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RESUME

Cette thése explore I'intégration de la microscopie par génération de seconde harmonique (SHG)
avec des techniques d’apprentissage automatique pour améliorer les capacités d’imagerie et
d’analyse, en s’attaquant aux limitations liées a la résolution, au bruit et a la vitesse d’acquisition.
La microscopie SHG, une méthode d’imagerie non linéaire, offre des avantages uniques pour
I'étude des structures biologiques non centrosymeétriques. Les travaux présentés dans cette thése
élargissent les applications de la microscopie SHG dans la recherche biomédicale grace a des
innovations en traitement d'image, en classification et en amélioration d'image. La premiére partie
de cette thése propose une revue exhaustive du développement historique, des principes
théoriques et des modalités avancées de la microscopie SHG. Une attention particuliere est
accordée a ses applications en imagerie neuronale et en analyse des structures biologiques,
établissant une base solide pour les recherches expérimentales ultérieures. En s’appuyant sur
ces connaissances, une étude des tissus glandulaires mammaires combine I'imagerie SHG et
SHG résolue en polarisation (P-SHG) avec des réseaux neuronaux convolutifs pour automatiser
la classification des tissus touchés par des tumeurs et étudier I'optimisation des paramétres
d’apprentissage automatique dans le contexte de la microscopie SHG. Cette approche met en
évidence des variations structurelles significatives dans le microenvironnement tumoral, offrant
des perspectives sur les processus de remodelage tissulaire. Pour répondre aux défis posés par
les faibles rapports signal/bruit en imagerie SHG, la thése applique des modéles d’apprentissage
profond, tels que CARE 2D et Noise2Void 2D, pour améliorer la qualité des images. Ces modéles
réduisent efficacement le bruit tout en préservant I'intégrité structurelle, permettant ainsi une
imagerie de haute qualité avec une puissance laser réduite et minimisant les dommages
photoniques aux échantillons biologiques. En outre, ce travail aborde le besoin d’'une imagerie
plus rapide en utilisant des réseaux antagonistes génératifs super-résolution améliorés
(ESRGANSs). Cette approche innovante accélére l'imagerie P-SHG a I'échelle compléte des
glandes mammaires, reconstruisant des images haute résolution a partir de données basse
résolution tout en maintenant des détails structurels essentiels. La réduction du temps d’imagerie
améliore considérablement I'efficacité de la microscopie SHG, la rendant plus adaptée aux études

a grande échelle ou sensibles au temps.

Dans I'ensemble, ces travaux démontrent le potentiel transformateur de la combinaison de la
microscopie SHG avec des techniques avancées d’apprentissage automatique. Ces innovations

améliorent la qualité d’imagerie, réduisent le temps d’analyse et élargissent I'accessibilité de la



SHG pour I'étude des structures biologiques complexes. Elles ouvrent la voie a des applications
plus larges en recherche biomédicale et en diagnostics cliniques. Les perspectives incluent le
développement de systémes d’'imagerie multimodale, I'optimisation des modéles d’apprentissage
profond pour des tissus diversifiés et la standardisation des techniques SHG pour une intégration

dans les flux de travail cliniques.

Mots-clés: Microscopie SHG, imagerie résolue en polarisation, apprentissage automatique,
modeles d’apprentissage profond, imagerie biomédicale, réduction du bruit, amélioration d’image,

microenvironnement tumoral, réseaux antagonistes génératifs (GAN), diagnostics cliniques.
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ABSTRACT

This thesis explores the integration of second harmonic generation (SHG) microscopy with
machine learning techniques to enhance imaging and analysis capabilities, addressing limitations
in resolution, noise, and imaging speed. SHG microscopy, a nonlinear imaging method, provides
unique advantages for studying non-centrosymmetric biological structures. The work presented
advances SHG microscopy’s applications in biomedical research through innovations in image
processing, classification, and enhancement. The first part of this thesis provides a
comprehensive review of the historical development, theoretical principles, and advanced
modalities of SHG microscopy. Emphasis is placed on its applications in neuronal imaging and
biological structure analysis, establishing a strong foundation for subsequent experimental
research. Building on this knowledge, a study of mammary gland tissues combines SHG and
polarization-resolved SHG (P-SHG) imaging with convolutional neural networks to automate the
classification of tumor-affected tissues and study machine learning parameter tuning in the
context of SHG microscopy. This approach reveals significant structural variations within the
tumor microenvironment, offering insights into tissue remodeling processes. To address
challenges posed by low signal-to-noise ratios in SHG imaging, the thesis applies deep learning
models, including CARE 2D and Noise2Void 2D, to improve image quality. These models
effectively reduce noise while preserving structural integrity, allowing for high-quality imaging at
reduced laser power and minimizing photodamage to biological samples. Additionally, this work
addresses the need for faster imaging by employing enhanced super-resolution generative
adversarial networks (ESRGANS). This innovative approach accelerates whole-sample P-SHG
imaging of mammary gland tissues, reconstructing high-resolution images from low-resolution
data and maintaining critical structural details. The reduction in imaging time significantly
improves the efficiency of SHG imaging, making it more suitable for time-sensitive or large-scale
studies. Collectively, the findings demonstrate the transformative potential of combining SHG
microscopy with advanced machine learning techniques. These innovations enhance imaging
quality, reduce analysis time, and expand the accessibility of SHG for studying complex biological

structures.

This work paves the way for broader applications of SHG microscopy in biomedical research and
clinical diagnostics. Future directions include the development of multimodal imaging systems,
refinement of deep learning models for diverse tissues, and standardization of SHG techniques

for integration into clinical workflows.
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SOMMAIRE RECAPITULATIF

Un apercgu de la microscopie SHG

Au cours des deux derniéres décennies, la microscopie par génération de seconde harmonique
(SHG) est devenue une méthode clé pour l'imagerie optique, avec de nombreuses applications
dans les sciences des matériaux et biomédicales. Les avancées dans le développement de
technologies laser ultra-rapides fiables et robustes ont été essentielles pour améliorer les
techniques de microscopie optique non linéaire [48], en particulier dans l'imagerie biomédicale.
Des microscopes clés en main ont été développés en utilisant ces sources laser et sont
maintenant largement utilisés dans les laboratoires de recherche. La microscopie SHG impose
que la structure d'intérét soit non-centrosymeétrique [19], ce qui la rend trés sensible aux protéines
filamenteuses dans les échantillons biologiques [48,87]. Bien que cette exigence limite
I'application du SHG a quelques structures seulement, c'est aussi une force clé car les signaux
sont tres spécifiques et offrent des images a contraste élevé. La microscopie SHG présente
plusieurs avantages par rapport a I'imagerie par fluorescence : elle est basée sur un contraste
endogéne (c'est-a-dire que le contraste provient de I'échantillon lui-méme et non d'un colorant ou
d'un fluorophore). Enfin, contrairement & la fluorescence, le SHG est exempt de
photoblanchiment (le signal généré n'est pas limité dans le temps) et se produit instantanément

(pas de limitation sur le taux de répétition du laser) [14].

Cette thése vise a relever un défi crucial dans le domaine de I'imagerie biomédicale : surmonter
les limitations actuelles de la microscopie SHG gréace a l'intégration de techniques d'intelligence
artificielle (1A). Les objectifs spécifiques de cette recherche sont d'améliorer la qualité des images,
de permettre une analyse automatisée et d'élargir les applications cliniques de la microscopie
SHG. En explorant de nouvelles approches basées sur I'l|A pour le traitement d'images, la
classification et I'acquisition, ce travail cherche a repousser les limites du possible avec la
microscopie SHG et a ouvrir la voie a son adoption plus large dans la recherche et les contextes

cliniques.

Un apergu historique exhaustif du SHG a été donné dans le premier article de cette thése ; nous
nous concentrerons donc uniquement sur les étapes clés au fil des ans : I'observation du SHG
pour la premiére fois en 1961 [23], la combinaison du SHG avec la microscopie optique en 1974
[25], la premiere microscopie biologique SHG en 1986, et la découverte des capacités d'imagerie

biomédicale de la microscopie SHG [31]. En 1990, Denk et al. ont introduit la microscopie par



balayage laser a fluorescence par excitation a deux photons (TPEF) en utilisant des lasers pulsés
et un microscope confocal modifié [32]. A la suite du succés de la TPEF en 1996, la microscopie
par excitation a trois photons a été démontrée [33]. La modalité SHG a été combinée avec la
TPEF au début des années 2000 dans de nombreuses études [36-38]. Depuis lors, par suite des
progrés des lasers a mode bloqué commercialement disponibles et des microscopes
multiphotoniques conviviaux [39], le SHG est devenu une méthode puissante pour l'imagerie

optique et biomédicale a haute résolution spatiale multimodale.

La région 700—1000 nm est utilisée par le SHG pour minimiser I'absorption des biomatériaux (eau
et hémoglobine) [37]. Il est important de noter que d'autres "fenétres" optiques répondant a ce
critere sont disponibles (se référer a la Figure 2 de I'article 1). En utilisant des longueurs d'onde
plus longues, telles que 1000-1300 nm, la diffusion peut étre limitée, conduisant a une
augmentation de la profondeur de pénétration dans les tissus [14], bien que cela se fasse au
détriment d'une résolution spatiale réduite. Malgré les similitudes, les techniques SHG et TPEF
sont fondamentalement basées sur des processus différents. Dans le SHG, la conversion de
fréquence est réalisée par des états virtuels sans transfert net d'énergie au systeme. Cela
contraste avec la TPEF, qui implique un transfert de population de I'état électronique fondamental
vers des états électroniques excités (se référer a la Figure 2 de I'article 1). Ces origines différentes
conduisent a des propriétés radicalement différentes et souvent complémentaires, ce qui explique

la popularité croissante de la microscopie SHG.
Propriétés du signal SHG et microscopie SHG dans les échantillons biologiques

Le signal SHG est caractérisé par I'hyperpolarisabilité et la susceptibilité non linéaire du second
ordre. La condition de symétrie de Kleinman simplifie notre compréhension de ces propriétés [19].
Ainsi, la microscopie SHG peut fournir des apercus sur les structures moléculaires et

macromoléculaires des tissus.

La microscopie SHG est particulierement efficace pour l'imagerie du collagéne, une protéine
majeure dans le tissu conjonctif. Elle a été appliquée avec succes a l'imagerie de divers tissus, y
compris les tendons [31] et le cartilage [72] (voir Figure 5 de l'article 1). De plus, elle peut
visualiser d'autres protéines, comme la myosine [48], offrant des apergus sur les mécanismes

cellulaires et la structure des microtubules [122].

La microscopie SHG est essentielle dans les études neuroscientifiques, en particulier I'imagerie
des microtubules. Les microtubules (MTs) sont des composants cellulaires vitaux, et la

microscopie SHG a été utilisée pour étudier leur polarité et structure pendant les différentes



phases de la division cellulaire [125] (voir Figure 21 de l'article 1). Cette technique a montré un

grand potentiel pour explorer divers aspects et mécanismes des MTs et des maladies associées.
Techniques avancées de microscopie SHG

Il existe une multitude de méthodes de microscopie SHG avancées, et nous allons brievement
introduire chaque modalité dans cette section. Pour plus d'informations, veuillez-vous référer a

['article 1.

La SHG résolue en polarisation (P-SHG) combine la microscopie SHG avec la polarimétrie
pour améliorer la visualisation des structures complexes, comme les fibrilles de collagéne. Cette
technique mesure divers parameétres, y compris I'orientation et I'anisotropie des fibrilles, et a été

appliquée dans diverses études biomédicales [52]. (Voir Figures 8 et 9 de l'article 1).

La microscopie SHG en champ large illumine toute la zone d'intérét simultanément et améliore
considérablement le débit d'imagerie. Cette méthode utilise traditionnellement des impulsions a
haute énergie, mais prend également en compte les dommages photo-induits sur les cellules
vivantes, conduisant a des adaptations telles que des impulsions de faible énergie pour l'imagerie
en direct (voir Figures 17 et 18 de I'article 1) [83].

La SHG Interférométrique (I-SHG) et la I-SHG Rapide sont des techniques avancées dans le
domaine de la microscopie SHG, une technique d'imagerie optique non linéaire. L'l-SHG améliore
les capacités de la microscopie SHG traditionnelle en incorporant des méthodes
interférométriques, qui fournissent des informations structurelles et d'orientation supplémentaires
concernant les échantillons biologiques, en particulier au niveau moléculaire [71]. Cette méthode
est particulierement utile pour étudier des structures, comme le collagéne, dans les tissus (voir
Figures 13 et 14 de l'article 1) [71].

La I-SHG Rapide ou I-SHG en un seul balayage est une évolution de I'-SHG visant a augmenter
considérablement la vitesse d'imagerie. Ceci est crucial pour les applications nécessitant des
observations en temps réel ou quasi réel, comme les processus biologiques dynamiques. Tout
en maintenant les avantages de I'l-SHG, la I-SHG Rapide optimise le processus d'imagerie pour
une acquisition de données plus rapide, la rendant plus adaptée aux scénarios d'imagerie en
temps réel et en direct [75]. Ces deux techniques représentent des avancées significatives en
microscopie SHG, élargissant leurs applications en recherche biomédicale en fournissant des

capacités d'imagerie plus détaillées et rapides (Voir Figure 1-8 de la thése) [75].
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Perspectives de la microscopie SHG

Au cours des deux dernieres décennies, la microscopie SHG est apparue comme un outil
inestimable en bioimagerie et neuroimagerie. Elle a été largement utilisée pour étudier des
structures biologiques non centrosymétriques. Malgré ces avancées, des défis demeurent dans
l'interprétation pleinement quantitative des images SHG en raison de la nature cohérente du
processus impliqué. Les avancées futures en microscopie SHG visent a améliorer la résolution
spatiale, la profondeur d'imagerie et a s'aventurer dans le domaine spectroscopique. Cependant,
le colt élevé et la complexité de I'équipement, ainsi que le besoin de formation spécialisée,
limitent son utilisation généralisée dans la pratique biomédicale courante [2]. Les avancées
récentes dans la technologie laser, y compris le passage vers des lasers a fibres et a semi-
conducteurs plus robustes et efficaces, devraient simplifier et réduire le colt des microscopes
SHG, élargissant potentiellement leurs applications biomédicales. Les avancées logicielles et
informatiques en microscopie, y compris le traitement rapide des images et les applications
d'apprentissage automatique, ont amélioré les capacités d'imagerie [131]. Cependant, il est
nécessaire de standardiser et d'unifier les processus d'imagerie a travers les laboratoires pour
assurer la reproductibilité et la portabilite. Malgré ces défis, la SHG et autres modalités de
microscopie optique non linéaire continuent d'offrir des apergus précieux qui ne sont pas
facilement disponibles avec les techniques d'imagerie optique traditionnelles linéaires ou
incohérentes. Les avancées technologiques en cours, telles que l'apprentissage profond,
devraient encore améliorer ces modalités, les rendant plus simples et plus accessibles pour un
large éventail d'applications scientifiques et médicales. Il est donc nécessaire d'explorer les

concepts de I'apprentissage profond et leur chevauchement avec la microscopie SHG [2].

Cette thése est structurée autour de quatre articles interdépendants, chacun abordant des

aspects spécifiques de ces objectifs :

1. Le premier article fournit une revue compléte de la microscopie SHG, établissant une base
solide pour les recherches ultérieures.

2. Le deuxiéme article se concentre sur I'application de techniques d'apprentissage profond
pour la classification des images SHG des tissus des glandes mammaires, démontrant le
potentiel de I'l|A dans l'analyse automatisée des images.

3. Le troisiéme article évalue la performance de deux techniques de débruitage basées sur
A, CARE 2D et N2V 2D, pour améliorer la qualité des images SHG de différents tissus.
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4. Le quatrieme article introduit une nouvelle approche pour I'imagerie P-SHG de I'ensemble
de I'échantillon, utilisant des réseaux antagonistes génératifs pour améliorer la résolution

des images tout en réduisant considérablement le temps d'imagerie.

Ces articles collectivement démontrent comment I'intégration de I'lA peut surmonter les limitations
actuelles de la microscopie SHG et étendre ses applications dans la recherche biomédicale et la

pratique clinique.
Apercu de I'apprentissage profond et de son impact sur la microscopie SHG

L'apprentissage profond (Deep Learning, DL) s'inspire des mécanismes complexes de traitement
des données observés dans le cerveau humain, en particulier de sa capacité a apprendre sans
regles prédéfinies, en se basant plutét sur d'importants ensembles de données pour établir des
liens entre les données d'entrée et des étiquettes spécifiques. La clé dans ce domaine est
l'utilisation de réseaux neuronaux artificiels (ANNs), ou chaque couche offre des interprétations
uniques des données [133-135]. Le DL a révolutionné la microscopie et I'analyse d'image,
améliorant la précision et l'analyse rapide d'images complexes, et offrant des perspectives
auparavant difficiles a atteindre. Son adaptabilité et sa capacité a découvrir des modeles subtils
dans les données en font une force transformatrice en microscopie, avec le potentiel de redéfinir
notre compréhension du monde microscopique [133-136]. Les architectures d'apprentissage
profond pour l'analyse d'image impliquent divers algorithmes sophistiqués. Les réseaux
neuronaux feed-forward ou perceptrons multicouches (MLPs) sont fondamentaux pour de
nombreux modéles modernes de DL. Ces réseaux, inspirés des systéemes neuronaux humains,
impliquent un flux de données unidirectionnel de I'entrée vers la sortie sans boucles de rétroaction
(voir Figure 1-13 de la thése) [137-140]. Les réseaux neuronaux convolutifs (CNNs) (voir Figure
1-14 de la these) et les réseaux neuronaux récurrents (RNNs) sont des architectures essentielles.
Les CNNs sont spécialisés pour les données en grille comme les images, tandis que les RNNs

gerent les données séquentielles en capturant les dépendances temporelles [141-145].

