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1 Research Objectives

Under rapid urbanization and climate changes have increased global urban flood risks.
The land cover is converted from natural to man-made with high percentages of imper-
vious surfaces, which increases the surface runoff and induces flash floods after a major
precipitation in urban areas, especially in a metropolitan region such as the Greater
Toronto Area (GTA). To understand and analyze the intensity and dynamics of the ur-
ban flash flood risks, it needs to quantify the special distribution of the land surface
imperviousness and vegetation land cover in urban watersheds.

In the previous CCMEO program related to FHIMP (Flood Hazards Identification
and Mapping Program), a small-scale test (the sub-watershed Don Valley of GTA) was
undertaken about the impacts of urban land cover on flash flood risk distribution and
changes using the land cover information derived from low-resolution Landsat data. From
the test, it was found that high-resolution urban land cover information with more details
on the imperviousness/vegetation distribution is needed for more accurate urban flood
risk assessments. However, due to a lack of in-house personal resources, information gaps
exist in the high-resolution (HR) urban land cover map information for further flood risk
analyses for major Canadian cities. This contract work will fill the information gap in the
HR urban land cover map of GTA, which is planned to be generated from HR satellite
imagery. Deep learning technology is required since the map’s coverage is large, and a
huge volume of imagery data processing is needed.

This work has the following objectives:

1. To preprocess the HR multi-spectral image data, geo-register the HR image data
with Landsat image data and collect related existing HR geospatial data useful for
the mapping.

2. To determine which classification methods are useful and efficient for this map
generation.

3. To create the HR land cover map of GTA using the HR satellite imagery.

4. To validate the accuracies of the land cover classes in the map product.
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2 Summary

Accurate mapping of land cover and land use at very high resolution (VHR) is crucial for
studying urban development and human-environment interactions. Deep learning tech-
niques, particularly semantic segmentation models, have emerged as powerful tools for
this task. However, their widespread application is hindered by the substantial demand
for annotated VHR datasets. Nonetheless, their effectiveness is often constrained by the
extensive volume of labeled VHR imagery required for training.. Existing studies have
mostly used low to medium-resolution imagery and fewer bands, resulting in limited down-
stream applicability. To our knowledge, this is the first attempt at studying urban areas
in Canada at such spatial resolution using self-supervised deep learning techniques. The
objective is to classify VHR multispectral imagery into eight urban land cover categories.
The main challenges are preparing analysis-ready data, class imbalance, and a limited
amount of labeled data. To address these challenges, we introduce an innovative deep
learning framework designed to improve spectral-spatial consistency while leveraging the
wealth of available unlabeled data for more effective learning and easily apply pre-trained
representations to downstream tasks. We perform super-resolution using deep learning
pansharpening, then latent feature extraction without labels and knowledge distillation
using a small amount of labeled data. The proposed workflow is applied to Worldview
3 imagery over 80,000 patches of size 256x256 at 1m spatial resolution. The methodol-
ogy was applied to two unet variants, a simple Unet and an attention-gated Unet with
a Resnet50 encoder. The results show that while the simple Unet could not adequately
capture the complexity of the data, unlike the complex model, self-supervised pre-training
improves the overall accuracy(OA) of the prediction in both cases. For simple Unet, the
accuracy was improved from 69% to 74%, and for complex unet, the OA improved from
80% to 88%. In conclusion, we display the effectiveness of multi-view self-supervised
semantic segmentation on multispectral VHR images and create a land cover product for
future research.

