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RÉSUMÉ 

Cette thèse explore l’intégration de la microscopie par génération de seconde harmonique (SHG) 

avec des techniques d’apprentissage automatique pour améliorer les capacités d’imagerie et 

d’analyse, en s’attaquant aux limitations liées à la résolution, au bruit et à la vitesse d’acquisition. 

La microscopie SHG, une méthode d’imagerie non linéaire, offre des avantages uniques pour 

l’étude des structures biologiques non centrosymétriques. Les travaux présentés dans cette thèse 

élargissent les applications de la microscopie SHG dans la recherche biomédicale grâce à des 

innovations en traitement d’image, en classification et en amélioration d’image. La première partie 

de cette thèse propose une revue exhaustive du développement historique, des principes 

théoriques et des modalités avancées de la microscopie SHG. Une attention particulière est 

accordée à ses applications en imagerie neuronale et en analyse des structures biologiques, 

établissant une base solide pour les recherches expérimentales ultérieures. En s’appuyant sur 

ces connaissances, une étude des tissus glandulaires mammaires combine l’imagerie SHG et 

SHG résolue en polarisation (P-SHG) avec des réseaux neuronaux convolutifs pour automatiser 

la classification des tissus touchés par des tumeurs et étudier l’optimisation des paramètres 

d’apprentissage automatique dans le contexte de la microscopie SHG. Cette approche met en 

évidence des variations structurelles significatives dans le microenvironnement tumoral, offrant 

des perspectives sur les processus de remodelage tissulaire. Pour répondre aux défis posés par 

les faibles rapports signal/bruit en imagerie SHG, la thèse applique des modèles d’apprentissage 

profond, tels que CARE 2D et Noise2Void 2D, pour améliorer la qualité des images. Ces modèles 

réduisent efficacement le bruit tout en préservant l’intégrité structurelle, permettant ainsi une 

imagerie de haute qualité avec une puissance laser réduite et minimisant les dommages 

photoniques aux échantillons biologiques. En outre, ce travail aborde le besoin d’une imagerie 

plus rapide en utilisant des réseaux antagonistes génératifs super-résolution améliorés 

(ESRGANs). Cette approche innovante accélère l’imagerie P-SHG à l’échelle complète des 

glandes mammaires, reconstruisant des images haute résolution à partir de données basse 

résolution tout en maintenant des détails structurels essentiels. La réduction du temps d’imagerie 

améliore considérablement l’efficacité de la microscopie SHG, la rendant plus adaptée aux études 

à grande échelle ou sensibles au temps. 

Dans l’ensemble, ces travaux démontrent le potentiel transformateur de la combinaison de la 

microscopie SHG avec des techniques avancées d’apprentissage automatique. Ces innovations 

améliorent la qualité d’imagerie, réduisent le temps d’analyse et élargissent l’accessibilité de la 
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SHG pour l’étude des structures biologiques complexes. Elles ouvrent la voie à des applications 

plus larges en recherche biomédicale et en diagnostics cliniques. Les perspectives incluent le 

développement de systèmes d’imagerie multimodale, l’optimisation des modèles d’apprentissage 

profond pour des tissus diversifiés et la standardisation des techniques SHG pour une intégration 

dans les flux de travail cliniques. 

Mots-clés: Microscopie SHG, imagerie résolue en polarisation, apprentissage automatique, 

modèles d’apprentissage profond, imagerie biomédicale, réduction du bruit, amélioration d’image, 

microenvironnement tumoral, réseaux antagonistes génératifs (GAN), diagnostics cliniques.
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ABSTRACT 

This thesis explores the integration of second harmonic generation (SHG) microscopy with 

machine learning techniques to enhance imaging and analysis capabilities, addressing limitations 

in resolution, noise, and imaging speed. SHG microscopy, a nonlinear imaging method, provides 

unique advantages for studying non-centrosymmetric biological structures. The work presented 

advances SHG microscopy’s applications in biomedical research through innovations in image 

processing, classification, and enhancement. The first part of this thesis provides a 

comprehensive review of the historical development, theoretical principles, and advanced 

modalities of SHG microscopy. Emphasis is placed on its applications in neuronal imaging and 

biological structure analysis, establishing a strong foundation for subsequent experimental 

research. Building on this knowledge, a study of mammary gland tissues combines SHG and 

polarization-resolved SHG (P-SHG) imaging with convolutional neural networks to automate the 

classification of tumor-affected tissues and study machine learning parameter tuning in the 

context of SHG microscopy. This approach reveals significant structural variations within the 

tumor microenvironment, offering insights into tissue remodeling processes. To address 

challenges posed by low signal-to-noise ratios in SHG imaging, the thesis applies deep learning 

models, including CARE 2D and Noise2Void 2D, to improve image quality. These models 

effectively reduce noise while preserving structural integrity, allowing for high-quality imaging at 

reduced laser power and minimizing photodamage to biological samples. Additionally, this work 

addresses the need for faster imaging by employing enhanced super-resolution generative 

adversarial networks (ESRGANs). This innovative approach accelerates whole-sample P-SHG 

imaging of mammary gland tissues, reconstructing high-resolution images from low-resolution 

data and maintaining critical structural details. The reduction in imaging time significantly 

improves the efficiency of SHG imaging, making it more suitable for time-sensitive or large-scale 

studies. Collectively, the findings demonstrate the transformative potential of combining SHG 

microscopy with advanced machine learning techniques. These innovations enhance imaging 

quality, reduce analysis time, and expand the accessibility of SHG for studying complex biological 

structures.  

This work paves the way for broader applications of SHG microscopy in biomedical research and 

clinical diagnostics. Future directions include the development of multimodal imaging systems, 

refinement of deep learning models for diverse tissues, and standardization of SHG techniques 

for integration into clinical workflows. 
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SOMMAIRE RÉCAPITULATIF 

Un aperçu de la microscopie SHG 

Au cours des deux dernières décennies, la microscopie par génération de seconde harmonique 

(SHG) est devenue une méthode clé pour l'imagerie optique, avec de nombreuses applications 

dans les sciences des matériaux et biomédicales. Les avancées dans le développement de 

technologies laser ultra-rapides fiables et robustes ont été essentielles pour améliorer les 

techniques de microscopie optique non linéaire [48], en particulier dans l'imagerie biomédicale. 

Des microscopes clés en main ont été développés en utilisant ces sources laser et sont 

maintenant largement utilisés dans les laboratoires de recherche. La microscopie SHG impose 

que la structure d'intérêt soit non-centrosymétrique [19], ce qui la rend très sensible aux protéines 

filamenteuses dans les échantillons biologiques [48,87]. Bien que cette exigence limite 

l'application du SHG à quelques structures seulement, c'est aussi une force clé car les signaux 

sont très spécifiques et offrent des images à contraste élevé. La microscopie SHG présente 

plusieurs avantages par rapport à l'imagerie par fluorescence : elle est basée sur un contraste 

endogène (c'est-à-dire que le contraste provient de l'échantillon lui-même et non d'un colorant ou 

d'un fluorophore). Enfin, contrairement à la fluorescence, le SHG est exempt de 

photoblanchiment (le signal généré n'est pas limité dans le temps) et se produit instantanément 

(pas de limitation sur le taux de répétition du laser) [14]. 

Cette thèse vise à relever un défi crucial dans le domaine de l'imagerie biomédicale : surmonter 

les limitations actuelles de la microscopie SHG grâce à l'intégration de techniques d'intelligence 

artificielle (IA). Les objectifs spécifiques de cette recherche sont d'améliorer la qualité des images, 

de permettre une analyse automatisée et d'élargir les applications cliniques de la microscopie 

SHG. En explorant de nouvelles approches basées sur l'IA pour le traitement d'images, la 

classification et l'acquisition, ce travail cherche à repousser les limites du possible avec la 

microscopie SHG et à ouvrir la voie à son adoption plus large dans la recherche et les contextes 

cliniques. 

Un aperçu historique exhaustif du SHG a été donné dans le premier article de cette thèse ; nous 

nous concentrerons donc uniquement sur les étapes clés au fil des ans : l'observation du SHG 

pour la première fois en 1961 [23], la combinaison du SHG avec la microscopie optique en 1974 

[25], la première microscopie biologique SHG en 1986, et la découverte des capacités d'imagerie 

biomédicale de la microscopie SHG [31]. En 1990, Denk et al. ont introduit la microscopie par 
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balayage laser à fluorescence par excitation à deux photons (TPEF) en utilisant des lasers pulsés 

et un microscope confocal modifié [32]. À la suite du succès de la TPEF en 1996, la microscopie 

par excitation à trois photons a été démontrée [33]. La modalité SHG a été combinée avec la 

TPEF au début des années 2000 dans de nombreuses études [36-38]. Depuis lors, par suite des 

progrès des lasers à mode bloqué commercialement disponibles et des microscopes 

multiphotoniques conviviaux [39], le SHG est devenu une méthode puissante pour l'imagerie 

optique et biomédicale à haute résolution spatiale multimodale. 

La région 700–1000 nm est utilisée par le SHG pour minimiser l'absorption des biomatériaux (eau 

et hémoglobine) [37]. Il est important de noter que d'autres "fenêtres" optiques répondant à ce 

critère sont disponibles (se référer à la Figure 2 de l'article 1). En utilisant des longueurs d'onde 

plus longues, telles que 1000–1300 nm, la diffusion peut être limitée, conduisant à une 

augmentation de la profondeur de pénétration dans les tissus [14], bien que cela se fasse au 

détriment d'une résolution spatiale réduite. Malgré les similitudes, les techniques SHG et TPEF 

sont fondamentalement basées sur des processus différents. Dans le SHG, la conversion de 

fréquence est réalisée par des états virtuels sans transfert net d'énergie au système. Cela 

contraste avec la TPEF, qui implique un transfert de population de l'état électronique fondamental 

vers des états électroniques excités (se référer à la Figure 2 de l'article 1). Ces origines différentes 

conduisent à des propriétés radicalement différentes et souvent complémentaires, ce qui explique 

la popularité croissante de la microscopie SHG. 

Propriétés du signal SHG et microscopie SHG dans les échantillons biologiques 

Le signal SHG est caractérisé par l'hyperpolarisabilité et la susceptibilité non linéaire du second 

ordre. La condition de symétrie de Kleinman simplifie notre compréhension de ces propriétés [19]. 

Ainsi, la microscopie SHG peut fournir des aperçus sur les structures moléculaires et 

macromoléculaires des tissus. 

La microscopie SHG est particulièrement efficace pour l'imagerie du collagène, une protéine 

majeure dans le tissu conjonctif. Elle a été appliquée avec succès à l'imagerie de divers tissus, y 

compris les tendons [31] et le cartilage [72] (voir Figure 5 de l'article 1). De plus, elle peut 

visualiser d'autres protéines, comme la myosine [48], offrant des aperçus sur les mécanismes 

cellulaires et la structure des microtubules [122]. 

La microscopie SHG est essentielle dans les études neuroscientifiques, en particulier l'imagerie 

des microtubules. Les microtubules (MTs) sont des composants cellulaires vitaux, et la 

microscopie SHG a été utilisée pour étudier leur polarité et structure pendant les différentes 
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phases de la division cellulaire [125] (voir Figure 21 de l'article 1). Cette technique a montré un 

grand potentiel pour explorer divers aspects et mécanismes des MTs et des maladies associées. 

Techniques avancées de microscopie SHG 

Il existe une multitude de méthodes de microscopie SHG avancées, et nous allons brièvement 

introduire chaque modalité dans cette section. Pour plus d'informations, veuillez-vous référer à 

l'article 1. 

La SHG résolue en polarisation (P-SHG) combine la microscopie SHG avec la polarimétrie 

pour améliorer la visualisation des structures complexes, comme les fibrilles de collagène. Cette 

technique mesure divers paramètres, y compris l'orientation et l'anisotropie des fibrilles, et a été 

appliquée dans diverses études biomédicales [52]. (Voir Figures 8 et 9 de l'article 1). 

La microscopie SHG en champ large illumine toute la zone d'intérêt simultanément et améliore 

considérablement le débit d'imagerie. Cette méthode utilise traditionnellement des impulsions à 

haute énergie, mais prend également en compte les dommages photo-induits sur les cellules 

vivantes, conduisant à des adaptations telles que des impulsions de faible énergie pour l'imagerie 

en direct (voir Figures 17 et 18 de l'article 1) [83]. 

La SHG Interférométrique (I-SHG) et la I-SHG Rapide sont des techniques avancées dans le 

domaine de la microscopie SHG, une technique d'imagerie optique non linéaire. L'I-SHG améliore 

les capacités de la microscopie SHG traditionnelle en incorporant des méthodes 

interférométriques, qui fournissent des informations structurelles et d'orientation supplémentaires 

concernant les échantillons biologiques, en particulier au niveau moléculaire [71]. Cette méthode 

est particulièrement utile pour étudier des structures, comme le collagène, dans les tissus (voir 

Figures 13 et 14 de l'article 1) [71]. 

La I-SHG Rapide ou I-SHG en un seul balayage est une évolution de l'I-SHG visant à augmenter 

considérablement la vitesse d'imagerie. Ceci est crucial pour les applications nécessitant des 

observations en temps réel ou quasi réel, comme les processus biologiques dynamiques. Tout 

en maintenant les avantages de l'I-SHG, la I-SHG Rapide optimise le processus d'imagerie pour 

une acquisition de données plus rapide, la rendant plus adaptée aux scénarios d'imagerie en 

temps réel et en direct [75]. Ces deux techniques représentent des avancées significatives en 

microscopie SHG, élargissant leurs applications en recherche biomédicale en fournissant des 

capacités d'imagerie plus détaillées et rapides (Voir Figure 1-8 de la thèse) [75]. 
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Perspectives de la microscopie SHG 

Au cours des deux dernières décennies, la microscopie SHG est apparue comme un outil 

inestimable en bioimagerie et neuroimagerie. Elle a été largement utilisée pour étudier des 

structures biologiques non centrosymétriques. Malgré ces avancées, des défis demeurent dans 

l'interprétation pleinement quantitative des images SHG en raison de la nature cohérente du 

processus impliqué. Les avancées futures en microscopie SHG visent à améliorer la résolution 

spatiale, la profondeur d'imagerie et à s'aventurer dans le domaine spectroscopique. Cependant, 

le coût élevé et la complexité de l'équipement, ainsi que le besoin de formation spécialisée, 

limitent son utilisation généralisée dans la pratique biomédicale courante [2]. Les avancées 

récentes dans la technologie laser, y compris le passage vers des lasers à fibres et à semi-

conducteurs plus robustes et efficaces, devraient simplifier et réduire le coût des microscopes 

SHG, élargissant potentiellement leurs applications biomédicales. Les avancées logicielles et 

informatiques en microscopie, y compris le traitement rapide des images et les applications 

d'apprentissage automatique, ont amélioré les capacités d'imagerie [131]. Cependant, il est 

nécessaire de standardiser et d'unifier les processus d'imagerie à travers les laboratoires pour 

assurer la reproductibilité et la portabilité. Malgré ces défis, la SHG et autres modalités de 

microscopie optique non linéaire continuent d'offrir des aperçus précieux qui ne sont pas 

facilement disponibles avec les techniques d'imagerie optique traditionnelles linéaires ou 

incohérentes. Les avancées technologiques en cours, telles que l'apprentissage profond, 

devraient encore améliorer ces modalités, les rendant plus simples et plus accessibles pour un 

large éventail d'applications scientifiques et médicales. Il est donc nécessaire d'explorer les 

concepts de l'apprentissage profond et leur chevauchement avec la microscopie SHG [2]. 

Cette thèse est structurée autour de quatre articles interdépendants, chacun abordant des 

aspects spécifiques de ces objectifs : 

1. Le premier article fournit une revue complète de la microscopie SHG, établissant une base 

solide pour les recherches ultérieures. 

2. Le deuxième article se concentre sur l'application de techniques d'apprentissage profond 

pour la classification des images SHG des tissus des glandes mammaires, démontrant le 

potentiel de l'IA dans l'analyse automatisée des images. 

3. Le troisième article évalue la performance de deux techniques de débruitage basées sur 

l'IA, CARE 2D et N2V 2D, pour améliorer la qualité des images SHG de différents tissus. 
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4. Le quatrième article introduit une nouvelle approche pour l'imagerie P-SHG de l'ensemble 

de l'échantillon, utilisant des réseaux antagonistes génératifs pour améliorer la résolution 

des images tout en réduisant considérablement le temps d'imagerie. 

Ces articles collectivement démontrent comment l'intégration de l'IA peut surmonter les limitations 

actuelles de la microscopie SHG et étendre ses applications dans la recherche biomédicale et la 

pratique clinique. 

Aperçu de l'apprentissage profond et de son impact sur la microscopie SHG 

L'apprentissage profond (Deep Learning, DL) s'inspire des mécanismes complexes de traitement 

des données observés dans le cerveau humain, en particulier de sa capacité à apprendre sans 

règles prédéfinies, en se basant plutôt sur d'importants ensembles de données pour établir des 

liens entre les données d'entrée et des étiquettes spécifiques. La clé dans ce domaine est 

l'utilisation de réseaux neuronaux artificiels (ANNs), où chaque couche offre des interprétations 

uniques des données [133-135]. Le DL a révolutionné la microscopie et l'analyse d'image, 

améliorant la précision et l'analyse rapide d'images complexes, et offrant des perspectives 

auparavant difficiles à atteindre. Son adaptabilité et sa capacité à découvrir des modèles subtils 

dans les données en font une force transformatrice en microscopie, avec le potentiel de redéfinir 

notre compréhension du monde microscopique [133–136]. Les architectures d'apprentissage 

profond pour l'analyse d'image impliquent divers algorithmes sophistiqués. Les réseaux 

neuronaux feed-forward ou perceptrons multicouches (MLPs) sont fondamentaux pour de 

nombreux modèles modernes de DL. Ces réseaux, inspirés des systèmes neuronaux humains, 

impliquent un flux de données unidirectionnel de l'entrée vers la sortie sans boucles de rétroaction 

(voir Figure 1-13 de la thèse) [137–140]. Les réseaux neuronaux convolutifs (CNNs) (voir Figure 

1-14 de la thèse) et les réseaux neuronaux récurrents (RNNs) sont des architectures essentielles. 

Les CNNs sont spécialisés pour les données en grille comme les images, tandis que les RNNs 

gèrent les données séquentielles en capturant les dépendances temporelles [141–145]. 

Les réseaux antagonistes génératifs (GANs) représentent une variante unique des ANNs 

comprenant un générateur et un discriminateur, tous deux formés simultanément. Ces réseaux 

sont largement utilisés dans l'adaptation de domaine et la génération d'image, en particulier dans 

l'analyse d'image médicale [147–149]. 

Analyse d'images médicales utilisant l'apprentissage automatique : Le DL joue un rôle crucial 

dans l'analyse d'images médicales. La classification d'image, la réduction du bruit et l'amélioration 

de la résolution sont des domaines critiques où le DL contribue de manière significative. Diverses 
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architectures, telles que les CNNs et les GANs, ont été efficacement appliquées dans ces 

domaines [150–165]. L'apprentissage par transfert dans l'analyse d'image est essentiel pour 

l'imagerie médicale, abordant les problèmes de pénurie de données et réduisant les besoins en 

ressources. L'apprentissage par transfert avec les CNNs implique de transférer les 

connaissances de tâches précédemment acquises à de nouvelles, particulièrement pour la 

classification d'image médicale [166, 167]. 

Les métriques de qualité d'image sont vitales pour évaluer l'efficacité du DL dans les analyses 

d'images. Des techniques telles que l'indice de similarité structurelle (SSIM) (voir Figure 1-16 de 

la thèse) et ses variantes, l'erreur quadratique moyenne (MSE) et le rapport signal sur bruit de 

crête (PSNR) sont des métriques couramment utilisées. Ces métriques fournissent une mesure 

quantitative de la qualité de l'image, qui est cruciale pour le succès des techniques d'analyse 

d'image [168–181]. 

Applications du DL en imagerie biomédicale 

Le DL a considérablement enrichi l'imagerie biomédicale. Des études sur l'imagerie biomédicale 

SHG, la réduction du bruit en tomographie par cohérence optique (OCT) et les méthodes de 

classification dans le diagnostic du cancer du sein ont montré l'impact du DL dans ce domaine 

(Voir Figure 1-17 de la thèse) [182–186]. Malgré ses avancées, le DL en microscopie fait face à 

des défis tels que la rareté des données, l'interprétabilité des décisions des modèles et les 

barrières d'accessibilité. Aborder ces limitations est crucial pour de nouvelles avancées dans ce 

domaine [187, 188]. 

Énoncé du problème général de la thèse 

La microscopie SHG est un outil puissant en imagerie biomédicale, permettant l'observation 

détaillée de structures non centrosymétriques telles que le collagène et de nombreux autres 

échantillons biologiques. Malgré ses capacités, la microscopie SHG sous-utilise les avancées en 

intelligence artificielle (IA) et en apprentissage automatique, qui pourraient révolutionner ses 

applications. Cette thèse vise à combler cette lacune en introduisant l'IA dans divers aspects de 

la microscopie SHG pour surmonter les limitations actuelles. L'IA et l'apprentissage automatique 

ont transformé de nombreux domaines, des véhicules autonomes à la médecine personnalisée. 

Ces technologies ont le potentiel d'automatiser des tâches complexes, d'améliorer le traitement 

des données, de fournir des aperçus plus profonds et d'améliorer les analyses d'images. 

Cependant, leur application en microscopie SHG reste minimale, représentant une opportunité 

significativement manquée pour les avancées en imagerie biomédicale. 
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Article 1 : La microscopie de génération de seconde harmonique : un outil puissant 
pour l'imagerie biologique 

Énoncé du problème de l’article 1 

Le domaine de la microscopie SHG a considérablement évolué au fil des ans, offrant des aperçus 

sans précédent dans divers domaines scientifiques, en particulier dans l'étude des structures et 

fonctions neuronales. Cet article de revue est principalement motivé par le besoin de consolider 

l'important éventail de publications de recherche de notre laboratoire, qui contribue collectivement 

à la compréhension de la microscopie SHG et de ses modalités avancées. Cet article fournit un 

aperçu complet du développement historique et des fondements théoriques de la microscopie 

SHG, offrant ainsi une base solide pour les nouveaux chercheurs et les experts dans le domaine. 

L'un des objectifs clés de cette revue était de servir de point de départ solide pour les futurs 

étudiants et chercheurs qui entament leur revue de littérature dans ce domaine. En résumant et 

en synthétisant la littérature existante, cet article vise à faciliter une entrée plus aisée dans le 

domaine, permettant aux chercheurs de saisir rapidement les concepts fondamentaux et la 

progression historique de la microscopie SHG. Cette compréhension fondamentale est cruciale 

pour permettre aux chercheurs de se plonger plus facilement et avec plus de contexte dans des 

études et des domaines d'intérêt spécifiques. En outre, cet article se concentre de manière 

significative sur l'application de la microscopie SHG dans les études neuronales. De nombreuses 

études ont utilisé la microscopie SHG pour démêler les complexités des structures et fonctions 

neuronales, contribuant immensément à notre compréhension du système nerveux. Cependant, 

ces études ont été dispersées dans diverses publications, rendant difficile pour les chercheurs 

d'accéder à un corpus de connaissances consolidé. Cet article de revue aborde cette lacune en 

compilant et en passant en revue toutes les études significatives de microscopie SHG dans la 

recherche neuronale menées au fil des ans. En fin de compte, cette revue récapitule non 

seulement les contributions pivotales de notre laboratoire et d'autres dans le domaine, mais ouvre 

également la voie à de futures explorations et découvertes en microscopie SHG et études 

neuronales. 

Sommaire de l’article 1 

Dans le discours précédent, nous avons examiné en profondeur la microscopie SHG et ses 

variantes avancées, comprenant une analyse complète des fondements techniques et des 

applications dans divers domaines scientifiques. Étant donné la couverture étendue de ces 

aspects, il n'est ni nécessaire ni bénéfique de réitérer ces détails dans le manuscrit actuel. Au 

contraire, notre focus se tournera exclusivement vers l'application de la microscopie SHG dans 
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les études neuronales, un domaine bourgeonnant de potentiel et d'innovation. De plus, nous 

explorerons également l'avenir de la microscopie SHG tel qu'énoncé dans cet article. 

La microscopie SHG a considérablement avancé notre compréhension du système nerveux, en 

particulier dans l'étude détaillée des neurones et des microtubules. Dans le monde complexe des 

neurosciences, les neurones, avec leur structure complexe comprenant le soma, les dendrites et 

les axones, jouent un rôle pivot dans le traitement et la transmission de l'information (voir Figure 

19 de l'article 1). Bien que les méthodes traditionnelles telles que l'électrophysiologie aient été 

essentielles pour étudier l'activité neuronale, elles sont limitées par leur nature invasive et la 

portée étroite des réseaux de neurones qu'elles peuvent étudier. 

La microscopie SHG émerge comme une alternative puissante et non invasive, permettant une 

observation plus complète des réseaux neuronaux. Cette technique contourne les limitations des 

méthodes traditionnelles, permettant un examen plus large et moins intrusif des fonctions 

neuronales. Une avancée notable dans la microscopie SHG est l'utilisation de colorants SHG, 

tels que FM 4–64. Ces colorants ont considérablement amélioré le rapport signal sur bruit en 

imagerie, facilitant une visualisation plus claire des activités neuronales, y compris l'observation 

des potentiels d'action et leur propagation à travers les structures neuronales (voir Figure 20 de 

l'article 1). 

L'application de la microscopie SHG va au-delà des neurones pour étudier les microtubules, des 

composants cruciaux dans le maintien de l'intégrité cellulaire et la régulation du trafic 

intracellulaire. Composés de dimères d'α- et β-tubuline, les microtubules possèdent une polarité 

distincte essentielle à leur fonction. La microscopie SHG a été particulièrement efficace pour 

explorer la structure et la fonction de ces microtubules. Elle a éclairé leur nombre, leur 

organisation et leur polarisation au sein des neurones, contribuant grandement à notre 

compréhension de leur rôle dans les activités neuronales (voir Figure 1-11 de la thèse). La 

technique a fourni de nouveaux aperçus sur la polarité des microtubules, révélant une polarité 

uniforme dans les axones, en contraste avec la polarité plus complexe et moins définie observée 

dans les dendrites. 

Les avancées technologiques et méthodologiques en microscopie SHG ont été substantielles. 

Les progrès récents incluent des améliorations dans la technologie laser et l'incorporation de 

méthodes computationnelles telles que l'apprentissage automatique, qui ont amélioré les 

capacités et l'efficacité de l'imagerie SHG. Cependant, la technique fait encore face à des défis, 

en particulier le besoin d'équipements coûteux et d'une formation spécialisée. Malgré ces 
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obstacles, les innovations en cours devraient rendre la microscopie SHG plus accessible et 

polyvalente pour les applications biomédicales. 

Le domaine évolue vers la standardisation des processus d'imagerie pour garantir la 

reproductibilité et la portabilité dans différents environnements de recherche. Alors que la 

microscopie SHG devient plus accessible et rentable, elle est prête à devenir une partie plus 

intégrante de la recherche biomédicale de routine et du diagnostic clinique. 

Cette revue complète établit une base solide pour les études ultérieures, identifiant les domaines 

clés où l'intégration de l'IA pourrait considérablement améliorer les capacités de la microscopie 

SHG. 

Article 2 : Microscopie non linéaire et classification par apprentissage profond pour les 
études de l'environnement microscopique des glandes mammaires 

Énoncé du problème de l’article 2 

Le problème principal abordé par cette étude était le défi d'imager et d'analyser avec précision et 

efficacité les changements structurels dans les glandes mammaires murines, en particulier dans 

le contexte du développement tumoral. Les techniques d'imagerie traditionnelles, bien 

qu'efficaces dans une certaine mesure, ne parviennent souvent pas à capturer les changements 

complexes dans la composition et la structure des tissus, tels que les agrégations de collagène 

et les modifications des orientations fibrillaires autour des sites tumoraux. Cette limitation entrave 

une compréhension complète du microenvironnement tumoral et de son impact sur les tissus 

environnants. Pour surmonter ces défis, cette étude a introduit une approche intégrée utilisant la 

microscopie SHG et P-SHG automatisée. Ces techniques d'imagerie avancées sont censées 

fournir des aperçus plus détaillés et précis sur les changements structurels au sein des glandes 

mammaires influencés par la croissance tumorale. Cependant, l'efficacité de ces techniques pour 

distinguer entre les glandes naïves et celles portant des tumeurs, en particulier en ce qui concerne 

les fibres de collagène plus fines, reste à évaluer et à optimiser systématiquement. Bien que des 

méthodes existantes, telles que CurveAlign, offrent des aperçus précieux, elles nécessitent une 

inspection manuelle et peuvent manquer des détails plus fins. 

De plus, cette étude a cherché à combler le fossé dans l'analyse d'image automatisée pour ces 

types d'images de microscopie. Cette étude propose l'utilisation d'un programme personnalisé 

pour l'analyse d'image P-SHG et d'un modèle d'apprentissage profond supervisé pour les images 

SHG afin d'améliorer la détection et la classification des changements structurels. Les méthodes 

utilisées ont été comparées aux modèles et méthodes établis. 
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Sommaire de l’article 2 

Au cours de la dernière décennie, des avancées significatives ont été réalisées dans la 

compréhension de l'environnement tumoral, en se concentrant particulièrement sur les 

interactions entre les cellules tumorales, les cellules immunitaires, les cellules stromales et la 

matrice extracellulaire (ECM), avec un accent sur le rôle du collagène dans la progression du 

cancer du sein. L'arrangement du collagène, en particulier à la frontière entre la tumeur et le 

stroma, est lié à la progression, à l'invasion et à la métastase du cancer du sein. Les Signatures 

Collagènes Associées aux Tumeurs (TACS) sont classifiées en trois types en fonction de leur 

arrangement, fournissant des aperçus sur le potentiel métastatique des tumeurs. 

La coloration histologique et la microscopie polarisante à cristaux liquides sont courantes mais 

ont une résolution et une analyse quantitative limitées. La microscopie SHG s'est imposée comme 

une méthode de premier plan pour l'imagerie du collagène, offrant une meilleure résolution, une 

phototoxicité réduite et une facilité de préparation des échantillons. La SHG est essentielle pour 

étudier la restructuration du collagène dans divers cancers, y compris le cancer du sein, des 

ovaires, de la prostate et du poumon. 

La P-SHG surmonte les limitations de la SHG traditionnelle et fournit des informations structurales 

détaillées sur les fibres de collagène. L'imagerie et l'analyse d'images P-SHG avancées ont 

amélioré notre compréhension de la distribution et de l'asymétrie des fibrilles. Ces avancées en 

microscopie SHG et P-SHG ont considérablement amélioré notre compréhension des 

composants structurels de l'environnement tumoral, en particulier en relation avec le collagène, 

offrant de nouveaux aperçus sur la progression du cancer et des cibles thérapeutiques 

potentielles. 

L'analyse d'image utilisant la microscopie SHG et P-SHG a évolué pour identifier des 

caractéristiques détaillées du collagène. L'intégration de l'apprentissage profond automatise 

l'analyse d'image, bien que des défis subsistent dans le traitement de petits ensembles de 

données. 

Des souris femelles BALB/c, conformes aux directives du Conseil canadien de soins aux animaux 

et approuvées par l'Université McGill, ont été utilisées pour la préparation des tissus. L'étude a 

impliqué à la fois des glandes mammaires naïves et porteuses de tumeurs. Les échantillons ont 

subi un processus de préparation détaillé, incluant l'encapsulation dans la paraffine, la coupe, la 

déparaffinisation, la réhydratation et une préparation finale pour la microscopie. L'installation 

d'imagerie SHG a utilisé un microscope inversé personnalisé avec balayage laser, employant un 
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laser Ti: Sa mode verrouillé pour l'éclairage. Le système comprend un tube photomultiplicateur 

pour la détection de l'émission SHG et des filtres spécifiques pour l'isolation du signal. Un plateau 

de balayage motorisé à grande vitesse a facilité l'imagerie de grandes zones d'échantillons. 

Pour la microscopie P-SHG, des étapes supplémentaires ont été prises pour ajuster la 

polarisation linéaire du faisceau laser et capturer des images dans différents états de polarisation. 

Ce processus a été contrôlé par un programme Python personnalisé, tandis que le script MATLAB 

a traité les images P-SHG (voir Figures 1 et 2 de l'article 2). 

La classification d'image dans cette étude a été exécutée en utilisant des architectures 

séquentielles personnalisées et MobileNetV2. Un ensemble de données relativement petit 

d'images de glandes mammaires, incluant des échantillons naïfs et porteurs de tumeurs, a été 

amélioré à l'aide de techniques d'augmentation de données, telles que le retournement, la rotation 

et le zoom. Le processus de classification a impliqué l'entraînement de l'ensemble de données 

sur vingt-cinq époques, et la performance du modèle a été évaluée en enregistrant la précision 

et la perte sur différents ensembles de données d'entraînement et de test. Cette méthodologie 

complète vise à tirer parti des techniques d'imagerie avancées et de l'apprentissage profond pour 

l'analyse détaillée et la classification des échantillons de glandes mammaires dans les études sur 

les tumeurs (voir Figures 5 et 6 de l'article 2). 

Dans la phase d'imagerie SHG, des zones significatives des glandes mammaires à la fois naïves 

et porteuses de tumeurs ont été méticuleusement imagées. Ce processus a révélé des 

différences structurelles distinctes ; les glandes naïves présentaient des structures ductales bien 

définies, tandis que les glandes porteuses de tumeurs montraient des signaux SHG diminués, 

indiquant la présence de tumeurs. Particulièrement aux bords de la tumeur, le collagène agrégé 

formait une barrière, une constatation cohérente avec des recherches précédentes suggérant le 

rôle du collagène dans l'entrave à la propagation des tumeurs (voir Figure 3 de l'article 2). 

Pour une analyse plus détaillée, les méthodes P-SHG et CurveAlign ont été employées. La 

technique P-SHG, à travers un processus long impliquant l'imagerie de zones plus petites avec 

des pas de balayage plus fin, fournit des détails complexes sur l'orientation des fibres de 

collagène à la frontière entre la tumeur et le stroma, ce qui est crucial pour comprendre les risques 

d'invasion locale et de métastase. L'étude a constaté que la P-SHG offrait des aperçus plus 

détaillés sur les fibres de collagène plus fines que CurveAlign, qui manquait parfois ou surestimait 

les orientations des fibres dans les régions de signal dimère (voir Figure 4 de l'article 2). 
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Dans le domaine de la classification d'image pour la microscopie SHG, cette recherche s'est 

aventurée dans l'apprentissage profond et les techniques d'apprentissage par transfert en 

utilisant un modèle séquentiel personnalisé et le modèle MobileNetV2. Le prétraitement des 

images SHG a été suivi par un entraînement sur ces modèles. L'étude a abordé les défis de 

travailler avec un petit ensemble de données en employant des stratégies d'augmentation de 

données et en ajustant les paramètres du modèle pour atténuer le surapprentissage. Malgré ces 

efforts, la taille limitée de l'ensemble de données a conduit à des degrés variables de performance 

du modèle, comme en témoignent les précisions et les courbes de perte d'entraînement et de 

test. L'analyse a conclu que, bien que les modèles personnalisés adaptés à des ensembles de 

données spécifiques puissent être efficaces, ils sont limités par les données disponibles. 

En revanche, l'apprentissage par transfert avec des architectures plus complexes telles que 

MobileNetV2 offre des avantages potentiels mais risque également le surapprentissage en raison 

de la profondeur et de la complexité de ces réseaux, en particulier lorsqu'on travaille avec de 

petits ensembles de données. Cette analyse complète souligne les compromis entre le temps 

d'imagerie, la précision et les défis inhérents à l'application de techniques computationnelles 

avancées à des ensembles de données d'imagerie biologique. 

Après l'analyse de la variation des paramètres, le modèle optimal pour l'ensemble de données 

de l'étude s'est avéré être un partage de données à 30% avec un dropout de 0,2 et trois couches 

d'augmentation de données, atteignant une précision de test de 73%. Une limitation notable est 

la vitesse d'imagerie, indiquant la nécessité de nouvelles avancées technologiques (voir tableaux 

1-4 de l'article 2). 

Cette étude a également mis en évidence le potentiel de combiner l'analyse P-SHG avec la 

classification d'images et l'imagerie en champ large dans la recherche sur le cancer. Cette 

approche fournit des aperçus précieux sur la formation et le remodelage du collagène dans la 

matrice extracellulaire (ECM), ce qui est crucial pour comprendre la progression du cancer. 

Cette étude démontre le potentiel de l'apprentissage profond pour améliorer l'analyse des images 

SHG, ouvrant la voie à des applications cliniques plus larges et à une détection plus précise des 

tumeurs. 
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Article 3 : Apprentissage profond pour la restauration d'image en microscopie de 
génération de seconde harmonique – une approche pour réduire la puissance laser et les 
dommages sur l'échantillon. 

Énoncé du problème de l’article 3 

Le principal défi abordé dans cette étude est l'état relativement naissant des applications de 

l'apprentissage profond en microscopie, en particulier dans le contexte de la restauration d'image 

pour les images SHG à faible rapport signal sur bruit (SNR). Actuellement, il existe un écart 

significatif dans l'application des techniques d'apprentissage profond avancées pour améliorer et 

restaurer les images SHG souffrant d'un faible SNR. Cet écart limite l'utilité de la microscopie 

SHG pour fournir des aperçus clairs et détaillés sur les structures et processus biologiques, en 

particulier dans les cas où il est difficile d'obtenir des images de haute qualité en raison de 

contraintes techniques telles que la puissance du laser ou la qualité de la préparation des 

échantillons. Cette étude vise à être pionnière dans l'application de deux techniques de 

restauration d'image basées sur l'apprentissage profond, CARE 2D et Noise2Void (N2V) 2D, sur 

les images SHG à faible SNR. Ces techniques ont montré des promesses dans d'autres contextes 

d'imagerie mais n'ont pas encore été systématiquement appliquées et évaluées dans le domaine 

de la microscopie SHG. En mettant en œuvre ces techniques, cette étude a cherché à améliorer 

la qualité des images SHG dans deux cas exemplaires, démontrant ainsi leur utilité potentielle 

dans une variété de scénarios d'imagerie biologique. 

Le premier cas impliquait l'investigation de l'effet de la concentration en glycérol sur les images 

SHG lors de la fixation de poissons zèbres. Ce cas donne des aperçus sur la façon dont la qualité 

de l'image peut être compromise pendant la préparation des échantillons et comment 

l'apprentissage profond peut atténuer ces effets. Le second cas se concentre sur l'imagerie des 

images à faible puissance laser des tissus musculaires de deux souches de poissons zèbres, 

dont une souche qui modélise l'amyotrophie spinale et la barrière de la matrice extracellulaire 

autour d'une glande mammaire de souris porteuse de tumeur. Ces cas sont particulièrement 

difficiles en raison de problèmes inhérents de faible SNR et sont donc idéaux pour évaluer 

l'efficacité de CARE 2D et N2V 2D dans l'amélioration de la qualité de l'image. Pour évaluer 

quantitativement le succès de ces techniques de restauration d'image, cette étude a utilisé la 

moyenne SSIM et le PSNR comme métriques de contrôle de la qualité. Ces métriques comparent 

les images restaurées (prédites) aux images de vérité terrain (GT) à haut SNR, fournissant une 

mesure claire de l'amélioration et de la fidélité. En essence, cet énoncé de problème souligne le 

besoin de techniques de restauration d'image avancées dans le domaine de la microscopie SHG 
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pour surmonter les limitations posées par un faible SNR, permettant une visualisation plus claire 

et plus détaillée des échantillons biologiques. 

 

 

Sommaire de l’article 3 

La microscopie SHG, un outil significatif tant en imagerie médicale que non médicale, dépend 

fortement du rapport signal sur bruit (SNR) pour la qualité d'image. Le SNR est affecté par des 

facteurs tels que la puissance du laser, le temps d'exposition et les propriétés de l'échantillon. 

Ajuster la puissance du laser est un acte d'équilibre ; une puissance plus élevée améliore le signal 

SHG mais risque d'endommager l'échantillon. Différents échantillons présentent des forces de 

signal SHG variables ; par exemple, les tissus riches en collagène montrent des signaux forts, 

tandis que d'autres, comme les microtubules, ont des signaux intrinsèquement faibles, conduisant 

à un faible SNR et à une obscurité potentielle de la structure de l'échantillon sous le bruit. 

Les avancées en apprentissage profond ont introduit de nouvelles techniques de restauration 

d'image en microscopie pour améliorer la qualité d'image en réduisant le bruit et les distorsions. 

Ces techniques incluent Noise to Ground Truth (N2GT), Noise to Noise (N2N) et Noise to Void 

(N2V). N2GT utilise une image de référence sans bruit pour la comparaison, N2N emploie une 

autre image bruyante au lieu d'une image de référence, et N2V repose sur les propriétés 

statistiques du bruit dans une seule image. La qualité des images débruitées est couramment 

évaluée à l'aide de métriques telles que le SSIM et le PSNR, qui mesurent la similarité et la qualité 

des images traitées par rapport aux images originales. Malgré ces développements, l'application 

de l'apprentissage profond pour la restauration d'image en microscopie SHG à faible SNR est 

encore un domaine émergent, offrant un potentiel pour des recherches futures et l'amélioration 

des techniques de microscopie SHG. 

La méthodologie de l'étude a impliqué la préparation d'échantillons de tissus à la fois de poissons 

zèbres et de souris, suivie d'une imagerie avancée en microscopie SHG et d'une restauration 

d'image utilisant des techniques d'apprentissage profond. 

Pour la préparation des tissus, des poissons zèbres adultes de type sauvage et hétérozygotes 

smn+/− ont été maintenus dans des conditions contrôlées, et des embryons ont été collectés et 

stadiés. Un génotypage a été réalisé pour différencier entre les larves de type sauvage, 

hétérozygotes et homozygotes. Les larves de poisson zèbre de 5 jours après la fécondation ont 

été fixées, rincées et montées pour la microscopie SHG. De même, des souris BALB/c femelles 
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ont été utilisées pour des études de tumeurs murines avec des échantillons porteurs de tumeurs 

obtenus à partir d'injections orthotopiques de cellules 4T1. Après la période de croissance, les 

échantillons ont été fixés, inclus, sectionnés et préparés sur des lames. 

Le dispositif d'imagerie SHG comprenait un microscope inversé à balayage personnalisé équipé 

d'un laser Ti: Sa à verrouillage de mode. Ce dispositif a permis un contrôle précis de la puissance 

du laser et des ajustements fins de la mise au point et du positionnement de l'échantillon. Le 

signal SHG collecté a été détecté à l'aide d'un tube photomultiplicateur et a été isolé à l'aide de 

filtres spectraux. Un programme Python personnalisé a été utilisé pour l'acquisition du signal et 

la synchronisation, et les données brutes ont été visualisées à l'aide de Fiji-ImageJ (voir Figure 1 

de l'article 3). 

La restauration d'image a été réalisée en utilisant les modèles CARE 2D et N2V 2D. Ces modèles 

ont été entraînés sur Google Colaboratory en utilisant la boîte à outils ZeroCostDL4Mic. 

L'entraînement impliquait d'utiliser différents nombres d'époques et de patchs d'image pour les 

échantillons de cancer de la glande mammaire et de poissons zèbres. Le modèle N2V 2D, qui 

repose sur un apprentissage auto-supervisé, a subi un entraînement prolongé pour apprendre 

efficacement et éliminer les motifs de bruit. Le modèle CARE 2D, quant à lui, a eu moins 

d'époques de formation. L'augmentation des données et des paquets Python essentiels, tels que 

TensorFlow, Keras et NumPy, étaient intégraux au processus de formation, accéléré par un GPU 

Tesla T4 sur les serveurs Google. 

Dans la section résultats et discussion, l'accent a été mis sur l'évaluation de l'impact des 

méthodes de fixation sur la qualité d'image en microscopie SHG et l'efficacité des modèles 

d'apprentissage profond, CARE 2D et N2V 2D, pour la restauration d'image. 

L'étude a commencé par évaluer les niveaux de bruit dans les images de microscopie SHG en 

fonction de la teneur en glycérol dans les solutions de fixation utilisées pour les échantillons de 

poissons zèbres. Trois concentrations différentes de glycérol ont été testées, révélant une 

corrélation directe entre la concentration de glycérol et le bruit dans les images finales. Les 

résultats ont indiqué qu'un minimum de 50% de glycérol était optimal pour maintenir la qualité de 

l'image sans perturber le processus de fixation. Pour les échantillons avec des concentrations 

plus élevées de glycérol, le modèle N2V 2D a réussi à restaurer les images, récupérant 

efficacement les informations structurelles des muscles du poisson. Cette constatation était 

significative, suggérant que des outils d'apprentissage profond tels que N2V 2D pourraient 

potentiellement compenser des compositions chimiques sous-optimales lors de la préparation 



 xxiv 

des échantillons, réduisant ainsi le besoin de traitements répétés des échantillons et économisant 

du temps et des ressources (voir Figures 2 et 3 de l'article 3). 