Les réseaux antagonistes génératifs (GANs) représentent une variante unique des ANNs
comprenant un générateur et un discriminateur, tous deux formés simultanément. Ces réseaux
sont largement utilisés dans I'adaptation de domaine et la génération d'image, en particulier dans

I'analyse d'image médicale [147-149].

Analyse d'images meédicales utilisant I'apprentissage automatique : Le DL joue un rdle crucial
dans I'analyse d'images médicales. La classification d'image, la réduction du bruit et 'amélioration

de la résolution sont des domaines critiques ou le DL contribue de maniére significative. Diverses
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architectures, telles que les CNNs et les GANs, ont été efficacement appliquées dans ces
domaines [150-165]. L'apprentissage par transfert dans I'analyse d'image est essentiel pour
l'imagerie médicale, abordant les problémes de pénurie de données et réduisant les besoins en
ressources. L'apprentissage par transfert avec les CNNs implique de transférer les
connaissances de taches précédemment acquises a de nouvelles, particulierement pour la

classification d'image médicale [166, 167].

Les métriques de qualité d'image sont vitales pour évaluer l'efficacité du DL dans les analyses
d'images. Des techniques telles que l'indice de similarité structurelle (SSIM) (voir Figure 1-16 de
la thése) et ses variantes, I'erreur quadratique moyenne (MSE) et le rapport signal sur bruit de
créte (PSNR) sont des métriques couramment utilisées. Ces métriques fournissent une mesure
quantitative de la qualité de l'image, qui est cruciale pour le succés des techniques d'analyse
d'image [168-181].

Applications du DL en imagerie biomédicale

Le DL a considérablement enrichi lI'imagerie biomédicale. Des études sur I'imagerie biomédicale
SHG, la réduction du bruit en tomographie par cohérence optique (OCT) et les méthodes de
classification dans le diagnostic du cancer du sein ont montré I'impact du DL dans ce domaine
(Voir Figure 1-17 de la thése) [182—186]. Malgré ses avancées, le DL en microscopie fait face a
des défis tels que la rareté des données, l'interprétabilité des décisions des modeles et les
barriéres d'accessibilité. Aborder ces limitations est crucial pour de nouvelles avancées dans ce
domaine [187, 188].

Enoncé du probléme général de la thése

La microscopie SHG est un outil puissant en imagerie biomédicale, permettant I'observation
détaillée de structures non centrosymeétriques telles que le collagéne et de nombreux autres
échantillons biologiques. Malgré ses capacités, la microscopie SHG sous-utilise les avancées en
intelligence artificielle (IA) et en apprentissage automatique, qui pourraient révolutionner ses
applications. Cette thése vise a combler cette lacune en introduisant I'lA dans divers aspects de
la microscopie SHG pour surmonter les limitations actuelles. L'lIA et I'apprentissage automatique
ont transformé de nombreux domaines, des véhicules autonomes a la médecine personnalisée.
Ces technologies ont le potentiel d'automatiser des taches complexes, d'améliorer le traitement
des données, de fournir des apergus plus profonds et d'améliorer les analyses d'images.
Cependant, leur application en microscopie SHG reste minimale, représentant une opportunité

significativement manquée pour les avancées en imagerie biomédicale.
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Article 1 : La microscopie de génération de seconde harmonique : un outil puissant

pour I'imagerie biologique
Enoncé du probléme de I’article 1

Le domaine de la microscopie SHG a considérablement évolué au fil des ans, offrant des apergus
sans précédent dans divers domaines scientifiques, en particulier dans I'étude des structures et
fonctions neuronales. Cet article de revue est principalement motivé par le besoin de consolider
l'important éventail de publications de recherche de notre laboratoire, qui contribue collectivement
a la compréhension de la microscopie SHG et de ses modalités avancées. Cet article fournit un
apercu complet du développement historique et des fondements théoriques de la microscopie
SHG, offrant ainsi une base solide pour les nouveaux chercheurs et les experts dans le domaine.
L'un des objectifs clés de cette revue était de servir de point de départ solide pour les futurs
étudiants et chercheurs qui entament leur revue de littérature dans ce domaine. En résumant et
en synthétisant la littérature existante, cet article vise a faciliter une entrée plus aisée dans le
domaine, permettant aux chercheurs de saisir rapidement les concepts fondamentaux et la
progression historique de la microscopie SHG. Cette compréhension fondamentale est cruciale
pour permettre aux chercheurs de se plonger plus facilement et avec plus de contexte dans des
études et des domaines d'intérét spécifiques. En outre, cet article se concentre de maniére
significative sur l'application de la microscopie SHG dans les études neuronales. De nombreuses
études ont utilisé la microscopie SHG pour déméler les complexités des structures et fonctions
neuronales, contribuant immensément a notre compréhension du systéme nerveux. Cependant,
ces études ont été dispersées dans diverses publications, rendant difficile pour les chercheurs
d'accéder a un corpus de connaissances consolidé. Cet article de revue aborde cette lacune en
compilant et en passant en revue toutes les études significatives de microscopie SHG dans la
recherche neuronale menées au fil des ans. En fin de compte, cette revue récapitule non
seulement les contributions pivotales de notre laboratoire et d'autres dans le domaine, mais ouvre
également la voie a de futures explorations et découvertes en microscopie SHG et études

neuronales.
Sommaire de I’article 1

Dans le discours précédent, nous avons examiné en profondeur la microscopie SHG et ses
variantes avancées, comprenant une analyse compléte des fondements techniques et des
applications dans divers domaines scientifiques. Etant donné la couverture étendue de ces
aspects, il n'est ni nécessaire ni bénéfique de réitérer ces détails dans le manuscrit actuel. Au

contraire, notre focus se tournera exclusivement vers l'application de la microscopie SHG dans
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les études neuronales, un domaine bourgeonnant de potentiel et d'innovation. De plus, nous

explorerons également I'avenir de la microscopie SHG tel qu'énoncé dans cet article.

La microscopie SHG a considérablement avancé notre compréhension du systéme nerveux, en
particulier dans I'étude détaillée des neurones et des microtubules. Dans le monde complexe des
neurosciences, les neurones, avec leur structure complexe comprenant le soma, les dendrites et
les axones, jouent un réle pivot dans le traitement et la transmission de l'information (voir Figure
19 de l'article 1). Bien que les méthodes traditionnelles telles que I'électrophysiologie aient été
essentielles pour étudier l'activité neuronale, elles sont limitées par leur nature invasive et la

portée étroite des réseaux de neurones qu'elles peuvent étudier.

La microscopie SHG émerge comme une alternative puissante et non invasive, permettant une
observation plus compléte des réseaux neuronaux. Cette technique contourne les limitations des
méthodes traditionnelles, permettant un examen plus large et moins intrusif des fonctions
neuronales. Une avancée notable dans la microscopie SHG est I'utilisation de colorants SHG,
tels que FM 4-64. Ces colorants ont considérablement amélioré le rapport signal sur bruit en
imagerie, facilitant une visualisation plus claire des activités neuronales, y compris l'observation
des potentiels d'action et leur propagation a travers les structures neuronales (voir Figure 20 de
l'article 1).

L'application de la microscopie SHG va au-dela des neurones pour étudier les microtubules, des
composants cruciaux dans le maintien de lintégrité cellulaire et la régulation du trafic
intracellulaire. Composés de diméres d'a- et B-tubuline, les microtubules possédent une polarité
distincte essentielle a leur fonction. La microscopie SHG a été particulierement efficace pour
explorer la structure et la fonction de ces microtubules. Elle a éclairé leur nombre, leur
organisation et leur polarisation au sein des neurones, contribuant grandement a notre
compréhension de leur réle dans les activités neuronales (voir Figure 1-11 de la thése). La
technique a fourni de nouveaux apergus sur la polarité des microtubules, révélant une polarité
uniforme dans les axones, en contraste avec la polarité plus complexe et moins définie observée

dans les dendrites.

Les avancées technologiques et méthodologiques en microscopie SHG ont été substantielles.
Les progrés récents incluent des améliorations dans la technologie laser et l'incorporation de
méthodes computationnelles telles que I'apprentissage automatique, qui ont amélioré les
capacités et l'efficacité de I'imagerie SHG. Cependant, la technique fait encore face a des défis,

en particulier le besoin d'équipements colteux et d'une formation spécialisée. Malgré ces
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obstacles, les innovations en cours devraient rendre la microscopie SHG plus accessible et

polyvalente pour les applications biomédicales.

Le domaine évolue vers la standardisation des processus d'imagerie pour garantir la
reproductibilité et la portabilit¢ dans différents environnements de recherche. Alors que la
microscopie SHG devient plus accessible et rentable, elle est préte a devenir une partie plus

intégrante de la recherche biomédicale de routine et du diagnostic clinique.

Cette revue compléte établit une base solide pour les études ultérieures, identifiant les domaines
clés ou l'intégration de I'lA pourrait considérablement améliorer les capacités de la microscopie
SHG.

Article 2 : Microscopie non linéaire et classification par apprentissage profond pour les

études de I'environnement microscopique des glandes mammaires
Enoncé du probléme de I’article 2

Le probléme principal abordé par cette étude était le défi d'imager et d'analyser avec précision et
efficacité les changements structurels dans les glandes mammaires murines, en particulier dans
le contexte du développement tumoral. Les techniques d'imagerie traditionnelles, bien
qu'efficaces dans une certaine mesure, ne parviennent souvent pas a capturer les changements
complexes dans la composition et la structure des tissus, tels que les agrégations de collagéne
et les modifications des orientations fibrillaires autour des sites tumoraux. Cette limitation entrave
une compréhension compléte du microenvironnement tumoral et de son impact sur les tissus
environnants. Pour surmonter ces défis, cette étude a introduit une approche intégrée utilisant la
microscopie SHG et P-SHG automatisée. Ces techniques d'imagerie avancées sont censées
fournir des apergus plus détaillés et précis sur les changements structurels au sein des glandes
mammaires influencés par la croissance tumorale. Cependant, I'efficacité de ces techniques pour
distinguer entre les glandes naives et celles portant des tumeurs, en particulier en ce qui concerne
les fibres de collagéne plus fines, reste a évaluer et a optimiser systématiquement. Bien que des
méthodes existantes, telles que CurveAlign, offrent des apergus précieux, elles nécessitent une

inspection manuelle et peuvent manquer des détails plus fins.

De plus, cette étude a cherché a combler le fossé dans I'analyse d'image automatisée pour ces
types d'images de microscopie. Cette étude propose I'utilisation d'un programme personnalisé
pour I'analyse d'image P-SHG et d'un modele d'apprentissage profond supervisé pour les images
SHG afin d'améliorer la détection et la classification des changements structurels. Les méthodes

utilisées ont été comparées aux modéles et méthodes établis.
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Sommaire de I’article 2

Au cours de la derniere décennie, des avancées significatives ont été réalisées dans la
compréhension de I'environnement tumoral, en se concentrant particulierement sur les
interactions entre les cellules tumorales, les cellules immunitaires, les cellules stromales et la
matrice extracellulaire (ECM), avec un accent sur le réle du collagéne dans la progression du
cancer du sein. L'arrangement du collagene, en particulier a la frontiere entre la tumeur et le
stroma, est lié a la progression, a l'invasion et a la métastase du cancer du sein. Les Signatures
Collagénes Associées aux Tumeurs (TACS) sont classifiées en trois types en fonction de leur

arrangement, fournissant des apergus sur le potentiel métastatique des tumeurs.

La coloration histologique et la microscopie polarisante a cristaux liquides sont courantes mais
ont une résolution et une analyse quantitative limitées. La microscopie SHG s'est imposée comme
une méthode de premier plan pour I'imagerie du collagéne, offrant une meilleure résolution, une
phototoxicité réduite et une facilité de préparation des échantillons. La SHG est essentielle pour
étudier la restructuration du collagéne dans divers cancers, y compris le cancer du sein, des

ovaires, de la prostate et du poumon.

La P-SHG surmonte les limitations de la SHG traditionnelle et fournit des informations structurales
détaillées sur les fibres de collagéne. L'imagerie et I'analyse d'images P-SHG avancées ont
amélioré notre compréhension de la distribution et de I'asymétrie des fibrilles. Ces avancées en
microscopie SHG et P-SHG ont considérablement amélioré notre compréhension des
composants structurels de I'environnement tumoral, en particulier en relation avec le collagene,
offrant de nouveaux apergus sur la progression du cancer et des cibles thérapeutiques

potentielles.

L'analyse d'image utilisant la microscopie SHG et P-SHG a évolué pour identifier des
caractéristiques détaillées du collagéne. L'intégration de l'apprentissage profond automatise
l'analyse d'image, bien que des défis subsistent dans le traitement de petits ensembles de

données.

Des souris femelles BALB/c, conformes aux directives du Conseil canadien de soins aux animaux
et approuvées par I'Université McGill, ont été utilisées pour la préparation des tissus. L'étude a
impliqué a la fois des glandes mammaires naives et porteuses de tumeurs. Les échantillons ont
subi un processus de préparation détaillé, incluant I'encapsulation dans la paraffine, la coupe, la
déparaffinisation, la réhydratation et une préparation finale pour la microscopie. L'installation

d'imagerie SHG a utilisé un microscope inversé personnalisé avec balayage laser, employant un
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laser Ti: Sa mode verrouillé pour I'éclairage. Le systéeme comprend un tube photomultiplicateur
pour la détection de I'émission SHG et des filtres spécifiques pour l'isolation du signal. Un plateau

de balayage motorisé a grande vitesse a facilité I'imagerie de grandes zones d'échantillons.

Pour la microscopie P-SHG, des étapes supplémentaires ont été prises pour ajuster la
polarisation linéaire du faisceau laser et capturer des images dans différents états de polarisation.
Ce processus a été contrdlé par un programme Python personnalisé, tandis que le script MATLAB

a traité les images P-SHG (voir Figures 1 et 2 de l'article 2).

La classification d'image dans cette étude a été exécutée en utilisant des architectures
séquentielles personnalisées et MobileNetV2. Un ensemble de données relativement petit
d'images de glandes mammaires, incluant des échantillons naifs et porteurs de tumeurs, a été
amélioré a l'aide de techniques d'augmentation de données, telles que le retournement, la rotation
et le zoom. Le processus de classification a impliqué I'entrainement de I'ensemble de données
sur vingt-cinq époques, et la performance du modéle a été évaluée en enregistrant la précision
et la perte sur différents ensembles de données d'entrainement et de test. Cette méthodologie
compléte vise a tirer parti des techniques d'imagerie avancées et de I'apprentissage profond pour
I'analyse détaillée et la classification des échantillons de glandes mammaires dans les études sur

les tumeurs (voir Figures 5 et 6 de l'article 2).

Dans la phase d'imagerie SHG, des zones significatives des glandes mammaires a la fois naives
et porteuses de tumeurs ont été méticuleusement imagées. Ce processus a révélé des
différences structurelles distinctes ; les glandes naives présentaient des structures ductales bien
définies, tandis que les glandes porteuses de tumeurs montraient des signaux SHG diminués,
indiquant la présence de tumeurs. Particuliérement aux bords de la tumeur, le collagéne agrégé
formait une barriére, une constatation cohérente avec des recherches précédentes suggérant le

role du collagéne dans I'entrave a la propagation des tumeurs (voir Figure 3 de I'article 2).

Pour une analyse plus détaillée, les méthodes P-SHG et CurveAlign ont été employées. La
technique P-SHG, a travers un processus long impliquant I'imagerie de zones plus petites avec
des pas de balayage plus fin, fournit des détails complexes sur I'orientation des fibres de
collagéne a la frontiére entre la tumeur et le stroma, ce qui est crucial pour comprendre les risques
d'invasion locale et de métastase. L'étude a constaté que la P-SHG offrait des apergus plus
détaillés sur les fibres de collagene plus fines que CurveAlign, qui manquait parfois ou surestimait

les orientations des fibres dans les régions de signal dimére (voir Figure 4 de I'article 2).
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Dans le domaine de la classification d'image pour la microscopie SHG, cette recherche s'est
aventurée dans l'apprentissage profond et les techniques d'apprentissage par transfert en
utilisant un modeéle séquentiel personnalisé et le modéle MobileNetV2. Le prétraitement des
images SHG a été suivi par un entrainement sur ces modéles. L'étude a abordé les défis de
travailler avec un petit ensemble de données en employant des stratégies d'augmentation de
données et en ajustant les paramétres du modéle pour atténuer le surapprentissage. Malgreé ces
efforts, la taille limitée de I'ensemble de données a conduit a des degrés variables de performance
du modéle, comme en témoignent les précisions et les courbes de perte d'entrainement et de
test. L'analyse a conclu que, bien que les modéles personnalisés adaptés a des ensembles de

données spécifiques puissent étre efficaces, ils sont limités par les données disponibles.

En revanche, l'apprentissage par transfert avec des architectures plus complexes telles que
MobileNetV2 offre des avantages potentiels mais risque également le surapprentissage en raison
de la profondeur et de la complexité de ces réseaux, en particulier lorsqu'on travaille avec de
petits ensembles de données. Cette analyse compléte souligne les compromis entre le temps
d'imagerie, la précision et les défis inhérents a I'application de techniques computationnelles

avanceées a des ensembles de données d'imagerie biologique.