3 Introduction

Urban land cover classification (ULC) is crucial for policymakers and planners of all
countries. In Canada, where diverse climates and terrains pose unique challenges, ac-
curate land cover classification aids in understanding urban sprawl, assessing environ-
mental impacts, planning for resilient infrastructure, and and reduction of urban natural
disasters. The rapid urbanization observed in many Canadian cities increases risks of
natural hazards such as flooding, landslides, heat island effects, and wildfires. Creating
high resolution ULC is labor-intensive, time-consuming, and costly, making it challeng-
ing and impractical for large areas, especially Canadian urban settings. In Canadian
cities like Toronto, Vancouver, and Montreal, collecting ground truth data requires ex-
tensive fieldwork, often involving teams of researchers and technicians with high labour
costs. Remote sensing is a viable alternative widely used to create such products. The
rapid development of sensor technology has significantly enhanced the availability and
quality of very high-resolution (VHR) satellite imagery, which has proven to be an es-
sential tool for monitoring urban environments. Satellites such as WorldView-2/3/4, and
GaoFen-1/2 provide imagery with a ground sampling distance (GSD) of less than 5 me-
ters, capturing intricate spatial details that are valuable for urban land use and land
cover classification. The ability to distinguish fine-scale features in urban landscapes has
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led to increased research interest in leveraging VHR imagery for detailed classification
tasks. Effectively distinguishing urban land cover in VHR imagery is challenging due to
the heterogenous nature of urban landscapes. Approaches to classification generally fall
into pixels or object based analysis categories. In pixel-based classification, each pixel
is analyzed individually, with labels assigned based only on its spectral characteristics,
without considering spatial relationships with neighboring pixels. While this approach
has been widely used, its effectiveness is often compromised in high-resolution imagery
due to the “salt-and-pepper” effect, where variations in spectral responses at the pixel
level lead to fragmented and noisy classification results. This issue arises because indi-
vidual pixels do not always correspond to distinct real-world objects, especially in urban
settings where materials, shadows, and mixed pixels introduce spectral inconsistencies.

To address some these limitations, object-based image analysis (OBIA) could be a
more effective alternative for classifying VHR imagery. Rather than assigning labels to
individual pixels, object-based methods first segment the image into meaningful groups
of pixels, known as objects, using methods such as Multi-Resolution Segmentation, Wa-
tershed, or Quadtree-Segmentation. These objects, which incorporate both spectral and
spatial properties, are then classified as distinct land cover types. By considering the
relationships between neighboring pixels, object-based methods help mitigate the salt-
and-pepper effect and produce more coherent classification results. However, the accuracy
of object-based analysis classification depends on the quality of the segmentation output,
as poorly segmented objects can introduce classification errors. In addition, object-based
approaches require the careful selection of relevant features, such as segment shape, tex-
ture, and contextual attributes, which guide the classification. In complex urban envi-
ronments, manually selecting features that effectively distinguish all land cover types can
be challenging. As a result, there is an increasing need for automated feature extraction
techniques that can learn and adapt to different land cover classes directly from the data,
reducing the reliance on manual feature engineering. The integration of deep learning
methods with object-based classification holds promise for improving the accuracy and
scalability of urban land cover mapping, offering a more data-driven approach to feature
representation and classification.

Various artificial intelligence methods have been widely applied to pattern recogni-
tion and computer vision tasks, demonstrating their effectiveness in classifying remote
sensing imagery. Techniques such as boosted trees or K-means have been successfully
utilized to analyze and categorize land cover features in satellite images, offering robust
solutions for automated classification . Hinton et al. introduced deep learning theory
in 2015, marking a significant shift from traditional machine learning approaches like
support vector classifiers, and Random Forest (RF). Unlike these conventional methods,
which often rely on manually crafted features, deep learning models excel at automati-
cally extracting meaningful features directly from large datasets. This capability allows
them to identify discriminative patterns as part of the training process, eliminating the
need for predefined feature engineering. Recent advancements in deep network archi-
tectures have produced state-of-the-art results across many computer vision applications
by capturing complex spatial patterns in images. CNNs, in particular, have revolution-
ized image classification by using deep convolutional layers with sparse connections to
learn high-level feature representations, significantly improving performance compared to
conventional handcrafted feature-based methods. This shift toward automated feature
learning has shown widespread success of deep learning in visual recognition tasks. Early
convolutional neural network (CNN) models only helped to assign a single class label
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to an entire image, requiring large-scale datasets for effective training. To improve per-
formance, researchers introduced increasingly complex and deeper architectures, such as
VGG, GoogLeNet, ResNet, and EfficientNet. While these models excelled at image-level
classification, they were not designed for pixel-wise predictions. To address this, various
methods were later introduced to generate classification outputs at the pixel level, pro-
ducing dense prediction maps that match the dimensions of the input image. One of the
most influential developments in this area was the Fully Convolutional Network (FCN),
introduced by Long et al.. This approach introduced deconvolution layers in place of the
fully connected layers typically found in conventional CNN architectures, allowing for
classification at the pixel level. Despite its effectiveness, FCN has notable limitations,
including difficulties in capturing fine details and generating smooth object boundaries.
These drawbacks arise from the downsampling process, which leads to the loss of spatial
information. Nevertheless, the core structure of FCN, which follows an encoder-decoder
paradigm with downsampling and upsampling operations, has provided the foundation
for numerous modern semantic segmentation architectures. Models such as U-Net, FPN
have built upon this framework, incorporating additional mechanisms to enhance spatial
accuracy and boundary delineation. Fully convolutional models have been extensively
applied to semantic segmentation tasks for classifying very high-resolution (VHR) im-
agery. Numerous applications in remote sensing have benefited from semantic segmen-
tation, including road and building footprint extraction, land cover classification, and
change detection. Despite its effectiveness, deep learning-based segmentation models of-
ten require substantial amounts of annotated data to produce reliable results. However,
generating pixel-wise labeled datasets for multiple classes in remotely sensed imagery is
a labor-intensive and costly process. Given the challenge of acquiring sufficient labeled
data, researchers have explored various strategies to reduce the reliance on extensive
training datasets, as limited training samples can significantly impact the accuracy and
generalization of deep learning models.