Dans la phase suivante de l'étude, les modèles CARE 2D et N2V 2D ont été appliqués aux images 

SHG de glandes mammaires porteuses de tumeurs. Nous avons créé des images SHG avec 

différents SNR en ajustant la puissance d'entrée du laser. Pour les images à SNR plus élevé, 

CARE 2D a amélioré les détails et la netteté, a amélioré le contraste et a révélé des détails 

complexes de la structure des limites de collagène autour de la tumeur. Cependant, dans les cas 

de SNR extrêmement bas, CARE 2D a entraîné des hallucinations, créant des structures 

artificielles qui n'étaient pas présentes dans les images originales. L'hallucination fait référence à 

un phénomène observé dans les systèmes d'IA, en particulier dans le domaine de la génération 

et de la reconnaissance d'images, où l'IA produit ou interprète des données visuelles d'une 

manière qui s'écarte significativement des résultats précis ou attendus. Cette déviation n'est pas 

due à une erreur aléatoire mais est une conséquence des limites inhérentes et des biais des 

données de formation, des algorithmes et de l'architecture sous-jacente de l'IA. Les hallucinations 

de l'IA surviennent lorsque le modèle infère des motifs, des objets ou des caractéristiques dans 

une image qui ne sont pas présents ou sont significativement déformés par rapport à leur 

représentation réelle. Ce phénomène est souvent attribué au surapprentissage, où le modèle d'IA 

est excessivement entraîné sur un ensemble de données limité et devient ainsi trop sensible à 

des motifs ou bruits spécifiques inhérents à cet ensemble de données. En conséquence, lorsqu'il 

est présenté avec de nouvelles données inconnues, le modèle pourrait "voir" des éléments ou 

des motifs qui correspondent à sa formation mais n'existent pas objectivement dans les données 

d'entrée. 

L'efficacité des modèles a été évaluée quantitativement à l'aide de métriques, telles que le mSSIM 

et le PSNR. Le modèle CARE 2D a montré une amélioration substantielle de la qualité d'image 

pour le cas de puissance de 30 mW, avec des augmentations notables des valeurs mSSIM et 

PSNR. En comparaison, pour le modèle N2V 2D, les améliorations du mSSIM étaient 

significatives, en particulier pour les cas de puissance de 30 mW et 70 mW, bien que les valeurs 

PSNR variaient (voir Figures 4 et 5 ainsi que le tableau 1 de l'article 3). 

L'étude a également exploré l'application de ces modèles aux images SHG de structures 

musculaires de poissons zèbres, en comparant les souches de type sauvage et smn-/-. CARE 

2D a tendance à lisser les structures musculaires, entraînant la perte de caractéristiques 

musculaires distinctes. Cependant, il a amélioré l'intensité SHG, en particulier à des réglages de 

puissance plus élevés. N2V 2D, d'autre part, a préservé les détails structurels des muscles plus 
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efficacement dans tous les cas, le rendant le choix préféré pour les études se concentrant sur la 

morphologie musculaire et les changements structurels, malgré sa capacité inférieure à restaurer 

l'intensité SHG par rapport à CARE 2D (voir Figure 6 et tableau 2 de l'article 3). 

En conclusion, cette étude a trouvé que CARE 2D était plus adapté pour débruiter les échantillons 

avec un SNR plus élevé, comme les glandes mammaires porteuses de tumeurs, en raison de sa 

capacité à améliorer la netteté et les détails de l'image. En revanche, N2V 2D est préférable pour 

préserver les structures musculaires naturelles dans les échantillons de poissons zèbres, en 

particulier dans les cas où la morphologie musculaire et l'intégrité structurelle sont cruciales. Le 

choix entre CARE 2D et N2V 2D dépend des besoins spécifiques de l'étude, équilibrant le besoin 

d'améliorations détaillées contre la préservation des structures naturelles. 

Un aspect essentiel de cette étude était la gestion de la puissance laser d'entrée en imagerie 

SHG pour minimiser les dommages potentiels sur l'échantillon, ce qui entraîne souvent une 

réduction du SNR de l'image. La recherche a souligné qu'une diminution substantielle de la 

puissance laser d'entrée (jusqu'à 70%) est réalisable sans perdre le signal SHG et est 

particulièrement bénéfique pour la transition des échantillons fixes aux échantillons vivants. En 

tirant parti de l'apprentissage profond, il est possible de réduire considérablement la puissance 

d'entrée sans compromettre le signal SHG. 

Cette recherche comparative fournit des informations cruciales sur l'efficacité des techniques de 

débruitage basées sur l'IA pour différents types de tissus, contribuant à l'amélioration globale de 

la qualité d'image en microscopie SHG. 

Article 4 : Accélérer l'imagerie de génération de seconde harmonique résolue en 
polarisation avec des réseaux génératifs antagonistes super-résolution améliorés 

Énoncé du problème de l’article 4 

Le principal défi abordé dans cette étude est la nécessité d'augmenter significativement la vitesse 

d'imagerie de la microscopie P-SHG, en particulier pour les échantillons de glandes mammaires 

entières. Dans l'état actuel de la microscopie P-SHG, l'acquisition d'images haute résolution 

nécessite souvent un compromis entre la vitesse d'imagerie et la qualité des images. Des images 

de haute qualité sont généralement obtenues à un rythme plus lent, ce qui n'est pas toujours 

réalisable, en particulier dans des études nécessitant une imagerie rapide de grands échantillons 

ou lors de processus biologiques sensibles au temps. Pour surmonter cette limitation, cet article 

propose une nouvelle application des Réseaux Génératifs Adversaires Super-Résolution 

Améliorés (ESRGAN) pour améliorer la qualité des images P-SHG de basse qualité. L'objectif 
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principal était d'explorer si ESRGAN pouvait être efficacement utilisé pour maintenir une qualité 

d'image acceptable tout en accélérant considérablement le processus d'imagerie. En capturant 

initialement des images de qualité inférieure à un rythme plus rapide puis en appliquant ESRGAN 

pour l'agrandissement, cette étude vise à atteindre un équilibre entre la vitesse d'imagerie et la 

qualité de l'image. 

La méthodologie de recherche comprit l'acquisition d'images SHG de haute qualité d'échantillons 

de glandes mammaires entières pour établir un repère de qualité. L'étude s'est ensuite 

concentrée sur la prise rapide d'images P-SHG de moindre qualité de l'ensemble de l'échantillon 

et l'application d'ESRGAN pour améliorer ces images. Cette étape est cruciale pour démontrer la 

faisabilité de cette approche dans des scénarios d'imagerie pratiques. Pour évaluer l'exactitude 

et l'efficacité de cette méthode, cette étude a impliqué une analyse comparative. Des images P-

SHG de haute qualité de zones sélectionnées de différents échantillons ont été capturées pour 

servir de références. Ces images ont été comparées aux résultats des images P-SHG améliorées 

pour évaluer dans quelle mesure le processus d'agrandissement compensait la qualité initiale 

inférieure des images. De plus, cette étude emploie les évaluations de métriques de qualité 

mentionnées précédemment pour garantir que l'intégrité structurelle des images originales est 

raisonnablement maintenue après l'agrandissement. Il est impératif de vérifier que, bien que le 

processus d'imagerie soit accéléré, les images agrandies fournissent toujours des 

représentations fiables et précises des tissus des glandes mammaires. 

Sommaire de l’article 4 

La glande mammaire, essentielle pour la production de lait après l'accouchement, subit des 

changements significatifs sous l'influence des hormones. Sa structure comprend deux 

composants principaux : l'épithélium mammaire et le stroma. Bien que le développement de 

l'épithélium mammaire soit bien compris, celui du stroma l'est moins. Le stroma mammaire inclut 

diverses cellules, telles que les adipocytes, les fibroblastes, les cellules immunitaires, et des 

composants de la matrice extracellulaire (ECM), tels que le collagène et les laminines. Ces 

composants jouent un rôle crucial dans le développement et la fonction des glandes mammaires. 

Par exemple, pendant la puberté, l'expansion stromale permet la croissance des adipocytes et 

l'orientation des fibres de collagène en préparation pour la morphogenèse épithéliale. Ce 

processus est influencé par les œstrogènes, qui favorisent l'expansion de l'épithélium le long de 

ces fibres, conduisant à une architecture glandulaire mature. 

La microscopie SHG est devenue la méthode privilégiée pour l'imagerie du collagène dans les 

tissus, offrant des avantages tels que la haute résolution spatiale, la réduction de la phototoxicité 
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et la facilité de préparation des échantillons. Cette méthode non invasive est particulièrement 

efficace pour détecter les changements du collagène fibrillaire dans les glandes mammaires. Pour 

surmonter certaines des limitations de la microscopie SHG, telles que les interférences dans les 

études d'orientation des fibres, la P-SHG a été développée, combinant les avantages de la SHG 

et de la polarimétrie. La P-SHG est très précieuse pour étudier la structure du collagène, en 

particulier dans la recherche sur la glande mammaire. Cependant, les méthodes SHG et P-SHG 

peuvent être coûteuses et chronophages, en particulier pour les grands échantillons. 

Pour relever ces défis, des modèles basés sur les Réseau Antagoniste Génératif (GAN), en 

particulier ESRGAN, ont été utilisés pour l'agrandissement des images. Les GAN impliquent deux 

réseaux neuronaux en compétition : un générateur qui crée des données ressemblant à de vraies 

données et un discriminateur qui distingue entre les données réelles et générées. Avec le temps, 

cela conduit à la génération de données de haute qualité et réalistes. ESRGAN, une approche 

d'apprentissage profond pour la super-résolution d'image, se concentre sur la capture de 

caractéristiques d'image de haut niveau à travers une fonction de perte perceptuelle, améliorant 

ainsi la qualité des images agrandies. 

Dans cette étude, la préparation des échantillons a impliqué la sélection de souris à différents 

stades de développement de la glande mammaire et leur euthanasie humaine. Les glandes 

mammaires ont été récoltées, étirées à leur forme originale sur des lames de verre et fixées à 

l'aide du fixatif de Carnoy. Après la fixation, les tissus ont été réhydratés, colorés pour mettre en 

évidence l'épithélium mammaire, puis déshydratés à nouveau. Les échantillons préparés ont été 

imagés pour une analyse numérique, en se concentrant sur divers aspects des glandes 

mammaires. 

Les échantillons préparés ont ensuite été imagés à l'aide d'un dispositif de boîte lumineuse et de 

caméra, avec une clé de mesure pour standardiser la comparaison entre les échantillons. 

L'analyse numérique de ces images, en se concentrant particulièrement sur les branches 

épithéliales, les bourgeons terminaux et l'architecture globale, a été réalisée à l'aide du logiciel 

ImageJ. 

Le dispositif d'imagerie pour cette étude a utilisé des techniques de microscopie avancées, en 

particulier la microscopie SHG et sa variante P-SHG. Le microscope à balayage inversé 

personnalisé à laser a employé un laser à fibre YB à verrouillage de mode avec des réglages 

spécifiques pour la durée d'impulsion, la fréquence de répétition et la puissance moyenne pour 

optimiser la qualité d'imagerie. Le processus d'imagerie inclut des ajustements dans le contrôle 

de la puissance et la mise au point à l'aide d'une combinaison de moteurs mécaniques et 
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piézoélectriques. Le signal SHG a été collecté et filtré à travers une série de filtres spectraux pour 

isoler des longueurs d'onde spécifiques d'intérêt. Le dispositif d'imagerie a été contrôlé et 

synchronisé à l'aide d'un programme Python personnalisé, permettant une acquisition efficace 

d'images SHG de haute qualité (voir Figure 1 de l'article 4). 

Pour l'imagerie P-SHG de qualité inférieure, le dispositif a été modifié pour inclure une plaque 

demi-onde motorisée, permettant la rotation de la polarisation linéaire du faisceau laser. Cela a 

permis de capturer des images dans divers états de polarisation. En revanche, l'imagerie P-SHG 

de haute qualité implique l'imagerie de régions d'intérêt aléatoires à l'aide d'un objectif différent 

pour une résolution améliorée. 

Pour relever les défis de la qualité d'image, cette étude a utilisé plusieurs modèles 

d'agrandissement basés sur l'ESRGAN. Ces modèles comprennent Ultrasharp_4X, 

ESRGAN_Nomos2K, 4X_Remarci et 4X-UniScaleV2_Sharp. L'agrandissement a été facilité par 

le programme ChaiNNer. Un agrandissement guidé utilisant PixTransform avec des images SHG 

de haute qualité servant de référence a également été effectué. Ce processus a impliqué des 

itérations avec différents modes de séparation de canaux et a été accéléré à l'aide d'un GPU RTX 

3060Ti. L'approche complète dans la préparation des échantillons, la configuration d'imagerie et 

l'agrandissement d'image souligne la méthodologie rigoureuse employée dans cette étude pour 

assurer une analyse détaillée et précise du développement de la glande mammaire. 

L'intégration des images histologiques avec leurs homologues en imagerie SHG a fourni une vue 

complète de la microstructure tissulaire. Cette approche était particulièrement bénéfique pour 

offrir une compréhension plus holistique de l'architecture tissulaire et aider dans le processus 

d'agrandissement en assurant la fidélité structurelle dans les images SHG améliorées (voir Figure 

2 de l'article 4). 

Des comparaisons ont été effectuées entre les images SHG originales de haute qualité et leurs 

versions de basse qualité, suivies par une analyse des images agrandies. Les images de haute 

qualité, avec une résolution de 1800×800 pixels, affichaient une quantité significative de détails 

et de clarté. Cependant, la capture de ces images haute résolution est chronophage, nécessitant 

environ 18 minutes par image. Cela était préoccupant, en particulier pour l'imagerie P-SHG, qui 

nécessitait plusieurs images et pouvait potentiellement endommager les échantillons en raison 

d'une exposition prolongée au laser. À l'inverse, les images originales de basse qualité, avec une 

résolution de 225×100 pixels, étaient capturées beaucoup plus rapidement, mais manquaient de 

détails et de netteté (voir Figure 3 de l'article 4). 



 xxix 

Pour résoudre ces problèmes, des techniques d'agrandissement d'image ont été utilisées, en 

particulier le modèle Ultrasharp_4X basé sur l'ESRGAN. Ce modèle a été choisi en raison de sa 

capacité à améliorer efficacement la résolution de l'image tout en maintenant l'intégrité 

structurelle. En appliquant ce modèle, la résolution de l'image a été améliorée à 3600×1600 

pixels. Cependant, le processus d'agrandissement introduit une certaine dégradation de qualité, 

nécessitant des mesures de contrôle de qualité détaillées. 

Le contrôle de qualité implique d'évaluer les images agrandies à l'aide de diverses métriques, 

telles que l'évaluateur de qualité d'image naturelle (NIQE), l'évaluateur de qualité d'image 

perceptuelle (PIQE), la similarité structurelle multi-échelle (MS-SSIM), le Rapport Signal sur Bruit 

Maximal (PSNR) et l'erreur quadratique moyenne normalisée (NRMSE). Ces métriques indiquent 

que les images agrandies, bien qu'elles ne soient pas identiques aux images originales de haute 

qualité, ont maintenu un haut niveau de fidélité et ont réussi à améliorer les images (voir tableau 

1 et 2 de l'article 4). 

L'étude a également inclus une analyse P-SHG, en utilisant initialement des mesures CurveAlign 

pour déterminer la faisabilité d'analyser des images de basse qualité. Il a été constaté que, bien 

que les images de basse qualité résolussent des alignements significatifs de fibres, elles 

manquaient de détails (voir Figure 4 de l'article 4). L'agrandissement de ces images s'est avéré 

plus efficace, améliorant la résolution des alignements et des orientations de fibres plus fines. 

Les images P-SHG ont été capturées à divers états de polarisation et traitées à l'aide d'un script 

MATLAB pour analyser l'orientation des fibres. Cette analyse a confirmé que les détails 

d'orientation dans les images agrandies étaient précis, offrant une méthode fiable pour améliorer 

les images de basse qualité pour une analyse P-SHG détaillée (voir Figure 5 de l'article 4). 

Notre analyse a fait un bond significatif dans l'imagerie P-SHG en réduisant le temps d'imagerie 

de 4,5 heures à 13,5 minutes, réalisant ainsi une réduction de temps de plus de 95%. Cette 

efficacité a été réalisée grâce à la sélection stratégique du modèle "ultrasharp_4X", qui fait partie 

de l'ESRGAN pour l'agrandissement des images. Ce modèle a été préféré en raison de son 

haute-fidélité aux images originales, contournant les complications rencontrées lors de l'utilisation 

d'images de haute qualité comme références pour l'agrandissement. 

L'un des avantages les plus significatifs de cette méthode accélérée est la réduction drastique de 

l'exposition au laser des échantillons. Cet aspect est crucial pour préserver l'intégrité des 

spécimens biologiques sensibles, car une exposition prolongée au laser peut entraîner des 

dommages photo-induits. Par conséquent, notre méthode ne protège pas seulement la qualité de 
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l'échantillon, mais permet également des périodes d'observation prolongées sans risque de 

modifier leurs propriétés. 

De plus, le besoin réduit d'imagerie haute résolution dans de nombreuses applications nous a 

permis de reconsidérer les composants optiques de notre configuration. Cela a conduit à 

l'adoption d'objectifs et de systèmes d'imagerie plus économiques, rendant la technologie plus 

accessible et réduisant les coûts globaux. 

La validité de notre approche d'imagerie accélérée a été évaluée de manière approfondie en 

comparant les images P-SHG générées en utilisant notre méthode avec celles produites en 

utilisant des techniques conventionnelles et chronophages. Ces comparaisons ont confirmé que 

notre processus plus rapide produisait constamment des résultats similaires aux caractéristiques 

originales de l'échantillon (voir Figure 6 de l'article 4). 

En résumé, notre recherche sur l'imagerie P-SHG marque une avancée notable dans le domaine, 

non seulement en termes d'efficacité temporelle, mais aussi en réduisant les risques d'exposition 

de l'échantillon et en abaissant les barrières économiques. Ce progrès ouvre de nouvelles 

possibilités pour l'utilisation généralisée de l'imagerie P-SHG dans diverses applications 

scientifiques et de recherche, favorisant l'innovation et la découverte. 

Cette approche novatrice utilisant les GANs pour l'imagerie P-SHG représente une avancée 

significative dans l'amélioration de l'efficacité et de l'accessibilité de la microscopie SHG, avec 

des implications importantes pour la recherche biomédicale et les applications cliniques. 

Conclusion 

La série d'études présentée englobe une gamme d'approches et de méthodologies innovantes 

dans le domaine de la microscopie SHG et de ses applications, chacune abordant des défis 

uniques et faisant avancer notre compréhension et nos capacités en imagerie biologique. 

Dans le Projet 1, une revue complète de la microscopie SHG, en particulier dans les études 

neuronales, a été établie comme une ressource vitale pour les chercheurs dans le domaine. En 

consolidant et contextualisant une richesse de recherches, cette revue a non seulement souligné 

les avancées historiques et théoriques en microscopie SHG, mais a également fourni un guide 

fondamental pour les recherches futures, particulièrement bénéfique pour ceux qui sont nouveaux 

dans le domaine. 

L'exploration dans le Projet 2 de l'orientation des fibres de collagène et des défis des petits 

ensembles de données dans les glandes mammaires a démontré le potentiel d'intégration de 
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techniques d'imagerie avancées, telles que la microscopie SHG et P-SHG automatisées, avec 

des méthodes d'apprentissage profond. Cette approche a montré des promesses pour surmonter 

les limitations des techniques d'imagerie traditionnelles, permettant une analyse plus détaillée et 

efficace des changements structurels dans les microenvironnements tumoraux. 

Dans le Projet 3, l'application des techniques d'apprentissage profond pour le débruitage 

d'images SHG à faible SNR représente une avancée significative dans la restauration d'image en 

microscopie. L'utilisation des techniques CARE 2D et N2V 2D a ouvert de nouvelles possibilités 

pour améliorer la qualité d'image dans des scénarios difficiles, tels que l'imagerie à faible 

puissance laser des tissus musculaires de poissons zèbres et des glandes mammaires de souris 

porteuses de tumeurs. L'application réussie de ces techniques peut révolutionner l'approche de 

restauration d'image en imagerie biologique haute résolution. 

Enfin, l'accent mis dans le Projet 4 sur l'accélération de l'imagerie P-SHG en utilisant le modèle 

ESRGAN pour l'agrandissement d'image aborde un besoin critique en imagerie biologique : 

l'équilibre entre la vitesse et la qualité. En démontrant qu'il est possible d'acquérir rapidement des 

images de basse qualité puis de les améliorer grâce à des techniques d'agrandissement 

avancées, cette étude ouvre la voie à des processus d'imagerie plus efficaces, en particulier dans 

les études sur de grands échantillons ou les processus biologiques sensibles au temps. 

Collectivement, ces études mettent en évidence la nature dynamique et évolutive de la 

microscopie SHG et de ses applications. Elles soulignent l'importance des approches 

interdisciplinaires qui combinent des techniques d'imagerie avancées avec des méthodes 

computationnelles pour relever les défis complexes rencontrés en imagerie biologique. Les 

aperçus et méthodologies développés à travers ces projets contribuent non seulement au 

domaine de la microscopie SHG, mais ont également des implications plus larges pour l'étude 

des structures et processus biologiques. Alors que nous continuons à repousser les limites de ce 

qui est possible en microscopie et en analyse d'image, ces études serviront sans aucun doute de 

références fondamentales pour guider les recherches futures et l'innovation dans ce domaine 

vital. 

En conclusion, cette thèse démontre le potentiel transformateur de l'intégration de la microscopie 

SHG avec des techniques avancées d'IA. Les résultats mettent en évidence des améliorations 

significatives dans la qualité d'imagerie et les capacités analytiques, suggérant un avenir où ces 

technologies seront intégrales à la recherche biomédicale et aux applications cliniques. Les 

travaux futurs devraient se concentrer sur le raffinement de ces méthodes pour une accessibilité 

plus large et une précision diagnostique améliorée. Cela pourrait inclure le développement de 
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modèles d'apprentissage automatique pour des échantillons biologiques plus diversifiés, 

l'exploration de leur intégration dans les flux de travail cliniques, et le développement de systèmes 

d'imagerie SHG rentables et conviviaux pour améliorer l'accessibilité dans divers contextes de 

soins de santé. 
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1 INTRODUCTION AND LITERATURE REVIEW 

The synergy between microscopy, biophotonics, and the study of biological samples through light 

interaction is rooted in a historical journey dating back to Janssen's microscope invention in 1585 

[1]. This remarkable journey has evolved into a vital photonics subbranch known as biophotonics. 

Over the centuries, scientific pioneers such as Robert Hooke and Antoine von Leeuwenhoek 

made significant strides in the 17th century using microscopes to examine various biological 

samples [1]. Since then, microscopy and biophotonics have progressed through numerous 

iterations and advancements. Notable improvements include refining optical elements, 

advancements in light sources, innovations in detection methods, and enhancements in sample-

preparation techniques [2]. In the upcoming sections, we will explore different nonlinear 

microscopy iterations and their roles in studying biological samples. Notably, the integration of 

artificial intelligence (AI) into SHG microscopy has significantly expanded its applications and 

improved its analytical capabilities. Recent advances have focused on overcoming limitations, 

such as noise reduction and image enhancement. This has paved the way for broader 

applications in biomedical research, offering new opportunities for exploring complex biological 

phenomena. 

This thesis addresses a critical challenge in biomedical imaging: overcoming the limitations of 

SHG microscopy by integrating AI techniques. This research aims to enhance image quality, 

enable automated analysis, and expand the clinical applications of SHG microscopy. By exploring 

novel approaches to image processing, classification, and acquisition, this study sought to push 

the boundaries of what is possible with SHG microscopy and pave the way for its broader adoption 

in research and clinical settings. The document is structured around four interrelated articles, 

each addressing specific aspects of these objectives. Following this introduction, we present a 

comprehensive background of SHG microscopy and AI in imaging, followed by detailed 

summaries and analyses of the four core articles. The thesis concludes with a synthesis of the 

overall findings and their implications for the field, demonstrating how the integration of AI and 

SHG microscopy can revolutionize biomedical imaging. 

1.1 History of optical microscopy  

The importance of microscopy cannot be overstated in various fields, including biology, health, 

microfabrication, nanofabrication, and materials science. The nuances of microscopy, including 

its strengths and limitations, are delicately balanced by factors such as contrast mechanisms, 
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spatial resolution, field of view, acquisition speed, penetration depth, and applicability in vivo [3]. 

At the core of microscopy techniques is the pivotal concept of contrast mechanisms. These 

mechanisms pivot on how materials respond when probed by light, electron beams, or fine points, 

thereby revealing variations in structure and composition [3]. Diverse microscopy methods employ 

a spectrum of contrast mechanisms primarily favored in biological studies, including light, electron 

absorption, and fluorescence. Each mechanism provides distinct insights into material structure 

and properties [3]. Spatial resolution, a defining factor, dictates the ability of a technique to discern 

intricate details. Optical microscopy typically achieves a resolution of 1 micron, yet some methods 

surpass the diffraction limit, pushing the resolution below 100 nm [3]. 

In the realm of microscopy, the field of view and image acquisition speed have immense 

significance. A generous field of view aids in locating intriguing details, whereas swift image 

acquisition is vital, especially when investigating dynamic structures in living organisms [2]. 

Despite the unique challenges in capturing rapid movements, the ability to image living organisms 

in real-time is a hallmark of optical microscopy. 

In 1846, Zeiss unveiled the world's first commercial optical microscope in Jena, Germany, starting 

a fascinating journey [4]. This method meticulously aligns an objective and an eyepiece with the 

sample to observe an enlarged image directly. Illuminating the sample from behind allowed the 

light to pass through before collection by the objective. The absorption and diffusion of light within 

the sample form the basis for image contrast, with a theoretical resolution limit of approximately 

200 nm [3]. Optical microscopy was confined to thin tissue slices because thicker samples 

scattered light. In 1903, Köhler introduced a dark-field microscope to address some of the 

scattering problems encountered by the original microscope [5]. In dark-field microscopy, the 

sample is illuminated to prevent direct capture of light by the lens, gathering diffused or reflected 

light from specific structures within the sample and enhancing the contrast [5]. Subsequent 

innovations included the phase-contrast microscope unveiled by Zernike in 1935 [6] and the 

differential interference contrast (DIC) microscope introduced by Nomarski in 1952 [7]. These 

methods rely on the interaction between index variations in the material and the phase shift of the 

light wavefronts, quantifiable through an interference phenomenon. While these innovations 

aimed to improve the contrast and resolution in bright-field microscopy, they have limitations, 

including low-intensity images and poor effective resolution. The overarching challenge was 

adapting microscopy for less-controlled in vitro samples while enhancing light penetration without 

introducing degradation [8]. 
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The turning point arrived in 1955 when Minsky introduced the confocal scanning microscope [9]. 

His invention remained unappreciated until the invention of lasers in 1960, which provided a stable 

and bright light source for scanning microscopy. The first laser scanning microscope was debuted 

in the late 1960s using a He-Ne laser [10]. This innovation marked a shift to point-by-point 

illumination and efficient light filtering, eventually coining the term "confocal microscope" in 1977 

[11]. The primary advantage of a confocal microscope is its exceptional axial resolution, which is 

achieved by selectively collecting the signal from a specific plane within the imaged material [12]. 

Confocal microscopy is frequently paired with fluorescence microscopy, particularly in biological 

imaging. This technique involves attaching fluorophores to specific structures for differentiation 

using sequential filters. These fluorophores are optimized for efficient light conversion, reduced 

required light intensity, and minimized thermal damage to biological tissues [13]. However, 

fluorescence microscopy grapples with photobleaching, where the efficiency of fluorophores 

diminishes with prolonged exposure to light and phototoxicity owing to direct interactions between 

light and cells [14]. 

Several techniques have emerged to overcome the optical resolution limit imposed by light 

diffraction. An overview of these methods is provided in Figure 1-1. STED microscopy was 

pioneered by Hell et al. in 1994 and achieved a spatial resolution below 100 nm in fluorescence 

microscopy [15]. STED employs an excitation beam for fluorescence, and a secondary beam 

shifts towards the red spectrum, using a donut-shaped irradiance profile to de-energize 

fluorescent molecules [15,16]. Stochastic techniques, including Photoactivation Localization 

Microscopy (PALM) [17] and Stochastic Optical Reconstruction Microscopy (STORM) [18], can 

achieve similar spatial resolutions. These super-resolution methods are primarily applied to 

biological samples, necessitating staining, dyes, or controlled concentrations of fluorescent 

proteins for sub-diffraction image reconstruction. While image acquisition relies on a diffraction-

limited optical microscope in the case of STED or sophisticated image reconstruction techniques 

in PALM/STORM, these innovations pave the way for exploring previously inaccessible domains, 

notably the intricate interior of cells, including compact nuclei [8].  
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Figure 1-1:  Resolution and penetration depth of several medical imaging techniques. Extracted from [8]. 

The 1990s are considered a key milestone for nonlinear microscopy, which is discussed in the 

next section on the history of second harmonic generation microscopy and its physical 

characteristics.  

1.2 Nonlinear optics and process 

The following sections detail nonlinear processes and microscopy, starting with the history and 

physical principles.  

1.2.1 Nonlinear microscopy history 

The theoretical prediction of two-photon absorption by Goeppert-Mayer in 1931 set the stage for 

significant developments [19]. Three decades later, in 1960, Theodore Maiman's creation of a 

ruby laser [20], based on the foundational work of Schawlow and Townes in 1958 [21], marked a 

turning point for microscopy, specifically nonlinear microscopy. Almost immediately after these 

breakthroughs, various nonlinear optical techniques began to emerge. In 1961, Franken et al. 

observed the frequency doubling of a ruby laser in a quartz crystal, marking the birth of second 

harmonic generation (SHG) microscopy [22]. The following year, Bloembergen and Pershan 

clarified the SHG equations and explained the fundamental principles governing light-matter 

nonlinear interactions with a thorough examination of Maxwell's equations [23].  
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In 1974, Hellwarth and Christensen combined SHG with optical microscopy by focusing a laser 

on potassium deuterium hydrogen phosphate (KDP) crystals [24]. However, this method relied on 

robust SHG converters because the entire field was illuminated with a continuous-wave (CW) 

laser. In 1977, Sheppard et al. imaged quartz using a scanning SHG microscope that detected a 

nonlinear optical signal [25]. Simultaneously, through electron microscopy (EM), Parry and Craig 

revealed that collagen fibrils in tissues such as tendons possess mixed polarity, with neighboring 

fibrils pointing in opposite directions [26]. This discovery was later confirmed using a combination 

of atomic and piezoelectric force microscopy [27,28]. In 1978, Roth and Freund conducted 

comparative measurements between the SHG signal of a reference quartz sample and that of a 

rat-tail tendon. They discovered that the SHG signal was significantly lower (3-4 orders of 

magnitude) in the biological sample than in the reference material, emphasizing the potential of 

using SHG measurements in vivo [29]. Finally, in 1986, Freund and Deutsch became pioneers in 

performing SHG microscopy of biological samples, demonstrating that the macroscopic polar 

structure in tendons arose from a network of fine structures, specifically collagen fibrils, within the 

entire tissue volume [30]. This groundbreaking work illustrated the viability of using SHG 

microscopy for biomedical imaging. In 1990, Denk et al. introduced two-photon excitation 

fluorescence (TPEF) laser scanning microscopy utilizing pulsed lasers and a modified confocal 

microscope [31]. Denk initially employed a high-repetition-rate dye laser emitting femtosecond 

pulses for the experiment. However, the 1980s and the 1990s saw the emergence of Titanium 

Sapphire lasers, which provided ideal femtosecond light sources for nonlinear optical microscopy. 

Following the success of TPEF, three-photon excitation microscopy was first demonstrated in 

1996 [32]. Although SHG predates TPEF microscopy, it experienced a period of relative obscurity 

before being reintroduced in 1998 [33,34] and subsequently integrated with TPEF in the early 

2000s in numerous studies [2,35–37]. With advancements in commercially available mode-locked 

lasers and user-friendly multiphoton microscopes [38], SHG has emerged as a powerful tool for 

high spatial resolution optical imaging, contributing significantly to multimodal imaging. In recent 

years, these nonlinear optical microscopy methods have been substantially enhanced and 

adapted, making them commonplace in laboratory settings. The next significant advancement in 

this field will involve harnessing these microscopy techniques for diagnostics, paving the way for 

their clinical utilization and integration into the medical field. 
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1.3 Nonlinear processes 

This section discusses the physical processes and properties of nonlinear optics and SHG in 

further detail. Most concepts covered in this section are based on Boyd’s Nonlinear Optics book 

[39], which is strongly recommended for further information on this topic.   

1.3.1 Second harmonic generation theory and principles 

To understand SHG, we must first examine how electron behaves when excited by an incoming 

photon. The electron travel depends on the strength of the excitation photon and can be described 

in two cases (illustrated in Figure 1-2): if the excitation energy is low, the electron's trajectory can 

be approximated as a parabolic path, rendering the process linear. This linear excursion is often 

called elastic, which is analogous to mechanical systems [39]. However, in a strong exciting field, 

a more significant part of the electron potential is traversed, leading to a nonlinear or inelastic 

oscillation of the electron or electron assembly. An illustrative example of this phenomenon is 

SHG, which is a component of the Fourier decomposition of the anharmonic response of an 

electron excited by a powerful electromagnetic field. This inelastic oscillation of electrons results 

in partial "transmission" of the excitation field. This process causes a change in the fundamental 

frequency of the electron motion by inducing one of its harmonics. This phenomenon can be 

attributed to the electric field oscillating at a high frequency when interacting with a molecular 

structure, repeatedly inducing a molecular dipole [39]. 

Figure 1-2: Potential energy function 𝑼(𝒙) vs electron position 𝒙 for (a) non-centrosymmetric and (b) 
centrosymmetric media. Extracted from [39]. 

Figure removed due to copyright issues
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 For such a conversion, the medium must allow vibrations at these specific frequencies. Owing to 

symmetry considerations, any medium with a center of symmetry will eliminate all the Nth 

harmonics, where N is an even number. This property is a crucial factor for understanding and 

predicting the behavior of nonlinear optical processes. For further clarification, we can 

mathematically examine the molecular response to an external electric field [39]:   

𝑃 = 𝑃(") + α𝐸 + β𝐸𝐸 + γEEE +⋯ 1.1 

Here, E represents the incident electric field, and α, β, and γ represent the first-, second-, and 

third-order hyperpolarizabilities, respectively. The first term, 𝑃(") , represents the permanent 

dipole of the molecule. The second term corresponds to the linear response, and the third term 

accounts for second-order nonlinear interactions such as sum and difference frequency 

generation [39]. The fourth term describes third-order nonlinear effects, which encompass 

phenomena such as two-photon absorption [40], third harmonic generation [41], Kerr effect [42], 

self-phase modulation [43], cross-phase modulation [44], and stimulated Raman scattering [45]. 

Molecules capable of generating SHG are distinguished by their high hyperpolarizability β, which 

is intricately linked to their structural symmetry [46].  

On a macroscopic scale, SHG is characterized by the nonlinear susceptibility, 𝜒($), which arises 

from the coherent summation of the individual hyperpolarizabilities of harmonophores within a 

given volume. The connection between the molecular and macromolecular nonlinear responses 

can be defined as follows [47,48]: 

χ($) = 𝑁% < β > 1.2 

Here, 𝑁% represents the density of molecule S, and < 𝛽 > represents the average orientation of 

the first hyperpolarizability [39]. Various processes can be described to elucidate the interactions 

between two electromagnetic fields of frequencies ω& and ω$ within a medium that exhibits a non-

zero value 𝜒($): 

Second Harmonic Generation 1 (SHG 1): 

𝑃(ω& +ω&) ∝ χ($)𝐸&$ 1.3 

Second Harmonic Generation 2 (SHG 2): 

𝑃(𝜔$ +𝜔$) ∝ 𝜒($)𝐸$$ 1.4 
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Sum Frequency Generation (SFG): 

𝑃(𝜔& +𝜔$) ∝ 2𝜒($)𝐸& 𝐸$ 1.5 

SHG is a unique case of SFG in which the two frequencies are the same. 

Difference Frequency Generation (DFG): 

𝑃(𝜔& −𝜔$) ∝ 2𝜒($)𝐸& 𝐸$∗     or 𝑃(𝜔$ −𝜔&) ∝ 2𝜒($)𝐸$ 𝐸&∗ 1.6 

Optical Rectification (OR): 

𝑃(𝜔& −𝜔& = 0	&			ω$ −ω$ = 0) ∝ 2𝜒($)(𝐸& 𝐸&∗ + 𝐸$ 𝐸$∗) 1.7 

OR is a unique case of DFG, in which the two frequencies are the same, resulting in static 

polarization [39]. 

The energy level diagrams for the SHG, a degenerate case of SFG, and DFG are shown in Figure 

1-3.
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Figure 1-3: Geometry of interaction and energy level interaction for a) SHG, b) SFG (degenerate case) and c) 
DFG. Extracted from [39]. 

1.3.2 Hyperpolarizability and second-order nonlinear susceptibility 

The orientation of the dipoles in a material can vary from being entirely random, as in amorphous 

materials, to being highly organized, as in crystalline materials. Amorphous centrosymmetric 

materials have a 𝜒($) value of zero because on average, their dipoles do not prefer any 

orientation. On the other hand, crystalline materials can have a non-zero 𝜒($), but only when their 

dipoles align in a specific preferred direction. However, it is essential to note that some crystalline 

materials might still have a 𝜒($) value of zero if their dipoles point in opposite directions, despite 

being organized. A material with a non-zero 𝜒($) is referred to as non-centrosymmetric (meaning 

it lacks an inversion center), whereas a material with zero 𝜒($) is called centrosymmetric (with an 

inversion center). Figure 1-4 clearly illustrates the difference between centrosymmetric and non-

centrosymmetric materials. 

Figure removed due to copyright issues 
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Figure 1-4: Dipole orientation in different material: a) amorphous centrosymmetric, b) crystalline 
centrosymmetric, and c) non-centrosymmetric. Only a non-centrosymmetric material has a non-zero nonlinear 
susceptibility. Extracted from [49]. 

SHG can only occur in non-centrosymmetric materials because they possess a non-zero 𝜒($). 

When an electromagnetic wave passes through a material, its dielectric polarization signifies the 

oscillation of dipoles within the material. When the wave electric field is strong, the nonlinear terms 

in the dielectric polarization become significant [39]. These terms cause the dielectric polarization 

to oscillate at new frequencies that differ from the original electromagnetic wave. Consequently, 

there are dipoles in the material oscillating at these new frequencies. As oscillating dipoles emit 

radiation, electromagnetic waves oscillating at these new frequencies are generated and 

observed outside the material. The harmonic generation process is coherent. The oscillation of 

the dipole moments in the material instantaneously follows the electromagnetic wave. As a result, 

a phase relationship exists between the generated electromagnetic wave and the original wave. 

This phase relationship also explains why centrosymmetric materials do not produce second 

harmonics. There is destructive interference between the signals generated by adjacent dipoles 

with opposing dipole moments. Even in non-centrosymmetric materials, the coherent nature of 

SHG and this phase relationship can lead to destructive interference effects that reduce the 

efficiency of converting the original wave into SHG [39]. 

Another crucial aspect to consider in SHG is the tensor nature of 𝜒($), which adds complexity to 

this phenomenon. The 𝜒($) tensor is of the third rank and has twenty-seven elements (χ()*
($)). In 

most cases, owing to material symmetries, several tensor elements are either negligible or zero 

and only a few elements are significant. In such cases, the formula can be significantly simplified 

by considering only the contributions of the significant elements of the 𝜒($) tensor. For general 
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SHG, or when the Kleinman symmetry condition is satisfied, the 𝜒($) tensor can be expressed 

using contracted notation [39]: 

𝑑!" = #
𝑑##				𝑑#$				𝑑#%				𝑑#&				𝑑#'				𝑑#(
𝑑$#				𝑑$$				𝑑$%				𝑑$&				𝑑$'				𝑑$(
𝑑%#				𝑑%$				𝑑%%				𝑑%&				𝑑%'				𝑑%(

% =
1
2𝜒)*+

($) 
 1.8 

Thus: 

)
𝑃. (2𝜔)
𝑃/ (2𝜔)
𝑃0 (2𝜔)

. ∝ #
𝑑##				𝑑#$				𝑑#%				𝑑#&				𝑑#'				𝑑#(
𝑑$#				𝑑$$				𝑑$%				𝑑$&				𝑑$'				𝑑$(
𝑑%#				𝑑%$				𝑑%%				𝑑%&				𝑑%'				𝑑%(

%

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝐸.$(𝜔)

𝐸/$(𝜔)
𝐸0$(𝜔)

2𝐸/(𝜔)𝐸0(𝜔)
2𝐸.(𝜔)𝐸0(𝜔)
2𝐸.(𝜔)𝐸/(𝜔)⎦

⎥
⎥
⎥
⎥
⎥
⎤
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1.3.3 Coherence length and phase matching 

Let us examine the wave equation with nonlinear polarization [39]: 

∇$𝐄 −
1
𝜖1𝑐$

∂$𝐃(#)

∂𝑡$ =
1
𝜖1𝑐$

∂$𝐏23

∂𝑡$  
 1.10 

The wave equation must hold for all frequency components of the electric field, including those at 

2𝜔. To define the outgoing field, we express this as [39]: 

𝐸(2𝜔) = 𝐴%(𝑧)e*(4!05$67)  1.11 

where 𝑘+ =
,!$-
.

 and 𝑛+$ = 𝜖(&)(2𝜔), and 𝑛+  represents the refractive index at the frequency 2𝜔. 

By substituting these earlier definitions into the one-dimensional wave equation, it transforms into 

[39]: 

d$𝐴%
d𝑧$ + 2j𝑘%

d𝐴%
d𝑧 = −

4𝑑eff (2𝜔)$

𝑐$ 𝐴#𝐴$e*($454!)0 
 1.12 

The slowly varying envelope approximation was employed, allowing us to neglect the first term in 

this equation compared to the second term. Consequently, we have [39]: 

d𝐴%
d𝑧 =

2j𝑑eff (2𝜔)$

𝑘%𝑐$
𝐴#𝐴$e*840 

 1.13 
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Where Δk = 2k − 𝐤+, denotes the phase-matching vector. Assuming the amplitudes of the pump 

fields, 𝐴& and 𝐴$, remain constant, a straightforward integration over the medium's length from 

zero to	𝐿 helps us derive a solution to this equation and, consequently, calculate the generated 

sum-frequency intensity (𝐼+) [39]: 

𝐼% = 2𝑛%𝜖1𝑐|𝐴%|$ =
8𝑛%𝜖1𝑑9::$ (2𝜔)&|𝐴#|$|𝐴$|$

𝑘%$𝑐%
L
e;843 − 1

Δ𝑘 L
$

,

𝐼% ∝ |𝐴#|$|𝐴$|$sinc$	(Δ𝑘𝐿/2).
 

1.14 

 It is important to note that in the context of SHG, typically, only one laser is used: thus, 𝐴& = 𝐴$. 

Consequently, the intensity of the second harmonic generated depends on the square of the 

fundamental laser intensity. When dealing with a wave mixing process in a nonlinear medium of 

length 𝐿, the intensity of the output wave also depends on the product Δ𝑘𝐿. Figure 1-5 illustrates 

the behavior of 𝐼+ relative to this factor [39].  

Figure 1-5: Effect of phase matching on the efficiency of SHG. Extracted from [39]. 

This phenomenon arises because the generated intensity results from the sum of the intensities 

produced by all the dipoles encountered along the length of the medium. If the light from the first 

excited dipole has traversed a distance within the material that causes it to acquire a phase shift 

of	π relative to the exciting wave, the light produced at that new location will interfere destructively 

with the first one, and the power returns to the ω waves. When the pump intensity is infinite, two 

scenarios emerge. First, if Δ𝑘 = 0, the output intensity continually increases with 𝐿. Otherwise, it 

varies spatially in a periodic manner with coherence length 4𝐿./0, where 𝐿./0 = 𝜋/Δ𝑘. Therefore, 

Figure removed due to copyright issues
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for a given Δ𝑘, constructive interference reaches its maximum when the medium's length equals 

𝐿./0, hence the term "coherence length." If the pump intensity is finite, 𝐼+ varies spatially, 

regardless of Δ𝑘, and the amplitude or maximum value is dictated by equation 1.14. 

Consequently, achieving efficient SHG requires approaching the ideal condition of Δ𝑘 = 0, which 

signifies perfect phase-matching. One method for phase matching involves the use of a 

birefringent medium [39]. Another technique for achieving phase matching is temperature control. 

Some crystals, such as lithium niobate, exhibit high temperature-dependent birefringence and 

phase-matching can be achieved by varying the temperature [39].  

To summarize, for a medium to have a non-zero 𝜒($) and facilitate SHG, it must consist of 

molecules with a non-zero β and be organized on a scale more prominent than the wavelength 

of the light to achieve phase matching [39]. Consequently, the signal obtained in SHG can provide 

insights into the organization and structure of imaged materials [40]. For instance, by manipulating 

the polarization of the incident and detected beams, it is possible to determine 𝑑eff  for the 

considered geometry and investigate the ratios between the different elements of the 𝜒($) tensor 

[50]. In a medium such as biological tissue, the interaction length, which corresponds to the focal 

volume length in microscopy, is typically much smaller than the coherence length. This 

phenomenon makes the generation of second harmonic signals relatively straightforward [51]. 

Finally, when SHG is measured in reflection rather than transmission, the phase-matching vector 

must be larger as 𝐤+ changes sign (Δk = 2k − 𝐤+), leading to a shorter coherence length and 

different phase-matching conditions [39]. 