Apreés l'analyse de la variation des paramétres, le modéle optimal pour I'ensemble de données
de I'étude s'est avéré étre un partage de données a 30% avec un dropout de 0,2 et trois couches
d'augmentation de données, atteignant une précision de test de 73%. Une limitation notable est
la vitesse d'imagerie, indiquant la nécessité de nouvelles avancées technologiques (voir tableaux
1-4 de l'article 2).

Cette étude a également mis en évidence le potentiel de combiner I'analyse P-SHG avec la
classification d'images et I'imagerie en champ large dans la recherche sur le cancer. Cette
approche fournit des apergus précieux sur la formation et le remodelage du collagéne dans la

matrice extracellulaire (ECM), ce qui est crucial pour comprendre la progression du cancer.

Cette étude démontre le potentiel de I'apprentissage profond pour améliorer I'analyse des images
SHG, ouvrant la voie a des applications cliniques plus larges et a une détection plus précise des

tumeurs.
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Article 3 : Apprentissage profond pour la restauration d'image en microscopie de
génération de seconde harmonique — une approche pour réduire la puissance laser et les

dommages sur I'échantillon.
Enoncé du probléme de I’article 3

Le principal défi abordé dans cette étude est I'état relativement naissant des applications de
I'apprentissage profond en microscopie, en particulier dans le contexte de la restauration d'image
pour les images SHG a faible rapport signal sur bruit (SNR). Actuellement, il existe un écart
significatif dans I'application des techniques d'apprentissage profond avancées pour améliorer et
restaurer les images SHG souffrant d'un faible SNR. Cet écart limite I'utilité de la microscopie
SHG pour fournir des apergus clairs et détaillés sur les structures et processus biologiques, en
particulier dans les cas ou il est difficile d'obtenir des images de haute qualité en raison de
contraintes techniques telles que la puissance du laser ou la qualité de la préparation des
échantillons. Cette étude vise a étre pionniére dans l'application de deux techniques de
restauration d'image basées sur I'apprentissage profond, CARE 2D et Noise2Void (N2V) 2D, sur
les images SHG a faible SNR. Ces techniques ont montré des promesses dans d'autres contextes
d'imagerie mais n'ont pas encore été systématiquement appliquées et évaluées dans le domaine
de la microscopie SHG. En mettant en ceuvre ces techniques, cette étude a cherché a améliorer
la qualité des images SHG dans deux cas exemplaires, démontrant ainsi leur utilité potentielle

dans une variété de scénarios d'imagerie biologique.

Le premier cas impliquait I'investigation de l'effet de la concentration en glycérol sur les images
SHG lors de la fixation de poissons zébres. Ce cas donne des apergus sur la fagon dont la qualité
de limage peut étre compromise pendant la préparation des échantillons et comment
I'apprentissage profond peut atténuer ces effets. Le second cas se concentre sur l'imagerie des
images a faible puissance laser des tissus musculaires de deux souches de poissons zébres,
dont une souche qui modélise I'amyotrophie spinale et la barriére de la matrice extracellulaire
autour d'une glande mammaire de souris porteuse de tumeur. Ces cas sont particulierement
difficiles en raison de probléemes inhérents de faible SNR et sont donc idéaux pour évaluer
l'efficacité de CARE 2D et N2V 2D dans I'amélioration de la qualité de l'image. Pour évaluer
quantitativement le succés de ces techniques de restauration d'image, cette étude a utilisé la
moyenne SSIM et le PSNR comme métriques de contréle de la qualité. Ces métriques comparent
les images restaurées (prédites) aux images de veérité terrain (GT) a haut SNR, fournissant une
mesure claire de I'amélioration et de la fidélité. En essence, cet énoncé de probléme souligne le

besoin de techniques de restauration d'image avancées dans le domaine de la microscopie SHG
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pour surmonter les limitations posées par un faible SNR, permettant une visualisation plus claire

et plus détaillée des échantillons biologiques.

Sommaire de I’article 3

La microscopie SHG, un outil significatif tant en imagerie médicale que non médicale, dépend
fortement du rapport signal sur bruit (SNR) pour la qualité d'image. Le SNR est affecté par des
facteurs tels que la puissance du laser, le temps d'exposition et les propriétés de I'échantillon.
Ajuster la puissance du laser est un acte d'équilibre ; une puissance plus élevée améliore le signal
SHG mais risque d'endommager I'échantillon. Différents échantillons présentent des forces de
signal SHG variables ; par exemple, les tissus riches en collagéne montrent des signaux forts,
tandis que d'autres, comme les microtubules, ont des signaux intrinséquement faibles, conduisant

a un faible SNR et a une obscurité potentielle de la structure de I'échantillon sous le bruit.

Les avancées en apprentissage profond ont introduit de nouvelles techniques de restauration
d'image en microscopie pour améliorer la qualité d'image en réduisant le bruit et les distorsions.
Ces techniques incluent Noise to Ground Truth (N2GT), Noise to Noise (N2N) et Noise to Void
(N2V). N2GT utilise une image de référence sans bruit pour la comparaison, N2N emploie une
autre image bruyante au lieu d'une image de référence, et N2V repose sur les propriétés
statistiques du bruit dans une seule image. La qualité des images débruitées est couramment
évaluée a l'aide de métriques telles que le SSIM et le PSNR, qui mesurent la similarité et la qualité
des images traitées par rapport aux images originales. Malgré ces développements, I'application
de l'apprentissage profond pour la restauration d'image en microscopie SHG a faible SNR est
encore un domaine émergent, offrant un potentiel pour des recherches futures et I'amélioration

des techniques de microscopie SHG.

La méthodologie de I'étude a impliqué la préparation d'échantillons de tissus a la fois de poissons
zébres et de souris, suivie d'une imagerie avancée en microscopie SHG et d'une restauration

d'image utilisant des techniques d'apprentissage profond.

Pour la préparation des tissus, des poissons zébres adultes de type sauvage et hétérozygotes
smn+/- ont été maintenus dans des conditions contrblées, et des embryons ont été collectés et
stadiés. Un génotypage a été réalisé pour différencier entre les larves de type sauvage,
hétérozygotes et homozygotes. Les larves de poisson zeébre de 5 jours apres la fécondation ont

été fixées, rincées et montées pour la microscopie SHG. De méme, des souris BALB/c femelles
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ont été utilisées pour des études de tumeurs murines avec des échantillons porteurs de tumeurs
obtenus a partir d'injections orthotopiques de cellules 4T1. Aprés la période de croissance, les

échantillons ont été fixés, inclus, sectionnés et préparés sur des lames.

Le dispositif d'imagerie SHG comprenait un microscope inversé a balayage personnalisé équipé
d'un laser Ti: Sa a verrouillage de mode. Ce dispositif a permis un contrdle précis de la puissance
du laser et des ajustements fins de la mise au point et du positionnement de I'échantillon. Le
signal SHG collecté a été détecté a l'aide d'un tube photomultiplicateur et a été isolé a l'aide de
filtres spectraux. Un programme Python personnalisé a été utilisé pour l'acquisition du signal et
la synchronisation, et les données brutes ont été visualisées a 'aide de Fiji-Imaged (voir Figure 1
de l'article 3).

La restauration d'image a été réalisée en utilisant les modéles CARE 2D et N2V 2D. Ces modéles
ont été entrainés sur Google Colaboratory en utilisant la boite a outils ZeroCostDL4Mic.
L'entrainement impliquait d'utiliser différents nombres d'époques et de patchs d'image pour les
échantillons de cancer de la glande mammaire et de poissons zébres. Le modéle N2V 2D, qui
repose sur un apprentissage auto-supervisé, a subi un entrainement prolongé pour apprendre
efficacement et éliminer les motifs de bruit. Le modéle CARE 2D, quant a lui, a eu moins
d'époques de formation. L'augmentation des données et des paquets Python essentiels, tels que
TensorFlow, Keras et NumPy, étaient intégraux au processus de formation, accéléré par un GPU

Tesla T4 sur les serveurs Google.

Dans la section résultats et discussion, I'accent a été mis sur I'évaluation de l'impact des
méthodes de fixation sur la qualité d'image en microscopie SHG et l'efficacité des modeéles

d'apprentissage profond, CARE 2D et N2V 2D, pour la restauration d'image.

L'étude a commenceé par évaluer les niveaux de bruit dans les images de microscopie SHG en
fonction de la teneur en glycérol dans les solutions de fixation utilisées pour les échantillons de
poissons zeébres. Trois concentrations différentes de glycérol ont été testées, révélant une
corrélation directe entre la concentration de glycérol et le bruit dans les images finales. Les
résultats ont indiqué qu'un minimum de 50% de glycérol était optimal pour maintenir la qualité de
l'image sans perturber le processus de fixation. Pour les échantillons avec des concentrations
plus élevées de glycérol, le modéle N2V 2D a réussi a restaurer les images, récupérant
efficacement les informations structurelles des muscles du poisson. Cette constatation était
significative, suggérant que des outils d'apprentissage profond tels que N2V 2D pourraient

potentiellement compenser des compositions chimiques sous-optimales lors de la préparation
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des échantillons, réduisant ainsi le besoin de traitements répétés des échantillons et économisant

du temps et des ressources (voir Figures 2 et 3 de l'article 3).

Dans la phase suivante de I'étude, les modeles CARE 2D et N2V 2D ont été appliqués aux images
SHG de glandes mammaires porteuses de tumeurs. Nous avons créé des images SHG avec
différents SNR en ajustant la puissance d'entrée du laser. Pour les images a SNR plus élevé,
CARE 2D a amélioré les détails et la netteté, a amélioré le contraste et a révélé des détails
complexes de la structure des limites de collagéne autour de la tumeur. Cependant, dans les cas
de SNR extrémement bas, CARE 2D a entrainé des hallucinations, créant des structures
artificielles qui n'étaient pas présentes dans les images originales. L'hallucination fait référence a
un phénomeéne observé dans les systémes d'lA, en particulier dans le domaine de la génération
et de la reconnaissance d'images, ou I'lA produit ou interpréte des données visuelles d'une
maniére qui s'écarte significativement des résultats précis ou attendus. Cette déviation n'est pas
due a une erreur aléatoire mais est une conséquence des limites inhérentes et des biais des
données de formation, des algorithmes et de I'architecture sous-jacente de I'lA. Les hallucinations
de I'lA surviennent lorsque le modéle infere des motifs, des objets ou des caractéristiques dans
une image qui ne sont pas présents ou sont significativement déformés par rapport a leur
représentation réelle. Ce phénomeéne est souvent attribué au surapprentissage, ou le modéle d'lA
est excessivement entrainé sur un ensemble de données limité et devient ainsi trop sensible a
des motifs ou bruits spécifiques inhérents a cet ensemble de données. En conséquence, lorsqu'il
est présenté avec de nouvelles données inconnues, le modéle pourrait "voir" des éléments ou
des motifs qui correspondent a sa formation mais n'existent pas objectivement dans les données

d'entrée.

L'efficacité des modéles a été évaluée quantitativement a l'aide de métriques, telles que le mSSIM
et le PSNR. Le modéle CARE 2D a montré une amélioration substantielle de la qualité d'image
pour le cas de puissance de 30 mW, avec des augmentations notables des valeurs mSSIM et
PSNR. En comparaison, pour le modéle N2V 2D, les améliorations du mSSIM étaient
significatives, en particulier pour les cas de puissance de 30 mW et 70 mW, bien que les valeurs

PSNR variaient (voir Figures 4 et 5 ainsi que le tableau 1 de I'article 3).

L'étude a également exploré Il'application de ces modéles aux images SHG de structures
musculaires de poissons zébres, en comparant les souches de type sauvage et smn-/-. CARE
2D a tendance a lisser les structures musculaires, entrainant la perte de caractéristiques
musculaires distinctes. Cependant, il a amélioré l'intensité SHG, en particulier a des réglages de

puissance plus élevés. N2V 2D, d'autre part, a préservé les détails structurels des muscles plus
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efficacement dans tous les cas, le rendant le choix préféré pour les études se concentrant sur la
morphologie musculaire et les changements structurels, malgré sa capacité inférieure a restaurer
l'intensité SHG par rapport a CARE 2D (voir Figure 6 et tableau 2 de l'article 3).

En conclusion, cette étude a trouvé que CARE 2D était plus adapté pour débruiter les échantillons
avec un SNR plus élevé, comme les glandes mammaires porteuses de tumeurs, en raison de sa
capacité a améliorer la netteté et les détails de I'image. En revanche, N2V 2D est préférable pour
préserver les structures musculaires naturelles dans les échantillons de poissons zébres, en
particulier dans les cas ou la morphologie musculaire et I'intégrité structurelle sont cruciales. Le
choix entre CARE 2D et N2V 2D dépend des besoins spécifiques de I'étude, équilibrant le besoin

d'améliorations détaillées contre la préservation des structures naturelles.

Un aspect essentiel de cette étude était la gestion de la puissance laser d'entrée en imagerie
SHG pour minimiser les dommages potentiels sur I'échantillon, ce qui entraine souvent une
réduction du SNR de l'image. La recherche a souligné qu'une diminution substantielle de la
puissance laser d'entrée (jusqu'a 70%) est réalisable sans perdre le signal SHG et est
particulierement bénéfique pour la transition des échantillons fixes aux échantillons vivants. En
tirant parti de I'apprentissage profond, il est possible de réduire considérablement la puissance

d'entrée sans compromettre le signal SHG.

Cette recherche comparative fournit des informations cruciales sur l'efficacité des techniques de
débruitage basées sur I'l|A pour différents types de tissus, contribuant a I'amélioration globale de

la qualité d'image en microscopie SHG.

Article 4 : Accélérer l'imagerie de génération de seconde harmonique résolue en

polarisation avec des réseaux génératifs antagonistes super-résolution améliorés
Enoncé du probléme de I’article 4

Le principal défi abordé dans cette étude est la nécessité d'augmenter significativement la vitesse
d'imagerie de la microscopie P-SHG, en particulier pour les échantillons de glandes mammaires
entieres. Dans I'état actuel de la microscopie P-SHG, l'acquisition d'images haute résolution
nécessite souvent un compromis entre la vitesse d'imagerie et la qualité des images. Des images
de haute qualité sont généralement obtenues a un rythme plus lent, ce qui n'est pas toujours
réalisable, en particulier dans des études nécessitant une imagerie rapide de grands échantillons
ou lors de processus biologiques sensibles au temps. Pour surmonter cette limitation, cet article
propose une nouvelle application des Réseaux Génératifs Adversaires Super-Résolution

Améliorés (ESRGAN) pour améliorer la qualité des images P-SHG de basse qualité. L'objectif
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principal était d'explorer si ESRGAN pouvait étre efficacement utilisé pour maintenir une qualité
d'image acceptable tout en accélérant considérablement le processus d'imagerie. En capturant
initialement des images de qualité inférieure a un rythme plus rapide puis en appliquant ESRGAN
pour I'agrandissement, cette étude vise a atteindre un équilibre entre la vitesse d'imagerie et la

qualité de l'image.

La méthodologie de recherche comprit I'acquisition d'images SHG de haute qualité d'échantillons
de glandes mammaires entiéres pour établir un repére de qualité. L'étude s'est ensuite
concentrée sur la prise rapide d'images P-SHG de moindre qualité de I'ensemble de I'échantillon
et I'application d'/ESRGAN pour améliorer ces images. Cette étape est cruciale pour démontrer la
faisabilité de cette approche dans des scénarios d'imagerie pratiques. Pour évaluer I'exactitude
et l'efficacité de cette méthode, cette étude a impliqué une analyse comparative. Des images P-
SHG de haute qualité de zones sélectionnées de différents échantillons ont été capturées pour
servir de références. Ces images ont été comparées aux résultats des images P-SHG améliorées
pour évaluer dans quelle mesure le processus d'agrandissement compensait la qualité initiale
inférieure des images. De plus, cette étude emploie les évaluations de métriques de qualité
mentionnées préecédemment pour garantir que l'intégrité structurelle des images originales est
raisonnablement maintenue aprés l'agrandissement. Il est impératif de vérifier que, bien que le
processus d'imagerie soit accéléré, les images agrandies fournissent toujours des

représentations fiables et précises des tissus des glandes mammaires.
Sommaire de l’article 4

La glande mammaire, essentielle pour la production de lait aprés I'accouchement, subit des
changements significatifs sous l'influence des hormones. Sa structure comprend deux
composants principaux : I'épithélium mammaire et le stroma. Bien que le développement de
I'épithélium mammaire soit bien compris, celui du stroma I'est moins. Le stroma mammaire inclut
diverses cellules, telles que les adipocytes, les fibroblastes, les cellules immunitaires, et des
composants de la matrice extracellulaire (ECM), tels que le collagéne et les laminines. Ces
composants jouent un role crucial dans le développement et la fonction des glandes mammaires.
Par exemple, pendant la puberté, I'expansion stromale permet la croissance des adipocytes et
l'orientation des fibres de collagene en préparation pour la morphogenése épithéliale. Ce
processus est influencé par les cestrogenes, qui favorisent I'expansion de I'épithélium le long de

ces fibres, conduisant a une architecture glandulaire mature.

La microscopie SHG est devenue la méthode privilégiée pour l'imagerie du collagéne dans les

tissus, offrant des avantages tels que la haute résolution spatiale, la réduction de la phototoxicité
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et la facilité de préparation des échantillons. Cette méthode non invasive est particuliérement
efficace pour détecter les changements du collagéne fibrillaire dans les glandes mammaires. Pour
surmonter certaines des limitations de la microscopie SHG, telles que les interférences dans les
études d'orientation des fibres, la P-SHG a été développée, combinant les avantages de la SHG
et de la polarimétrie. La P-SHG est trés précieuse pour étudier la structure du collagéne, en
particulier dans la recherche sur la glande mammaire. Cependant, les méthodes SHG et P-SHG

peuvent étre colteuses et chronophages, en particulier pour les grands échantillons.

