructed between the observed WSQ and WS covariates. Two
regression models were compared, the multilinear regression (LR) and Gradient boosting trees
(GBT: Friedman, 2001) model. Feature selection (FS) was performed using the minimum
redundancy maximum relevance (MRMR) method (Ding et al., 2005) to reduce the complexity of
the models and improve their performance. A comparative study of FS methods was carried out
by Houndekindo et al. (2023a). They found that MRMR was among the most effective FS methods
for WSQ estimation. Houndekindo et al. (2023a) used MRMR with simple linear regression.
However, the approach can be adapted to non-linear models such as tree-based gradient
boosting. The FS method (MRMR) and the GBT model are presented in more detail in the

following subsections.

4211 MRMR approach for covariate selection

MRMR is a filter-based FS approach with the benefit of considering both the covariates' relevancy
and redundancy during selection. Filter-based FS methods are computationally efficient
algorithms and are agnostic to the regression model (Guyon et al., 2003). The MRMR algorithm
uses an iterative approach to select the covariate (X;) at each step with the best trade-off between

its relevancy to the response variable (Y) and its redundancy relative to selected features from

134



previous iterations. At the first step of the algorithm, the most relevant covariate is selected based

on a measure of relevancy (Rel(X;,Y)).

Let Red(Xi,Xj) be a measure of the dependency between the covariates X; and X; and let S be
the set of covariates selected during previous iterations. After the first step of the algorithm, S

contains only the most relevant covariate (m)?x [Rel(X;,Y)]) and the objective criterion at each

subsequent iteration of the MRMR algorithm can be formulated in two ways:

Equation 4.2
max [Rel(X;,Y)/Red(X;, X;)]
Equation 4.3
max [Rel(X;,Y) — Red(X;, X;)]

Several measures of relevancy and redundancy can be applied. In this study the following

formulations of the MRMR objective criterion were compared:

Equation 4.4

1
MRMR — PC: max F(X;, Y)/ 52 p(X:, X;)

Xjes

Equation 4.5
MRMR — MI I(X;,Y ! I(X;, X
- i) /| 50, 1060.5)
jes

Where F(X;,Y) is the F-statistic used to measure the relevancy, p(Xl-, Xj) is the Pearson correlation coefficient
(PC) used to measure redundancy, I(X;,Y) is the mutual information (Ml) used to measure
relevancy and I(Xi,X,-) is the Ml used to measure redundancy.

The MI between two random variables Xand Y can be defined as follows:

Equation 4.6

_ p(X,Y)
IX,Y) = ﬂ-p(X, Y)log <—p(X)p(Y)> dxdy
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The Python package scikit-learn (Pedregosa et al., 2011) was used to calculate the Ml between

the variables.

4.21.2 Regression models

The LR model was implemented and used as a benchmark for the GBT model. Tree-based
regression models such as GBT perform better than deep learning models on tabular data and
often outperform other regression models (Grinsztajn et al., 2022b). The GBT algorithm works by
fitting sequentially decision trees to the residuals from previous iterations. Contrary to the LR
model, the GBT model can learn nonlinear relationships between the covariates and the response
variable and is robust against non-informative covariates (Hastie et al., 2009). The GBT model is
a popular regression model that has been successfully applied in studies for short-term wind
power prediction (Ye et al., 2022), wind resource mapping (Jung et al., 2018a), the selection of
solar power plant location (Sun et al., 2023b) and short-term prediction of solar irradiance (Lee et
al., 2020).

The eXtreme Gradient Boosting package (XGB: Chen et al., 2016) is a popular machine-learning
library that implements the GBT algorithm efficiently. Several regularization strategies are
available in XGB to improve the model performance and reduce computational time. To find
adequate values for the parameters of XGB, a random search with 1000 iterations was
implemented. Grid search and random search are popular algorithms used for hyperparameter
tuning (Turner et al., 2021). Grid search is a brute force algorithm that systematically tries all
possible combinations of hyperparameter values within specified ranges. The algorithm can find
the optimal hyperparameter values within the defined search space at the cost of increased
computational resources and time. On the other hand, random search is a more efficient algorithm
that does not guarantee the optimal solution but can find good hyperparameters (Bergstra et al.,

2012b). Table 4.1 presents the hyperparameters of the XGB model that were tuned in the study.

Table 4.1 Hyperparameters of the XGB model
Hyperparameters used during training Search space (Min, Max, Step)
Learning rate (Boosting learning rate) (0.01, 0.1, 0.01)
Minimum loss reduction (gamma) (0.0, 1.0, 0.1)
Maximum depth of the trees (max_depth) (3,10, 1)
Ratio of predictor to use during training (0.1,0.7,0.1)

(colsample_bytree)
Subsample ratio of the training data (subsample) (0.1,0.5,0.1)
Number of trees (n_estimators) (20, 300, 10)
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4213 Recovery of the WS distribution from WSQ

With estimated WSQ available at any non-sampled location, it is possible to fit different theoretical
distribution functions using the LSE method. The LSE method is widely used for fitting WS
probability distributions (Ouarda et al., 2021). In their study, Jung et al. (2018a) applied the LSE
method to recover the probability distribution of wind shear exponent from estimated quantiles of
the same variable. LSE involves minimizing the sum of the square error (SSE) between the
empirical cumulative probability (ECDF) and the theoretical CDF to determine the best-fitting
parameters of the theoretical distribution function. Let W, be the predicted WSQ and F(W;) their

associated CDF, the SSE can be written as follows:

Equation 4.7
13
SSE = E[F(Wi) — F(W; 8)]*
i=1

where F(W,; 8) corresponds to the cumulative probability function of W, with estimated parameter 8. The W,
Log-Normal (LN), Rayleigh (R) and Generalized Gamma (GG) distribution were fitted to the
estimated WSQ.

Additionally, it is proposed to recover the WS distribution at unsampled locations using
asymmetric KCDF. The asymmetric kernels method represents one of the solutions to the
boundary effects that appear when using symmetric kernels with bounded random variables (e.g.,
WS values are bounded on [0, o]). By combining WSQ mapping and asymmetric kernel fitting,
this study proposes a fully non-parametric method for wind speed distribution mapping. Traditional
parametric methods might introduce bias if the selected RD does not align with the data. The non-
parametric approach can adapt to various WS distribution patterns without being restricted by
specific parametric assumptions. This flexibility is necessary for a region with complex and diverse
wind behaviors. In addition, combining the WSQ mapping and asymmetric kernel fitting avoids
the tedious process of testing and evaluating different probability distribution functions to model
WS.

The general expression for the asymmetric KCDF is given by (Mombeni et al., 2021):

Equation 4.8

n

_ 1

F(w) = ;Z R(Wsw, b)
i=1
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where b > 0 is the bandwidth and K(-) is the CDF of an asymmetric kernel function.

In this work, the Birnbaum-Saunders (BS), the Log-Normal (LN) and W asymmetric kernel

functions were tested (Lafaye de Micheaux et al., 2021; Mombeni et al., 2021):

Equation 4.9

n

. 1 _

FBS(w) = ;z KBS(WU W:\/E)
i=1

Equation 4.10

n
FIN(w) = 1/nz K.n(Wi;logw,Vb)
i=1

Equation 4.11

FWB(w) = 1/nzn: Kws (Wi;w/F(l +b) '%)
i=1
Equation 4.12
58

Kgs(x; Bo)=1— @ B E— B,0>0

Equation 4.13

logx —

I?LN(X:IJ,U) =1- c])<
Equation 4.14
Kyp(x; a,B) = exp (— (7—?)“) a,B >0

Where ®(-) is the CDF of the standard normal distribution and I'(-) is the gamma function.

The optimal bandwidths can be selected by minimizing the Mean Integrated Square Error (MISE):

Equation 4.15
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MISE = fo MSE (F(w)) dw
Equation 4.16
MSE (Fw)) = E [(ﬁ(w) - F(w))z]

Mombeni et al. (2021) derived the asymptotical optimal bandwidth of Kz and K, 5 with respect to
the MISE:

Equation 4.17

-2/3

co 2/3 1 r® ,
bopt = {_[0 xf(x)dx} {nf.]; (xf (x) + x%f'(x)) dx} n-2/3

Equation 4.18

wB OO % N 2 _% -1
bR ~ 361n2f0 xf(xX)dx; im fo (x2f'(x))"dxy n’3

Lafaye de Micheaux et al. (2021) proposed the following asymptotical optimal bandwidth with
respect to the MISE for K, :

Equation 4.19

2

2
1 (® 3 © .2 -5
o= {5, wreond o U@+ sr e T

The optimal bandwidth with respect to the MISE was selected under the assumption that the W
with parameters estimated using the predicted WSQ and the LSE method was the target
distribution. The reason for employing the W distribution in the paper is two-fold: First, it is the
parametric probability distribution function most commonly used to model WS; Secondly, it is
convenient because its CDF can be linearized with respect to its parameters and the WSQ. As a
result, finding the best-fitting parameters with the LSE method is equivalent to solving a linear

equation and does not require an optimization algorithm.
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422 Weibull parameter mapping

In previous studies, to estimate the WS probability distribution at unsampled locations, machine
learning models were used to map the parameters of a RD. The approach selects a single
distribution family for the entire region. Then, the distribution function parameters are fitted at the
sampled locations, and a regression model is built between the parameters and WS covariates.
Jung (2016) selected the Wakeby distribution as the RD in southwest Germany based on two
goodness of fit measures: Kolmogorov-Smirnov statistic and the coefficient of determination. For
a review of criteria used for the identification of adequate WS distributions the reader is referred
to Ouarda et al. (2016). Veronesi et al. (2016) selected the W as the RD in the UK due to its
widespread use in modelling WS, and convenience as it requires only two parameters to
characterize the WS probability distribution. The W was also adopted as the RD in this study to
evaluate the QWSM approach. The W parameters were estimated with the LSE method and the
best-fitting parameters were mapped in the region using the WS covariates described in section
4.3 and the LR and XGB regression models described in section 4.2.1.2. The MRMR algorithm

was also applied to identify the best set of covariates to include in the regression models.

42.3 Model validation

To evaluate the QWSM and the WPM, holdout and 5-fold cross-validation were implemented with
the available samples. During the holdout procedure, parts of the samples were withheld (the
validation set) before model training and parameter tuning and used to evaluate the final model
generalization performance. During 5-fold cross-validation, the training samples were divided into
five approximately equal subsets. Then, the holdout method was implemented five times by

considering each subset as the validation set and training the model on the remaining subsets.

The following metrics were calculated based on the observed (y;) and estimated (¥;) values:

Equation 4.20

i i —9)°

R?=1- —
Z?=1(:Vi _y)z

Equation 4.21

RMSE =
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Equation 4.22

n
1
MAE = —Z R
" 1Iyl il
=

The evaluation of the GOF of the estimated WS probability distribution was based on the
percentage probability plot (PP plot: Wilk et al., 1968). The PP plot compares the ECDF to the
estimated CDF. During cross-validation and validation, the R?, the RMSE and the MAE defined in
Equation 4.20, Equation 4.21, and Equation 4.22, respectively, were used to evaluate the degree
of association between the ECDF and the CDF. Horst (2008) noted that the PP plot has strong
discriminatory power in high-density regions of the distribution (i.e., the middle of a distribution),
where the CDF changes more rapidly with the WS values compared to low-density regions (i.e.,
the tails). Regions of the probability distribution with high density are the most crucial for wind
energy production. Also, in their reviews on WS distribution selection, Jung et al. (2019b)

observed that the most widely used GOF metrics were based on the PP plot.

The Kolmogorov—Smirnov statistic (D) is an alternative measure that was used to compare the
ECDF and the CDF:

Equation 4.23
D = max |F,(W;) — F(W))|
where F,,(W;) is the ECDF and F(W,) is the estimated CDF.

The ECDF was calculated with the Weibull plotting position (Akgul et al., 2016) giving unbiased
non-exceedance probabilities regardless of the underlying distribution of the data (Morgan et al.,
2011):

Equation 4.24

i
E,(W) = @t D

where i = 1, ..., n is the rank of the WS values after sorting them in ascending order.

4.3 Study area and dataset

The study was conducted on data from Canada with a total area of 9,984,670 square kilometers.

Hourly WS data from 207 meteorological stations located throughout the country were used for
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the research. From Environment and Climate Change Canada (ECCC) historical climate
database, stations with at least 20 years of recent WS record were selected. Additional filtering
was performed to eliminate stations with more than ten years of record having two months of
missing data. Figure 4.2 illustrates the geographical location of the 207 stations that were selected
after filtering. From the available stations, 155 (white triangles in Figure 4.2) were used for FS,
model training and cross-validation and the remaining stations (black dots in Figure 4.2) were
used to validate the final model as explained in 4.2.3.
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Figure 4.2 Spatial distribution of the training and validation stations used in this study

The following four types of covariates were used with the regression models to either estimate
the WSQ or the W parameters: topographic, climatic, geographic, and surface roughness length.
The topographical covariates were created using the WhiteboxTools (Lindsay, 2014) and a 30 m
resolution global DEM (Tadono et al., 2014). Seasonal and annual trends of mean temperature
data were acquired from the Canadian gridded temperature and precipitation anomalies

(CANGRD) dataset (available at https://climate-change.canada.ca/climate-data/#/historical-
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gridded-data). Surface roughness length was extracted from a 2015 Canada land use map
(Latifovic et al., 2017) resampled at different spatial resolutions using majority resampling (i.e.,
most popular value in a defined radius). A surface roughness length was associated with each
land use type based on a lookup table proposed by Wiernga (1993). Table 8.2 in the Appendix

(Section 8) provides more details about the covariates.

44 Results

441 Performance of regression models

The LR and the XGB models were fitted with covariates selected using MRMR-PC and MRMR-
MI. The results of comparing the different combinations of regression models and FS methods
are presented in Table 4.2 and Table 4.3 for QWSM and the WPM, respectively. Figure 4.3 details
the average R? for estimating the 13 WSQ and the two W parameters (shape and scale). The
comparisons using cross-validation and validation lead to very similar results, indicating, in
general, that XGB with MRMR-PC outperforms the other combinations of regression models and
FS methods. Indeed, XGB gave better results than LR in most cases, and MRMR-PC was more
effective than MRMR-MI for FS in the study. In the few cases where LR outperformed XGB, the
performance difference was marginal and inconsistent during cross-validation and validation (see,
for instance, P8 in Figure 4.3a and Figure 4.3b). Table 4.2 and Table 4.3 indicate that the
improved performance of XGB with MRMR-PC is consistent across all metrics. Hereon, only the
results obtained with estimations from the top-performing FS and regression model (MRMR-PC
+ XGB) will be presented.

Figure 4.4 displays the spatial distribution of the RMSE (WSQ) scaled by the actual WS median
for the validation set. This representation allows for comprehensive visualization of the accuracy
and variability of the model's predictions across different locations. Scaling the RMSE with the
actual median provides a relative measure of error that can be compared and interpreted
meaningfully. The spatial distribution of the scaled RMSE revealed that the model exhibited
acceptable performances in estimating the WSQ in regions with sparse training samples

highlighting its generalization capability.

Table 4.2 Average performance metrics for the estimation of WSQ
Validation Methods Regression model MRMR MAE R2 RMSE
km/h km/h
Cross-validation LR MI 3.59 0.23 4.90
Cross-validation LR PC 3.40 0.26 6.11
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Cross-validation XGB Ml 3.24 0.42 4.30

Cross-validation XGB PC 3.08 0.47 4.07

Validation LR Ml 3.64 0.36 4.48

Validation LR PC 3.24 0.46 419

Validation XGB Ml 3.30 0.46 4.22

Validation XGB PC 3.00 0.57 3.74

Table 4.3 Average performance metrics for the estimation of the W parameters
Validation Methods Regression model MRMR MAE R? RMSE
Cross-validation LR Ml 1.88 0.27 2.47
Cross-validation LR PC 2.02 - 4.79
Cross-validation XGB Ml 1.83 0.45 2.27
Cross-validation XGB PC 1.61 0.48 2.12
Validation LR Ml 2.07 0.32 2.42
Validation LR PC 1.76 0.37 2.27
Validation XGB Ml 1.75 0.42 2.16
Validation XGB PC 1.58 0.48 1.97
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Figure 4.3 Performance of LR and XGB for the estimation of the WSQ (a and b) and the W parameters
(c and d) during cross-validation (a and c) and validation (b and d).

Note: Negative values of R* were set to zero
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Figure 4.4 Spatial distribution of the scaled RMSE (WSQ) of the validation set

4.4.2 Wind speed distribution mapping

This section presents the results of the comparative analysis between the QWSM and WPM.
Table 4.4 shows the mean values of the GOF metrics. In general, it is observed that the QWSM
gave a better fit than WPM for the considered metrics. Also, QWSM/W gave better fit than WPM.
According to the R?, RMSE and MAE criteria, QWSM/W and QWSM/GG were the best-performing
methods, and their performances are very similar to QWSM/KCDF/BS and QWSM/KCDF/LN.
However, during cross-validation and validation, the Kolmogorov-Smirnov statistic (D) seemed to
favor QWSM/KCDF/LN and QWSM/KCDF/BS. The distribution of the GOF measures was
represented using boxplots in Figure 4.5. The most noticeable difference in the distribution of the
GOF measures was observed with D when comparing the different approaches. The methods
based on QWSM/KCDF/LN and QWSM/KCDF/BS resulted in smaller D values and less variability

in the same GOF measure compared to other approaches.
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Furthermore, the different methods were evaluated by comparing the observed and estimated

WSQ across ten equidistant percentiles ranging from 0.1 to 0.9. The outcome of this analysis
(Figure 4.6) indicated that the QWSM methods often outperformed the WPM for the considered
WSQ. Methods based on QWSM with the asymmetric kernels tend to give comparable

performances to the parametric methods in the middle of the distribution (e.g., 0.4, 0.5, 0.6

percentiles). While in the tails (e.g., percentiles 0.1 and 0.9) the parametric methods showcased

a better performance than the non-parametric methods.

Table 4.4 Mean value of the GOF measures
Distribution Validation Methods D MAE R? RMSE
QWSM/GG Cross-validation 0.137 0.039 0.938 0.058
QWSM/GG Validation 0.147 0.041* 0.922* 0.062*
QWSM/KCDF/BS Cross-validation 0.131 0.043 0.938 0.059
QWSM/KCDF/BS Validation 0.143* 0.045 0.920 0.063
QWSM/KCDF/LN Cross-validation 0.131 0.044 0.937 0.059
QWSM/KCDF/LN Validation 0.143* 0.045 0.920 0.063
QWSM/KCDF/W Cross-validation 0.137 0.046 0.932 0.061
QWSM/KCDF/W Validation 0.150 0.046 0.91 0.064
QWSM/LN Cross-validation 0.165 0.042 0.93 0.064
QWSM/LN Validation 0.165 0.043 0.913 0.065
QWSM/R Cross-validation 0.157 0.042 0.926 0.065
QWSM/R Validation 0.168 0.044 0.908 0.069
QWSM/W Cross-validation 0.136 0.039 0.939 0.058
QWSM/W Validation 0.147 0.041* 0.921 0.062*
WPM Cross-validation 0.144 0.042 0.93 0.062
WPM Validation 0.152 0.043 0.910 0.065

Note: The best-performing methods are indicated in bold for the cross-validation and marked with * for the

validation.
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Figure 4.5
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Figure 4.6

In Figure 4.7, the P-P plot, the CDF, and the probability density function (PDF) plot of 3 validation
samples are presented for illustration purposes. These plots offer a comprehensive visual
analysis of the actual and estimated WS distribution agreement. Recall that QWSM/W was
selected as the target distribution to estimate the optimal bandwidth for all KCDF. However, it is
observed that the kernel PDFs exhibited more flexibility than QWSM/W. The W kernel

demonstrated more flexibility than the BS and LN kernels, while both gave an almost identical

PDF.
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Figure 4.7 PP plot, CDF plot and PDF plot of estimated wind speed probability distributions

4.5 Discussion

The comparison of the regression models indicates that the non-linear model (XGB) outperformed
the linear model (LR) for the estimation of WSQ and the W parameters. The superior performance
of the XGB model suggests that there are non-linear associations and interactions between the
covariates and the WS response variables (WSQ and W parameters). The XGB model can
effectively capture these non-linear relationships, leading to more accurate and precise estimates
than the linear model. There is potential for further improvement in the performance of the XGB
model by conducting a more comprehensive hyperparameter tuning. A random search was
employed for the XGB hyperparameter tuning and proved sufficient to demonstrate the superiority
of the XGB model over the LR model. However, a more extensive hyperparameter tuning process,
such as grid search or Bayesian optimization (Wu et al., 2019), could be conducted to thoroughly

search for the optimal combination of hyperparameters that maximizes the model's performance.
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The study also found that MRMR-PC was more effective for FS than MRMR-MI. MI can assess
linear and nonlinear dependencies between variables, and it was initially expected that combining
MRMR-MI with XGB would outperform the combination of MRMR-PC with XGB. However, similar
results were observed by Ren et al. (2020) in the field of hydrology. The authors discovered that
a FS method based on the partial Pearson correlation outperformed FS methods based on M
(including MRMR-MI) when applied with linear and nonlinear regression models for monthly
streamflow forecasting. The study attributed these results to the possibility that the relationship
between the covariates and the target variable in their models exhibited more linearity than
nonlinearity. Similar conclusions may be formulated in this study, suggesting that the gain in
performance achieved using the XGB could also be attributed to other characteristics of the
models, such as its robustness against redundant features and collinearity within the features set.
Despite these findings, it is still recommended to evaluate different FS methods. Different

scenarios or datasets may yield different results.

It is well known that wind speed and other climatic variables like humidity, pressure, and
temperature are interconnected. The main challenge in using climatic variables for estimating
wind speed at unsampled locations is that those variables should also be unavailable. Gridded
climate data can be used as an alternative source of climatic covariates. This study only used
gridded climate data of long-term temperature trends as climatic covariates. Investigating the
applicability of other gridded climate data as covariates for WS distribution mapping in future

studies is recommended.

Veronesi et al. (2016) reviewed the performance of physical and statistical methods for wind
resources assessment. They found that most studies applying statistical methods reported an
RMSE of around 1 m/s on their validation set when considering the central tendency of the wind
speed distribution (ex.: mean). In the current study, the average RMSE for estimating the median
wind speed obtained was 3.28 km/h (0.87 m/s), and the average MAE was 2.62 km/h (0.69 m/s).
These results seem to agree with previous studies. However, as was pointed out by Veronesi et
al. (2016), results from different studies are generally difficult to compare as different datasets,

regions and techniques were covered in these studies.