1.4 Advanced SHG microscopy methods 

Advanced techniques, such as polarization-resolved SHG (P-SHG), interferometric SHG (I-SHG), 

and wide-field SHG, are pivotal in expanding the capabilities of bioimaging. Each technique has 

unique advantages. P-SHG enhances the visualization of complex structures by measuring 

parameters such as the alignment and anisotropy of fibrils, as observed in collagen studies [2]. I-

SHG provides additional structural and orientation information at the molecular level, which is 

crucial for understanding biological samples, such as tissues and cells. Wide-field SHG increases 

the imaging throughput by illuminating the entire sample area simultaneously, balancing the 

energy input with the need to minimize photodamage [2]. 
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1.4.1 Polarization resolved SHG microscopy 

Polarization resolved second harmonic generation (P-SHG) combines the advantages of SHG 

microscopy, offering high specificity and contrast, with the sensitivity to molecular alignment 

provided by polarimetry [2]. Typically employed in examining collagen, this technique offers a 

more precise depiction of the intricate hierarchical structures within fibrils in the imaging plane. 

The pioneering application of P-SHG in biological samples occurred in 2002 when Stoller and 

colleagues conducted their initial experiments on rat-tail tendon fascia [52]. By collecting various 

linear polarization scans in both the axial and transverse planes, they discovered that the SHG 

signal strongly responded to the polarization of the incident laser light source, enabling the 

determination of collagen fibril orientation. When light travels through a medium, its polarization 

characteristics can be described using either Stokes vector formalism [53] or Jones vector 

formalism [54]. Jones vector formalism is applicable to fully polarized light, in which the entire 

state can be represented via the amplitude and phase of oscillations in two electric field vector 

components that lie within the plane of polarization. In contrast, Stokes vector formalism is used 

for partially polarized light [55].  

P-SHG has become increasingly prevalent in biomedical research, providing a valuable means

of analyzing protein structures. Prior to this method, scientists relied on cryo-electron microscopy

[56] and X-ray crystallography [57], which are often hindered by laborious and intricate sample

preparation processes. Consequently, these methods are not practical for live or dynamic

samples, let alone those involving living animals [58]. Various techniques have been used to

explore the structural dynamics of proteins. Nuclear magnetic resonance and Forster resonance

energy transfer are among them [2]. Nuclear magnetic resonance is a powerful technique that

can provide valuable information about the structure and dynamics of proteins in solution.

However, this method has several limitations [58]. For example, it requires large samples and can

be time-consuming and expensive. Forster resonance energy transfer involves the energy

transfer between two fluorescent molecules attached to distinct parts of the protein. This can

provide information about the distance and orientation between two molecules, which can be used

to deduce information about the protein structure [58]. Although these techniques are valuable,

they offer lower spatial resolution and reduced sensitivity than other methods [58].

P-SHG offers a simple and cost-effective solution for analyzing untouched samples. With only a

few additions to a standard SHG microscope setup, P-SHG can be utilized without complex and

expensive equipment [58]. The examination of collagen changes linked to aging [59], keratoconus
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cornea [60], and lung cancer-related alterations in collagen structure [61] are some areas in which 

P-SHG has proven useful.

Most of the theoretical background stated below is based on [62,63]. Let us consider the collagen 

fibrils as an example. The second harmonic response of the medium depends on its second-order 

nonlinear susceptibility tensor, 𝜒($). The tensor indicates how the polarizability of the medium 𝑃( 

changes with an electric field 𝐸(𝜔): 

𝑃( = 𝜒()
(&)𝐸) + 𝜒()*

($)𝐸)𝐸* 1.15 

Collagen fibrils have a cylindrical shape and follow Kleinman symmetry, the tensor 𝜒($) has only 

two independent components:  

𝜒111					,			𝜒133 = 𝜒144 = 𝜒313 = 𝜒414 = 𝜒331 = 𝜒441  1.16 

Where 𝑥 is along the fiber axis, and the second harmonic polarizability is: 

𝑃1 (2𝜔) = 𝜒111
($) 𝐸1$ + 𝜒133

($) 𝐸3$ + 𝜒133
($) 𝐸4$,

𝑃3 (2𝜔) = 2𝜒133
($) 𝐸1𝐸3

𝑃4 (2𝜔) = 2𝜒133
($) 𝐸1𝐸4

1.17 

A linear polarization laser travelling in the z-direction creates an angle µ with the collagen fibril in 

the xy plane, as shown in Figure 1-6. 
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Figure 1-6: Diagram of a standard P-SHG microscope with a sample in focus. A half-wave plate and quarter-
waveplate adjust the polarization of the input laser. The laser made an angle with the collagen fibril in the focus 
in the xy-plane. The collagen fibril has an angle θ with the laboratory axis and a tilt δ, which is assumed to be 
zero for simplicity in this case. Adapted from [63]. 

Considering that the electric field and fibril lie in the same focal plane, the electric field is given 

by:  

𝐸1 = 𝐸"cos	𝜇		,	 	𝐸3 = 𝐸"sin	𝜇	 1.18 

Substituting 1.18 back into 1.17, considering the angle between the collagen fiber and the 

laboratory axis, and factoring out the anisotropy parameter 𝜌 = 5"""
($)

5"&&
($)  , we have: 

𝑃1 (2𝜔) ∝ cos$	(𝜇 − 𝜃) + sin$	(𝜇 − 𝜃)
𝑃3 (2𝜔) ∝ 2cos	(𝜇 − 𝜃)sin	(𝜇 − 𝜃)

 
1.19 

Moreover, the total SHG intensity becomes: 

𝐼678(𝜇) = 𝐾[𝐴cos	(4𝜇 − 4𝜃) + 𝐵cos	(2𝜇 − 2𝜃) + 1] 1.20 

A and B are related to susceptibility components, K is the average number of photons detected, 

and θ is the angle of the collagen fiber in the focal plane. By applying a fit or Fourier transform to 

1.20, the primary orientation of the fibrils (θ) can be determined by changing the angle µ [62,63]. 

The utilization of 3D Fourier Transform Second Harmonic Generation (FT SHG) has provided a 

Figure removed due to copyright issues
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unique avenue for directly extracting orientation information from intensity images through the 

analysis of spatial patterns. This innovative approach is useful for distinguishing between isotropic 

and anisotropic regions within biological tissues [64]. However, it is essential to acknowledge that 

the efficacy of this method can be influenced by the presence of interference from SHG patterns, 

which occasionally obscure the actual underlying material structure. To complement FT SHG, a 

specialized software tool named CurveAlign [65] was developed. CurveAlign demonstrates its 

advantages, mainly when SHG filaments exhibit high clarity or when interference patterns do not 

mask the intriguing features of the physical structure of the material. Moreover, for more versatile 

applications in similar situations, there is a valuable ImageJ plugin called OrientationJ [66,67]. 

Although both methods have their merits and strengths, they cannot resolve highly complex 

structures.  

1.4.2 Interferometric SHG microscopy 

The coherent nature of SHG offers valuable insights into the samples but presents certain 

limitations. As described in earlier studies, the patterns observed in SHG images result from 

complex interferences [68,69]. These interferences can introduce significant imaging artifacts, 

mainly depending on the microscopic configuration [69], and potentially obscure the underlying 

structure, which is particularly relevant in biological specimens [69]. Within the focal volume, the 

interaction of dipoles with opposing or matching polarities leads to destructive or constructive 

interference, resulting in regions with low or high SHG signals. Therefore, SHG images often 

exhibit both bright and dark regions, which may not directly correspond to the actual distribution 

of the harmonophores. Thus, it is essential to assess local polarity within a sample to obtain 

precise quantitative information [69]. 

It is noteworthy that a polarity inversion, represented by a change in the 𝜒($) sign induces a π 

phase shift in the emitted SHG signal; consequently, the signal phase retains information about 

the polarity within the sample, which can be mapped for each pixel in the image. This is typically 

achieved through interferometry, with Interferometric Second Harmonic Generation (I-SHG) 

initially proposed in 2004 to facilitate phase measurements in a scanning SHG microscope [70]. 

Subsequently, this technique was applied to examine tendons in 2013 [71] and cartilage in 2015 

[72].  

The I-SHG method employs direct phase measurements to probe the relative polarity of 

harmonophores. This technique involves the combination of two SHG signals, one from a 

reference nonlinear crystal positioned before the microscope (reference SHG) and the other from 
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the sample being analyzed (sample SHG), which are then interfered with. As both SHG beams 

are spatially and temporally coherent, the total intensity of the detector follows the widely 

recognized two-wave interferometry equation [8,49]: 

𝐼 = 𝐼9:; + 𝐼% + 2W𝐼9:;𝐼%cos	X𝜑% − 𝜑9:;Z 
1.21 

Where 𝐼% and 𝜑% (and 𝐼9:; and 𝜑9:;) represent the intensity and phase of the sample (reference) 

SHG beam, respectively. The images obtained by I-SHG microscopy do not directly provide 𝜑% . 

In an image, each pixel has a signal that follows equation 1.21. To extract the optical phase of 

the imaged area, a cosine function must be interpolated at each pixel using images captured at 

different reference phases. To interpolate a cosine, at least three points are required. Two points 

are insufficient for this function, because two solutions with distinct phases can pass through 

them. Therefore, we require a combination of at least three images taken at different reference 

phases to interpolate the optical phase correctly at each pixel. A larger number of images implies 

a larger number of points, which allows us to perform better interpolation and improves the 

accuracy of the optical phase 𝜑%	found at each pixel [8,49]. 

Interferograms can be captured when the phase difference between the sample and reference 

SHG beams is tweaked. The argument of the cosine (relative phase) and its multiplicative factor 

(interferometric contrast) can be extracted by analyzing the experimental curve and fitting it 

accordingly. This technique is commonly referred to as phase-shifting interferometry (PSI) [2]. A 

simple and practical method that can be applied to process images and solve this interpolation is 

to use pairs of I-SHG images. To eliminate the constant term, two π-phase-shifted raw images 

are subtracted as follows [73]:  

𝐼(0) − 𝐼(𝜋) = [𝐼ref	 + 𝐼s	 + 2W𝐼ref	𝐼s	𝑐𝑜𝑠	X𝜑s	 − 𝜑ref	Z_

− [𝐼9:; + 𝐼s	 + 2W𝐼9:;𝐼s	𝑐𝑜𝑠	X𝜑s	 − 𝜑ref	 − 𝜋Z_

𝐼(0) − 𝐼(𝜋) = [2W𝐼ref	𝐼s	𝑐𝑜𝑠	X𝜑s	 − 𝜑ref	Z_ − [−2W𝐼ref	𝐼s	𝑐𝑜𝑠	X𝜑s	 − 𝜑ref	Z_

𝐼(0) − 𝐼(𝜋) = 4W𝐼ref	𝐼s	𝑐𝑜𝑠	X𝜑s	 − 𝜑ref	Z

1.22 
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The experimental cosine is fitted to determine the amplitude and relative phase of each pixel, 

which produces phase and interferometric contrast maps. This operation isolates the 

interferometric contrast by eliminating the term 𝐼9:; + 𝐼s	 from the image signal [8,49]. It also 

amplifies the interferometric contrast term by a factor of two. The new image contains only 

interferometric contrast, and its pixels have positive and negative counts. Thus, the image 

obtained after subtraction clearly shows the sign and intensity of interferometric contrast. If 𝐼9:; is 

much higher than 𝐼s	 , this image processing step is beneficial because it isolates the 

interferometric contrast from the rest of the signal to amplify the SHG signal. A visual 

representation of this process is shown in Figure 1-7.  

Figure 1-7: Diagram of the algorithm for finding the relative I-SHG phase. The 2N original images were paired 
and subtracted to obtain the N contrast images. The intensity of each pixel depends on a cosine function of 
the phase shift of the interferogram, which can be interpolated to obtain optical phase and interferometric 
contrast images. Extracted from [73]. 

Various methods can be employed to adjust the phase difference between the two SHG signals, 

including a gas cell, changes in distance, a rotating glass plate [74], and more advanced 

techniques, such as using an electro-optic phase modulator (EOM) [75], as depicted in  

Figure 1-8. 
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Figure 1-8: Diagram of an advanced I-SHG setup. The setup was designed modularly to choose between 
different pathways for image acquisition: P1 for sample scanning with a motorized stage and P2 for laser 
scanning using galvos. A common-path interferometer can pass through a phase scanner (EOM) or a standard 
phase shifter (a rotating glass plate). The phase scanner modulated the phase difference between the two 
beams, whereas the phase shifter adjusted the phase offset. The beams are directed to the objective (P1) by 
mirrors or galvos for conventional laser scanning (P2). Stage-scanning mode was used when the beams 
directly reached the objective. The stage moved the sample in the X- and Y-directions. The grey rectangles 
with solid or dashed outlines are mirrors that can be flipped. HWP1&2: half-wave plate at 810 nm, full-wave 
plate at 405 nm. HWP3 is a half-wave plate at 810 nm and 405 nm, and QWP is a quarter-wave plate for the 
same wavelength. Extracted from [75]. 

In conclusion, I-SHG microscopy has proven to be a powerful technique for enhancing the 

visualization of non-centrosymmetric structures in biological tissues. By overcoming the 

limitations of complex interferences in SHG images, I-SHG allows for more precise 

characterization of biopolymers such as collagen. As we transition from the intricacies of I-SHG, 

we explore the capabilities of Wide-field SHG microscopy. This technique offers the advantage of 

high-speed imaging, capturing entire frames simultaneously, which is particularly beneficial for 

dynamic studies and large-scale tissue characterization. However, it also presents its challenges, 

which we explore in the following section. 

1.4.3 Wide-field SHG microscopy 

Scanning SHG imaging is a well-established technique that has been successfully used in 

numerous applications. However, it faces a significant limitation in terms of imaging throughput, 

which refers to the number of detected photons per frame per second. Two primary strategies 

Figure removed due to copyright issues
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can be considered to address this limitation: enhancing the scanning speed and parallelizing 

photon emission. With some success, improvements in the scanning speed have been explored 

using acousto-optic deflectors [79] and resonant scanners [80]. Nonetheless, these methods are 

constrained by the dwell time required to accumulate sufficient photons to produce a measurable 

signal. 

In contrast, wide-field SHG microscopy represents the ultimate parallelization approach, as it 

allows for the simultaneous illumination of the entire area of interest with signals detected by a 

pixelated detector [76,77]. Wide-field SHG imaging differs from the conventional point-by-point 

method by employing higher-energy pulses, enabling frame-by-frame capture over larger areas. 

This approach facilitates real-time video rate imaging. However, a trade-off is accompanied by 

wide-field imaging because it limits the penetration depth. 

Lasers with a repetition rate of a few kilohertz are commonly employed in these applications [78]. 

In addition, the development of more sensitive CCD cameras can significantly enhance the 

performance of wide-field SHG. Temporal focusing is occasionally utilized to mitigate the out-of-

plane illumination inherent to wide-field techniques and to improve the axial resolution as shown 

in Figure 1-9. This setup incorporates a "temporal lens," where the pulse frequencies are 

scattered at the back-focal plane of the microscope objective [79,80]. This causes each frequency 

to travel at a distinct angle and to recombine at the focal point. Before reaching the focal plane, 

spatial chirping increases the effective pulse duration beyond the Fourier-limited value, thereby 

reducing the peak power when the pulse is not in the focal plane. Notably, this technique has also 

been applied in scanning multiphoton imaging, allowing video rate acquisition despite using a 

point-scanning scheme [81].  
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Figure 1-9: Example of a wide-field SHG imaging system with spatiotemporal focusing. A microscope system 
uses three main components to generate spatiotemporal focus: a high-NA objective lens, a collimating lens, 
and a diffraction grating [79,80]. The laser pulse hits the grating and is split into different spectral components. 
The collimating lens then aligns these components and travels along its optical axis. The high-NA objective 
lens directed them to the sample from various angles. The spectral components recombine in phase at the 
focal plane, forming a short pulse with high peak power. This pulse enables efficient multiphoton excitation of 
the sample [79,80].  Extracted from [82]. 

 Given the vulnerability of living cells, it is crucial to exercise caution to prevent photodamage. 

Various studies have examined light-induced damage using wide-field SHG microscopy across 

different cell lines. These investigations have been instrumental in delineating a range wherein 

pulse energy, and consequently heat deposition, remains beneath the damage threshold for the 

samples [83]. In recent advancements, a high-repetition-rate (in the MHz range) wide-field SHG 

microscope has been developed for live imaging of contracting muscle tissue. Remarkably, this 

system employs laser pulses with exceptionally low pulse energy, hovering around 60 nJ per 

pulse [83].  

1.5 SHG microscopy in biological samples 

In this section, we discuss the application of SHG microscopy to different biological samples, 

starting with collagen. Figure 1-10 shows the essential components of SHG microscopy. 

Figure removed due to copyrights issues
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Figure 1-10: Laser scanning SHG microscopy system with forward and backward SHG detection. In this case, 
the laser source, a Ti: Saph laser, illuminated and scanned the sample using a galvo mirror scanner system. 
Subsequently, the input laser was filtered out, and the forward and backward SHG signals from the sample 
were collected using PMTs. Extracted from [84]. 

1.5.1 SHG microscopy in collagen 

Collagen, a vital structural protein found in various connective tissues, is crucial, constituting 

approximately one-third of an organism's total protein mass [29]. Connective tissues 

encompassing a diverse range of biological tissues are characterized by an extracellular matrix 

that separates cells. This matrix consists of a ground substance, viscous fluid, and collagen and 

elastic fibers maintained by specialized fibroblast cells [85]. Collagen in the form of fibers imparts 

the necessary mechanical properties for tissue functionality. These connective tissues primarily 

support, connect, or segregate different tissues in an organism, with additional functions 

depending on the specific tissue [85]. Collagen molecules consist of three identical helical chains 

forming a triple helix at the molecular level. Various types of collagen, particularly types I and II, 

create well-organized fibrils observable by SHG microscopy [86,87].  

In contrast, non-fibrillar collagen, such as type IV collagen, which forms sheets in specific tissue 

layers, cannot be visualized using SHG microscopy [35]. The introduction of SHG microscopy to 

biological tissue imaging dates back to the pioneering work of Freund et al. in 1986, specifically 

in rat-tail tendons [30]. These tendons exhibit a highly organized multi-scale structure primarily 

composed of type I collagen. More recently, SHG microscopy has been applied to visualize the 

fascia [68] and monitor tendon healing processes [84]. The polar structures of fibrillar collagen 

Figure removed due to copyrights issues
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types I and II enable the generation of strong SHG signals. Consequently, this technique 

examines collagen fiber organization at the micrometre scale in connective tissues without 

staining, making it especially valuable for collagen-rich tissues. 

The tropocollagen molecule has three identical helices, resulting in C3 rotational symmetry. 

Freund et al. suggested that the structural arrangement of type I collagen in tendons could be 

represented by either C∞ or cylindrical symmetry when averaged over dimensions approximately 

equal to the wavelength of light [30]. Rocha-Mendoza and his team investigated the molecular 

basis of non-centrosymmetry in the tropocollagen molecule, which in turn, applies to collagen 

[88]. The investigation conducted by the researchers focused on fibrils extracted from rat tail 

tendons, which are primarily composed of type I collagen. Their findings revealed that this 

collagen molecule's 𝜒($) encompasses both achiral and chiral contributions, with the chiral effects 

attributed to the elements represented by 𝜒=>?
($) (where i ≠ j ≠ k) [88].

Furthermore, the study leveraged vibrational sum frequency spectroscopy (SFG-V) to 

demonstrate that the achiral contribution originates from the non-centrosymmetric orientation of 

methylene groups in the rings of Proline and Hydroxyproline amino acids, projecting outward from 

the tropocollagen helix [89]. Additionally, the study highlighted the presence of hydrogen bonds 

between the nitrogen, hydrogen segment of glycine, and carbon and oxygen segment of proline 

in the X position of an α chain. This interaction, which is essential for binding the three α chains, 

establishes a helical scale at the center of the helix, resulting in a supramolecular nonlinear chiral 

contribution. It is necessary to note that assuming C∞ symmetry, as is common in such studies, 

simplifies the collagen fibril into a cylinder, leading to omission of the chiral contribution. Typically, 

Kleinman symmetry is assumed in fibrillar collagen. While this assumption holds [90], some 

debate exists because the second harmonic wavelength in their research (400 nm) significantly 

differs from the first electronic transition in tendons at approximately 310 nm. Chu et al. pointed 

out that the resonance frequencies of muscle fibers (around 310 nm and 550 nm) closely align 

with the second harmonic wavelength of their laser at 615 nm [91]. Consequently, the SHG 

intensity changes with respect to the angle between the collagen fiber and polarization of the 

incident light, and this change varies depending on the detected polarization. P-SHG derives the 

anisotropy parameter and applies a Fourier transform [92]. 

The multifaceted roles of collagen in connective tissues, its structural and molecular 

characteristics, and its interactions with light and imaging techniques are subject to extensive 

research, contributing to our understanding of this fundamental protein. 
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1.5.2 SHG microscopy in muscle 

The sarcomere is a structural unit composed of two distinct protein filaments, actin and myosin 

[93,94]. These filaments work together to enable muscle contractions. Muscle tissues are 

characterized by a high concentration of myosin, and the interpretation of SHG images of these 

tissues is well established. Extensive research using electron microscopy has yielded a deep 

understanding of the nanoscale structure of muscle tissues [95,96]. In striated muscles, myosin 

molecules cluster to create thick filaments, whereas actin forms thin filaments. These myosin 

molecules have opposing orientations within each half of the thick filament. The movement of 

thick filaments along thin filaments enables contraction or relaxation of the sarcomere. Muscles 

consist of numerous sarcomeres arranged end-to-end, which enables their contraction.  

Multiple SHG microscopy studies have revealed that myosin is responsible for the signal within 

muscle tissue [48,86,91,97–101]. More precisely, it has been demonstrated that the signal 

originates from the tail of the myosin molecule with the head having minimal influence [97,102]. 

The contribution of myosin to SHG is significantly greater—approximately three orders of 

magnitude higher—than that of actin [103].The SHG signal arises from C-N peptide bonds, which 

are present in all proteins. However, the substantial difference in SHG intensity between the two 

major muscle proteins suggests key structural distinctions. For constructive interference and 

strong SHG generation, two levels of molecular organization are required: first, peptide bonds 

must be arranged in a helical structure, and second, these helices must be sufficiently aligned 

within the protein. While actin contains α-helices, their varied orientations result in weak SHG 

signals. In contrast, myosin possesses long and well-ordered α-helices within the thick filament, 

which amplify the SHG response [103]. 

Owing to the bipolar nature of thick filaments, one or two SHG signal bands are occasionally 

observed per sarcomere [104,105]. The signal intensity is typically lowest at the M-line, where 

myosin molecules switch their orientation, causing destructive interference in the SHG response 

[94]. This characteristic striation pattern has been exploited in SHG microscopy to non-invasively 

monitor sarcomere organization and structural integrity in both healthy and diseased muscle 

tissues [94]. 

Studies have demonstrated that the polarization dependence of SHG can be used to distinguish 

different conformational states of myosin within muscle fibers, such as relaxed, rigor, and actively 

contracting states [94,103] . Quantifying this polarization-dependent SHG response through the 

tensor component ratio (γ) enables detailed assessment of structural changes in myosin filaments 
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during contraction. Notably, myosin filaments in rigor exhibit a higher γ ratio compared to the 

relaxed state, suggesting conformational differences that may involve tilting or bending of the 

myosin rod domain [94,103]. 

This ability of SHG to probe molecular interactions in myofibrils makes it a valuable tool for 

studying muscle physiology and pathology. SHG imaging has been successfully used to assess 

myofibrillar disruptions in muscular dystrophy [104] and serves as a powerful diagnostic tool for 

detecting sarcomere disarray in various muscle diseases. 

1.5.3 SHG microscopy in neurons 

The nervous system is an essential organ in living organisms and plays a crucial role in processing 

and transmitting information [105]. Receptive extensions of the neuron are termed dendrites, 

where most incoming signals are consolidated [106]. Signals are transmitted through components 

called axons. A neuron may possess multiple dendrites but always has only one axon. At the end 

of the axon, terminals and synapses exist that contain neurotransmitters essential for chemical 

communication between neurons. 

Traditionally, the exploration of neuronal mechanisms has hinged on electrophysiology, which 

involves the insertion of electrodes into neurons to gauge electrical potentials and currents. This 

method is heralded as the standard for unraveling the intricacies of neuronal activity and has been 

instrumental in unearthing insights into neuron functionality. However, this approach needs to be 

revised. First, it is an invasive procedure and poses considerable challenges when applied to 

living organisms [107]. Furthermore, despite recent advancements, patch clamping is burdened 

by its capacity to collect data from only a restricted number of neurons, substantially inhibiting the 

examination of neuronal networks [108]. 

Optical techniques have surfaced as desirable alternatives to overcome these limitations, 

affording the requisite flexibility to complement the electrophysiological measurements. TPEF and 

SHG microscopy have been extensively applied in neuroscience and are experiencing growing 

favor owing to their ability to provide complementary insights into the distinctive facets of neuronal 

structures. Although many SHG microscopy investigations have traditionally been grounded in 

the use of endogenous cellular properties, the utilization of SHG dyes has also been explored in 

various studies [109–113]. 

Dombeck et al. harnessed the FM 4–64 SHG dye, showcasing a notable enhancement in the 

signal-to-noise ratio (SNR) compared to conventional fluorescent probes [111]. Using the same 
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dye, Nuriya et al. achieved a pioneering milestone by revealing the ingress of action potentials 

into dendritic spines [112]. Subsequently, they elucidated the SHG response to an action potential 

and meticulously traced its propagation from the soma to axons [114]. Concurrently, Nemet et al. 

posited that all-trans-retinal chromophores are viable candidates for SHG imaging of neuronal 

membranes [110]. Jiang et al. demonstrated that the limitations in the signal-to-noise ratio, as 

observed in prior studies, could be circumvented through photon counting detection [115]. They 

subsequently revealed that the potential-sensing capacity of FM 4–64 originates from 

electrooptical mechanisms [113].  

In neuroscience, SHG microscopy has proven to be a valuable tool for investigating microtubules 

(MTs), which are fascinating structural elements. MTs are vital cytoskeletal filaments with diverse 

functions, including preserving cellular integrity, regulating intracellular trafficking, and playing 

critical roles in cell division [116–119]. These tubular structures, composed of α- and β-tubulin 

dimers, form linear protofilament polymers when these dimers bind head-to-tail [119,120]. 

Importantly, MTs exhibit intrinsic polarity, with all protofilaments aligned parallel and all dimers 

within the filament sharing the same orientation [120]. 

Numerous studies have investigated how MTs generate SHG [121–123]. Recent research [122] 

underscores the significance of factors such as number, organization, and polarization in shaping 

the SHG signal produced by MTs, as illustrated in Figure 1-11 [123]. 

Figure 1-11: Several factors influence the SHG signal's strength in neurons. Number, parallelity, and polarity 
all play essential roles in the strength of the SHG signal. Moreover, guanosine triphosphate (GTP)-bound MTs 
have been shown to have stronger SHG than guanosine diphosphate (GDP)-bound MTs. Extracted from [123]. 

Although MT polarity was not the central focus of these studies, subsequent insights have 

emerged through the deployment of the "protein plus" method, which tags microtubule-associated 
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proteins (MAP) with a fluorophore, allowing the tagged MAP to bind to the positive end of MTs 

[118,124]. Combining this approach with SHG microscopy revealed that MTs within axons exhibit 

well-defined and consistent polarity, with the minus end directed towards the cell body and the 

positive end extending towards axon terminals where neurotransmission occurs [118]. However, 

it is essential to note that this method relies on fluorescent markers and is invasive. Additionally, 

investigations into the effects of the commonly used paraformaldehyde fixation method revealed 

a significant loss of SHG signal, suggesting alterations in protein conformation [123]. In contrast, 

the polarity of MTs in dendrites still needs to be understood and structured more rigorously [116]. 

Although previous studies have hinted at a potential mixture of polarities within dendrites [121] 

and the presence of polarity domains [122], these observations remain hypothetical and require 

thorough characterization for verification. This raises intriguing questions about why axons exhibit 

uniform polarity while dendrites do not, and whether this mixed polarity holds functional relevance. 

SHG, particularly I-SHG, presents a promising avenue for exploring the mechanisms underlying 

dendrites and the significance of their polarity in neural function. 

In a distinct domain of biology—embryogenesis—SHG microscopy has proven invaluable for 

providing time-lapse images of the various phases of cell division. Notably, SHG intensity changes 

have facilitated the study of mitotic spindles, which comprise highly organized MTs, in different 

embryo types, including Caenorhabditis elegans, zebrafish, mice, rats, and sea urchins [125]. In 

a groundbreaking study using I-SHG, Bancelin et al. successfully mapped the polarity of MTs 

within mitotic spindles during cell division in zebrafish embryos [126]. They observed changes in 

MT polarity at various stages of cell division, studying the dynamic alignment and polarity of MT 

networks. This research illustrates the power of I-SHG microscopy and its potential for 

investigating dendritic polarity and other neuronal processes. In a broader context, SHG and 

advanced SHG microscopy techniques are versatile tools with promising potential for the in-depth 

exploration of various facets and unknown mechanisms related to MTs and associated diseases 

[123,126,127]. 

1.6 The future of SHG imaging 

Over the past two decades, SHG microscopy has firmly established itself as an indispensable tool 

in bioimaging and neuroimaging. Numerous studies have demonstrated its potential for 

investigating the non-centrosymmetric biological structures mentioned in this thesis. Innovative 

techniques have evolved over the years to minimize invasiveness, enhance imaging throughput 

through wide-field imaging, and develop specialized SHG probes [2]. These advances have 
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continually expanded the frontiers of SHG imaging to new domains and structures. In this dynamic 

landscape, both conceptual and technological progress in SHG microscopy continue to shape the 

evolving field of biophotonics. Innovations aimed at enhancing spatial resolution through coherent 

structured illumination [128] and post-processing methods such as pixel reassignment [129] and 

changing optical properties via adaptive optics [130,131] exemplify rapid advancements in the 

field. 

However, despite these strides, complete quantitative interpretation of SHG images remains a 

challenging endeavor because of the coherent nature of the process. While different SHG 

approaches contribute to this puzzle, a comprehensive integration of these techniques within a 

single instrument could provide a definitive solution to this enduring challenge. Moreover, 

expensive equipment and specialized training requirements hinder the adoption of SHG 

microscopy in routine biomedical practice. This limitation is particularly evident in advanced SHG 

techniques that rely on state-of-the-art optical implementations and complex hardware systems. 

However, recent advancements in laser technology have led to a shift from traditional Ti: sapphire 

lasers to more robust and cost-effective fiber and semiconductor lasers [132]. These 

developments are expected to open new avenues for the biomedical applications of SHG 

microscopy. The advancement of endoscopic SHG has also contributed to the broader application 

of this technology, offering the potential for the in vivo imaging of organs, as exemplified in Figure 

1-12 [133]. 
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Figure 1-12: a) The nonlinear endomicroscopic fiber probe and laser coupling unit. The probe head contained 
an optical fiber and cables connected to the piezo scanner. b) The fiber laser generates pump and Stokes 
beams for coherent anti-Stokes Raman scattering (CARS) imaging. The laser beam was collimated by a lens 
and filtered by a long-pass filter to remove four-wave mixing noise, and its power was controlled by a short-
pass dichroic mirror (DC1). A linear diffractive grating (G) and lens (L3) couple the beams into a double-core, 
double-clad (DCDC) fiber. Nonlinear signals from the sample (CARS, SHG, and TPEF) were collected by the 
outer cladding of the DCDC fiber and detected by a photomultiplier tube (PMT) after the desired nonlinear 
signal was selected using a bandpass filter (F2). Extracted from [133]. 

In addition to hardware enhancements, significant progress has been made in software analysis 

and computational approaches to enhance the imaging capabilities in microscopy. Improved 

processing capabilities through graphical processing units and field-programmable gate arrays 

have accelerated the data analysis. Moreover, machine learning, a transformative force in various 

fields including image processing, has been used in SHG microscopy. Standardization and 

unification of imaging processes are becoming increasingly essential to ensure reproducibility and 

portability across different laboratories, as current imaging systems tend to be unique and 

customized in each setting. Despite the challenges and limitations discussed, SHG and nonlinear 

optical microscopy techniques offer a wealth of information that is not readily accessible using 

traditional linear or incoherent optical imaging methods. With ongoing advancements in optics, 
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machine learning, and laser technology, nonlinear imaging modalities have become more 

sophisticated and accessible, offering new horizons for applications in fundamental science and 

medical research. 

Machine learning can further enhance the SHG microscopy and image analysis. These 

technologies can automate image interpretation, assist in quantifying SHG signals, and provide 

insights that may be challenging to manually extract. The following section delves into machine 

learning concepts and their applications in SHG microscopy, shedding light on the exciting 

potential of combining it with this powerful imaging technique. The combination of SHG 

microscopy and machine learning enhances our ability to explore the intricacies of biological 

structures and enables novel diagnostic and therapeutic applications. Mixing artificial intelligence 

with SHG microscopy promises to open new horizons for research, diagnostics, and patient care 

in bioimaging and neuroimaging as technology advances. 

1.7 Deep learning in microscopy 

Deep Learning (DL) is inspired by the intricate data-processing mechanisms observed in the 

human brain. DL’s inherent ability to learn without relying on predefined human-crafted rules 

distinguishes it. Instead, it harnesses extensive datasets to establish connections between the 

input data and specific labels. DL is constructed by integrating numerous layers of algorithms, 

known as artificial neural networks (ANNs), each of which provides a unique interpretation of the 

data they receive [134–136]. DL has emerged as a revolutionary tool in microscopy and image 

analysis. By continually refining its algorithms through iterative learning, DL has shown 

remarkable performance in the field of microscopy, enabling the precise and rapid analysis of 

intricate images and providing previously challenging insights. Its adaptability and capacity to 

uncover subtle patterns within data makes DL a transformative force in the world of microscopy 

and image analysis, with the potential to reshape how we explore and understand the microscopic 

world [137].  

1.7.1 Deep learning architecture for image analysis 

As image datasets become increasingly complex and the demand for robust decision-making 

systems increases, the need for more sophisticated algorithms is justified. Many different 

architectures are available for deep learning; however, we describe the most prominent networks 

in this section.  
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The basis for numerous modern deep learning models is feed-forward neural networks, commonly 

referred to as multilayer perceptrons (MLPs), which take cues from human neural systems in a 

general manner [138,139]. They are termed "feed-forward neural networks" because they strictly 

involve data flowing in a unidirectional manner from the input to the output without any feedback 

loop from the output back into the model [140]. An example of such a model is shown in Figure 

1-13.

Figure 1-13: An example of an MLP with an input layer, two hidden layers, and an output layer. Extracted from 
[141]. 

A convolutional neural network (CNN) [142] represents a variation of an MLP designed explicitly 

for processing grid data, such as images. In contrast to MLPs, CNNs inherently consider the 

spatial details in images [136].  

Standard neural networks such as MLPs have inherent limitations when dealing with sequential 

data [143]. In contrast, recurrent neural networks (RNNs) feature neurons that extend over time, 

allowing them to capture temporal dependencies [143]. Furthermore, RNNs incorporate hidden 

layers that introduce memory into a network over time. RNNs can be structured in three distinct 

architectures to address the challenges posed by sequential data. The one-to-many RNN 

architecture comprises a single input neuron and a sequence of output neurons, which are 
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commonly used in tasks such as image captioning [144]. The many-to-one RNN architecture 

involves multiple input neurons and a single output neuron, and is typically used for text 

classification [145]. The many-to-many RNN architecture entails multiple input and output 

neurons, which are often employed in tasks such as machine translation [146]. Despite these 

advancements, RNNs still need to be explored in biophotonics in comparison with MLPs and 

CNNs. Figure 1-14 highlights a CNN network with two pooling and convolutional layers.  

Figure 1-14: Example of a CNN. The difference between a CNN and MLP is that a CNN contains convolutional 
and pooling layers. Extracted from [147]. 

A generative adversarial network (GAN) represents an ANN's unique variant comprising two key 

components: a generator and discriminator (illustrated in Figure 1-15) [148]. The two networks 

are simultaneously trained. The input to the generator can be either a random noise vector or an 

actual image. The generator is a differentiable function, often represented by an MLP or 

autoencoder, that maps the input to an output. The primary objective of the generator is to learn 

the distribution to approximate the prior distribution from which the input data are drawn. The 

generator output is designed to visually resemble actual data such as images. In addition to the 

generator output, an actual input image is provided to the discriminator. This adversarial training 

is accomplished by optimizing the loss function, which is optimized using the backpropagation 

technique. During back-propagation, the gradient computed from the loss function is propagated 

from the discriminator to the generator, enabling the update of the generator parameters [148].  

Figure removed due to copyrights issues
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Figure 1-15: Architecture of a GAN network. The generator learns to produce realistic data that resemble actual 
data, whereas the discriminator evaluates the authenticity of the data. Extracted from [149]. 

Training a GAN presents specific challenges. First, achieving convergence for both networks is 

complex owing to their simultaneous training [150]. Additionally, the early convergence of the 

discriminator can easily distinguish generated images from real images. This is because the 

discriminator gradient approaches zero, providing minimal guidance to the generator for further 

training [150]. After several iterations, when convergence between the two networks is achieved, 

the generator can produce highly realistic images that are challenging to identify as "fake" images 

by the discriminator [148]. Adversarial training of GANs has gained popularity in both industrial 

and academic research because of its potential for domain adaptation and image generation. In 

the next section, we will examine these architectures applied to medical image analysis and how 

each network has helped move the research forward to reach the goal. 

1.7.2 Medical image analysis with machine learning 

DL can be immensely useful given the complexity of medical image analysis and acquisition. In 

this section, we detail some of the applications in which DL has been able to help biomedical 

imaging research.  

Image classification: Instead of pixel-wise prediction, image-level classification assigns a single 

label to each input image. Supervised learning networks, particularly CNNs, are powerful tools for 

microscopic image classification [151]. However, unsupervised feature learning has been 

effectively applied to various computer vision tasks and holds promise for medical imaging 

[152,153]. A common approach for image classification is to utilize neural networks as classifiers 

that provide direct predictions for individual images. Alternatively, networks trained on extensive 

datasets can be feature extractors, generating data representations that are fed into other 

classifiers. Deep learning has the potential to transform image analysis, automate tasks, such as 

image classification and segmentation, and reduce the need for manual data inspection [154–
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157]. This approach has applications in SHG microscopy for various medical domains, including 

lymphedema [154], ovarian tissue [129,155], and breast cancer [156,158]. However, when 

dealing with smaller datasets such as those often encountered in medical imaging, applying deep 

learning can present challenges that require specific measures to ensure the accuracy of the 

trained model [159]. Gao et al. conducted CNN experiments to investigate the effects of 

hyperparameters, data augmentation, and image foreground masks on the classification 

performance. Their experiments also revealed that CNNs, when pretrained on a significantly 

larger dataset and fine-tuned on a smaller related dataset, achieved higher accuracy than those 

trained from scratch on a smaller dataset [160]. In a different approach, Chen et al. used a fully 

connected neural network for a label-free cell classification [161]. 

Image denoising: Deep neural networks are versatile for various input-output scenarios, 

including image enhancement by using noisy or low-resolution images as input and using 

generative networks to produce images with the desired resolution or noise level as the output. 

These networks can learn from high-resolution images, reduce artifacts, and preserve features 

without excessive smoothing. GANs are commonly employed to maintain high-frequency 

features. A variation of GANs, known as Wasserstein generative adversarial networks (WGANs), 

use the Wasserstein distance as a loss function and have successfully enhanced the resolution 

of OCT images [162]. Another approach uses edge-sensitive conditional generative adversarial 

networks (cGANs) to mitigate speckle noise effectively [163]. Deep learning has also been 

introduced to restore microscopy images, focusing on enhancing the image quality while avoiding 

the creation of hallucinations. Among the various image restoration techniques to eliminate noise, 

Noise to Ground Truth (N2GT) involves noise removal by comparing an image to a reference 

image (ground truth). However, it has limitations owing to the need for ground-truth images [164]. 

Noise to Noise (N2N) focuses on denoising by comparing a noisy image to another with a higher 

SNR [165]. Noise to Void (N2V) removes noise by training a deep neural network to learn the 

statistical properties of noise and signal within a single image without requiring image pairs [166]. 

These diverse approaches offer valuable tools for enhancing the image quality across various 

microscopy applications and are the basis for Article 3 of this thesis.  

Transfer learning in image analysis: Transfer learning (TL) with CNNs aims to enhance the 

performance of a new task by leveraging previously acquired knowledge from similar tasks 

[167,168]. This approach has contributed significantly to medical image analysis by addressing 

data scarcity issues, saving time, and conserving hardware resources. Transfer learning using 

CNNs involves transferring knowledge at the parameter level. Well-trained CNN models utilize 
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the learned parameters of their convolutional layers for new tasks in the medical domain. 

Specifically, in the context of transfer learning with CNNs for medical image classification, a model 

is trained to classify medical images (target task) by leveraging generic features learned from 

natural image classification (source task), where labels are available in both domains [167].  

Image resolution enhancement: In the previous section, we discussed how GAN architectures 

could be effectively utilized for image denoising and resolution enhancement. Although improving 

the signal-to-noise ratio is crucial for image interpretation, it can also be enhanced by increasing 

the number of collected images [140]. However, the resolution of the obtained image is often 

restricted owing to technical limitations such as the diffraction limit. Various advanced technical 

solutions enable imaging beyond the diffraction limit, which falls under the category of super-

resolution imaging. In addition to these technical solutions, overcoming the diffraction limit is 

feasible through image-processing techniques, particularly deep learning. This GAN-based 

approach achieves super-resolution while simultaneously reducing image noise [140]. 

Although all methods have helped with medical imaging in one way or another, the accuracy of 

the generated images and the output are of utmost importance for the integrity of the experiments. 

Image quality metrics play a pivotal role in image analysis, particularly in deep learning. They are 

crucial for several reasons, contributing to the success and effectiveness of image analysis 

techniques, which will be explored in the next section. 

1.7.3 Image quality metrics 

Image quality assessment (IQA) has attracted significant attention over the last three decades. 

This heightened interest can be attributed to the widespread availability of digital images that are 

routinely acquired, compressed, transmitted, restored, and edited by the public [169]. IQA 

methods have now become instrumental in developing and evaluating imaging devices, serving 

as indispensable tools to gauge the extent to which various distortions and operations impact an 

image. Current IQA approaches can be categorized into two primary groups: subjective and 

objective methods [170]. Subjective methods rely on quality scores provided by human experts, 

whereas objective methods leverage mathematical models to estimate perceived image quality 

automatically, aligning with human observation. Objective methods can be further classified into 

three main categories based on the availability of a reference image: No-Reference IQA (NR-

IQA) or "blind," Reduced-Reference IQA, and  Full-Reference IQA (FR-IQA) [169]. The FR-IQA 

techniques assess the visual quality of a target image in relation to a reference image, which is 
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the optimal quality. Applying FR-IQA methods to microscopy can be challenging because of the 

typical absence of reference images [171]. 

In contrast, NR-IQA methods evaluate image quality solely based on the information within the 

tested image, making them well suited for use with microscopy images [172–174]. However, it is 

worth noting that most established NR-IQA methods have been designed considering the 

characteristics of natural images captured by digital cameras. Owing to the nature of imaged 

scenes and acquisition mechanisms, microscopy images possess unique characteristics that may 

lead to unpredictable results when applying traditional NR-IQA metrics [169]. 

1.7.4 Full-reference image quality metrics 

This section explores the most popular FR-IQA metrics currently used for DL applications. The 

classification of objective image quality metrics is based on the presence of an original, 

undistorted image, which serves as a comparison standard for a distorted image. The 

predominant approaches are categorized as full references, in which a complete reference image 

is presumed to be accessible [171]. However, obtaining a reference image in practical scenarios 

may not be feasible, necessitating a no-reference or "blind" quality assessment approach. 

Alternatively, there exists a third type of method in which the reference image is only partially 

available, taking the form of a set of extracted features that serve as supplementary information 

for evaluating the quality of the distorted image, referred to as reduced-reference quality 

assessment [175]. The simplest IQA method is the mean squared error metric. 

The Mean Squared Error (MSE) is a widely used metric in image processing and signal analysis, 

serving as a quantitative measure of the discrepancy between an original and a reconstructed or 

processed image [176]. The MSE provides a numerical representation of the overall distortion or 

error, calculated by averaging the squared differences between the corresponding pixel values of 

the two images. A lower MSE value indicates a closer match between the original and processed 

images, signifying a higher fidelity. Although MSE is a straightforward and computationally 

efficient metric, it has limitations, such as being sensitive to outliers and not aligning with human 

perceptual differences [176]. Despite these drawbacks, MSE remains a fundamental tool for 

evaluating the quality of image reconstructions and is commonly employed in optimization 

processes, such as those related to image compression and restoration algorithms [176]. 