Pour relever ces défis, des modéles basés sur les Réseau Antagoniste Génératif (GAN), en
particulier ESRGAN, ont été utilisés pour I'agrandissement des images. Les GAN impliquent deux
réseaux neuronaux en compeétition : un générateur qui crée des données ressemblant a de vraies
données et un discriminateur qui distingue entre les données réelles et générées. Avec le temps,
cela conduit a la génération de données de haute qualité et réalistes. ESRGAN, une approche
d'apprentissage profond pour la super-résolution d'image, se concentre sur la capture de
caractéristiques d'image de haut niveau a travers une fonction de perte perceptuelle, améliorant

ainsi la qualité des images agrandies.

Dans cette étude, la préparation des échantillons a impliqué la sélection de souris a différents
stades de développement de la glande mammaire et leur euthanasie humaine. Les glandes
mammaires ont été récoltées, étirées a leur forme originale sur des lames de verre et fixées a
I'aide du fixatif de Carnoy. Aprés la fixation, les tissus ont été réhydratés, colorés pour mettre en
évidence I'épithélium mammaire, puis déshydratés a nouveau. Les échantillons préparés ont été
imagés pour une analyse numérique, en se concentrant sur divers aspects des glandes

mammaires.

Les échantillons préparés ont ensuite été imagés a l'aide d'un dispositif de boite lumineuse et de
caméra, avec une clé de mesure pour standardiser la comparaison entre les échantillons.
L'analyse numérique de ces images, en se concentrant particulierement sur les branches
épithéliales, les bourgeons terminaux et I'architecture globale, a été réalisée a l'aide du logiciel

ImagelJ.

Le dispositif d'imagerie pour cette étude a utilisé des techniques de microscopie avancées, en
particulier la microscopie SHG et sa variante P-SHG. Le microscope a balayage inversé
personnalisé a laser a employé un laser a fibre YB a verrouillage de mode avec des réglages
spécifiques pour la durée d'impulsion, la fréquence de répétition et la puissance moyenne pour
optimiser la qualité d'imagerie. Le processus d'imagerie inclut des ajustements dans le contréle

de la puissance et la mise au point a l'aide d'une combinaison de moteurs mécaniques et
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piézoélectriques. Le signal SHG a été collecté et filtré a travers une série de filtres spectraux pour
isoler des longueurs d'onde spécifiques d'intérét. Le dispositif d'imagerie a été controlé et
synchronisé a l'aide d'un programme Python personnalisé, permettant une acquisition efficace

d'images SHG de haute qualité (voir Figure 1 de I'article 4).

Pour l'imagerie P-SHG de qualité inférieure, le dispositif a été modifié pour inclure une plaque
demi-onde motorisée, permettant la rotation de la polarisation linéaire du faisceau laser. Cela a
permis de capturer des images dans divers états de polarisation. En revanche, I'imagerie P-SHG
de haute qualité implique l'imagerie de régions d'intérét aléatoires a l'aide d'un objectif différent

pour une résolution améliorée.

Pour relever les défis de la qualité d'image, cette étude a utilisé plusieurs modeéles
d'agrandissement basés sur I'ESRGAN. Ces modeles comprennent Ultrasharp_4X,
ESRGAN_Nomos2K, 4X_Remarci et 4X-UniScaleV2_Sharp. L'agrandissement a été facilité par
le programme ChaiNNer. Un agrandissement guidé utilisant PixTransform avec des images SHG
de haute qualité servant de référence a également été effectué. Ce processus a impliqué des
itérations avec différents modes de séparation de canaux et a été accéléré a l'aide d'un GPU RTX
3060Ti. L'approche compléte dans la préparation des échantillons, la configuration d'imagerie et
l'agrandissement d'image souligne la méthodologie rigoureuse employée dans cette étude pour

assurer une analyse détaillée et précise du développement de la glande mammaire.

L'intégration des images histologiques avec leurs homologues en imagerie SHG a fourni une vue
compléte de la microstructure tissulaire. Cette approche était particuliérement bénéfique pour
offrir une compréhension plus holistique de I'architecture tissulaire et aider dans le processus
d'agrandissement en assurant la fidélité structurelle dans les images SHG améliorées (voir Figure
2 de l'article 4).

Des comparaisons ont été effectuées entre les images SHG originales de haute qualité et leurs
versions de basse qualité, suivies par une analyse des images agrandies. Les images de haute
qualité, avec une résolution de 1800x800 pixels, affichaient une quantité significative de détails
et de clarté. Cependant, la capture de ces images haute résolution est chronophage, nécessitant
environ 18 minutes par image. Cela était préoccupant, en particulier pour I'imagerie P-SHG, qui
nécessitait plusieurs images et pouvait potentiellement endommager les échantillons en raison
d'une exposition prolongée au laser. A l'inverse, les images originales de basse qualité, avec une
résolution de 225x100 pixels, étaient capturées beaucoup plus rapidement, mais manquaient de

détails et de netteté (voir Figure 3 de l'article 4).
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Pour résoudre ces problémes, des techniques d'agrandissement d'image ont été utilisées, en
particulier le modeéle Ultrasharp_4X basé sur 'TESRGAN. Ce modéle a été choisi en raison de sa
capacité a améliorer efficacement la résolution de l'image tout en maintenant lintégrité
structurelle. En appliquant ce modéle, la résolution de l'image a été améliorée a 3600x1600
pixels. Cependant, le processus d'agrandissement introduit une certaine dégradation de qualité,

nécessitant des mesures de contrdle de qualité détaillées.

Le contrdle de qualité implique d'évaluer les images agrandies a l'aide de diverses métriques,
telles que I'évaluateur de qualité d'image naturelle (NIQE), I'évaluateur de qualité d'image
perceptuelle (PIQE), la similarité structurelle multi-échelle (MS-SSIM), le Rapport Signal sur Bruit
Maximal (PSNR) et I'erreur quadratique moyenne normalisée (NRMSE). Ces métriques indiquent
que les images agrandies, bien qu'elles ne soient pas identiques aux images originales de haute
qualité, ont maintenu un haut niveau de fidélité et ont réussi a améliorer les images (voir tableau
1 et 2 de l'article 4).

L'étude a également inclus une analyse P-SHG, en utilisant initialement des mesures CurveAlign
pour déterminer la faisabilité d'analyser des images de basse qualité. Il a été constaté que, bien
que les images de basse qualité résolussent des alignements significatifs de fibres, elles
manquaient de détails (voir Figure 4 de l'article 4). L'agrandissement de ces images s'est avéré
plus efficace, améliorant la résolution des alignements et des orientations de fibres plus fines.
Les images P-SHG ont été capturées a divers états de polarisation et traitées a l'aide d'un script
MATLAB pour analyser l'orientation des fibres. Cette analyse a confirmé que les détails
d'orientation dans les images agrandies étaient précis, offrant une méthode fiable pour améliorer

les images de basse qualité pour une analyse P-SHG détaillée (voir Figure 5 de l'article 4).

Notre analyse a fait un bond significatif dans I'imagerie P-SHG en réduisant le temps d'imagerie
de 4,5 heures a 13,5 minutes, réalisant ainsi une réduction de temps de plus de 95%. Cette
efficacité a été réalisée grace a la sélection stratégique du modeéle "ultrasharp_4X", qui fait partie
de 'ESRGAN pour l'agrandissement des images. Ce modéle a été préféré en raison de son
haute-fidélité aux images originales, contournant les complications rencontrées lors de I'utilisation

d'images de haute qualité comme références pour I'agrandissement.

L'un des avantages les plus significatifs de cette méthode accélérée est la réduction drastique de
I'exposition au laser des échantillons. Cet aspect est crucial pour préserver l'intégrité des
spécimens biologiques sensibles, car une exposition prolongée au laser peut entrainer des

dommages photo-induits. Par conséquent, notre méthode ne protége pas seulement la qualité de
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I'échantillon, mais permet également des périodes d'observation prolongées sans risque de

modifier leurs propriétés.

De plus, le besoin réduit d'imagerie haute résolution dans de nombreuses applications nous a
permis de reconsidérer les composants optiques de notre configuration. Cela a conduit a
I'adoption d'objectifs et de systémes d'imagerie plus économiques, rendant la technologie plus

accessible et réduisant les colts globaux.

La validité de notre approche d'imagerie accélérée a été évaluée de maniere approfondie en
comparant les images P-SHG générées en utilisant notre méthode avec celles produites en
utilisant des techniques conventionnelles et chronophages. Ces comparaisons ont confirmé que
notre processus plus rapide produisait constamment des résultats similaires aux caractéristiques

originales de I'échantillon (voir Figure 6 de l'article 4).

En résumé, notre recherche sur l'imagerie P-SHG marque une avancée notable dans le domaine,
non seulement en termes d'efficacité temporelle, mais aussi en réduisant les risques d'exposition
de I'échantillon et en abaissant les barrieres économiques. Ce progrés ouvre de nouvelles
possibilités pour ['utilisation généralisée de l'imagerie P-SHG dans diverses applications

scientifiques et de recherche, favorisant I'innovation et la découverte.

Cette approche novatrice utilisant les GANs pour I'imagerie P-SHG représente une avancée
significative dans I'amélioration de I'efficacité et de I'accessibilité de la microscopie SHG, avec

des implications importantes pour la recherche biomédicale et les applications cliniques.
Conclusion

La série d'études présentée englobe une gamme d'approches et de méthodologies innovantes
dans le domaine de la microscopie SHG et de ses applications, chacune abordant des défis

uniques et faisant avancer notre compréhension et nos capacités en imagerie biologique.

Dans le Projet 1, une revue compléte de la microscopie SHG, en particulier dans les études
neuronales, a été établie comme une ressource vitale pour les chercheurs dans le domaine. En
consolidant et contextualisant une richesse de recherches, cette revue a non seulement souligné
les avancées historiques et théoriques en microscopie SHG, mais a également fourni un guide
fondamental pour les recherches futures, particulierement bénéfique pour ceux qui sont nouveaux

dans le domaine.

L'exploration dans le Projet 2 de l'orientation des fibres de collagene et des défis des petits

ensembles de données dans les glandes mammaires a démontré le potentiel d'intégration de
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techniques d'imagerie avanceées, telles que la microscopie SHG et P-SHG automatisées, avec
des méthodes d'apprentissage profond. Cette approche a montré des promesses pour surmonter
les limitations des techniques d'imagerie traditionnelles, permettant une analyse plus détaillée et

efficace des changements structurels dans les microenvironnements tumoraux.

Dans le Projet 3, l'application des techniques d'apprentissage profond pour le débruitage
d'images SHG a faible SNR représente une avanceée significative dans la restauration d'image en
microscopie. L'utilisation des techniques CARE 2D et N2V 2D a ouvert de nouvelles possibilités
pour améliorer la qualité d'image dans des scénarios difficiles, tels que l'imagerie a faible
puissance laser des tissus musculaires de poissons zébres et des glandes mammaires de souris
porteuses de tumeurs. L'application réussie de ces techniques peut révolutionner I'approche de

restauration d'image en imagerie biologique haute résolution.

Enfin, I'accent mis dans le Projet 4 sur I'accélération de I'imagerie P-SHG en utilisant le modéle
ESRGAN pour l'agrandissement d'image aborde un besoin critique en imagerie biologique :
I'équilibre entre la vitesse et la qualité. En démontrant qu'il est possible d'acquérir rapidement des
images de basse qualité puis de les améliorer grace a des techniques d'agrandissement
avanceées, cette étude ouvre la voie a des processus d'imagerie plus efficaces, en particulier dans

les études sur de grands échantillons ou les processus biologiques sensibles au temps.

Collectivement, ces études mettent en évidence la nature dynamique et évolutive de la
microscopie SHG et de ses applications. Elles soulignent l'importance des approches
interdisciplinaires qui combinent des techniques d'imagerie avancées avec des méthodes
computationnelles pour relever les défis complexes rencontrés en imagerie biologique. Les
apercus et meéthodologies développés a travers ces projets contribuent non seulement au
domaine de la microscopie SHG, mais ont également des implications plus larges pour I'étude
des structures et processus biologiques. Alors que nous continuons a repousser les limites de ce
qui est possible en microscopie et en analyse d'image, ces études serviront sans aucun doute de
références fondamentales pour guider les recherches futures et I'innovation dans ce domaine

vital.

En conclusion, cette thése démontre le potentiel transformateur de l'intégration de la microscopie
SHG avec des techniques avancées d'lA. Les résultats mettent en évidence des améliorations
significatives dans la qualité d'imagerie et les capacités analytiques, suggérant un avenir ou ces
technologies seront intégrales a la recherche biomédicale et aux applications cliniques. Les
travaux futurs devraient se concentrer sur le raffinement de ces méthodes pour une accessibilité

plus large et une précision diagnostique améliorée. Cela pourrait inclure le développement de
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modeles d'apprentissage automatique pour des échantillons biologiques plus diversifiés,
I'exploration de leur intégration dans les flux de travail cliniques, et le développement de systémes
d'imagerie SHG rentables et conviviaux pour améliorer I'accessibilité dans divers contextes de

soins de santé.
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1 INTRODUCTION AND LITERATURE REVIEW

The synergy between microscopy, biophotonics, and the study of biological samples through light
interaction is rooted in a historical journey dating back to Janssen's microscope invention in 1585
[1]. This remarkable journey has evolved into a vital photonics subbranch known as biophotonics.
Over the centuries, scientific pioneers such as Robert Hooke and Antoine von Leeuwenhoek
made significant strides in the 17th century using microscopes to examine various biological
samples [1]. Since then, microscopy and biophotonics have progressed through numerous
iterations and advancements. Notable improvements include refining optical elements,
advancements in light sources, innovations in detection methods, and enhancements in sample-
preparation techniques [2]. In the upcoming sections, we will explore different nonlinear
microscopy iterations and their roles in studying biological samples. Notably, the integration of
artificial intelligence (Al) into SHG microscopy has significantly expanded its applications and
improved its analytical capabilities. Recent advances have focused on overcoming limitations,
such as noise reduction and image enhancement. This has paved the way for broader
applications in biomedical research, offering new opportunities for exploring complex biological

phenomena.

This thesis addresses a critical challenge in biomedical imaging: overcoming the limitations of
SHG microscopy by integrating Al techniques. This research aims to enhance image quality,
enable automated analysis, and expand the clinical applications of SHG microscopy. By exploring
novel approaches to image processing, classification, and acquisition, this study sought to push
the boundaries of what is possible with SHG microscopy and pave the way for its broader adoption
in research and clinical settings. The document is structured around four interrelated articles,
each addressing specific aspects of these objectives. Following this introduction, we present a
comprehensive background of SHG microscopy and Al in imaging, followed by detailed
summaries and analyses of the four core articles. The thesis concludes with a synthesis of the
overall findings and their implications for the field, demonstrating how the integration of Al and

SHG microscopy can revolutionize biomedical imaging.

1.1 History of optical microscopy

The importance of microscopy cannot be overstated in various fields, including biology, health,
microfabrication, nanofabrication, and materials science. The nuances of microscopy, including

its strengths and limitations, are delicately balanced by factors such as contrast mechanisms,



spatial resolution, field of view, acquisition speed, penetration depth, and applicability in vivo [3].
At the core of microscopy techniques is the pivotal concept of contrast mechanisms. These
mechanisms pivot on how materials respond when probed by light, electron beams, or fine points,
thereby revealing variations in structure and composition [3]. Diverse microscopy methods employ
a spectrum of contrast mechanisms primarily favored in biological studies, including light, electron
absorption, and fluorescence. Each mechanism provides distinct insights into material structure
and properties [3]. Spatial resolution, a defining factor, dictates the ability of a technique to discern
intricate details. Optical microscopy typically achieves a resolution of 1 micron, yet some methods

surpass the diffraction limit, pushing the resolution below 100 nm [3].

In the realm of microscopy, the field of view and image acquisition speed have immense
significance. A generous field of view aids in locating intriguing details, whereas swift image
acquisition is vital, especially when investigating dynamic structures in living organisms [2].
Despite the unique challenges in capturing rapid movements, the ability to image living organisms

in real-time is a hallmark of optical microscopy.

In 1846, Zeiss unveiled the world's first commercial optical microscope in Jena, Germany, starting
a fascinating journey [4]. This method meticulously aligns an objective and an eyepiece with the
sample to observe an enlarged image directly. llluminating the sample from behind allowed the
light to pass through before collection by the objective. The absorption and diffusion of light within
the sample form the basis for image contrast, with a theoretical resolution limit of approximately
200 nm [3]. Optical microscopy was confined to thin tissue slices because thicker samples
scattered light. In 1903, Koéhler introduced a dark-field microscope to address some of the
scattering problems encountered by the original microscope [5]. In dark-field microscopy, the
sample is illuminated to prevent direct capture of light by the lens, gathering diffused or reflected
light from specific structures within the sample and enhancing the contrast [5]. Subsequent
innovations included the phase-contrast microscope unveiled by Zernike in 1935 [6] and the
differential interference contrast (DIC) microscope introduced by Nomarski in 1952 [7]. These
methods rely on the interaction between index variations in the material and the phase shift of the
light wavefronts, quantifiable through an interference phenomenon. While these innovations
aimed to improve the contrast and resolution in bright-field microscopy, they have limitations,
including low-intensity images and poor effective resolution. The overarching challenge was
adapting microscopy for less-controlled in vitro samples while enhancing light penetration without

introducing degradation [8].