To address these challenges, self-supervised learning (SSL) has become a promising
technique for training deep learning models without relying on large labeled datasets.
SSL enables a model to extract meaningful features from vast amounts of unlabeled data
by solving a predefined pretext task—an auxiliary learning objective designed to guide
the initial training process. The learned representations serve as a strong foundation for
downstream supervised tasks, reducing the dependence on extensive manual annotations.
This approach has gained significant attention in computer vision, often achieving per-
formance levels comparable to or even exceeding those of fully supervised methods. Cur-
rently, different kind of self-supervised learning methods are Momentum Contrast, Sim-
CLR, SwAV, BYOL, Siamese, and Barlow Twins. Methods based on contrastive learning
and distillation function by enhancing similarity, which depends on efficiently generating
positive samples (corresponding images) and negative samples (non-corresponding im-
ages) during the pre-training phase. Distinguishing negative samples in remote sensing
imagery presents a significant challenge due to the complexity of feature representations
at both low and high levels. Variations in spectral and spatial characteristics make it
difficult to define clear negative pairs, adding to the complexity of contrastive learning
approaches. In contrast, Barlow Twins eliminates the need for explicit negative sample
selection, making it a more suitable choice for remote sensing segmentation. Despite the
promise of self-supervised learning (SSL) in this domain, its application remains rela-
tively unexplored, with most existing studies focusing on low-resolution RGB datasets
and tasks such as scene classification . Some datasets are available for pixel-level classi-

INRS Reference Number: R2277



High-Resolution Urban Land Cover Mapping from Satellite Imagery Using DL

fication and have been used in the literature to create Urban LULC products . However,
these datasets are not based in Canada, and any model trained on these datasets may
not produce accurate or usable land cover maps.

To fill the research gap mentioned above, this study applies a novel deep learning-
based workflow that creates accurate land cover maps for urban areas in Canada using
VHR data. The study exploits the availability of panchromatic and multispectral bands
and fuses them using deep learning pansharpening. Following this, a novel analysis-
ready dataset is created with only 10% pixels labeled with one of eight urban land cover
classes. Four models are compared – a) Unet – a simple UNet model, b) Unet+SSL
- an Unet with a pretrained SSL backbone, and c) Resnet50 AttUnet – an attention-
gated Unet with not pretrained Resnet50 backbone, and d) Resnet50 AttUnet+SSL -
model c but with SSL pre trained Resnet50 backbone. The research demonstrates that
Resnet50 AttUnet+SSL outperforms models a,b, and c for urban land cover classification.
This is one of the first studies to apply modern deep learning approches such as super-
resolution and self-supervised learning (SSL) to VHR imagery of Canadian urban areas.
The key contributions of this paper are as follows:

• A novel satellite imagery dataset unique to Canadian urban database is used for
generation of high resolution land cover information for two majoy urban areas.

• The issue of scarce labeled data in remote sensing is tackled by generating multiple
invariant views using data augmentations and pre-training a normal Unet encoder
and a Resnet50 encoder in a customized Barlow Twins strategy.

• The pretrained SSL encoders are frozen, and two U-Net variants, a basic U-Net,
and an Attention Gated Unet, are trained as decoders. The study shows SSL pre-
training improves baseline accuracy in both variants of U-Net.

The remainder of the paper is divided into several sections, where Sect. 2 presents
the literature review of the recent developments in the self-supervised segmentation ap-
proaches. Sections 3 and 4 provide an overview, while Sections 5 and 6 detail the proposed
methodology and experimental results, respectively. Lastly, Section 7 offers the conclud-
ing remarks.