The Peak Signal-to-Noise Ratio (PSNR) is another widely utilized metric in image and video 

quality assessment, complementing MSE. While MSE measures the average squared difference 

between the corresponding pixels of an original and processed image, PSNR provides a more 
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interpretable and perceptually relevant measure by considering both the magnitude of the error 

and the maximum possible signal strength [177]. The PSNR is calculated as the ratio of the peak 

signal power to the mean squared error, expressed in decibels (dB). The peak signal power 

represents the maximum possible intensity value that the pixels can have, which is typically 

constrained by the image's bit depth. As such, the PSNR considers the dynamic range of the 

image, offering a normalized measure of quality [177]. One notable advantage of the PSNR is its 

straightforward interpretation. Higher PSNR values corresponded to lower distortion, reflecting a 

closer resemblance between the original and processed images. This metric is widely used in 

various applications, including image and video compression, where it aids in assessing the 

impact of compression algorithms on the visual quality. Despite its advantages, the PSNR has 

certain limitations. Similar to MSE, it is sensitive to minor errors and may not align perfectly with 

human perception [177]. High PSNR values do not always guarantee superior visual quality, 

particularly when considering the intricacies of the human visual system. For example, PSNR may 

not accurately capture the impact of compression artifacts on the subjective visual experience. 

When comparing PSNR to MSE, it is crucial to recognize that PSNR builds upon MSE by 

incorporating the signal-to-noise ratio aspect [177]. PSNR provides a more normalized and 

perceptually relevant measure, considering the dynamic range of the images being compared. 

However, both metrics share the fundamental limitation of being sensitive to pixel-wise 

differences, without accurately reflecting human perceptual judgments [177].  

The Structural Similarity Index (SSIM) and its variants, such as the Multi-scale Structural 

Similarity Index (MS-SSIM) [178] and Complex Wavelet Structural Similarity Index (CW-SSIM) 

[179], represent advancements in image quality assessment that address some of the limitations 

of traditional metrics, such as MSE and PSNR [180].  

SSIM, introduced by Wang et al., assesses the perceived quality of an image by considering the 

structural information, luminance, and contrast [175]. Unlike MSE and PSNR, which focus on 

pixel-wise differences, SSIM incorporates the elements of human visual perception. It operates 

by dividing the image into local regions and evaluating the similarity of the structures within these 

regions, as seen in Figure 1-16. The resulting index ranges from -1 to 1, where 1 indicates perfect 

similarity [175]. 
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Figure 1-16: SSIM process for comparing the similarity between two images. The luminance, contrast, and 
structure were compared and reflected in the similarity index results. Extracted from [181]. 

MS-SSIM extends SSIM by incorporating multi-scale processing. This involves generating 

multiple scales of an image, applying SSIM at each scale, and combining the results [178]. This 

accounts for the variations in perception at different scales, making MS-SSIM more robust in 

capturing local and global structural information [178]. CW-SSIM introduces complex wavelet 

transforms to better model the sensitivity of the human visual system to spatial frequencies [179]. 

CW-SSIM can capture intricate details and textures in images better by employing complex 

wavelets, accurately reflecting the perceived quality [179]. Comparing SSIM and its variants to 

traditional metrics, such as MSE and PSNR, reveals significant advantages. SSIM-related metrics 

align more with human perception when considering structural information and texture details 

[180]. They are less sensitive to compression artifacts and other distortions that may not be 

perceptually noticeable. Consequently, SSIM metrics often provide a more reliable measure of 

the image quality. However, they still have some limitations, particularly in scenarios where a 

reference image may not be available or when the quality degradation is severe [182].  

1.7.5 No-reference image quality metrics 

No-reference metrics or blind metrics do not require a reference image for comparison and are 

particularly valuable in situations where obtaining a pristine reference image is challenging or 

impossible [172]. These metrics leverage statistical models, machine learning, or other 

sophisticated approaches to estimate image quality without direct comparison with the original. 
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As technology evolves, the demand for accurate, efficient, and reference-free image quality 

assessments continues to increase. No-reference metrics represent a promising avenue in this 

direction, overcoming some of the challenges posed by traditional metrics, and providing more 

flexibility in evaluating image quality across diverse applications and scenarios [172]. 

The Natural Image Quality Evaluator (NIQE) is a prominent example of a no-reference image-

quality metric designed to assess the perceptual quality of natural images without requiring a 

reference image for comparison [183]. Introduced by Mittal et al., NIQE leverages statistical 

modelling and analyses of natural scene statistics to estimate the image quality [183]. This metric 

is based on the premise that natural images exhibit certain statistical regularities, and deviations 

from these norms can indicate image distortions or artifacts. NIQE has found applications in 

various fields, including image and video processing, where it offers an efficient and automated 

means of evaluating the quality of images in situations where obtaining reference images may be 

impractical or unfeasible. NIQE, being a no-reference metric, represents a departure from 

traditional approaches, such as MSE and PSNR, which require a pristine reference image. 

Instead, NIQE analyzes the statistical properties inherent in natural images, such as texture, 

edge, and luminance variations [172]. By quantifying deviations from these statistical norms, the 

NIQE provides an objective measure of image quality that aligns with human perceptual 

judgments. Its versatility makes NIQE suitable for image quality assessment across various 

applications, including image compression, denoising, and other image-processing tasks 

[172,183].  

The Perceptual Image Quality Evaluator (PIQE) is another noteworthy example of a no-

reference image quality metric, offering a different approach to NIQE. PIQE relies on a machine 

learning model trained on a large dataset of images to predict perceptual image quality [184]. 

Unlike NIQE, which is rooted in the statistical analyses of natural image properties, PIQE takes 

advantage of the learning capabilities of a neural network to discern features indicative of image 

quality [184]. This allows PIQE to adapt to a broader range of image contents and quality 

variations. PIQE has demonstrated effectiveness in various applications, including the evaluation 

of compressed images and the assessment of the impact of distortions on perceived quality [184]. 

A comparison of NIQE and PIQE reveals nuanced differences in their methodologies. While NIQE 

leans on statistical regularities in natural images, PIQE harnesses the power of machine learning 

to infer perceptual qualities [174]. The choice between the two may depend on the specific 

requirements of a given application and nature of the images under consideration. We have 

covered DL and the most popular metrics used to validate the results, in the next section, we will 
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examine how DL and these metrics overlap with biomedical microscopy, and how they can help 

advance biomedical SHG microscopy and its applications. 

1.7.6 DL application in biomedical imaging and SHG biomedical imaging 

There are many instances where DL has enriched biomedical imaging, and in this section, we will 

discuss SHG and non-SHG biomedical imaging enhanced by such techniques. 

In one study, Hall et al. proposed a new algorithm for real-time collagen fiber alignment 

quantification for SHG imaging [185]. Their algorithm evaluated the Fourier transform magnitude 

of image symmetry using a single parameter, the fiber alignment anisotropy, ranging from 0 

(randomized fibers) to 1 (perfect alignment). The proposed model enables real-time application 

and quantification [185]. 

Optical coherence tomography (OCT) encounters challenges posed by coherent noise, 

specifically speckle noise, which degrades the contrast and detailed structural information in OCT 

images [186]. This in turn imposes significant limitations on OCT's diagnostic capabilities. Qui et 

al. proposed an innovative denoising method for OCT images in a study. To train and evaluate 

denoising deep learning models, they generated label images by averaging 50 frames of 

registered B-scans acquired in a single direction [186]. Their novel method excels in preserving 

detailed structural information in the retinal layers and enhances perceptual metrics in human 

visual perception [186]. 

In another study, to counter noise in two-photon microscopy, Lee et al. proposed a novel approach 

based on DL [187]. They addressed suboptimal image quality due to various noise factors, 

including blur, white noise, and photobleaching in two-photon microscopy, with a novel algorithm 

rooted in deep CNNs [187]. The proposed model comprises multiple U-nets, each targeting noise 

removal at different scales and contributing to the performance enhancement through a coarse-

to-fine strategy. Notably, the constituent CNNs fully utilize 3D convolution operations, allowing the 

model to facilitate end-to-end learning without requiring pre/post-processing [187].  

In a recent study, Kistenev et al. applied DL image classification to lymphedema tissue analysis 

[154]. This study encompassed thirty-six image samples from patients in the second stage of 

lymphedema and forty-two image samples from healthy individuals. This examination specifically 

focused on the papillary layer of the skin. Notably, the study identified disorganization in the 

collagen network and an elevation in the collagen/elastin ratio within lymphedema tissue, 

indicative of heightened fibrosis severity. To characterize the images, edge detection, the 
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histogram of oriented gradients method, and a machine-learning-based predictive model for 

diagnosis were used. Integrating "ensemble learning" in the classification process yielded a 96% 

accuracy in validating the data from the testing set [154]. 

In ovarian cancer studies, Huttunen et al. demonstrated that deep learning techniques can 

effectively classify multiphoton microscopy images of unstained reproductive tissues [155]. Using 

four pretrained convolutional neural networks, they fine-tuned the models with over 200 murine 

tissue images. These images were based on combined SHG and TPEF contrast to enhance 

tissue visualization. With this approach, they were able to accurately label tissue as either healthy 

or associated with high-grade serous carcinoma, with a sensitivity of over 95% and specificity of 

97% [155]. 

In wide-field P-SHG applications, Mirsanaye et al. demonstrated a DL-based classification 

method for breast cancer diagnostics by examining collagen fibers in the ECM (Figure 1-17) [156]. 

This study demonstrated the application of high-throughput widefield P-SHG microscopy for 

whole-slide imaging of breast tissue microarrays. The obtained P-SHG parameters were utilized 

for classification, distinguishing between tumor and normal tissue with accuracy and an F1-score 

of 94.2% and a 6.3% false discovery rate. Subsequently, the trained classifier accurately 

predicted the tumor tissue with 91.3% accuracy, 90.7% F1-score, and 13.8% false omission rate 

[156].  
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Figure 1-17: Imaging and classification steps for a wide-field P-SHG microscope. (a) The sample was imaged 
at 16 different combinations of polarization states set by a polarization state generator (PSG) and polarization 
state analyzer (PSA). (b) SHG Stokes vector components were computed from the images to obtain 
polarimetric parameter images. (c) Polarimetric images were divided into sixty-four smaller images, enabling 
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high-resolution texture analysis and statistical significance testing. (d) The mean and mean absolute deviation 
of the polarimetric parameters and texture parameters (contrast, correlation, entropy, angular second moment, 
and inverse difference moment) were calculated for each smaller image. (e) A logistic regression classifier is 
trained using polarimetric and texture parameters to predict whether the tissue is normal or tumorous. 
Extracted from [156]. 

To improve laser scanning microscopy, Shen et al. introduced deep learning autofluorescence 

harmonic microscopy (DLAM) [157]. DLAM aims to improve the speed, field of view, and image 

quality using attention-guided networks. Their study showcases the label-free large-field imaging 

of clinicopathological tissues with better spatial resolution and efficiency [157]. 

Therefore, we can see how advancements in different areas of DL can benefit different studies 

and microscopic techniques. Despite these advancements, it is essential to acknowledge that 

there are still certain shortcomings and challenges associated with applying deep learning to 

microscopy. These limitations are thoroughly discussed in the subsequent section, shedding light 

on areas that require further attention and refinement. 

1.7.7 Deep learning in microscopy shortcomings 

The biophotonics field faces challenges related to the systematic accessibility of data and the 

scarcity of open repositories, posing a significant hurdle for utilizing deep learning in biophotonics 

data analysis owing to insufficient data availability. Deep learning models inherently rely on large 

datasets, and data inadequacy risks overfitting, resulting in poor generalizability to new datasets 

[188].  

Understanding how DL models make decisions is crucial for medical imaging and modern 

healthcare systems. It is essential to ascertain whether deep neural networks base their 

predictions on biomolecular information rather than being influenced by background effects or 

image noise. At times, this distinction can be quite challenging to researchers, which is considered 

one of the drawbacks of using such methods [140].  DL holds significant potential for clinical 

healthcare, yet it faces challenges in standardization compared with established radiological or 

histopathological techniques [140]. The absence of an international consensus on evaluating the 

performance of biophotonics devices hampers data reproducibility, making machine learning 

models trained on such data less dependable. Enhancing the quality of clinical studies, promoting 

data comparisons across different laboratories and systems, encouraging open databases, and 

enabling quantitative comparisons between different models are pivotal for developing robust 

computational models [140]. DL techniques are formidable analytical tools for microscopy, 

demonstrating superior performance compared to traditional image processing pipelines. 
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Although DL technology has sparked enthusiasm and innovation, the demand for robust and 

compatible resources to train DL networks creates an accessibility barrier that is particularly 

challenging for inexperienced users to overcome [189]. This hurdle involves the availability of 

high-performance computing and extends the expertise required for practical DL model training. 

Bridging this accessibility gap is crucial for empowering a broader user base by leveraging the 

capabilities of DL in microscopy and fostering the widespread adoption of these advanced 

analytical tools [189]. 





2 OVERVIEW OF RESEARCH ARTICLES 

This thesis delves into integrating artificial intelligence into SHG microscopy to enhance its 

application in biomedical imaging. It is structured around four interrelated articles, each 

contributing uniquely to the overarching thesis's objectives. This section provides a 

comprehensive overview of each article, detailing its title, objectives, hypotheses, methodological 

approach, and relationship with other articles to form a coherent whole that addresses the general 

objectives of the thesis. 

2.1 General thesis objectives 

The primary aim of this thesis was to address the inherent limitations of SHG microscopy, thereby 

enhancing its capability for accurate and practical biomedical imaging. The specific objectives 

include: 

Enhancing image quality: Machine learning techniques are implemented to reduce noise and 

improve resolution, thereby enhancing the effectiveness of SHG microscopy in clinical and 

research applications. 

Enabling Automated Analysis: Employing automated analysis to minimize human error and 

increase efficiency in the processing and interpretation of biomedical images. 

Expanding Clinical Applications: Extending the potential applications of SHG microscopy in 

clinical settings by improving its imaging capabilities, aiding in diagnosing and studying various 

diseases. 

The following sections present summaries of the four articles that form the core of this thesis. 

Based on the above background information, these articles address specific challenges in SHG 

microscopy. Each article summary includes the study's objectives, methodological approach, key 

findings, and relation to the overall thesis goals. 

2.2 Article summaries 

2.2.1 Article 1: “Second harmonic generation microscopy: a powerful tool for 
biological imaging” 

Objective: This article provides an overview of the historical development and theoretical basis 

of biomedical SHG microscopy, tracing its evolution from its early discovery in nonlinear optics to 

its modern applications in biomedical imaging. It explores key technological advancements and 
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advanced imaging modalities that have expanded SHG’s capabilities in biological research. By 

synthesizing these developments, this review serves as a comprehensive resource for new 

researchers entering the field, offering insights into the foundational principles and the latest 

innovations in SHG microscopy. 

Hypotheses: This study hypothesizes that SHG microscopy’s intrinsic ability to selectively 

visualize non-centrosymmetric structures provides unparalleled insights into select biological 

structures. It highlights the unique advantages of SHG microscopy in visualizing complex 

biological systems. Unlike fluorescence-based techniques, which rely on external labeling agents, 

SHG generates contrast through intrinsic molecular properties, making it particularly suited for 

imaging non-centrosymmetric structures such as collagen, myosin, and microtubules. This label-

free, specific imaging approach allows researchers to study structural organization, and disease 

progression in a minimally invasive manner. These properties position SHG as an indispensable 

tool in biomedical imaging, neuroscience, and tissue diagnostics, with the potential for further 

enhancement through emerging computational techniques. 

Methodological Approach: This article conducts a comprehensive literature review to 

synthesize historical, theoretical and experimental research on SHG microscopy across various 

biological fields. It consolidates data from neuroscience, cancer imaging, tissue analysis and 

extracellular matrix studies to present an interconnected picture of the current state of SHG 

technology, identifying its strengths and areas needing improvement. This synthesis provides a 

crucial rationale for integrating computational technologies to address identified limitations. 

Relation to Thesis Objectives: This article sets the foundation for this thesis, providing a 

detailed account of SHG microscopy’s strengths, challenges, and potential for enhancement 

through computational approaches.  It identifies key areas where AI-driven methods, such as 

deep learning-based denoising and GAN-based super-resolution, can improve SHG imaging 

quality, reduce acquisition time, and enhance automated analysis. 

Key Findings: This review confirms that SHG microscopy excels in imaging non-centrosymmetric 

biological structures, with significant applications in neuronal pathways, collagen networks, and 

myosin filaments. Unlike fluorescence microscopy, SHG provides high spatial resolution without 

photobleaching, making it ideal for long-term live imaging of delicate tissues. However, several 

challenges persist, including signal interference and resolution constraints. These findings 

emphasize the need for advanced denoising, enhanced resolution, and computational post-

processing techniques to further enhance SHG’s imaging quality.  
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Support for Hypotheses: The findings support the hypothesis that SHG microscopy is 

indispensable for studying complex biological systems, owing to its unique imaging properties. 

Moreover, this review highlights specific areas where deep learning can mitigate SHG’s current 

limitations, including noise reduction, resolution enhancement, and real-time image interpretation. 

These insights reinforce the broader objective of integrating computational techniques to optimize 

SHG imaging for biomedical applications. 

Novel Contributions: This article consolidates current knowledge and offers a comprehensive 

overview of SHG microscopy. By identifying key technological gaps, such as signal optimization, 

imaging speed, and real-time analysis, it establishes a roadmap for future innovations, particularly 

in AI-enhanced imaging applications. 

Comparison with Existing Research: This article reaffirms prior findings on SHG’s advantages 

while introducing new perspectives on improving its capabilities, contributing significantly to the 

existing literature on SHG microscopy. 

This comprehensive review sets the stage for subsequent studies by identifying key areas in 

which DL can significantly enhance the SHG microscopy capabilities. 

2.2.2 Article 2: “Nonlinear microscopy and deep learning classification for 
mammary gland microenvironment studies” 

Objective: This study explores the application of deep learning techniques to classify SHG 

images of naïve and tumor-bearing murine mammary gland tissues. By leveraging supervised 

learning and transfer learning with the MobileNetV2 architecture, this research aims to improve 

the accuracy and efficiency of automated tissue classification. The study specifically evaluates 

how deep learning models can enhance SHG-based cancer diagnostics by detecting subtle ECM 

modifications associated with tumor progression. Additionally, it assesses the feasibility of deep 

learning classification with a highly limited dataset, reflecting the real-world constraints of SHG 

image acquisition. Given that deep learning models typically require large-scale datasets, this 

study investigates optimization strategies, including data augmentation and transfer learning, to 

improve model generalization and prevent overfitting. 

Hypotheses: This study hypothesizes that deep learning models can accurately classify SHG 

images by detecting collagen organization patterns and subtle ECM modifications that distinguish 

naïve from tumor-bearing tissues. Given SHG’s unique ability to visualize collagen fibrillar 

architecture, deep learning algorithms can enhance image-based diagnostics by identifying 

tumor-associated collagen signatures (TACS) that are difficult to quantify through traditional 
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manual analysis. Additionally, the study investigates whether transfer learning can improve 

classification accuracy in small SHG datasets, addressing the common challenge of limited 

training data in biomedical imaging. 

Methodological Approach: This study employs a supervised deep learning approach to classify 

SHG images of naïve and tumor-bearing murine mammary glands. The classification task is 

performed using a custom CNN and transfer learning with MobileNetV2, a lightweight neural 

network architecture optimized for image recognition. To mitigate the challenges of small dataset 

size, the study implements data augmentation techniques, including rotation, flipping, and 

zooming, to artificially expand the training dataset. The performance of the model is evaluated 

using accuracy, precision, recall, F1-score, and area under the curve (AUC) metrics. Additionally, 

this study investigates overfitting and underfitting challenges, optimizing hyperparameters such 

as dropout rate, data split ratio, and number of convolutional layers to improve model 

generalization. 

Relation to Thesis Objectives: This article contributes to the thesis objective of enhancing SHG 

microscopy through deep learning-based automation. By demonstrating that CNNs can 

accurately classify small SHG image datasets, it supports the broader goal of reducing manual 

intervention in SHG-based diagnostics.  

Key Findings: This study demonstrates that deep learning models significantly improve SHG 

image classification, distinguishing between naïve and tumor-bearing mammary gland tissues 

with an optimal test accuracy of 73%. However, classification performance is highly dependent 

on dataset size and preprocessing techniques. The study found that data augmentation improved 

model robustness, but excessive augmentation led to overfitting in some cases.  

Support for Hypotheses: The findings validate the hypothesis that CNNs can accurately classify 

SHG images, confirming that deep learning models can detect fine structural variations in collagen 

organization that differentiate tumor-bearing from naïve tissues. The results support the thesis 

objective of developing AI-driven methods for automated SHG image interpretation.  

Novel Contributions: This study identifies key challenges in applying deep learning to SHG 

image classification, particularly small dataset constraints, model generalization issues, and 

hyperparameter sensitivity. It systematically examines how transfer learning, data augmentation, 

and dropout optimization influence model performance, providing a roadmap for future AI-driven 

SHG imaging approaches. 
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Comparison with Existing Research: Compared with traditional classification methods, this 

study offers insight into accuracy, efficiency, and the unique challenges of applying CNNs to SHG 

image analysis with a very small dataset. Unlike conventional deep learning studies in biomedical 

imaging, which typically rely on large datasets, this study evaluates classification performance 

under realistic low-data conditions, reflecting practical constraints in SHG imaging. The limited 

number of training images posed significant challenges in model generalization, leading to issues 

such as overfitting, data imbalance, and sensitivity to hyperparameter selection. However, this 

study demonstrates that parameter optimization and data augmentation can help mitigate these 

limitations, making AI-based SHG classification feasible even in low-data scenarios.  

Building on the foundation established in Article 1, this study demonstrated the practical 

application of AI in enhancing SHG image analysis. 

2.2.3 Article 3: “A comparative study of CARE 2D and N2V 2D for tissue-
specific denoising in second harmonic generation imaging” 

Objective: This study evaluates the performance of two deep learning-based denoising 

techniques, Content-Aware Image Restoration (CARE 2D) and Noise-to-Void (N2V 2D), in 

improving the SHG image quality of different tissue types, including tumor-bearing murine 

mammary glands and zebrafish muscle structures. Beyond general noise reduction, this study 

explores the impact of glycerol concentration on SHG image noise and how deep learning can be 

used to restore image quality when fixation-induced artifacts are present. Additionally, it 

investigates low-power SHG imaging, assessing whether denoising models can compensate for 

the reduction in laser power, which is critical for reducing photodamage and enabling live imaging 

applications. 

Hypotheses: This study hypothesizes that both CARE 2D and N2V 2D will effectively reduce 

noise in SHG images while preserving critical structural details, thereby improving the 

visualization and analysis of biological structures. Given that CARE 2D is a supervised model 

trained with ground-truth images, it is expected to provide strong noise suppression, contrast 

enhancement, and intensity restoration. However, since it relies on paired training data, its 

performance may be limited in cases where noise originates from fixation chemicals or sample 

preparation artifacts. Since N2V 2D does not require explicit ground-truth training, it is expected 

to outperform CARE 2D in situations where noise is introduced due to fixation chemicals and 

sample preparation-related artifacts. However, because it learns noise patterns from the input 

images themselves, it may be less effective in enhancing overall contrast compared to CARE 2D. 
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This study also examines whether deep learning-based denoising can compensate for low-laser-

power SHG imaging by restoring image clarity without compromising structural integrity. The 

hypothesis is that deep learning models can effectively restore structural details under low-power 

conditions, thereby making SHG microscopy a more viable tool for live imaging applications where 

reducing photodamage is critical. 

Methodological Approach: This study applied CARE 2D and N2V 2D models to SHG images 

of murine mammary gland tumors and zebrafish muscle tissues. Performance was assessed 

using the modified Structural Similarity Index Metric (mSSIM) and Peak Signal-to-Noise Ratio 

(PSNR). In addition to standard noise reduction evaluation, the study analyzed the impact of 

glycerol fixation on SHG image noise by testing how different concentrations of glycerol (50%, 

80%, and 100%) affected image quality. This experiment aimed to determine whether deep 

learning models could restore image clarity when images were degraded by improper fixation. 

Another critical aspect of the methodology involved a low-power SHG imaging experiment, where 

laser power was reduced by 70% to evaluate the effectiveness of deep learning models in 

compensating for weaker signals. The study also examined tissue-specific denoising 

performance by comparing the ability of the models to restore collagen fiber structure in tumor-

bearing mammary glands and preserve fine muscle fiber details in zebrafish tissues.  

Relation to Thesis Objectives: By focusing on deep learning-based SHG image restoration, this 

study aligns with the thesis objective of enhancing SHG microscopy through AI-driven methods. 

It contributes to improving the versatility of SHG as a biomedical imaging tool by demonstrating 

how denoising models can compensate for imaging limitations caused by low laser power and 

sample fixation inconsistencies. The results establish the feasibility of applying deep learning for 

low-power SHG imaging, reinforcing the broader objective of expanding SHG’s applicability 

beyond fixed samples and making it a viable tool for real-time imaging in biological research. 

Key Findings: The study demonstrates that both CARE 2D and N2V 2D improve SHG image 

quality, but their effectiveness is highly dependent on tissue type, signal-to-noise ratio (SNR), and 

imaging conditions. CARE 2D performs well in moderate-SNR images, delivering strong noise 

suppression and improved contrast. However, in very low-SNR cases, the model generates 

hallucinated structures, which misrepresent biological features . This limitation suggests that while 

CARE 2D is effective in well-structured images, it may not be reliable when the original signal is 

extremely weak, as it can create artifacts rather than reconstruct missing information accurately. 

N2V 2D, in contrast, excels at preserving muscle structures in zebrafish samples. Unlike CARE 

2D, it avoids over-smoothing and maintains the natural appearance of fine biological structures, 
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even though it does not enhance SHG intensity to the same degree. At low laser power, CARE 

2D was better at matching high-intensity reference images of ECM, whereas N2V 2D was superior 

in preserving structural integrity, particularly in muscle tissues. Another important finding is that 

glycerol concentration significantly affects SHG noise levels, with higher concentrations leading 

to increased signal degradation. Because CARE 2D requires paired reference images for training, 

it could not be applied in these cases. However, N2V 2D effectively restored images affected by 

high glycerol content, making it the preferred choice for denoising when sample preparation 

inconsistencies impact SHG image quality. These findings indicate that while no single model is 

universally superior, CARE 2D is preferable for structured tissues with moderate SNR due to its 

strong contrast enhancement. In contrast, N2V 2D is more effective in preserving structural 

integrity when noise stems from fixation artifacts or low SNR conditions. The choice between 

CARE 2D and N2V 2D depends on the specific imaging conditions and the need for either 

intensity restoration (CARE 2D) or fine-detail preservation (N2V 2D). 

Support for Hypotheses: The findings support the hypothesis that both CARE 2D and N2V 2D 

effectively reduce noise in SHG images while preserving critical structural details, though their 

performance depends on imaging conditions and tissue type. CARE 2D demonstrated strong 

noise suppression, contrast enhancement, and intensity restoration, particularly in structured 

tissues with moderate-to-high SNR, such as the extracellular matrix of tumor-bearing mammary 

glands. However, in low-SNR conditions, it introduced artificial structures (hallucinations), 

particularly within tumor boundaries, suggesting that it may misrepresent biological features when 

the original signal is weak. In contrast, N2V 2D, performed better in conditions where noise was 

introduced due to fixation chemicals and sample preparation inconsistencies, effectively restoring 

images affected by high glycerol concentrations while preserving fine structural details, especially 

in muscle tissues. Although it did not enhance SHG intensity to the same extent as CARE 2D, it 

avoided over-smoothing and maintained structural integrity more reliably in complex biological 

structures. Both models were effective in compensating for low-laser-power SHG imaging, with 

CARE 2D excelling in intensity restoration and N2V 2D preserving fine morphological details, 

confirming their potential for enhancing SHG microscopy while reducing photodamage in live 

imaging applications. However, at extremely low power, both models showed diminished 

performance, indicating that deep learning-based restoration has limitations when the SHG signal 

is excessively weak. 

Novel Contributions: This study presents one of the first direct comparisons of CARE 2D and 

N2V 2D in SHG microscopy across different tissue types, providing valuable insights into the 
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strengths and limitations of these denoising models. It introduces deep learning based 

compensation for low laser power SHG imaging, a concept that has significant implications for 

live-cell imaging and photodamage reduction. Additionally, the study demonstrates that deep 

learning can correct fixation-induced artifacts in SHG images, suggesting applications beyond 

noise reduction in cases where sample preparation inconsistencies affect imaging quality. By 

identifying tissue-specific denoising preferences, this work also provides practical guidelines for 

selecting appropriate deep learning models based on image characteristics and research 

objectives. 

Comparison with Existing Research: This study advances previous research by providing a 

comprehensive evaluation of deep learning-based denoising models in SHG microscopy and 

expanding upon prior studies that have focused on single-method applications. The study also 

introduces deep learning for low-power SHG imaging, a concept that has not been widely 

explored in prior research. By demonstrating that AI-based denoising can compensate for imaging 

constraints related to laser intensity and fixation artifacts, this study broadens the applicability of 

deep learning in SHG microscopy, reinforcing the importance of tailored model selection based 

on specific imaging conditions. 

While Article 2 focuses on image classification, this study expands on image quality 

enhancement, addressing another key challenge identified in Article 1. 

2.2.4 Article 4: “Accelerating whole-sample polarization-resolved second 
harmonic generation imaging in mammary gland tissue via generative 
adversarial networks” 

Objective: This article introduces a novel approach to whole-sample P-SHG imaging, utilizing 

ESRGAN to upscale low-resolution images while significantly reducing imaging time. P-SHG 

imaging provides valuable insights into collagen fiber orientation and ECM organization, but 

traditional high-resolution imaging methods require extended acquisition times and increased 

laser exposure, leading to potential photodamage. The goal of this study is to determine whether 

deep learning-based techniques can serve as a viable alternative by preserving image quality 

while improving acquisition speed. 

This study systematically evaluates different ESRGAN variants to determine which model best 

balances image sharpness, structural accuracy, and computational efficiency for P-SHG imaging. 

Since resolution enhancing methods can introduce unwanted artifacts or distort fine image details, 

it is critical to assess which ESRGAN model is best suited for SHG microscopy applications.  
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Hypotheses: This study hypothesizes that ESRGAN can improve P-SHG imaging resolution 

under reduced acquisition time conditions without compromising image quality. It investigates 

whether ESRGAN can accurately reconstruct fiber orientation information and ECM structures, 

maintaining analytical reliability for P-SHG studies. Another key hypothesis is that certain 

ESRGAN variants will perform better than others, with specific architectures preserving texture 

and structural integrity more effectively in SHG imaging applications. 

Methodological Approach: This study applied ESRGAN to low-resolution SHG and P-SHG 

images and evaluated its effectiveness using image quality assessment (IQA) metrics, including 

Structural Similarity Index (SSIM), Peak Signal-to-Noise Ratio (PSNR), and Mean Squared Error 

(MSE). Since different ESRGAN variants exist, this study tested multiple architectures to 

determine the most suitable model for mammary gland SHG imaging, balancing resolution 

improvement with artifact suppression and computational efficiency. In addition to evaluating 

general image quality, the study conducted a detailed analysis of fiber orientation data and texture 

features, assessing whether ESRGAN-upscaled images retained the essential structural 

characteristics needed for quantitative P-SHG analysis. The upscaled images were compared to 

high-resolution ground-truth images to determine whether ESRGAN could serve as a reliable 

alternative to direct high-resolution acquisition. 

Relation to Thesis Objectives: This article directly aligns with the thesis’s goal of enhancing 

SHG microscopy through machine learning-based image enhancement. By demonstrating that 

deep learning-based image enhancement can reduce acquisition time while maintaining image 

quality, this study contributes to making SHG imaging more efficient, cost-effective, and less 

resource-intensive. The work also complements GAN-based approaches explored elsewhere in 

this thesis, reinforcing the broader objective of leveraging AI-driven solutions to optimize SHG 

image acquisition and analysis. 

Key Findings: The study demonstrates that ESRGAN successfully reduces imaging time while 

maintaining high image quality and analytical accuracy, making it a viable tool for improving P-

SHG imaging efficiency. ESRGAN exhibits superior structural preservation, contrast 

enhancement, and reduced artifacts, enabling accurate fiber orientation analysis in upscaled 

images. The model successfully reconstructs ECM structure and fiber orientation details, ensuring 

that upscaled images retain key biological features necessary for P-SHG analysis. One of the 

critical findings was that not all ESRGAN variants performed equally well for SHG imaging 

applications. Certain ESRGAN variants introduced undesirable artifacts, such as over-smoothing, 

texture loss, and edge distortions, while others failed to preserve fine details in fiber orientation 
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data. The study identified the most suitable ESRGAN architecture, which provided the best 

balance between sharpness, structural accuracy, and computational efficiency for P-SHG 

imaging. The ability to select the optimal ESRGAN variant enhances the practical implementation 

of this method in biomedical imaging. Another key finding was that ESRGAN allows for a 

significant reduction in imaging time, demonstrating its potential to minimize acquisition time in P-

SHG imaging. This advancement makes SHG microscopy more cost-effective and accessible, 

enabling high-quality imaging without the need for extended acquisition times. 

Support for Hypotheses: The findings confirm the hypothesis that GAN-based super-resolution 

can improve imaging resolution under reduced acquisition time conditions while preserving image 

quality. ESRGAN successfully reconstructed collagen fiber orientation and ECM structures, 

ensuring that critical biological information was retained in upscaled images. The results also 

confirmed that imaging time could be reduced without sacrificing image clarity, supporting the 

idea that deep learning-based super-resolution can mitigate photodamage in P-SHG imaging. 

The study further validated the hypothesis that certain ESRGAN variants performed better than 

others, with specific architectures proving more effective at preserving texture and structural 

integrity while minimizing upscaling artifacts, reinforcing their potential as a practical alternative 

to direct high-resolution imaging in SHG microscopy. 

Novel Contributions: This research presents a novel application of GAN-based resolution 

enhancement in biomedical SHG imaging, demonstrating a method that balances image quality, 

acquisition speed, and structural accuracy in P-SHG imaging. By systematically evaluating 

different ESRGAN variants, this study provides a clear framework for selecting the most effective 

architecture for SHG applications, reducing the risk of artifact introduction while maximizing 

resolution improvements. The ability to reduce acquisition time without sacrificing analytical 

accuracy offers a practical solution for overcoming cost and time constraints in high-resolution 

SHG imaging, making advanced imaging techniques more accessible to the biomedical research 

community. 

Comparison with Existing Research: This study builds upon existing research by applying 

GAN-based upscaling specifically to P-SHG imaging. Unlike previous approaches that rely on 

direct high-resolution acquisition, this study demonstrates that GAN-based models can reduce 

the need for extensive imaging time and laser exposure, making P-SHG imaging more practical 

for long-term studies and live imaging applications. The work also contributes to the broader field 

of biomedical imaging by highlighting the importance of selecting the proper resolution-enhancing 
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model to achieve optimal results, providing a structured approach for implementing AI-driven 

methodologies in SHG microscopy. 

2.3 Thematic cohesion across articles 

The four articles presented in this thesis are intricately connected through their collective focus 

on enhancing second harmonic generation (SHG) microscopy. Article 1 provides the theoretical 

and historical context and sets the foundation for the entire research. It offers insights into the 

existing capabilities and limitations of SHG microscopy, highlighting the need for technological 

advancements. Building on this foundation, Article 2 focuses on image classification and employs 

deep learning techniques to improve the accuracy of identifying different tissue types. Automated 

image analysis demonstrated how CNNs can transform SHG microscopy into a more precise tool 

for clinical applications. Article 3 examines the effectiveness of denoising techniques, highlighting 

how these models can enhance image quality by reducing noise while preserving crucial structural 

details. These advancements are pivotal for biomedical imaging, where clarity and accuracy are 

essential. Finally, Article 4 explores improvements in imaging speed and resolution. This 

demonstrates that generative adversarial networks (GANs) can significantly reduce imaging time 

without sacrificing quality, making SHG imaging more efficient and accessible. Together, these 

articles form a unified narrative supporting the overarching thesis of advancing SHG microscopy 

with machine learning. 

Articles 2, 3, and 4 addressed the limitations identified in Article 1 by demonstrating the capability 

to improve image classification accuracy, enhance image quality through denoising, and increase 

imaging speed without compromising quality with different ML methods. These advancements 

overcome key challenges in SHG microscopy, such as the need for expert interpretation, image 

noise interference, and lengthy acquisition times for high-quality images. 

Collectively, these articles address the thesis objectives by exploring SHG microscopy and 

demonstrating the role of machine-learning techniques in enhancing image quality, speed, and 

clinical applicability. They present significant technological advancements in terms of image 

quality, analysis speed, and clinical applicability. This integration illustrates a holistic approach to 

revolutionizing SHG microscopy, aligning with the thesis’s goal of making SHG a robust tool in 

biomedical research and clinical practice. The articles highlight the potential of overcoming current 

limitations, expanding SHG applications, and setting new standards for accuracy and efficiency 

in biomedical imaging. 
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This progression reflects a comprehensive approach to advancing SHG microscopy from the 

foundational understanding of the key limitations to implementing enhancements in image quality 

and speed. 

2.4 Consolidated research findings 

The combined results demonstrated significant advancements in image quality, automated 

analysis, and imaging speed in SHG microscopy. Denoising techniques (Article 3) have shown a 

remarkable ability to enhance image clarity while preserving crucial structural details, thereby 

addressing a fundamental challenge in SHG microscopy. The deep learning classification model 

(Article 2) demonstrated the potential for rapid, automated tissue analysis, which could 

significantly accelerate research and diagnostic processes. The application of GANs to P-SHG 

imaging (Article 4) represents a major leap forward in reducing the image acquisition time without 

sacrificing quality, making whole-sample imaging more feasible. Together, these advancements 

have brought SHG microscopy closer to widespread clinical adoption by addressing key practical 

limitations. 

Collectively, these findings directly address the core objectives of this thesis by demonstrating 

how machine learning can overcome the technical limitations of traditional SHG microscopy. By 

integrating denoising, automated analysis, and super-resolution techniques, this research 

establishes a clear path for making SHG microscopy more efficient, accessible, and clinically 

viable. These advancements not only reinforce the potential of SHG microscopy in biomedical 

imaging but also lay the groundwork for its broader adoption in both research and clinical settings. 

2.5 Tools and resources for DL-based microscopy enhancement 

To facilitate the integration of deep learning in microscopy, several open-source tools have been 

developed to streamline image processing, model selection, and visualization. These tools 

significantly reduce the technical barrier for researchers by providing pre-trained models, user-

friendly interfaces, and cloud-based platforms that do not require extensive coding expertise. 

OpenModelDB (https://openmodeldb.info/) is a community-driven database of AI models for 

image upscaling and enhancement. It provides researchers with an accessible platform to 

compare, select, and download deep learning models tailored for imaging applications. By offering 

a variety of models, OpenModelDB enables efficient selection of AI-based solutions for SHG 

image processing. 



 59 

CAREamics (https://github.com/CAREamics) is a deep learning framework designed for 

microscopy image restoration. It incorporates AI-based denoising models such as N2V 2D and 

CARE 2D, both of which were explored in this thesis for enhancing SHG image quality. 

CAREamics offers a streamlined, user-friendly approach to AI-based denoising, making it 

accessible to researchers. 

ZeroCostDL4Mic (https://github.com/HenriquesLab/ZeroCostDL4Mic) is a Google Colab-based 

platform that enables researchers to apply deep learning pipelines to microscopy images without 

programming expertise. It provides pre-configured workflows for tasks such as image restoration, 

segmentation, and super-resolution, making AI-powered microscopy analysis accessible to a 

wider range of users. By eliminating the need for local computational resources, ZeroCostDL4Mic 

facilitates rapid deployment of AI techniques in biomedical imaging. 

ChaiNNer (https://github.com/chaiNNer-org/chaiNNer) is a node-based, no-code AI workflow tool 

designed for image processing. It allows users to build complex deep learning pipelines using a 

visual interface rather than writing code. ChaiNNer supports a variety of AI-based image 

restoration and enhancement techniques, making it particularly useful for researchers looking to 

apply deep learning to microscopy images without extensive programming knowledge. Its 

modular design enables easy experimentation with different models, including upscaling, 

denoising, and super-resolution techniques. 

Netron (https://netron.app) is an intuitive neural network visualization tool that allows researchers 

to analyze, debug, and optimize AI models used in SHG image processing. By providing a 

graphical representation of neural networks, Netron enhances model interpretability, helping 

users identify key parameters, adjust architectures, and fine-tune models for microscopy 

applications. 

The integration of these tools supports this thesis’s objective of enhancing SHG microscopy 

through deep learning while ensuring accessibility to a broad range of researchers. By leveraging 

platforms like ChaiNNer, Careamics, and ZeroCostDL4Mic, researchers can apply advanced AI 

techniques without requiring extensive coding knowledge, making deep learning more practical 

for SHG microscopy. 
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3.1 Main article 

Abstract 

Second harmonic generation (SHG) microscopy is an important optical imaging technique in a 

variety of applications. This article describes the history and physical principles of SHG 

microscopy and its more advanced variants, as well as their strengths and weaknesses in 

biomedical applications. It also provides an overview of SHG and advanced SHG imaging in 

neuroscience and microtubule imaging and how these methods can aid in understanding 

microtubule formation, structuration, and involvement in neuronal function. Finally, we offer a 

perspective on the future of these methods and how technological advancements can help make 

SHG microscopy a more widely adopted imaging technique. 

Keywords: Nonlinear microscopy, SHG, neuroimaging, interferometry, polarimetry   
 

Introduction 

Despite being tremendously powerful tools, conventional linear optical microscopes suffer from 

scattering and a lack of optical sectioning in thick and complex samples [190]. Over the past two 

decades, Second Harmonic Generation (SHG) microscopy has become a key method for optical 

imaging with many applications in materials and biomedical science. Advancements in the 

development of reliable and robust ultrafast mode-locked laser technologies have been pivotal 

for the improvement of nonlinear optical microscopy techniques [191–193], especially for 

biomedical imaging. Using these laser sources, turn-key microscopes have been developed and 

are now widely spread within research laboratories. 

SHG microscopy imposes a requirement: the structure of interest needs to be non-

centrosymmetric [39], which makes it highly sensitive to filamentous proteins in biological samples 

[48,87]. Otherwise, samples must be stained with appropriate SHG dyes [109]. While this 

requirement limits SHG application to only a few structures, it is also a key strength since the 

signals are highly specific and offer sharp contrast images. Beyond that, SHG microscopy has 

several advantages over fluorescence imaging: it is based on an endogenous contrast (i.e., the 

contrast arises from the sample itself and not in a e.g., a fluorophore). Lastly, unlike fluorescence, 

SHG is free from photobleaching (the signal generated is not limited in time) and occurs 

instantaneously (no limitation on the laser repetition rate) [14]. 

In this review, we will first provide an overview of SHG microscopy of highly organized biological 

structures from its history and theoretical principles to its application to various tissues. We will 
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then focus on several advanced SHG modalities and lastly, we will discuss SHG application in 

neuroscience. 

Second harmonic generation microscopy for biomedical imaging 

In this section, we will briefly describe the history behind SHG microscopy, and we will provide a 

brief introduction of the principles behind the SHG signal generation and how it can be applied to 

biomedical research. 

History 

An exhaustive historical overview on SHG would start in the 19th century, during which Lord 

Rayleigh introduced the non-linearity of acoustic waves in his theory of sound  [194,195]. In this 

review, we will focus on the use of laser driven SHG processes to provide imaging contrast in 

biological samples in parallel to the development of advanced microscopy techniques. For a more 

comprehensive and in-depth look into the history and development of SHG microscopy we refer 

to Masters and So [196]. 

In 1931, two-photon absorption was theoretically predicted by Goeppert-Mayer [197]. Three 

decades later, in 1960, the ruby laser was created by Maiman [20] based on the theoretical 

foundation developed by Schawlow and Townes [21]. For more details on laser invention and its 

fundamental impact in science and technology, we suggest the excellent review by Siegman 

[198]. Almost immediately after this discovery, different non-linear optical processes were 

observed starting with SHG in 1961, when Franken et al. observed frequency doubling of a ruby 

laser in a quartz crystal [22]. At this time, the measured SHG signal was so dim that it was 

famously mistaken by the Physical Review editor as a speck of dust. In 1962, Bloembergen and 

Pershan derived the SHG equations and described key principles ruling light-matter non-linear 

interaction through an in-depth review of Maxwell’s equations [23]. For a comprehensive and 

detailed explanation of the fundamentals and formulations of non-linear optics, we strongly 

recommend the Nonlinear Optics book [39]. As for biological samples, the first attempts to 

understand piezoelectric and pyroelectric effects in bone and tendon were realized in 1964 by 

Fukada and Yasuda [199] and in 1966 by Lang [200]. They demonstrated that tendon has a 

macroscopic polar structure using piezoelectric [199] and pyroelectric measurements [200], 

although without successfully identifying the structural origin of piezoelectric and pyroelectric 

effects. 