In general, based on the evaluation of the GOF, QWSM demonstrated a better fit compared to
WPM. This result may be explained by the fact that the estimation of the WS distribution from
WSQ may be less sensitive to mapping error compared to WPM. For instance, in the case of the
WPM, minor errors in mapping the W parameter could have disproportionate effects on the overall

resulting shape of the wind speed distribution. In contrast, with the QWSM, the implications of
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mapping errors are less severe, as inaccuracies in wind speed quantile mapping seemed to have
a smaller impact on the overall distribution's shape. Consequently, the QWSM approach exhibits
enhanced robustness against errors in mapping, rendering it a more dependable framework for

wind speed distribution mapping.

The non-parametric approach with the BS and LN KCDF gave slightly better results than the
parametric approach when considering the Kolmogorov-Smirnov statistic. The non-parametric
method does not require fixing a regional distribution and can adequately recover the WS
distribution from the estimated quantiles. Parametric methods require fitting the data to a specific
probability distribution family, which may introduce bias if the assumed distribution does not align
with the underlying distribution. Another potential source of bias common to both methods (i.e.,
QWSM, WPM) is related to the regression models used to estimate either the WSQ or the RD
parameters. It should be noted that the bulk of the bias of the QWSM + KCDF method arises from
the regression model used to map the WSQ in the region. Thus, the non-parametric approach
can reduce potential biases by minimizing the assumptions. The proposed approach becomes
particularly interesting in regions where the wind regime exhibits significant variations, and no
single distribution family is suitable for all locations within the region. With their constraints,
parametric methods may struggle to capture the diversity of complex patterns that can be present
in such regions. In contrast, with its flexibility, the non-parametric approach can be more
appropriate and should yield more accurate results. Alternatively, it is possible to segregate the
regions into sub-regions and select a different RD for each sub-region. However, this would
reduce the number of samples used to learn the relationship between the covariates and the RD
parameters, potentially leading to a loss in performance. For WS values located in the
distribution's tails (for instance, extreme values), opting for the QWSM method with parametric
distribution functions would be more suitable. This recommendation is based on the finding that
these parametric approaches exhibited superior performance compared to non-parametric

approaches in this case.

Mapping the WSQ in this study involved extracting the quantiles from the time series and then
using a regression model that estimates the conditional mean of the quantiles given the
covariates. An alternative approach could be directly estimating the conditional quantiles using a
quantile regression (Koenker, 2017; Meinshausen et al., 2006; Nasri et al., 2017; Ouali et al.,
2016) model incorporating the covariates. Quantile regression is a statistical technique that allows
estimating specific quantiles of the response variable rather than focusing solely on the

conditional mean.
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The main drawback of the QWSM approach is that the number of independent variables
(quantiles) that need to be mapped to recover the WS distribution would often be superior to the
number of the RD parameters that require mapping in the WPM approach. Fitting these individual
regression models can become time-consuming and resource intensive. However, some quantile
regression models can simultaneously estimate multiple quantiles (Liu et al., 2011; Meinshausen
et al., 2006), providing a more efficient approach compared to building separate regression
models for each quantile. Also, when estimating multiple quantiles simultaneously, additional
constraints can be formulated to enforce monotonicity (Cannon, 2018) and avoid the issue of
guantile crossing that arises when estimating the quantiles independently. It is worth mentioning
that a gradient-boosting model (Duan et al., 2020) was recently proposed to simultaneously
estimate the parameters of a probability distribution conditioned on some covariates. This model
could be used to estimate the parameters of a RD simultaneously rather than building an

independent model for each parameter.

Modern wind turbine hub heights vary between 80 m and 100 m, while wind speed data are
conventionally collected at 10 m at meteorological stations. As a result, a technique for
extrapolating wind speed data to hub height becomes necessary (e.g., the power law). Such
techniques can extend the method proposed in this study to map wind speed distribution at hub
height. Nevertheless, it is worth noting that such extrapolation introduces a notable increment in

the uncertainty of the outcomes.

Jung et al. (2018a) proposed a technique for mapping wind shear distribution, allowing the wind
speed distribution to be mapped at any standard hub height. Jung et al. (2018a) selected the
Dagum family distribution to represent the wind shear distribution. In future research, the non-
parametric approach proposed in this study could be adapted to map wind shear distribution
without prior assumptions about its distribution. Also, future studies can explore the possibility of
extending the proposed approach to other types of climatic variables, such as temperature and

solar irradiation.

The approach proposed in this study can provide valuable information to estimate wind resources
over a large area during a prospecting phase. Once an area that meets the necessary socio-
economic requirements and showcases sufficient wind potential is identified, alternative methods
are available to evaluate the wind flow at the microscale. An example of such an approach
involves conducting wind flow simulations via Computational Fluid Dynamics (CFD), especially in
complex terrain (Tang et al., 2019). The implementation of a CFD model requires the provision of

initial wind data, which can be sourced from outputs generated by Numerical Weather Prediction
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(NWP: Beaucage et al., 2014; Keck et al., 2020; Simodes et al., 2016). NWP models entail
considerable computational costs compared to statistical methodologies proposed herein. A
compelling avenue of research would involve comparing the performance of NWP and statistical
models for CFD model input and developing methods to combine statistical and CFD models to

assess microscale wind flow dynamics.

4.6 Conclusion

A fully non-parametric approach was developed to map wind speed distribution. The new method
was compared to a more traditional approach based on mapping the parameters of a regional
distribution. The results of the comparative analysis highlighted the superiority of the proposed

approach. The main conclusions of the paper are summarized as follow:

e The non-parametric approach is more practical as it does not require fitting and evaluating
several distribution functions to the available wind speed data. In the proposed method,
wind speed quantiles can be easily extracted from the time series and mapped using
suitable machine-learning techniques. At any location in the study area, the entire wind
speed distribution can be recovered from the estimated wind speed quantile by fitting
asymmetric kernel estimators. The proposed approach is free from any assumption on the
wind speed probability distribution family in the region that can bias the analysis. The non-
parametric approach is recommended for mapping wind speed distribution in regions with
a highly variable wind regime. The analysis indicates that the fully non-parametric
approach improved the Kolmogorov-Smirnov statistic by 9% on average during validation.

e Compared to the regional distribution parameter mapping approach, quantile-based wind
speed distribution mapping can be slower to implement as it requires the estimation of
multiple wind speed quantiles. However, with the advancement in quantile regression
models, it is possible to build a single regression model to predict multiple quantiles. This
type of quantile regression model should reduce the computational burden associated with
the proposed approach.

e The Gradient boosting trees model outperformed the multilinear regression model for
mapping wind speed quantiles and the Weibull parameters. At the same time, feature
selection based on the Pearson correlation coefficient was more effective than the Mutual
information. Utilizing the Gradient Boosting Trees model and feature selection based on
the Pearson correlation coefficient resulted in a 23% improvement in R? during validation

compared to the second-best model for estimating wind speed quantiles.
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It should be noted that symmetric kernels could also be fitted to the estimated wind speed
quantiles, with some probabilities associated to small negative wind speed values. Using
an asymmetric kernel effectively avoids probability leakage at the boundary of the lower
tail of the wind speed probability distribution.

The proposed approach is easily portable to regions with sparsely available wind speed
measuring stations. The other data sources used in the study (e.g., DEM and land use

map) are often freely accessible from global datasets covering most regions of the world.
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Nomenclature

Abbreviations

BS
CANGRD
CDF
CFD
CO2
DEM
ECDF
FS
GBT
GG
GOF
GW
KCDF
LN

LR
LSE
MAE
MI
MISE
MRMR
MRMR-MI
MRMR-PC
MSE
NWP
PC
PDF
PP plot
QWSM
R

R2

RD

Birnbaum-Saunders

Canadian gridded temperature and precipitation anomalies dataset
Cumulative probability function

Computational Fluid Dynamics

Carbon dioxide

Digital elevation model

Empirical cumulative probability function

Feature selection

Gradient boosting trees

Generalized Gamma

Goodness of fit

Giga watt

Kernel estimator of cumulative distribution function

Log-Normal

Linear regression

Least Square Estimation

Mean Absolute Error

Mutual information

Mean Integrated Square Error

Minimum redundancy maximum relevance

Minimum redundancy maximum relevance with Mutual information
Minimum redundancy maximum relevance with Pearson correlation coefficient
Mean squared error

Numerical Weather Prediction

Pearson correlation coefficient

Probability distribution function

Percentage probability plot

Quantile-based wind speed probability distribution mapping
Rayleigh

Coefficient of determination

Regional distribution

155



RMSE
SSE
UK

WPM
WS
WsQ
XGB

Symbols

a,pB,uo
b

BS
bopt

LN
bopt

WB
bopt

D
F(x,y)
FQ)

F( )
FP()
FEN ()
F, ()

ﬁ'WB ()

root mean square error

Sum of the square error
United Kingdom

Weibull distribution

Weibull parameters mapping
Wind speed

Wind speed quantiles

Extreme Gradient Boosting

Parameters of asymmetric kernel function

Kernel function bandwidth

Asymptotical Birnbaum-Saunders Kernel optimal bandwidth

Asymptotical Log-Normal Kernel optimal bandwidth

Asymptotical Weibull Kernel optimal bandwidth

Kolmogorov—Smirnov statistic

F-statistic between x and y

Cumulative distribution function of estimated wind speed quantiles

Fitted cumulative distribution function, where 8 are the estimated parameters
Birnbaum-Saunders Kernel estimator of cumulative distribution function
Log-Normal Kernel estimator of cumulative distribution function

Empirical cumulative distribution function

Weibull Kernel estimator of cumulative distribution function

Weight term in the empirical quantile estimation formula

Gamma function

Mutual information between x and y

Cumulative distribution function of an asymmetric kernel function

Cumulative distribution function of an asymmetric kernel function

Cumulative distribution function of the Birnbaum-Saunders asymmetric kernel
function

Cumulative distribution function of the Log-Normal asymmetric kernel function

Cumulative distribution function of the Weibull asymmetric kernel function
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P1

P10

P11

P12

P13

P2

P3

P4

P5

P6

P7

P8

P9

()
Rel(x,y),
Red(x,y)
p(x,y)

Percentile point

5% percentile-level
72.5% percentile-level
80% percentile-level
87.5% percentile-level
95% percentile-level
12.5% percentile-level
20% percentile-level
27.5% percentile-level
35% percentile-level
42.5% percentile-level
50% percentile-level
57.5% percentile-level
65% percentile-level
Standard normal distribution

Measure of dependency between x and y

Pearson correlation coefficient between x and y
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Dans larticle 3, nous avons proposé une méthode non paramétrique d’estimation de la
distribution du vent. Dans l'article 4, cette approche est étendue afin de reconstruire des séries
temporelles de vitesse du vent aux sites non échantillonnés. La disponibilit¢ de ces séries
temporelles permet d’évaluer la variabilité temporelle des vitesses de vents a différentes échelles

temporelles.
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Abstract

Various models for wind speed mapping have been developed, with increasing attention on
models focusing on mapping wind speed distribution. This study extends these models to predict
hourly wind speed time series at unsampled locations. A model based on the quantile mapping
(QM) procedure was compared to a traditional and machine-learning model to interpolate wind
speed spatially. These proposed models were also used with inputs from the ERA5 reanalysis
dataset, enabling them to consider local variation in orography and large-scale wind fields. A
widely used procedure for mean bias correction of reanalysis based on the Global Wind Atlas
(GWA) was implemented and compared to the proposed models. It was found that the QM and
machine learning model, both using input from ERAS5, significantly outperformed GWA bias
correction in terms of time series correlation and probability distribution. Despite being more
computationally intensive than GWA bias correction, both models are recommended due to their

significantly (in a statistical sense) superior performance.

Keywords: Bias-correction, ERA5, Light gradient-boosting machine, Quantile regression,

Reanalysis, Wind resource assessment
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5.1 Introduction

The past decades have witnessed a significant uptake of wind energy in various parts of the world
(Cherp et al., 2021). This growth reflects a global shift toward more renewable energy sources,
with wind power playing a prominent role in energy supply (Wiser et al., 2021). The intermittent
nature of wind speed still poses some challenges to the development of the renewable energy
source (Ren et al., 2017). Due to the cubic relationship between wind speed and power output,
inaccuracies in estimating wind speed are amplified when estimating the energy production,
leading to suboptimal design of wind energy infrastructure and jeopardizing the profitability and

sustainability of the project (Lee et al., 2021).

Prospective studies to evaluate the wind resource across a large region at a high spatial and
temporal resolution provide valuable sources of information for the expansion of wind energy
(Lopez et al., 2021; Niermann et al., 2019). In-situ wind speed (WS) data are generally accepted
as the most reliable data source for wind resource assessment (WRA). However, measuring
stations are often sparsely available in a given region and have limited record length for WRA.
Several publicly available datasets exist that give access to wind data at the global scale with
high temporal resolution and extensive record length. The European Centre for Medium-Range
Weather Forecasts (ECMWF) reanalysis v5 (ERA5: Hersbach et al., 2020), and the NASA’s
Modern Era Retrospective Analysis for Research and Applications-2 (MERRA-2: Molod et al.,
2015) have been used extensively to conduct WRA across large regions (Gruber et al., 2022;
Gualtieri, 2022). Samal (2021) evaluated the adequacy of MERRA-2 for WRA in India. The author
compared the wind data from the reanalysis dataset with observed data collected at
meteorological stations. The study found that the reanalysis dataset was more suitable for long-
term than short-term planning. In another study, MERRA-2 was used to perform a preliminary
evaluation of the wind resource in South Sudan (Ayik et al., 2021). The authors identified areas
in the region with high wind potential. Five global reanalysis datasets including ERAS and
MERRA-2 were evaluated for WRA by comparing them with measured WS data from
meteorological stations distributed worldwide (Ramon et al., 2019). The comparative study was
based on estimated mean WS, variability, and trends. From the study results, the ERA5 dataset

was recommended for wind energy applications.

Direct application of reanalysis datasets for WRA still has some drawbacks. Notably, the coarse
spatial resolution of reanalysis datasets renders them unable to resolve local variations in

orography and surface roughness influencing near-surface WS (Gualtieri, 2021). A review of the
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uncertainties associated with the application of reanalysis data for WRA was presented by
Gualtieri (2022). Several studies endeavoured to increase the spatial resolution and bias-correct
reanalysis datasets using ground measurements and other datasets with higher spatial resolution.
The Global Wind Atlas (GWA) is a popular dataset used to correct the bias in reanalysis WS data
(Gruber et al., 2019). In this procedure, the mean WS from the reanalysis dataset is corrected to
match the GWA mean WS by applying a correction factor estimated during the overlapping period

of both datasets.

Alternatively, to reanalysis datasets, spatial interpolation and machine learning models have been
used to map wind data at a high spatial resolution using in-situ observations. The main advantage
of this approach over the use of reanalysis data is its ability to account for the rapid change in the
topography and surface roughness by using covariates extracted from DEM and land use maps.
A comparative analysis of several spatial interpolation methods for hourly WS mapping was
performed by Collados-Lara et al. (2022). The authors found that the regression kriging model
produced the best results and was selected to generate hourly wind speed time series (WSTS)
between 1996 and 2016 in The Granada province, Spain. In another study, Cellura et al. (2008a)
developed a machine-learning model to interpolate mean WS in Sicily, Italy. The author
recommended the approach for its ease of application and transferability to other regions. A
similar study was conducted in Venezuela (Gonzalez-Longatt et al., 2015) to create a regional
mean WS map. It should be noted that wind speed distribution (WSD) is often skewed, and the

mean is not a good representative of the most typical value of the distribution.

In recent studies, authors have been interested in mapping the entire WSD, allowing a better
evaluation of the wind resource variability at unsampled locations of interest. For example,
Veronesi et al. (2016) mapped the parameters of the Weibull distribution fitted to WS data across
the United Kingdom (UK). Jung (2016) mapped the parameter of the Wakeby distribution fitted to
WS data to estimate the annual wind energy yield with a high spatial resolution in Germany. In
another study, Jung et al. (2020) developed a global model that estimates the parameters of the
Kappa and Wakeby distribution for WS variability assessment using estimated L-moments.
Houndekindo et al. (2023b) recently proposed a nonparametric approach for WSD mapping. The
approach does not restrict the region to a single WSD distribution family. The availability of
methods to map the entire WSD is a crucial step forward compared to past studies where only
aggregated values of WS were estimated. However, For the evaluation of WS variability at
different temporal resolutions (e.g., daily, seasonal, annual), WSTS with a high temporal

resolution (e.g., ten min. or one hour) are still required.
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This study proposes expanding upon previously developed techniques for mapping WSD to
predict hourly WSTS at unsampled locations. The proposed method named the Wind Duration
Curve (WDC) is inspired by an approach commonly used for environmental variables (see, for
instance, Castellarin ef al. (2013) and Requena et al. (2017) for application to streamflow data
and Ouarda et al. (2022) for application to daily river temperature) and can be seen as an
adaptation of the quantile mapping (QM) technique often used to downscale global circulation
models and regional climate model outputs (Ben Alaya et al.,, 2016; Cannon et al., 2015). A
comprehensive evaluation of the WDC method is performed and the approach is compared to

other methods for WSTS estimation at unsampled locations.

The paper is structured as follows: Section 5.2 describes the study area and the datasets. The
methodology employed is presented in section 5.3. The results of the comprehensive evaluation
of the different approaches are presented in section 5.4. The discussion follows in section 5.5,

and section 5.6 gives the conclusions of the study.

5.2 Study area and dataset

Experimental data for the study were obtained from Environment and Climate Change Canada

(ECCC) historical climate database (https://climate.weather.gc.ca/). Stations with less than 10%

missing values between 2011 and 2021 (11 years of mean hourly WS) were selected from the
database, resulting in 303 meteorological stations available for the study. WS data at the
meteorological stations were typically collected at 10 m above ground level according to ECCC.
The measured WS data was considered the most representative of the actual WS condition.
Figure 5.1 illustrates the study area and the location of the 303 meteorological stations. In the
figure, stations represented with circles were used during the training of the models and those

represented with triangles were solely used as test samples.

Reanalysis WS data were obtained from ERA5 dataset. Wind speed data from ERA5 are provided
in a grid format with a temporal resolution of 1 h available between 1980 and the present. The
eastward and northward WS components at 10 m were obtained from the dataset
(https://doi.org/10.24381/cds.adbb2d47), and the 10 m horizontal WS was calculated and

interpolated at the 303 meteorological stations using nearest neighbor interpolation.

The WS covariates used in the study are presented in detail in Table 9.1 of the supporting material
(Section 9). Topographical covariates were calculated from the Advanced Land Observing
Satellite (ALOS) Digital Elevation model (DEM) of 30 m resolution (ALOS DEM: Tadono et al.,

2014) obtained freely from the Japan Aerospace Exploration Agency. The surface roughness
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length was estimated from a 2015 land use map of Canada (Latifovic et al., 2017) obtained from

Natural Resource Canada.

Meterological stations

4 Test samples

O Training samples

Canada Provinces

0 500 1000 1500 2000 km

I I
Figure 5.1 Study area and location of the 303 meteorological stations used in the study
5.3 Methods

5.3.1 Wind speed distribution mapping

In recent studies, different methodologies to map WSD were introduced. Most of these
approaches relied on mapping the parameters of a distribution function fitted to WS data. More
recently, a nonparametric method was developed by Houndekindo et al. (2023b) to map hourly
WSD. The approach starts by mapping hourly wind speed quantiles (WSQ) using a machine
learning model and WS covariates. Then, the estimated WSQ are used as input of an asymmetric
kernel function to estimate the WS cumulative distribution function (CDF) at unsampled locations.
The approach is flexible and does not restrict the region to a unique WSD family. In their study,
Houndekindo et al. (2023b) extracted 13 quantiles from observed WSTS and then built a

regression model between the covariates and each WSQ. The present study proposes a quantile
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regression (QR) model to directly estimate 13 conditional WSQ. Although QR models have been
used in previous studies for WS forecasting (He et al., 2018) and for the estimation of other hydro-
climatic variables at unsampled locations (Ouali et al., 2016), to the author's knowledge, it is the
first time they are applied to estimate conditional WSQ at unsampled locations. As done by
Houndekindo et al. (2023b), WSQ at the following 13 percentile points were considered: 5.0%
(P1), 12.5% (P2), 20.0% (P3), 27.5% (P4), 35.0% (P5), 42.5% (P6), 50.0% (P7), 57.5.0% (P8),
65.0% (P9), 72.5% (P10), 80.0% (P11), 87.5% (P12), and 95.0% (P13).

The Light Gradient-Boosting Machine (LGBM: Ke et al., 2017) with the pinball loss function
(Equation 5.1) was used as the QR model (herein referred to as LGBMQR). The LGBM was
adopted based on its efficiency, scalability for large datasets, and proven high prediction accuracy
(Fan et al., 2019; Genov et al., 2024; Park et al., 2020). The LGBM is a histogram-based gradient-
boosting model that sequentially builds additive decision trees to minimize a loss function. By
discretizing the continuous values of the covariates into a fixed number of bins, the LGBM can
significantly reduce the training time and memory usage for large datasets (e.g., N > 10,000) while
maintaining good prediction accuracy. In addition, the LGBM adopts a leaf-wise tree expansion
with a fixed maximum depth, improving the model's training performance. Table 5.1 shows the
different model parameters that were tuned. Random search with 1000 iterations was used to
select the best parameters for the QR model. Random search is not an optimal algorithm for
parameter tuning but can still find suitable parameters when allocated a sufficient number of
iterations (Feurer et al., 2019). LGBMQR is a single-output QR model. Thus, it needs to be trained
separately for each conditional WSQ of interest. Also, parameter searches can be performed
independently for each considered quantile. To reduce the computation burden associated with
performing parameter tuning independently for every quantile of interest, the best parameters

selected when training the model to predict the median (P7) were used for all quantiles.

Equation 5.1
(= 1D)w —wy| w—-w;) <0
pe(w—wr) = {T|W — wy| w—-w,) =0

where w; is the T — quantile defined as follows:

Equation 5.2

wy =inflw: Fw|X =x) > 1}

with F(w| X = x) the conditional cumulative distribution function of the random variable w.
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In addition to the covariates presented in Table 9.1 of the supporting material (Section 9), hourly
WSQ extracted from the ERAS dataset (ERAS-WSQ) were assessed as covariates in the current
study. As stated by Jung et al. (2020), covariates from the ERA5 reanalysis dataset can represent
the large-scale wind field unaffected by local surface properties. The LGBMQR that uses the
ERAS5-WSQ will be referred to as LGBMQR-ERAS5, and the benefit of using the ERA5-WSQ as

covariates will be evaluated and discussed in the following sections of the paper.