4 Literature Review

Recent advancements in remote sensing have seen growing interest in the application
of self-supervised learning techniques to extract meaningful representations from satel-
lite imagery. For instance, generative adversarial networks in leveraged multiple-layer
feature-matching to derive scale-specific spatial characteristics from VHR data, which
were then employed for land cover classification tasks. Similarly, Walter introduced
a novel pretext task in which high-frequency channel information was used to predict
RGB values, facilitating feature learning in a self-supervised manner. Further extend-
ing this paradigm, Moore incorporated nominal pretext tasks such as image colorization,
coordinates prediction, and sample discrimination—to extract domain-specific represen-
tations from Pleiades Neo imagery. The effectiveness of the pretraining was evaluated
through transfer learning, demonstrating improved performance on LULC with very few
labelled samples. In another study, Wang modified the MoCov2 framework by integrat-
ing a location-aware cost function to enhance spectral feature extraction from satellite
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images. Unlike conventional contrastive learning approaches that rely on standard data
augmentation techniques to generate positive pairs, their method utilized geographic loca-
tion information from frequently observed satellite paths to establish meaningful positive
samples. Additionally, research has shown that successive pre-training on natural image
datasets and on remote sensing imagery can enhance model accuracy on downstream
tasks. For example, Jung systematically analyzed the impact of various data augmenta-
tion techniques in contrastive self-supervised learning applied to remote sensing datasets.
Meanwhile, Ayush proposed a self-supervised pre-training strategy that simultaneously
leveraged the relationship between satellite imagery and geo-tagged sound recordings.
By incorporating both visual and auditory information, this approach facilitated a more
robust pre-training process, enabling improved feature learning from multimodal remote
sensing data.

Of all the available techniques, contrastive learning is the most popular approach.
Contrastive learning methods are designed to train models by distinguishing between
similar and dissimilar samples in the representation space. Specifically, these approaches
encourage representations of semantically related inputs, such as different

Of all the available techniques, contrastive learning is the most popular approach.
Contrastive learning methods are designed to train models by distinguishing between
similar and dissimilar samples in the representation space. Specifically, these approaches
encourage representations of semantically related inputs, such as different augmented ver-
sions of the same image, to be mapped closely together. Due to this fundamental prin-
ciple, contrastive learning typically employs a Siamese-style architecture, where paired
inputs undergo simultaneous processing to learn meaningful feature representations. Al-
though self-supervised contrastive learning has gained prominence in recent years, the
application of contrastive loss in remote sensing has a longer history. A notable early
example is the work of (Cheng, Yang, Yao, Guo, and Han, 2018), which incorporated
a supervised contrastive regularization term into convolutional neural network (CNN)
features to enhance remote sensing scene classification. The first application of con-
trastive learning in a self-supervised remote sensing context was introduced by Jean et
al. in their Tile2Vec framework (Jean, Wang, Samar, Azzari, Lobell, and Ermon, 2018).
This method was conceptually influenced by word2vec (Mikolov, Chen, Corrado, and
Dean, 2013) and bore similarities to Contrastive Predictive Coding (CPC) (Oord, Li, and
Vinyals, 2018). However, a significant challenge in contrastive learning arises from the
tendency of models to collapse into trivial solutions when solely optimizing for similarity
between paired inputs. To mitigate this issue, researchers have explored various strate-
gies, including alternative contrastive loss formulations, negative sampling techniques,
and architectural modifications that promote more diverse and informative feature rep-
resentations. SimCLR and MoCo use many negative samples in a single batch to learn
proper representations. Although these models have been applied to remote sensing,
they require high-performance computing clusters to train in practical time. BYOL and
SimSiam are another class of contrastive SSL techniques that learn latent representations
from knowledge distillation and have been successfully applied in remote sensing. Barlow
Twins model is a recent proposal in computer vision SSL and uses a novel loss function
to reduce redundancy between learned representations. Although this model has been
applied in the medical field, it is well suited for remote sensing applications and does
not require large batch sizes or high-performance clusters to train. Hence, exploring the
effect of Barlow Twins training in remote sensing is interesting.
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5 Study area

The study focuses on the Greater Montreal Area (GMA) and the Greater Toronto Area
(GTA) (Figure 1), as they encompass the largest urban populations in Canada. These
metropolitan regions contain extensive impervious surfaces and exhibit diverse land cover
types with varying building densities. Over the past five decades, both areas have ex-
perienced substantial growth due to international and domestic migration, leading to
their development as major multicultural urban centers characterized by significant so-
cial, cultural, and economic diversity. Furthermore, both Montreal and Toronto have
been recognized as influential global cities according to Globalization and World Cities
Research Network (GaWC), highlighting their role in shaping international cultural, po-
litical, and economic dynamics.