The turning point arrived in 1955 when Minsky introduced the confocal scanning microscope [9].
His invention remained unappreciated until the invention of lasers in 1960, which provided a stable
and bright light source for scanning microscopy. The first laser scanning microscope was debuted
in the late 1960s using a He-Ne laser [10]. This innovation marked a shift to point-by-point
illumination and efficient light filtering, eventually coining the term "confocal microscope" in 1977
[11]. The primary advantage of a confocal microscope is its exceptional axial resolution, which is
achieved by selectively collecting the signal from a specific plane within the imaged material [12].
Confocal microscopy is frequently paired with fluorescence microscopy, particularly in biological
imaging. This technique involves attaching fluorophores to specific structures for differentiation
using sequential filters. These fluorophores are optimized for efficient light conversion, reduced
required light intensity, and minimized thermal damage to biological tissues [13]. However,
fluorescence microscopy grapples with photobleaching, where the efficiency of fluorophores
diminishes with prolonged exposure to light and phototoxicity owing to direct interactions between
light and cells [14].

Several techniques have emerged to overcome the optical resolution limit imposed by light
diffraction. An overview of these methods is provided in Figure 1-1. STED microscopy was
pioneered by Hell et al. in 1994 and achieved a spatial resolution below 100 nm in fluorescence
microscopy [15]. STED employs an excitation beam for fluorescence, and a secondary beam
shifts towards the red spectrum, using a donut-shaped irradiance profile to de-energize
fluorescent molecules [15,16]. Stochastic techniques, including Photoactivation Localization
Microscopy (PALM) [17] and Stochastic Optical Reconstruction Microscopy (STORM) [18], can
achieve similar spatial resolutions. These super-resolution methods are primarily applied to
biological samples, necessitating staining, dyes, or controlled concentrations of fluorescent
proteins for sub-diffraction image reconstruction. While image acquisition relies on a diffraction-
limited optical microscope in the case of STED or sophisticated image reconstruction techniques
in PALM/STORM, these innovations pave the way for exploring previously inaccessible domains,

notably the intricate interior of cells, including compact nuclei [8].



. & R
¢ L ¢ K N 4
&% S “&‘\ & & L & 8 » «©
20 @ Q N . R ™ R NS Y o
F @ B T V\%«‘oo@\‘;\ F (&
EH ¥ & @ R F 8 KU
< ol <© P & >
Classic | T
o Confocal microscopy 1nm
microscopy 10nm
=0 100km 0.5um
g Multiphoton
g microscopy (MPM)
< 1mm
z 2-10um Optical Coherence
S Tomography (OCT)
= 10 mm 1-10um
8 Optical Projection 7
E Tomography (OPT) Research
g 1cm 150um imaging
ﬂ:’ ex-vivo
a
10 cm
300um
Entire Medical
body imaging
in-vivo
1mm

Figure 1-1: Resolution and penetration depth of several medical imaging techniques. Extracted from [8].

The 1990s are considered a key milestone for nonlinear microscopy, which is discussed in the
next section on the history of second harmonic generation microscopy and its physical

characteristics.

1.2  Nonlinear optics and process

The following sections detail nonlinear processes and microscopy, starting with the history and

physical principles.

1.21 Nonlinear microscopy history

The theoretical prediction of two-photon absorption by Goeppert-Mayer in 1931 set the stage for
significant developments [19]. Three decades later, in 1960, Theodore Maiman's creation of a
ruby laser [20], based on the foundational work of Schawlow and Townes in 1958 [21], marked a
turning point for microscopy, specifically nonlinear microscopy. Almost immediately after these
breakthroughs, various nonlinear optical techniques began to emerge. In 1961, Franken et al.
observed the frequency doubling of a ruby laser in a quartz crystal, marking the birth of second
harmonic generation (SHG) microscopy [22]. The following year, Bloembergen and Pershan
clarified the SHG equations and explained the fundamental principles governing light-matter

nonlinear interactions with a thorough examination of Maxwell's equations [23].



In 1974, Hellwarth and Christensen combined SHG with optical microscopy by focusing a laser
on potassium deuterium hydrogen phosphate (KDP) crystals [24]. However, this method relied on
robust SHG converters because the entire field was illuminated with a continuous-wave (CW)
laser. In 1977, Sheppard et al. imaged quartz using a scanning SHG microscope that detected a
nonlinear optical signal [25]. Simultaneously, through electron microscopy (EM), Parry and Craig
revealed that collagen fibrils in tissues such as tendons possess mixed polarity, with neighboring
fibrils pointing in opposite directions [26]. This discovery was later confirmed using a combination
of atomic and piezoelectric force microscopy [27,28]. In 1978, Roth and Freund conducted
comparative measurements between the SHG signal of a reference quartz sample and that of a
rat-tail tendon. They discovered that the SHG signal was significantly lower (3-4 orders of
magnitude) in the biological sample than in the reference material, emphasizing the potential of
using SHG measurements in vivo [29]. Finally, in 1986, Freund and Deutsch became pioneers in
performing SHG microscopy of biological samples, demonstrating that the macroscopic polar
structure in tendons arose from a network of fine structures, specifically collagen fibrils, within the
entire tissue volume [30]. This groundbreaking work illustrated the viability of using SHG
microscopy for biomedical imaging. In 1990, Denk et al. introduced two-photon excitation
fluorescence (TPEF) laser scanning microscopy utilizing pulsed lasers and a modified confocal
microscope [31]. Denk initially employed a high-repetition-rate dye laser emitting femtosecond
pulses for the experiment. However, the 1980s and the 1990s saw the emergence of Titanium

Sapphire lasers, which provided ideal femtosecond light sources for nonlinear optical microscopy.

Following the success of TPEF, three-photon excitation microscopy was first demonstrated in
1996 [32]. Although SHG predates TPEF microscopy, it experienced a period of relative obscurity
before being reintroduced in 1998 [33,34] and subsequently integrated with TPEF in the early
2000s in numerous studies [2,35-37]. With advancements in commercially available mode-locked
lasers and user-friendly multiphoton microscopes [38], SHG has emerged as a powerful tool for
high spatial resolution optical imaging, contributing significantly to multimodal imaging. In recent
years, these nonlinear optical microscopy methods have been substantially enhanced and
adapted, making them commonplace in laboratory settings. The next significant advancement in
this field will involve harnessing these microscopy techniques for diagnostics, paving the way for

their clinical utilization and integration into the medical field.



1.3  Nonlinear processes

This section discusses the physical processes and properties of nonlinear optics and SHG in
further detail. Most concepts covered in this section are based on Boyd’s Nonlinear Optics book

[39], which is strongly recommended for further information on this topic.

1.3.1 Second harmonic generation theory and principles

To understand SHG, we must first examine how electron behaves when excited by an incoming
photon. The electron travel depends on the strength of the excitation photon and can be described
in two cases (illustrated in Figure 1-2): if the excitation energy is low, the electron's trajectory can
be approximated as a parabolic path, rendering the process linear. This linear excursion is often
called elastic, which is analogous to mechanical systems [39]. However, in a strong exciting field,
a more significant part of the electron potential is traversed, leading to a nonlinear or inelastic
oscillation of the electron or electron assembly. An illustrative example of this phenomenon is
SHG, which is a component of the Fourier decomposition of the anharmonic response of an
electron excited by a powerful electromagnetic field. This inelastic oscillation of electrons results
in partial "transmission" of the excitation field. This process causes a change in the fundamental
frequency of the electron motion by inducing one of its harmonics. This phenomenon can be
attributed to the electric field oscillating at a high frequency when interacting with a molecular

structure, repeatedly inducing a molecular dipole [39].

Figure removed due to copyright issues

Figure 1-2: Potential energy function U(x) vs electron position x for (a) non-centrosymmetric and (b)
centrosymmetric media. Extracted from [39].



For such a conversion, the medium must allow vibrations at these specific frequencies. Owing to
symmetry considerations, any medium with a center of symmetry will eliminate all the Nth
harmonics, where N is an even number. This property is a crucial factor for understanding and
predicting the behavior of nonlinear optical processes. For further clarification, we can

mathematically examine the molecular response to an external electric field [39]:
P =P© 4 oF + BEE + YEEE + - 11

Here, E represents the incident electric field, and a, B, and y represent the first-, second-, and
third-order hyperpolarizabilities, respectively. The first term, P(® | represents the permanent
dipole of the molecule. The second term corresponds to the linear response, and the third term
accounts for second-order nonlinear interactions such as sum and difference frequency
generation [39]. The fourth term describes third-order nonlinear effects, which encompass
phenomena such as two-photon absorption [40], third harmonic generation [41], Kerr effect [42],
self-phase modulation [43], cross-phase modulation [44], and stimulated Raman scattering [45].
Molecules capable of generating SHG are distinguished by their high hyperpolarizability 8, which

is intricately linked to their structural symmetry [46].

On a macroscopic scale, SHG is characterized by the nonlinear susceptibility, y®, which arises
from the coherent summation of the individual hyperpolarizabilities of harmonophores within a
given volume. The connection between the molecular and macromolecular nonlinear responses

can be defined as follows [47,48]:
X(2)=NS<B> 1.2

Here, N, represents the density of molecule S, and < g > represents the average orientation of
the first hyperpolarizability [39]. Various processes can be described to elucidate the interactions
between two electromagnetic fields of frequencies w; and w, within a medium that exhibits a non-

zero value y@:

Second Harmonic Generation 1 (SHG 1):
P(w; + ;) x XD E? 1.3
Second Harmonic Generation 2 (SHG 2):

P(wy + wy) x yPE2 1.4



Sum Frequency Generation (SFG):
P(w; + wp) x 2y @E, E, 1.5

SHG is a unique case of SFG in which the two frequencies are the same.

Difference Frequency Generation (DFG):

P(w, — wy) x 2YPE, E;  or P(wy — wy) x 2YPE, E} 1.6
Optical Rectification (OR):

P(w;—w; =0& w, —w, =0) x 2y@(E; Ef +E, E3) 1.7

OR is a unique case of DFG, in which the two frequencies are the same, resulting in static

polarization [39].

The energy level diagrams for the SHG, a degenerate case of SFG, and DFG are shown in Figure
1-3.
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Figure 1-3: Geometry of interaction and energy level interaction for a) SHG, b) SFG (degenerate case) and c)
DFG. Extracted from [39].

1.3.2 Hyperpolarizability and second-order nonlinear susceptibility

The orientation of the dipoles in a material can vary from being entirely random, as in amorphous
materials, to being highly organized, as in crystalline materials. Amorphous centrosymmetric
materials have a y® value of zero because on average, their dipoles do not prefer any
orientation. On the other hand, crystalline materials can have a non-zero y®, but only when their
dipoles align in a specific preferred direction. However, it is essential to note that some crystalline
materials might still have a y® value of zero if their dipoles point in opposite directions, despite
being organized. A material with a non-zero y? is referred to as non-centrosymmetric (meaning
it lacks an inversion center), whereas a material with zero y® is called centrosymmetric (with an
inversion center). Figure 1-4 clearly illustrates the difference between centrosymmetric and non-

centrosymmetric materials.



a) b) c)

Figure 1-4: Dipole orientation in different material: a) amorphous centrosymmetric, b) crystalline
centrosymmetric, and c) non-centrosymmetric. Only a non-centrosymmetric material has a non-zero nonlinear
susceptibility. Extracted from [49].

SHG can only occur in non-centrosymmetric materials because they possess a non-zero y?.
When an electromagnetic wave passes through a material, its dielectric polarization signifies the
oscillation of dipoles within the material. When the wave electric field is strong, the nonlinear terms
in the dielectric polarization become significant [39]. These terms cause the dielectric polarization
to oscillate at new frequencies that differ from the original electromagnetic wave. Consequently,
there are dipoles in the material oscillating at these new frequencies. As oscillating dipoles emit
radiation, electromagnetic waves oscillating at these new frequencies are generated and
observed outside the material. The harmonic generation process is coherent. The oscillation of
the dipole moments in the material instantaneously follows the electromagnetic wave. As a result,
a phase relationship exists between the generated electromagnetic wave and the original wave.
This phase relationship also explains why centrosymmetric materials do not produce second
harmonics. There is destructive interference between the signals generated by adjacent dipoles
with opposing dipole moments. Even in non-centrosymmetric materials, the coherent nature of
SHG and this phase relationship can lead to destructive interference effects that reduce the

efficiency of converting the original wave into SHG [39].
Another crucial aspect to consider in SHG is the tensor nature of y®), which adds complexity to

this phenomenon. The y® tensor is of the third rank and has twenty-seven elements (XEJZ.,)(). In

most cases, owing to material symmetries, several tensor elements are either negligible or zero
and only a few elements are significant. In such cases, the formula can be significantly simplified

by considering only the contributions of the significant elements of the ¥y tensor. For general
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SHG, or when the Kleinman symmetry condition is satisfied, the y(® tensor can be expressed

using contracted notation [39]:

dll d12 d13 d14 d15 d16 1 @ 18
dy =|dy1 dy dys dyy dys dy| = E)(i]-k
d31 d32 d33 d34— d35 d36
Thus:
EX(w) 1.9
Ej(w)
Px (2(1)) dll d12 d13 d14— d15 d16 E};((D)
P, Qw)| x |dyy dyp dyz dpy dys dag z
P, Qw) d3; d3; diz diy dis dse 2By (w)E,(w)
z 2Ex(w)E;(w)
| 2Ey (w)Ey (w)]
1.3.3 Coherence length and phase matching
Let us examine the wave equation with nonlinear polarization [39]:
1 9*DW 1 0?pM 1.10

V2E — =
€9c? Ot? €9c? Ot?

The wave equation must hold for all frequency components of the electric field, including those at

2w. To define the outgoing field, we express this as [39]:

EQw) = A;(z)elksz—20t) 1.1

2529 and n2 = eM(2w), and n; represents the refractive index at the frequency 2w.

Cc

where k; =

By substituting these earlier definitions into the one-dimensional wave equation, it transforms into
[39]:

2 2
Ay o dds  4der Qo) A, ePhk 1.12

dzz+ ]3dz c?

The slowly varying envelope approximation was employed, allowing us to neglect the first term in

this equation compared to the second term. Consequently, we have [39]:

dd;  2jd.g (2w)? . 113
d_z3 - k3c? A A%
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Where Ak = 2k — k3, denotes the phase-matching vector. Assuming the amplitudes of the pump
fields, A; and A,, remain constant, a straightforward integration over the medium's length from
zero to L helps us derive a solution to this equation and, consequently, calculate the generated

sum-frequency intensity (I3) [39]:

z 1.14

)

e]'AkL -1

Ak

8nz€oder(20)*|4; |?|4,|?

|2=
2
ksc3

I3 = 2n360C|A3

I; < |A,|?|A,|?sinc? (AkL/2).

It is important to note that in the context of SHG, typically, only one laser is used: thus, 4; = 4,.
Consequently, the intensity of the second harmonic generated depends on the square of the
fundamental laser intensity. When dealing with a wave mixing process in a nonlinear medium of
length L, the intensity of the output wave also depends on the product AkL. Figure 1-5 illustrates

the behavior of I relative to this factor [39].

Figure removed due to copyright issues

Figure 1-5: Effect of phase matching on the efficiency of SHG. Extracted from [39].

This phenomenon arises because the generated intensity results from the sum of the intensities
produced by all the dipoles encountered along the length of the medium. If the light from the first
excited dipole has traversed a distance within the material that causes it to acquire a phase shift
of m relative to the exciting wave, the light produced at that new location will interfere destructively
with the first one, and the power returns to the w waves. When the pump intensity is infinite, two
scenarios emerge. First, if Ak = 0, the output intensity continually increases with L. Otherwise, it

varies spatially in a periodic manner with coherence length 4L, where L.,, = m/Ak. Therefore,

12



for a given Ak, constructive interference reaches its maximum when the medium's length equals
Lc.on, hence the term "coherence length." If the pump intensity is finite, I; varies spatially,
regardless of Ak, and the amplitude or maximum value is dictated by equation 1.14.
Consequently, achieving efficient SHG requires approaching the ideal condition of Ak = 0, which
signifies perfect phase-matching. One method for phase matching involves the use of a
birefringent medium [39]. Another technique for achieving phase matching is temperature control.
Some crystals, such as lithium niobate, exhibit high temperature-dependent birefringence and

phase-matching can be achieved by varying the temperature [39].

To summarize, for a medium to have a non-zero y® and facilitate SHG, it must consist of
molecules with a non-zero 8 and be organized on a scale more prominent than the wavelength
of the light to achieve phase matching [39]. Consequently, the signal obtained in SHG can provide
insights into the organization and structure of imaged materials [40]. For instance, by manipulating
the polarization of the incident and detected beams, it is possible to determine des for the
considered geometry and investigate the ratios between the different elements of the y® tensor
[50]. In a medium such as biological tissue, the interaction length, which corresponds to the focal
volume length in microscopy, is typically much smaller than the coherence length. This
phenomenon makes the generation of second harmonic signals relatively straightforward [51].
Finally, when SHG is measured in reflection rather than transmission, the phase-matching vector
must be larger as k; changes sign (Ak = 2k — k3), leading to a shorter coherence length and

different phase-matching conditions [39].

14 Advanced SHG microscopy methods

Advanced techniques, such as polarization-resolved SHG (P-SHG), interferometric SHG (I-SHG),
and wide-field SHG, are pivotal in expanding the capabilities of bioimaging. Each technique has
unique advantages. P-SHG enhances the visualization of complex structures by measuring
parameters such as the alignment and anisotropy of fibrils, as observed in collagen studies [2]. |-
SHG provides additional structural and orientation information at the molecular level, which is
crucial for understanding biological samples, such as tissues and cells. Wide-field SHG increases
the imaging throughput by illuminating the entire sample area simultaneously, balancing the

energy input with the need to minimize photodamage [2].