Furthermore, to select the optimal number of covariates to include in the model, the available
covariates were ranked according to their relevance and redundancy using the minimum
redundancy maximum relevancy algorithm (MRMR: Ding et al., 2005). Then, the number of
covariates to use with LGBMQR and LGBMQR-ERA5 was treated as an additional
hyperparameter during the implementation of the random search algorithm. The MRMR algorithm
has already demonstrated good performance for WSQ mapping in a comparative study of

covariate selection techniques (Houndekindo et al., 2023a).

The estimated conditional WSQs were used as input for the Birnbaum-Saunders asymmetric
kernel estimator of CDF (Mombeni et al., 2021) to estimate the WS CDF at unsampled locations.
For more details on fitting the Birnbaum-Saunders kernel using the WSQ as input, the readers
are referred to Houndekindo et al. (2023b).

Table 5.1 Parameters of LGBMQR and LGBMQR-ERAS5

Model parameter Description Range

learning_rate Learning rate 0.02-0.1

max_depth Maximum depth of the 3-8
regression trees

feature_fraction Fraction of covariate to use to 0.1-0.9
build each tree

bagging_fraction Fraction of data to sample to 0.1-0.9
build each tree

extra_trees Use of extremely randomized True, False
trees (Geurts et al., 2006)

lambda_|2 L2 regularization 0-1000

lambda_I1 L1 regularization 0-1000

num_leaves maximum number of leaves per  2-50
regression tree

max_bin max number of bins for the 50-400
discretization of the covariates

min_data_in_leaf minimal amount of data in one 100-20000
leaf

num_boost_round Number of trees to build 90-400
(boosting iteration)

n_features Number of features to include in ~ 5-30

the model

The same set of randomly selected parameters was tested for LGBMQR and LGBMQR-ERAS5 to implement the

random search
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5.3.2 Prediction of wind speed time series at unsampled locations

It is proposed to adapt the QM (Wood et al., 2002) procedure to predict WSTS at unsampled

locations using the following general formula (Cannon et al., 2015):

Equation 5.3

We(so) = Fs,  [F(wy)]

where: w,(sq) is the estimated WS at time t and unsampled location s,. F‘So is the estimated WS CDF at the

unsampled location s,, and Fso_l is its inverse. F(w,) is the estimated wind speed non-
exceedance probabilities (WSNEP) at time t.

The methodology to estimate Fsoat any unsampled location in the region was described in section

5.3.1. For the estimation of F(w,) two approaches have been put forward in previous studies:

1.

Some authors (Ouarda et al., 2022; Shu et al., 2012) proposed using information from
nearby locations to estimate F (w;) at any unsampled location. This technique assumes
that observed non-exceedance probabilities (or exceedance probabilities) between
nearby locations are correlated. Thus, a spatial interpolation method could be applied to
estimate the WSNEP at unsampled locations. The Inverse Distance Weighting (IDW) was
used to interpolate the WSNEP. The method was named the flow duration curve and the
temperature duration curve for streamflow and temperature modelling. Following this
nomenclature, the technique was referred to as the Wind Duration Curve (WDC) in the
context of WS modelling.

Jung et al. (2023b) derived the non-exceedance probabilities F“(wt) directly from a
reanalysis dataset, thereby performing bias correction. This approach will be applied with
ERAS5 and named quantile mapping bias correction of ERA5 (QM-ERA5) in the following

sections.

The Weibull plotting position was used to estimate the WSNEP from the WSTS as follows:

Equation 5.4

it
n+1

Fn(Wt) =

where i; =1,2,3,..,n is the rank of the WS value observed at time t (w,) after sorting the time series in

ascending order.
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5.3.3 Spatial interpolation methods

Two spatial interpolation methods were selected and evaluated to interpolate the WSTS directly.
The IDW technique was selected for its ease of application and set as the baseline method in the

study. The general formula of the IDW methods is:

Equation 5.5

k
Pelso) = ) Awi(s)

Equation 5.6

d-p

— l
A= Sk
j=17j

where w,(s;-1.;) is the observed WS value at time t and the nearest location s;, located at a distance d; from
the target location s,. The parameters p and k are the exponent and the number of nearest
neighbours to consider.

It should be noted that the IDW was used in the study to interpolate observed WSTS and WSNEP
(during the implementation of the WDC method). In both cases, the optimal number of nearest
locations and the exponent were selected based on 1) the time series (TS) evaluation using the
Pearson correlation coefficient between observed and estimated WSTS and 2) the probability
distribution (PD) evaluation by calculating the coefficient of determination (R?) between observed
and estimated WSQ derived from the WSTS. The R? is presented in Equation 9.4 of the supporting
material (Section 9). The results of the models were presented for each evaluation metric (TS and

PD) separately.

The second spatial interpolation method implemented in the study was the Random Forest for
Spatial Interpolation model (RFSI: Sekuli¢ et al., 2020). The model uses nearby observations and
their distance from the target location as covariates with a random forest regression model to

interpolate at unsampled locations. The general formula of the model is (Sekuli¢ et al., 2020):

Equation 5.7

17l\/I:(SO) = f(xl (So), ] xm(SO)f Wt(sl)’ dl' e Wt(sk)’ dk)

where x;_1.,(s¢) are covariates available at the target location s(, f(.) is a regression function linking the
covariates and the WS values at the unsampled location.
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A comparative analysis carried out by Sekuli¢ ef al. (2020) revealed that in real-world conditions,
the RFSI model outperformed Space-time regression kriging, and the approach can scale and
perform better than another spatial interpolation method based on the random forest model (Hengl|
et al,, 2018). Furthermore, as RFSI does not require semi-variogram modelling, it is easier to
implement than kriging methods with less restrictive assumptions (e.g., stationarity and linearity).
In the original RFSI model, the authors used the random forest model to learn the regression
function. Due to its efficiency and scalability for large datasets, the LGBM implementation of the
gradient boosting algorithm was used in place of the random forest model, and the approach was
renamed LGBMSI for this study. The tuned LGBMSI parameters were the same parameters
presented in Table 5.1 of the present paper. These parameters were also tuned using a random
search with 1000 iterations. As done for the QR model, the available covariates were ranked using
the MRMR algorithm. The number of covariates to include in the model was treated as a
parameter to be tuned during random search. Two versions of LGBMSI were tested: The version
presented in Equation 5.7 (it will be referred to as simply LGBMSI in the following sections) and
a version which uses as additional covariate the WS values from the nearest ERA5 grid point to
the unsampled location (wt(ERASSO)). The LGBMSI model with the ERA5 covariates will be
referred to as LGBMSI-ERADS in the following sections of the paper and is presented in Equation
5.8:

Equation 5.8

We(50) = £ (%1050, -, X (50), We(51), i, ., W (1), i, we(ERAS;, ) )

5.34 Global Wind Atlas mean bias correction

The GWA version 3 (https://globalwindatlas.info/) feeds the output from a mesoscale atmospheric

model into a microscale model to downscale the ERA5 wind data. The resulting wind data has a
spatial resolution of 250 m x 250 m and accounts for the effect of the local topography and surface
roughness. Several studies used the GWA to bias-correct reanalysis WS data (de Aquino Ferreira
et al., 2022; Luzia et al., 2023; Murcia et al., 2022). The procedure involves applying a scaling
factor to the reanalysis WS data to ensure that their mean matches the mean WS from GWA. The
scaling factor is computed as the ratio between the mean WS from GWA and the reanalysis during
the overlapping period of both datasets. The mean WS from GWA and ERAS5 at 10 m estimated

for the period between 2008 and 2017 were used to calculate the scaling factor. Nearest

168


https://globalwindatlas.info/en/about/method

neighbour interpolation was used to interpolate the GWA data at locations of interest. The bias-
corrected ERA5 using GWA will be referred to as GWA-ERAS in the remainder of the paper.

5.3.5 Validation

The model validation strategy adopted in this study is aligned with the modelling procedure's
primary task, which consisted of predicting WSTS at unsampled locations. During the models
tuning, random k-fold cross-validation across the training locations was implemented to estimate
the model's performance for prediction at (pseudo) unsampled locations. In 5-fold cross-
validation, the training locations are randomly split into five groups. Training is carried out with the
data of 4 groups, and the model is evaluated on the remaining group. This procedure was
repeated five times, using each group once as the validation set. The final evaluation of the
selected model was performed on a group of locations (test samples) held back and comprising

approximately 30% (97 locations) of the available locations (303) for the entire study.

The estimated WSTS at locations of the test samples were evaluated according to the following

criteria:

1. Time series evaluation: The Pearson correlation (PC), mean absolute error (MAE) and root-
mean-squared error (RMSE) were calculated between observed and estimated WSTS. The
PC, MAE and RMSE are presented in Equation 9.1, Equation 9.2, and Equation 9.3 of the
supporting material (Section 9), respectively.

2. Probability distribution evaluation: Two approaches were used to evaluate the probability
distribution of the estimate WSTS. First, quantiles with non-exceedance probabilities between
10% and 90% and a spacing of 10% were calculated from the WSTS using Equation 9.8 in
the supporting material (Section 9). The R?, MAE and RMSE were used to compare the
observed and estimated WSQ. Lastly, the Overlap percentage (OP: Perkins et al., 2007) was
used to assess the overlap between estimated and observed empirical probability distribution
function (PDF). The OP is presented in Equation 9.6 of the supporting material (Section 9).
For a review of criteria used for the selection of PD for WS data the reader is referred to
(Ouarda et al., 2016).

3. Interannual variability (IAV) evaluation: The robust coefficient of variation (RCov: Watson,
2019) of annual median WS was calculated to assess IAV. RCov serves as a robust and
resistant measure of variability analogue to the coefficient of variation, which lacks robustness
and resistance to outliers. The MAE and mean error (ME) between observed and estimated

RCov were used to evaluate the performance of the models in reproducing the observed IAV.
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The RCov and the ME are presented in Equation 9.7 and Equation 9.5 of the supporting

material (Section 9), respectively.

5.4 Results

5.4.1 Quantile regression models

A thousand random combinations of the LGBM hyperparameters (Table 5.1) were tested with
LGBMQR and LGBMQR-ERAS models. Table 9.2 in the supporting material shows the best
parameters found using a random search, including the number of selected covariates. Figure
5.2 illustrates the R2, MAE, and RMSE between estimated and observed WSQ from the test
samples. For reference, the same metrics between ERA5-WSQ and observed WSQ are also
presented in Figure 5.2. Figure 5.3 shows boxplots of the metrics calculated over the different
percentile points (P1 — P13) at each test sample. The Wilcoxon signed-rank test was used to test
the statistical significance of these metrics between pairs of models (the test P-values are shown
in Table 9.3 of the supporting material (Section 9)). The P-values associated with LGBMQR-ERAS
are all less than 0.05, and the P-values between LGBMQR and ERA5-WSQ are more significant
than 0.05. LGBMQR and ERA5-WSQ had significantly lower median R? and higher median MAE
and RMSE than LGBMQR-ERAS. LGBMQR underperformed compared to ERA5-WSQ, but the
difference between the methods was not significant according to the Wilcoxon signed-rank test.
LGBMQR outperformed ERA5-WSQ for WSQ with low exceedance probabilities (P1, P2, P3)
while ERA5-WSQ were more accurate in the middle and upper tail of the distributions. It is evident
from these results that the inclusion of the ERA5-WSQ improves the QR model performance;
thus, WSQs from LGBMQR-ERAS5 were used in subsequent analyses of the study.
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The metrics were calculated across the test samples for each percentile point
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Figure 5.3 Result of the R?2, MAE and RMSE between observed and estimated WSQ

The metrics were calculated across the percentile points (P1-P13) at each location in the test samples

5.4.2 Inverse distance weighting parameters

Table 5.2 shows the optimal parameters (p and k) for IDW based on the TS and PD evaluation.
The selection of the best parameters was performed with the training set. The optimal k and p
was contingent upon the evaluation criteria. For the interpolation of WSNEP, the optimal number
of nearest neighbours (optimal k = 1) based on the PD evaluation is equated to the nearest
neighbour interpolation. Generally, it was observed smaller values of k were optimal for the PD
criteria. The results of the different evaluation criteria will be presented and discussed separately

in the following section.

Table 5.2 Optimal parameters of the IDW for WSTS and WSNEP interpolation
Interpolated variable Evaluation criteria Optimal k Optimal p Abbreviation used
for the model
herein
WSTS PD 6 0.3 IDW-PD
TS 11 1.7 IDW-TS
WSNEP PD - WDC-PD
TS 1 WDC-TS
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543 Time series evaluation

Figure 5.4 shows a boxplot of the PC, MAE and RMSE between observed and estimated WSTS
from the test samples, while the median values of the metrics are given in Table 5.3. LGBMSI-
ERAS5 had the highest median PC alongside the lowest median MAE and RMSE. In contrast,
WDC-PD had the lowest median PC and the highest median MAE and RMSE. WDC-TS
performed better than WDC-PD, with performances comparable to the IDW model. The ERA5
WSTS showed a relatively high median PC and methods directly exploiting this dataset (GWA-
ERA5, LGMBSI-ERAS, QM-ERAS5) maintained a higher median PC with less variability in the
distribution of the metric in comparison to methods solely using observations from nearby
locations (WDC-PD, WDC-TS, LGBMSI, IDW-PD and IDW-TS). Despite QM-ERA5 showing a
relatively high median PC, it also had a high median MAE and RMSE.

Table 9.4 in the supporting material (Section 9) gives the P-value of the Wilcoxon signed-rank
test between pairs of models for the different evaluation metrics. From the results of the Wilcoxon
test, it was found that LGBMSI-ERA5 was the only method with an MAE and RMSE statistically
inferior to IDW-TS. For the time series evaluation criteria, LGBMSI-ERA5 was the best-performing
method, WDC-PD was the least effective method and most other models had performances

comparable (in a statistical sense) to IDW-TS.

Table 5.3 Median PC, MAE and RMSE between observed and estimated WSTS
Model PC MAE (m/s) RMSE (m/s)
WDC-TS 0.73 1.26 1.59
WDC-PD 0.64 1.62 219
ERA5 0.75 1.22 1.60
QM-ERA5 0.76 1.34 1.80
GWA-ERAS 0.75 1.32 1.68
IDW-TS 0.74 1.29 1.68
IDW-PD 0.72 1.31 1.66
LGBMSI 0.72 1.28 1.59
LGBMSI-ERAS 0.78 1.13 1.47
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Figure 5.4 Result of the PC, MAE and RMSE between observed and estimated WSTS

54.4 Probability distribution evaluation

Figure 5.5 shows matrices detailing the R?, MAE and RMSE calculated between the estimated
and observed WSQ across various percentile points. The last row of these matrices (labelled M)
presents the median value (calculated over the different percentile points). QVM-ERA5 and WDC-
PD were the top-performing methods overall, mainly due to their relatively strong performance in
estimating WSQ in the lower and middle tail of the distribution. Both LGBMSI-ERA5 and LGBMSI
performed relatively well in the middle of the distribution but were less effective in estimating WSQ
in the lower tail. GWA-ERA5 was the best method for estimating WSQ in the upper tail of the
distribution, yet it performed poorly for low exceedance probabilities WSQ. The IDW methods

demonstrated an overall lack of effectiveness in estimating WSQ across the distribution.

The OP metric measured the overlap between the empirical PDF computed from the estimated
and observed WSTS. Figure 5.6 presents boxplots illustrating the distribution of the OP metric.
QM-ERAS5 had the highest median OP at 80%, followed by ERA5 at 77%, GWA-ERAS5 at 77%
and WDC-PD at 76%. Also, QM-ERA5 and WDC-PD displayed less spread in the distribution of
the metric compared to ERA5 and GWA-ERA5. LGBMSI and LGBMSI-ERA5 had the lowest
median OP values at 65% and 72% respectively. The statistical significance of the results was
tested with the Wilcoxon signed-ranked test between pairs of models (Table 9.5 of the supporting
material (Section 9)). The P-values associated with QM-ERA5, LGBMSI, LGBMSI-ERA5 and
WDC-TS were always small (e.g., less than 0.05). The differences between IDW, ERA5, GWA-
ERAS5 and WDC-PD were not statistically significant (P-values greater than 0.05) for the OP
metric. Overall, QM-ERA5 was the top performer for the OP metric, followed by (listed in no
particular order) IDW, ERA5, GWA-ERA5 and WDC-PD. WDC-TS performed slightly better than
LGBMSI-ERAS5, while LGBMSI was the least effective method.
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Figure 5.5 Result of the RZ, MAE and RMSE between observed and estimated WSQ.

The last row of the matrices gives the median of the metric calculated across the different percentile points.
Values of R? less than 0 were omitted from the matrices.
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Figure 5.6 Boxplots of OP metrics calculated between observed and estimated empirical PDF.
5.4.5 Interannual variability evaluation

The IAV assesses the fluctuation of wind speed across multiple years. Studies have indicated
that wind speed exhibits IAV in many parts of the world (Bett et al., 2017; Jung et al., 2019c;
Ouarda et al., 2021). The IAV has been linked to atmospheric teleconnections (Naizghi et al.,
2017; Ouarda et al., 2021; Zhou et al., 2022) such as the El Nifo-Southern Oscillation and the
North Atlantic Oscillation. Accurately assessing the IAV of wind resources is essential for
providing adequate information for the long term planning of wind energy projects (Pryor et al.,
2018). Some attempts have been made to develop teleconnection-based long term forecasting
models for wind speed that use low frequency atmospheric circulation patterns as covariates
(Woldesellasse et al., 2020).

Figure 5.7 presents a bar plot representing the MAE and ME between observed and estimated
RCov of median annual WS. WDC-PD gave the smaller MAE at 2%, while the other methods
gave a slightly higher MAE at 3%. Notably, WDC-PD was the only method that overestimated, on

average, the IAV (positive ME). The other methods showed, on average, an underestimation of
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the IAV (negative ME). There was no substantial difference in the performance among the various
methods based on the IAV.
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Figure 5.7 Result of MAE and ME between observed and estimated RCov of median annual WS.

5.5 Discussion

The study results indicate that no single method excelled according to all evaluation criteria,
suggesting potential for improvement through combining specific methods. For instance, it was
found that WSQ derived from the GWA-ERADS time series was the most accurate in the upper tail
of the distribution. Conversely, in the lower tail, WSQs from GWA-ERA5 were inaccurate
compared to QM-ERA5 and WDC-PD. Based on these outcomes, future studies are
recommended to explore using the mean WS from the GWA dataset as covariates of the QR
model to potentially improve the estimation of the conditional WSQ in the upper tail of the
distribution, thus enhancing the performance of QM-ERA5 and WDC-PD.

LGBMSI-ERA5 was the top performer based on the time series evaluation. In the case of the
evaluation based on the PD, QM-ERAS was the top performer. Generally, more complex methods
yielded superior performances compared to the baseline model (IDW), suggesting some benefits

in implementing complex methods in part due to their ability to integrate various WS covariates.
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The ERAS dataset was a valuable covariate. For instance, ERAS WSTSs are well correlated with
ground measurements, and this correlation could be improved significantly (in a statistical sense)
by using the dataset as a covariate with LGBMSI. Also, ERA-WSQ significantly improved (in a
statistical sense) the performance of the QR model. It should be noted that other covariates used
as input of the QR models demonstrated a higher ability to predict WSQ in the distribution's lower

tail than ERA5-WSQ, which seemed less accurate in the lower tail.

QM-ERAS improved the performance of ERAS in most cases. The approach is relatively easy to
implement and relies on a reasonable estimation of the WSD at unsampled locations. One reason
that could explain the improved performance of QM-ERAS is its higher accuracy in the lower tail
of the distribution compared to ERA5 wind data. It was also revealed that the WDC method was
competitive. However, the approach is sensitive to the evaluation criteria used to select the
optimal parameters of the IDW for interpolating the WSNEP. Different evaluation criteria lead to
different optimal parameters, which leads, in turn, to different performances during evaluation.
For instance, WDC-PD performed relatively well based on the evaluation of PD, while it performed
poorly based on the TS evaluation. In contrast, WDC-TS performed relatively well based on the
TS evaluation and was less effective than WDC-PD based on the evaluation of the PD. In future
studies, it is recommended that different methods to interpolate the WSNEP are explored to
improve the performance of the WDC method. For instance, a more complex interpolation
method, such as RFSI, could be applied to interpolate the WSNEP.

In this study, LGBM with the pinball lost function was used as the QR model (LGBMQR). Other
quantile regression models could be viable alternatives, such as quantile regression forests
(Meinshausen et al., 2006) and quantile regression neural networks (Cannon, 2011). LGBMQR
was adopted because it is efficient during training, and in general, gradient-boosting models have
demonstrated superior performance on tabular data (Grinsztajn et al., 2022a). In upcoming
research, a comparative analysis can be performed to evaluate the performance of different QR

models for conditional WSQ mapping.

For practical reasons, the analysis in the present study was carried out at the World
Meteorological Organization (WMQO) recommended wind speed measurement height of 10 m.
Modern wind turbines operate at hub heights of 100 m and beyond. It would be ideal to assess
the wind resource directly at these hub heights. However, there is lack of extensive wind speed
time series data at these heights and even when available, accessing such data from private wind
farm operators can pose challenges. To account for this disparity, vertical wind profile equations

such as the logarithmic and power law are employed to extrapolate the estimated wind speed
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from 10 m to the hub height (Gruber et al., 2019; Jung et al., 2020). This procedure inevitably
introduces additional uncertainty to the estimated wind resource. Future research should be

conducted to evaluate and quantify this layer of uncertainty more comprehensively.

5.6 Conclusions and future research

This study conducted a comprehensive evaluation of various approaches for the prediction of
wind speed time series at unsampled locations. It was found that no single method consistently
outperformed the other methods according to all evaluation criteria. However, complex methods
that include various covariates were more effective than the baseline method. Mainly, two
approaches (QM-ERA5 and LGBMSI-ERAS5) applied to bias-correct ERA5 wind speed data
seemed promising and showed improved results compared to the most common ERA5 bias
correction method (GWA-ERAS). It should be noted that both methods are more complex and
computationally demanding than GWA-ERA5. However, LGBMSI-ERAS5 significantly improved
the accuracy of the ERA5 data when evaluating the time series correlations, while QM-ERA5S
significantly improved the overlap percentage between the observed and estimated empirical
PDF. In future studies, it is recommended that the performance of LGBMSI-ERA5 and QM-ERA5
be explored further in different regions with different wind regimes. Another promising research
route is the potential to combine different approaches to produce a more accurate model across

multiple evaluation criteria.