The urban built-up landscapes of the GTA and the GMA are characterized by their
dynamic and diverse urban forms, shaped by distinct histories, population densities,
and developmental patterns. In the GTA, the built-up environment features a mix of
high-density urban cores, such as Toronto’s downtown with its iconic skyline dominated
by skyscrapers and mixed-use developments, and expansive low-density suburban neigh-
borhoods with detached homes and cul-de-sacs. The transportation infrastructure is
a defining feature, with major highways like the 401 and a network of commuter rail
systems supporting urban sprawl. Industrial zones and business parks are interspersed
throughout the suburban fringes, reflecting the area’s role as a hub for finance, technol-
ogy, and manufacturing. Meanwhile, green spaces, such as the Don Valley and Rouge
National Urban Park, weave through the urban fabric, offering a counterbalance to the
dense built-up areas. In contrast, the GMA displays a unique blend of European-inspired
urbanism and modern development. Montreal’s core is known for its historic architecture,
including narrow streets, stone buildings, and iconic triplexes with external staircases,
particularly in neighborhoods like Plateau Mont-Royal. The central business district fea-
tures high-rise office towers, yet urban planning has retained an emphasis on maintaining
sightlines to landmarks like Mount Royal. Beyond the island, suburban development is
characterized by medium-density housing and industrial parks connected by an extensive
highway network and commuter rail services. Both regions have seen significant growth in
mixed-use developments and high-rise condominiums in response to population pressures,
signaling a shift toward vertical urbanization. Despite differences, both urban areas are
marked by the challenges of balancing growth with sustainable development, preserving
green spaces, and managing infrastructure demands in highly urbanized environments.

5.1 GTA

The Greater Toronto Area (GTA), which includes the city of Toronto, is home to near
about 6.5 million people, making Canada’s largest metropolitan region and a crucial
economic hub. Located in Southern Ontario along the northern shore of Lake Ontario,
Toronto is a highly urbanized and diverse city, serving as the provincial capital of Ontario.
According to the most recent census data, Toronto itself has a population of 2,794,356,
ranking as the highest populated city in Canada and the fourth biggest in North Amer-
ica (Statistics Canada 2021). The region experiences a humid continental climate with
noticeable seasonal variations. Historical climate records indicate that between 1991 and
2020, the average daily temperature in January was 3.5°C, while July had an average
daily temperature of 22.5°C. Annual precipitation levels in the area were recorded at
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Figure 1: Map of the Study Area

approximately 822.7 mm (Environment and Climate Change Canada). Geographically,
Toronto is positioned on the northwestern edge of Lake Ontario, where its proximity
to the lake influences its local climate. The GTA features a varied topography, with
the highest point reaching approximately 561 meters above sea level in the Oak Ridges
Moraine near King City, while the lowest elevation, around 74 meters, is found along
Toronto’s waterfront. The land cover in the region is predominantly urban, characterized
by a dense concentration of roads, residential neighborhoods, commercial districts, and
industrial areas. These impervious surfaces define the city’s landscape, reflecting the
extensive development and infrastructure that support its growing population.

5.2 GMA

The Greater Montreal Area (GMA), home to approximately 4.5 million residents, is the
second most populous city in Canada and the easternmost urban center considered in
this study. Situated in the province of Quebec, Montreal is located on the Island of
Montreal at the meeting point of the Saint Lawrence and Ottawa Rivers. The region
experiences a diverse climate characterized by significant seasonal variations, with tem-
peratures ranging from an average low of -15.8°C during colder seasons to a high of
27.8°C in warmer ones, accompanied by substantial precipitation throughout the year.
The study area, positioned in southwestern Quebec, encompasses the Greater Montreal
Area (GMA) which spans 4,300 km² and had a recorded population of 4,100,100, ac-
cording to Statistics Canada (2011). The GMA’s maximum elevation is approximately
233 meters, found at the summit of Mount Royal, which serves as a focal point for the
city’s design and cultural identity. The minimum elevation is about 6 meters along the
popular St. Lawrence River, which defines much of the region’s geography and urban
infrastructure. Major land cover types in the GMA include urban impervious surfaces,
interspersed with significant green spaces such as Mount Royal Park, agricultural lands
on the periphery, and wetlands along the St. Lawrence River.
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6 Data