13



1.4.1 Polarization resolved SHG microscopy

Polarization resolved second harmonic generation (P-SHG) combines the advantages of SHG
microscopy, offering high specificity and contrast, with the sensitivity to molecular alignment
provided by polarimetry [2]. Typically employed in examining collagen, this technique offers a
more precise depiction of the intricate hierarchical structures within fibrils in the imaging plane.
The pioneering application of P-SHG in biological samples occurred in 2002 when Stoller and
colleagues conducted their initial experiments on rat-tail tendon fascia [52]. By collecting various
linear polarization scans in both the axial and transverse planes, they discovered that the SHG
signal strongly responded to the polarization of the incident laser light source, enabling the
determination of collagen fibril orientation. When light travels through a medium, its polarization
characteristics can be described using either Stokes vector formalism [53] or Jones vector
formalism [54]. Jones vector formalism is applicable to fully polarized light, in which the entire
state can be represented via the amplitude and phase of oscillations in two electric field vector
components that lie within the plane of polarization. In contrast, Stokes vector formalism is used

for partially polarized light [55].

P-SHG has become increasingly prevalent in biomedical research, providing a valuable means
of analyzing protein structures. Prior to this method, scientists relied on cryo-electron microscopy
[56] and X-ray crystallography [57], which are often hindered by laborious and intricate sample
preparation processes. Consequently, these methods are not practical for live or dynamic
samples, let alone those involving living animals [58]. Various techniques have been used to
explore the structural dynamics of proteins. Nuclear magnetic resonance and Forster resonance
energy transfer are among them [2]. Nuclear magnetic resonance is a powerful technique that
can provide valuable information about the structure and dynamics of proteins in solution.
However, this method has several limitations [58]. For example, it requires large samples and can
be time-consuming and expensive. Forster resonance energy transfer involves the energy
transfer between two fluorescent molecules attached to distinct parts of the protein. This can
provide information about the distance and orientation between two molecules, which can be used
to deduce information about the protein structure [58]. Although these techniques are valuable,

they offer lower spatial resolution and reduced sensitivity than other methods [58].

P-SHG offers a simple and cost-effective solution for analyzing untouched samples. With only a
few additions to a standard SHG microscope setup, P-SHG can be utilized without complex and

expensive equipment [58]. The examination of collagen changes linked to aging [59], keratoconus

14



cornea [60], and lung cancer-related alterations in collagen structure [61] are some areas in which

P-SHG has proven useful.

Most of the theoretical background stated below is based on [62,63]. Let us consider the collagen
fibrils as an example. The second harmonic response of the medium depends on its second-order
nonlinear susceptibility tensor, y?). The tensor indicates how the polarizability of the medium P;

changes with an electric field E (w):

1

P = x O + x 28, 1.15

ijk

Collagen fibrils have a cylindrical shape and follow Kleinman symmetry, the tensor xy® has only

two independent components:

Xxxx » Xxyy = Xxzz = Xyxy = Xzxz = Xyyx = Xzzx 1.16

Where x is along the fiber axis, and the second harmonic polarizability is:

2 2 2
P (2w) = x9.E2 + x2) B2 + x2) E2, 147
2
P, (2w) = 2x2) E(E,
2
P, (20) = 2x3), ELE,

A linear polarization laser travelling in the z-direction creates an angle p with the collagen fibril in

the xy plane, as shown in Figure 1-6.
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Figure removed due to copyright issues

Figure 1-6: Diagram of a standard P-SHG microscope with a sample in focus. A half-wave plate and quarter-
waveplate adjust the polarization of the input laser. The laser made an angle with the collagen fibril in the focus
in the xy-plane. The collagen fibril has an angle 8 with the laboratory axis and a tilt &, which is assumed to be
zero for simplicity in this case. Adapted from [63].

Considering that the electric field and fibril lie in the same focal plane, the electric field is given

by:

E, = Egcos u , Ey, = Eysin u 1.18

Substituting 1.18 back into 1.17, considering the angle between the collagen fiber and the

@)
laboratory axis, and factoring out the anisotropy parameter p = X’(‘z")" , we have:
xyy

P, (2w) x cos? (u— ) + sin? (u — ) 1.19
P, (2w) o« 2cos (u — 6)sin (u — 0)

Moreover, the total SHG intensity becomes:

Isye(u) = K[Acos (4u — 40) + Bcos (2u — 260) + 1] 1.20

A and B are related to susceptibility components, K is the average number of photons detected,
and 6 is the angle of the collagen fiber in the focal plane. By applying a fit or Fourier transform to
1.20, the primary orientation of the fibrils (8) can be determined by changing the angle p [62,63].

The utilization of 3D Fourier Transform Second Harmonic Generation (FT SHG) has provided a
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unique avenue for directly extracting orientation information from intensity images through the
analysis of spatial patterns. This innovative approach is useful for distinguishing between isotropic
and anisotropic regions within biological tissues [64]. However, it is essential to acknowledge that
the efficacy of this method can be influenced by the presence of interference from SHG patterns,
which occasionally obscure the actual underlying material structure. To complement FT SHG, a
specialized software tool named CurveAlign [65] was developed. CurveAlign demonstrates its
advantages, mainly when SHG filaments exhibit high clarity or when interference patterns do not
mask the intriguing features of the physical structure of the material. Moreover, for more versatile
applications in similar situations, there is a valuable ImageJ plugin called Orientationd [66,67].
Although both methods have their merits and strengths, they cannot resolve highly complex

structures.

1.4.2 Interferometric SHG microscopy

The coherent nature of SHG offers valuable insights into the samples but presents certain
limitations. As described in earlier studies, the patterns observed in SHG images result from
complex interferences [68,69]. These interferences can introduce significant imaging artifacts,
mainly depending on the microscopic configuration [69], and potentially obscure the underlying
structure, which is particularly relevant in biological specimens [69]. Within the focal volume, the
interaction of dipoles with opposing or matching polarities leads to destructive or constructive
interference, resulting in regions with low or high SHG signals. Therefore, SHG images often
exhibit both bright and dark regions, which may not directly correspond to the actual distribution
of the harmonophores. Thus, it is essential to assess local polarity within a sample to obtain

precise quantitative information [69].

It is noteworthy that a polarity inversion, represented by a change in the y® sign induces a T
phase shift in the emitted SHG signal; consequently, the signal phase retains information about
the polarity within the sample, which can be mapped for each pixel in the image. This is typically
achieved through interferometry, with Interferometric Second Harmonic Generation (I-SHG)
initially proposed in 2004 to facilitate phase measurements in a scanning SHG microscope [70].
Subsequently, this technique was applied to examine tendons in 2013 [71] and cartilage in 2015
[72].

The I-SHG method employs direct phase measurements to probe the relative polarity of
harmonophores. This technique involves the combination of two SHG signals, one from a

reference nonlinear crystal positioned before the microscope (reference SHG) and the other from
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the sample being analyzed (sample SHG), which are then interfered with. As both SHG beams
are spatially and temporally coherent, the total intensity of the detector follows the widely

recognized two-wave interferometry equation [8,49]:

1.21
I=lLes+15+2 /Ireflscos (05 — Pres)

Where I; and ¢ (and L..r and ¢,.r) represent the intensity and phase of the sample (reference)
SHG beam, respectively. The images obtained by I-SHG microscopy do not directly provide ¢, .
In an image, each pixel has a signal that follows equation 1.21. To extract the optical phase of
the imaged area, a cosine function must be interpolated at each pixel using images captured at
different reference phases. To interpolate a cosine, at least three points are required. Two points
are insufficient for this function, because two solutions with distinct phases can pass through
them. Therefore, we require a combination of at least three images taken at different reference
phases to interpolate the optical phase correctly at each pixel. A larger number of images implies
a larger number of points, which allows us to perform better interpolation and improves the

accuracy of the optical phase ¢, found at each pixel [8,49].

Interferograms can be captured when the phase difference between the sample and reference
SHG beams is tweaked. The argument of the cosine (relative phase) and its multiplicative factor
(interferometric contrast) can be extracted by analyzing the experimental curve and fitting it
accordingly. This technique is commonly referred to as phase-shifting interferometry (PSI) [2]. A
simple and practical method that can be applied to process images and solve this interpolation is
to use pairs of I-SHG images. To eliminate the constant term, two -phase-shifted raw images

are subtracted as follows [73]:

I(O) - I(T[) = [Iref + Is + 2 /Ireflscos ((ps - Qoref)]

- [Iref +1,+2 /Ireflscos (gos — Qref — n)]

= ’ N ’ _ 1.22
I(O) - I(T[) - [2 Ireflscos ((ps - q)ref)] [ 2 Ireflscos ((ps (pref)]
1(0) = I(m) = 4 ’Ireflscos (4’5 - (Pref)
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The experimental cosine is fitted to determine the amplitude and relative phase of each pixel,
which produces phase and interferometric contrast maps. This operation isolates the
interferometric contrast by eliminating the term .. + I, from the image signal [8,49]. It also
amplifies the interferometric contrast term by a factor of two. The new image contains only
interferometric contrast, and its pixels have positive and negative counts. Thus, the image
obtained after subtraction clearly shows the sign and intensity of interferometric contrast. If L. is
much higher than I, , this image processing step is beneficial because it isolates the
interferometric contrast from the rest of the signal to amplify the SHG signal. A visual

representation of this process is shown in Figure 1-7.
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Figure 1-7: Diagram of the algorithm for finding the relative I-SHG phase. The 2N original images were paired
and subtracted to obtain the N contrast images. The intensity of each pixel depends on a cosine function of
the phase shift of the interferogram, which can be interpolated to obtain optical phase and interferometric
contrast images. Extracted from [73].

Various methods can be employed to adjust the phase difference between the two SHG signals,
including a gas cell, changes in distance, a rotating glass plate [74], and more advanced

techniques, such as using an electro-optic phase modulator (EOM) [75], as depicted in

Figure 1-8.
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Figure removed due to copyright issues

Figure 1-8: Diagram of an advanced I-SHG setup. The setup was designed modularly to choose between
different pathways for image acquisition: P1 for sample scanning with a motorized stage and P2 for laser
scanning using galvos. A common-path interferometer can pass through a phase scanner (EOM) or a standard
phase shifter (a rotating glass plate). The phase scanner modulated the phase difference between the two
beams, whereas the phase shifter adjusted the phase offset. The beams are directed to the objective (P1) by
mirrors or galvos for conventional laser scanning (P2). Stage-scanning mode was used when the beams
directly reached the objective. The stage moved the sample in the X- and Y-directions. The grey rectangles
with solid or dashed outlines are mirrors that can be flipped. HWP1&2: half-wave plate at 810 nm, full-wave
plate at 405 nm. HWP3 is a half-wave plate at 810 nm and 405 nm, and QWP is a quarter-wave plate for the
same wavelength. Extracted from [75].

In conclusion, I-SHG microscopy has proven to be a powerful technique for enhancing the
visualization of non-centrosymmetric structures in biological tissues. By overcoming the
limitations of complex interferences in SHG images, I-SHG allows for more precise
characterization of biopolymers such as collagen. As we transition from the intricacies of I-SHG,
we explore the capabilities of Wide-field SHG microscopy. This technique offers the advantage of
high-speed imaging, capturing entire frames simultaneously, which is particularly beneficial for
dynamic studies and large-scale tissue characterization. However, it also presents its challenges,

which we explore in the following section.

143 Wide-field SHG microscopy

Scanning SHG imaging is a well-established technique that has been successfully used in
numerous applications. However, it faces a significant limitation in terms of imaging throughput,

which refers to the number of detected photons per frame per second. Two primary strategies
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can be considered to address this limitation: enhancing the scanning speed and parallelizing
photon emission. With some success, improvements in the scanning speed have been explored
using acousto-optic deflectors [79] and resonant scanners [80]. Nonetheless, these methods are
constrained by the dwell time required to accumulate sufficient photons to produce a measurable

signal.

In contrast, wide-field SHG microscopy represents the ultimate parallelization approach, as it
allows for the simultaneous illumination of the entire area of interest with signals detected by a
pixelated detector [76,77]. Wide-field SHG imaging differs from the conventional point-by-point
method by employing higher-energy pulses, enabling frame-by-frame capture over larger areas.
This approach facilitates real-time video rate imaging. However, a trade-off is accompanied by

wide-field imaging because it limits the penetration depth.

Lasers with a repetition rate of a few kilohertz are commonly employed in these applications [78].
In addition, the development of more sensitive CCD cameras can significantly enhance the
performance of wide-field SHG. Temporal focusing is occasionally utilized to mitigate the out-of-
plane illumination inherent to wide-field techniques and to improve the axial resolution as shown
in Figure 1-9. This setup incorporates a "temporal lens," where the pulse frequencies are
scattered at the back-focal plane of the microscope objective [79,80]. This causes each frequency
to travel at a distinct angle and to recombine at the focal point. Before reaching the focal plane,
spatial chirping increases the effective pulse duration beyond the Fourier-limited value, thereby
reducing the peak power when the pulse is not in the focal plane. Notably, this technique has also
been applied in scanning multiphoton imaging, allowing video rate acquisition despite using a

point-scanning scheme [81].
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Figure 1-9: Example of a wide-field SHG imaging system with spatiotemporal focusing. A microscope system
uses three main components to generate spatiotemporal focus: a high-NA objective lens, a collimating lens,
and a diffraction grating [79,80]. The laser pulse hits the grating and is split into different spectral components.
The collimating lens then aligns these components and travels along its optical axis. The high-NA objective
lens directed them to the sample from various angles. The spectral components recombine in phase at the
focal plane, forming a short pulse with high peak power. This pulse enables efficient multiphoton excitation of
the sample [79,80]. Extracted from [82].

Given the vulnerability of living cells, it is crucial to exercise caution to prevent photodamage.
Various studies have examined light-induced damage using wide-field SHG microscopy across
different cell lines. These investigations have been instrumental in delineating a range wherein
pulse energy, and consequently heat deposition, remains beneath the damage threshold for the
samples [83]. In recent advancements, a high-repetition-rate (in the MHz range) wide-field SHG
microscope has been developed for live imaging of contracting muscle tissue. Remarkably, this
system employs laser pulses with exceptionally low pulse energy, hovering around 60 nJ per
pulse [83].

1.5 SHG microscopy in biological samples

In this section, we discuss the application of SHG microscopy to different biological samples,

starting with collagen. Figure 1-10 shows the essential components of SHG microscopy.
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Figure 1-10: Laser scanning SHG microscopy system with forward and backward SHG detection. In this case,
the laser source, a Ti: Saph laser, illuminated and scanned the sample using a galvo mirror scanner system.
Subsequently, the input laser was filtered out, and the forward and backward SHG signals from the sample
were collected using PMTs. Extracted from [84].

1.51 SHG microscopy in collagen

Collagen, a vital structural protein found in various connective tissues, is crucial, constituting
approximately one-third of an organism's total protein mass [29]. Connective tissues
encompassing a diverse range of biological tissues are characterized by an extracellular matrix
that separates cells. This matrix consists of a ground substance, viscous fluid, and collagen and
elastic fibers maintained by specialized fibroblast cells [85]. Collagen in the form of fibers imparts
the necessary mechanical properties for tissue functionality. These connective tissues primarily
support, connect, or segregate different tissues in an organism, with additional functions
depending on the specific tissue [85]. Collagen molecules consist of three identical helical chains
forming a triple helix at the molecular level. Various types of collagen, particularly types | and Il,

create well-organized fibrils observable by SHG microscopy [86,87].

In contrast, non-fibrillar collagen, such as type IV collagen, which forms sheets in specific tissue
layers, cannot be visualized using SHG microscopy [35]. The introduction of SHG microscopy to
biological tissue imaging dates back to the pioneering work of Freund et al. in 1986, specifically
in rat-tail tendons [30]. These tendons exhibit a highly organized multi-scale structure primarily
composed of type | collagen. More recently, SHG microscopy has been applied to visualize the

fascia [68] and monitor tendon healing processes [84]. The polar structures of fibrillar collagen
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types | and Il enable the generation of strong SHG signals. Consequently, this technique
examines collagen fiber organization at the micrometre scale in connective tissues without

staining, making it especially valuable for collagen-rich tissues.

The tropocollagen molecule has three identical helices, resulting in C3 rotational symmetry.
Freund et al. suggested that the structural arrangement of type | collagen in tendons could be
represented by either C« or cylindrical symmetry when averaged over dimensions approximately
equal to the wavelength of light [30]. Rocha-Mendoza and his team investigated the molecular
basis of non-centrosymmetry in the tropocollagen molecule, which in turn, applies to collagen
[88]. The investigation conducted by the researchers focused on fibrils extracted from rat tail

tendons, which are primarily composed of type | collagen. Their findings revealed that this

collagen molecule's y® encompasses both achiral and chiral contributions, with the chiral effects

attributed to the elements represented by )(i(ji) (where i #j # k) [88].