In parallel, the confocal microscope, originally developed by Minsky in 1955 to image unstained 

neural networks of the brain [12,201], encountered a tremendous success, leading to the first 
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implementation of laser scanning confocal microscopy in the late ’60s. In 1974, Hellwarth and 

Christensen already combined SHG with optical microscopy by applying a focused laser on 

potassium deuterium hydrogen phosphate (KDP) crystals [24]. However, this method was solely 

based on very strong SHG converters as the entire field was illuminated with a CW laser. In 1977, 

Sheppard et al. imaged quartz with a scanning SHG microscope using a tight focusing that 

allowed to detect the non-linear optical signal [25]. Simultaneously, Parry and Craig showed, 

using electron microscopy (EM), that collagen fibrils composing tissues, such as tendons, 

possess an architecture with mixed polarity with neighboring fibrils pointing in opposite directions 

[26]. This was later confirmed using the combination of atomic and piezoelectric force microscopy 

[27,28]. In 1978, Roth and Freund reported on comparative measurements between the SHG 

signal of a reference quartz sample and a rat-tail tendon. They found that the SHG signal was 3-

4 orders of magnitude lower in the biological sample than in the reference material and already 

highlighted that SHG measurements could be advantageously used in vivo [29]. Finally, in 1986, 

Freund and Deutsch were the first to perform SHG microscopy of biological samples and proved 

that the macroscopic polar structure in the tendon arises from the network of fine structures that 

happen to be collagen fibrils, within the whole tissue volume [30]. In that pioneering publication, 

the viability of using SHG microscopy for biomedical imaging was demonstrated. 

In 1990, Denk et al. introduced two-photon excitation fluorescence (2PEF) laser scanning 

microscopy using pulsed lasers and a modified confocal microscope [31]. Following the success 

of 2PEF, in 1996, three-photon excitation microscopy was demonstrated [202]. Although the SHG 

modality is older than 2PEF microscopy [31], it was forgotten for over a decade and rediscovered 

in 1998 [33,34] and combined with 2PEF in the early 2000s in many studies [35–37]. Since then 

and following the progress in commercially available mode-locked lasers and user-friendly 

multiphoton microscopes [203], SHG has become a powerful method for multimodal high spatial 

resolution optical imaging. 

SHG microscopy 

In the context of microscopy, 2PEF and SHG present many technical similarities, which allows to 

combine them easily and efficiently in the same instrument. A typical implementation of a modern 

SHG microscope, obtained after many experimental setup iterations, is depicted in Figure 3-1. 
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Figure 3-1: Typical SHG microscopy setup, with source, power control unit, scanning system, objective lens, 
and detectors. Detectors are connected to a PC that controls the microscope and synchronizes laser scanning 
with signal acquisition using a detector which is typically a photo multiplier tube (PMT). 

Since the obtained imaging depth depends on the excitation wavelength [14,190], the employed 

laser is traditionally in the NIR-I region (700-1000 nm) [204] to minimize absorption from 

biomaterials (water, hemoglobin) [36]. It is worth noting that other optical “windows” matching this 

criterion are available, as indicated in Figure 3-2. Using longer wavelengths, e.g. NIR-2 (1000-

1300 nm), allows to limit scattering and hence to increase the penetration depth in the tissues 

[14,190] however at the expense of a reduced spatial resolution. Despite the higher penetration 

depth provided by longer wavelengths, it has been shown that, at least for imaging collagenous 

tissues, longer wavelengths result in lower SHG signal as the hyper-polarizability tensor 

decreases [205]. Therefore, shorter wavelengths should still be favored for performance. Besides 

that, the use of long wavelength lasers (1230 nm), such as Cr:forsterite lasers, provides the 

opportunity to simultaneously perform SHG and third harmonic generation (THG) microscopy in 

the visible range, avoiding the UV absorption of biological samples [206].  
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Figure 3-2: Top: energy level diagram of SHG. Two incident photons interact with the molecules 
(harmonophores) through virtual states, leading to the generation of a photon at 2ɷ, exactly twice the input 
frequency (ɷ). SHG is a parametric process, and no energy transfer occurs. Reproduced under CC BY 4.0 from 
[292]. Bottom: Absorption spectrum of the human skin, indicating 3 possible transparency windows. Adapted 
with permission from [36]. 

To favor the efficient generation of the non-linear optical signal, the typical pulse duration is about 

100 fs at a repetition rate of a few tens of MHz [14]. High numerical aperture (NA>1) objectives 

are used to tightly focus the light on the sample and spatially concentrate laser pulse energy [47]. 

For thin samples, where the light can be detected in the forward direction (see Figure 3-1), a high 

numerical aperture condenser is added to efficiently collect the light [87]. Both modalities (2PEF 

and SHG) present a quadratic dependence of the generated signal to the input laser intensity 

[191], leading to an intrinsic three-dimensional spatial resolution due to the signal generation 

being confined in the focal volume [40]. 
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Despite these similarities, SHG and 2PEF techniques are based on fundamentally different 

processes. In SHG, the frequency conversion is achieved through virtual states without a net 

transfer of energy to the system (Figure 3-2). This contrasts with 2PEF which involves population 

transfer from the electronic ground state to excited electronic states. These different origins lead 

to radically different, and often complementary properties that explain the rising popularity of SHG 

microscopy. 

SHG microscopy of endogenous proteins 

Second-order non-linear processes, such as SHG, can be efficiently described through an 

anharmonic oscillator model in which a non-linear restoring force is generated by the molecular 

potential. At the molecular level, SHG originates from the hyperpolarizability of peptide bonds in 

collagen and tubulin, usually considered as single SHG emitters [207]. Indeed, an electric field 

oscillating at a high frequency and reaching an harmonophore will repeatedly pull the electrons 

back and forth, leading to the induction of a molecular dipole [39,40,48]: 

𝒑 = 𝒑(𝟎) + 	𝛼𝑬 + 𝛽𝑬𝑬 + 𝛾𝑬𝑬𝑬 +⋯  3.1 

where α is the polarizability of electrons of the peptide bond, E the incident electric field and β 

and γ the hyperpolarizabilities of the first and second order, respectively. The first term p(0) is the 

permanent dipole of the molecule. The second term corresponds to the linear response, the third 

one defines second order non-linear interactions, such as sum and difference frequency 

generation [39], and the fourth term describes third order non-linear effects (e.g. two-photon 

absorption [40], third harmonic generation [41], Kerr effect [42], self-phase modulation [43], cross-

phase modulation [44], and stimulated Raman scattering [45]). 

As a degenerate case of sum frequency generation, SHG arises from the third term in Equation 

1. Molecules capable of emitting SHG are characterized by a high hyperpolarizability β, which 

strongly depends on their symmetry. Indeed, in the case of a molecule having a center of 

symmetry, elements contributing to the molecule’s hyperpolarizability cancel each other, 

preventing SHG formation. More generally, the generation of even harmonics is only possible in 

non-centrosymmetric materials. 

The coherent nature of SHG implies that the signal results from interferences of individual 

contributions of harmonophores. Figure 3-3 illustrates the case with simple dipoles, separated by 

a distance negligible with respect to the wavelength of the incoming light wave. When the electric 

fields emitted by the two dipole moments are in phase and thus constructively interfere, the 
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resulting SHG is coherently added (central row). In contrast, there is destructive interference when 

the dipole moments have opposite directions and the SHG signal vanishes [39] (bottom row). 

 
Figure 3-3: Comparison of the SHG signal from a single dipole (upper row) to the SHG from two parallel (central 
row) and anti-parallel dipoles (bottom row). Adapted from [208]. 

At macroscopic scale, SHG is described by the non-linear susceptibility 𝜒($), which results from 

the coherent summation of the individual hyperpolarizabilities of all harmonophores within a 

volume. The relation between the molecular and macro-molecular nonlinear response is given by 

[47,48]: 

𝜒($) = 𝑁6 < 𝛽 >  3.2 

 

where 𝑁6 is the density of molecule 𝑆 and <β> is the orientational average of the first 

hyperpolarizability [39]. For SHG to occur, at this scale, the medium should exhibit a 𝜒($) ≠ 0 

[40,47], which only happens for non-centrosymmetric macromolecular organization. 

Consequently, to perform SHG microscopy in biological samples, the tissue must present a non-

centrosymmetric structure both at the molecular scale (β ≠ 0) and at the macro-molecular level 

(< β >≠ 0) as well as a high density of harmonophores. Interestingly, this constraining origin of 

the signal can be exploited as a contrast enhancing mechanism, since it makes the occurrence 

of the SHG signal highly specific to only a few biological entities, with collagen as a prime 

example. SHG can thus act as a unique probe of the multiscale distribution of molecules within 

the sample. 
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Properties of the SHG signal 

Before discussing the properties of the SHG signal, one should have a closer look at the 

hyperpolarizability and second order nonlinear susceptibility. 

In the general case β, and therefore 𝜒($), are third order tensors with 27 components (𝜒()*
($)). 

However, depending on the symmetry of the molecules, the number of non-zero and independent 

components can be reduced. In this review, we will assume that the Kleinman symmetry condition 

holds true [39], which requires that the excitation and emission wavelength must be far from 

resonance, which is the case in most biological samples (e.g. collagen) [55]. Under this 

assumption, the last two indices of 𝜒()*
($)	can be freely permuted. Thus, we can regroup the two 

last indices (jk) into a single index l and introduce the new tensor: 

𝑑(A = f
𝑑&& 𝑑&$ 𝑑&+ 𝑑&B 𝑑&C 𝑑&D
𝑑$& 𝑑$$ 𝑑$+ 𝑑$B 𝑑$C 𝑑$D
𝑑+& 𝑑+$ 𝑑++ 𝑑+B 𝑑+C 𝑑+D

g =
1
2
𝜒()*
($) 

 3.3 

 

Note that with the Kleinman symmetry and the permutation, not all 18 components in the matrix 

are independent (𝑑&$ = 𝑑$D	and 𝑑&B = 𝑑$C). Considering only the second order effect in Equation 

1, the dipole momentum induced by the incident laser is given by: 

 

h
𝑝1
($)(2𝜔)
𝑝3
($)(2𝜔)

𝑝4
($)(2𝜔)

j ∝ f
𝑑&& 𝑑&$ 𝑑&+ 𝑑&B 𝑑&C 𝑑&D
𝑑$& 𝑑$$ 𝑑$+ 𝑑$B 𝑑&B 𝑑&$
𝑑+& 𝑑+$ 𝑑++ 𝑑+B 𝑑+C 𝑑+D

g
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⎥
⎥
⎥
⎥
⎥
⎤

 

 

3.4 

 

Equation 4 shows that the polarization of the input laser beam is of utmost importance since it is 

directly related to the tensor elements [91,209] and therefore largely determines the formation of 

SHG signal. 

In the following case, we will use collagen as an example, but this can also be extended to other 

materials by considering their specific symmetry. A collagen fibril presents a cylindrical symmetry. 

We will make two assumptions: first that the Kleinman symmetry is applicable [55] and secondly 

that the chiral components of the tensor can be neglected since we do not take the out-of-focus 

orientation into account [55]. In this condition, the nonlinear susceptibility tensor has only two 
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independent components which are 𝜒111 and 𝜒133, where x is the fibrillar axis. Thus, considering 

that the input laser is linearly polarized and propagates along the z-axis, the SHG intensity in 

every pixel of an image is: 

𝐼678(𝜃, 𝜇) = 𝐴 + 𝐵𝑐𝑜𝑠(2𝜇 − 2𝜃) + 𝐶𝑐𝑜𝑠(4𝜇 − 4𝜃)  3.5 

 

where 𝜇 is the polarization angle with respect to the x axis, 𝜃 the azimuthal angle of the fibril (see 

schematic in Figure 3-8) with the x axis, and A, B, C are coefficients depending on the 

harmonophore concentration and arrangement [99]. Therefore, varying the incident polarization 

strongly affects the SHG intensity. This, in turn enables to probe macro-molecular organization of 

harmonophores within the focal volume [37]. Alternatively, the use of circularly polarized excitation 

light ensures that all molecules respond similarly, regardless of their in-plane orientation [40]. 

Since SHG is a coherent process, the phase plays a key role in the signal formation, from the 

molecular to the macromolecular scale. This can be clearly highlighted considering the case of 

SHG from bulk media. A complete description of the formalism in this case can be found in [39]. 

In brief, considering an incident laser beam with fixed polarization and propagation direction, and 

assuming the slowly varying envelop approximation, the SHG intensity can be expressed as: 

𝐼678 ∝ |ψ|B𝐿$sinc$ t
𝛥𝑘𝐿
2 v = 𝐼(,$𝐿$sinc$(

𝐿
𝐿.
)  3.6 

 

where ψ is the complex amplitude of the incident beam, Iin is the intensity of the incident laser 

beam, L is the length over which SHG occurs in the medium, ∆𝑘 = 2𝑘- − 𝑘$-  is the phase 

mismatch between the excitation and the emitted light (expressed as the difference of wave-

vectors) and 𝐿. = 2/𝛥𝑘 is the coherence length. Consequently, when the phase-matching 

condition ∆𝑘 = 0 is fulfilled, the SHG intensity directly scales with the square of the input laser 

intensity and with the square of L. However, if ∆𝑘 ≠ 0, the SHG intensity reaches a maximum 

value after an interaction length of 𝜋𝐿./2. In that case, if the interaction length L is any longer in 

the material, the SHG intensity oscillates between zero and the maximum value over a spatial 

period of 2𝜋𝐿.. 

In biological samples, the phase matching condition is rarely fulfilled, leading to a directionality of 

the SHG signal. However, 𝛥𝑘𝐿 is nearly equal to zero for the forward direction since the length of 

interaction is small compared to 𝐿. (few microns), due to the tight focusing. In backward direction, 
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this is not the case since 𝛥𝑘 is much larger and the coherence length is much shorter (a few tens 

of nanometer). This explains why “pure” backward SHG is always very weak. This effect will be 

further discussed in section II. 

SHG microscopy in biological samples 

One of the most ubiquitous proteins in body tissue that can be imaged using SHG microscopy is 

collagen, a family of proteins found in most connective tissues. At the molecular scale, collagen 

consists of three α-chains, called tropocollagen, which are hydrogen bonded to each other [40]. 

In some collagen types (mostly I and II) these triple helices spontaneously self-assemble into 

highly organized collagen fibrils [87] leading to very strong SHG signals [86]. In contrast, non-

fibrillar collagen (e.g. type IV), which forms sheets in basal laminae [87], cannot be visualized with 

SHG microscopy [35]. 

The first demonstration of SHG microscopy in biological tissue has been performed using rat-tail 

tendons by Freund and co-workers [30]. In this tissue, collagen type I forms a highly organized 

multiscale structure as depicted in Figure 3-4. SHG microscopy has been used to image Achilles 

tendon and fascia [210]. It has also found application to monitor the healing process of tendons 

[211]. 
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Figure 3-4: Hierarchical structure of collagen. Modified under CC BY-SA 3.0 from [212] . Bottom: Collagen 
organization in different biological entities [213–215]. 

The eye is one prominent example containing – mostly – collagen type I in two different 

components: the cornea and the sclera [216], which hence can be visualized using SHG 

microscopy. An example is shown in Figure 3-5(a) and (b). Within the cornea, the collagen is 

arranged in a lamellar configuration contributing to corneal transparency [216] while in the sclera, 

collagen fibrils are randomly packed and highly scattering [217]. Tendon and cartilage are two 

other tissues that have been well-studied using SHG microscopy with examples shown in Figure 

3-5(c) and (d) [72,214]. The skin is another biological component that has been imaged by SHG 

microscopy. As an example, a recent study by Ogura et al. compared skin samples from humans 
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in their young, middle and old age, reporting that the concentration of thick collagen declines with 

age [218] (see Figure 3-5(e) and (f)). 

Figure 3-5: Examples of SHG images for various biological samples. SHG images from (a) cornea and (b) 
sclera, the scale bar is 20 µm. Extracted from [219]. (c) Tendon (500×150µm), extracted with permission from 
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[214]. (d) Cartilage (350×200µm), extracted with permission from [72]. SHG image of skin in young (e) vs. old 
age (f) (1.6×1.6mm), extracted with permission from [218]. 

In addition, SHG microscopy has been proven useful to image cartilage and bones [220,221], 

which are composed of collagen type II. This opened avenues to investigate damages of the 

extracellular matrix that can result in loss of structure integrity, which leads to various pathologies 

such as osteoarthritis. Many pathologies such as cancer can be investigated and characterized 

using these techniques but are beyond the scope of this review. Extensive details on these 

applications can be found in the literature [40,125,222,223]. 

Beyond collagen, other biological structures have been investigated by means of SHG 

microscopy. Myosin is a motor protein involved in a wide variety of functionalities, such as muscle 

contraction, or cellular movements that are largely influenced by the interaction between actin 

and myosin [224]. Therefore, the visualization of the myosin structure is bound to increase our 

understanding of fundamental mechano-cellular mechanisms. Mohler et al. first observed a strong 

SHG signal in mouse muscle and then confirmed in C.elegans that the signal arises from the 

heavy-chain B of myosin [48]. Studies combining SHG microscopy and 2PEF revealed enlarged 

lysosomes in Pompe disease and provided advanced characterization of the morphology of 

cardiomyocytes [101,225]. A combination of SHG and coherent anti-Stokes Raman scattering 

has also been used to study muscle structure [226]. More recently, wide-field SHG was applied 

for imaging muscle contractions, which will be briefly discussed in section II [83]. 

Microtubules (MTs) are another key element that can be imaged using SHG microscopy [125], 

allowing fascinating studies in neurosciences and developmental biology. Section III is specifically 

dedicated to present the recent advances of SHG microscopy for MTs studies. 

Finally, beyond the study of body tissues, another application of SHG microscopy is for imaging 

polysaccharide chains in plants and notably in starch. Starch plays an important role in energy 

storage for plants and represents a major source of food for humans. In 2005 Cox et al. reported 

on SHG signal from cellulose and starch, which can be explained by their highly crystalline 

structure [227]. However, while the starch SHG signal can easily be detected at low input powers, 

acceptable for biological tissue imaging, cellulose was found to be a weak SHG emitter. In the 

same study, the authors suggested that the origin of the SHG signal in starch granules is from 

two polysaccharides, namely amylopectin and amylose. By performing SHG and polarization 

resolved SHG microscopy on starch from rice and rice flour, Zhuo et al. demonstrated that the 

SHG emitter in starch were only amylopectin and not amylose [228]. Building upon this study, 

Cisek et al. examined barley and found that wild-type amylopectin crystals generate higher SHG 
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signal due to their long-range order [229]. On the other hand, structures containing amylose, have 

much lower crystalline order leading to much lower SHG emission (~20 times less) [229]. 

Moreover, the hydration state strongly affects the SHG intensity of starch granules [229,230]. 

Hydrated granules have a higher SHG intensity (Figure 3-6) due to the more ordered crystalline 

hydroxide and hydrogen bonds forming long-range orders, whereas ultra-dry structures have a 

more disordered structure [229]. 

Figure 3-6: SHG imaging of three types of barley starch granules in different hydration states. a) WX (Waxy 
barley with only amylopectin) exhibits a very high SHG intensity even in ultra-dry conditions. b) WT (wild-type 
barley with ~30% amylose content) SHG signal is dimmer than in panel a) but still detectable. c) AO (amylose 
only barley) has the lowest SHG signal intensity among the three, which is barely detectable in ultra-dried 
condition. Extracted from [224].

Advanced SHG microscopy 

Beyond the imaging capability, the coherent and tensorial nature of the SHG process enables us 

to extract additional information about the sample. This section will outline the main approaches 

that have been developed over the years and applied to various biological investigations. 

Figure removed due to copyrights issues
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Forward over backward second harmonic generation (F/B-SHG) 

Forward over backward (also called “directional”) SHG microscopy is a method that takes full 

benefit from the directionality of the SHG radiation pattern. For complete description, we suggest 

ref. [40]. 

Because it is a coherent process, SHG conserves the spatial coherence of the excitation.  The 

harmonic photons are scattered over an angle smaller than the Gaussian beam angle of the 

excitation. As previously mentioned, (see section I.4), perfect phase-matching is never met in 

SHG microscopy. The coherence length for forward SHG (F-SHG) is a few microns in most 

materials, which is enough for a consistent phase matching within a focal volume (not accounting 

for Gouy phase shift effects though). In contrast, the coherence length for backward SHG (B-

SHG) is only a few tens of nanometers in most materials, which means that the B-SHG signal is 

always poorly phase matched. In practice, the B-SHG signal is always smaller than the F-SHG 

one, reaching equality only when one dipole or an extremely thin structure is excited along the 

propagation direction (Figure 3-7 (a-b)). The F-SHG contribution becomes much larger when 

many dipoles are stacked along the focal volume (Figure 3-7 (c-d)), which is usually the case in 

biological samples. Importantly, since the B-SHG signal is usually weak it should not be 

confounded with backscattered F-SHG signal. Indeed, since most biological samples are highly 

scattering, a significant part of the F-SHG gets scattered or reflected towards the backward 

direction after its generation (see Figure 3-7) [210]. 
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Figure 3-7: Radiation pattern for different dipole configurations in the focal volume. (a) A single dipole, 
indicated by the green arrow, creates equal F-SHG and B-SHG (F/B=1). (b) Several dipoles in the same plane 
also create the same amount of SHG signal in the forward and backward direction (F/B=1). (c) The coherent 
contribution of many induced dipoles packed in the optical direction will generate a strong forward SHG signal 
and a weak backward SHG signal (F/B>1). (d) For a bulk material, only a strong forward SHG signal is present 
with a negligible amount of backward SHG. Adapted under CC BY-SA 4.0 from [231]. Forward (e) and backward 
(f) SHG images of fascia. (g) and (h) respectively represent longitudinal and transverse intensity profiles (with 
respect to the fibrillar axis (horizontal axis)), as depicted by the yellow crosshair in (e), taken in forward (blue) 
and backward (red) direction. In the backward direction the sheet boundaries are easier to spot than in the 
forward SHG image. Extracted from [232]. 

 



 78 

Figure 3-7 shows an example of F/B SHG images. The F-SHG signal along the fibrils direction 

(longitudinal) remains exceptionally smooth (Figure 3-7 (e)), revealing that fibril bundles form 

domains of constant 𝜒($) that can lead to a better fulfillment of the phase-matching condition. On 

the contrary, in the direction perpendicular to the fibrils (transverse), multiple/different 𝜒($) 

domains boundaries are encountered, leading to rapid changes in phase-matching and high 

modulation of the F-SHG signal (Figure 3-7(f) and (h)). This is in agreement with the conclusion 

of Freund and Deutsch [30] as well as with the measurements of Parry and Craig using electron 

microscopy [26]. It is important to highlight that the dark lines in the collagen sheets in the forward 

image (e) are not due to the lack of collagen fibrils, but due to long 𝜒($) domains whose macro-

molecular structure results in poor phase-matching, leading to low signal along the full length of 

the domain. In contrast, since the coherence length in B-SHG is much shorter, the arrangement 

of the domains has almost no impact on the amount of signal generated. Therefore, the backward 

image is mostly uniform along the whole tissue. 

Effectively, due to the different coherence lengths for F- and B-SHG, the F-SHG signal images 

display ordered structures whose size are on the order of λSHG (SHG wavelength), while smaller 

or more random structures are better revealed in B-SHG, both directions providing 

complementary images [40]. In the case of collagen, the F/B ratio increases either with the fibrils’ 

diameter or when fibrils of the same polarity are bundled [49,233]. Since this ratio is usually 

averaged over the whole field-of-view, it quantifies the average size and global arrangement of 

the collagen bundles in the sample [40]. 

Polarization-resolved second harmonic generation (P-SHG) 

P-SHG couples the benefit of SHG microscopy (high specificity and contrast) and polarimetry 

(sensitivity to molecular alignment). Usually applied to collagen, it can reveal more accurately the 

complex hierarchical structures of fibrils in the image plane. One of its first demonstrations has 

been realized on rat-tail tendon fascia by Stoller and co-workers in 2002 [90]. Acquiring different 

linear polarization scans in the axial and transverse plane, they identified that the SHG signal was 

highly affected by the polarization of the input laser light source, allowing the determination of the 

orientation of collagen fibrils. Figure 3-8 provides an example of a P-SHG system with an 

application example from an adult horse meniscal collagen. 
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Figure 3-8: a) Schematic of a typical P-SHG microscope with sample in focus. A half-wave plate (λ/2) and a 
quarter-wave plate (λ/4) are used to control the pump polarization state. Adapted from [63]. b) Collagen fibril 
orientation in adult horse specimens measured by P-SHG. In this study, the maturation of meniscal collagen 
was studied in young and adult horses using P-SHG. Extracted under CC BY 4.0 from [234]. 

To characterize the collagen fibrils’ orientation, various parameters can be measured such as the 

average in-plane azimuthal angle θ, in every pixel, and the anisotropy parameter ρ as indicated 

in the upper right corner of Figure 3-8 [234]: 

𝜌	 = 	x
𝐼∥
𝐼F
= 𝜌" cos$ 𝛿 	+ 3 sin$ 𝛿 

 3.7 

 

where 𝐼∥ (resp. 	𝐼F) is the SHG intensity when the incident polarization is parallel (resp. orthogonal) 

to the fibril, δ is the out-of-plane tilt angle of the fibril and 𝜌" = 𝜌(δ = 0) = 𝑑++
($) 𝑑+&

($)|  is the 

anisotropy parameter for no tilt (i.e. δ = 0) [235]. 

Alternatively, for no out-of-plane tilt, the measure of the “anisotropy parameter” r [47] can be used: 
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𝑟 =
𝐼∥ − 𝐼F
𝐼∥ + 2𝐼F

	  3.8 

 

Here r = 0 corresponds to an isotropic orientation and r = 1 to the fully aligned case. In practice, 

𝑟 ~ 0.7 in highly aligned collagen tissue such as tendon [47]. Other parameters such as the 

entropy of orientation [236] or the orientation index (O.I.) [237] can also be extracted from P-SHG 

and some studies also reported the variance of the contrast-per-pixel as meaningful metrics for 

P-SHG [169]. 

One efficient approach to extract information from P-SHG is based on Fourier transform analysis. 

In that case, only the input polarization is rotated using half- and quarter-wave plates [92] (Figure 

3-8). Afterwards, the relevant information can be retrieved from the P-SHG images using an 

analysis based on the Fourier transform of the measured intensity with respect to the input 

polarization angle. This method is applicable to B-SHG and backscattered F-SHG signal, making 

it particularly well suited for thick in vivo samples [92]. 

A more advanced modality, called PIPO (Polarization In – Polarization Out) [238], introduces an 

additional rotating analyzer in the detection path, in order to extract the asymmetry of fibrils 

distribution 𝜍 , in complement to the anisotropy ρ: 

𝜍 =
< sin 𝛿 >
< cos 𝛿 >

	  3.9 

 

where <…> is the weighted average. 

In the past, P-SHG emerged as a powerful tool for biomedical applications, especially to probe 

protein structure. Previously, cryo-EM [56] and X-ray crystallography [57] were the tools of choice 

for this study but both methods require complex and intensive sample preparation, preventing 

their use on live dynamic samples let alone on living animals [58]. Alternatively, to investigate 

structural dynamics of proteins, other methods have been used, such as nuclear magnetic 

resonance  and Forster resonance energy transfer (FRET), which are more readily available but 

have lower spatial resolution and low sensitivity [58]. In contrast, P-SHG can be applied in pristine 

samples and does not rely on complex and expensive devices for analysis since it only requires 

adding a few optical components to a regular SHG microscope [58]. Recently, P-SHG has been 

used to study collagen alteration in aging [59], keratoconic cornea [60], and collagen structure 
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alteration in lung cancer [61]. Note that high precision control of the polarization can be achieved 

using electro-optical modulators [52]. 

Circular dichroism second harmonic generation (CD-SHG) 

Beyond P-SHG, the use of laser light with left- and right-handed circular polarization (LCP and 

RCP respectively) allows to extract the so-called circular dichroism SHG [238,239]: 

𝐼GHI678 =
𝐼($-)JGK − 𝐼($-)LGK

X𝐼($-)JGK + 𝐼($-)LGKZ/2
  3.10 

 

where ICD-SHG is obtained from subtracting two SHG images acquired with LCP and RCP, 

respectively. Just like circular dichroism detected in linear microscopy, CD-SHG requires an 

optical activity to be non-zero (which is concomitant to a chiral symmetry). Yet, non-linear CD 

does not mandatorily originate from the interaction between electric and magnetic dipole moments 

(as for linear CD) but can result from electric dipoles alone [240]. A recent study demonstrates 

the use of CD-SHG to investigate and characterize 3D collagen distribution. Indeed, the absolute 

ICD-SHG enables to determine whether the fibrils are oriented in the imaging plane (small ICD-SHG 

values) or out of it (high ICD-SHG values) [241,242] and it notably shows great promise in measuring 

the polarity of out-of-plane collagen fibrils. As an example, Figure 3-9 shows CD-SHG and its 

application in imaging human cornea. 

 
Figure 3-9: Example of CD-SHG applied in the transverse imaging of a human cornea. (a) Schematics and SHG 
intensity image of the cornea. (b) and (c) shows the CD-SHG imaging of the same region of the sample in two 
different configurations. As it is evident, the CD-SHG sign in both configurations is the same for almost 80% 
of the imaged pixels. Lastly, in (d) the SHG intensity profile (in green) and the CD-SHG absolute value (in 
magenta) are plotted along the yellow arrow shown in (a) and (b). Modified from [241]. 
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Consequently, CD-SHG shows tremendous potential in pathological tissue diagnosis, for which 

disordered collagen and 3D remodeling of collagen are critical structures and processes. 

Stokes vector based second harmonic generation microscopy 

While changing the linear or circular input polarization state and measuring the change in SHG 

intensity allows to measure linear birefringence and anisotropy of the sample, this does not 

provide the full polarimetric response of a sample [243]. Indeed, in previously presented methods 

(II.2 and II.3) fully polarized light is used, represented by Jones calculus, and does not consider 

all states of light, namely incoherence, partially polarized and unpolarized light [243–245]. Besides 

the input light state, biological samples are not always well-organized and non-regular 

arrangements can lead to incomplete polarimetry results. For a complete description of the 

polarimetric response of the material Stokes-Mueller matrix formalism is better suited. 

The state of polarization of light can be fully characterized through a 4×1 Stokes vector 𝑆: 

𝑆 = h

𝑆"
𝑆&
𝑆$
𝑆+

j = h

𝐼" + 𝐼M"
𝐼" − 𝐼M"
𝐼BC − 𝐼IBC
𝐼L − 𝐼J

j 

 3.11 

 

where 𝐼" is the intensity at 0/, 𝐼M" is the intensity at 90/, 𝐼±BC is the intensity at ±45/and 𝐼L and 𝐼J 

represent the intensity at right and left polarization states. All the elements of the matrix are 

between -1 and +1, as they are normalized to the value of 𝑆". From this, vector,  we can describe 

important polarimetric parameters such as the degree of polarization (𝐷𝑂𝑃), the degree of linear 

polarization (𝐷𝑂𝐿𝑃) and the degree of circular polarization (𝐷𝑂𝐶𝑃) [243,244]: 

𝐷𝑂𝑃 =
(𝑆&$ + 𝑆$$ + 𝑆+$)

&
$

𝑆"
 

𝐷𝑂𝐿𝑃 =
(𝑆&$ + 𝑆$$)

&
$

𝑆"
 

𝐷𝑂𝐶𝑃 =
|𝑆+|
𝑆"

 

 

3.12 
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Stokes vector based SHG microscopy has been implemented using a four-channel-Stokes 

polarimeter [243], as depicted in Figure 3-10: 

 
Figure 3-10: Example of a four channel-Stokes-polarimeter SHG microscopy setup. After the SHG from the 
sample, the signal passes through a polarization state generator consisting of a polarizer, a half-wave plate, 
and a quarter-wave plate before passing through a polarization state analyzer comprised of a beam splitter, a 
Fresnel rhomb and two Wollaston prisms. It is detected simultaneously by a time corelated single photon 
counting (TCSPC) system consisting of four detectors. Reproduced under CC BY 4.0 from [243]. 

The relation between the output Stokes matrix 𝑆/OP and the four detected intensities is given by: 

𝑆/OP = 𝐴B×BI& . 𝐼 = 𝐴B×BI& . [𝐼&, 𝐼$, 𝐼+, 𝐼B]P  3.13 

 

where 𝐴B×BI&  is the polarimeter instrument matrix and 𝐼 is composed of the four detected SHG 

intensities [243,245]. This technique has recently been used to characterize collagen fibers in 

adult mice tails, as shown in Figure 3-11: 
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Figure 3-11: Stokes vector based SHG microscopy of collagen fibers. (a) represents the 2D Stokes vector 
images of the collagen fibers with vertical and horizontal input polarization. (b) shows the DOP, DOLP, DOCP 
and anisotropy parameter of the collagen fibers. Modified under CC BY 4.0 from [246]. 

One of the main drawbacks of this method is its restriction to forward detection configuration and 

hence thin samples [246]. In addition, this  method assumes a linear relation between the 

incoming laser light and the SHG signal and still does not provide a complete polarimetric 

response of the sample [247]. 

A more generalized approach is the double Stokes Mueller polarimetry method (DSMP). In this 

method, a complete and model-independent SHG polarimetric response is represented by 

measuring 36 polarizations at minimum to calculate all observable laboratory-frame tensor 

components [247]. The relationship between the polarization of the output SHG signal and the 

polarization state of the input laser beam is given by the double Mueller matrix [247]: 
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𝑆<=>(2𝜔) = 𝑀($)𝑆!?(𝜔)  3.14 

 

where 𝑆678(2𝜔) is the 4×1 SHG signal Stokes vector at 2𝜔 frequency, 𝑆(,(𝜔) is the 9×1 input 

double Stokes vector describing the state of the two incident photon at 𝜔 frequency and  𝑀($) is 

the 4×9 double Mueller matrix which is dependent on the nonlinear susceptibility of the material 

[247].  

A complete characterization requires 9 polarimetric measurements for DSMP: horizontal and 

vertical linear polarization (HLP and VLP), right-handed and left-handed circular polarization (RCP 

and LCP), diagonal polarization (±45/), right-handed and left-handed elliptical polarization (REP 

and LEP) and a linear polarization at −22.5/. The DOP is then calculated and filtered, for removing 

the scattering contribution, prior to calculate the double Mueller matrix of the sample. Using the 

six non phase matrix elements of the double Mueller matrix, the laboratory frame non-linear 

susceptibility tensor values can be completely retrieved. In the end, the molecular-frame 

orientation and non-linear susceptibility tensor ratios can be obtained by choosing a sample 

symmetry model. For the complete DSMP analysis and formulation please refer to [247] and 

[248]. An example of using the DMSP SHG technique is shown in Figure 3-12 for wall muscle in 

Drosophila larvae: 
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Figure 3-12: DMSP SHG images of the wall muscle of Drosophila melanogaster larva. a) Measured Stokes 
matrix elements. b) Maps of DOP, DOLP and DOCP. c) Double Mueller matrix elements normalized to the value 
obtained for χ_ZXX^((2)) from imaging. The scale bar is 10µm. Modified from [247].

Interferometric second harmonic generation (I-SHG) 

While the coherent nature of SHG advantageously offers additional information about the sample, 

it is also a weakness since the pattern seen on SHG images results from complex interferences 

[68,249]. This can lead to serious imaging artifacts, depending on the microscopic arrangement 

[249], and eventually hide the actual underlying structure (especially in biological samples). 

Indeed, within the focal volume, dipoles of opposite (respectively same) polarity will destructively 

(constructively) interfere, leading to areas with a lower (higher) SHG signal. In the image, this 

results in bright and dark regions without direct correlation with the actual density of 

harmonophores (compare Figure 3-7 (e-f)). Hence, to extract quantitative information, it appears 

necessary to measure the local polarity inside the sample. 

It is worth noting that an inversion of polarity (i.e. of the χ(2) sign) leads to a π phase-shift on the 

emitted SHG signal (see also bottom row of Figure 3-3): 

Figure removed due to copyrights issues
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3.15 

Therefore, the phase of the signal keeps a signature of the polarity within the sample, which can 

be mapped in each pixel of the image. To do so, the most classical optical technique to record 

the phase of a signal is based on interferometry. While I-SHG has been originally proposed in 

2004 to enable phase measurements on a scanning SHG microscope [70], it was only in 2013 

that the technique was first applied to tendon [250] and later to cartilage [72]. 

In this method, the relative polarity of harmonophores is probed by a direct phase measurement. 

It relies on combining two SHG signals, one from a reference non-linear crystal placed before the 

microscope (reference SHG) and the second one from the sample (sample SHG), which interfere 

together (Figure 3-13(a)). Since both SHG beams are spatially and temporally coherent, the total 

intensity on the detector follows the usual two-wave interferometry equation: 

𝐼RST = 𝐼U + 𝐼VWX + 2�𝐼U𝐼VWX cos(𝜑U − 𝜑VWX) 3.16 

where Is and φs (resp. Iref and φref) represent the intensity and the phase of the sample (reference) 

SHG beam. 

Adjusting the phase difference between the two beams enables to record the interferogram and 

to extract the argument of the cosine (i.e. the relative phase) and its multiplicative factor (the 

interferometric contrast) by fitting the experimental curve (Figure 3-13) [251]. This technique for 

fitting the cosine from many points is known as Phase-Shifting Interferometry (PSI). In brief, 

changing the optical path between the reference and the sample arm (Figure 3-13(b)) induces a 

change in the cosine argument from 0 to 2p. To remove the constant term 𝐼U + 𝐼VWX, two p-phase 

shifted raw images are subtracted. Then, in every pixel, the experimental cosine (blue circles in 

Figure 3-13(d)) is fitted to determine both the amplitude (interferometric contrast) and the relative 

phase (𝜑YZP), the interpolated phase of the signal at each point in the material. It is the phase 

offset found for each interpolated cosine wave at each pixel. The procedure provides phase and 

interferometric contrast maps. 

Various approaches can be used to adjust the phase difference between the two SHG signals, 

such as a gas cell, variation of distance, a rotating glass plate [74], as well as more advanced 
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approaches, notably the use of an electro-optic phase modulator (EOM) [75]. Originally, a rotating 

glass plate was used to induce an optical phase shift between the reference and the sample 

SHGs (Figure 3-13). The refraction at different angles between the SHG and the fundamental and 

differences in refractive index at these two wavelengths both play a role in changing the relative 

optical path length between the pump and the SHG when the glass plate is rotated. For a full 

description of the setup and details on the technique see [75] and for a more comprehensive 

explanation of the phase extraction technique please refer to [242]. 

 

 
Figure 3-13: I-SHG principle. (a) Example of an I-SHG inverted microscope. The λ/2 (half-wave plate) and 
polarizer are used for power control and afterwards the non-linear crystal plate generates the reference SHG 
signal. After that, a delay compensator is used to match the optical length of the pump arm and the reference 
SHG arm superposed along a common path in the interferometer. The polarizations are made parallel after the 
phase shifter and introduced to the microscope setup for interference between the reference SHG and the 
sample SHG. (b-e) Schematic diagram of the algorithm for calculating the relative I-SHG phase. The 2N raw 
images (b) are subtracted 2 by 2 to give N contrast images (c). In every pixel, the intensity follows a cosine law 
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with respect to the phase-shift of the interferogram (d), which can be interpolated to find the optical phase and 
interferometric contrast image (e). Extracted from [8]. 

An example of the PSI method can be seen in Figure 3-14. In this study, Rivard et al. were able 

to reveal the bipolar structural organization of myosin using I-SHG microscopy [250]. Figure 3-

14(a) displays an SHG image of muscle sarcomeres acquired in the forward direction. The 

following panels are raw I-SHG images taken with 𝜑9:; at 105o (b), 285o (c), and 465o (d). Those 

were the phase shifts resulting in maximal interferometric contrast for this specific image 

acquisition. Panel (e) and (f) show the results of subtracting two raw I-SHG images taken at 𝜑9:;= 

285o and 105o (c – b) and at 𝜑9:;= 465o and 285o (d – c) respectively [250]. The final phase image 

has been extracted from the 36 images at different reference phase (15 o steps) that were taken 

during this measurement and is shown in panel (g). Lastly, (h) displays the phase histograms 

associated with image g), highlighting the bimodal distribution of the phase. The distribution of 

the phase is also represented in histograms to better show some details of the content of that 

image (h). These results show without ambiguity that, for each sarcomere (white band of the 

signal) in image (a), there are two associated χ(2) domains with opposite polarities.  

 
Figure 3-14: I-SHG imaging in muscle sarcomere adapted from [250]. (a) F-SHG image in the absence of a 
reference SHG beam. (b-d) raw I-SHG images acquired with a reference phase of 105°, 285°, and 465° 
respectively. (e) and (f) images resulting from the subtractions of (c) - (b) and (d) - (c). (g) depicts the relative 
SHG phase in the muscle and (h) the histogram of the relative SHG phase for all pixels in (g). 
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Fast I-SHG microscopy 

Because of the optical path difference induced by scanning the laser beam inside the objective of 

the microscope (and the relay lenses), laser scanning microscopy is not directly applicable to I-

SHG. Changing the laser angle onto the objective adds a radial phase distortion in the I-SHG 

images. I-SHG was thus first developed with a sample-scanning setup [250], and was later 

adapted to laser-scanning by correcting the phase distortion with a calibration phase map [251], 

which improved the imaging time by about 98%, from a few hours down to a few minutes. 

However, acquiring an I-SHG image in a few minutes still imposes significant limitations in terms 

of temporal resolution, since it necessitates that the sample remains steady in the field of view 

along this time frame. Yet, in biological samples, many dynamic processes happen on a shorter 

time scale: for instance, monitoring cellular mitosis would require a temporal resolution below 30 

seconds to properly resolve moving microtubules (MTs) [126]. Moreover, SHG from MTs is 

relatively weak, which additionally leads to decreased accuracy of the I-SHG measurements [75]. 

In this context, classical PSI is not optimal since it implies to acquire 18 images of the same zone 

at different phase-shifts (Figure 3-13) and leads to long dead time due to the slow speed of the 

mechanical phase-shifter (the glass plate). Therefore, different interferogram points used in the 

phase extraction (Figure 3-13(c)) are separated in time by up to a minute, which leads to 

significant artifacts due to instabilities. 

An improved method, called single-scan I-SHG (1S-ISHG), has been recently demonstrated and 

consists in applying the phase-shifts within each pixel of the image, rather than between the 

images (Figure 3-15).  



 91 

 
Figure 3-15: Standard (a) and fast (b) methods for phase shift in I-SHG. Extracted from [8]. 

To that end, the mechanical phase-shifter was replaced by an electro-optic modulator (EOM), 

specifically developed in collaboration with Axis Photonique Inc. (Varennes, Canada), enabling 

them to tune the phase-shift at high speed (up to 50 kHz). This technique results in only one scan 

of the area, with a settable exposure time (usually between 20 and 200 μs), ensuring only few 

microseconds of latency between each point of the interferogram [75]. The amount of time 

required to image a large area (500 µm ×100 µm) can be seen in Figure 3-16 when the fast and 

normal I-SHG method are used to image the central part of an adult horse meniscus. 
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Figure 3-16: SHG phase-map of an adult horse meniscus with fast I-SHG and normal I-SHG. The scale bar is 50 
µm. (a)-(c) show fast I-SHG with different phase scan durations and (d) shows the normal I-SHG at work. (a) 20 
μs phase scan is acquired in ~0.5min, (b) 200 μs phase scan is acquired ~2min, (c) 2000 μs phase scan is 
acquired in ~8min and (d) using the normal I-SHG method, acquisition takes ~32 min. Note that reducing the 
phase scan duration increases the speed of acquisition, but it also increases the phase errors. Nevertheless, 
even the longest phase scan duration of fast I-SHG (i.e., 2000 μs) cuts the acquisition time by 25% compared 
to normal I-SHG which is a huge improvement overall. Adapted from [75].

Aside from the improved temporal resolution, any sample instability in the implementation would 

result in image distortion rather than incorrect polarity determination. Consequently, this method 

appears to be remarkably robust. 

Wide-Field SHG imaging 

Scanning SHG imaging is a well-established method which, over the years, has been successfully 

used for many applications. However, one of the main implementation limitations is its low imaging 

throughput (photons detected per frame per second). This drawback impedes its application to 

Figure removed due to copyrights issues
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label-free imaging of very fast biological processes (millisecond time scale) [252]. To overcome 

this limitation, two strategies can be envisioned: either to increase the scanning speed or to 

parallelize photon emission. For scanning speed improvement, acousto-optic deflectors [253] and 

resonant scanners [254] have been successfully used. Yet, they remain ultimately limited by the 

dwell-time required to generate enough photons to obtain a recordable signal. For the latter 

strategy, wide-field SHG microscopy appears as the ultimate parallelization, since the complete 

area of interest is illuminated simultaneously and signals are detected on a pixelated detector 

[76,77]. Traditionally, wide-field SHG microscopy was performed using high energy (µJ) pulses 

from lasers operated at multi-kHz repetition rate. It has been proven that wide-field SHG 

microscopy improves imaging throughput by 2-3 orders of magnitude compared to scanning 

microscopy [76]. A typical wide-field SHG setup can be seen in Figure 3-17. 

Figure 3-17: Typical wide-field SHG microscopy setup. The laser light source is in the range of 700-1100 nm. A 
half-wave plate and a polarizer are used for power control. An achromat doublet lens (AD) is used to focus the 
incoming laser beam and the sample is placed slightly above the focus to capture a larger FOV. The SHG signal 
is collected using an objective and a tube lens, spectrally filtered, and detected on a camera. Adapted from 
[255]. 

Due to the delicacy of living cell samples, particular care must be taken to avoid photodamage. 

Several studies investigated light damage in wide-field SHG microscopy for different cell lines 

allowing to determine a range where pulse energy and hence heat deposition remains below the 

damage threshold of the samples [83]. In recent advances, a high repetition rate (MHz) wide- field 

SHG microscope has been designed for live imaging of contracting muscle tissue that utilizes 

laser pulses with pulse energy as low as approximately 60 nJ per pulse (Figure 3-18). 