This study employs very high-resolution (VHR) remote sensing imagery to classify ur-
ban land cover with a focus on high-resolution satellite data. The imagery utilized in
this research is obtained from WorldView-3, an advanced satellite originally launched by
DigitalGlobe, which is now a part of Maxar Technologies. WorldView-3, which became
operational following its launch on August 13, 2014, represents a significant advancement
in commercial satellite imagery technology. This cutting-edge Earth observation platform
provides VHR imagery that has revolutionized the classification and analysis of urban
land cover. The exceptional spatial and spectral properties of WorldView-3 make it an
invaluable data source for researchers and urban planners alike, offering unprecedented
capabilities for detailed urban mapping and monitoring.

WorldView-3 sets a new standard for commercial satellites in terms of spatial resolu-
tion. The panchromatic band offers an impressive 0.31 m resolution at nadir, increasing
slightly to 0.34 m at 20° off-nadir. The multispectral bands provide 1.24 m resolution at
nadir and 1.38 m at 20° off-nadir. The spectral capabilities of WorldView-3 are equally
impressive and play a crucial role in urban land mapping. The satellite features a panchro-
matic band covering the 450-800 nm range, providing high-resolution grayscale imagery.
The multispectral sensor includes eight bands: Coastal (400-450 nm), Blue (450-510
nm), Green (510-580 nm), Yellow (585-625 nm), Red (630-690 nm), Red Edge (705-745
nm), Near-IR1 (770-895 nm), and Near-IR2 (860-1040 nm). This comprehensive spectral
coverage allows for sophisticated differentiation between urban materials and land cover
types.

7 Results and discussion

7.1 Experimental setup

In our experimental setup, we leveraged a high-performance computing environment to
facilitate the training and evaluation of our deep learning models. The hardware config-
uration consisted of an Intel Xeon E5 10 cores CPU, 128 GB RAM, and two NVIDIA
RTX 6000 graphics processing units (GPUs), each equipped with 24 GB of VRAM,
providing ample computational power for parallel processing of large-scale geospatial
datasets.

Our software stack was built upon the PyTorch deep learning framework, specifi-
cally utilizing PyTorch Lightning for streamlined model training and experiment man-
agement. To address geospatial data’s unique challenges, we incorporated TorchGeo
(Stewart, Robinson, Corley, Ortiz, Ferres, and Banerjee, 2022), a specialized library for
processing and analyzing Earth observation datasets within the PyTorch ecosystem. Ad-
ditionally, we employed Kornia, a computer vision library, to implement advanced image
augmentation techniques and geometric transformations on GPUs instead of CPUs.