Furthermore, the study leveraged vibrational sum frequency spectroscopy (SFG-V) to
demonstrate that the achiral contribution originates from the non-centrosymmetric orientation of
methylene groups in the rings of Proline and Hydroxyproline amino acids, projecting outward from
the tropocollagen helix [89]. Additionally, the study highlighted the presence of hydrogen bonds
between the nitrogen, hydrogen segment of glycine, and carbon and oxygen segment of proline
in the X position of an a chain. This interaction, which is essential for binding the three a chains,
establishes a helical scale at the center of the helix, resulting in a supramolecular nonlinear chiral
contribution. It is necessary to note that assuming Ce~ symmetry, as is common in such studies,
simplifies the collagen fibril into a cylinder, leading to omission of the chiral contribution. Typically,
Kleinman symmetry is assumed in fibrillar collagen. While this assumption holds [90], some
debate exists because the second harmonic wavelength in their research (400 nm) significantly
differs from the first electronic transition in tendons at approximately 310 nm. Chu et al. pointed
out that the resonance frequencies of muscle fibers (around 310 nm and 550 nm) closely align
with the second harmonic wavelength of their laser at 615 nm [91]. Consequently, the SHG
intensity changes with respect to the angle between the collagen fiber and polarization of the
incident light, and this change varies depending on the detected polarization. P-SHG derives the

anisotropy parameter and applies a Fourier transform [92].

The multifaceted roles of collagen in connective tissues, its structural and molecular
characteristics, and its interactions with light and imaging techniques are subject to extensive

research, contributing to our understanding of this fundamental protein.
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1.5.2 SHG microscopy in muscle

The sarcomere is a structural unit composed of two distinct protein filaments, actin and myosin
[93,94]. These filaments work together to enable muscle contractions. Muscle tissues are
characterized by a high concentration of myosin, and the interpretation of SHG images of these
tissues is well established. Extensive research using electron microscopy has yielded a deep
understanding of the nanoscale structure of muscle tissues [95,96]. In striated muscles, myosin
molecules cluster to create thick filaments, whereas actin forms thin filaments. These myosin
molecules have opposing orientations within each half of the thick filament. The movement of
thick filaments along thin filaments enables contraction or relaxation of the sarcomere. Muscles

consist of numerous sarcomeres arranged end-to-end, which enables their contraction.

Multiple SHG microscopy studies have revealed that myosin is responsible for the signal within
muscle tissue [48,86,91,97-101]. More precisely, it has been demonstrated that the signal

originates from the tail of the myosin molecule with the head having minimal influence [97,102].

The contribution of myosin to SHG is significantly greater—approximately three orders of
magnitude higher—than that of actin [103].The SHG signal arises from C-N peptide bonds, which
are present in all proteins. However, the substantial difference in SHG intensity between the two
major muscle proteins suggests key structural distinctions. For constructive interference and
strong SHG generation, two levels of molecular organization are required: first, peptide bonds
must be arranged in a helical structure, and second, these helices must be sufficiently aligned
within the protein. While actin contains a-helices, their varied orientations result in weak SHG
signals. In contrast, myosin possesses long and well-ordered a-helices within the thick filament,

which amplify the SHG response [103].

Owing to the bipolar nature of thick filaments, one or two SHG signal bands are occasionally
observed per sarcomere [104,105]. The signal intensity is typically lowest at the M-line, where
myosin molecules switch their orientation, causing destructive interference in the SHG response
[94]. This characteristic striation pattern has been exploited in SHG microscopy to non-invasively
monitor sarcomere organization and structural integrity in both healthy and diseased muscle

tissues [94].

Studies have demonstrated that the polarization dependence of SHG can be used to distinguish
different conformational states of myosin within muscle fibers, such as relaxed, rigor, and actively
contracting states [94,103] . Quantifying this polarization-dependent SHG response through the

tensor component ratio (y) enables detailed assessment of structural changes in myosin filaments

25



during contraction. Notably, myosin filaments in rigor exhibit a higher y ratio compared to the
relaxed state, suggesting conformational differences that may involve tilting or bending of the

myosin rod domain [94,103].

This ability of SHG to probe molecular interactions in myofibrils makes it a valuable tool for
studying muscle physiology and pathology. SHG imaging has been successfully used to assess
myofibrillar disruptions in muscular dystrophy [104] and serves as a powerful diagnostic tool for

detecting sarcomere disarray in various muscle diseases.

1.5.3 SHG microscopy in neurons

The nervous system is an essential organ in living organisms and plays a crucial role in processing
and transmitting information [105]. Receptive extensions of the neuron are termed dendrites,
where most incoming signals are consolidated [106]. Signals are transmitted through components
called axons. A neuron may possess multiple dendrites but always has only one axon. At the end
of the axon, terminals and synapses exist that contain neurotransmitters essential for chemical

communication between neurons.

Traditionally, the exploration of neuronal mechanisms has hinged on electrophysiology, which
involves the insertion of electrodes into neurons to gauge electrical potentials and currents. This
method is heralded as the standard for unraveling the intricacies of neuronal activity and has been
instrumental in unearthing insights into neuron functionality. However, this approach needs to be
revised. First, it is an invasive procedure and poses considerable challenges when applied to
living organisms [107]. Furthermore, despite recent advancements, patch clamping is burdened
by its capacity to collect data from only a restricted number of neurons, substantially inhibiting the

examination of neuronal networks [108].

Optical techniques have surfaced as desirable alternatives to overcome these limitations,
affording the requisite flexibility to complement the electrophysiological measurements. TPEF and
SHG microscopy have been extensively applied in neuroscience and are experiencing growing
favor owing to their ability to provide complementary insights into the distinctive facets of neuronal
structures. Although many SHG microscopy investigations have traditionally been grounded in
the use of endogenous cellular properties, the utilization of SHG dyes has also been explored in
various studies [109—-113].

Dombeck et al. harnessed the FM 4—-64 SHG dye, showcasing a notable enhancement in the

signal-to-noise ratio (SNR) compared to conventional fluorescent probes [111]. Using the same
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dye, Nuriya et al. achieved a pioneering milestone by revealing the ingress of action potentials
into dendritic spines [112]. Subsequently, they elucidated the SHG response to an action potential
and meticulously traced its propagation from the soma to axons [114]. Concurrently, Nemet et al.
posited that all-trans-retinal chromophores are viable candidates for SHG imaging of neuronal
membranes [110]. Jiang et al. demonstrated that the limitations in the signal-to-noise ratio, as
observed in prior studies, could be circumvented through photon counting detection [115]. They
subsequently revealed that the potential-sensing capacity of FM 4-64 originates from

electrooptical mechanisms [113].

In neuroscience, SHG microscopy has proven to be a valuable tool for investigating microtubules
(MTs), which are fascinating structural elements. MTs are vital cytoskeletal filaments with diverse
functions, including preserving cellular integrity, regulating intracellular trafficking, and playing
critical roles in cell division [116—119]. These tubular structures, composed of a- and B-tubulin
dimers, form linear protofilament polymers when these dimers bind head-to-tail [119,120].
Importantly, MTs exhibit intrinsic polarity, with all protofilaments aligned parallel and all dimers

within the filament sharing the same orientation [120].

Numerous studies have investigated how MTs generate SHG [121-123]. Recent research [122]
underscores the significance of factors such as number, organization, and polarization in shaping
the SHG signal produced by MTs, as illustrated in Figure 1-11 [123].
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Figure 1-11: Several factors influence the SHG signal's strength in neurons. Number, parallelity, and polarity
all play essential roles in the strength of the SHG signal. Moreover, guanosine triphosphate (GTP)-bound MTs
have been shown to have stronger SHG than guanosine diphosphate (GDP)-bound MTs. Extracted from [123].

Although MT polarity was not the central focus of these studies, subsequent insights have

emerged through the deployment of the "protein plus" method, which tags microtubule-associated
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proteins (MAP) with a fluorophore, allowing the tagged MAP to bind to the positive end of MTs
[118,124]. Combining this approach with SHG microscopy revealed that MTs within axons exhibit
well-defined and consistent polarity, with the minus end directed towards the cell body and the
positive end extending towards axon terminals where neurotransmission occurs [118]. However,
it is essential to note that this method relies on fluorescent markers and is invasive. Additionally,
investigations into the effects of the commonly used paraformaldehyde fixation method revealed
a significant loss of SHG signal, suggesting alterations in protein conformation [123]. In contrast,
the polarity of MTs in dendrites still needs to be understood and structured more rigorously [116].
Although previous studies have hinted at a potential mixture of polarities within dendrites [121]
and the presence of polarity domains [122], these observations remain hypothetical and require
thorough characterization for verification. This raises intriguing questions about why axons exhibit
uniform polarity while dendrites do not, and whether this mixed polarity holds functional relevance.
SHG, particularly I-SHG, presents a promising avenue for exploring the mechanisms underlying

dendrites and the significance of their polarity in neural function.

In a distinct domain of biology—embryogenesis—SHG microscopy has proven invaluable for
providing time-lapse images of the various phases of cell division. Notably, SHG intensity changes
have facilitated the study of mitotic spindles, which comprise highly organized MTs, in different
embryo types, including Caenorhabditis elegans, zebrafish, mice, rats, and sea urchins [125]. In
a groundbreaking study using I-SHG, Bancelin et al. successfully mapped the polarity of MTs
within mitotic spindles during cell division in zebrafish embryos [126]. They observed changes in
MT polarity at various stages of cell division, studying the dynamic alignment and polarity of MT
networks. This research illustrates the power of I-SHG microscopy and its potential for
investigating dendritic polarity and other neuronal processes. In a broader context, SHG and
advanced SHG microscopy techniques are versatile tools with promising potential for the in-depth
exploration of various facets and unknown mechanisms related to MTs and associated diseases
[123,126,127].

1.6  The future of SHG imaging

Over the past two decades, SHG microscopy has firmly established itself as an indispensable tool
in bioimaging and neuroimaging. Numerous studies have demonstrated its potential for
investigating the non-centrosymmetric biological structures mentioned in this thesis. Innovative
techniques have evolved over the years to minimize invasiveness, enhance imaging throughput

through wide-field imaging, and develop specialized SHG probes [2]. These advances have
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continually expanded the frontiers of SHG imaging to new domains and structures. In this dynamic
landscape, both conceptual and technological progress in SHG microscopy continue to shape the
evolving field of biophotonics. Innovations aimed at enhancing spatial resolution through coherent
structured illumination [128] and post-processing methods such as pixel reassignment [129] and
changing optical properties via adaptive optics [130,131] exemplify rapid advancements in the
field.

However, despite these strides, complete quantitative interpretation of SHG images remains a
challenging endeavor because of the coherent nature of the process. While different SHG
approaches contribute to this puzzle, a comprehensive integration of these techniques within a
single instrument could provide a definitive solution to this enduring challenge. Moreover,
expensive equipment and specialized training requirements hinder the adoption of SHG
microscopy in routine biomedical practice. This limitation is particularly evident in advanced SHG
techniques that rely on state-of-the-art optical implementations and complex hardware systems.
However, recent advancements in laser technology have led to a shift from traditional Ti: sapphire
lasers to more robust and cost-effective fiber and semiconductor lasers [132]. These
developments are expected to open new avenues for the biomedical applications of SHG
microscopy. The advancement of endoscopic SHG has also contributed to the broader application
of this technology, offering the potential for the in vivo imaging of organs, as exemplified in Figure
1-12 [133].
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Figure 1-12: a) The nonlinear endomicroscopic fiber probe and laser coupling unit. The probe head contained
an optical fiber and cables connected to the piezo scanner. b) The fiber laser generates pump and Stokes
beams for coherent anti-Stokes Raman scattering (CARS) imaging. The laser beam was collimated by a lens
and filtered by a long-pass filter to remove four-wave mixing noise, and its power was controlled by a short-
pass dichroic mirror (DC1). A linear diffractive grating (G) and lens (L3) couple the beams into a double-core,
double-clad (DCDC) fiber. Nonlinear signals from the sample (CARS, SHG, and TPEF) were collected by the
outer cladding of the DCDC fiber and detected by a photomultiplier tube (PMT) after the desired nonlinear
signal was selected using a bandpass filter (F2). Extracted from [133].

In addition to hardware enhancements, significant progress has been made in software analysis
and computational approaches to enhance the imaging capabilities in microscopy. Improved
processing capabilities through graphical processing units and field-programmable gate arrays
have accelerated the data analysis. Moreover, machine learning, a transformative force in various
fields including image processing, has been used in SHG microscopy. Standardization and
unification of imaging processes are becoming increasingly essential to ensure reproducibility and
portability across different laboratories, as current imaging systems tend to be unique and
customized in each setting. Despite the challenges and limitations discussed, SHG and nonlinear
optical microscopy techniques offer a wealth of information that is not readily accessible using
traditional linear or incoherent optical imaging methods. With ongoing advancements in optics,
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machine learning, and laser technology, nonlinear imaging modalities have become more
sophisticated and accessible, offering new horizons for applications in fundamental science and

medical research.

Machine learning can further enhance the SHG microscopy and image analysis. These
technologies can automate image interpretation, assist in quantifying SHG signals, and provide
insights that may be challenging to manually extract. The following section delves into machine
learning concepts and their applications in SHG microscopy, shedding light on the exciting
potential of combining it with this powerful imaging technique. The combination of SHG
microscopy and machine learning enhances our ability to explore the intricacies of biological
structures and enables novel diagnostic and therapeutic applications. Mixing artificial intelligence
with SHG microscopy promises to open new horizons for research, diagnostics, and patient care

in bioimaging and neuroimaging as technology advances.

1.7 Deep learning in microscopy

Deep Learning (DL) is inspired by the intricate data-processing mechanisms observed in the
human brain. DL’s inherent ability to learn without relying on predefined human-crafted rules
distinguishes it. Instead, it harnesses extensive datasets to establish connections between the
input data and specific labels. DL is constructed by integrating numerous layers of algorithms,
known as artificial neural networks (ANNs), each of which provides a unique interpretation of the
data they receive [134-136]. DL has emerged as a revolutionary tool in microscopy and image
analysis. By continually refining its algorithms through iterative learning, DL has shown
remarkable performance in the field of microscopy, enabling the precise and rapid analysis of
intricate images and providing previously challenging insights. Its adaptability and capacity to
uncover subtle patterns within data makes DL a transformative force in the world of microscopy
and image analysis, with the potential to reshape how we explore and understand the microscopic
world [137].

1.71 Deep learning architecture for image analysis

As image datasets become increasingly complex and the demand for robust decision-making
systems increases, the need for more sophisticated algorithms is justified. Many different
architectures are available for deep learning; however, we describe the most prominent networks

in this section.

31



The basis for numerous modern deep learning models is feed-forward neural networks, commonly
referred to as multilayer perceptrons (MLPs), which take cues from human neural systems in a
general manner [138,139]. They are termed "feed-forward neural networks" because they strictly
involve data flowing in a unidirectional manner from the input to the output without any feedback
loop from the output back into the model [140]. An example of such a model is shown in Figure
1-13.

Hidden Hidden
Layer 1 Layer 2

Output layer

Figure 1-13: An example of an MLP with an input layer, two hidden layers, and an output layer. Extracted from
[141].

A convolutional neural network (CNN) [142] represents a variation of an MLP designed explicitly
for processing grid data, such as images. In contrast to MLPs, CNNs inherently consider the

spatial details in images [136].

Standard neural networks such as MLPs have inherent limitations when dealing with sequential
data [143]. In contrast, recurrent neural networks (RNNs) feature neurons that extend over time,
allowing them to capture temporal dependencies [143]. Furthermore, RNNs incorporate hidden
layers that introduce memory into a network over time. RNNs can be structured in three distinct
architectures to address the challenges posed by sequential data. The one-to-many RNN

architecture comprises a single input neuron and a sequence of output neurons, which are
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commonly used in tasks such as image captioning [144]. The many-to-one RNN architecture
involves multiple input neurons and a single output neuron, and is typically used for text
classification [145]. The many-to-many RNN architecture entails multiple input and output
neurons, which are often employed in tasks such as machine translation [146]. Despite these
advancements, RNNs still need to be explored in biophotonics in comparison with MLPs and
CNNSs. Figure 1-14 highlights a CNN network with two pooling and convolutional layers.

Figure removed due to copyrights issues

Figure 1-14: Example of a CNN. The difference between a CNN and MLP is that a CNN contains convolutional
and pooling layers. Extracted from [147].

A generative adversarial network (GAN) represents an ANN's unique variant comprising two key
components: a generator and discriminator (illustrated in Figure 1-15) [148]. The two networks
are simultaneously trained. The input to the generator can be either a random noise vector or an
actual image. The generator is a differentiable function, often represented by an MLP or
autoencoder, that maps the input to an output. The primary objective of the generator is to learn
the distribution to approximate the prior distribution from which the input data are drawn. The
generator output is designed to visually resemble actual data such as images. In addition to the
generator output, an actual input image is provided to the discriminator. This adversarial training
is accomplished by optimizing the loss function, which is optimized using the backpropagation
technique. During back-propagation, the gradient computed from the loss function is propagated

from the discriminator to the generator, enabling the update of the generator parameters [148].
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Figure 1-15: Architecture of a GAN network. The generator learns to produce realistic data that resemble actual
data, whereas the discriminator evaluates the authenticity of the data. Extracted from [149].

Training a GAN presents specific challenges. First, achieving convergence for both networks is
complex owing to their simultaneous training [150]. Additionally, the early convergence of the
discriminator can easily distinguish generated images from real images. This is because the
discriminator gradient approaches zero, providing minimal guidance to the generator for further
training [150]. After several iterations, when convergence between the two networks is achieved,
the generator can produce highly realistic images that are challenging to identify as "fake" images
by the discriminator [148]. Adversarial training of GANs has gained popularity in both industrial
and academic research because of its potential for domain adaptation and image generation. In
the next section, we will examine these architectures applied to medical image analysis and how

each network has helped move the research forward to reach the goal.

1.7.2 Medical image analysis with machine learning

DL can be immensely useful given the complexity of medical image analysis and acquisition. In
this section, we detail some of the applications in which DL has been able to help biomedical

imaging research.