Also, with the QR model, there is a potential to account for the non-stationarity of the WSD by
using related covariates. For instance, Ouarda et al. (2021) found that the North-Atlantic
Oscillation and the Pacific North American indices of atmospheric circulation were good predictors
of the IAV of WS in the province of Québec, Canada. In future studies, these climate indices can
be used as covariates with a QR model in the region to map conditional WSQ that accounts for
the resource's IAV. This analysis could lead to a better evaluation of the wind resources at

unsampled locations, thus reducing the risk associated with future projects.

The comprehensive evaluation provided in the present study aims to assist practitioners in
choosing the most suitable methodologies for their specific projects. Furthermore, it is anticipated
that this research will inspire future studies to systematically evaluate various approaches for
predicting wind speed time series at unsampled locations. This will foster in the long run a better
understanding of the strengths and limitations of these approaches and encourage their
refinement and the development of more robust techniques for the prediction of wind speed time

series at unsampled locations.
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Nomenclature

Abbreviations

a.g.l

ALOS

CDF

DEM

ECCC
ECMWF
ERA5
ERA5-WSQ
GWA
GWA-ERA5
AV

IDW

LGBM
LGBMQR

LGBMQR-ERAS

LGBMSI

LGBMSI-ERA5

MAE

ME
MERRA-2
MRMR
OP

PC

PD

PDF

QM
QM-ERA5
QR

R2

RCov
RFSI

Above ground level

Advanced Land Observing Satellite
Cumulative distribution function

Digital elevation model

Environment and Climate Change Canada

European Centre for Medium-Range Weather Forecasts

European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis v5

Wind speed quantiles extracted from the ERA5S dataset (m/s)
Global wind atlas

Bias-corrected ERA5 using GWA (m/s)

Interannual variability

Inverse distance weighting

Light gradient-boosting machine

Lightgbm for quantile regression

LGBMQR using ERA5S wind speed quantiles as covariates
LGBM for spatial interpolation

LGBMSI using the ERA5 wind data as covariates

Mean absolute error (m/s)

Mean error (m/s)

Modern Era Retrospective Analysis for Research and Applications-2
Minimum redundancy maximum relevancy algorithm
Overlap percentage (%)

Pearson correlation

Probability distribution

Probability distribution function

Quantile mapping

Quantile mapping bias correction of ERA5 wind data
Quantile regression

Coefficient of determination

Robust coefficient of variation

Random forest for spatial interpolation
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RMSE
TS
WDC
WMO
WRA
WS
WsSD
WSNEP
WsQ
WSTS

Symbols

P1
P10
P11
P12
P13
P2
P3
P4
P5
P6
P7
P8

Root-mean-squared error (m/s)

time series

Wind Duration Curve method

World Meteorological Organization

Wind resource assessment

Wind speed

Wind speed distribution

Wind speed non-exceedance probabilities
Wind speed quantiles

Wind speed time series

Distance of location s; from the target location s,
Regression function

Conditional cumulative distribution function
Empirical cumulative distribution function

Estimated cumulative distribution function at location S,

Inverse of the estimated cumulative distribution function at location S,

Number of nearest neighbours to consider in the inverse distance weighting
method

Interpolation weight associated with location s;
Exponent in the inverse distance weighting formula
5% percentile-level

72.5% percentile-level

80% percentile-level

87.5% percentile-level

95% percentile-level

12.5% percentile-level

20% percentile-level

27.5% percentile-level

35% percentile-level

42.5% percentile-level

50% percentile-level

57.5% percentile-level
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65% percentile-level

Quantile loss function

Quantile-level

ERAS5 wind speed value at time t interpolated at location s,
Estimated wind speed value at time t and unsampled location s,

Observed wind speed value at time t and location s;
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Abstract

Reanalysis-derived wind speeds are central to large-scale wind resource assessment (WRA).
However, their coarse spatial resolution often introduces significant biases, particularly in complex
terrains and coastal areas. A deep learning (DL) framework using LSTMs or Transformers was
introduced to correct systematic biases and temporal variability in reanalysis-derived wind speeds
by modeling a time-resolved scaling factor, which is then used to adjust ERA5 wind speeds. The
proposed framework's spatiotemporal generalization capability was rigorously evaluated using a
test set of 170 independent stations distributed throughout Canada in diverse environmental
conditions. Results showed that the DL framework outperformed a standard bias correction
method based on the Global Wind Atlas. It improved the median wind speed, the temporal
variability, and the probability distributions of ERA5 wind speeds in coastal areas and complex
terrains. Specifically, in coastal regions, the DL models increased the explained variability of
median wind speed by over 70% relative to ERAS5. In regions characterized by high surface
roughness length, such as forests and urban areas, these models achieved average
improvements of more than 10% in MAE and RMSE of the time series. While the DL models
performed well in representing the probability distribution of the most typical wind speed values,
some challenges remain in improving the distribution of extreme wind speeds. Overall, this
framework represents a promising advancement in enhancing the accuracy of reanalysis-derived
wind speeds in large-scale WRA. By reducing biases in ERAS wind data, the DL framework

supports more reliable site selection and estimation of long-term energy production.

Keywords: Bias correction, Deep learning, ERA5, High-resolution, Wind resource assessment.
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6.1 Introduction

Addressing climate change and mitigating its risks to humanity requires significantly expanding
renewable energy sources, such as wind and solar, to replace fossil fuel-based energy systems
(Shang et al., 2024). Wind energy, in particular, has emerged as a promising and scalable solution
driven by technological progress (Kumar et al., 2016b; McKenna et al., 2016) and rapidly declining
costs (Wiser et al., 2021). Improving the accuracy of wind resource assessment (WRA) is crucial
to increasing wind energy’s contribution to the global energy mix (McKenna et al., 2022; Pelser
et al., 2024). Preliminary assessment of wind energy resources typically involves evaluating their
meteorological potential (Manwell et al., 2010). In addition to considering the meteorological
potential, comprehensive WRA studies also integrate economic, environmental, land-use, and

technological constraints (Pelser et al., 2024).

Accurate wind data is essential for WRA studies (Pelser et al., 2024). The data required for large-
scale meteorological wind potential assessments can be classified as time-invariant (static) or
time-resolved (McKenna et al., 2022). Time-invariant data provides an overview of long-term
average wind conditions across a large region, typically with high spatial resolution (e.g., wind
atlas). In contrast, time-resolved data (e.g., meteorological reanalysis) captures the temporal

variability of wind resources, including diurnal, seasonal, and interannual variations.

The high temporal resolution of time-resolved data comes at the expense of relatively low spatial
resolution, limiting its effectiveness for analysis that requires fine spatial detail (Gualtieri, 2022).
Some studies have sought to integrate time-invariant and time-resolved wind data, enhancing
spatial and temporal resolution (McKenna et al., 2022). A commonly used method within this
framework is a simple mean bias correction (BC), where the long-term mean wind speed from a

reanalysis dataset is corrected to match the mean wind speed from a wind atlas.

The Global Wind Atlas (GWA) provides time-invariant wind data quasi-globally (excluding
Antarctica) with a spatial resolution of 250 m x 250 m (Davis et al., 2023). The dataset’s global
availability, relatively high spatial resolution, and free accessibility contribute to its widespread
adoption for BC of reanalysis-derived wind speeds (Gualtieri, 2022). The dataset was generated
by applying numerical weather prediction (NWP) models to downscale large-scale wind speeds
from reanalysis datasets, followed by microscale modeling to account for high-resolution

topography and land use.

Numerical models like NWP are often associated with high computational costs (Ben Bouallégue

et al., 2024; Schultz et al., 2021). In contrast, machine learning (ML) and statistical models have
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emerged as effective alternatives to numerical models in some fields (Hohlein et al., 2020;
Kratzert et al., 2018; Reichstein et al., 2019) and typically require fewer computation resources.
Given sufficient sample sizes, ML models can learn complex relationships between input
variables and the target variable. For instance, in the context of WRA, ML has been applied to
model mean wind speeds (Cellura et al., 2008a), wind speed quantiles (Houndekindo et al.,
2023b), wind speed L-moments (Jung et al., 2020), and parameters of wind speed distribution
(Veronesi et al., 2016).

To the authors' knowledge, no previous attempts have been made to use ML to directly predict a
scaling factor that could adjust the long-term mean wind speed from reanalysis data. An ML-
derived scaling factor could provide an alternative to the scaling factor typically estimated from
the GWA, allowing for greater flexibility in the resulting spatial resolution of the downscaled wind
data. Biases in reanalysis-derived wind speed partially stem from their coarse spatial resolutions,
which limit their ability to resolve detailed terrain features and surface roughness (Petersen et al.,
1998). ML can effectively reduce these biases by establishing a relationship between high-
resolution topography, land use, and the corresponding scaling factor. This approach leverages
the capacity of ML algorithms to learn complex, nonlinear relationships between input variables

and outputs.

Due to the static nature of data from wind atlases, time-invariant scaling factors have been used
primarily for BC of reanalysis-derived wind speeds. While a time-invariant scaling factor can
improve reanalysis data's long-term mean wind speed, it does not modify its temporal variability
(Bosch et al., 2018). Discrepancies have been reported between the temporal variations in
reanalysis and measured wind speeds (Brune et al., 2021; Davidson et al., 2022; Jourdier, 2020;
McKenna et al., 2022; Ramon et al., 2019). These discrepancies hinder understanding the data
temporal variability, such as diurnal, seasonal, and inter- and intra-annual variations, essential for
effective WRA. Developing a model that dynamically adjusts the scaling factor could address
these issues. By leveraging deep learning (DL) architectures for sequence modeling, such as
Long Short-Term Memory (LSTM; Hochreiter et al., 1997) networks or Transformers (Vaswani et
al., 2017), time-resolved scaling factors can be modeled, enabling both the adjustment of the
long-term mean wind speed and the improvement of the temporal correlations between

reanalysis-derived and measured wind speeds.

This paper introduces an innovative ML framework for predicting time-invariant and time-resolved
scaling factors for BC of reanalysis-derived wind speeds. The proposed framework uses

covariates related to the topography, the surface roughness length (SRL), and reanalysis-derived
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past weather conditions to predict a scaling factor. The time-invariant scaling factor is modeled
using a standard ML model, such as gradient boosting trees (GB). DL models suitable for
sequence modeling, such as LSTM or Transformers, were used to model the time-resolved

scaling factor.

The proposed framework was compared to a commonly used BC method based on the GWA.
The GWA correction method relies on a time-invariant scaling factor that can only adjust the
systematic bias of reanalysis-derived wind speeds. However, as mentioned above, the temporal
variability may not be well represented in the reanalysis data. The time-resolved scaling factor
proposed in this study can correct systematic bias in reanalysis-derived wind speeds while
adjusting the temporal variability to better match the measured wind speeds. This novel approach
significantly departs from conventional methods by introducing a time-resolved, data-driven
framework capable of capturing complex wind-topography interaction and complex temporal

dependencies to improve the accuracy of reanalysis-derived wind speeds.

To ensure a comprehensive evaluation, several criteria relevant to WRA, including median wind
speed (to represent the typical wind speed condition), temporal variability, and probability
distribution, were considered. Furthermore, the framework spatiotemporal generalization
capabilities were assessed across 170 independent test stations located in diverse environmental
conditions that impact reanalysis accuracy, such as coastal areas, complex terrain (hilly and
mountainous), and regions with varying SRL. This comprehensive analysis is essential to
demonstrate the framework’s applicability in various environments and identify potential areas for

refinement.

In the following sections, a survey of related work is presented (Section 6.2), followed by a
description of the dataset (section 6.3), the methodology (Section 6.4), and the presentation of
the results (Section 6.5), which are discussed in Section 6.6. Finally, the conclusion of the paper

is provided in Section 6.7.

6.2 Related work

Various techniques for BC of reanalysis-derived wind speeds have been explored in the literature.
A commonly used method is mean BC, which aligns the long-term mean wind speed from the
reanalysis data with the GWA (Bosch et al., 2017; Bosch et al., 2018; de Aquino Ferreira et al.,
2022; Gruber et al., 2019; Gruber et al., 2022; Houndekindo et al., 2024; Langer et al., 2023;
Luzia et al., 2023; Murcia et al., 2022; Ryberg et al., 2019). This technique applies a time-invariant

scaling factor estimated as the ratio between the reanalysis and the atlas mean wind speeds. The
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time-invariant scaling factor can adjust the reanalysis long-term mean wind speed while

preserving its temporal characteristics.

Beyond mean BC, parametric quantile mapping using the Weibull scale and shape parameters
from the GWA has been applied (Gonzalez-Aparicio et al., 2017; Nefabas et al., 2021). This
method assumes that the Weibull distribution adequately represents wind speed distributions
across the region of interest. However, a growing body of literature advocates considering
alternative or mixed distributions in wind speed modeling (Jung et al., 2019b; Ouarda et al., 2018;
OQuarda et al., 2015; Tsvetkova et al., 2023).

Methods that rely on the GWA for reanalysis-derived wind speed BC are limited to the atlas’
spatial resolution. Some studies have implemented ML for wind speed BC to achieve greater
flexibility in the resulting spatial resolution. For instance, Jung et al. (2023b) applied a parametric
quantile mapping procedure to downscale wind speeds from a regional reanalysis dataset across
Germany. To estimate the wind speed distribution at unsampled locations, they developed a
gradient-boosting regression model that uses high-resolution terrain and land use data to predict
wind speed statistics in the form of L-Moments (Hosking, 1990). The predicted wind speed L-
Moments were then used to derive the parameters of the Kappa distribution function at unsampled
locations. This method successfully increased the spatial resolution of the reanalysis data from
11 km x 11 km to 25 m x 25 m.

Similarly, Hu et al. (2023) employed the eXtreme gradient boosting algorithm (XGBOOST, Chen
et al. (2016)) to downscale hourly wind speed from the European Centre for Medium-Range
Weather Forecasts (ECMWF) reanalysis version 5 (ERA5, Hersbach et al. (2020)). The model
used meteorological variables (wind speed, wind direction, and gravity wave dissipation) from
ERAS and high-resolution topography data to predict observed wind speed. Houndekindo et al.
(2024) compared various ML methods for the BC of ERA5 wind speeds. The findings
demonstrated that quantile mapping and ML-based spatial interpolation, using ERAS wind speed
data, high-resolution topography, and SRL as covariates, improved the probability distribution and

temporal variability of ERA5 wind speeds.

Dujardin et al. (2022) classified statistical downscaling methods based on input and output types,
distinguishing between point-level (Director et al., 2015) and gridded data. This classification
resulted in three categories of methods: point-to-point, 2D-to-point (Dujardin et al., 2022), and 2D-
to-2D (Dupuy et al., 2023; Hohlein et al., 2020; Zhong et al., 2024). The 2D-to-point and 2D-to-
2D methods are designed with DL architectures for computer vision tasks such as convolutional

neural networks (CNNs). These architectures use gridded meteorological and topography
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features as inputs to predict wind data either at a point location (e.g., the center of the grid) or at

the grid level, i.e., super-resolution.

Given the conceptual alignment of DL architectures for computer vision with the problem of
downscaling wind fields (Bafo-Medina et al., 2020; Hohlein et al., 2020), these methods are
expected to outperform point-to-point techniques. However, this improvement often requires
significantly more computational and memory resources, which can present significant challenges
for practical applications, particularly when analyzing large regions and extensive time series data
(e.g., 30 years of hourly data for WRA).

A limited number of studies have applied DL architectures for sequence modeling to the problem
of reanalysis-derived wind speed BC. However, models like LSTM and Transformers (Vaswani et
al., 2017) were often used to model the temporal characteristics of meteorological data. The
LSTM was introduced to address the limitations of vanilla recurrent neural networks (RNNs) in
capturing long-term dependencies (Goodfellow et al., 2016). Several studies have shown that
LSTMs outperform traditional statistical methods for wind speed forecasting (Chen et al., 2021a;
Elsaraiti et al., 2021; Gao et al., 2023). Zhang et al. (2021) applied the Gated Recurrent Unit
(GRU) to downscale wind speed from global climate models (GCMs). GRUs have a similar
architecture to LSTMs but with fewer parameters, making them more computationally efficient.
Beyond wind speed forecasting, LSTMs were also successfully applied in hydrology for rainfall-

runoff modeling (Kratzert et al., 2018), a task traditionally handled by physics-based models.

Despite the improvements introduced by the LSTM architecture in sequence modeling, it still
faces limitations due to its sequential processing, which can be time-consuming for long
sequences. Researchers have explored several alternatives and enhancements to LSTMs to
address this challenge. One prominent alternative is the Transformer architecture, which replaces
the sequential nature of LSTMs with a parallelizable self-attention mechanism (Vaswani et al.,
2017). It allows Transformers to process entire sequences simultaneously, improving
computational efficiency (Dao et al., 2022) and effectively capturing long-range dependencies
(Lim et al., 2021b). Recent studies have applied Transformers for wind speed forecasting
(Bentsen et al., 2023; Jiang et al., 2024; Nascimento et al., 2023; Wu et al., 2022), wind power
forecasting (Sun et al, 2023a), and global solar radiation prediction (Zhou et al., 2023).
Nascimento et al. (2023) reported that Transformers outperformed LSTMs, offering better
generalization in wind speed forecasting. In contrast, Jiang et al. (2024) found that LSTMs and

GRUs outperformed Transformers in their proposed DL framework for wind speed forecasting.
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This study proposes using standard ML to model a time-invariant scaling factor for adjusting the
long-term mean wind speed from reanalysis data. This approach offers an alternative to the time-
invariant scaling factor typically derived from the GWA. The key advantage of using ML lies in its
flexibility, enabling finer spatial resolution in the output compared to the fixed spatial resolution
offered by the GWA.

Additionally, a novel DL framework is introduced for BC of reanalysis-derived wind speeds. This
framework uses a DL model to learn the temporal correlation between meteorological variables
from ERA5 dataset and a time-resolved scaling factor. The time-resolved scaling factor is used

to adjust ERAS wind speeds.

6.3 Dataset

6.3.1 Measured wind speed data

For the experiments conducted in this study, hourly wind speed measurements at 10 m above
ground level (a.g.l) were obtained from Environment and Climate Change Canada (ECCC)
historical climate data archives. Stations included in this study were selected based on the
following criteria. 1) Stations with at least one valid year between 2008 and 2023 were selected.
A valid year has at least 80% data availability, and each day has a complete 24-hour record (no
missing values). 2) A minimum distance of 1 km between the stations was used to filter out

potential duplicate stations, and only the station with the longest data record was retained.

The 10 years from 2008 to 2017 were used to train the models to match the temporal coverage
of the GWA version 3 [GWAZ; 9], while testing was conducted with data from 2018 to 2023. Figure
6.1 shows a map of the selected stations in Canada and their median wind speed from 2008 to

2023. The measured wind speeds were considered as the reference for model evaluation.

6.3.2 Dynamic covariates

Various meteorological variables from ERA5 hourly data on single levels were downloaded
(https://doi.org/10.24381/cds.adbb2d47) and used as time-resolved covariates. ERA5 hourly data

are consistent and available from 1940 to present with no missing values and a spatial resolution

of 0.25 degrees on a regular latitude and longitude grid. The 10 m wind speed was derived from

the 10 m u- and 10 m v-components (i.e., Vu? + v?2). The time-resolved covariates employed in
this study included 10 m u- and 10 m v-wind components, 10 m wind speed, 2 m temperature

(2t), boundary layer height (blh), and surface pressure (sp). They were selected based on a review
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of previous studies on wind speed downscaling (Dujardin et al., 2022; Dupuy et al., 2023; Hbhlein
et al., 2020). Additionally, wind speed quantiles (5th, 50th, and 95th percentiles) estimated from
ERAS hourly wind speeds between 2008 and 2017 were used as covariates to represent long-
term wind conditions. Houndekindo et al. (2024) found that incorporating wind speed quantiles as

covariates improved model performance for wind speed distribution mapping in Canada.

6.3.3 Static covariates

Static covariates derived from the Advanced Land Observing Satellite (ALOS) Digital

Elevation Model (DEM) (Tadono et al., 2014) and Canada 2020 land cover map (Latifovic et al.,
2017) were also used as predictors. These covariates provide valuable information on fine-scale
terrain features and SRL, which may not be captured in coarse-resolution reanalysis data. Table
10.2 in the supplementary material (Section 10) provides the assigned SRL based on the land
cover class. A detailed list of the static covariates is presented in Table 10.1 in the supplementary
materials (Section 10), and their importance for wind speed modeling is discussed in detail by
Houndekindo et al. (2023a).
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Figure 6.1 Locations of ECCC meteorological stations included in the study.

All the station are located onshore in Canada. The stations were randomly split into training (circle symbol)
and test (triangle symbol) sets. The colors indicate the median 10 m wind speeds from 2008
-2023.

6.4 Method

The study flow diagram is illustrated in Figure 6.2 and includes the following main steps: (1) data
acquisition, as detailed in section 6.3; (2) data processing, also described in section 6.3; (3)
development and training of time-invariant and time-resolved models, outlined in section 6.4.1

and 6.4.2; (4) prediction of test data; and (5) evaluation of models, detailed in section 6.4.3.
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This section is structured into three parts. First, the methodology for modeling the time-invariant
scaling factor using standard ML is presented. Second, the procedure for modeling the time-

resolved scaling factor using DL is outlined. Finally, the procedure for comprehensively evaluating
the proposed methods is described.
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Figure 6.2 Study workflow.

The input data are preprocessed to derive static and dynamic covariates. The static covariates are derived from the DEM, land cover map, and ERA5 10

m wind speed quantiles, while the dynamic covariates are obtained from the ERA5 dataset. ERA5 data are interpolated to the station
locations using nearest neighbor interpolation. Measured wind speeds from ECCC historical climate data archives serve as the target
variable. The ECCC stations are randomly split into training and test sets. The training set is used to train the time-invariant and time-
resolved model, which are evaluated on the test set. The GWA bias-correction method serves as a baseline during the evaluation. The
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bias-correction methods predict scaling factors —either time-invariant (TI-GWA, TI-GBOOST) or time-resolved (TR-LSTM, TR-
Transformer)—which are applied to ERA5 10 m wind speeds before the evaluation.
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6.4.1 Time-invariant scaling factor

A common method for BC of reanalysis wind speed involves estimating a time-invariant scaling

factor at the target location s; using the following equation:
Equation 6.1
. u"4(sy)
P(si) = UETS(SL')

where UFR45(s;) and US"4(s;) represent the mean wind speed from ERA5 and GWA dataset, respectively.