7.2 Land cover classification

The proposed framework generates a segmentation mask for a given multispectral image.
Moreover, the quantitative results of both U-Net models with and without the Barlow
Twins based pre-training are presented in Tables ?? and ??.
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It is observed that initially, the simple Unet models could not learn the complex-
ity of the data. Unet and Unet+SSL models predict impervious classes as either road,
water, or building. A more complex model such as Resnet50+AttUnet can better clas-
sify the impervious area mostly due to the Resnet50 encoder and the attention-gating
mechanism. However, the output still has some noise, but after doing SSL pre-training,
Resnet50AttUnet+SSL can properly delineate the impervious area compared to the true
area. For road classification, the Unet model completely misses the intersection and the
side roads, as shown below. Unet+SSL can improve the result by correctly classifying the
side roads and a part of the road further away from the intersection but not the actual in-
tersection itself. Resnet50AttUnet can predict the intersection better, but it cannot prop-
erly delineate the road. This is accomplished with SSL training as Resnet50AttUnet+SSL
can catch the finer details and extract precise road networks, along with more prominent
buildings in the background. For the bare class, the Unet model cannot differentiate
between grass and bare soil, as shown below. Hence, it overclassifies grass and shrubs
while incorrectly predicting that the impervious running track around the bare field is the
road. Here, SSL training helps the model Unet+SSL differentiate between grass and bare
soil while identifying the running track as impervious instead of road. Resnet50AttUnet
is shown to remove the misclassified grass pixels completely, but it overestimates the
amount of bare soil while completely missing the thin running track. SSL training helps
here, and Resnet50AttUnet+SSL can correctly estimate the amount of bare soil and the
prominent running track. The example for tree classification shown below is a classic ex-
ample of the benefits of SSL pre-training. This is because of the cloud cover present in the
Worldview 3 imagery. Although providers try to remove as many clouds as possible before
dissemination, clouds frequently occur in optical remote sensing data, and Worldview 3
is no exception. As the study shows, the vanilla Unet model fails to recognize the tree
canopy beneath the cloud and considers it bare soil. Unet+SSL can understand that it
is probably vegetation but cannot distinguish between trees and grass. Renet50AttUnet,
on the other hand, can understand the tree canopy correctly but fails in places where the
cloud casts a shadow. Finally, the Resnet50AttUnet+SSL model can delineate the trees
and the fine roads going through them. While the initial Unets struggle with grasses and
shrubs, our methodology eventually enables the model to learn to differentiate between
the two. For water classification, the model correctly identifies water pixels for the most
part, but later models are also able to get finer details, such as impervious embankments
and boat wharves. Classifying buildings in densely populated or commercial areas has
been challenging, even with high-resolution imagery. The spectral signature of buildings
varies a lot in commercial zones like downtown Toronto. The example below demon-
strates the proposed methodology’s usefulness in extracting building footprints. Unet
model considers buildings to be impervious surfaces and the shadows to be water pixels.
Tall buildings cast many shadows, and a simple encoder is not enough to represent this.
Unet+SSL improves by detecting more buildings, but it still overestimates the footprint,
and there are still some spurious water pixels instead of shadows. Resnet50AttUnet can
delineate the buildings much better, but some shadow pixels are still considered to be wa-
ter. However, the final model, Resnet50AttUnet+SSL, can finally eliminate the shadow
pixels and properly classify them as either buildings or roads.
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8 Conclusion

This study investigated the application of Barlow Twins, a self-supervised learning (SSL)
framework, to enhance high-resolution land cover classification accuracies when labeled
data is limited. By leveraging Barlow Twins’ capacity for learning meaningful feature rep-
resentations from vast amounts of unlabeled remote sensing data, we have demonstrated
significant improvements in classification performance, specifically in scenarios where la-
beled samples are scarce. Adopting this method addresses a critical challenge in land
cover classification: the costly and labor-intensive nature of acquiring labeled datasets
for remote sensing tasks. Our approach employed a three-stage training pipeline, with
deep learning pansharpening Barlow Twins pre-training on a large unlabeled dataset,
followed by fine-tuning a small subset of labeled data for supervised classification. This
pipeline allowed the model to learn useful representations of diverse land cover types
during the pre-training stage, thereby improving the effectiveness of the supervised fine-
tuning phase. Our experiments revealed that the model trained with SSL using Bar-
low Twins outperformed conventional supervised models’ overall accuracy and F1 score.
This is likely due to the design of Barlow Twins, which enforces redundancy reduction,
encouraging the model to capture complementary features without relying on specific
supervised signals. This characteristic is especially beneficial for remote sensing imagery,
where variations in seasonal, atmospheric, and lighting conditions demand robust feature
learning. In addition to improving classification performance, the Barlow Twins frame-
work is highly adaptable and computationally efficient, making it a viable approach for
land cover mapping projects where resources are constrained. Efficient usage of unlabeled
data opens the possibility of applying land cover classification to new regions and time
periods with minimal manual labeling.

In conclusion, Barlow Twins-based SSL offers a promising path forward in land cover
classification with limited labeled data. This study is a foundation for future work ex-
ploring hybrid SSL and supervised methods tailored to various remote sensing domains.
Expanding this work to include other modalities of remote sensing data, such as multi-
spectral or SAR, can further validate the scalability and versatility of SSL frameworks in
geospatial applications. The insights gained from our findings encourage continued explo-
ration into self-supervised techniques, which hold the potential to revolutionize remote
sensing analytics by overcoming the traditional reliance on large labeled datasets.

9 Repository

For more details, visit our repository at https://github.com/kaushikCanada/landcover-
ssl: GitHub Repository.

10 Output

INRS Reference Number: R2277

https://github.com/kaushikCanada/landcover-ssl


High-Resolution Urban Land Cover Mapping from Satellite Imagery Using DL

Figure 2: GTA Imagery used

Figure 3: GMA Imagery used
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Figure 4: Ground Truth used
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Figure 5: GTA Landcover obtained

Figure 6: GMA Landcover obtained
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