Figure removed due to copyrights issues
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Figure 3-18: wide-field SHG images of fixed larval muscle (a) 425 µm2 and (b) 213 µm2 area with a frame 
integration time of 100 ms. (c) and (d) represent the SHG intensity profiles of (a) and (b) respectively from the 
designated regions of interests in the images. This method provides single shot imaging of large areas and is 
used to acquire live larvae contractions. Extracted from [255]. 

Lastly, holographic SHG microscopy, a variant of wide-field SHG, has been proposed to make 

use of the signal phase [256,257]. Other methods beside wide-field SHG microscopy also exist 

for improving the image acquisition speed and we suggest [258] for a recent comprehensive 

review of these methods. 

SHG and enhanced SHG in neurons 

The nervous system and neuron structure 

The nervous system is a sine qua non organ for most living animals, responsible for information 

processing and transmission [105]. As depicted in Figure 3-19, neurons have a cell body called 

the soma, which contains the nucleus of the neuron. The receiving branches of the neuron are 

called dendrites, where most of the incoming signals are integrated [106]. The outgoing signal 

drives through a structure called the axon. Although a neuron can have many dendrites, it will 

always have only one axon. At the end of the axon, there are the axon terminals and synapses 

that contain the neurotransmitters necessary for chemical communication between the neurons. 

Figure removed due to copyrights issues
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Figure 3-19: (a) Anatomy of a neuron from soma to the synapse. Extracted from [259] (. (b) Neuron polarity 
diagram. Adapted with permission from [260].

Studying neurons and their building components is one of the highest challenges of our times 

since many of their mechanisms and dysfunctions remain unknown. The following section will 

cover how well-suited SHG microscopy is to study these structures. 

SHG microscopy in neurons 

Traditionally, neuronal mechanisms have been studied using electrophysiology in which 

electrodes are inserted into the neurons to measure the electrical potentials and currents. This 

approach is considered the gold standard to study neuronal activity and has led to invaluable 

information about neuron functioning. Nevertheless, this approach still presents several 
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significant limitations. Firstly, it requires a rather invasive protocol and remains challenging to use 

in living animals [107]. Moreover, despite recent advances, patch clamping is bounded to record 

data from a limited number of neurons, drastically impeding the investigation of a neuronal 

network [108]. 

To overcome such shortcomings, optical methods appear highly desirable by offering the 

necessary flexibility to complement such electrophysiological measurements. 2PEF and SHG 

microscopy have found many applications in neuroscience and are vastly gaining popularity 

because they provide complementary access to distinct features. Although most SHG microscopy 

experiments have been based on endogenous cell properties, SHG dyes have also been used in 

different studies [109–113]. Using FM 4-64 dye, Dombeck et al. demonstrated a huge 

improvement in signal-to-noise ratio (SNR) over fluorescent probes [111]. Using the same dye, 

Nuriya et al. were able to demonstrate for the first time that action potentials enter dendritic spines 

[112], and later characterized the SHG response to an action potential and its propagation from 

the soma to the axons [114]. In parallel, Nemet et al. reported that all trans retinal chromophores 

are suitable candidates for SHG neuronal membrane imaging [110]. Jiang et al. showed that the 

limited SNR obtained in the previous studies could be overcome (Figure 3-20) using photon 

counting detection [115] and later reported that the potential sensing capacity of FM 4-64 

originates from electro-optical mechanisms [113].  
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Figure 3-20: Single neuron and neuron population using FM-4-64 dye and SHG imaging. Scale bars: 20µm. (a) 
shows a single pyramidal neuron from a mouse visual cortex that has been injected with the dye and imaged 
using SHG microscopy. (b) shows a multitude of pyramidal neurons bathed and labeled by a SHG chromophore 
and imaged using SHG microscopy. Extracted with permission from [115].

To summarize, among many existing tools and methods for neuronal mechanism studies, optical 

imaging techniques can be advantageous for studying various aspects of the neurons. SHG 

microscopy is reliant on the cell properties for SHG signal production. In some studies, SHG dyes 

are necessary to further improve the SNR and the contrast in the images [110,111,113,114]. 

SHG microscopy in microtubules 

In neuroscience, one of the interesting structures that has been investigated using SHG 

microscopy are microtubules (MTs). MTs are among the most important cytoskeleton filaments 

and their functionality encompasses the maintenance of the cell integrity and the morphology or 

regulation of intracellular trafficking, while also playing an important role in cell division [116–119]. 

MTs are structured as hollow tubes with a 25 nm outer diameter that is made of two dimers α- 

and β-tubulin. When these two heterodimers bind in a head-tail manner, they create a linear 

protofilament polymer [119,120]. MTs are fundamentally polar because all protofilaments are 

parallel to each other and all the dimers comprising the filament share the same orientation [120]. 
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Many studies have focused on how MTs produce SHG [121,122,125,261]. One of the recent  

highlights [261] reports that the number, organization and polarization all play an important role 

in the formation of SHG signal from MT [261]. 

Although the polarity was not the focus of these studies, the MT polarity was later deduced, using 

the protein plus method which tags the microtubule-associated protein (MAP) with a fluorophore 

and the tagged MAP then binds to the positive end of MTs [118,124]. Combined with SHG 

microscopy, it was shown that the MTs polarity in the axons is well-defined and always the same, 

with the minus end pointing to the cell body and the positive end pointing to the axon terminals, 

where neurotransmission takes place [118]. However, this method is invasive since it uses 

fluorescent markers for determining the polarity of the MTs. Importantly, while paraformaldehyde 

is the gold standard in cell fixation, this fixation method was also investigated in this study and it 

causes drastic losses of SHG signal which reveals that it changes the protein conformation [261]. 

In contrast, MTs polarity in dendrites remains poorly characterized, but seems to be not so well-

defined [116]. Even if some previous studies have suggested that there might be a mix of polarity 

in dendrites [121] and that domains of polarity exist among them [122], these claims remain 

hypothetical and a full characterization is required to verify them. Notably, many questions remain 

unanswered, e.g., why do axons have uniform polarity, but dendrites do not? Is this mixed polarity 

functionally relevant? SHG and specifically I-SHG are great candidates for studying the underlying 

mechanisms of the dendrites and the relevance of their polarity in their operation. 
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Using fluorescence (red) and SHG (green) to image microtubules in 

neurons 

Using I-SHG to image the mitotic spindle during cell division 

Figure 3-21: Microtubule imaging in neuron (top) and mitotic spindle (bottom). Complementation of neuron 
imaging using fluorescence and SHG (top). In (a), only TauRFP (tau red fluorescent protein) dye is visible in 
the image of the neuron. In (b), we only see the SHG image of the neuron. Finally, (c) is a combination of the 
fluorescence and the SHG images to benefit from both imaging techniques (Stoothoff et al. 2008). Image and 
histogram of SHG phase in the mitotic spindles (bottom). The red and green pixels are π-phase shifted signals. 
At the beginning of the metaphase (t0), the two poles are starting to have opposite polarities. At the end of the 
metaphase (t0+1min) and the beginning of the anaphase (t0+2min), a more uniform polarity can be seen where 
one pole is red and the other pole is green. At the end of the anaphase (t0+3min), a mix of red and green pixels 
can be seen in both poles which means that the two poles have a random polarity. Reproduced under CC BY 
4.0 from [126]. 

Lastly, embryogenesis is an entire field in developmental biology, in which SHG microscopy has 

been instrumental in providing time-lapse images of the distinct stages of cell division. 

Specifically, SHG rises and falls have been used to investigate the dynamics of mitotic spindles, 

Figure removed due to copyrights issues
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composed of highly oriented MTs, in different embryos, including Caenorhabditis elegans, zebra 

fish, mouse, rat and sea urchins [125]. While several methods allow to study the polarity of MTs, 

most of them are invasive and I-SHG microscopy appears to be a promising non-invasive 

alternative. In a study using the I-SHG technique, Bancelin et al. [126] successfully mapped the 

polarity of MTs forming the mitotic spindle during cell division in zebrafish embryos as shown in 

the bottom part of Figure 3-21. While the polarity of MTs in mitotic spindles had been previously 

studied indirectly with a combination of SHG and fluorescence microscopy [262], this was the first 

direct evidence of change in MTs polarity upon mitosis. This achievement was made possible by 

the advances in the I-SHG imaging speed, as discussed in section II.5. It was found that at 

different stages of the cell division, the SHG signal varied due to the change of alignment and 

polarity of the MTs’ network. Bancelin et al. observed the SHG signal during various phases. First 

occurring in the pro-metaphase, the signal further increased in the metaphase and anaphase, 

and gradually vanished during the telophase when the mitotic spindle uncondensed. Besides the 

SHG intensity, they could extract the polarity of MTs during each phase. They observed that at 

the beginning of the metaphase and the end of anaphase, MTs had a mixed polarity revealing a 

more disorganized structure. In contrast, at the end of the metaphase and the beginning of the 

anaphase, the MTs are highly aligned with uniform polarity [126]. This study showcased the power 

of the I-SHG microscopy technique and how it would be advantageous to use this method for 

studying the polarity in dendrites and other neuronal activities. More generally, SHG and 

advanced SHG microscopy are versatile tools that were utilized in many MTs studies. They have 

shown promising potential and are a great candidate for in-depth studies of different aspects and 

unknown mechanisms of MTs and related diseases [126,261,263]. 

Conclusion and prospects 

Over the past two decades, SHG microscopy has become an invaluable tool in bio-imaging and 

neuroimaging. Many studies illustrate its potential to investigate non-centrosymmetric biological 

structures such as fibrillar collagenous tissues [40], tendon [30,210,211], cartilage [220], cornea 

[92,219], sclera [219], fascia [68], meniscus [234], muscle [48,71,101,214,225,250], MTs 

[111,121,122,125,126], otoconia [264], the origin of SHG signal in neurons [121,261] and how it 

can a be great tool for tauopathies [263] and tubilinopathies [265]. While originally limited to point-

scanning imaging of endogenous structures, over the years, many groups have demonstrated 

innovative approaches to minimize the invasiveness and to improve the imaging throughput, 
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notably through wide-field imaging or the development of specific SHG probes, constantly pushing 

the frontier of SHG imaging into new systems and structures. 

In this context, conceptual and technological advances in SHG microscopy continue to define a 

fast-progressing frontier in biophotonics. Aiming to improve the spatial resolution by means of 

coherent structured illumination [266] and utilizing post-processing methods such as pixel 

reassignment [128,129] , increasing the imaging depth through adaptive optics approaches [14] 

or pushing non-linear imaging into the spectroscopic realm using hyperspectral microscopy 

approaches based on sum-frequency generation [267] are all examples of this fast ongoing 

progress. 

Despite many advances, a fully quantitative interpretation of SHG images remains elusive owing 

to the coherent nature of the process involved. While the different approaches presented in this 

review, notably F/B-SHG, P-SHG, I-SHG, CD-SHG and Stokes vector based SHG all appear as 

relevant pieces to this puzzle, their combination in the same instrument has yet to be done but 

could potentially provide a definitive answer to this long-lasting topic. 

With its tremendous advantages, SHG microscopy still requires overly expensive equipment and 

specialized training, which impedes its larger use in routine biomedical practice. This is 

particularly evident for the more advanced SHG techniques that rely on state-of-the-art optical 

implementation and complex hardware system. The recent advancement in laser technology has 

led many groups to shift away from the gold-standard of Ti:Sapphire lasers towards more robust 

and power-efficient fiber and semiconductor lasers enabling smaller and more efficient SHG 

microscopes [37]. This crucial simplification and cost reduction is expected to open new 

perspectives for biomedical applications of SHG microscopy. Such wide application would be 

promoted by the progress in endoscopic SHG, which has gained popularity in recent years [268]. 

There are still significant technological challenges that need to be overcome to make this 

technology more accessible, but the efforts required to solve these technological challenges 

would be matched with even greater potential reward, like enabling in vivo imaging of organs. 

Besides hardware implementation, software analysis and computational approaches for 

enhancing imaging capabilities have also made great strides in microscopy. These computational 

advancements complement the optical setups and even correct some of their flaws and 

shortcomings in imaging. Notably, fast image processing has been made possible in recent years 

thanks to improvements in graphical processing units and field-programmable gate arrays that 

can process large amounts of raw data at high-speed. In addition, machine learning is currently 

revolutionizing many fields including image processing and has naturally made its way into SHG 
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microscopy. For example, a few groups recently ventured to develop deep learning algorithm 

based on neuronal networks to classify and diagnose cancer using SHG footprints 

[154,155,223,269]. 

Lastly, many current imaging systems are unique setups, customized differently in each lab [258]. 

A unification and standardization of the imaging process appears highly desirable for 

reproducibility and portability.  

Regardless of the challenges and limitations we mentioned, SHG and non-linear optical 

microscopy imaging modalities provide a plethora of information that is not readily available with 

traditional linear or incoherent optical imaging techniques. With all the technological 

advancements in optics, machine learning and laser technology, non-linear imaging modalities 

are only going to get better and much simpler over time, opening new horizon for widespread 

applications in both fundamental science and medical applications [37]. 
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4.1 Main article 

Abstract: Tumors, their microenvironment, and the mechanisms by which collagen morphology 

changes throughout cancer progression have recently been a topic of interest. Second harmonic 

generation (SHG) and polarization second harmonic (P-SHG) microscopy are label-free, 

hallmark, methods that can highlight this alteration in the extracellular matrix (ECM). This article 

uses automated sample scanning SHG and P-SHG microscopy to investigate ECM deposition 

associated with tumors residing in the mammary gland. We show two different analysis 

approaches using the acquired images to distinguish collagen fibrillar orientation changes in the 

ECM. Lastly, we apply a supervised deep-learning model to classify naïve and tumor-bearing 

mammary gland SHG images. We use transfer learning with the well-known MobileNetV2 

architecture to benchmark the trained model. By fine-tuning the different parameters of these 

models, we show a trained deep-learning model that suits such a small dataset with 73% 

accuracy. 

Introduction 
Over the last decade, we have improved our understanding of the microenvironment in which a 

tumor grows; composed of co-mingling tumor cells, immune cells, stromal cells, and the 

extracellular matrix (ECM) [270]. Various studies have correlated the arrangement of collagen in 

the microenvironment surrounding the tumor with patient survival [271–277]. Collagen 

organization at the tumor-stroma boundary is an essential indication of breast cancer disease 

progression and subsequent risk of local invasion and metastasis. Studying these so-called 

tumor-associated collagen signatures (TACS) can help to determine the invasiveness of a breast 

tumor [271,278]. TACS classification sorts heterogeneous tumor-associated collagen patterns 

into three physically distinct types: TACS-1, representing densely packed collagen close to the 

tumor boundary; TACS-2, a sphere-like collagen organization around TACS-1; and TACS-3, is 

linear collagen pointing away from the tumor boundary [271]. Studying the underlying mechanism 

of the formation of these TACS (especially TACS-3) can give valuable information about the pro-

metastatic features of the tumor, as locally invasive tumor cells have been shown to use radially 

aligned collagen fibers as migration tracks to leave the primary site [279–281]. Moreover, it has 

been demonstrated that collagen fiber width, length alignment, and angle provide cues for the 

distinction between malignant/benign tumors and patient survival [278]. 

Many methods are available for studying the ECM around a tumor, of which histological staining 

is the most common [278]. There are many stains available, but the resolution of these stains, 

and the inability to quantify collagen features from them, have been limiting factors for ECM 
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studies in cancer [278]. Another method used for ECM studies is liquid crystal polarizing 

microscopy [282]. It is fast, not expensive and can be added to a microscope with a few optical 

components, but the signal processing and structure distinction are challenging [278]. 

To image collagen in tissues, SHG microscopy is the gold standard in imaging methods and has 

improved spatial resolution, limitation of phototoxicity, photobleaching, focal plane selectivity, and 

simple sample preparation [283]. This label-free non-invasive method provides a way to detect 

alterations of fibrillar collagen in the tumor microenvironment, which is impossible using other 

imaging techniques. SHG has played an essential role in cancer studies and has been 

successfully applied to assess collagen restructuring in breast [273,284,285], ovarian [286], 

prostate [287], and lung cancers [61]. All these studies have documented collagen morphological 

changes around the tumor using SHG microscopy. Nevertheless, orientation studies only based 

on SHG intensity can be subject to interference that masks the underlying structure [232] and 

make fibril orientation imaging impossible [52].  

Polarization-resolved SHG microscopy (P-SHG) overcomes such limitations and combines the 

advantages of SHG microscopy with polarimetry [47,52,92,169]. It is used in collagen-related 

studies and provides accurate information about the structure of the fibrils in the imaging plane, 

which is highly advantageous for cancer research [288]. More advanced P-SHG microscopy 

systems exist, such as polarization-in, polarization-out (PIPO), that can also extract the 

asymmetry of fibril distribution [238] and have been successfully applied in lung [61] and breast 

cancer studies [289]. 

SHG and P-SHG image analyses have also developed over the past few years due to increasing 

amounts of information that can be extracted from acquired images. Collagen fiber alignment, 

width, length, texture, density, and TACS are all exciting metrics that can be identified using post-

image-processing methods [278]. Image analysis and processing usually rely on human visual 

inspection for data validation. Deep learning can eliminate manual data inspection and automate 

image analysis, such as image classification [154–157]. Deep learning and machine learning in 

SHG microscopy have been applied to lymphedema [154], ovarian tissue [155,290], and breast 

cancer [156], to name a few. Care must be taken using these methods, as deep learning for 

smaller datasets can be challenging and therefore requires measures for the trained model to be 

accurate [159].  

In this study, we imaged naïve and tumor-bearing murine mammary glands using an automated 

SHG and P-SHG microscopy system. From the SHG images, we identified collagen aggregations 

around the tumor boundary and dim SHG signal due to the tumor's takeover of a major portion of 

the mammary gland. Afterward, we applied our custom-written python program to analyze P-SHG 
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images and CurveAlign to analyze SHG images to measure fibrillar orientations. CurveAlign is an 

effective technique for quantifying collagen fibers and can quickly extract orientation data from 

SHG images [291]. Nonetheless, it requires human inspection and can be prone to missing the 

finer fibers in images. In contrast, our automated P-SHG image analysis can resolve and detail 

finer collagen fibers, at the cost of requiring increased imaging acquisition time. Following this, 

we trained a supervised deep-learning model for the SHG images to evaluate whether we could 

classify naïve and tumor-bearing mammary glands using a small dataset. In this process, different 

data splits were tested, and other parameters of the trained model were also fine-tuned for each 

case to find the best possible deep learning model for our data. A comparison was made with the 

well-known image classification model MobilenetV2 [292]. 

Methodology 
Tissue preparation 
Female BALB/c mice were purchased from Charles River Laboratories. All animal experiments 

were conducted according to the regulations established by the Canadian Council of Animal Care, 

under protocols approved by the McGill University Animal Care and Use Committee. For the 

collection of naïve glands, mice were euthanized at approximately 8 weeks of age, and the 4th 

(inguinal) mammary gland was removed. Whole mount preparations were made using blunt 

tweezers to manipulate the mammary glands, spreading the tissue flat against a Superfrost 

microscope slide (VWR). Mounted mammary glands were then immediately placed in Carnoy’s 

fixative (60% ethanol, 30% chloroform, 10% acetic acid) for 24 hours at 4° C, after which they 

were stored in 70% ethanol. 

The murine tumor-bearing samples used in this study were derived from two orthotopic models: 

(1) injection of 4T1 cells into nulliparous mice and (2) injection of 66cl4 cells into mice in the 

postpartum period (an aggressive form of breast cancer). The 4T1 cells were provided by 

Dr. Peter Siegel’s group (McGill University) and were cultured in DMEM (Wisent) supplemented 

with 10% FBS and antibiotics. The 66cl4 cells were provided by Dr. Josie Ursini-Siegel’s group 

(McGill University) and cultured in RPMI (Wisent) supplemented with 10% FBS and antibiotics. 

Cells were maintained at a low passage number before use. For both models: 1 × 105 cells were 

injected into the 4th mammary fat pad, and tumors were allowed to grow for two weeks. At 14 

days post-injection, mice were euthanized, and primary tumors and surrounding stroma were 

removed. Samples were fixed in 10% Neutral Buffered Formalin (VWR) for 48 hours at 4° C, after 

which they were stored in 70% ethanol. 

Following fixation, naïve and tumor-bearing mammary glands were embedded in paraffin and 

serially sectioned (5 µm thickness). Slides were deparaffinized and rehydrated by submersion in 
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three rounds of xylene, two rounds of 100% ethanol, one round of 95% ethanol, and one round 

of 70% ethanol (5 minutes per round). Rehydrated slides were rinsed for 5 minutes in distilled 

water. Coverslips (VWR, No. 1) were then mounted onto slides using Permount mounting medium 

(Fisher). Slides were allowed to dry overnight before downstream microscopy. 
 

SHG imaging setup 
SHG microscopy and P-SHG microscopy were performed using a custom laser stage scanning 

inverted microscope (for more details, see Figure 4-1 and Figure 4-2). A mode-locked Ti:Sa laser 

(Tsunami, Spectra-Physics) pumped by a 12 W Millenia Pro laser (Spectra-Physics) was used. 

This laser emits pulses around 810 nm and delivers 150 fs pulse duration at 80 MHz repetition 

rate with an average power of 2.5 W. For power control, a half-wave plate and a Glan-Thompson 

polarizer were used to adjust the average power to 50 mW (0.625nJ pulse energy) at the focus 

of the objective. Given the size of the samples to image, sample scanning using a high-speed 

motorized XY scanning stage (MLS203, Newton, NJ) was used. The focus was adjusted coarsely 

and finely with mechanical and piezoelectric motors (PI Nano-Z, USA). An air objective 

(UplanSApo 20X, NA 0.75, Olympus, Japan) was used for illumination. A condenser was used to 

collect the sample's SHG emission, which was detected by a photomultiplier tube (R6357, 

Hamamatsu Photonics) set at 800 V. The SHG signal was isolated by two spectral filters placed 

before the photomultiplier. A short pass filter that blocks any wavelength higher than 720 nm (i.e., 

the input laser light) is employed with a bandpass filter centered at 405 nm to filter out any residual 

input light. A multichannel I/O board (National Instruments) and a custom-written Python program 

were used for signal acquisition and synchronization. Given the sample size and the acceleration 

and deceleration times of the motorized scanning stage, each SHG image had an acquisition time 

of a few minutes. Raw data were visualized using Fiji-ImageJ (NIH, USA). For P-SHG 

measurements, 1000 × 1000 µm regions of interest were imaged, and for image 

classification, 9000 × 5000 µm whole sample images were taken. 
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Figure 4-1: Layout of the SHG and P-SHG inverted microscope setup. When using only SHG, the motorized 
half-wave plate is removed. For P-SHG, the angles range from 0 to 170 degrees. The microscope and the 
motorized half-wave plate work under a unified custom python program for P-SHG measurements. 

For P-SHG, a motorized half-wave plate was used to rotate the linear polarization of the laser 

beam used to acquire the images. To avoid any polarization distortion and due to the size of the 

sample, we used sample scanning instead of laser scanning. Images were taken for 18 

polarizations states in 10-degree steps from 0 to 170 degrees. The motorized half-wave plate and 

the sample scanning were all synchronized with a home-built python program (for a complete 

description of the program, see [242]). A custom MATLAB script based on [63,236] was used for 

processing the P-SHG images. Fourier transform of the measured intensity about the angle is 

taken with a spatial fast Fourier transform algorithm. For more theoretical information about the 

script and how to obtain the polarization angle based on the SHG intensity, please refer to 

[63,236]. To summarize, the SHG intensity of collagen fibers with respect to the linear polarization 

angle of the input light source Ω can be written as [236]: 

𝐼<=>(Ω) = 𝐾[𝐴𝑐𝑜𝑠(4Ω − 4𝜃) + 𝐵𝑐𝑜𝑠(2Ω − 2𝜃) + 1]  4.1 

 

Where A and B are associated with the susceptibility components, K is the mean number of 

photons detected, and θ is the collagen fiber in-plane orientation. By varying the angle Ω (i.e., 

using the half-wave plate to change the linear polarization of the input laser), the main direction 

of the fibrils (θ) can be extracted [18,19]. After a reliability test between the associated 

susceptibility components and the experimental data, P-SHG data can be extracted [63]. This 

modified MATLAB script integrates with our imaging pipeline and accepts 32-bit images  [92]. 
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 In this study, we benchmark our method with CurveAlign, a well-known tool for fibrillar collagen 

quantification at the tumor boundary [291]. CurveAlign is a curvelet transform-based fibrillar 

collagen quantification platform. It consists of a few steps; first, a two-dimensional fast discrete 

curvelet transform is performed. Second, based on the scale of interest and the threshold of the 

remaining coefficients, the center and spatial orientation of each curvelet are found, and by 

grouping the adjacent curvelets, the local fiber orientations are estimated [293]. The simplified 

diagram of P-SHG and CurveAlign analysis is depicted in Figure 4-2.  

Figure 4-2: Simplified P-SHG and CurveAlign analysis flowchart. For P-SHG analysis 18 SHG images (32-bit 
TIFF) of the regions of interest (ROI) are taken in 10-degree steps from 0 to 170 degrees and the results 
(colorwheel, orientation map, anisotropy parameter map, and histogram data) are stored. For CurveAlign a 
single SHG image is inputted to the CurveAlign script, and the results (overlay image alongside its histogram 
data) is stored. 

Image classification using deep learning and transfer learning 
The image classification was done using TensorFlow [294], an open-source Python library 

developed by Google. Moreover, transfer learning was performed using the MobileNetV2 

architecture since it is the most common architecture used for the image. Forty-six images 

comprising 28 naïve and 18 tumor bearing mammary gland samples were used. Due to the small 

sample size, data augmentation involving flip, rotation, and zoom was performed before the image 

classification. The data was trained for twenty-five epochs, and the accuracy and loss of the 

training and test data were recorded for a data split of 10, 20, 30, and 40% between the training 

and test data, and the results were plotted to determine the overall performance of the model. 
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Results and discussions 

SHG imaging 
Given the sample size, 9000 × 5000 µm area was selected to encompass most of the mammary 

gland and its surroundings. In this configuration, stage scanning was used for the imaging, and 

each image was taken over 3 min with a step size of 10 µm/pixel and 150 ms exposure time. 

Figure 4-3(a, b) are from naïve, non-tumor bearing, mammary glands. As can be seen, the 

mammary gland and its surroundings have well-defined ductal structures. 

Figure 4-3: SHG images with normalized intensity calibration bars of (a, b) naïve and (c-f) tumor-bearing 
mammary glands. SHG microscopy can resolve the intricacies of the microenvironment. It shows that the 
tumor and the lymph nodes (LN) do not produce SHG signal, which leads to a loss of SHG signal as it 
progresses throughout the gland. Moreover, the yellow arrows in (c,d) indicate the collagen barrier formed 
between the tumor and the rest of the mammary gland ECM. (e,f) are more advanced cases where the tumor 
has taken over the majority of the mammary gland, with little normal tissue structure remaining. 

The mammary gland tumors in the bottom row do not generate SHG. In Figure 4-3(c,d), the tumor 

edge is more pronounced, and aggregated collagen can be seen forming a barrier in the boundary 

between the tumor and the stroma, which is evident from the stronger SHG signal in the center 

of the Figure (see yellow arrow). This finding agrees with previous studies that suggest collagen 

deposition around a tumor can form a barrier (collagen fibers being parallel to the tumor 
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boundaries) which provides a protective layer to physically constrain the spread of the tumor 

[278,295]. The fibrillar orientation and angle of the formed barriers will be addressed in later 

sections. In extreme cases such as Figure 4-3 (e,f), there is a very dim SHG signal since the 

tumor has taken over most of the mammary gland. Although the SHG intensity reveals some 

aspects of tumor biology, for extracting the orientation of the collagen fibrils and defining potential 

risk of invasion, P-SHG acquisition and image post-processing is necessary. 

P-SHG and CurveAlign analysis
Restructuring of collagen fibers at the tumor-stroma junction is known to help promote local

invasion and metastasis; therefore, extraction of fibrillar orientation data is essential [296]. Two

approaches can be used for orientation extraction of the collagen fibrils: (i) P-SHG and extraction

of angle data afterward using a custom MATLAB script or (ii) taking SHG images and processing

them using CurveAlign. For P-SHG microscopy, a 1000 × 1000 µm area was chosen with a

3 µm/pixel step size and 90 µs exposure time, leading to a 4 min acquisition time for each image.

For each P-SHG analysis, 18 images were taken, bringing the whole imaging process to 72 min

per sample. The boundaries around the tumor of three samples were examined and afterward

processed using the Fast Fourier transform process mentioned above.

To benchmark the capabilities of our P-SHG imaging and data analysis in studying the

environment around the tumor boundary, CurveAlign software was used on SHG images taken

from the same region of interest. Figure 4-4 provides a summary of the results obtained during

this experiment:
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Figure 4-4: shows SHG, P-SHG, and CurveAlign analysis of 5 samples with normalized intensity calibration 
bar. Each row represents the same region of interest. P-SHG images are accompanied by a color wheel, with 
each angle (0-360 degrees) represented by a color, and the fibrillar histogram. Both approaches provide an 
excellent distinction between the tumor and its surroundings, although in both cases, there are some 
underfilling and overfilling of regions shown using white dashed lines in P-SHG and red dashed lines in 
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CurveAlign. As an example, in the first row, when we compare both approaches to the reference SHG image 
we can see that the P-SHG method is overfilling in one region indicated by the white dashed line, and there are 
four areas in which CurveAlign has either underfilled or overfilled indicated by the red dashed lines. Similar 
errors can be seen in the consecutive rows as well. 

For our samples, P-SHG analysis provides orientation details for smaller and finer collagen fibers 

than its CurveAlign counterpart. In CurveAlign, the estimation of the orientation angle leads to 

insufficient detection in regions where the SHG signal is dim and overestimation in other regions 

(red dashed lines in Figure 4-4). Overall P-SHG analysis is more detailed, albeit noisier, and with 

some overfilling in different samples (white dashed lines in Figure 4-4). Overfilling in the P-SHG 

analysis is due to the goodness of fit (R2) (range between 0 and 1 of the pixel intensity) that is 

defined during analysis. If the intensity of a pixel is lower than the goodness of fit, it will be omitted 

from the analysis. Therefore, it is necessary to keep the goodness of fit between 0.3-0.4 so that 

noisier pixels are not omitted from the analysis which would lead to overfilling of the images in 

some areas. We also performed multi-scale structural similarity index (MS-SSIM) (ranging from 0 

to 1, with 0 being not similar and 1 being identical) by taking the SHG images used for the analyses 

as the ground truth (GT) and comparing the P-SHG analysis and CurveAlign analysis to the GT 

images and each other: 

Table 4-1: MS-SSIM index of P-SHG and CurveAlign analysis 

Sample No. 
R2 range of 

P-SHG
analysis

P-SHG vs GT
MS-SSIM

CurveAlign 
overlay vs GT 

MS-SSIM 

P-SHG vs
CurveAlign
overlay MS-

SSIM 

1 0.4-1 0.76 0.27 0.25 

2 0.4-1 0.33 0.23 0.25 

3 0.4-1 0.76 0.45 0.4 

4 0.4-1 0.84 0.37 0.36 

5 0.4-1 0.36 0.3 0.2 

Based on the results of Table 4-1, a quality metric for image similarity is a necessity to fine tune 

the parameters of both analysis methods. In addition, our study found that by increasing the R2 

minimum of the P-SHG analysis, the MS-SSIM between the P-SHG and CurveAlign analysis 
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overlay image is increased (Please refer to supplementary information Table S1-S5 for more 

details). The solution for the underfilling and overfilling is to have a noise threshold (which our 

analysis method provides) that can be changed by the user based on the similarity and quality 

metric index between the analyzed image and GT image in the form of either a noise-free SHG 

image or a complementary fluorescence image. Given that P-SHG image acquisition takes 72 min 

compared to the 3 min of standard SHG imaging followed by the CuveAlign image processing, 

there is a tradeoff between imaging time and accuracy that depends on the study and 

experimental goals, such as boundary requirements and imaging time. To summarize, CurveAlign 

is a powerful image processing tool that can be used for collagen quantification around the tumor 

boundary but requires human inspection and high-quality SHG imaging and can miss or overfill 

some fiber orientations in the images. However, P-SHG imaging provides a more detailed view 

of the tumor microenvironment. It can resolve finer fibers but at the cost of the image being noisier 

and imaging acquisition being much more time-consuming. A solution for overfilling and 

underfilling in both methods is to introduce a similarity index metric for comparison between the 

analyzed image and the GT image (complementary fluorescence image or high quality SHG 

image) and to have flexible noise threshold metric as it varies from sample to sample. 

Image classification 
Image classification was performed on the data using the SHG images discussed in the previous 

section. SHG images of naïve and tumor-bearing mammary glands were first preprocessed in 

ImageJ to adjust brightness and denoise. Two models were trained for the dataset. A custom 

sequential model was made using the Keras library, an open-source library from Google 

integrated by Tensorflow, and transfer learning was performed using the MobilenetV2 model. Both 

models were written and trained using Google Colaboratory. Finally, to determine the 

effectiveness and precision of the architecture, the accuracy and loss are plotted to visualize how 

the models fit the data. The image processing pipeline can be seen in Figure 4-5 and the 

architecture of the sequential model is seen in Figure 4-6. 
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Figure 4-5: Image processing pipeline from SHG imaging to evaluate the trained model's accuracy and 
precision. 

Figure 4-6: Architecture of the convolutional neural network (CNN) model built using the Keras API. The data 
augmentation layer (sequential) creates new training examples by applying random transformations to existing 
images, such as rotating, flipping, or zooming. The rescaling layer rescales the input image pixel values from 
the range [0, 255] to the range [0, 1]. The conv2D layer applies a convolutional operation with 16, 32 and 64 
filters and Maxpooling2D reduces the spatial dimensions of the input by taking the maximum value in each 
2x2 window. The Dropout layer randomly sets a fraction of the input units to zero during each training epoch 
(the rate is 0.2). Flatten layers flatten the output of the previous layer into a one-dimensional vector, which is 
fed into two dense fully connected neural network layers (Dense). We added more Conv2D and Maxpooling2D 
layers up to 20 layers to test how the addition of layers affected the accuracy of the classifier model. 

Overall, this model consists of convolutional layers that extract features from the input image, 

followed by a fully connected neural network layer that makes the final classification decision. The 

model is trained using the Sparse Categorical Cross entropy loss function and optimized using 

the Adaptive Moment Estimation backpropagation algorithm. 

Deep learning feasibility on a small dataset 

Before we examine the efficiency of the trained model, we must define some terms used to 

quantify its performance. There are performance markers that are used for measuring the 

capability of a trained model but, for simplicity, we will perform cross-validation by splitting the 

data into training and test datasets, e.g., a percentage of the data will be selected as the training 

dataset, and the remaining percentage as the test dataset. The model uses the training data to 

learn from, and the test data is used for assessing the model’s performance [135]. We chose the 
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following data split percentages: (90% training data, 10% test data), (80% training data, 20% test 

data), (70% training data, 30% test data) and (60% training data, 40% test data). For simplicity, 

they will be called 10%, 20%, 30%, and 40% data splitting, respectively. 

With the definition of the data splits that will be evaluated, we can define some terms that refer to 

each data set. Training/test accuracy refers to how well the model fits the specified training/test 

data. Training/test loss assesses the model’s error when learning from the training/test data. 

Training/test accuracy and loss are good metrics to assess the model’s fit on the data. When test 

loss is greater than the training loss, the model is “memorizing” the training data set, and therefore 

its ability to be applied to unseen data is impaired [188]. This is called overfitting. There is also 

underfitting, in which the model needs more steps (epochs) to go through the data and be fully 

trained. One good indicator that can reveal many aspects of the system is the training/test loss 

curve, which shows how well the model performs. Each case presented in this section will be 

summarized in a table that shows the average training/test accuracy after 25 epochs and 

represented in the training/test loss curve to give a clearer picture of the model’s performance.  

Data augmentation and more complex architectures are unique strategies to avoid overfitting 

[135,297,298]. Many complex architectures solve overfitting by adding extra processing layers, 

but data augmentation targets the problem's root: the available training data. As in the case of 

image classification, the number of available data is artificially inflated by changing different 

aspects of the training image dataset, such as cropping, flipping, rotating, etc.[135,297,298] . All 

these measures mitigate overfitting.  

Due to the small sample size of the data available, we also apply a variety of data augmentation 

such as crop, zoom, translation, and flip to inflate our dataset artificially. We also introduced a 

20% dropout layer to avoid overfitting by randomly removing 20% of the nodes and their 

connections from our neural network, resulting in a new network architecture independent of the 

parent network [299]. The accuracy and loss curve of the first model can be seen below in Table 

4-2.
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Table 4-2: Average training and test accuracy for different data splits using a custom sequential model 

Data split Training accuracy Test accuracy 

10% 0.82 0.76 

20% 0.73 0.80 

30% 0.53 0.73 

40% 0.69 0.74 

It is evident from the data split of 10% that the test accuracy is constant, which can be due to the 

small test data set. Still, the training accuracy increases with each epoch, meaning the model 

better fits the training accuracy. In the 20% data split, we see that the accuracies are closer, and 

there are some epochs where the model was more accurate for the test dataset than the training 

set. In the 30% data split, we see a gap between the training and test accuracy, which is higher 

than the training accuracy. This gap could mean that the test data set is more straightforward for 

the model to understand than the training dataset. It could also be because the data augmentation 

we introduced makes it harder for the model to learn from the training dataset. 

Moreover, since we are using dropout during training, in which some information from the training 

data is lost, it could be that consecutive layers will try making predictions based on incomplete 

data, thereby making it harder for the model to adapt. We will explore solutions to this problem in 

later sections when we change different parameters to see how it affects the trained model. There 

is also a gap in the 40% data split between the training and test accuracy, where the training 

accuracy is lower than the test accuracy.  

Besides accuracy, the loss curve can provide relevant information about the model’s state, 

whether it is fitting, overfitting or underfitting. Figure 4-7 provides the loss curve of the four data 

splits that were evaluated with the model: 
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Figure 4-7: Loss curve of the model for 4 data splits. We have clear overfitting for the first data split after epoch 
5, which is undesirable. The model fits the data well for 20% data splitting besides the overshoot seen at epoch 
10. The best-case scenario from all the splits can be seen for 30% data splitting, where the model performs
perfectly for the data provided. For the last case, we have underfitting until epoch 10, followed by overfitting.

Therefore, the test accuracy of this model, without overfitting, is 30% data splitting at 

approximately 73%. Based on this first investigation, we can now fine-tune other model 

parameters to see whether we can overcome the training and test accuracy gap. We performed 

receiver-operating characteristic (ROC) analysis but in the case of our data, we have 44% data 

bias (33 healthy cases vs. 13 cancer cases) which indicates a significant class imbalance in the 

data. Therefore, we implemented Precision, Recall, F1 score and area under the curve (AUC) 

metrics together to better understand our model accuracy. The model has a high recall (1.00), 

which means it can correctly identify the positive cases at the cost of having false positives. The 

precision of our model was low (0.3) and the F1 score of our model was 0.5. We have an AUC 

range of 0.51-0.55 which is expected given the high-class imbalance in the data. 

Addition of more data augmentation layers and elimination of dropout 
As previously mentioned, two elements, namely (i) dropouts and (ii) insufficient data, could explain 

the gap between the test and training accuracy. Therefore, we can introduce more data 

augmentation layers to the model to increase available data, eliminate the dropout in the model, 

and see how well it performs. The result of these changes is summarized in Table 4-3: 
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Table 4-3: Average training and test accuracy for different data splits using more data augmentation layers 
and no dropout 

Data split Training accuracy Test accuracy 

10% 0.64 0.76 

20% 0.66 0.78 

30% 0.65 0.79 

40% 0.64 0.76 

Table 4-3 shows that due to the extra layers of data augmentation implemented, the training 

accuracy decreases as we have made it harder for the model to learn from the training dataset. 

In one scenario, we also preferentially augmented the tumor bearing data to balance out the 

dataset. Nevertheless, the test accuracy of the model remains the same even with the elimination 

of dropout and having more training data. For this trained model, the 10% data splitting has 

underfitting until epoch 18, and afterward, the model overfits after epoch 24. Overfitting happens 

in many earlier epochs for the case of 20, 30, and 40% data splits. Taking the loss curve and the 

accuracy of this model into consideration, adding more data augmentation, and eliminating 

dropout does not help improve the model’s performance. Experimenting with model parameters 

leads to the conclusion that the test accuracy of the model is sometimes higher due to the limited 

availability of data, and that the test data is more straightforward than the training data. Moreover, 

it could be beneficial to also omit some of the naïve samples to balance the dataset but given the 

already limited dataset, it can have a negative impact on the model’s performance and therefore 

we decided against it. 

Transfer learning using MobileNetV2 
In this section, we will explore whether transfer learning with the well-established MobileNetV2 

model would be the better approach. The motivation for choosing the MobilenetV2 architecture is 

due to its light weight and fewer number of tunable parameters as our dataset is very small. Other 

networks such as ResNet, Alexnet and GoogLeNet were considered but these networks are much 

deeper compared to MobilenetV2, with many more layers and parameters. This makes it more 

prone to overfitting, especially when dealing with small datasets. The deeper architectures enable 

the networks to capture more complex features in the data, including noise and outliers, which 

can hinder the model’s ability to generalize to new data. As mentioned before, machine learning 
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usually relies on the high quality and size of training data which is only sometimes readily available 

in real-world scenarios (SHG microscopy images are an excellent example of this problem) [155]. 

Moreover, training models based on small datasets are usually very application-specific and 

cannot be applied to other datasets. In these situations, transfer learning is appealing because 

researchers can leverage models trained on much bigger datasets to conform to their datasets 

and refine the learning process to be valid for their application [155]. Table 4-4 provides the 

accuracies of this model when trained using our dataset.

Table 4-4: Average training and test accuracy for different data splits using MobileNetV2 

Data split Training accuracy test accuracy 

10% 0.84 0.78 

20% 0.54 0.49 

30% 0.58 0.74 

40% 0.49 0.33 

We see that the model’s accuracy deteriorates after a 10% data split. From the loss curve, we 

have overfitting after epoch 4 for 10%, after epoch 8 for 20% and after epoch 12 for 40% data 

splits. Interestingly for MobilenetV2, we see overfitting happening for just the 10% and 40% data 

split cases in which overfitting happens after epochs 8 and 23. For the 20% and 30% data split, 

the 0.001 dropout rate in the MobilenetV2 architecture causes the training loss to fluctuate, 

whereas the gap between the test and training loss remains around the same size [299]. 

To summarize, with such a small dataset, training a simple classification network from scratch is 

optimal but data specific. Using transfer learning with well-known networks is a solution, but due 

to the complexity and number of layers present in such architectures, overfitting and underfitting 

are more prominent in that case.  

Conclusion 
In this study, SHG and P-SHG microscopy were used to study the ECM within tumor-bearing 

mammary glands. SHG microscopy can help identify the collagen aggregates that appear at the 

tumor-stroma boundary, and P-SHG microscopy is an excellent tool for analyzing collagen fibrillar 

orientations in the ECM. We have shown an automated SHG and P-SHG microscopy system that 

minimizes human intervention. We apply two image analysis methods for the collagen fibrillar 
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orientation analysis. CurveAlign is a powerful tool that can be applied to SHG images to 

distinguish collagen fibrillar orientation with respect to the tumor boundary. Our custom-written P-

SHG analysis method can achieve the same results with greater detail. Furthermore, deep 

learning and image classification can be powerful tools to differentiate between healthy and 

tumor-bearing samples within the limitation of a small training dataset. Therefore, if deep learning 

is to be used for SHG imaging, a database should be available where imaging labs worldwide can 

pool their images. This would help to remove data availability as a limiting problem. After 

investigating the variation of different parameters, the best model that showed promising results 

with our small dataset was the 30% data split with 0.2 dropout and three layers of data 

augmentation that gave a test accuracy of 73%. Another limitation in our study is the imaging 

speed, that requires further studies to improve. It is worth highlighting that P-SHG analysis, in 

conjunction with image classification and widefield imaging, has shown great promise in cancer 

research and provides excellent insight into the underlying mechanisms of collagen formation and 

remodeling in the ECM [156]. In addition, in future studies, we will explore the feasibility of 

adapting the machine learning approach used in this study to other tissue types. This will allow 

us to determine whether the approach is amenable to a wider range of applications and to identify 

any limitations or challenges that may arise. It will be valuable to expand this work's scope to 

include the analysis of metastatic lung tissue. This will let us assess the changes in collagen 

patterns that occur in metastatic outgrowth and potentially identify markers for early detection. 

Moreover, SHG and P-SHG imaging are well-established methods that have been successfully 

used for many years. In contrast, image analysis for these methods is still in its infancy, thereby 

necessitating the exploration of different analysis methods that can be used alongside these 

imaging techniques. 
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5.1 Main article 

Abstract. 
This study explored the application of deep learning in Second Harmonic Generation (SHG) 

microscopy, a rapidly growing area. This study focuses on the impact of glycerol concentration 

on image noise in SHG microscopy and compares two image restoration techniques: Noise2Void 

2D (N2V 2D, no reference image restoration) and content aware image restoration (CARE 2D, 

full reference image restoration).  We demonstrated that N2V 2D effectively restored the images 

affected by high glycerol concentrations. To reduce sample exposure and damage, this study 

further addresses low-power SHG imaging by reducing the laser power by 70% using deep 

learning techniques. CARE 2D excels in preserving detailed structures, whereas N2V 2D 

maintains natural muscle structure. This study highlights the strengths and limitations of these 

models in specific SHG microscopy applications, offering valuable insights and potential 

advancements in the field. 