This scaling factor is then used to adjust the long-term mean wind speed from ERAS5 as follows:

Equation 6.2
U (s;) = UFRS (s1) x 9(sy)

where UFRA5(s,) and U,(s;) denote the wind speed from ERA5 and the adjusted wind speed at time ¢,
respectively.

In this study, it is proposed to model the time-invariant scaling factor as a function of static
covariates (denoted k(s;), throughout the remainder of the paper, vectors and matrices in
equations are represented by boldface letters) related to the location topography and SRL, along

with the long-term wind speed condition derived from ERAS:

Equation 6.3
9(s) = f(k(sp)

where f(-) represents the regression function that maps the static covariates to the time-invariant scaling
factor.

The gradient boosting regressor (herein referred to as GBOOST) from the Scikit-learn package
(Pedregosa et al., 2011) was employed to model the regression function. Gradient boosting is an
ensemble technique that iteratively combines weak learners (regression trees) to form a robust
predictive model. In this approach, each regression tree is fitted to the negative gradient of the
loss function from the preceding iteration. The final prediction is obtained by summing the outputs
of all regression trees (Jerome, 2001). Various studies have applied gradient-boosting models for
wind speed modeling (Houndekindo et al., 2023b; Houndekindo et al., 2024; Hu et al., 2023; Jung

et al., 2023b). Moreover, these models have demonstrated superior performance than DL models
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when applied to tabular data and require less tuning (Grinsztajn et al., 2022a; Shwartz-Ziv et al.,
2022). The parameters of GBOOST (Table 6.1) were optimized using random search (Bergstra
et al., 2012a). Other optimisation algorithms are available in the literature (Abdollahzadeh et al.,
2024; El-kenawy et al., 2024; Mona Ahmed Yassen et al., 2024) and may be explored in future
studies. The covariates included in the final regression model were selected based on the

permutation feature importance technique (Breiman, 2001).

Table 6.1 List of GBOOST parameters that were tuned.
Parameters Description Tested values
learning_rate Weighting factor applied to the 0.01, 0.02, 0.05,0.1,0.2
contribution of each individual tree
subsample Ratio of the training data to randomly 0.5,0.6,0.7,0.8,0.9
sample for training
max_depth Maximum depth of tree 2,3,4,5,6,8
max_features Maximum number of covariates to 0.1,0.2,0.3,0.4,0.5
consider when looking for the best split
n_estimators Number of boosting iterations 50, 100, 200, 400, 800,
1000
n_iter_no_change The number of iterations after which 10, 20, 50, 100

training is stopped if the model's
performance on the validation set does

not improve.

min_samples_split The minimum number of samples 0.001, 0.01, 0.02, 0.05,
required to split an internal node of the 0.1
tree

6.4.2 Time-resolved scaling factor

A time-invariant scaling factor can only correct systematic biases in reanalysis-derived wind
speed data without improving its temporal variability. To overcome this limitation, a DL framework
is proposed to predict a time-resolved scaling factor. This framework aims to correct systematic
biases and enhance the temporal correlation between reanalysis-derived and actual wind speed.
The task of predicting a time-resolved scaling factor using static and time-resolved covariates can
be formulated as follows. Let y,(s;) represent the scaling factor between observed wind speeds

U.(s;) and ERA5 wind speeds UER45(s;) at time t and location s;:

Equation 6.4
(s;) = Ue(s)
Ye(Si UfRAS(Si)

The modeling of the time-resolved scaling factor y,(s;) can then be expressed as:

Equation 6.5
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9e(s0) = f (K50, Vepue ()

where y,(s;) is the estimated scaling factor at time t and location s;, p represents the length of the finite look-
back window for the time-resolved reanalysis covariates v,(s;), and f(-) denotes the
prediction function.

6.4.2.1 Model architecture

The prediction function of the time-resolved models was parameterized using a two-branch DL
architecture (Figure 6.3). One branch processes the static covariates (herein referred to as the
static branch), while the other processes the time-resolved covariates (herein referred to as the

dynamic branch).

The static covariates k(s;) are encoded in the static branch through a two-layer feed-forward

neural network (FFN) with the Gaussian Error Linear Unit (GELU) activation function:

Equation 6.6

x(sp) = FFN(k(Si))

where FFN(x) = GELU(xW{ + b{)W, + b,, with learnable parameters W, W,, b4, b,, and x(s;) represents the
hidden vector from the static branch.

In the dynamic branch, the time-resolved meteorological covariates are concatenated with the
static covariates, which are replicated through time. This integration of static covariates into the
dynamic branch provides location-specific context for the temporal model. The concatenated
static and time-resolved covariates are then linearly projected and combined with embedded hour,
day, and month timestamps, which provide the temporal context necessary for effective time

series modeling (Wen et al., 2023). This is expressed as:

Equation 6.7
¢i(sp) = LP ([k(s), v (sp)]) + TEmbed(z,)

where TEmbed(-) denotes the temporal embedding layer that maps the timestamp vector z, into hidden
features, and LP(x) = xW3 + bs is a linear projection with learnable parameters W3 and bs.

Although timestamp embeddings were initially proposed for Transformer architectures (Zhou et
al., 2021a), they were also found to improve the performance of the LSTM in this study. For the

Transformers, in addition to the embedded timestamps, fixed sinusoidal positional encoding
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(Vaswani et al., 2017) was also added to the projected covariates, enabling the model to account

for sequence order.

In the next step of the dynamic branch, the hidden features {;(s;) are fed into the temporal model:

Equation 6.8

$e(s) = TModel ($i_p(s1))

where TModel(-) represents the temporal model that learns the temporal patterns within the encoded time-
revolved covariates that influence the target variable, subsections 6.4.2.2 and 6.4.2.3 describe
in detail the different architectures of the temporal model explored.

Finally, the outputs from the static and dynamic branches are concatenated, and the model’s
prediction is obtained through a linear projection (denoted as LP,), followed by the Softplus

activation function to ensure that the predicted scaling factors are non-negative:

Equation 6.9

9:(s)) = Softplus(LP,([x(s), L (s)D)

where y,(s;) denotes the predicted scaling factors, and Softplus(-) is the Softplus activation function.
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Figure 6.3 Overview of the DL framework.

The static covariates are embedded using a feed-forward neural network (FFN). The time-resolved
meteorological covariates are combined with the static covariates and processed by a
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temporal model, which is either an LSTM or a Transformer. The output from the static
covariates FFN and the temporal model are combined, passed through a linear projection
layer, and finally transformed using a softplus activation function.

6.4.2.2 LSTM

Traditional RNNSs face issues such as vanishing and exploding gradients, which limits their ability
to retain information over extended sequences (Goodfellow et al., 2016). By incorporating a gating
mechanism that regulates the flow of information, LSTMs can effectively maintain and use

relevant data over more extended periods. The equations describing LSTMs are given by:

Equation 6.10

fe= O'(Wf [he—q, x¢] + bf)
Equation 6.11

iy = o(W;[hey, %] + b;)
Equation 6.12

¢; = tanh(W_.[h._{,x:] + b,)
Equation 6.13
c=ftOc1+i: OFC

Equation 6.14

o, = o(Woy[he—q,x] + b,)
Equation 6.15

h; = tanhc¢; © o,

where f,, i;, ¢; and o, represents the forget, input, cell and output gates, respectively. The vector x; is the LSTM
input, the matrices W; and vectors b; (where j € {f, i, c, 0}) are the set of learnable parameters,
h,_4 is the previous hidden states, and h; is the updated hidden states. The vector c;_; is the
previous cell state, and c; is the updated cell state. The element-wise functions ¢(-) and tanh(-)
denotes the sigmoid and hyperbolic tangent activation functions, respectively, and the
notation © denotes the element-wise product.
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6.4.2.3 Transformer model

The original Transformer architecture with an encoder-decoder setup was designed for sequence-
to-sequence tasks, such as translation. In this study, an encoder-only Transformer architecture
was implemented (Figure 6.4). This model is composed of multiple identical encoder layers
stacked with residual connections to ensure the smooth flow of information between inputs and
outputs. Each encoder layer has two main components: (1) a multi-head self-attention (MHA)
mechanism and (2) a FFN. The MHA module enables the model to attend to different parts of the
input sequence by simultaneously performing the attention mechanism across multiple subspace
representations. The scaled dot-product attention was used as the attention mechanism and is

defined as follows:

Equation 6.16

. QiK{
H; = Attention(Q;, K;,V;) = softmax Vi

vV dattn

where Q; = QWQ, K; = Kw¥, and V; = V! represent the queries, keys and values associated with the attention

i
head H; (where i = 1,2, ..., nh). In the self-attention, @, K and V are all equal to the Transformer
input.

The final output of the MHA module is obtained by linearly projecting the concatenated attention
heads H;:

Equation 6.17
MHA(Q,K,V) = [Hy, ..., HypJW°
The matrices W?, WX, W! and WP are the learnable parameters of the MHA module.

The output from the MHA module is passed through a FFN with a GELU activation function. The
Pre-norm Transformer architecture (Wang et al., 2019) was implemented in this study. In this
configuration, the input to each encoder sub-layer undergoes layer-normalization (LN) before
being passed through the sub-layer, and a residual connection is added to the output of the sub-

layer:

Equation 6.18

h=x+F(LN(x))
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where F(-) represents one of the sub-layers of the Transformer encoder, x is the input of the sub-layer, and h

is the output.

Addition

Addition

Normalize

Encoder layer
Temporal embedding Addition

Positional encoding

Figure 6.4 Overview of the Transformer architecture.

Positional encoding and temporal embedding are first added to the inputs, which are then passed through four
encoder layers. Each encoder layer consists of multi-head self-attention (MHA), a feed-
forward neural network (FFN), and skip connections. Layer normalization is applied to the
input of each component within the encoder layers.

6.4.2.4 Data preprocessing and model training

The static and time-resolved covariates used as inputs to the model were preprocessed to
improve training performance. The static covariates were normalized to a range between 0 and 1
using the min-max scaling, and the time-resolved covariates were standardized using a mean
and standard deviation estimated separately for each grid point of the reanalysis dataset, except
for the wind components (u, v) which were normalized by dividing by their magnitude to preserve
information about wind direction. The observed scaling factors, which serve as the target variable,
were derived from ECCC and ERA5 wind speeds ratio. ERA5 data were interpolated to each

station’s location using nearest-neighbor interpolation.
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The deep learning models were implemented with PyTorch (Paszke et al., 2019) and optimized
using the Adam optimizer (Kingma et al., 2015). The Adam optimizer is widely used for neural
network optimization, and it is relatively robust for hyperparameter selection (Goodfellow et al.,
2016). Early stopping was employed to mitigate overfitting, halting training when the validation
loss did not improve for ten consecutive epochs. The parameters used to train the models are

presented in Table 6.2, which were selected based on best practices and manual tuning.

The proposed deep learning models were trained by minimizing the Huber loss function (Huber,
1964) between the model prediction and the target variable. The Huber loss function is defined
as:

Equation 6.19

1 . R

A SO =9) ly-9l<a
La(y'Y)z 1
a(ly—ﬁl—§a> ly =91 >a

where a is a parameter that controls the transition between the quadratic and linear behavior of the loss
function.

Standard loss functions for regression tasks include mean square error (MSE) and mean absolute
error (MAE). The MSE loss function is differentiable everywhere but sensitive to outliers, while
the MAE is less sensitive to outliers but non-differentiable at zero. The Huber loss function
balances MSE and MAE by behaving quadratically for minor errors and linearly for significant

errors. it offers a level of robustness against outliers while being differentiable everywhere.

Table 6.2 List of selected parameters of the DL models

Parameters Temporal model
LSTM Transformer

Learning rate 2e-5 1e-5
Static branch dropout rate 0.05 0.05
Dynamic branch dropout rate 0.2 0.1
Look-back window 120 hours 120 hours
Static branch hidden size 32 32
Dynamic branch hidden size 256 256
Number of heads n.a 4
Number of layers 1 4
Batch size 128 128
Huber loss parameter (a) 1.5 1.5
Early stopping round 10 10
Adam parameters (B4, 82) 0.9, 0.999 0.9, 0.999
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6.4.3 Evaluation

The performance of reanalysis-derived wind speeds varies depending on the type of location
(onshore, coastal, or offshore) and the complexity of the terrain (flat, hilly, or mountainous).
Evaluations were conducted across different area types to comprehensively assess model
performance, including coastal, hilly, and mountainous areas and regions with low or high SRL.
Table 10.3 in the supplementary material lists the criteria used to classify the different ECCC

stations within the study area.

Furthermore, the available stations were randomly divided into training (565 stations) and test
(170 stations) sets, with the training set represented by circle symbols and the test set by triangle
symbols in Figure 6.1. The test set was reserved exclusively for the final evaluation of the models.
Model training and parameter tuning were performed using k-fold cross-validation with the training
set with data from 2008 to 2017. The selected models were then evaluated with the test sets from

2018 to 2023 to assess their spatiotemporal generalization capabilities.

The analysis included evaluating the median wind speed, temporal variability, and probability
distribution, using various scoring metrics to ensure a comprehensive evaluation of the models in
the context of WRA. The median wind speed was selected as the measure of central tendency
because it is robust and resistant, unlike the mean (Wilks, 2011). For skewed distributions, like

wind speed, the median offers a more accurate representation of the typical wind speed value.

Table 6.3 presents the equations for the different scoring metrics used. The coefficient of
determination (R?), MAE, mean bias error (MBE), and root mean squared error (RMSE) were
used to compare the predicted and observed median wind speeds. The R? served as a more
interpretable metric, with values between 0 (indicating the worst performance) and 1 (indicating
the best performance). It measures the model's effectiveness in capturing the spatial variability of

the median wind speeds.

The MAE, MBE, Pearson correlation coefficient (PCC), and RMSE were used to compare the
predicted and observed wind speed time series. The MAE and RMSE metrics are commonly used
for time series model evaluation (Hodson, 2022). They complement each other in assessing
different aspects of model performance (Chai et al., 2014). The MAE directly measures the
average error magnitude, making it valuable in assessing the overall bias correction effectiveness.
The RMSE, which heavily penalizes more significant errors, highlights extreme deviations in the
wind speed predictions. The MBE provides insight into the systematic tendency of the model to

overestimate or underestimate. Meanwhile, the PCC quantifies the linear relationship between
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predicted and observed wind speeds, measuring how well the model captures the up-down trends

(temporal variation) of the observed wind speeds (Liemohn et al., 2021).

In addition, to assess the relative accuracy of the BC methods in comparison to the ERA5 wind
speeds, the percentage improvement or skill scores for the time series MAE and RMSE were

calculated. The percentage improvement is defined by Wilks (2011) as follows:

Equation 6.20

SM -SM
Percentage Improvement = model ERAS % 100%
SMperf - SMERAS

where SM ;4.1 and SMgg 45 are the scoring metrics of the model and ERA5 (the reference), respectively, and
SM,..s denotes the value of the scoring metric for a perfect prediction (0 in the case of MAE
and RMSE).

The Perkins skill score (PSS; Perkins et al., 2007) was employed to evaluate the model
performance regarding probability density functions (PDFs). The PSS was used in various wind
speed modeling and BC studies (BeluSic¢ et al., 2018; Carvalho et al., 2021; Costoya et al., 2020;
Houndekindo et al., 2024; Jung et al., 2023a; Molina et al., 2021). This metric can evaluate the
PDF across the entire range of wind speeds and in specific parts of the distribution (e.g., lower or
upper tails) (Keellings, 2016; Zhang et al., 2024). Given that data in the distribution's tails are less
frequent, the PSS calculated across the full range of wind speeds may not accurately represent
model performance in these tails. Therefore, in addition to computing the PSS across the entire
wind speed range (herein referred to as PSS-ALL), the PSS was also computed separately for
wind speed values below the 10th percentile in the lower tail (herein referred to as PSS-LWT) and
above the 90th percentile in the upper tail (herein referred to as PSS-UPT). The percentiles were
estimated from the distribution of observed wind speeds and have been used in previous studies

to characterize high and low wind speeds (see, e.g., Torralba, et al. [96]).

In addition to the PSS metrics, wind speed quantiles at percentile levels ranging from 10% to
90%, in 10% increments, were computed from the predicted and measured wind speed time
series. These quantiles were compared using MAE, MBE, RMSE, and R2?. This evaluation
provides a detailed assessment of the model performance across different wind speed levels,

offering insight on how accurately the models represent low, moderate, and high wind conditions.

Table 6.3 Equations of the different scoring metrics used to evaluate the BC methods.
Scoring metric Equation Evaluation component
Coefficient of determination R2 = 1 — Ziza(0i=pD)® Wind speed quantiles

2it,(0-0)?
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Mean absolute error MAE = 1 o —pil Wind speed quantiles and
- di=

time series
Mean bias error MBE = %Z?:l 0, —pi Wind speed quantiles and
time series
Pearson correlation coefficient PCC = 2i,(0i-0)(pi—P) Time series
[P0 (s, imp)?
Perkins’ skill score PSS = Y, min(Z;, Z;) x 100 Probability distribution

Root mean squared error Wind speed quantiles and
a RMSE = |51, (0; - p)? vine speedd
time series

Note: o represents the observed variable, p the predicted variable, B the number of bins, n the sample size, Z
the observed wind speed frequency, and Z the predicted wind speed frequency

6.5 Results

This section presents the results of the evaluation of the BC methods. The distributions of the
scoring metrics are visualized using boxplots, while their summary statistics (median values) are
listed in tables for clarity. To ensure a comprehensive assessment, the model performance is
evaluated across various regions, including coastal areas, regions with high and low SRL, and

hilly and mountainous areas.

In the following subsections, the following abbreviations are used to refer to the evaluated models:
Time-invariant BC with GBOOST (TI-GBOOST), Time-invariant BC with GWAS3 (TI-GWA3), Time-
resolved BC with LSTM (TR-LSTM), Time-resolved BC with Transformer (TR-Transformer), and
uncorrected ERA5 wind speed data (UC-ERAS).

6.5.1 Mean wind speed evaluation

The median wind speed indicates the central tendency and represents typical wind speed
conditions at a given location. Table 6.4 lists the scoring metrics (MAE, MBE, R?, and RMSE)
used to evaluate the median wind speed. Figure 6.5 presents scatter plots comparing the

observed and predicted median wind speeds.

The ML-based BC methods achieved the lowest MAE, RMSE, and the highest R?. In coastal
areas, TR-Transformer was the best-performing model, slightly outperforming TR-LSTM. In
regions with high and low SRL and hilly and mountainous areas, the TI-GBOOST model emerged
as the top performer. The TR-LSTM model exhibited the lowest overall MBE, though all models
tended to overestimate the median wind speeds (positive MBE) across most regions. However,
in regions with High SRL, the TR-LSTM and TR-Transformer models tended to underestimate the

median wind speeds. These patterns are also evident in Figure 6.5.
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Table 6.4 Evaluation metrics for median wind speed.

Metric Area UC-ERA5 TI-GWA3 TI-GBOOST TR-LSTM TR-Transformer
MAE Coastal (n=45) 1.13 0.91 0.91 0.85 0.83
High SRL (n=36) 0.64 0.74 0.40 0.43 0.47
Hilly and mountainous (n=29) 1.03 1.16 0.92 0.96 0.99
Low SRL (n=60) 0.61 0.56 0.50 0.51 0.54
Overall (n=170) 0.83 0.79 0.66 0.66 0.68
MBE Coastal (n=45) 0.55 0.64 0.47 0.26 0.25
High SRL (n=36) 0.40 0.58 0.04 -0.19 -0.12
Hilly and mountainous (n=29) 0.40 0.50 0.40 0.00 0.07
Low SRL (n=60) -0.12 0.43 0.16 0.07 0.07
Overall (n=170) 0.25 0.53 0.26 0.05 0.08
R? Coastal (n=45) 0.11 0.43 0.43 0.46 0.47
High SRL (n=36) 0.12 -0.13 0.56 0.25 0.43
Hilly and mountainous (n=29) 0.57 0.46 0.64 0.62 0.57
Low SRL (n=60) 0.40 0.46 0.57 0.57 0.52
Overall (n=170) 0.39 0.45 0.58 0.56 0.56
RMSE Coastal (n=45) 1.44 1.15 1.14 1.12 1.10
High SRL (n=36) 0.77 0.87 0.54 0.71 0.61
Hilly and mountainous (n=29) 1.26 1.40 1.15 1.18 1.25
Low SRL (n=60) 0.81 0.77 0.68 0.68 0.72
Overall (n=170) 1.08 1.03 0.89 0.92 0.92

The table presents the scoring metrics for each area type, along with the overall performance. The best results
are highlighted in bold, and n represents the sample size for each area.
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Figure 6.5 Scatter plots between observed and predicted median wind speeds.

The scatter plots are presented across different models (rows) and area types (columns). The 45° line is
included for reference, indicating perfect agreement between observed and predicted values.
Deviations from this line highlight the discrepancy between the predicted and actual wind
speeds. These plots provide a visual representation of how well each model captures the
central tendency of wind speeds in diverse settings. Overall, the best agreement between the
predicted and observed median wind speeds are in regions with high and low SRL.

6.5.2 Time series evaluation

Figure 6.6 displays boxplots of the time series metrics (rows) for different area types (columns),
while Table 6.5 lists the median metrics calculated across the test stations. The TR-LSTM and
TR-Transformer emerged as the top performers, achieving the lowest median MAE and RMSE
values and the highest median PCC. The ML-based BC methods consistently improved the
overall median metrics compared to UC-ERAS5. In contrast, TI-GWA3 often showed lower overall

performance relative to UC-ERAS. In addition, the spatial variability of the metrics, as shown by
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the interquartile range in Figure 6.6, was generally more pronounced in coastal, hilly, and

mountainous regions compared to inland regions with low or high SRL.

To further examine the performance of the time-resolved models (TR-LSTM and TR-
Transformer), Figure 6.7 presents maps showing the spatial distribution of the percentage
improvements over UC-ERAS for MAE (leftmost column) and RMSE (rightmost column), with the
corresponding boxplots provided in Figure 10.2 of the supplementary material (Section 10). The
percentage improvements in time series metrics exhibit spatial heterogeneity without a distinct
spatial pattern. In some instances, UC-ERAS5 offered more reliable estimates, highlighting the

importance of identifying conditions in which time-resolved models outperform UC-ERAS.

A further analysis was conducted to examine the Spearman correlations, which is a
nonparametric measure of statistical dependence between two variables, between the most
important static covariates identified through permutation feature importance (see Figure 10.1 in
the supplementary material, Section 10) and percentage improvements in time series MAE and
RMSE over UC-ERAS5 for TR-LSTM. The leftmost correlation matrix in Figure 6.8 displays the

correlations for TR-LSTM, while the rightmost matrix shows those for TR-Transformer.

Three groups of static covariates —standard deviation of slope (SDS), SRL, and UC-ERA5
quantiles —showed a relatively high correlation with percentage improvements in MAE and
RMSE. The SRL was the covariate most strongly correlated with the performance metrics. The
direction of the correlation indicates that higher SRL values are associated with more significant
improvements in time series MAE and RMSE. SDS showed a consistent mild correlation with

improvements in these time series metrics.

Section 10.1 of the supplementary material presents additional figures (Figure 10.3 to Figure
10.10) for visual inspection of the time-resolved model. These figures present the uncorrected
and corrected wind speed time series at four selected stations of the test set, each representing

a different area type.

Table 6.5 Summary of the time series evaluation metrics (MAE, MBE, PCC, and RMSE).
Metric Area UC-ERA5 TI-GWA3 TI-GBOOST TR-LSTM TR-Transformer
MAE  Coastal (n=45) 1.74 1.61 1.63 1.55 1.56

High SRL (n=36) 1.13 1.20 1.05 0.90 0.94
Hilly and mountainous (n=29) 1.71 1.60 1.57 1.51 1.44
Low SRL (n=60) 1.25 1.31 1.22 1.17 1.19
Overall (n=170) 1.32 1.35 1.29 1.19 1.23

MBE Coastal (n=45) 0.37 0.44 0.48 0.24 0.09
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High SRL (n=36) 0.32 0.46 -0.04 011 0.00

Hilly and mountainous (n=29) 0.54 0.47 0.17 0.19 0.15
Low SRL (n=60) -0.32 0.17 -0.03 0.00 -0.01
Overall (n=170) 0.10 0.35 0.04 0.09 0.06
PCC Coastal (n=45) 0.77 0.77 0.77 0.79 0.79
High SRL (n=36) 0.74 0.74 0.74 0.79 0.79
Hilly and mountainous (n=29) 0.72 0.72 0.72 0.74 0.74
Low SRL (n=60) 0.78 0.78 0.78 0.80 0.80
Overall (n=170) 0.76 0.76 0.76 0.79 0.79
RMSE Coastal (n=45) 2.25 2.08 2.06 1.97 2.03
High SRL (n=36) 1.41 1.50 1.31 1.19 1.23
Hilly and mountainous (n=29) 2.01 2.04 2.03 1.96 1.91
Low SRL (n=60) 1.61 1.68 1.56 1.51 1.54
Overall (n=170) 1.69 1.74 1.65 1.54 1.60

The table presents the median value of the scoring metrics computed across the test stations for each area
type, along with the overall performance. The best results are highlighted in bold, and n
represents the sample size for each area.
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Figure 6.6 Boxplots of the time series metrics.

The boxplots are displayed separately for different types of environments and models. The boxes represent
distribution quartiles, while the whiskers indicate the 10-90% range. The horizontal red dotted

lines mark the median metrics of UC-ERAS, serving as a reference, while the horizontal green
dotted line represents the zero MBE threshold.
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Figure 6.7 Maps illustrating the percentage improvement over UC-ERAS5 (skill scores) at the test
locations.

The leftmost column shows the MAE skill metric and the rightmost column shows the RMSE skill metrics. The
top row displays the spatial distribution of the skill metrics for the TR-LSTM model, while the
bottom row presents the same information for the TR-Transformer model. Red shades
indicate a decline in the skill metric, while blue shades represent an improvement compared
to UC-ERADS. No spatial patterns in the skill scores were observed, and the models were able
to improve UC-ERA5 performance in sparsely sampled locations.
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Figure 6.8 Spearman correlation between static covariates and percentage improvement over UC-

ERAS for time series MAE and RMSE.

The static covariates were the most important covariates identified using permutation feature importance. The
abbreviations used for the static covariates are as follows. ELV-100m: Altitude estimated from
a DEM with 100 m spatial resolution, DME-1km: deviation from mean elevation in a
neighborhood of 1 km, ERA5-P5%: UC-ERA5 5th percentile, ERA5-P50%: UC-ERA5 50th
percentile, ERA5-P95%: UC-ERAS5 95th percentile; SDS-100m: standard deviation of slope in
a neighborhood of 100 m, SDS-10km: standard deviation of slope in a neighborhood of 10 km,
SDS-200m: standard deviation of slope in a neighborhood of 200 m, SRL-1km: dominant SRL
in a neighborhood of 1 km, SRL-500m: dominant SRL in a neighborhood of 500 m, TACV-
1km: tangential curvature in a neighborhood of 1 km.

6.5.3 Probability distribution evaluation

Figure 6.9 presents the distributions of PSS across the full range of wind speeds (top row, PSS-
ALL), as well as for values in the lower (middle row, PSS-LWT) and upper tails (bottom row, PSS-
UPT) across different area types (columns). Table 6.6 lists the median PSS metrics computed
across all test locations.

Overall, the PSS-ALL values were higher than both PSS-LWT and PSS-UPT values. This
indicates that all models, including UC-ERAS5, were more effective at representing the frequency

of typical wind speeds rather than extreme values. The spatial variability of PSS-ALL as shown
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by the interquartile range in Figure 6.9, was particularly pronounced in hilly and mountainous
regions compared to other areas. Overall, the TR-LSTM model emerged as the top performer for
PSS-ALL, followed by the TI-GBOOST model.

For the frequency of low wind speed values (PSS-LWT), none of the models showed an
improvement over UC-ERAS performance in regions with low SRL. In regions with high SRL and
hilly and mountainous areas, the time-resolved models significantly improved UC-ERA5 PSS-
LWT. In coastal areas, the TI-GBOOST model was the best-performing model, followed closely
by the TR-Transformer model. For the frequency of high wind speed values (PSS-UPT), most
models were ineffective in regions with high SRL, but the TR-LSTM model emerged as the best-

performing model overall, followed closely by TI-GWAS3.

The evaluation of wind speed quantiles across different percentile levels is presented in Figure
6.10. TI-GWAS3 demonstrated the highest accuracy at the upper percentile levels (80% and 90%).
Meanwhile, ML-based methods performed best for quantiles in the central part of the distribution
(40%, 50%, and 60% percentile levels), with TR-LSTM and TR-Transformer exhibiting the least
bias, as indicated by an MBE close to zero. Overall, the BC methods tended to overestimate lower

quantiles while underestimating higher quantiles.

Table 6.6 Summary of the Perkins’ skill score (PSS).
PSS Area UC-ERA5 TI-GWA3 TI-GBOOST TR-LSTM TR-Transformer
PSS-ALL Coastal (n=45) 81.90 82.38 83.32 81.38 81.57
High SRL (n=36) 78.42 77.71 79.74 83.25 80.86
Hilly and mountainous 76.69 73.30 73.26 75.77 75.34
(n=29)
Low SRL (n=60) 80.54 82.99 82.73 82.85 81.90
Overall (n=170) 79.75 80.42 81.66 82.47 80.93
PSS-LWT Coastal (n=45) 32.16 27.80 35.06 29.88 32.82
High SRL (n=36) 19.05 22.30 29.66 43.78 37.38
Hilly and mountainous 29.22 27.61 25.58 43.72 39.89
(n=29)
Low SRL (n=60) 42.04 29.43 32.89 30.27 31.21
Overall (n=170) 33.34 27.56 32.80 35.15 33.87
PSS-UPT Coastal (n=45) 55.67 54.08 50.31 55.87 53.63
High SRL (n=36) 61.26 55.61 40.93 50.61 54.50
Hilly and mountainous 40.10 39.07 44.90 53.27 52.09
(n=29)
Low SRL (n=60) 36.02 59.58 50.19 56.31 54.41
Overall (n=170) 44.48 54.26 48.10 54.82 53.82
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The table presents the median value of the PSS metrics computed across the test stations for each area type,
along with the overall performance. The best results are highlighted in bold, and n represents
the sample size for each area.
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Figure 6.9 Boxplots of Perkins’ skill scores (PSS).

The PSS metric was computed across the full range of wind speeds (PSS-ALL) for values below the 10th
percentile (PSS-LWT) and above the 90th percentile (PSS-UPT). The boxplots are displayed
separately for different types of environments and models. The boxes represent distribution
quartiles, while the whiskers indicate the 10-90% range. The horizontal red dotted line marks
the median metrics of UC-ERADS, serving as a reference.
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Figure 6.10 . Wind speed quantiles evaluation.

The panels display RMSE (top-left), MAE (top-right), R? (bottom-left), and MBE (bottom-right) between predicted
and observed wind speed quantiles. The quantiles were computed at intervals between the
10th and the 90th percentiles, with 10% increments (columns).

6.6 Discussion

Modern reanalysis products like ERA5 are increasingly used in large-scale WRA studies. This
work introduced a DL framework to correct systematic bias and temporal variability in ERAS hourly
wind speeds. The proposed models are applied to learn a time-resolved scaling factor between

reanalysis and observed wind speeds.

6.6.1 Limitations of time-invariant methods

The evaluation of UC-ERA5 performance in the study region revealed that scale-dependent
metrics, such as MAE and RMSE, for median wind speed and time series, were notably higher in
coastal, hilly, and mountainous areas than in other regions. UC-ERAS struggled to explain median
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wind speed spatial variability (as measured by R?) across coastal areas and showed poor
performance in terms of temporal variability (as measured by PCC) in hilly and mountainous
regions. Additionally, in hilly and mountainous regions, PSS-ALL for UC-ERAS5 showed significant
spatial variability (as measured by the interquartile range) and a lower median than in other
regions. These results highlight the challenges of ERA5 in accurately representing wind speed in
regions with predominant complex terrain features and localized atmospheric dynamics. They

align with previous studies' findings (e.g., Gualtieri (2022) for a review).

The evaluation of the time-invariant scaling factor estimated through the GWA (TI-GWA3) and an
alternative time-invariant scaling factor estimated using ML (TI-GBOOST) revealed that, although
these methods can improve the reanalysis median wind speed, they perform relatively poorly on
time series metrics. TI-GWA3 and TI-GBOOST rely on time-invariant scaling factors, which do

not account for diurnal and seasonal variation in the reanalysis biases.

To address this limitation, Schicker et al. (2023) estimated an hourly scaling factor between
reanalysis-derived wind speeds and the GWA. Their findings indicated that this approach did not
improve the performance of the reanalysis-derived wind speeds and, in some cases, even
degraded it. While this method considers the diurnal variability of reanalysis mean wind speed, it

still depends on a static mean wind speed from the GWA to compute the hourly scaling factor.

An extension of TI-GBOOST could be explored to account for diurnal biases by incorporating the
hour of the day as an additional covariate, with the hourly observed scaling factor as the target
variable. This method provides a balanced solution between fully time-resolved models, such as
TR-LSTM and TR-Transformer, and the complete time-invariant methods. It can be beneficial
when computational resources or data availability are limited while allowing for moderate

improvements in capturing temporal variability.

6.6.2 Effective and scalable time-resolved bias correction framework

The time-resolved models (TR-LSTM and TR-Transformer) demonstrated strong performance in
enhancing median wind speed and temporal variability of ERA5 across various regions. TR-LSTM
and TR-Transformer showed significant improvements in coastal areas, explaining 46-47% of the
spatial variability in median wind speed, compared to just 11% achieved by UC-ERAS.
Additionally, TR-LSTM and TR-Transformer significantly reduced MAE and RMSE of median wind
speed in these areas by more than 20% relative to UC-ERADS. In hilly and mountainous areas, the
time-resolved models marginally increased UC-ERA5’s median PCC, demonstrating their ability

to address some of the challenges posed by complex terrain. The time-resolved models were
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particularly effective in regions with high SRL, such as forests and urban areas, where TR-
Transformer achieved a median PCC of 0.79 (compared to just 0.74 for UC-ERA5) and an
average reduction of 12% in MAE and 10% in RMSE relative to UC-ERAS. These findings indicate
that UC-ERAS’s coarse spatial resolution limits its ability to represent temporal variability in
regions with high SRL. Incorporating small-scale SRL, topographic information, and reanalysis-
derived past weather conditions into the time-resolved models mitigated this limitation, improving

the representation of the temporal variability of wind speed in these regions.

Accurately estimating the wind speed probability distribution is essential for WRA. Results from
the evaluation of PDFs across the full range of wind speeds indicate that the ML-based models
were overall more effective than TI-GWA3 and UC-ERAS5. Both time-resolved models significantly
improved PSS-ALL in high SRL regions at most test stations. However, the time-resolved models
did not consistently outperform UC-ERAS5 for extreme wind speeds across all areas and exhibited
a trade-off between improvements in low and high-wind speed PDFs. There were few locations
(between 14.82% and 18.82% of test stations) where the time-resolved models improved low-

and high-wind speed PDFs.

There is still potential to improve the performance of the time-resolved models, as their
implementation has resulted in a decline in UC-ERA5 scoring metrics in some cases. A spatial
analysis of model performances revealed no consistent trends that could explain this
deterioration. However, SRL was strongly correlated with how well the time-resolved models
performed, while the topographic covariates exhibited a weaker correlation. The direction of the
correlation suggests that time-resolved models are likely to improve UC-ERAS's performance in
areas with high SRL.

Analyzing the nonlinear interactions between terrain complexity, SRL, and proximity to the coast
could improve the understanding of the model’s performance. It would ensure that the models are
applied in scenarios where improvements are likely while avoiding their use in cases where the
UC-ERA5 may provide more reliable results. Additionally, increasing data availability —especially
with broader spatial coverage —could improve the model’s performance across all regions. For
example, hilly and mountainous areas are underrepresented in the training dataset compared to
coastal areas and region with high or low SRL. This imbalance may have contributed to the
model's relative underperformance in hilly and mountainous areas. Addressing this data

imbalance could improve model robustness and generalizability in complex terrains.

While the proposed deep learning (DL) framework, particularly the TR-Transformer architecture,

exhibits higher computational demands than the time-invariant methods, its implementation
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remains feasible on standard personal computing hardware. The TR-Transformer, which has
approximately 3 million parameters, required around 30 minutes to complete one training epoch
when trained on an Nvidia T600 GPU (with 4GB of VRAM) using a dataset of about 17 million
samples and a batch size of 128. In contrast, the TR-LSTM, which has around 600,000
parameters, finished a training epoch in just 6 minutes under the same conditions. While the
computational costs for inference are significantly lower than during training, the scalability of both
training and inference times indicates that the approach can be applied to larger datasets. In
situations where resource constraints are a concern, the TR-LSTM provides a more

computationally efficient alternative.

6.6.3 Limitations and future directions

The proposed framework has certain limitations that could be addressed in future studies.

Additionally, this section highlights several research directions.

Various topographic covariates were identified from the literature and extracted from a DEM. To
account for the scale dependency of these covariates, they were extracted at multiple spatial
scales, and the most relevant covariates were identified using the permutation feature importance
algorithm. This cumbersome approach may not reliably select the most appropriate covariates
and associated spatial scales, especially in hilly and mountainous regions with sharp variations
in the topography. Future studies could explore CNNs for automatically extracting topographic
covariates from high-resolution DEMs, enabling end-to-end training, and extracting more effective
topographic features that could significantly enhance model performance, particularly in complex
terrains. However, it is essential to recognize that this approach requires increased computational

resources and larger datasets to optimize the CNN trainable parameters.

In addition, other machine learning models, such as XGBOOST (Chen et al., 2016) and LightGBM
(Ke et al., 2017), as well as deep learning architectures like Temporal Fusion Transformer (TFT;
Lim et al. (2021a)) and Mamba (Wang et al., 2025), could be explored to improve the performance

of the proposed framework.

The evaluation of the framework indicates that there is still room for performance improvement,
particularly for extreme wind speeds. Due to their limited representation in the training set,
extreme values may be neglected as the model prioritizes more frequently occurring values
(Schultz et al., 2021; Wilson et al., 2022). It is a well-known issue when applying deep learning
models for downscaling and forecasting environmental variables (Dujardin et al., 2022; Reichstein

et al., 2019). Prior studies have proposed modifications to the loss function to mitigate this issue
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(Dujardin et al., 2022; Jung et al., 2013; Kristianti et al., 2023); however, there is no consensus
on the optimal approach. Future research should focus on testing various loss functions and
exploring new loss functions and techniques, such as data augmentation and sample balancing
strategies, that may enhance model performance for extreme wind speeds. Additionally,
incorporating probabilistic methods, such as quantile regression (Olivier et al., 2024), could help
capture the uncertainty associated with extreme wind speed predictions. Future studies could
explore using extreme value theory (EVT)-based methods (Wilson et al., 2022) to better
characterize the tails of the wind speed distribution, ensuring that rare but critical events are well

estimated.

Developing BC models, such as the time-resolved models in this work, requires a robust network
of meteorological stations in the study region that provide high-quality wind speed records. This
network is essential for learning the relationship between reanalysis-derived wind speeds and
ground-truth observations, and in regions where such a network is unavailable, employing transfer
learning from data-rich areas could serve as a practical alternative. This approach would enable
the application of models developed in well-monitored regions to areas with limited ground-truth
data. However, it remains crucial to conduct careful validation to ensure that the model
generalizes well in the new environment, as variations in SRL, terrain complexity, and

meteorological conditions could significantly influence generalization performance.

Future studies could explore the application of the proposed framework to other reanalysis
datasets, such as the Modern-Era Retrospective analysis for Research and Applications, Version
2 (MERRA-2) and to improve solar irradiance data from reanalysis datasets. Since reanalysis-
derived solar radiation often suffer from biases due to cloud cover misrepresentation,
implementing a BC framework could enhance the assessment of solar energy potential (Frank et
al., 2018). Improving the temporal variability of wind speed and solar irradiance can allow a more
accurate assessment of the co-variability between these two renewable energy sources, which is
crucial for hybrid energy system design (Pedruzzi et al., 2023). Future studies could explore
adapting the framework to additional meteorological variables, such as temperature and
precipitation, which are also known to exhibit biases in reanalysis datasets (Gleixner et al., 2020),
particularly in regions with complex terrain (Cavalleri et al., 2024; Chen et al., 2021b). Enhancing
temperature and precipitation data accuracy could have significant implications for climate

modeling, hydrological studies, and disaster risk assessments.

Operational forecasts are crucial for the wind energy sector (Liu et al., 2022). Future studies could

investigate the application of the proposed framework to bridge the gap between NWP forecasts
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and observations (Sweeney et al., 2020). This integration can enhance the accuracy of wind

power forecasting for grid stability and energy market operations.

Due to computational constraints, this study performed model parameter optimization using best
practices and manual tuning. Future research could explore the implementation of more advanced
hyperparameter optimization techniques, such as Bayesian optimization or genetic algorithms, in
operational settings. These methods could systematically refine model parameters, improving

predictive performance.

Although the proposed approach was validated across a large region (Canada) with diverse wind
patterns and topography complexity, further research is still encouraged to assess its
generalizability performance across various climatic conditions and geographical settings.
Expanding validation efforts to include additional regions would provide a more comprehensive
assessment of the framework’s robustness and adaptability. The framework is built upon globally
accessible datasets like ERA5 and ALOS DEM; its application in other regions is feasible and

could be explored in future studies.

Furthermore, the study only considered inland regions, where reanalysis wind speeds are more
prone to bias due to the topography and land surface heterogeneity. However, future studies
could explore the effectiveness of the BC framework in offshore regions influenced by seabed
topography, straits, and islands. Unique factors in these regions may introduce different biases

compared to inland regions.

6.7 Conclusion

Wind speeds derived from modern reanalysis datasets have become central to large-scale WRA
studies due to their global coverage, extensive record length, and consistent records. However,
the coarse spatial resolution of these datasets and limitations in data assimilation techniques and
NWP models lead to varying accuracy across different locations (e.g., onshore, offshore, and
coastal) and terrain complexities (e.g., flat, hilly, and mountainous). Therefore, developing and
refining bias correction techniques for reanalysis-derived wind speeds are essential to ensure
their accuracy across a broader range of environments, enabling more reliable resource

assessments in diverse geographic and topographic settings.

A novel bias correction method using DL models for sequence modeling was proposed and
evaluated across Canada. This method advances the commonly used mean BC technique, based

on the GWA, by enhancing median wind speed and temporal variability accuracy across diverse

223



environments. It leverages optimized DL architectures, making it a scalable option for large-scale

applications.