Keywords: Deep learning, SHG microscopy, image restoration, myosin imaging, ECM imaging, denoising. 

Introduction. 
Second harmonic generation (SHG) microscopy is a powerful nonlinear optical microscopy 

technique that has been successfully used in medical and nonmedical imaging for years 

[2,37,300,301]. Image quality in microscopy crucially depends on the signal-to-noise ratio (SNR), 

which is the ratio of signal intensity to noise. Factors such as laser power, exposure time, and the 

sample itself play crucial roles in influencing the SNR. It is well known that an increase in laser 

power while enhancing the SHG signal risks thermal damage to the sample [14]. For example, 

increasing the laser power can produce a higher SHG signal but may cause thermal damage to 

a sample [302–304]. Therefore, finding the optimal trade-off between the laser power and 

achieving an acceptable SNR (i.e., having the sample structure visible with noise present) is 

critical. In addition to the instrumental parameters, sample type is another critical criterion that 

can affect the SNR in SHG microscopy. While we observed strong SHG signals from collagen 

rich tissues [40] and skeletal muscles [97], some samples, such as microtubules, inherently have 

a weak SHG signal [123]. Samples with a lower SHG signal have a low SNR, and their structure 

can be buried under background noise, depending on the experimental conditions.  

Within the evolving landscape of SHG microscopy, deep learning is a transformative tool for 

classification, segmentation, and image restoration. We provide ample examples of different 

studies focusing on different applications. In [305] a classification application, a method for 



 127 

diagnosing ovarian cancer during surgery using SHG imaging and deep learning techniques is 

introduced. By training a convolutional neural network (CNN) on a vast dataset of SHG images, 

the system can differentiate between normal, benign, and malignant ovarian tissues with 99.7% 

accuracy. In [306] a segmentation application, the effectiveness of a U-Net CNN for improving 

the segmentation of collagen fibers in SHG images was demonstrated. The CNN successfully 

addressed the challenges posed by varying the SHG image intensity across the depths. This 

method consistently outperformed the traditional thresholding techniques, particularly in deeper 

tissue sections. Although not focused solely on SHG, [307] compared different denoising 

techniques to improve the quality of nonlinear multimodal images in head and neck tissue 

analysis.  In this study, traditional methods (e.g., median filter and Gerchberg-Saxton), 

established deep learning networks (e.g., DnCNN), and innovative networks (e.g., Noise2Noise, 

MIRNet, and incSRCNN), specifically focusing on their ability to reduce noise while preserving 

critical image details. In another study, researchers introduced a fast large-area multiphoton 

exoscope (FLAME) for imaging human skin [308]. The FLAME system incorporates a deep-

learning-based image restoration technique using a content-aware image restoration model 

(CARE) network. This approach improves the quality of the images captured by the system. 

These studies demonstrate the broad potential of deep learning in SHG microscopy. However, 

tissue-specific variations in signal intensity and the impact of preparation techniques introduce 

unique challenges for image restoration in SHG. The application of deep learning techniques 

specifically tailored for improving low-SNR SHG imaging has not been extensively explored. This 

gap presents a unique opportunity for research aimed at addressing the specific challenges 

associated with SHG microscopy, particularly in tissue-specific imaging under low-SNR 

conditions. 

Image restoration enhances the image quality by eliminating noise, artifacts, and other distortions 

[164,309] without creating hallucinations (generation of visual structures that are not based on 

the actual information available in the input image [310]). Deep learning image restoration has 

been successfully applied to fluorescence- [164,309], super-resolution- [311,312], structured 

illumination- [313], and electron microscopy [165,314]. It has also been applied to multiphoton 

microscopy [307,308].  

Three of the many different types of available image restoration techniques to remove noise are 

noise-to-ground truth (N2GT) [164], noise-to-noise (N2N) [315], and noise-to-void (N2V) [166]. 

N2GT refers to the removal of noise from an image by comparison to a reference image, also 

known as the ground truth image, which is assumed to be noise-free and used as a guide in the 
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denoising process [164]. The availability of GT images is a limitation of this method [164,166]. 

N2N refers to removing noise from an image (low SNR) by comparing it to another noisy image 

(high SNR) rather than to a GT image [315,316]. This method is more widely applicable because 

it does not require a noise-free image [315]. One model in this category is the content-aware 

image restoration model (CARE) based on the U-net convolutional neural network [317]. It is 

among the models that require high- and low-SNR image pairs to perform image restoration [316]. 

N2V refers to removing noise from an image by creating a deep neural network to learn the 

statistical properties of the noise and the signal within one image [166]. Unlike previous methods, 

which require an image pair, this method does not require such a requirement and uses a single 

noisy image for training.  

Common methods for evaluating denoised image quality include the Structural Similarity Index 

Metric (SSIM) and Peak Signal-to-Noise Ratio (PSNR) to ensure hallucination-free image 

generation. Both metrics were used to compare the similarities between the original and 

processed images. The PSNR is calculated by taking the ratio of the maximum signal to the mean 

squared error (MSE) between the original and processed images. The higher the PSNR value, 

the higher is the quality of the processed image. The SSIM is a metric that uses structural and 

textural information. It compares structural information by measuring the similarities between the 

original and processed images’ mean value, standard deviation, and cross-covariance [318]. The 

value of SSIM ranges between 0 and 1, where 1 indicates perfect similarity, 0 indicates poor 

similarity, and -1 indicates perfect anti-correlation. The SSIM and PSNR metrics have different 

sensitivities to image degradation [175,181,319].  

Our study uniquely addressed the tissue-specific imaging challenges of collagen and myosin 

within the SHG microscopy domain, investigating the effects of glycerol concentration on 

zebrafish fixation [320], and exploring low-laser-power imaging across diverse biological 

specimens, including muscle tissues from two zebrafish strains, and the intricate extracellular 

matrix barrier of tumor-bearing mouse mammary glands. This focus on tissue specificity coupled 

with our tailored application of advanced denoising techniques sets our research apart. By 

applying CARE 2D and N2V 2D in such a targeted manner and evaluating their effectiveness with 

mSSIM and PSNR metrics, our study not only highlights the adaptability and efficacy of deep 

learning for SHG microscopy but also emphasizes its potential for tissue-specific imaging under 

low-SNR conditions. This approach ensures the preservation of structural details and effective 

noise elimination, contributing significantly to the advancement of the field and opening new 

avenues for precision in biomedical imaging. 
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Methodology. 
Tissue Preparation. 
Adult wild-type and mutant Survival Motor Neuron (SMN) zebrafish (Danio rerio) were maintained 

at 28 °C under a light/dark cycle of 12/12 h according to the Westerfield zebrafish book [320]. 

Embryos were raised at 28.5 °C, collected, and staged as previously described [321]. All animal 

experiments were performed in compliance with the Canadian Council for Animal Care guidelines 

and approved by the INRS-LNBE ethics committee. Genotyping of SNM larvae was performed 

by high-resolution melting analysis (HRM) using genomic DNA extracted by a noninvasive 

genotyping protocol [322]. Larval (5-day postfertilization 5 (dpf)) SNM −/− (homozygous) and wild-

type zebrafish were fixed in 4% paraformaldehyde overnight at 4° C. After fixation, the larvae 

were rinsed several times (1 hour) with PBS-Tween and mounted on slides in 50–100% glycerol, 

and finally, their muscles were imaged using SHG microscopy. 

Female BALB/c mice were purchased from Charles River Laboratories. All animal experiments 

were conducted according to the regulations established by the Canadian Council of Animal Care 

under protocols approved by the McGill University Animal Care and Use Committee. The murine 

tumor-bearing samples used in this study were derived from orthotopic injection of 4T1 cells into 

nulliparous mice. 4T1 cells were provided by Dr. Peter Siegel (McGill University) and cultured in 

DMEM (Wisent) supplemented with 10% FBS and antibiotics. Cells were maintained at a low 

passage number prior to use. For both models, 1 × 105 cells were injected into the 4th mammary 

fat pad and tumors were allowed to grow for two weeks. Fourteen days post-injection, the mice 

were euthanized, and the primary tumors and surrounding stroma were removed. The samples 

were fixed in 10% Neutral Buffered Formalin (VWR International LLC) for 48 h at 4 °C, after which 

they were stored in 70% ethanol. Following fixation, naïve and tumor-bearing mammary glands 

were embedded in paraffin and serially sectioned (5 µm thickness). The slides were 

deparaffinized and rehydrated by submersion in three rounds of xylene, two rounds of 100% 

ethanol, one round of 95% ethanol, and one round of 70% ethanol (5 min per round). The 

rehydrated slides were then rinsed for 5 min in distilled water. Coverslips (VWR International LLC, 

No. 1) were mounted onto slides using the Permount mounting medium (Fisher). The slides were 

allowed to dry overnight before downstream microscopy. 

SHG imaging setup. 
SHG microscopy was performed using a custom-stage inverted scanning microscope, as shown 

in Figure 5-1. A mode-locked Ti:Sa laser (Tsunami, Spectra-Physics) pumped by a 12 W Millenia 

Pro laser (Spectra-Physics) was used. This laser delivered pulses of approximately 810 nm with 
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150 fs pulse duration, at 80 MHz repetition rate with an average power of 2.5 W. For power 

control, a half-wave plate and a Glan-Thompson polarizer were used to adjust the average power 

from 20 mW to 110 mW (0.25 to 1.38 nJ pulse energy). Given the size of the samples for imaging, 

sample scanning was performed using a high-speed motorized XY scanning stage (MLS203, 

Newton, NJ). The focus was adjusted coarsely and finely by using mechanical and piezoelectric 

motors (PI Nano-Z, USA). An air objective (UplanSApo 20X, NA 0.75, Olympus, Japan) was used 

for the illumination. A condenser was used to collect the SHG signal of the sample, which was 

detected using a photomultiplier tube (R6357, Hamamatsu Photonics) set at 800 V. The SHG 

signal was isolated using two spectral filters that were placed before the photomultiplier. A short-

pass filter that blocks any wavelength higher than 720 nm (i.e., the input fundamental laser light) 

was employed with a bandpass filter centered at 405 nm to filter out any residual input light. A 

multichannel I/O board (National Instruments) and custom-written Python program were used for 

signal acquisition and synchronization. Given the sample size and acceleration and deceleration 

times of the motorized scanning stage, each SHG image had an acquisition time of a few minutes. 

Raw data were visualized using Fiji-ImageJ software (NIH, USA).  

Figure 5-1: Layout of the SHG inverted microscope. The microscope and data acquisition were performed 
using a unified custom Python program. 

Image restoration using CARE 2D and N2V 2D. 
Image restoration was performed using the CARE 2D and N2V 2D models. The models were run 

using the Jupyter notebook provided by the ZeroCostDL4Mic toolbox [189] on Google 

Colaboratory. For the mammary gland cancer samples, the N2V 2D model was trained from 

scratch for 2000 epochs on 392 image patches (image dimensions: (500,500), patch size: (64,64)) 

with a batch size of 128. The CARE 2D model was trained from scratch for 300 epochs on 200 

image patches (image dimensions: (500,500), patch size: (64,64)) with a batch size of 16. The 
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reason for having different numbers of training epochs is to compensate for the limited amount of 

available reference data and allow the N2V 2D model to train for a longer time compared to the 

CARE 2D model. This extended training duration is essential for N2V 2D, as it leverages self-

supervised learning, relying on inherent noise patterns within the data to improve its performance, 

which necessitates additional training to effectively model and remove noise. For the zebrafish 

samples, the N2V 2D model was trained from scratch for 2000 epochs on 800 image patches 

(image dimensions: (333,1333), patch size: (64,64)) with a batch size of 128. The CARE 2D model 

was trained from scratch for 300 epochs on 50 image patches (image dimensions: (333,1333), 

patch size: (64,64)) with a batch size of 16. Data augmentation was used in its default setting in 

all cases, and for CARE 2D, the Augmentor was used [323]. The essential Python packages 

include TensorFlow, Keras, CSBdeep, NumPy, and Cuda. The training was accelerated using a 

Tesla T4 GPU on Google servers. 

Results and discussion 

Fixation: evaluation of the dependence of noise as a function of glycerol content 
Sample preparation is essential for any microscopic method [324]. The chemicals used in fixation 

can cause image deterioration in SHG microscopy for some samples, such as microtubules [123]. 

Moreover, there is no universal protocol for fixation and each tissue has a unique method [300]. 

Three glycerol concentrations were tested to determine the best fixation composition for the SHG 

imaging of zebrafish samples. Because of the different locations of the samples, different image 

sizes were obtained with a laser input power of 75 mW at the focus of the microscope objective. 

Figure 5-2 depicts the different samples with different glycerol concentrations that were imaged 

and their denoised counterparts. 
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Figure 5-2: Left column: SHG images of different zebrafish samples with a) 50%, b) 80%, and c) 100% glycerol 
concentration in their fixation alongside zoom in (d,e) for samples b and c, respectively. As the glycerol content 
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in the fixation increases, the SHG image becomes noisier. Right column: Denoising based on the N2V 2D 
method was performed for 80 and 100% glycerol content, and it was unnecessary for 50% concentration. 

Our study found a correlation between glycerol concentration and noise in the final image; the 

lower the glycerol concentration, the better the image quality. The minimum amount of glycerol 

that could be used without disturbing the fixation process is 50%. We then tested N2V 2D and 

CARE 2D to denoise images with higher glycerol concentrations. The CARE 2D model for these 

samples resulted in overfitting [188,299] during model training and was not applicable. N2V 2D 

could successfully restore images in both high-concentration glycerol cases and retrieve the 

structural information of the fish muscle, as shown in the right column. Given the amount of time 

and effort required for sample preparation, in some cases, deep learning tools can be used to 

restore the image quality instead of restarting the sample preparation to determine the perfect 

chemical composition and physical location of the sample. The intensity profiles for 80% and 

100% glycerol are shown in Figure 5-3. 

Figure 5-3: The intensity profile of 80% and 100% glycerol content fixation was imaged at 75mW input laser 
power for the original (black dotted line) and denoised (red solid line) images. 

For the intensity profile, we plotted the intensity values of the pixels along the yellow line, as 

shown in Figure 5-3. From this Figure, we can see that for 80% glycerol, the model enhances the 

contrast of the image. A comparison with the original signal shows that it follows the same overall 

intensity pattern as a cleaner (omission of noise) signal. For 100% glycerol, the signal fits the 

intensity profile of the original, but without noisy spikes. Therefore, in cases where the chemicals 

in the fixation cause noise in the sample images (glycerol content in our case),  N2V 2D is a 

perfect model for image restoration, given that sample preparation and fixation are time 
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consuming. Moreover, it can reduce the number of animals that need to be sacrificed for sample 

preparation. 

CARE 2D and N2V 2D models on tumor-bearing mammary glands. 
We created low- and high-SNR SHG images by varying the laser input power at the focus of the 

objective lens. Using this approach, we obtained a less noisy (ground truth) measurement with 

110 mW of input laser power at the focus of the microscope objective. The CARE 2D and N2V 

2D models were applied to SHG images of the boundary of a murine mammary gland tumor, and 

Figure 5-4 shows the results generated by these models. 

Figure 5-4: CARE 2D and N2V 2D models were applied to the collagen structure at the tumor boundary of a 
tumor-bearing mammary gland. a) The reference “ground-truth image is used to denoise the images using 
CARE 2D and for visual comparison. (b,c) present low SNR SHG images, and (d) presents a high SNR SHG 
image. 

The original image in Figure 5-4(b) shows an extremely poor SNR. Using the CARE 2D model, 

we can still extract structural information about the boundary. However, this method leads to 

“hallucinations,” in which a structure is created within the tumor area that is absent. Moreover, the 

N2V 2D model could not provide a clean image. The original image in Figure 5-4(c) presents a 

low SNR; in this case, CARE 2D provides the complete structure of the collagen boundary around 

the tumor, with some fine details being blurred. N2V 2D can only denoise the bright spots in the 

image; a silhouette of the boundary is visible but not usable for analysis. The original image in 
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Figure 5-4(d) presents good SNR. Here, CARE 2D enhances the crispness of the SHG images 

obtained, and we observe an improvement in the details and sharpness of the image. The contrast 

was also improved, as shown by the intricate details of the collagen boundary structure. In this 

case, N2V 2D also performs well, and the details of the collagen boundary structure are visible 

and patchy, with point-like bright spots where the SHG signal is strong. The mSSIM and PSNR 

parameters of the results are summarized in Table 5-1. 

Table 5-1: mSSIM and PSNR metric for CARE 2D and N2V 2D model applied to the SHG imaging of the 
boundary of tumor-bearing mammary glands. 

Model CARE 2D N2V 2D 

Laser power (mW) 20 30 70 30 70 

Original v. GT mSSIM 0.33 0.38 0.85 0.38 0.85 

Denoised v. GT mSSIM 0.34 0.79 0.89 0.55 0.80 

Original v. GT PSNR (dB) 20.83 23.12 29.73 23.12 29.74 

Denoised v. GT PSNR (dB) 20.83 27.57 30.01 21.81 24.44 

For the CARE 2D model, we observed a negligible improvement in SSIM between the original 

and denoised images in the 20 mW case, and the PSNR remained the same. For 30 mW, we see 

the highest improvement, as the mSSIM metric almost doubles between the original and denoised 

images, while the PSNR has a substantial boost. For 70 mW, although some improvement in 

mSSIM and PSNR is observed, it is not as drastic as in the case of 30 mW. For the N2V 2D 

model, we see a substantial improvement in the mSSIM for the 30 mW case, but the PSNR 

decreases. We can see that the image did not improve in terms of details and structural 

information with visual inspection. For the 70 mW case, the mSSIM and PSNR of the denoised 

image are lower than those of the original image, and a visual inspection reveals the patchy and 

disjointed nature of the denoised image. In addition to the quality control metrics, we also 

considered a random region of interest and measured the performance of the models by plotting 

the intensity profile in Figure 5-4. 
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Figure 5-5: Intensity profile of a random ROI at the tumor boundary. where a) represents the visual 
representation of the ROI for the different power profiles. The intensity profiles for the ROIs can be seen at 20 
mW (b), 30 mW (c), and 70 mW (d). The legends correspond to the original structure (black solid line), GT (blue 
dotted line), CARE (red solid line), and N2V (orange solid line). 

For 20 mW (see Figure 5-5(a,b)), we can see that the original intensity profile contains many noise 

spikes, while the denoised model can smoothen these spikes and provide a profile closer to the 

ground truth image with overshoots in some places. CARE 2D provides a good fit that smoothens 

out the original signal and remains close to the ground truth intensity profile, but with some peaks 

that are smoothed. At 30 mW (see Figure 5-5(a,c)), the performance of CARE outshines N2V 2D, 

and we can see that the intensity profile for CARE resembles the ground truth image’s intensity 

profile. N2V 2D, however, only provides some spots with high intensities in both the ROI and the 

intensity profile. At 70 mW (see Figure 5-5(a,d)), the performances of both models are 

comparable, and they both provide an intensity profile that fits close to the ground truth image. 

Both models exhibited enhanced contrast, characterized by more pronounced peaks and deeper 

valleys in the denoised images, indicating a clearer differentiation between features. 

Overall, we conclude that the CARE 2D model performs better than N2V 2D because of the 

additional information input available during training in the form of a ground-truth image. 

Nevertheless, in the higher SNR cases, the performances of both models were comparable. 

Therefore, for exceptionally low SNR cases, CARE 2D is a better choice for denoising the detailed 

structures, especially in the case demonstrated in this section. For higher SNR cases, both 

models performed well in denoising the image and providing structural details. In the next section, 
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we examine the performance of these models in the case of myosin, another common biological 

structure imaged using SHG microscopy. 

CARE 2D and N2V 2D for denoising zebrafish muscle structures. 

The CARE 2D and N2V 2D models were also applied to two zebrafish strains: WT and SMN. The 

results are shown in Figure 5-6.  
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Figure 5-6: for a) wild-type (WT) and b) SMN fish along their intensity profiles from a random ROI. The ROI were 
identical across all samples. The legends correspond to the original structure (black solid line), GT (blue dotted 
line), CARE (red solid line), and N2V (orange solid line). The scale bar for all images is 200µm.   
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For WT samples at 20 mW and 30 mW, the predicted images appear to have improved in terms 

of pure SHG intensity when compared to their original counterparts. However, there was also a 

noticeable loss of detail in muscle structure. The CARE 2D smoothens the distinct muscle 

structure, resulting in a more uniform appearance. In terms of muscle structure preservation, N2V 

2D outperformed CARE 2D in all the cases. While some muscle structure distinctions can still be 

seen at 70 mW with CARE 2D, most of them have been smoothed out. However, N2V 2D does 

not deliver the same SHG intensity restoration as CARE 2D, except at 70 mW. Despite this, N2V 

2D is preferred in muscle structure studies as it focuses on the morphology and structural changes 

in different samples, as well as in intensity.  

Our study also aimed to evaluate the performance of the CARE 2D and N2V 2D models for the 

SMN strain, which has a lower SHG intensity than the WT samples. In low-power cases, both 

models performed poorly with patchy and choppy muscle representations, although CARE 2D 

showed better performance than N2V 2D at 20 mW and 30 mW. At 70 mW, both models 

performed comparably, with CARE 2D delivering more SHG intensity, whereas N2V 2D preserved 

more muscle details. Surprisingly, N2V 2D outperformed CARE 2D in terms of muscle detail 

preservation and denoising of zebrafish muscle structures, even though it did not have a reference 

image for training. Therefore, N2V 2D is the preferred model for these applications. Based on 

Figure 5-6, CARE 2D matches the GT image intensity for WT samples at low power but at the 

cost of smoothing out most of the signal. N2V 2D, however, provides an intensity profile that is 

closer to the original image in terms of preserving details. At 70 mW, CARE 2D provides the same 

intensity value as the original image while reducing noise spikes, and N2V 2D again falls in the 

middle between the CARE 2D model and the original signal in terms of the intensity value while 

following the patterns of the original image signal. For the SMN samples, CARE 2D excels at 

producing the same intensity profile as the GT image at 20 mW. However, for the other samples, 

CARE 2D overshoots the intensity values, and N2V 2D performs better at fitting the intensity 

pattern of the denoised image to the GT image. 
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The mSSIM and PSNR metrics of the CARE 2D and N2V 2D model are summarized in Table 5- 
2: 
Table 5-2: mSSIM and PSNR metric for CARE 2D and N2V 2D models applied to different zebrafish strains. 

Laser 
power (mW) 

Model Sample 
type 

Original v. GT 
mSSIM 

Denoised v. GT 
mSSIM 

Original v. GT 
PSNR (dB) 

Denoised v. GT 
PSNR (dB) 

20 CARE WT 0.07 0.58 17.38 21.03 

30 CARE WT 0.15 0.56 17.7 20 

70 CARE WT 0.44 0.66 19.96 22.67 

20 N2V WT 0.07 0.44 17.37 19.87 

30 N2V WT 0.15 0.5 17.7 20.24 

70 N2V WT 0.44 0.6 19.96 21.26 

20 CARE smn 0.04 0.36 18.66 20.84 

30 CARE smn 0.05 0.29 18.71 20.19 

70 CARE smn 0.22 0.39 19.68 21.51 

20 N2V smn 0.04 0.15 18.66 19.33 

30 N2V smn 0.05 0.27 18.71 20.44 

70 N2V smn 0.22 0.39 19.68 21.49 

From Table 5-2, we can see a significant improvement across the board, and all predicted images 

are better than their original counterparts, as reflected in the mSSIM and PSNR metrics. However, 

the loss of detail in the muscle structure is visually evident in Figure 5-6. 

To summarize, Both CARE 2D and N2V 2D successfully reduced the noise in low-SNR SHG 

images. However, CARE 2D often outperforms N2V 2D when laser power is a major constraint, 

enabling details even at very low-power settings, as demonstrated in our mammary gland images 

(Figure 5-5).  While this holds true for mammary gland tissue, N2V 2D may better retain intricate 

details such as striated muscle fibers in zebrafish when image noise is less severe (Figure 5-6). 
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These nuanced denoising outcomes across tissue types suggest that while CARE 2D excels with 

more homogenous patterns of stromal tissues, N2V's self-supervised learning is advantageous 

for handling diverse and variable patterns in muscular tissues. This observation is supported by 

the visual distinction in the muscle structure preserved by N2V, indicating its ability to maintain 

important biological details that are not fully captured by traditional metrics such as mSSIM and 

PSNR. The variability in performance can be tied to the representativeness of the training data, 

adaptability of the algorithms to different noise distributions, and different tissues. 

Conclusion 

Although deep learning image restoration has been explored in the context of SHG microscopy, 

our study provides novel insights by directly comparing the performance of CARE 2D and N2V 

2D on SHG collagen and myosin images, revealing their tissue-specific strengths and 

weaknesses. Deep learning in image restoration has gained traction over the past few years but 

has not yet been thoroughly applied to SHG microscopy. SHG microscopy relies on many 

parameters for high-quality imaging [14], which can be tedious and time-consuming in some 

scenarios. As demonstrated here, deep learning image restoration can be an alternative solution 

to enhance SHG imaging during post-processing. Our study highlights the importance of 

considering a sample’s specific characteristic when choosing a denoising method. CARE 2D and 

N2V 2D are powerful models used in image restoration that work with (CARE 2D) and without 

(N2V) high-quality reference images  [166,316].  

We found that the glycerol concentration during fixation can lead to noisy images. At higher 

glycerol concentrations, N2V 2D can be used to restore SHG images despite this additional noise. 

Therefore, deep learning image restoration opens the possibility of fixing the significant noise and 

image deterioration caused by fixation chemicals. In addition, it can reduce the number of animal 

sacrifices required for sample preparation. Another crucial experimental aspect of SHG imaging 

of bio-samples is limiting the input laser power to reduce the possibility of sample damage at the 

cost of image SNR. This 70% decrease in the input laser power is also particularly useful for 

shifting the imaging from fixed to live samples. Moreover, at 30 mW, we can see the full layout of 

the structure at 110 mW. Given that the SHG signal is quadratically proportional to the input laser 

power, the input power can be significantly reduced using deep learning without loss in the SHG 

signal.  

The nuanced denoising outcomes for 2D and N2V CARE across tissue types demonstrate their 

unique capabilities. While CARE 2D excels with more homogenous patterns of stromal tissues 

owing to its training on well-represented datasets, it can sometimes lead to oversmoothing, 
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obscuring fine details. N2V's self-supervised learning, on the other hand, allows it to maintain 

important structural nuances in tissues with variable patterns like muscle, even if this approach 

sometimes results in lower quantitative metrics. This observation is supported by the visual 

distinction in the muscle structure preserved by N2V, indicating its ability to maintain important 

biological details that are not fully captured by traditional metrics such as mSSIM and PSNR. The 

variability in performance can be tied to the representativeness of the training data and 

adaptability of the algorithms to different noise distributions.  A hybrid approach that combines 

reference-based learning of CARE 2D with the self-learning capabilities of N2V could potentially 

harness the strengths of both methods, leveraging CARE 2D's structure-preserving capabilities 

in consistent-pattern tissues while utilizing N2V's detail-retaining flexibility in variable-pattern 

tissues. An algorithm trained to classify tissue types can enable dynamic switching between 

CARE 2D and N2V 2D based on image characteristics, providing a more robust and versatile 

denoising approach. 

 Future research directions could include developing an adaptive framework that initially classifies 

tissue types and then applies the most suitable denoising techniques. Machine learning 

algorithms can be deployed to dynamically select between CARE 2D and N2V 2D based on the 

visual and noise characteristics of the tissue, potentially guided by an ensemble of metrics that 

include both traditional scores and assessments of structural fidelity. In summary, the optimal 

denoising strategy may vary not only with the tissue type but also with the specific structural 

features and noise characteristics present in the SHG images. Balancing quantitative assessment 

with qualitative visual analysis is essential to advance the application of deep learning in SHG 

imaging denoising. Looking ahead, we envision a composite model that synergizes CARE 2D's 

structural precision with N2V 2D flexible adaptation to varied noise profiles governed by real-time, 

sample-specific algorithmic decisions. This paradigm shift necessitates the construction of 

comprehensive datasets, fostering model generalization across SHG applications. The broader 

implications of our work suggest a transformative impact on live imaging methodologies, 

advocating minimal laser usage to preserve the sample integrity. Ultimately, this study lays 

foundational groundwork, steering future explorations towards more sophisticated and versatile 

imaging solutions. 
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6.1 Main article 

Abstract: Polarization second harmonic generation (P-SHG) imaging is a powerful technique for 

studying the structure and properties of biological and material samples. However, conventional 

whole-sample P-SHG imaging is time consuming and requires expensive equipment. This paper 

introduces a novel approach that significantly improves imaging resolution under conditions of 

reduced imaging time and resolution, utilizing enhanced super-resolution generative adversarial 

networks (ESRGAN) to upscale low-resolution images. We demonstrate that this innovative 

approach maintains high image quality and analytical accuracy, while reducing the imaging time 

by more than 95%. We also discuss the benefits of the proposed method for reducing laser-

induced photodamage, lowering the cost of optical components, and increasing the accessibility 

and applicability of P-SHG imaging in various fields. Our work significantly advances whole-

sample mammary gland P-SHG imaging and opens new possibilities for scientific discovery and 

innovation. 

Introduction 

The mammary gland undergoes hormonal remodeling post-childbirth [325], comprising the well-

studied mammary epithelium and the less-understood stroma [326], which includes adipocytes, 

fibroblasts, immune cells, and an extracellular matrix (ECM) of collagen, laminins, and other 

proteins [327,328]. The ECM plays a crucial role in gland development, especially during puberty, 

when stromal expansion and collagen orientation precede epithelial morphogenesis [329,330]. 

However, the effect of dysregulated lipid metabolism on this process remains underexplored, 

highlighting a gap in the understanding of mammary gland development. 

SHG microscopy is the preferred method for imaging collagen in tissues because of its superior 

spatial resolution, reduced phototoxicity and photobleaching, focal plane selectivity, and 

straightforward sample preparation [2]. This label-free imaging technique enables the detection 

of changes in fibrillar collagen within the mammary gland, a capability that is unmatched by other 

imaging methods [2,158]. SHG microscopy has played a vital role in collagen research; however, 

relying solely on SHG intensity for orientation studies can introduce interference [232], and 

hindering fibril orientation imaging [52]. To address these limitations, polarization-resolved SHG 

microscopy (P-SHG) has emerged, offering the combined benefits of SHG microscopy and 

polarimetry [47,52,92,169,288]. P-SHG is extensively used in collagen-related investigations, 

providing precise information about fibril structures within the imaging plane, which is a valuable 

asset in mammary gland research [331,332]. In conventional P-SHG imaging, smaller sample 

areas are imaged and studied. However, this approach risks overlooking essential spatial 



 146 

information, especially in developmental studies, where the macroenvironment plays a crucial 

role. As the process shifts to imaging larger areas, the coherent nature of the SHG signal may 

result in the cancellation of some variations, which is a limitation acknowledged in the context of 

our research. In cancer boundary research the broad orientation of the collagen barrier is 

informative [158,333]. The same applies to understanding macroenvironmental effects on 

mammary gland development, where whole-sample P-SHG imaging is essential. While this 

approach may come with the caveat of missing some finer variations and fibers, the holistic view 

it offers on collagen orientation across the entire gland is essential for a comprehensive 

understanding of the developmental processes at play. Acknowledging the challenges associated 

with the cost and time of whole-sample P-SHG imaging, our study leveraged the capabilities of 

deep learning to overcome these barriers. 

Deep learning (DL) significantly enhances SHG microscopy and image analysis by automating 

the interpretation and quantification of SHG signals [185,187,334,335]. DL has become a 

transformative force, significantly advancing tasks, such as classification, segmentation, and 

image restoration in SHG imaging. Highlighted studies have demonstrated its broad utility: one 

successfully applied a convolutional neural network (CNN) to differentiate ovarian tissue types 

with nearly perfect accuracy using SHG imaging [305], while another showed the effectiveness of 

U-Net CNN in segmenting collagen fibers, surpassing traditional techniques in handling the

challenges of variable image intensity in SHG microscopy [306]. Despite the diverse applications

explored, from cancer diagnosis to collagen fiber segmentation, a critical gap remains: the tailored

application of deep-learning image super-resolution enhancement for P-SHG imaging. This

presents an exciting avenue for future research, focusing on the development of bespoke deep-

learning solutions that cater to the intricacies of P-SHG imaging. Our approach significantly

improves the imaging resolution under conditions of reduced imaging time and resolution,

addressing the challenges of prolonged imaging times and potential sample damage associated

with conventional whole-sample P-SHG imaging by utilizing Generative Adversarial Networks

(GANs).

Advanced techniques and super-resolution imaging supported by DL not only overcome technical 

limitations but also reduce noise, as exemplified by Generative Adversarial Network-based 

approaches that effectively achieve image upsampling [140]. A Generative Adversarial Network 

(GAN) is an artificial intelligence framework for generating new data, particularly images, audio, 

and text [336]. The framework operates by pitting two neural networks against each other in a 

competitive manner: a generator and discriminator. 



 147 

The generator network uses random noise as the input and generates data that resemble the 

actual data. For example, in image generation, the generator attempts to create images that 

visually resemble the actual images. The Discriminator network then acts as a judge that attempts 

to distinguish between the actual data (e.g., real images) and fake data generated by the 

generator. It is a binary classifier that learns to identify genuine data from generated data [336]. 

Over time, the generator becomes better at creating indistinguishable data from the actual data, 

whereas the discriminator becomes better at distinguishing real data from fake data. Ideally, this 

process results in a generator that produces high-quality data that resembles actual data. GANs 

have been applied in various fields such as image synthesis, style transfer, super-resolution, 

image-to-image translation, and text-to-image synthesis [336]. 

Another advanced form of GAN is Enhanced Super-Resolution Generative Adversarial Network 

(ESRGAN), which is a deep learning-based approach for image super-resolution [337]. Image 

super-resolution is the process of increasing the image resolution while preserving or enhancing 

its quality. ESRGAN's architecture builds upon the idea of GANs but incorporates modifications 

to improve the super-resolution process [337]. One crucial aspect is the use of a perceptual loss 

function, which measures the difference between the high-resolution ground-truth image and the 

generated image in terms of perceptual features. The loss function of the discriminator measures 

how well the discriminator can classify real data as real and the generated data as fake. The 

generator loss function measures how well the generator can fool the discriminator to classify the 

generated data as real data. The generator aims to maximize the probability of the discriminator 

making a mistake.  

The perceptual loss function allows ESRGAN to focus on capturing high-level features of an 

image, such as edges, textures, and structures, rather than relying solely on pixel-wise similarity 

[337]. ESRGAN generates images that appear visually plausible and realistic to human observers. 

The ESRGAN framework is trained using a combination of adversarial loss (to ensure realism) 

and perceptual loss (to maintain visual quality). This training process involves iteratively updating 

the generator and discriminator networks to improve the quality of the generated image over time 

[337].  

In this study, we acquired high-quality SHG images of the whole mammary gland. We then 

obtained low-quality P-SHG images of the entire sample and upscaled them using the ESRGAN 

model. Next, to test the accuracy of the method, we obtained high-quality P-SHG images of some 

areas of different samples and compared the results with upscaled P-SHG image results. Quality 

metric assessments were performed to ensure that the integrity and structure of the original 
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images were maintained. For simplicity, we introduce those that were implemented in this study, 

namely, the Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), Perceptual 

Image Quality Evaluator (PIQE), and Naturalness Image Quality Evaluator (NIQE). Multiple image 

quality metrics were used, because one metric is unsuitable for considering every aspect of a 

generated image [169]. The PSNR measures the maximum pixel value ratio to the mean squared 

error in an image [319]. Higher PSNR values indicate better image quality and correlate well with 

perceived visual quality. SSIM evaluates the luminance, contrast, and structure between two 

images and considers human visual perception. The SSIM ranges from -1 to 1, where 1 indicates 

identical images, 0 indicates no similarity, and -1 indicates anticorrelation [318]. PIQE is designed 

to evaluate the visual quality of images in a manner that closely aligns with human perception 

[184]. It incorporates various visual features such as contrast, luminance, and texture to compute 

a quality score that reflects perceived image quality [184]. NIQE explicitly targets the assessment 

of naturalness in images [183]. It computes features related to the distribution of pixel values, 

luminance, contrast, and other statistical properties [183]. Unlike SSIM and PSNR, which require 

a reference image, NIQE and PIQE do not require a reference image [183,184].  

In addition, we evaluated the intensity, texture, and contrast metrics to provide a comprehensive 

assessment of the models and upscaled images. The intensity metrics included mean intensity, 

standard deviation of intensity, median intensity, and minimum and maximum intensity values. 

The mean intensity reflects the average pixel intensity of the image, whereas the standard 

deviation of the intensity measures the variation in pixel intensities [338]. The median intensity 

provides the middle value of pixel intensities, and the minimum and maximum intensities indicate 

the range of pixel values in the image [338]. 

Contrast metrics included root mean square (RMS) contrast and Michelson contrast [339]. The 

RMS contrast measures the overall contrast of the image, indicating the level of contrast 

enhancement, while the Michelson contrast evaluates the contrast between the maximum and 

minimum pixel intensities [339]. 

Texture analysis included gray-level co-occurrence matrix (GLCM) metrics such as dissimilarity, 

homogeneity, energy, and correlation [340]. Dissimilarity measures the difference between 

neighboring pixel values, with lower values indicating more uniform texture. Homogeneity reflects 

the closeness of the distribution of elements in the GLCM to the GLCM diagonal, indicating a 

uniform texture [340]. The energy, or angular second moment, measures textural uniformity, and 

the correlation measures the linear dependency of pixel values [340]. 
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We also included advanced metrics such as the Feature Similarity Index (FSIM) for evaluating 

structural similarity [341], Visual Information Fidelity (VIF) for quantifying visual information 

preservation [342], Edge Preservation Ratio (EPR) for assessing edge retention [343], and local 

binary patterns (LBP) for texture analysis [344]. Histogram-based metrics such as histogram 

intersection, histogram correlation, and Kullback-Leibler divergence were used to compare the 

statistical properties of the images [345]. 

Methodology 

Sample preparation 

Sterol-CoA knockout, wild-type, and heterozygous mice were sacrificed at the following key 

stages of mammary gland development: prepubertal (week 4), pubertal (week 6), and adulthood 

(week 10). In adulthood, the female mice were cycled using an impedance meter that provided 

resistance to the vaginal mucosa. A peak indicated proestrus. The mice were sacrificed via CO2 

asphyxiation, followed by cervical dislocation. The mouse was pinned down on a foam pedestal, 

the abdomen was opened, and mammary glands were visualized. The left inguinal mammary 

glands were harvested immediately and placed on glass slides. The mammary gland was 

stretched using pliers to regain its original shape. A parafilm film was placed on the gland and 

flattened for a few minutes using heavy metal weight. The slides were immediately immersed in 

a bath of Carnoy's fixative (100% EtOH, chloroform, glacial acetic acid) for four hours at room 

temperature to fix the tissues. The slides were gradually rehydrated in water and alcohol baths 

(95%, 75%, 50%, and 25% EtOH). The slides were then stained in a carmine alum bath (2% 

carmine and 5% potassium aluminum sulfate dissolved in water) for three hours to dye the 

mammary epithelium with a violet hue. The tissues were then gradually dehydrated in alcohol 

baths (25%, 50%, 75%, and 95% EtOH) and incubated overnight in xylene. The colored mammary 

glands were then imaged using a lightbox, camera, and measurement key to compare the 

samples. Once digitized, the epithelial branches, number of terminal buds, and general 

architecture of the mammary gland were analyzed using ImageJ [346]. 

Imaging setup 

SHG microscopy was performed using a custom laser stage inverted scanning microscope. A 

mode-locked fiber Ytterbium (Yb) laser (MPB Communications Inc., Montréal, CA) was used. This 

laser emits at 1040 nm and delivers 125 fs pulses at a repetition rate of 25 MHz with an average 

power of 3 W. A half-wave plate and a Glan-Thompson polarizer adjusted the average power 

from 20 to 125 mW (0.8 to 5 nJ pulse energy). Given the size of the samples for imaging, sample 
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scanning was performed using a high-speed motorized XY scanning stage (MLS203; Newton, 

NJ, USA). The focus was adjusted coarsely and finely by using mechanical and piezoelectric 

motors (PI Nano-Z, USA). An air objective (UplanSApo 10X, NA 0.3, Olympus, Japan) was used 

for the illumination. A condenser was used to collect the SHG signal of the sample, which was 

detected using a photomultiplier tube (R6357, Hamamatsu Photonics) set to 800 V. The SHG 

signal was isolated using two spectral filters that were placed before the photomultiplier. A short-

pass filter (blocking any wavelength higher than 720 nm, i.e., the input fundamental laser light) 

and bandpass filter centered at 515 nm were employed to filter out the residual input light. A 

multichannel I/O board (National Instruments) and custom-written Python program were used for 

signal acquisition and synchronization. Given the sample size and the acceleration and 

deceleration times of the motorized scanning stage, each SHG image had an acquisition time of 

a few minutes. Raw data were visualized using Fiji-ImageJ software (NIH, USA). The imaging 

configuration is shown in Figure 6-1.  

Figure 6-1: Imaging configuration for SHG and P-SHG setups. The motorized half-wave plate was removed 
during SHG imaging and added during the P-SHG imaging. 

For low-quality P-SHG, a motorized half-wave plate was used to rotate the linear polarization of 

the laser beam to acquire the images. Images were captured for 18 polarization states in 10-

degree steps from 0° to 170°. The motorized half-wave plate and sample scanning were 

synchronized using a custom-built Python program. For high-quality P-SHG imaging, random 

regions of interest of 1000×1000µm were imaged from different samples, and an air objective 

(UplanSApo 20X, NA 0.75, Olympus, Japan) was used for focusing.  
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Upscaling images 

Image upscaling was performed using multiple models: Ultrasharp_4X [347], 

ESRGAN_Nomos2K [348], NMKD [348],4X-UniScaleV2_Sharp [349], and BSRGAN [350]. The 

upscaling was done through the ChaiNNer program, which can be found at 

https://github.com/chaiNNer-org/chaiNNer. Additionally, we explored guided upscaling 

techniques via PixTransform [351], employing high-quality SHG images as references to inform 

the upscaling of 18 distinct P-SHG images across a spectrum of iterations (1,000–30,000) and 

channel-split modes. This process was optimized for performance using an RTX 3060Ti GPU with 

a local computing setup. 

Result and discussion 

Model Performance and Selection Criteria 

Upon rigorous evaluation, it became apparent that not all models performed equally. Despite the 

potential of each method, only Ultrasharp_4X has emerged as a viable solution that closely 

approximates the quality and fidelity of original high-quality SHG images (GT). This finding was 

critical, as our primary goal was to ensure that the upscaled images retained as much of the 

original detail and structural integrity as possible without introducing artifacts or distortions that 

could compromise analytical accuracy.  

To objectively assess the performance of each upscaling method, we compiled the key metrics 

listed in Table 6-1. 

Table 6-1: Comprehensive performance comparison of upscaling models 

Method 
mSSIM 
Ratio 

NRMSE 
Ratio 

PSNR Absolute 
Improvement 

PSNR Percentage 
Improvement 

Visual Inspection 

UltraSharp 0.939 1.036 -0.92 -5.02% Most true to original 

BSRGAN 0.953 1.047 -0.70 -3.84%
Introduced noticeable 

artifacts in complex patterns 

NMKD 0.691 1.164 -1.83 -10.08%
Tended to oversmooth, 

losing fine details 

https://github.com/chaiNNer-org/chaiNNer


 152 

NOMOS 0.866 1.127 -1.44 -7.90%

Better detail preservation 

but Tended to oversmooth 

and artifact 

PixTransform 1.335 1.100 -1.13 -6.22%
Not suitable for P-SHG 

application 

UniScale 0.627 1.209 -2.20 -12.12%
Significant loss of detail and 

increased blurring 

Table 6-1 provides a side-by-side comparison of each evaluated upscaled model against the key 

performance metrics. The mSSIM ratio reflects how well the upscaled image maintains structural 

similarities with the original image, with higher values indicating better preservation. 

Ultrasharp_4X (0.939) and BSRGAN (0.953) show excellent structural preservation, while 

UniScale (0.627) performs poorly. The NRMSE ratio evaluates the error level relative to the 

original image, where a value close to 1 indicates a minimal error. Ultrasharp_4X (1.036) and 

BSRGAN (1.047) perform best in this metric. The PSNR improvement quantifies the change in 

image quality, with values closer to zero indicating better preservation. While all models showed 

some degradation, BSRGAN (-0.70, -3.84%) and Ultrasharp_4X (-0.92, -5.02%) showed the least 

degradation. 

Additionally, the Visual Inspection column assesses the ability of each model to preserve the 

essential details and integrity of the original image. Ultrasharp_4X demonstrated balanced 

performance across all metrics. Its mSSIM ratio of 0.939 indicates excellent structural 

preservation, whereas an NRMSE ratio of 1.036 suggests minimal error introduction. Although it 

shows a slight PSNR degradation (-0.92, -5.02%), this is less severe compared to the other 

models. Crucially, visual inspection confirmed that Ultrasharp_4X produced images most 

accurate to the original, preserving essential details and structural integrity without introducing 

noticeable artifacts. 