Results from comprehensive evaluations indicate that this framework significantly improves ERAS
wind speeds at most test stations, performing particularly well in high SRL areas such as forest
and urban regions. Notable improvements were observed in coastal, hilly, and mountainous
areas, where reanalysis datasets typically perform poorly. Several potential enhancements to the
DL framework have been proposed for future studies. Overall, this framework represents a
promising advancement in improving the accuracy of reanalysis-derived wind data for WRA
studies, helping to reduce uncertainties in predicting energy yields. In addition, the proposed
framework can enhance the downscaling of Global Climate Models (GCMs). This improvement is
important for understanding future wind patterns and developing effective climate adaptation
strategies. Furthermore, the framework's ability to improve wind speed estimates could be

beneficial for conducting risk assessments related to extreme wind events.
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Nomenclature

Abbreviations

a.g.l
ALOS
BC

CNN
DEM

DL
ECCC
ECMWF
ERA5
FFN

GB
GBOOST
GCM
GELU
GRU
GWA
GWA3
hpa
LSTM
MAE
MHA

ML

MSE
NWP
PCC
PDF
PSS
PSS-ALL
PSS-LWT
PSS-UPT
R2

Above ground level

Advanced land observing satellite

Bias correction

Convolutional Neural Network

Digital Elevation Model

Deep learning

Environment and Climate Change Canada
European Centre for Medium-Range Weather Forecasts
ECMWEF reanalysis version 5
Feed-forward neural network

Gradient boosting

Gradient boosting regressor from the Scikit-learn package
Global Climate Model

Gaussian error linear unit

Gated recurrent unit

Global Wind Atlas

GWA version 3

Hectopascal

Long short-term memory

Mean absolute error

Multi-head self-attention

Machine learning

Mean square error

Numerical Weather Prediction

Pearson correlation coefficient

Probability density function

Perkins skill score

PSS computed for the full range of wind speed values

PSS computed for wind speed values below the 10th percentile

PSS computed for wind speed values above the 90th percentile

Coefficient of determination
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RMSE

RNN

SRL
TI-GBOOST
TI-GWA3
TR-LSTM
TR-Transformer
UC-ERA5

WRA
XGBOOST

Symbols

X (L{!(t
Qi

Root mean squared error
Recurrent neural network

Surface roughness length
Time-invariant BC with GBOOST
Time-invariant BC with GWA3
Time-resolved BC with LSTM
Time-resolved BC with Transformer
Uncorrected ERAS5 wind speed data
Wind resource assessment

eXtreme gradient boosting algorithm

Parameter that controls the transition between the quadratic and linear behavior

of the Huber loss function

Bias vector

Adam optimizer parameters

LSTM’s cell gate

LSTM'’s cell state

Regression function

Sub-layers of the Transformer encoder
LSTM’s forget gate

Element-wise product

Attention head

LSTM’s input gate

Static covariates estimated at location s;
Keys matrix associated with the attention head H;
Huber loss function

Layer-normalisation

Linear projection layer

LSTM’s output gate

Length of the finite look-back window

Hidden vectors of the deep learning model

Queries matrix associated with the attention head H;
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a()
SMggras
SMinoger
SMpers
softmax(+)
Softplus()
tanh(+)

Tt
TEmbed(+)
TModel()
u

[ ERAS

U f Ras (s0)
JewA

v

Vi

ve(si)

w

J(si)
ye(si)

Sigmoid activation function

Scoring metrics value of ERA5 data

Scoring metric value of the model predictions
Scoring metric value for a perfect prediction
Softmax activation function

Softplus activation function

Hyperbolic tangent activation functions
Timestamp vector

Temporal embedding layer

Deep learning temporal model (LSTM or Transformer)
Zonal component of wind speed

Mean wind speed from ERA5

ERAS5 wind speeds at time t and location s;
Mean wind speed from the Global Wind Atlas
Meridional component of wind speed

Values matrix associated with the attention head H;

Reanalysis meteorological covariates at time t, and interpolated at location s;

Weights matrix
Estimated static scaling factor at location s;

Scaling factor at time t and location s;
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7 DISCUSSION GENERALE ET CONCLUSION

Ce dernier chapitre, qui conclut cette thése, se concentre sur la synthése des principaux résultats
présentés dans les articles, suivie par la présentation des limites de I'étude et des pistes pour de

futurs travaux de recherche.

7.1  Syntheése

La croissance de la part des énergies éoliennes dans les systémes énergétiques actuels requiert
la disponibilité de données de vitesse du vent de haute qualité pour I'évaluation de la variabilité
temporelle et spatiale de la ressource (McKenna et al., 2022). Cette thése vise a proposer de
nouvelles méthodes d’estimation des vitesses du vent aux sites non échantillonnés basées sur

'apprentissage automatique.

La revue de la littérature (Article 1) a mis en évidence un intérét croissant pour le développement
d’approches d’estimation de la distribution de probabilité compléte et de reconstruction de séries
temporelles de vitesse du vent aux sites non échantillonnés. Cette tendance se justifie par la
nécessité de tenir davantage compte de la variabilité des vitesses du vent qui reste un défi majeur
a I'évaluation précise de la ressource éolienne (Pelser et al., 2024). De plus, les défis additionnels
introduits par la non-stationnarité des vitesses du vent lors de I'estimation aux sites non
échantillonnés ont été soulevés dans cette revue. Par exemple, lors de la mise a I'échelle des
sorties des modéles climatiques globaux, les données de réanalyse sont souvent utilisées comme
référence aux sites non échantillonnés (Jung et al., 2022c). On observe un manque de validation
de ces données dans ces études, ce qui peut compromettre la validité des résultats. Par exemple,
il existe des écarts entre les variabilités temporelles présentes dans les données de réanalyses
et les observations in situ (Ramon et al., 2019). Les conclusions de la revue de littérature ont
démontré la nécessité de poursuivre la recherche dans le développement de méthodes plus

précises et plus flexibles pour I'estimation des vitesses du vent aux sites non échantillonnés.

La littérature ne présente pas de consensus quant aux variables explicatives les plus pertinentes
pour la modélisation empirique des vitesses de vent. Les variables utilisées ainsi que les
méthodes de sélection varient d’'un auteur a 'autre (voir, par exemple, Etienne et al. (2010) ; Jung
(2016)). Dans [larticle 2, on a effectué une étude comparative des principales variables
explicatives identifiées dans la littérature. Cette étude a été accompagnée d’une analyse des
performances de six méthodes de sélection de variables. Les résultats de cette étude ont révélé

que l'influence des variables explicatives varie selon les différentes plages de vitesse du vent.
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Par exemple, pour les vitesses élevées, la convexité du terrain a un impact plus important que
pour les vitesses plus faibles. En revanche, la distance par rapport a la céte maritime et la
longueur de rugosité ont un impact significatif sur 'ensemble des plages de vitesses de vent. Les
algorithmes LASSO et MRMR ont été identifiés comme les techniques de sélection de variables
les plus performantes en termes de précision des prédictions, de parcimonie et de réduction de
la multicolinéarité. De plus, ces deux méthodes présentent 'avantage d’étre assez simples a

mettre en ceuvre, puisqu’elles nécessitent uniquement I'optimisation d’un seul parameétre.

Les méthodes d’estimation de la distribution compléte des vitesses du vent sont plus attrayantes
que celles axées sur la prédiction de statistiques récapitulatives, telles que la moyenne ou un
quantile spécifique. La distribution compléte permet une analyse plus approfondie de la variabilité
de la ressource, un facteur crucial pour une meilleure gestion des risques liés aux fluctuations a

long et a court terme, qui peuvent affecter la rentabilité des projets.

Dans ce contexte, les approches existantes reposent généralement sur I'’hypothése restrictive
selon laquelle une seule loi de probabilité s’appliquerait a 'ensemble de la région d’étude (voir,
par exemple, Veronesi et al. (2016) ; Jung et al. (2023b)). Le développement d’une approche non
paramétrique d’estimation de la distribution du vent aux sites non échantillonnés (article 3) a
permis de surmonter cette limitation. Cette nouvelle approche offre une plus grande flexibilité
pour représenter la variabilité spatiale des régimes de vent en s’ajustant aux particularités des
conditions climatiques et topographiques locales. Cette approche s’appuie sur I'apprentissage
automatique pour l'interpolation spatiale de plusieurs quantiles de la vitesse du vent, qui sont
ensuite utilisés pour reconstruire la distribution de probabilité compléte a 'aide de méthodes a
noyau asymétrique. L’utilisation de I'apprentissage automatique, notamment des modeéles de
régression comme XGBoost, améliore la capacité de I'approche a gérer des relations non

linéaires complexes entre les variables explicatives et les quantiles de vitesse du vent.

L’analyse comparative a révélé que la méthode non paramétrique fondée sur les noyaux
asymeétriques est supérieure aux approches paramétriques, selon le critére d’ajustement de
Kolmogorov-Smirnov. En outre, 'approche non paramétrique est plus simple a implémenter, car
elle ne nécessite pas un processus complexe de sélection d’'une distribution régionale, qui
impliquerait I'évaluation de plusieurs lois de distribution selon différents critéres d’ajustement
(voir, par exemple, Jung (2016)). Les noyaux asymétriques Birnbaum-Saunders et Log-Normale
ont donné des résultats similaires et se sont avérés plus efficaces que le noyau asymétrique de
Weibull. Cette nouvelle approche est particulierement recommandée pour les régions présentant

une forte variabilité spatiale du régime des vents.
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Les approches de reconstruction des séries temporelles de vitesse du vent aux sites non
échantillonnés reposent sur l'interpolation de données de réanalyse corrigées ou non corrigées
(Gualtieri, 2022; Niermann et al., 2019). Les limites des données de réanalyse non corrigées pour
I'évaluation du potentiel éolien ont été soulignées dans plusieurs études (Davidson et al., 2022;
Staffell et al., 2016). Il parait donc pertinent de recourir a des approches de correction de biais de

ces données pour améliorer leur précision (Langer et al., 2023).

Les méthodes de correction actuelles s’appuient soit sur le GWA (Bosch et al., 2018; Gruber et
al., 2022), soit sur des modéles de régression (Hu et al., 2023; Jung et al., 2020). Ces modéles
de régression, qui s’appuient sur I'apprentissage automatique, utilisent comme entrée les vitesses
de vent issues des données de réanalyse, ainsi que des variables explicatives liées a la
topographie et a la longueur de rugosité pour prédire les vitesses de vent observées. Dans
l'article 4, plusieurs des méthodes proposées dans la littérature ont été rigoureusement
comparées selon plusieurs critéres essentiels pour I'évaluation du potentiel éolien, notamment la

distribution de probabilité, la variabilité temporelle et le biais systématique.

Aucune des méthodes examinées ne s’est démarquée de maniére uniforme en fonction de tous
les critéres d’évaluation. Par exemple, I'évaluation de la distribution de probabilité a révélé une
préférence pour la méthode quantile-quantile appliquée aux séries temporelles de probabilités de
non-dépassement issues des données de réanalyse. Toutefois, cette méme méthode s’est
avérée moins efficace lorsqu’elle a été appliquée a des séries temporelles de probabilités de non-
dépassement interpolées a partir d’'observations de sites voisins. L'analyse de la variabilité
temporelle a révélé une préférence pour une méthode d’interpolation spatiale basée sur
l'apprentissage automatique, qui combine les données de réanalyses et les observations
mesurées sur des sites voisins. La combinaison de différentes approches semble donc étre une
stratégie prometteuse pour ameliorer la précision de la reconstruction des séries temporelles de
vitesse du vent. Effectivement, l'intégration des méthodes de type « quantile-quantile » et des
techniques d’interpolation fondées sur I'apprentissage automatique permettrait de compenser les

limites de chacune.

Comme cela a été mentionné précédemment, de nombreuses études ont utilisé les données du
GWA pour corriger les biais dans les données de réanalyse. Bien que cette approche contribue
a réduire les biais systématiques, elle ne permet pas de modifier ni d’'améliorer la représentation
de la variabilité temporelle des vitesses du vent (Bosch et al., 2017). En effet, le GWA fournit des

statistiques climatiques a long terme, telles que la vitesse moyenne entre 2008 et 2017, qui ne
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capturent pas les fluctuations temporelles a des échelles plus résolues (p. ex., diurne et

saisonniére).

L’article 5 propose un cadre méthodologique intégrant des architectures LSTM et Transformer
pour corriger les données de réanalyses a partir d’'un facteur de correction dynamique. L’'examen
de cette méthode a révélé une amélioration significative par rapport aux méthodes fondées sur
un facteur de correction invariant dans le temps. En outre, dans les zones cétiéres et les régions
a relief marqué, ou les performances des données de réanalyses sont souvent dégradées
(Gualtieri, 2021), l'approche proposée permet d’améliorer sensiblement la qualité des
estimations. Une amélioration notable de la représentation de la distribution de probabilité a été
observée, en particulier dans la partie centrale de la distribution. Cela reflete une meilleure
adéquation avec les observations in situ. Les architectures LSTM et Transformer se sont avérées
efficaces pour capturer la dynamique temporelle complexe des vitesses du vent, grace a leur
capacité a modéliser des dépendances a long terme dans les séries temporelles issues des
données de réanalyse. Ces résultats soulignent le potentiel des approches basées sur
'apprentissage profond pour surmonter les limitations des méthodes de correction de biais

traditionnelles.

Enfin, les différents modéles développés dans le cadre de cette thése contribuent a une meilleure
compréhension des processus qui gouvernent la dynamique du vent. lls permettent notamment
une meilleure compréhension des interactions entre les facteurs météorologiques et
topographiques, d’identifier les principaux déterminants de la variabilité spatio-temporelle du vent,

et d’'améliorer les capacités de prédiction dans des zones non échantillonnées.

7.2 Limites et perspectives

La non-stationnarité des séries temporelles constitue un défi majeur pour les modeéles empiriques
(Manuca et al., 1996). En ce qui concerne la vitesse du vent, la non-stationnarité des séries peut
étre attribuée a divers facteurs, tels que la variabilité interannuelle liée aux oscillations climatiques
(Pryor et al., 2020; Zeng et al., 2019), les tendances a la baisse parfois causées par
'accroissement de la rugosité de la surface (Vautard et al., 2010a), ainsi que les effets du

changement climatique (Martinez et al., 2024).

L’incorporation de signaux de non-stationnarité dans les divers modéles élaborés dans cette
thése représente un axe de recherche prometteur pour accroitre la fiabilité des estimations de la
ressource éolienne. Par exemple, on peut intégrer aux modeles de régression utilisés pour

linterpolation spatiale des quantiles de vitesses du vent des variables liées aux oscillations
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climatiques, comme [l'oscillation nord-atlantique (NAO). Les quantiles conditionnels estimés a
partir de ces modéles tiendront compte non seulement des caractéristiques topographiques

locales, mais aussi des variations interannuelles attribuables aux oscillations climatiques.

En outre, la rugosité de surface, telle qu’estimée dans nos travaux, est considérée comme étant
constante durant la période d’analyse. Cette hypothése peut limiter la précision des estimations,
car la rugosité de surface peut évoluer au fil du temps en raison de changements dans l'utilisation
des sols, de I'expansion urbaine, de la croissance de la végétation ou de la déforestation
(Petersen et al., 1998; Vautard et al., 2010a). L'intégration de la rugosité de surface comme une
variable dynamique dans les modéles pourrait ainsi améliorer la représentation des conditions
locales de vent. Par exemple, I'utilisation de séries temporelles de données provenant de la
télédétection, telles que Landsat (Zhu, 2017), permettrait de capturer les fluctuations temporelles

de la rugosité de surface.

L’incertitude associée aux estimations des vitesses du vent est un sujet qui reste peu abordé
dans la littérature (McKenna et al., 2022). Les méthodes proposées dans ces travaux peuvent
étre adaptées pour intégrer des mécanismes d’évaluation et de quantification de cette incertitude.
Par exemple, les fonctions objectives utilisées dans les modéles d’apprentissage, tels que les
LSTM et les Transformers, peuvent étre adaptées pour obtenir des estimations probabilistes par
lintermédiaire de quantiles conditionnels ou de paramétres d’'une loi de distribution (Lim et al.,
2021b). Ces approches fourniraient des informations additionnelles pour la gestion des risques
dans le cadre du développement de projets éoliens. Effectivement, la prise en compte de
lincertitude permettrait aux décideurs d’évaluer non seulement les prévisions moyennes, mais
aussi les marges d’erreur associées. L’intégration de [lincertitude dans les approches
développées représente donc une piste prometteuse pour améliorer la fiabilité des modéles

d’évaluation de la ressource éolienne.

Les données in situ des vitesses du vent utilisées dans cette thése ont été collectées a 10 métres
au-dessus du sol. Toutefois, les éoliennes modernes fonctionnent a des hauteurs beaucoup plus
élevées (p. ex., 80-150 métres). La vitesse du vent variant selon l'altitude, il serait préférable
d’évaluer directement la ressource éolienne a ces hauteurs. Toutefois, il y a un manque de séries
temporelles des vitesses du vent a ces hauteurs (Ramon et al., 2020). Pour contourner cette
limite, des méthodes d’extrapolation verticale, telles que la loi de puissance ou la loi
logarithmique, sont couramment utilisées (Gruber et al., 2022). Ces approches sont fondées sur
des hypothéses simples qui peuvent ne pas étre valables dans certaines conditions (Gualtieri,

2019). Par conséquent, I'extrapolation verticale introduit inévitablement des incertitudes
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additionnelles dans I'estimation de la ressource éolienne. Des recherches futures devraient étre
menées pour évaluer et quantifier de maniére plus approfondie cette source d’incertitude. De
plus, des approches plus avancées d’extrapolation verticale, qui s’appuient sur I'apprentissage
automatique, ont été proposées (p. ex., Yu et al. (2022); Vassallo et al. (2020)). Dans leur forme
actuelle, ces approches plus complexes requiérent néanmoins la disponibilité de mesures de
vitesse du vent a au moins deux hauteurs, ce qui est problématique a des sites non

échantillonnés.

Le développement des méthodes d’estimation proposées dans nos travaux dépend de la
disponibilité d’'un réseau dense de stations de mesure dans la région d’étude. Ce réseau est
essentiel pour formuler la relation entre les variables explicatives et les vitesses de vents a
prédire. Toutefois, la répartition des stations de mesure a I'échelle mondiale est trés inégale, et
méme au sein d’'une méme région, des disparités locales peuvent exister. Le développement de
modéeles transférables d’'une région a l'autre représente donc une solution potentielle a ce défi.
Ces modeles, développés dans des régions disposant d’'un réseau dense de stations de mesure,
pourront étre appliqués a des zones ou le réseau de stations de mesures est limité, voire
inexistant. Des recherches futures devraient explorer I'optimisation de ces modéles transférables,
en évaluant leur performance dans différents milieux, comme les zones cétiéres ou les régions
montagneuses, ou les conditions climatiques et topographiques sont particulierement

hétérogénes.
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8 ANNEXE DE L’ARTICLE 3

Table 8.1 Statistics of the estimated wind speed quantiles

Percentile (%) Mean (km/h) Std (km/h)  Min (km/h) 25% (km/h) 50% (km/h)  75% (km/h)  Max (km/h)

5 42 1.6 1 3 4 5 9

12.5 6.4 2.2 2 5 6 7 13

20 8.2 2.9 3 6 7 9.5 18

27.5 9.9 34 4 7 9 12 20

35 11.6 4.0 4 9 11 14.5 24

425 13.4 44 5 11 13 16.5 28

50 15.2 4.9 6 12 15 19 31

57.5 171 54 6 13 17 20 35

65 19.4 6.1 7 15 19 235 39

72.5 21.9 6.7 7 17 21 26 44

80 248 7.6 9 19 24 30 51

87.5 29.0 8.7 11 225 28 35 59

95 36.2 10.9 14 28.5 35 44 74
Table 8.2 Overview of the WS covariates

Predictor Description Spatial scale

Altitude Altitude of the location in m.

Aspect Slope orientation in degree. 100m, 500m, 1000m, 1500m,

2000m
Deviation from mean Difference between the grid cell elevation and the 100m, 500m, 1000m, 1500m,
elevation mean of its neighbouring cells normalized by the 2000m

standard deviation.

Difference from cell
mean elevation

100m, 500m, 1000m, 1500m,
2000m

Difference between the grid cell elevation and the
mean of its neighbouring cells.

Difference of Gaussian  Difference between two copies of the DEM
smoothed with two different gaussian kernel.

Measure land surface curvature.

(100m, 500m), (100m, 1000m),
(500m, 1000m), (300m, 500m),
(1000m, 2000m), (1000m, 1500m),
(100m, 2000m), (500m, 2000m)

Distance to coast The location distance to the coast

Elevation percentile Percentile of the grid cell elevation relative to the 100m, 500m, 1000m, 1500m,

neighbouring cells. 2000m
Gaussian curvature Product between the maximal and the minimal 100m, 500m, 1000m, 1500m,
curvature. Measure of surface curvature 2000m

(Florinsky, 2017).

Geographical
coordinates

Geographical coordinates of the location.

geomorphologic Landform element classification with the

phonotypes
(geomorphons)

geomorphons-based method (Jasiewicz et al.,
2013).

Laplacian of Gaussian

Derivative filter used to highlight location of rapid
elevation change.

100m, 500m, 1000m, 1500m,

2000m

Maximal curvature

Measure of surface curvature (Wilson, 2018).

100m, 500m, 1000m, 1500m,

2000m

Mean curvature

Measure of surface curvature (Wilson, 2018).

100m, 500m, 1000m, 1500m,

2000m
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minimal curvature

Measure of surface curvature (Florinsky, 2017).

100m, 500m, 1000m, 1500m,
2000m

Pennock landform
class

Landform classification based on the slope and
curvature of the grid cell (Pennock et al., 1987).

plan curvature

Measure of surface curvature (Florinsky, 2017).

100m, 500m, 1000m, 1500m,
2000m

Relative topographical
position

Normalized measure of the grid cell elevation
relative to its neighbouring cells.

100m, 500m, 1000m, 1500m,
2000m

Ruggedness index

A measure of the local terrain heterogeneity
(Jasiewicz et al., 2013; Riley et al., 1999)

100m, 500m, 1000m, 1500m,
2000m

Slope

Slope at the grid cell.

100m, 500m, 1000m, 1500m,
2000m

Standard deviation of
slope

Measure of surface roughness (Grohmann et al.,
2011).

100m, 500m, 1000m, 1500m,
2000m

Surface area ratio

Measure of the surface roughness (Jenness,
2004).

100m, 500m, 1000m, 1500m,
2000m

Surface roughness
length

Surface roughness length estimated from land use
map.

100m, 500m, 1000m, 1500m,
2000m

tangential curvature

Measure of surface curvature (Florinsky, 2017).

100m, 500m, 1000m, 1500m,
2000m

Total curvature

Measure of surface curvature.

100m, 500m, 1000m, 1500m,
2000m

Temperature trend

Seasonal and annual trends of mean temperature
change between 1948-2018.
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Table 9.1 Wind speed covariates
Predictor Description Spatial scale
Altitude Altitude of the location in meter.

Aspect

Slope orientation in degree.

100m, 500m, 1000m, 1500m,
2000m

Deviation from mean
elevation

Difference between the grid cell elevation and the
mean of its neighbouring cells normalized by the
standard deviation.

100m, 500m, 1000m, 1500m,
2000m

Difference from cell
mean elevation

Difference between the grid cell elevation and the
mean of its neighbouring cells.

100m, 500m, 1000m, 1500m,
2000m

Difference of Gaussian

Difference between two copies of the DEM
smoothed with two different gaussian kernel.
Measure land surface curvature.

(100m, 500m), (100m, 1000m),
(500m, 1000m), (300m, 500m),
(1000m, 2000m), (1000m, 1500m),
(100m, 2000m), (500m, 2000m)

Distance to coast

The location distance to the coast

Elevation percentile

Percentile of the grid cell elevation relative to the
neighbouring cells.

100m, 500m, 1000m, 1500m,
2000m

Gaussian curvature

Product between the maximal and the minimal
curvature. Measure of surface curvature.

100m, 500m, 1000m, 1500m,
2000m

Geographical
coordinates

Geographical coordinates of the location.

geomorphologic
phonotypes
(geomorphons)

Landform element classification with the
geomorphons-based method.

Laplacian of Gaussian

Derivative filter used to highlight location of rapid
elevation change.

100m, 500m, 1000m, 1500m,
2000m

Maximal curvature

Measure of surface curvature.

100m, 500m, 1000m, 1500m,
2000m

Mean curvature

Measure of surface curvature.

100m, 500m, 1000m, 1500m,
2000m

minimal curvature

Measure of surface curvature.

100m, 500m, 1000m, 1500m,
2000m
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Pennock landform
class

Landform classification based on the slope and
curvature of the grid cell.

plan curvature

Measure of surface curvature.

100m, 500m, 1000m, 1500m,
2000m

Relative topographical
position

Normalized measure of the grid cell elevation
relative to its neighbouring cells.

100m, 500m, 1000m, 1500m,
2000m

Ruggedness index

A measure of the local terrain heterogeneity

100m, 500m, 1000m, 1500m,
2000m

Slope

Slope at the grid cell.

100m, 500m, 1000m, 1500m,
2000m

Standard deviation of
slope

Measure of surface roughness.

100m, 500m, 1000m, 1500m,
2000m

Surface area ratio

Measure of the surface roughness.

100m, 500m, 1000m, 1500m,
2000m

Surface roughness
length

Surface roughness length estimated from land use
map.

100m, 500m, 1000m, 1500m,
2000m

tangential curvature

Measure of surface curvature.

100m, 500m, 1000m, 1500m,
2000m

Total curvature

Measure of surface curvature.

100m, 500m, 1000m, 1500m,
2000m

Evaluation metrics

The Pearson correlation coefficient was used to evaluate the correlation between observed and

estimated time series:

Equation 9.1

PC(WD Wt) =

Z?=1(Wti —w) 2?:1(‘7‘7& - V:V)

JEEalw 9 Tl (00, — B

In addition, the following metric were used during evaluation:

Equation 9.2
1 n
MAE = — i — Y
nZIyl Jil
i=1
Equation 9.3
1 n
RMSE = |~ (= 9))?
i=1
Equation 9.4
R2—1_ 2ie1 (i - 9:)?

Yic (i — y)?
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Equation 9.5
n
ME = 12 y
= Yi— Vi
i=1

The OP (Equation 9.6) is used to evaluate the overlap between two probability distribution function
(PDF). An OP value equal to 100% implies a perfect match between the PDFs and an OP close

to zero implied a poor overlap between the PDFs.

Equation 9.6

B
op = Z min (Z,, Z))
i=1

Where B is the number of bins used to empirically estimate the PDF, Z, and Z; are the frequency of the wind
speed values in it" bin from the estimated and observed wind speed data respectively. A bin
width of 0.5 m/s was selected as done by Jung et al. (2023a) study.

To assess the IAV of annual median wind speed, the RCov was calculated as follows:

Equation 9.7
median(|X; — X|)
X

RCov =

where X = median(X)

Estimation of wind speed quantiles at defined percentile points

Quantiles at the fixe percentile point p were calculated from observed and estimated WSTS using

the following general formula (Hyndman et al., 1996):

Equation 9.8
wy = (1= V)X + VX

Where X(;, and X(;,,) are j-th order statistics. y is a weight (0 <y < 1) that is function of j = floor(pn + m),
m=a+p(l—a—-pB) and g=np+m—j. y was set equal to g and a = =1/3 given
quantiles that are approximately median-unbiased regardless of the WS true probability
distribution (Reiss, 1989).

Table 9.2 Best parameters for LGBMQR and LGBMQR-ERAS found during Random Search.
Model parameter LGBMQR LGBMAR-ERA5
learning_rate 0.03 0.04
max_depth 4 3
feature_fraction 0.4 0.5
bagging_fraction 0.3 0.8
extra_trees False True
lambda_I2 296.8 525
lambda_l1 292.8 469.3
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num_leaves 162 22
max_bin 160 140
min_data_in_leaf 600 16800
num_boost round 230 200
n_features 19 26

Note: The same sets of randomly selected parameters were tested for LGBMQR and LGBMAR-ERA5

Table 9.3 P-values from Wilcoxon signed-rank test for the quantile regression models.

R2

ERA5-WSQ LGBMQR-ERA5 LGBMQR
ERA5-WSQ 2.38E-02 7.39E-01
LGBMQR-ERA5 2.38E-02 5.24E-03
LGBMQR 7.39E-01 5.24E-03
MAE

ERA5-WSQ LGBMQR-ERA5 LGBMQR
ERA5-WSQ 8.85E-03 7.91E-01
LGBMQR-ERA5 8.85E-03 1.51E-03
LGBMQR 7.91E-01 1.51E-03
RMSE

ERA5-WSQ LGBMQR-ERA5 LGBMQR
ERA5-WSQ 4.60E-03 5.11E-01
LGBMQR-ERA5 4.60E-03 2.55E-03
LGBMQR 5.11E-01 2.55E-03

Table 9.4 P-values from Wilcoxon signed-rank test for the time series evaluation.
PC
WDC-TS [ WDC-PD | ERA5 QM-ERA5 | GWA3-ERA5 | IDW-TS [ IDW-PD | LGBMSI | LGBMSI-ERA5
WDC-TS 4.09E-14 | 1.04E-02 | 5.56E-03 1.04E-02 1.14E-01 | 1.96E-02 | 3.82E-05 | 5.20E-11
WDC-PD 4.09E-14 1.03E-12 | 5.20E-13 1.03E-12 1.86E-15 | 3.13E-11 | 4.15E-12 | 1.60E-16
ERA5 1.04E-02 | 1.03E-12 9.21E-06 8.06E-01 1.98E-02 | 1.59E-03 | 4.36E-04 | 2.23E-05
QM-ERA5 5.56E-03 | 5.20E-13 | 9.21E-06 9.21E-06 1.06E-02 | 8.24E-04 | 1.66E-04 | 9.96E-05
GWA3-ERA5 1.04E-02 | 1.03E-12 | 8.06E-01 | 9.21E-06 1.98E-02 | 1.59E-03 | 4.36E-04 | 2.23E-05
IDW-TS 1.14E-01 | 1.86E-15 | 1.98E-02 | 1.06E-02 1.98E-02 3.37E-06 | 2.98E-11 | 3.29E-10
IDW-PD 1.96E-02 | 3.13E-11 | 1.59E-03 | 8.24E-04 1.59E-03 3.37E-06 2.00E-01 | 4.44E-13
LGBMSI 3.82E-05 | 4.15E-12 | 4.36E-04 | 1.66E-04 4.36E-04 2.98E-11 | 2.00E-01 6.79E-15
LGBMSI-ERA5 | 520E-11 | 1.60E-16 | 2.23E-05 | 9.96E-05 2.23E-05 3.29E-10 | 4.44E-13 | 6.79E-15
MAE
WDC-TS | WDC-PD | ERA5 QM-ERA5 | GWA3-ERA5 | IDW-TS | IDW-PD | LGBMSI | LGBMSI-ERA5

WDC-TS 3.28E-16 | 6.78E-01 | 8.46E-05 5.16E-01 1.91E-01 | 2.49E-02 | 1.24E-01 | 1.28E-05
WDC-PD 3.28E-16 1.26E-11 | 2.98E-13 4.15E-10 1.75E-10 | 2.85E-08 | 1.17E-11 | 2.04E-14
ERA5 6.78E-01 | 1.26E-11 3.91E-04 1.84E-01 291E-01 | 527E-02 | 3.85E-01 | 1.78E-03
QM-ERA5 8.46E-05 | 2.98E-13 | 3.91E-04 1.63E-03 1.02E-01 | 3.77E-01 | 527E-02 | 3.71E-11
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GWA3-ERA5 516E-01 | 4.15E-10 | 1.84E-01 | 1.63E-03 9.70E-01 | 4.55E-01 [ 7.02E-01 | 7.15E-03
IDW-TS 1.91E-01 | 1.75E-10 | 2.91E-01 | 1.02E-01 9.70E-01 1.80E-02 | 9.30E-01 | 1.20E-05
IDW-PD 2.49E-02 | 2.85E-08 | 5.27E-02 | 3.77E-01 4.55E-01 1.80E-02 2.94E-01 | 4.25E-07
LGBMSI 1.24E-01 | 1.17E-11 | 3.85E-01 | 5.27E-02 7.02E-01 9.30E-01 | 2.94E-01 3.10E-08
LGBMSI-ERA5 | 1.28E-05 | 2.04E-14 | 1.78E-03 | 3.71E-11 7.15E-03 1.20E-05 | 4.25E-07 | 3.10E-08
RMSE

WDC-TS | WDC-PD | ERA5 QM-ERA5 | GWA3-ERA5 | IDW-TS | IDW-PD | LGBMSI | LGBMSI-ERA5
WDC-TS 4.55E-16 | 8.14E-01 | 2.41E-04 9.70E-01 4.28E-01 | 6.21E-02 | 5.21E-01 | 8.02E-07
WDC-PD 4.55E-16 2.98E-13 | 6.36E-14 6.10E-13 6.38E-12 | 1.26E-09 | 1.99E-13 | 1.39E-15
ERA5 8.14E-01 | 2.98E-13 9.21E-06 3.15E-01 141E-01 | 1.36E-02 | 3.22E-01 | 9.62E-04
QM-ERA5 2.41E-04 | 6.36E-14 | 9.21E-06 7.04E-06 4.01E-02 | 2.30E-01 | 5.21E-03 | 1.21E-09
GWA3-ERA5 9.70E-01 | 6.10E-13 | 3.15E-01 | 7.04E-06 6.72E-01 | 1.96E-01 | 5.93E-01 | 1.01E-02
IDW-TS 428E-01 | 6.38E-12 | 1.41E-01 | 4.01E-02 6.72E-01 1.49E-02 | 6.75E-01 | 1.52E-06
IDW-PD 6.21E-02 | 1.26E-09 | 1.36E-02 | 2.30E-01 1.96E-01 1.49E-02 9.39E-02 | 3.16E-08
LGBMSI 521E-01 | 1.99E-13 | 3.22E-01 | 5.21E-03 5.93E-01 6.75E-01 | 9.39E-02 1.05E-08
LGBMSI-ERA5 | 8.02E-07 | 1.39E-15 | 9.62E-04 | 1.21E-09 1.01E-02 1.52E-06 | 3.16E-08 | 1.05E-08

Table 9.5 P-values from Wilcoxon signed-rank test for the OP metric.

oP

WDC-TS | WDC-PD | ERA5 QM-ERA5 | GWA-ERA5 | IDW-TS IDW-PD | LGBMSI | LGBMSI-ERA5
WDC-TS 9.83E-03 | 6.60E-04 | 1.12E-12 | 9.11E-05 7.31E-03 | 9.04E-03 | 1.59E-14 | 2.75E-02
WDC-PD 9.83E-03 4.05E-01 | 1.17E-12 | 1.03E-01 9.90E-01 | 9.81E-01 | 6.49E-16 | 5.94E-06
ERA5 6.60E-04 | 4.05E-01 1.49E-05 | 4.13E-01 4.89E-01 | 5.18E-01 | 1.89E-13 | 8.76E-06
QM-ERA5 112E-12 | 1.17E-12 | 1.49E-05 4.16E-03 6.91E-07 | 5.04E-07 | 3.38E-17 | 5.40E-15
GWA-ERA5 9.11E-05 | 1.03E-01 | 4.13E-01 | 4.16E-03 117E-01 | 1.13E-01 | 2.93E-14 | 2.73E-06
IDW-TS 7.31E-03 | 9.90E-01 | 4.89E-01 | 6.91E-07 | 1.17E-01 4.80E-01 | 1.84E-13 | 1.34E-04
IDW-PD 9.04E-03 | 9.81E-01 | 5.18E-01 | 5.04E-07 | 1.13E-01 4.80E-01 1.06E-12 | 2.27E-05
LGBMSI 1.59E-14 | 6.49E-16 | 1.89E-13 | 3.38E-17 | 2.93E-14 1.84E-13 | 1.06E-12 6.38E-12
LGBMSI-ERA5 | 2.75E-02 | 5.94E-06 | 8.76E-06 | 540E-15 | 2.73E-06 1.34E-04 | 2.27E-05 | 6.38E-12
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Table 10.1

Covariates used in the study.

Type of Covariates Description Scaling or Spatial scale
covariate interpolation
method
Static Distance from the  Distance from the coast n.a n.a
coast (Dcoast)
Surface Dominant Surface roughness length Mode resampling 100 m, 1 km, 5
roughness length km, 10 km 20
(SRL) km,
Elevation Percentile of the grid cell elevation Gaussian filter 100 m, 200 m,
percentile (ELP) relative to the neighbouring cells. 1km,2km, 5
km, 10 km
Elevation ((ELV) Elevation above sea level at the n.a 100 m
location of the meteorological station
Ruggedness Measure the local terrain heterogeneity  Gaussian filter 100 m, 200 m,
index (RGN) 1km,2km, 5
km, 10 km
Standard Measure of surface roughness. Gaussian filter 50 m, 200 m, 1
deviation of slope km, 2 km, 5
(SDS) km, 10 km
Deviation from Difference between the grid cell Gaussian filter 50 m, 200 m, 1
mean elevation elevation and the mean of its km, 2 km, 5
(DME) neighbouring cells normalized by the km, 10 km
standard deviation.
Aspect (ASP) Slope orientation Gaussian filter 50 m, 200 m, 1
km, 2 km, 5
km, 10 km
Slope (SLP) Slope at the grid cell. Gaussian filter 50 m, 200 m, 1
km, 2 km, 5
km, 10 km
tangential Measure of surface curvature. Gaussian filter 50 m, 200 m, 1
curvature (TAC) km, 2 km, 5
km, 10 km
Total curvature Measure of surface curvature. Gaussian filter 50m, 200 m, 1
(TOC) km, 2 km, 5
km, 10 km
Wind speed 5th, 50th, and 95th ERA5 wind speed Nearest neighbor n.a
quantiles percentiles estimated from 2008 to
2017
Time blh Boundary layer height Nearest neighbor  n.a
resolved sp Surface pressure Nearest neighbor n.a




10u U component of wind at 10 m Nearest neighbor  n.a

10v V component of wind at 10 m Nearest neighbor  n.a
Vu?z ¥ v2? wind speed at 10 m Nearest neighbor  n.a
2t 2 m temperature Nearest neighbor  n.a

Two types of covariates were used: static and time resolved. The time-resolved covariates are reanalysis
meteorological variables from ERAS.

Table 10.2 Assigned surface roughness length (SRL) to land cover classes.
Land cover class Pixel ID SRL (m)
Temperate or sub-polar 1 0.9

needleleaf forest

Sub-polar taiga needleleaf 2 0.9
forest
Temperate or sub-polar broadleaf 5 0.9

deciduous forest

Temperate or sub-polar 8 0.01
Shrubland

Temperate or sub-polar 10 0.01
grassland

Sub-polar or polar shrubland- 11 0.01
lichen-moss

Sub-polar or polar grassland- 12 0.01
lichen-moss

Sub-polar or polar barren-lichen- 13 0.01
moss

Wetland 14 0.04
Cropland 15 0.1
Barren lands 16 0.005
Urban 17 0.8
Water 18 0.0002
Snow and ice 19 0.0002

The table presents the land cover classes derived from the 2020 Canada land cover dataset, along with the
assigned
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Table 10.3 Criteria used to classify test stations in coastal, hilly, mountainous, low SRL and high SRL

areas.

Area type Area delimitation Data source
criterions

Hilly and mountainous Located in one of https://open.canada.ca/data/en/dataset/546f1a67-5f22-
Canada ecodistricts 4af9-8618-b94e1d33c52f (accessed 29 October 2024)
dominated (more than
80%) by hills and
mountains

Coastal Located less than 10 km  https://open.canada.ca/data/en/dataset/6¢78fb2f-d23b-
from Canada coastal 45b4-b3af-cc6f6ccafff8 (accessed 29 October 2024)
waters (excluding
mountainous and hilly
areas)

High SRL Surface roughness https://open.canada.ca/data/en/dataset/ee1580ab-a23d-

length greater than 0.5 4f86-a09b-79763677eb47 (accessed 29 October 2024)
m in a radius of 1 km

(excluding mountainous,

hilly, and coastal areas)

Low SRL Surface roughness https://open.canada.ca/data/en/dataset/ee1580ab-a23d-
length less than 0.5 m in ~ 4f86-a09b-79763677eb47 (accessed 29 October 2024)
aradius of 1 km
(excluding mountainous,
hilly, and coastal areas)

The link to the data source used for the classification are provided in the last column of the table.

Coastal High SRL Hilly and mountainous Low SRL
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Figure 10.2 Boxplot of the skill scores.


https://open.canada.ca/data/en/dataset/546f1a67-5f22-4af9-8618-b94e1d33c52f
https://open.canada.ca/data/en/dataset/546f1a67-5f22-4af9-8618-b94e1d33c52f
https://open.canada.ca/data/en/dataset/6c78fb2f-d23b-45b4-b3af-cc6f6cc4fff8
https://open.canada.ca/data/en/dataset/6c78fb2f-d23b-45b4-b3af-cc6f6cc4fff8
https://open.canada.ca/data/en/dataset/ee1580ab-a23d-4f86-a09b-79763677eb47
https://open.canada.ca/data/en/dataset/ee1580ab-a23d-4f86-a09b-79763677eb47
https://open.canada.ca/data/en/dataset/ee1580ab-a23d-4f86-a09b-79763677eb47
https://open.canada.ca/data/en/dataset/ee1580ab-a23d-4f86-a09b-79763677eb47

The skills scores are the percentage improvements relative to UC-ERAS5 in time series MAE and RMSE. The
boxplots are displayed separately for different types of environments and models. The boxes
represent distribution quartiles, while the whiskers indicate the 10-90% range. The horizontal
red dotted lines mark the 0% percentage improvement over UC-ERA5.

10.1 Additional results on selected stations

Four stations, each representing a different area type, were selected from the test set to illustrate
the uncorrected and corrected wind speed time series through multiple perspectives, including

time series, 2D kernel density, and distribution plots.

Station ECCC Climate ID No. 7056202 is located in a coastal area. The uncorrected ERA5 wind
speeds (UC-ERADS5) tend to overestimate the observed wind speeds across the entire distribution
(Figure 10.3 and Figure 10.4). The corrected wind speed using the time-resolved LSTM model
(TR-LSTM) show improvements by reducing the bias; However, the model tends to overcorrect

high wind speeds, leading to an underestimation of extreme wind events.

Station ECCC Climate ID No. 8202592 is located in a high surface roughness length (SRL) area.
UC-ERADS5 tends to substantially overestimate the observed wind speeds (Figure 10.5 and Figure

10.6). TR-LSTM shows improvement across the entire distribution.

Station ECCC Climate ID No. 3030200 is situated in a low SRL area. UC-ERA5 generally
underestimates the observed wind speeds, particularly in the mid-to-upper range of the
distribution (Figure 10.7 and Figure 10.8). TR-LSTM effectively reduces this bias with a less
pronounced effect in the upper part of the distribution where an underestimation tendency is still

observable.

Station ECCC Climate ID No. 7091299 is located in a hilly and mountainous area. UC-ERA5
exhibits significant overestimation across the entire distribution, likely due to the complex
topography that ERA5 struggles to resolve at its coarse resolution (Figure 10.9 and Figure 10.10).
TR-LSTM improved the accuracy by reducing the overall bias and better aligning with observed
wind speed variations. However, despite this improvement, TR-LSTM still shows some biases,

particularly in capturing extreme wind speeds, where it tends to slightly overestimate peak values.
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Figure 10.3 Time series and 2D kernel density plot for station ECCC Climate ID No. 7056202 for 2023.

The station is located in a coastal area. The top-left and bottom-left panels present the time series of UC-ERAS,

and TR-LSTM overlaid on the measured hourly wind speeds, respectively. The top-right and
bottom-right panels display the 2D kernel density plot comparing measured wind speeds with
UC-ERAS5 and TR-LSTM, respectively.
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Figure 10.4 Density plot for station ECCC Climate ID No. 7056202.

The station is located in a coastal area. The probability density function (pdf) was estimated by fitting the two
parameters of the Weibull distribution to the data using the maximum likelihood estimation
method.
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Figure 10.5 Time series and 2D kernel density plot for station ECCC Climate ID No. 8202592 for 2023.

The station is located in a region with high surface roughness length. The top-left and bottom-left panels
present the time series of UC-ERA5, and TR-LSTM overlaid on the measured hourly wind
speeds, respectively. The top-right and bottom-right panels display the 2D kernel density plot
comparing measured wind speeds with UC-ERA5 and TR-LSTM, respectively.
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Figure 10.6 Density plot for station ECCC Climate ID No. 8202592.

The station is located in a region with high surface roughness length. The probability density function (pdf)
was estimated by fitting the two parameters of the Weibull distribution to the data using the
maximum likelihood estimation method.
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Figure 10.7 Time series and 2D kernel density plot for station ECCC Climate ID No. 3030200 for 2023.

The station is located in a region with low surface roughness length. The top-left and bottom-left panels present
the time series of UC-ERA5, and TR-LSTM overlaid on the measured hourly wind speeds,
respectively. The top-right and bottom-right panels display the 2D kernel density plot
comparing measured wind speeds with UC-ERA5 and TR-LSTM, respectively.
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Figure 10.8 Density plot for station ECCC Climate ID No. 3030200.

The station is located in a region with low surface roughness length. The probability density function (pdf) was
estimated by fitting the two parameters of the Weibull distribution to the data using the
maximum likelihood estimation method.
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Figure 10.9 Time series and 2D kernel density plot for station ECCC Climate ID No. 7091299 for 2023.

The station is located in a hilly and mountainous area. The top-left and bottom-left panels present the time
series of UC-ERAS5, and TR-LSTM overlaid on the measured hourly wind speeds, respectively.
The top-right and bottom-right panels display the 2D kernel density plot comparing measured
wind speeds with UC-ERA5 and TR-LSTM, respectively.
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Figure 10.10 Density plot for station ECCC Climate ID No. 3030200.

The station is located in a hilly and mountainous area. The probability density function (pdf) was estimated by
fitting the two parameters of the Weibull distribution to the data using the maximum likelihood
estimation method.
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