To further evaluate the performance of each model, we conducted a detailed analysis of various 

image statistics and texture metrics, as presented in Table 6-2. 
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Table 6-2: Statistics, texture and contrast metrics comparison of upscaling models 

Metric Original 
Low 

quality 
Ultrashar

p 
BSRGAN NMKD NOMOS 

PixTransfor
m 

Uniscale 

Statistics

- min
0 0 0 0 0 0 0 0 

Statistics 

- max
1 1 1 1 1 1 0.816 1 

Statistics 

- mean
0.208 0.191 0.179 0.175 0.197 0.193 0.100 0.157 

Statistics

- std
0.201 0.161 0.169 0.161 0.194 0.194 0.072 0.2 

Statistics 

-median
0.133 0.137 0.118 0.125 0.129 0.122 0.078 0.082 

Texture- 

contrast 
1299.21 333.98 485.215 400.138 

1228.4

8 
995.67 127.484 1630.77 

Texture-

dissimila

rity 

20.374 6.418 8.791 7.487 19.226 15.052 6.414 20.866 

Texture- 

homoge

neity 

0.110 0.646 0.357 0.410 0.131 0.203 0.239 0.174 

Texture- 

energy 

0.022 

0.078 0.052 0.056 0.023 0.035 0.045 0.039 

Texture- 

correlatio

n 

0.753 0.901 0.869 0.882 0.749 0.796 0.811 0.687 

Contrast- 

rms 
0.959 0.836 0.940 0.912 0.976 0.994 0.708 1.259 

Contrast- 

Michelso

n 

1.000 1.000 0.994 1.000 1.000 1.000 1.000 1.000 

Constrat- 

mean_int

ensity 

0.209 0.192 0.179 0.176 0.198 0.194 0.102 0.159 
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Contrast- 

intensity

_var 

0.040 0.026 0.028 0.026 0.037 0.037 0.005 0.040 

Table 6-2 provides a detailed comparison of various metrics between the original high-quality 

image, low-quality image, and all the upscaled images. This comprehensive analysis allows us to 

evaluate how each model preserves or enhances different aspects of an image. 

In terms of basic statistics, all models maintained the same minimum intensity (0.000) as the 

original and low-quality images. However, there were notable differences in the mean and median 

intensities across the models. NMKD (mean: 0.197, median: 0.129) and NOMOS (mean: 0.193, 

median: 0.122) maintained mean intensities closest to the original (0.208), potentially improving 

the overall brightness. Ultrasharp_4X (mean: 0.179, median: 0.118) and BSRGAN (mean: 0.175, 

median: 0.125) show slightly lower values, while PixTransform (mean: 0.100, median: 0.078) and 

UniScale (mean: 0.157, median: 0.082) demonstrate more significant reductions in overall 

brightness. 

The standard deviation of the pixel intensities provides insight into image contrast. UniScale 

(0.200) and NMKD/NOMOS (both 0.194) closely matched or slightly reduced the standard 

deviation of the original image (0.201), whereas PixTransform showed a marked reduction 

(0.072), indicating a significant loss of contrast. 

For texture metrics, we observed varying performance across the models. NMKD (contrast: 

1228.485, dissimilarity: 19.226) and UniScale (contrast: 1630.773, dissimilarity: 20.866) showed 

remarkably high contrast values, even exceeding those of the original image (contrast: 1299.211, 

dissimilarity: 20.374). This could indicate over-sharpening or enhancement of the noise. 

Ultrasharp_4X (contrast: 485.215, dissimilarity: 8.791) and BSRGAN (contrast: 400.138, 

dissimilarity: 7.487) provide a more balanced improvement over the low-quality image (contrast: 

333.988, dissimilarity: 6.418). NOMOS (contrast: 995.677, dissimilarity: 15.052) falls between 

these extremes, whereas PixTransform shows a significant reduction in contrast (127.484). 

In terms of contrast metrics, NOMOS (0.994) and NMKD (0.976) achieved the highest RMS 

contrast, surpassing the original image (0.959). UniScale shows the highest value (1.259), which 

might indicate over-enhancement. Ultrasharp_4X (0.940) provided a more conservative 

enhancement, closely approximating the contrast of the original image. PixTransform showed the 

lowest RMS contrast (0.708), indicating a significant loss of overall contrast. 
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While Table 6-1 provides a comparison of upscaled models using fundamental image quality 

metrics (MSSIM, PSNR, and NRMSE), a more specialized analysis is necessary to fully 

understand how each upscaled image compares to the original high-quality image across various 

aspects of image quality. To this end, we employed a series of specialized metrics that focused 

on feature similarity, visual information fidelity, edge preservation, texture similarity, and intensity 

distribution. Table 6-3 presents the results of these analyses. These metrics offer complementary 

insights into how well each upscaling method preserves or enhances the different aspects of the 

original image quality. 

Table 6-3: Specialized Image Quality Metrics for Upscaled vs. Original Image Comparison 

Metric 
Origina

l vs
Low

Ultrasharp_4
X 

BSRGA
N 

NMK
D 

NOMO
S 

PixTransfor
m 

UniScal
e 

FSIM 0.884 0.910 0.904 0.914 0.919 0.918 0.896 

VIF 0.046 0.062 0.054 0.090 0.103 0.089 0.117 

EPR 0.042 0.019 0.017 0.013 0.016 0.673 0.014 

LBP_Similarity 0.471 0.758 0.836 0.886 0.693 0.960 0.891 

Histogram_Intersectio

n 
0.898 0.894 0.884 0.959 0.863 0.708 0.728 

Histogram_Correlation 0.964 0.962 0.937 0.990 0.935 0.839 0.722 

KL_Divergence 0.130 0.049 0.084 0.014 0.086 1.377 0.237 

Table 6-3 provides additional insights based on the comparison metrics. FSIM scores were high 

across all models (ranging from 0.896 to 0.919), with NOMOS slightly outperforming the others. 

VIF scores show more variation, with UniScale (0.117) scoring the highest, followed by NOMOS 

(0.103) and NMKD (0.090). LBP_Similarity showed significant improvements for all models 

compared to the low-quality image (0.471), with PixTransform (0.960) and UniScale (0.891) 

scoring the highest. 

Histogram-based metrics are particularly strong for NMKD, with high scores in 

Histogram_Intersection (0.959) and Histogram_Correlation (0.990), suggesting that it is highly 

effective at preserving the overall intensity distribution of the original image. The Kullback-Leibler 
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Divergence shows NMKD (0.014) and Ultrasharp_4X (0.049) outperforming other models, 

indicating better preservation of the original image's intensity distribution. However, it is important 

to note that PixTransform showed a higher KL_Divergence (1.377), suggesting less similarity to 

the original distribution in this aspect. 

In our exploration of various upscaling techniques, we initially considered the PixTransform-

guided upscaling approach, which has the potential to leverage high-quality SHG images as 

references for improving the upscaling process. Theoretically, this method offers a promising 

avenue for enhancing the resolution and detail of P-SHG images, which is critical for accurately 

identifying and analyzing collagen fiber orientation and other microstructural details. However, the 

unique characteristics of P-SHG imaging, in which image properties such as signal intensity and 

fiber orientation dynamically change with varying laser input angles, present unforeseen 

challenges. During preliminary trials, we observed that while PixTransform effectively filled in 

missing details in regions of low signal-to-noise ratio (SNR) or where details were obscured owing 

to low resolution, it did so without accounting for the critical angle-dependent variation 

characteristics of P-SHG images. Specifically, the guided upscaling process, in its attempt to 

interpolate and enhance image details based on high-quality references, inadvertently introduced 

artifacts and inaccuracies by "filling in the gaps" in a manner inconsistent with actual, angle-

dependent SHG signal variations. This discrepancy arises from the inherent design of the model 

to generalize from the reference images, leading to misrepresentations where P-SHG imaging 

relies on precise laser angle-specific signal variations to accurately delineate fiber orientations. 

The resultant images, although visually improved in terms of sharpness and resolution, 

misrepresented the underlying biological structures by overlaying or amplifying details that did not 

align with the actual orientation and distribution of collagen fibers, as dictated by varying the laser 

angles. 

Furthermore, our exploration was extended to the BSRGAN, another sophisticated upscaling 

model known for its impressive enhancements in various imaging contexts. Despite its 

capabilities, BSRGAN failed to meet the stringent requirements of accuracy and detail 

preservation in P-SHG image upscaling. Similar to guided upscaling attempts, BSRGAN 

introduced alterations that were detrimental to the integrity of our imaging technique, rendering it 

an unsuitable option. A visual comparison of the upscaling methods elucidates the distinctions in 

the performance and outcome quality, as shown in Figure 6-2. 
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Figure 6-2: Comparative analysis of upscaled models for P-SHG imaging. This Figure illustrates the side-by-
side comparison of a) original high-quality and b) low-quality SHG images against images upscaled using 
various models including c) BSRGAN, d) Nomos2K, e) Ultrasharp_4X, f) NMKD, g) guided upscaling via 
PixTransform, and h) uniscale. 

This comparative analysis highlighted the necessity of selecting an upscaling model that not only 

enhances image resolution but also has an acute sensitivity to the nuances of scientific imaging. 

The challenges encountered with guided upscaling and BSRGAN further reinforce the importance 

of a tailored approach, particularly for specialized imaging techniques such as P-SHG, where 

precision and detail fidelity are non-negotiable. Implementing "Ultrasharp_4X" using the 

ChaiNNer program has marked a significant step toward democratizing advanced P-SHG imaging 

enhancement. Despite its powerful capabilities, accessibility is limited. The program was 

optimized for ease of use and required minimal deep learning expertise from users. Hardware 

requirements were clearly documented, with the existing computational resources of most modern 

research laboratories found to be sufficient for basic operations. 
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Histological images 

The histological images and their corresponding SHG imaging counterparts are shown in Figure 

6-3.

Figure 6-3: Histological and SHG Images of both samples provide a comprehensive view of tissue 
microstructure. 

Comparing histological images with their SHG imaging counterparts can be immensely helpful in 

providing a comprehensive view of tissue structure and organization. This combined approach 

offers a more holistic understanding of tissue architecture. This integration helps during the 

upscaling process by providing structural guidance from the histological images, so that the 

enhanced SHG images maintain the structural fidelity of the tissue. 

Original vs. upscaled SHG images 
The original image of the sample, along with the low-quality image and its upscaled counterpart, 

is shown in Figure 6-4.  
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Figure 6-4: This Figure includes three categories of images: original high quality (1a,2a) , original low quality 
(1b,2b) and upscaled images from two different samples (1c,2c). The original high-quality images (1a,2a)  had 
a resolution of 1800×800 pixels, low-quality images (1b,2b)  had a resolution of 225×100 pixels, and upscaled 
images (1c,2c) had a resolution of 3600×1600 pixels. 

The original high-quality images were characterized by a resolution of 1800×800 pixels, which 

indicated a substantial amount of detail and clarity in each image. These images were captured 

with high precision and provided a rich visual content. The imaging time for each image was 

approximately 18 min, given the speed of the scanning stage and chosen pixel size of 10µm. 

Although ideal for single image application, P-SHG requires 18 images in our case; therefore, if 

we apply the same imaging scenario, it will take over 4 h of imaging per sample, which also 

translates to a constant laser-sample interaction that can damage the sample. In contrast, the 

original low-quality images belong to a feature with a significantly reduced resolution of 225×100 

pixels. This lower resolution implies a substantial loss of detail and sharpness compared with their 

high-quality counterparts. 

However, capturing each image takes approximately 45 s, meaning that we can capture 18 

images for P-SHG in the same amount of time as it takes to capture a single high-quality image 

for one polarization. Unfortunately, the P-SHG analysis method used does not perform well on 

low-resolution images; therefore, the loss of detail and sharpness encountered must be 

addressed. Therefore, we applied image upscaling to low-quality images using the Ultrasharp_4X 

model based on the ESRGAN. As mentioned, other upscaled models were also applied to the 

images; however, based on the results, it was decided that the Ultrasharp_4X model provided the 
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best upscaled images in our use case. We also used high-quality images to upscale 18 low-quality 

images. This method did not work well because, in P-SHG, changing the laser input angle will 

cause changes in the SHG based on fiber alignment. We observed that the model attempted to 

fill in missing intensities and omit specific pixels to shape the image based on the reference image; 

therefore, individually upscaling each P-SHG image was optimal for our application. By applying 

Ultrasharp_4X twice, we could enhance the resolution of the images by 16× and obtain higher-

resolution upscaled images of 3600×1600 pixels. While the upscaled images appear more 

detailed and visually larger than the original images, they often suffer from quality degradation 

owing to the interpolation and extrapolation involved in the upscaling process. Therefore, we must 

perform the detailed quality metric controls mentioned in the Introduction to ensure that the 

integrity of the information is intact.  

Quality control 
In the quality control section of our study on image upscaling, we meticulously assessed the 

effectiveness of ESRGAN in improving the quality of the low-resolution P-SHG images. Our 

evaluation strategy encompassed a blend of no-reference and full-reference image quality 

metrics, supplemented by statistical analysis through analysis of variance (ANOVA), to provide a 

holistic understanding of the upscaled image quality in relation to their original high-quality 

counterparts.  

No-reference Quality Metrics 
We began with no-reference quality metrics, specifically the Naturalness Image Quality Evaluator 

(NIQE) and the Perceptual Image Quality Evaluator (PIQE), which assess image quality without 

the need for a reference image. These metrics are particularly useful for evaluating the perceptual 

quality of the upscaled images. The findings are summarized in Table 6-4. 

Table 6-4: No-reference quality metrics 

Sample Method Source Prediction Ground 

a 
NIQE 8.940 3.186 6.707 

PIQE 40.797 23.234 46.404 

b 
NIQE 9.908 2.749 7.532 

PIQE 89.992 31.906 52.931 
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The lower scores for the predicted images across both the NIQE and PIQE metrics suggest an 

enhancement in the image quality post-upscaling. This indicates that our method successfully 

improved the perceptual quality of the images, making them more natural and visually pleasing 

than original high-quality (ground) images. These results confirm the effectiveness of our 

upscaling method, although it is important to note the potential difference between computational 

assessments of quality and human perception. Using PIQE and NIQE in this context makes sense 

because they are non-reference image quality metrics that are ideal for evaluating the quality of 

upscaled images when no high-quality original is available for comparison. Their application offers 

a method for quantitatively assessing improvements in image quality that may not be immediately 

apparent by visual inspection alone. Despite the concern that these metrics might be optimized 

for "computer perception," the lower scores for the predicted images compared with the source 

images suggest a successful enhancement. However, the discrepancy between these scores and 

human perception highlights the importance of using a combination of metrics, including full-

reference metrics such as MS-SSIM, PSNR, and NRMSE, to obtain a comprehensive evaluation 

of image quality post-upscaling.  

Full-reference Quality Metrics 
Next, we assessed image quality using the full-reference metrics MS-SSIM, PSNR, and NRMSE. 

These metrics require a reference image for comparison and offer different perspectives on image 

quality, focusing on structural similarity, signal fidelity, and error. The results are summarized in 

Table 6-5. 

Table 6-5: Full-reference quality metrics 

Sample Method Source Prediction 

a 

MS-SSIM 0.33 0.31 

PSNR 18.31 17.39 

NRMSE 0.28 0.29 

b 

MS-SSIM 0.01 0.01 

PSNR 9.14 9.14 

NRMSE 0.56 0.56 
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The similar MS-SSIM, PSNR, and NRMSE values between the source and prediction images for 

both samples underscores the capability of our upscaling algorithm to maintain the structural 

integrity and signal fidelity of the images. Although there were slight variations in some metrics, 

the overall similarity in the scores suggests that our method is adept at enhancing the images 

without compromising the original quality. Building on a detailed examination of both the no-

reference and full-reference quality metrics, we further enriched our analysis by conducting 

ANOVA to statistically ascertain the differences in image quality across the Source, Prediction, 

and Ground groups. This statistical approach allowed us to rigorously test for significant variations 

in the image quality resulting from our upscaling process. Below, we integrate the ANOVA findings 

with the previously discussed quality metric evaluations. 

ANOVA Results 
After evaluating the image quality using both no-reference and full-reference metrics, we 

performed ANOVA to statistically compare these metrics across different image groups (source 

vs. prediction). ANOVA was used to identify any statistically significant differences in the image 

quality, thereby providing a quantitative basis for evaluating the efficacy of our upscaling methods. 

The results are presented in Table 6-6. 

Table 6-6: ANOVA results 

Metric 
Category 

Metric Details F-Value Range P-Value Range
Highest Effect 

Size (η²) 

No-reference 
Quality Metrics 

NIQE and PIQE 
combined 

0.654 0.543 0.109 

Full-reference 

Quality Metrics 

MS-SSIM, 

PSNR, and 

NRMSE 
combined 

0.003 to 0.006 0.948 to 0.982 0.001 

Texture 
Various texture 

metrics 
0.442-1.651 0.216-0.811 

0.248 

(Homogeneity) 

Contrast 
Various 

contrast metrics 
0.233-1.199 0.359-0.941 

0.194 (RMS 
Contrast) 
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Comparison 

Various 

comparison 

metrics 

0.087-2.239 0.112-0.993 
0.309 (Hist. 
Correlation) 

In Table 6-6, the F-value represents the ratio of the variance between groups to the variance 

within groups, with larger values indicating greater differences between groups [352]. A p-value 

indicates the probability of obtaining test results at least as extreme as the observed results, 

assuming that the null hypothesis is correct [352]. A p-value less than 0.05 is typically considered 

statistically significant. The effect size (η²) quantifies the magnitude of the difference between 

groups with values of 0.01, 0.06, and 0.14 typically considered small, medium, and large effects, 

respectively [353]. 

The ANOVA results indicated no statistically significant differences between the source and 

prediction groups or among upscaling methods for any set of metrics (p > 0.05). However, the 

variation in the F-values and effect sizes (η²) suggests practical differences that warrant 

consideration. The no-reference quality metrics (NIQE and PIQE) showed a medium effect size 

(η² ≈ 0.109), indicating a noticeable impact on perceptual image quality. In contrast, the full-

reference quality metrics (MS-SSIM, PSNR, and NRMSE) show a very small effect size (η² ≈ 

0.001), suggesting high preservation of structural similarity and signal fidelity. 

Among the specific metric categories, comparison metrics, particularly Histogram Correlation, 

showed the largest effect size (η² = 0.309), followed by texture metrics (homogeneity, η² = 0.248) 

and contrast metrics (RMS Contrast, η² = 0.194). These moderate effect sizes suggest practical 

differences in these aspects of image quality across the upscaling methods, despite the lack of 

statistical significance. 

It is important to note that a lack of statistical significance does not necessarily mean that there 

are no meaningful differences. This may be due to several factors: our relatively small sample 

size, which can limit the power of statistical tests; high variability within groups; and the nature of 

the improvements made by our upscaling method, which may be consistent but subtle.  

Despite the lack of statistical significance, the moderate effect sizes observed for some metrics 

suggest practical differences that warrant consideration when selecting an upscaling method for 

specific P-SHG imaging applications. These findings highlight the importance of considering both 

statistical and practical significance in evaluating imaging enhancement techniques.  

Combining the no-reference and full-reference quality metrics with the ANOVA results provided a 

comprehensive validation of our upscaling methods. This analysis demonstrates that our 
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ESRGAN-based approach can enhance low-resolution images while preserving their quality. The 

lack of statistically significant differences, coupled with the moderate effect sizes in certain 

metrics, suggests that the upscaling process does not significantly alter perceived or structural 

image quality. This validation confirms the efficacy of the method and underscores its potential 

applicability in bioimaging and beyond, where maintaining the image integrity is paramount. The 

nuanced differences revealed by the effect size analysis provide valuable guidance for optimizing 

upscaling methods for specific imaging contexts, ensuring that the most critical aspects of image 

quality are preserved in each application. 

P-SHG analysis results
Before conducting P-SHG analysis, we performed CurveAlign measurements to determine

whether low-quality images could be analyzed using this method [158]. Figure 6-5 summarizes

the results for the two samples.

Figure 6-5: Comparative analysis using CurveAlign on samples: original high-quality (1a, 2a), low-quality (1b, 
2b), and GAN-upscaled images (1c, 2c). CurveAlign accurately identifies the collagen fiber orientation in high-
quality images (1a, 2a). In low-quality images (1b, 2b), the performance diminishes, with only larger 
recognizable fibers. However, the upscaled images (1c, 2c) show significantly improved analysis, with fiber 
orientation discernibility comparable to that of the original high-quality images. This demonstrates the efficacy 
of GAN-based upscaling in enhancing image analysis for CurveAlign. 

In Figure 6-5, we present a comparative analysis using CurveAlign software on two sets of 

samples: original high-quality images (1a, 2a), their lower-quality versions (1b, 2b), and images 

enhanced via GAN-based upscaling (1c, 2c). CurveAlign proficiently identifies the orientation of 

collagen fibers in high-quality images (1a, 2a), demonstrating the effectiveness of the software 
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with images of adequate resolution and clarity. However, acquiring such images required 15 min 

of continuous laser exposure per image, totaling 4.5 hours for the 18 images necessary for P-

SHG analysis. This extended exposure can damage the samples, leading to degradation and 

affecting the repeatability of experiments. Additionally, fresh samples risk drying out and altering 

their morphology if removed from their chemical bath for more than a few minutes, potentially 

reducing SHG intensity or extinguishing harmonophores. Therefore, minimizing the laser 

exposure and expediting the imaging times are desirable. 

Analysis of the lower-quality images (Figure 6-5, 1b, 2b) revealed significant limitations in both 

CurveAlign and our custom P-SHG algorithm. These tools struggled to accurately discern the 

collagen fiber orientation, identifying only a few larger fibers. This highlights the challenges that 

image analysis software faces with suboptimal image quality, where the loss of detail severely 

limits the accuracy and comprehensiveness of the P-SHG analysis. Many existing P-SHG 

analysis tools are optimized for higher-resolution inputs, often failing to detect finer structures or 

misinterpret noise as significant features when applied to low-resolution images (please refer to 

Supplement 1 Figure S1, and S2, respectively). 

Remarkably, the GAN-upscaled images (Figure 6-5, 1c, 2c) showed a significant improvement, 

with CurveAlign's performance on these images being comparable to that on the original high-

quality images. This comparative analysis underscores the necessity of our upscaling approach, 

rather than performing P-SHG analysis directly on low-resolution images. Our analysis 

demonstrates that the upscaled images provide a superior approximation of the original high-

quality images across multiple metrics. For instance, the FSIM improved from 0.884 (low quality) 

to 0.910 (Ultrasharp_4X), and the LBP similarity increased from 0.471 to 0.758. Although 

upscaling does not recover all fine details, it strikes a balance between detail preservation and 

noise reduction. 

The significant improvements in fiber orientation discernibility, as seen in Figure 6-5 (1c, 2c), 

clearly demonstrate the value of this upscaling approach. These enhancements are crucial for 

accurate P-SHG analysis, allowing for better differentiation of collagen structures and more 

reliable orientation measurements. Our approach leverages the speed of low-resolution imaging 

while obtaining analysis results that closely resemble those from high-resolution images, offering 

a pragmatic solution to the trade-off between imaging speed and analysis accuracy in P-SHG 

studies.In conclusion, this GAN-based upscaling approach markedly enhances the utility of lower-

quality images for detailed analysis, extending the applicability of CurveAlign software and other 

tools to a broader spectrum of image qualities. It provides an efficient solution that combines 
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shorter laser exposure times with image upscaling, overcoming the limitations posed by lower-

quality images and technical constraints of sample preparation, and potentially opens new 

avenues for rapid, nondestructive P-SHG imaging in various biological applications. 

Next, Images were captured at 18 polarization states, spanning 0°–170° degrees in 10-degree 

increments, with synchronization achieved using a custom Python program. Initially, the effort 

was to make the analysis software work based on low-quality images, but this was unsuccessful 

because there was too much loss of detail for the analysis to be accurate. The initial phase of our 

study attempted to conduct analyses based on low-quality images; however, this approach 

encountered substantial obstacles owing to the significant loss of detail, which compromised the 

accuracy of our analyses. To circumvent this issue, each image was individually upscaled using 

the Ultrasharp_4X model, thereby enhancing the resolution and clarity essential for accurate P-

SHG analysis. A custom MATLAB script, inspired by the foundational work referenced 

in[63,158,236], was pivotal for processing upscaled P-SHG images. This script employs a spatial 

FFT algorithm to execute a Fourier transform on intensity measurements across different angles. 

For further details consult [63,236]. Figure 6-6 summarizes the results of the analysis.  

Figure 6-6: P-SHG imaging of collagen fiber orientation in mammary glands. Panels (a) and (b) display the SHG 
signals of two distinct tissues, visualized in a range of colors corresponding to the collagen fiber orientations 
relative to the polarization angle of the incident light. The color wheel insets map these orientations, with each 
color representing a specific angle of polarization, illustrating the complex and heterogeneous arrangement 
of the fibers within the samples. Notably, both images contained dark regions inside the fibers, which were 
attributed to areas where the intensity of the SHG signal remained static, indicating a uniform orientation of 
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collagen fibers over the polarization states captured. Owing to this uniformity, the spatial fast Fourier 
transform algorithm cannot discern variations, resulting in no color assignment in these specific regions. 

Our P-SHG analysis protocol, detailed in Figure 6-6, encompasses 18 SHG images (32-bit TIFF) 

taken in 10-degree steps from 0°to 170°. Each angle (0-360 degrees) is denoted by a distinct 

color, providing a visually intuitive depiction of the fiber orientation across the sample. In addition, 

a fibrillar histogram accompanies the images, offering a quantitative analysis of the fiber 

orientations. Some areas in the analyzed images appear darker than those in the original images. 

Dark regions within the fiber network arise because of the uniform fiber orientation over 

polarization states. This results from the smoothing effect of the upscaling algorithm and impedes 

the ability of the FFT to detect internal variations within fibers. However, it is noteworthy that FFT 

remains adept at discerning the periphery of fibers and accurately identifying their borders. 

Importantly, the fiber borders were aligned with the interior, providing a coherent overall fiber 

direction. This consistency between the border and interior orientations ensures that despite the 

limitations in detecting internal variations, the method still effectively conveys the general 

directionality of the fibers. For analyses in which specific internal areas of the fiber are of interest, 

a targeted focus on these regions is required to overcome the limitations of these smoother, 

homogeneous sections (see Figure 6-7).  

Furthermore, dark areas around the sample resulted from the deliberate removal of background 

elements and non-essential muscle structures surrounding the fibers, a step taken to enhance 

the clarity and focus of the analysis of the collagen fibers. Figure 6-6a. shows a network of 

collagen fibers with varying orientations, as indicated by the spectrum of colors present in the 

tissue, where each color corresponds to a different fiber orientation relative to the polarization 

angle of the incident light. The color wheel inset serves as a reference for interpreting these 

orientations. The vibrant colors suggest a diverse and complex arrangement of fibers, with pink 

hues indicating fibers oriented in one direction, and other colors representing different angles. 

Figure 6-6b. displays a collage of colors, indicating the orientation of collagen fibers. The 

presence of bright green and yellow hues suggests that the fibers have orientations different from 

those in the first image. The color intensity and distribution indicated that this sample may have a 

denser or more aligned collagen network than the first sample.  The results, including the color 

wheel, orientation map, anisotropy parameter map, and histogram data, were meticulously 

compiled for each sample.  
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Figure 6-7: Comparative P-SHG Analysis Across Three ROIs. Each row represents a distinct region of interest 
(ROI) from different samples, showcasing original high-quality images (20X objective), low-quality images 
initially captured with a 10X objective then digitally zoomed and cropped, and their GAN-upscaled 
counterparts. Despite the initial lower resolution, upscaling restores detail and smoothness, yielding a fiber 
orientation analysis comparable to the original high-quality images. Normalized intensity vs. laser input angle 
graphs for each set illustrate the consistency of P-SHG responses across all imaging modalities, affirming the 
accuracy of collagen fiber orientation details in the upscaled images. 

In Figure 6-7, we focus on the analysis of regions of interest (ROI)s extracted from different 

samples and their counterparts, which were enhanced through an upscaling process. This 

examination is pivotal for assessing the fidelity of upscaling techniques to preserve the structural 

and optical properties that are essential for accurate P-SHG analysis. For our analysis, images of 

the selected P-SHG ROIs were captured using a 20X objective. 20X is optimal for resolving the 

intricate patterns of collagen fiber orientation while ensuring adequate field coverage. Notably, 

the images earmarked for upscaling were initially obtained using a 10X objective, before being 

digitally zoomed and cropped. This approach was strategically employed for low-quality images 

to simulate the conditions in which high-resolution data were not readily available or feasible to 

obtain, thus mimicking a real-world scenario in which upscaling could be particularly beneficial. 

Upon comparing the original and upscaled (yet zoomed and cropped) P-SHG images, a key 
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observation was the smoothness of the upscaled images. This smoothness did not detract from 

the structural details within the images, but rather enhanced the visual clarity, making the 

interpretation of collagen fiber orientations more straightforward. More importantly, when we 

quantified the P-SHG response by plotting the normalized intensity against the laser input angle 

for both the original and upscaled images, we observed remarkably consistent responses. The 

graph corresponding to the upscaled P-SHG images exhibited a smoother curve, an effect 

attributable to the upscaling process, which tended to reduce noise and interpolate between data 

points to create a more continuous representation of the intensity response. 

Crucially, despite the smoother appearance of the graphs in the upscaled images, the overall 

shape and trend of the P-SHG intensity responses remained unchanged. This congruence 

indicates that the upscaling process, while enhancing the visual quality of the images, did not alter 

the fundamental biophysical properties captured by P-SHG imaging. Thus, the fidelity of fiber 

orientation details in the upscaled images was validated, underscoring the utility of upscaling as 

a viable method for improving image quality in P-SHG analysis without compromising the 

accuracy of collagen fiber orientation information. 

Conclusion 
In conclusion, our research has demonstrated significant advancements in whole-sample 

mammary gland P-SHG imaging, reducing the imaging time from a time-consuming 4.5 hours to 

a mere 13.5 minutes (more than 95% reduction). Acquiring 18 high-quality images suitable for P-

SHG analysis is a time-intensive process that poses the risk of damage to samples, particularly 

those of considerable size. To mitigate these challenges, we propose an innovative method that 

involves capturing 18 low-quality images and subsequently enhancing their resolution by using a 

GAN-based approach. This technique not only substantially reduces the required imaging time 

but also ensures preservation of sample integrity during the imaging process. By leveraging the 

capabilities of GANs to generate high-resolution images from their lower-quality counterparts, this 

approach offers a promising alternative that balances the need for high-quality imaging with the 

imperative of minimizing potential harm to delicate samples. In our pursuit of image upscaling, we 

explored various models, ultimately selecting "ultrasharp_4X" based on ESRGAN owing to its 

remarkable similarity to the original images. Although we initially considered using high-quality 

images as references for upscaling, this approach led to undesirable alterations, making it 

unsuitable for our specific application. This method saves substantial amounts of time and offers 

several advantages.  
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One of the most noteworthy advantages of our accelerated P-SHG imaging process is the 

substantial reduction in the laser exposure of the sample. Laser-induced photodamage is a 

concern when working with delicate biological specimens, and minimizing this risk is crucial for 

preserving the integrity and quality of the sample. Our faster imaging method minimizes the 

exposure time, reduces potential harm to the sample, and allows for extended observation without 

compromising the biological or material properties under investigation. Using this technique, we 

achieved fiber orientation analysis on par with that of high-quality images captured with a 20X 

objective. This accelerated process was complemented by a meticulous image analysis protocol, 

in which each angle of polarization was represented by a specific color on a wheel, translating 

into an intuitive visual depiction of the fiber orientation throughout the sample. Accompanying 

fibrillar histograms provides quantitative analysis that enhances the interpretive depth of the 

study. Our results demonstrate the robustness of P-SHG responses and fidelity of collagen fiber 

orientation data within upscaled images. These findings were reinforced by a comparative 

analysis across three distinct ROIs, which confirmed that the GAN-based upscaling process 

preserved the integrity of the sample while enhancing the detail and smoothness of fiber 

alignment. 

Furthermore, the expedited P-SHG imaging process allows us to reconsider the optical 

components of the imaging system. Because high-resolution imaging is not required in many of 

our applications, we can opt for more cost-effective objective objectives and imaging systems. 

This optimization translates to significant cost savings and lowers barriers to entry for researchers 

and institutions interested in utilizing the P-SHG imaging technology. This affordability and 

accessibility expands the potential applications of P-SHG imaging in diverse fields and 

communities. Our analysis confirmed the accuracy of the results obtained using accelerated 

imaging. By comparing the P-SHG images generated using our streamlined approach with those 

produced using the traditional method, we found that the results were consistent with the 

characteristics of the sample. Reducing the laser exposure and equipment costs ensures that P-

SHG imaging can be adopted more widely, thereby advancing scientific understanding and 

innovation across disciplines. Our work paves the way for discoveries and breakthroughs fueled 

by the efficiency and accessibility of P-SHG imaging. Therefore, there are promising directions 

for future research. New or emerging GAN architectures can offer more precise upscaling 

capabilities, particularly for images with unique challenges that are not fully addressed by the 

current models. The development of automated analysis tools tailored for upscaled images 

ensures that the upscaling process enhances data interpretation. The incorporation of AI-driven 

methods for identifying and quantifying specific features in upscaled images can streamline the 
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analysis of complex biological structures. In addition, the effectiveness of our method was 

demonstrated through mammary gland tissue imaging. Extending this approach to other tissues 

or conditions such as fibrotic changes in liver disease or collagen alterations in cardiovascular 

health could significantly broaden its applicability. This expansion would not only validates the 

versatility of the proposed method, but also contributes valuable insights into the structural 

dynamics of various diseases. Moreover, establishing guidelines for the ethical use of AI in 

scientific imaging will ensure the integrity of data. Developing quality standards for upscaled 

images will facilitate their acceptance and use in critical research endeavors. 
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7 CONCLUSION AND FUTURE WORK 

7.1 Conclusion 

SHG microscopy has firmly established itself as a powerful tool for bioimaging, particularly in the 

study of non-centrosymmetric biological structures such as collagen, myosin, and microtubules. 

Integrating advanced SHG modalities, including P-SHG, I-SHG, and wide-field SHG, has 

significantly expanded its capabilities, enabling researchers to probe biological tissue’s structural 

and functional aspects with unprecedented detail and precision. These advancements have 

positioned SHG microscopy as an essential tool in biomedical research, with potential 

applications spanning neuroscience, cancer diagnostics, and tissue analysis. 

Recent technological advancements have improved the accessibility and versatility of SHG 

microscopy. On the hardware front, the shift towards more robust and cost-effective fiber and 

semiconductor lasers promises to broaden the user base of SHG microscopy. Concurrently, 

integrating machine learning and artificial intelligence in software applications is revolutionizing 

image analysis and enabling automated feature detection and real-time image enhancement 

during acquisition. 

Despite these promising developments, SHG microscopy faces several challenges. The high 

equipment cost and the need for specialized training continue to limit its widespread adoption in 

routine biomedical practice. Moreover, while integrating deep learning techniques shows great 

potential, it is still in its early stages. Researchers are grappling with issues such as the need for 

large, well-annotated datasets and the risk of overfitting when working with limited data. 

The application of SHG microscopy in clinical settings presents exciting prospects, particularly in 

areas such as cancer diagnosis and pathology. Its potential applications in drug development and 

personalized medicine could lead to significant breakthroughs in healthcare. However, realizing 

this potential will require addressing the current challenges through cost reduction, 

standardization of techniques, and improved data interpretation. Overcoming these limitations 

necessitates concerted efforts in hardware development, advanced image-processing 

techniques, and the establishment of standardized SHG imaging protocols. In addition to 

addressing technical limitations, successfully integrating SHG microscopy into routine biomedical 

practice will require collaborative efforts between researchers, industry, and regulatory bodies. 

Standardizing AI-driven SHG imaging pipelines and ensuring compliance with clinical imaging 

standards will be crucial for widespread adoption in pathology labs and diagnostic centers. 
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Developing user-friendly software solutions that enable seamless interaction between SHG 

imaging systems and hospital information systems can further accelerate the transition from 

research to clinical applications. 

The emerging synergy with deep learning promises to overcome the current limitations and open 

new avenues for research, from automated image analysis to enhanced resolution and sensitivity. 

The rapid evolution of AI-driven methodologies in biomedical imaging suggests that deep learning 

techniques will become integral to SHG microscopy workflows in the coming years. As models 

become more efficient and computational hardware advances, the barriers to AI adoption in 

microscopy—such as computational costs and training data limitations—will gradually diminish. 

Refining self-supervised and few-shot learning approaches could enable deep learning models to 

perform effectively even in data-scarce scenarios, making AI-based image enhancement and 

classification more accessible to researchers across disciplines.  

The research presented in the four articles of this thesis directly addressed its primary objectives. 

Article 1 provides crucial context and identifies areas for improvement in SHG microscopy. 

Articles 2 and 3 demonstrate significant advancements in image quality enhancement and 

automated analysis using ML techniques, whereas Article 4 shows how GANs can dramatically 

improve imaging speed and efficiency. 

Future research should refine DL models for broader biological sample use, building on these 

advancements, which improve imaging quality, speed, and structural analysis capabilities. 

Integrating these models into clinical workflows is a priority. Further optimization of DL algorithms 

for specific tissue types and imaging conditions, development of integrated hardware-software 

solutions for real-time AI-enhanced SHG imaging, and exploration of multimodal imaging 

techniques combining SHG with other microscopy methods are equally important. 

The broader implications of this study extend beyond SHG microscopy. By demonstrating the 

feasibility of AI-powered enhancements in SHG microscopy, this research contributes to a 

broader shift in biomedical imaging toward automation and intelligent analysis. Similar deep 

learning techniques can be adapted for other nonlinear optical modalities, such as THG and 

CARS microscopy. Furthermore, the advancements in noise reduction, image upscaling, and 

classification through AI can be leveraged to improve imaging accuracy in fields such as disease 

diagnosis, drug development, and personalized medicine. 

Improved SHG microscopy techniques can lead to more accurate and earlier disease diagnosis, 

particularly in cancer detection. The increased efficiency and accessibility of these imaging 
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methods could accelerate drug development, potentially reducing the time and cost of bringing 

new treatments to the market. Furthermore, incorporating AI with SHG microscopy could 

democratize access to advanced imaging technologies, enabling their use in a broader range of 

healthcare settings and contributing to more equitable healthcare delivery. 

This thesis demonstrated the transformative potential of integrating SHG microscopy with 

advanced AI techniques. The findings highlight significant improvements in imaging quality and 

analytical capabilities, suggesting a future in which these technologies are integral to biomedical 

research and clinical applications. Further research should refine these methods for broader 

accessibility and enhanced diagnostic precision. 

Future research should aim to refine machine-learning models for more diverse biological 

samples and explore their integration into clinical workflows. In addition, developing cost-effective 

and user-friendly SHG imaging systems can enhance accessibility in various healthcare settings. 

7.2 Future work 

7.2.1 Expanding multimodal imaging techniques 

A significant opportunity lies in advancing the incorporation of AI into existing multimodal imaging 

techniques that combine SHG microscopy with other advanced imaging modalities. Although 

these combinations provide a comprehensive view of the tissue architecture and biochemical 

composition, adding machine learning can significantly enhance the analysis and interpretation 

of complex datasets. Future studies should focus on developing algorithms capable of seamlessly 

integrating data from these diverse modalities, offering more precise and nuanced insights into 

biological systems. For example, DL can improve image registration, enhance contrast, and 

extract subtle patterns that may not be visible using traditional methods. Moreover, AI-driven data 

fusion can automate the identification of correlations between structural and molecular 

information, facilitating a deeper understanding of complex biological processes, such as tumor 

progression or tissue regeneration. This integration streamlines data processing and unlocks new 

possibilities for personalized diagnostics and targeted therapeutic strategies by providing 

clinicians with a more detailed and actionable understanding of patient-specific conditions. An 

additional frontier in multimodal imaging involves integrating SHG with AI-driven hyperspectral 

and Raman imaging techniques, allowing researchers to simultaneously extract structural and 

biochemical information from tissues. By training deep learning models to interpret combined 

datasets, future studies could refine disease biomarkers and improve the predictive power of 
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diagnostic models. This approach holds promise for oncology, where integrating SHG and 

biochemical data can enhance early tumor detection and classification.  

7.2.2 Development of adaptive and hybrid deep learning models 

The potential for developing adaptive and hybrid deep learning models is immense. These models 

can dynamically adjust their parameters based on real-time imaging conditions and tissue 

characteristics analysis, optimizing the denoising and enhancement processes. Researchers can 

create more versatile and practical models across various imaging scenarios by combining the 

strengths of CARE 2D and N2V 2D and exploring novel architectures, such as GANs. Developing 

deep learning models incorporating physics-based priors alongside data-driven approaches could 

significantly enhance SHG image reconstruction. By integrating optical physics and tissue 

properties knowledge into neural networks, researchers can create more interpretable AI models 

that are less susceptible to hallucination artifacts. This could be particularly useful in low-SNR 

imaging conditions, where traditional deep-learning approaches struggle to distinguish true signal 

from noise. 

7.2.3 Enhancing classification and analysis tools 

Future work should focus on refining classification algorithms to better differentiate between tissue 

types and conditions. Advanced techniques, such as transfer learning and ensemble methods, 

can improve accuracy and robustness. Additionally, developing automated analysis tools that 

leverage AI-driven insights can facilitate real-time diagnostics, enabling faster and more accurate 

decision-making in clinical settings. 

7.2.4 Expanding application scope to diverse tissues 

Extending the application of SHG microscopy and deep learning techniques to a broader range 

of tissues and conditions can validate their versatility. Research could focus on studying fibrotic 

changes in liver disease, collagen alterations in cardiovascular health, or structural dynamics in 

neurodegenerative diseases. Such studies would enhance our understanding of these conditions 

and provide valuable data for refining imaging and analysis techniques. 

7.2.5 Ethical considerations and standardization 

As AI-driven imaging has become more prevalent, establishing ethical guidelines and quality 

standards is essential to ensure data integrity and reliability. Future research should address the 
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ethical implications of AI in scientific imaging to promote transparency and reproducibility. 

Standardizing data collection, analysis, and sharing protocols will be crucial for building trust and 

facilitating collaboration across the scientific community. 

7.2.6 Real-time imaging and low-power applications 

The enhancement of SHG microscopy for real-time and low-power imaging applications presents 

exciting opportunities for in vivo studies. By reducing the laser power required for high-quality 

imaging, researchers can minimize sample damage and extend the applicability of SHG to more 

delicate and dynamic biological samples. This advancement could significantly impact fields such 

as developmental biology and cancer research, in which observing live processes is crucial. 

Future studies should explore real-time AI-based denoising pipelines that operate during image 

acquisition, enabling researchers to obtain high-quality images with minimal Implementation of 

lightweight neural networks that can run on devices or embedded hardware would allow SHG 

microscopy to be deployed in resource-limited settings, expanding its accessibility beyond 

specialized research laboratories. This could open new opportunities for in-field biomedical 

imaging applications, such as portable SHG endoscopy for minimally invasive diagnostics. 

7.2.7 Integration with clinical workflows 

Finally, integrating these advanced imaging techniques with clinical workflows can revolutionize 

diagnostics and patient care. Developing intuitive interfaces and robust analysis tools can help 

clinicians quickly and accurately interpret complex imaging data. Collaboration between 

researchers, engineers, and healthcare professionals will ensure these technologies meet clinical 

needs and improve patient outcomes. 
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Figure S1. H&E images of the whole mammary gland with and without tumor. (a) and (b) are
naïve mammary glands. (c) and (d) are tumor bearing. The red rectangles show the regions of
interest studied using SHG microscopy for [1].

Figure S2. Microscope program and how the centralized program controls the signal acquisition and synchronization in this experiment. After 
inputting the necessary information, every aspect of the imaging is automated.
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MS-SSIM analysis of all the samples with increasing R2

Table S1: R2 minimum and MS-SSIM between P-SHG and CurveAlign images for sample 1

R2 minimum P-SHG vs CurveAlign MS-
SSIM

0.3 0.24
0.4 0.25
0.5 0.27
0.7 0.27

Table S2: R2 minimum and MS-SSIM between P-SHG and CurveAlign images for sample 2

R2 minimum P-SHG vs CurveAlign MS-
SSIM

0.3 0.14
0.4 0.25
0.5 0.26
0.7 0.27

Table S3: R2 minimum and MS-SSIM between P-SHG and CurveAlign images for sample 3

R2 minimum P-SHG vs CurveAlign MS-
SSIM

0.3 0.32
0.4 0.39
0.5 0.42
0.7 0.46

Table S4: R2 minimum and MS-SSIM between P-SHG and CurveAlign images for sample 4

R2 minimum P-SHG vs CurveAlign MS-
SSIM

0.3 0.16
0.4 0.16
0.5 0.24
0.7 0.32

Table S5: R2 minimum and MS-SSIM between P-SHG and CurveAlign images for sample 5

R2 minimum P-SHG vs CurveAlign MS-
SSIM

0.3 0.23
0.4 0.24
0.5 0.25
0.7 0.3
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