Image classification: Instead of pixel-wise prediction, image-level classification assigns a single
label to each input image. Supervised learning networks, particularly CNNs, are powerful tools for
microscopic image classification [151]. However, unsupervised feature learning has been
effectively applied to various computer vision tasks and holds promise for medical imaging
[152,153]. A common approach for image classification is to utilize neural networks as classifiers
that provide direct predictions for individual images. Alternatively, networks trained on extensive
datasets can be feature extractors, generating data representations that are fed into other
classifiers. Deep learning has the potential to transform image analysis, automate tasks, such as

image classification and segmentation, and reduce the need for manual data inspection [154—
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157]. This approach has applications in SHG microscopy for various medical domains, including
lymphedema [154], ovarian tissue [129,155], and breast cancer [156,158]. However, when
dealing with smaller datasets such as those often encountered in medical imaging, applying deep
learning can present challenges that require specific measures to ensure the accuracy of the
trained model [159]. Gao et al. conducted CNN experiments to investigate the effects of
hyperparameters, data augmentation, and image foreground masks on the classification
performance. Their experiments also revealed that CNNs, when pretrained on a significantly
larger dataset and fine-tuned on a smaller related dataset, achieved higher accuracy than those
trained from scratch on a smaller dataset [160]. In a different approach, Chen et al. used a fully

connected neural network for a label-free cell classification [161].

Image denoising: Deep neural networks are versatile for various input-output scenarios,
including image enhancement by using noisy or low-resolution images as input and using
generative networks to produce images with the desired resolution or noise level as the output.
These networks can learn from high-resolution images, reduce artifacts, and preserve features
without excessive smoothing. GANs are commonly employed to maintain high-frequency
features. A variation of GANs, known as Wasserstein generative adversarial networks (WGANSs),
use the Wasserstein distance as a loss function and have successfully enhanced the resolution
of OCT images [162]. Another approach uses edge-sensitive conditional generative adversarial
networks (cGANs) to mitigate speckle noise effectively [163]. Deep learning has also been
introduced to restore microscopy images, focusing on enhancing the image quality while avoiding
the creation of hallucinations. Among the various image restoration techniques to eliminate noise,
Noise to Ground Truth (N2GT) involves noise removal by comparing an image to a reference
image (ground truth). However, it has limitations owing to the need for ground-truth images [164].
Noise to Noise (N2N) focuses on denoising by comparing a noisy image to another with a higher
SNR [165]. Noise to Void (N2V) removes noise by training a deep neural network to learn the
statistical properties of noise and signal within a single image without requiring image pairs [166].
These diverse approaches offer valuable tools for enhancing the image quality across various

microscopy applications and are the basis for Article 3 of this thesis.

Transfer learning in image analysis: Transfer learning (TL) with CNNs aims to enhance the
performance of a new task by leveraging previously acquired knowledge from similar tasks
[167,168]. This approach has contributed significantly to medical image analysis by addressing
data scarcity issues, saving time, and conserving hardware resources. Transfer learning using

CNNs involves transferring knowledge at the parameter level. Well-trained CNN models utilize
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the learned parameters of their convolutional layers for new tasks in the medical domain.
Specifically, in the context of transfer learning with CNNs for medical image classification, a model
is trained to classify medical images (target task) by leveraging generic features learned from

natural image classification (source task), where labels are available in both domains [167].

Image resolution enhancement: In the previous section, we discussed how GAN architectures
could be effectively utilized for image denoising and resolution enhancement. Although improving
the signal-to-noise ratio is crucial for image interpretation, it can also be enhanced by increasing
the number of collected images [140]. However, the resolution of the obtained image is often
restricted owing to technical limitations such as the diffraction limit. Various advanced technical
solutions enable imaging beyond the diffraction limit, which falls under the category of super-
resolution imaging. In addition to these technical solutions, overcoming the diffraction limit is
feasible through image-processing techniques, particularly deep learning. This GAN-based

approach achieves super-resolution while simultaneously reducing image noise [140].

Although all methods have helped with medical imaging in one way or another, the accuracy of
the generated images and the output are of utmost importance for the integrity of the experiments.
Image quality metrics play a pivotal role in image analysis, particularly in deep learning. They are
crucial for several reasons, contributing to the success and effectiveness of image analysis

techniques, which will be explored in the next section.

1.7.3 Image quality metrics

Image quality assessment (IQA) has attracted significant attention over the last three decades.
This heightened interest can be attributed to the widespread availability of digital images that are
routinely acquired, compressed, transmitted, restored, and edited by the public [169]. IQA
methods have now become instrumental in developing and evaluating imaging devices, serving
as indispensable tools to gauge the extent to which various distortions and operations impact an
image. Current IQA approaches can be categorized into two primary groups: subjective and
objective methods [170]. Subjective methods rely on quality scores provided by human experts,
whereas objective methods leverage mathematical models to estimate perceived image quality
automatically, aligning with human observation. Objective methods can be further classified into
three main categories based on the availability of a reference image: No-Reference IQA (NR-
IQA) or "blind," Reduced-Reference IQA, and Full-Reference IQA (FR-IQA) [169]. The FR-IQA

techniques assess the visual quality of a target image in relation to a reference image, which is
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the optimal quality. Applying FR-IQA methods to microscopy can be challenging because of the

typical absence of reference images [171].

In contrast, NR-IQA methods evaluate image quality solely based on the information within the
tested image, making them well suited for use with microscopy images [172—-174]. However, it is
worth noting that most established NR-IQA methods have been designed considering the
characteristics of natural images captured by digital cameras. Owing to the nature of imaged
scenes and acquisition mechanisms, microscopy images possess unique characteristics that may

lead to unpredictable results when applying traditional NR-IQA metrics [169].

1.7.4 Full-reference image quality metrics

This section explores the most popular FR-IQA metrics currently used for DL applications. The
classification of objective image quality metrics is based on the presence of an original,
undistorted image, which serves as a comparison standard for a distorted image. The
predominant approaches are categorized as full references, in which a complete reference image
is presumed to be accessible [171]. However, obtaining a reference image in practical scenarios
may not be feasible, necessitating a no-reference or "blind" quality assessment approach.
Alternatively, there exists a third type of method in which the reference image is only partially
available, taking the form of a set of extracted features that serve as supplementary information
for evaluating the quality of the distorted image, referred to as reduced-reference quality

assessment [175]. The simplest IQA method is the mean squared error metric.

The Mean Squared Error (MSE) is a widely used metric in image processing and signal analysis,
serving as a quantitative measure of the discrepancy between an original and a reconstructed or
processed image [176]. The MSE provides a numerical representation of the overall distortion or
error, calculated by averaging the squared differences between the corresponding pixel values of
the two images. A lower MSE value indicates a closer match between the original and processed
images, signifying a higher fidelity. Although MSE is a straightforward and computationally
efficient metric, it has limitations, such as being sensitive to outliers and not aligning with human
perceptual differences [176]. Despite these drawbacks, MSE remains a fundamental tool for
evaluating the quality of image reconstructions and is commonly employed in optimization

processes, such as those related to image compression and restoration algorithms [176].

The Peak Signal-to-Noise Ratio (PSNR) is another widely utilized metric in image and video
quality assessment, complementing MSE. While MSE measures the average squared difference

between the corresponding pixels of an original and processed image, PSNR provides a more
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interpretable and perceptually relevant measure by considering both the magnitude of the error
and the maximum possible signal strength [177]. The PSNR is calculated as the ratio of the peak
signal power to the mean squared error, expressed in decibels (dB). The peak signal power
represents the maximum possible intensity value that the pixels can have, which is typically
constrained by the image's bit depth. As such, the PSNR considers the dynamic range of the
image, offering a normalized measure of quality [177]. One notable advantage of the PSNR is its
straightforward interpretation. Higher PSNR values corresponded to lower distortion, reflecting a
closer resemblance between the original and processed images. This metric is widely used in
various applications, including image and video compression, where it aids in assessing the
impact of compression algorithms on the visual quality. Despite its advantages, the PSNR has
certain limitations. Similar to MSE, it is sensitive to minor errors and may not align perfectly with
human perception [177]. High PSNR values do not always guarantee superior visual quality,
particularly when considering the intricacies of the human visual system. For example, PSNR may
not accurately capture the impact of compression artifacts on the subjective visual experience.
When comparing PSNR to MSE, it is crucial to recognize that PSNR builds upon MSE by
incorporating the signal-to-noise ratio aspect [177]. PSNR provides a more normalized and
perceptually relevant measure, considering the dynamic range of the images being compared.
However, both metrics share the fundamental limitation of being sensitive to pixel-wise

differences, without accurately reflecting human perceptual judgments [177].

The Structural Similarity Index (SSIM) and its variants, such as the Multi-scale Structural
Similarity Index (MS-SSIM) [178] and Complex Wavelet Structural Similarity Index (CW-SSIM)
[179], represent advancements in image quality assessment that address some of the limitations
of traditional metrics, such as MSE and PSNR [180].

SSIM, introduced by Wang et al., assesses the perceived quality of an image by considering the
structural information, luminance, and contrast [175]. Unlike MSE and PSNR, which focus on
pixel-wise differences, SSIM incorporates the elements of human visual perception. It operates
by dividing the image into local regions and evaluating the similarity of the structures within these
regions, as seen in Figure 1-16. The resulting index ranges from -1 to 1, where 1 indicates perfect

similarity [175].
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Figure 1-16: SSIM process for comparing the similarity between two images. The luminance, contrast, and
structure were compared and reflected in the similarity index results. Extracted from [181].

MS-SSIM extends SSIM by incorporating multi-scale processing. This involves generating
multiple scales of an image, applying SSIM at each scale, and combining the results [178]. This
accounts for the variations in perception at different scales, making MS-SSIM more robust in
capturing local and global structural information [178]. CW-SSIM introduces complex wavelet
transforms to better model the sensitivity of the human visual system to spatial frequencies [179].
CW-SSIM can capture intricate details and textures in images better by employing complex
wavelets, accurately reflecting the perceived quality [179]. Comparing SSIM and its variants to
traditional metrics, such as MSE and PSNR, reveals significant advantages. SSIM-related metrics
align more with human perception when considering structural information and texture details
[180]. They are less sensitive to compression artifacts and other distortions that may not be
perceptually noticeable. Consequently, SSIM metrics often provide a more reliable measure of
the image quality. However, they still have some limitations, particularly in scenarios where a

reference image may not be available or when the quality degradation is severe [182].

1.7.5 No-reference image quality metrics

No-reference metrics or blind metrics do not require a reference image for comparison and are
particularly valuable in situations where obtaining a pristine reference image is challenging or
impossible [172]. These metrics leverage statistical models, machine learning, or other

sophisticated approaches to estimate image quality without direct comparison with the original.
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As technology evolves, the demand for accurate, efficient, and reference-free image quality
assessments continues to increase. No-reference metrics represent a promising avenue in this
direction, overcoming some of the challenges posed by traditional metrics, and providing more

flexibility in evaluating image quality across diverse applications and scenarios [172].

The Natural Image Quality Evaluator (NIQE) is a prominent example of a no-reference image-
quality metric designed to assess the perceptual quality of natural images without requiring a
reference image for comparison [183]. Introduced by Mittal et al., NIQE leverages statistical
modelling and analyses of natural scene statistics to estimate the image quality [183]. This metric
is based on the premise that natural images exhibit certain statistical regularities, and deviations
from these norms can indicate image distortions or artifacts. NIQE has found applications in
various fields, including image and video processing, where it offers an efficient and automated
means of evaluating the quality of images in situations where obtaining reference images may be
impractical or unfeasible. NIQE, being a no-reference metric, represents a departure from
traditional approaches, such as MSE and PSNR, which require a pristine reference image.
Instead, NIQE analyzes the statistical properties inherent in natural images, such as texture,
edge, and luminance variations [172]. By quantifying deviations from these statistical norms, the
NIQE provides an objective measure of image quality that aligns with human perceptual
judgments. lIts versatility makes NIQE suitable for image quality assessment across various
applications, including image compression, denoising, and other image-processing tasks
[172,183].

The Perceptual Image Quality Evaluator (PIQE) is another noteworthy example of a no-
reference image quality metric, offering a different approach to NIQE. PIQE relies on a machine
learning model trained on a large dataset of images to predict perceptual image quality [184].
Unlike NIQE, which is rooted in the statistical analyses of natural image properties, PIQE takes
advantage of the learning capabilities of a neural network to discern features indicative of image
quality [184]. This allows PIQE to adapt to a broader range of image contents and quality
variations. PIQE has demonstrated effectiveness in various applications, including the evaluation
of compressed images and the assessment of the impact of distortions on perceived quality [184].
A comparison of NIQE and PIQE reveals nuanced differences in their methodologies. While NIQE
leans on statistical regularities in natural images, PIQE harnesses the power of machine learning
to infer perceptual qualities [174]. The choice between the two may depend on the specific
requirements of a given application and nature of the images under consideration. We have

covered DL and the most popular metrics used to validate the results, in the next section, we will
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examine how DL and these metrics overlap with biomedical microscopy, and how they can help

advance biomedical SHG microscopy and its applications.

1.7.6 DL application in biomedical imaging and SHG biomedical imaging

There are many instances where DL has enriched biomedical imaging, and in this section, we will

discuss SHG and non-SHG biomedical imaging enhanced by such techniques.

In one study, Hall et al. proposed a new algorithm for real-time collagen fiber alignment
quantification for SHG imaging [185]. Their algorithm evaluated the Fourier transform magnitude
of image symmetry using a single parameter, the fiber alignment anisotropy, ranging from 0
(randomized fibers) to 1 (perfect alignment). The proposed model enables real-time application

and quantification [185].

Optical coherence tomography (OCT) encounters challenges posed by coherent noise,
specifically speckle noise, which degrades the contrast and detailed structural information in OCT
images [186]. This in turn imposes significant limitations on OCT's diagnostic capabilities. Qui et
al. proposed an innovative denoising method for OCT images in a study. To train and evaluate
denoising deep learning models, they generated label images by averaging 50 frames of
registered B-scans acquired in a single direction [186]. Their novel method excels in preserving
detailed structural information in the retinal layers and enhances perceptual metrics in human

visual perception [186].

In another study, to counter noise in two-photon microscopy, Lee et al. proposed a novel approach
based on DL [187]. They addressed suboptimal image quality due to various noise factors,
including blur, white noise, and photobleaching in two-photon microscopy, with a novel algorithm
rooted in deep CNNs [187]. The proposed model comprises multiple U-nets, each targeting noise
removal at different scales and contributing to the performance enhancement through a coarse-
to-fine strategy. Notably, the constituent CNNs fully utilize 3D convolution operations, allowing the

model to facilitate end-to-end learning without requiring pre/post-processing [187].

In a recent study, Kistenev et al. applied DL image classification to lymphedema tissue analysis
[154]. This study encompassed thirty-six image samples from patients in the second stage of
lymphedema and forty-two image samples from healthy individuals. This examination specifically
focused on the papillary layer of the skin. Notably, the study identified disorganization in the
collagen network and an elevation in the collagen/elastin ratio within lymphedema tissue,

indicative of heightened fibrosis severity. To characterize the images, edge detection, the
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histogram of oriented gradients method, and a machine-learning-based predictive model for
diagnosis were used. Integrating "ensemble learning" in the classification process yielded a 96%

accuracy in validating the data from the testing set [154].

In ovarian cancer studies, Huttunen et al. demonstrated that deep learning techniques can
effectively classify multiphoton microscopy images of unstained reproductive tissues [155]. Using
four pretrained convolutional neural networks, they fine-tuned the models with over 200 murine
tissue images. These images were based on combined SHG and TPEF contrast to enhance
tissue visualization. With this approach, they were able to accurately label tissue as either healthy
or associated with high-grade serous carcinoma, with a sensitivity of over 95% and specificity of
97% [155].

In wide-field P-SHG applications, Mirsanaye et al. demonstrated a DL-based classification
method for breast cancer diagnostics by examining collagen fibers in the ECM (Figure 1-17) [156].
This study demonstrated the application of high-throughput widefield P-SHG microscopy for
whole-slide imaging of breast tissue microarrays. The obtained P-SHG parameters were utilized
for classification, distinguishing between tumor and normal tissue with accuracy and an F1-score
of 94.2% and a 6.3% false discovery rate. Subsequently, the trained classifier accurately
predicted the tumor tissue with 91.3% accuracy, 90.7% F1-score, and 13.8% false omission rate
[156].
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state analyzer (PSA). (b) SHG Stokes vector components were computed from the images to obtain
polarimetric parameter images. (c) Polarimetric images were divided into sixty-four smaller images, enabling
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high-resolution texture analysis and statistical significance testing. (d) The mean and mean absolute deviation
of the polarimetric parameters and texture parameters (contrast, correlation, entropy, angular second moment,
and inverse difference moment) were calculated for each smaller image. (e) A logistic regression classifier is
trained using polarimetric and texture parameters to predict whether the tissue is normal or tumorous.
Extracted from [156].

To improve laser scanning microscopy, Shen et al. introduced deep learning autofluorescence
harmonic microscopy (DLAM) [157]. DLAM aims to improve the speed, field of view, and image
quality using attention-guided networks. Their study showcases the label-free large-field imaging

of clinicopathological tissues with better spatial resolution and efficiency [157].

Therefore, we can see how advancements in different areas of DL can benefit different studies
and microscopic techniques. Despite these advancements, it is essential to acknowledge that
there are still certain shortcomings and challenges associated with applying deep learning to
microscopy. These limitations are thoroughly discussed in the subsequent section, shedding light

on areas that require further attention and refinement.

1.7.7 Deep learning in microscopy shortcomings

The biophotonics field faces challenges related to the systematic accessibility of data and the
scarcity of open repositories, posing a significant hurdle for utilizing deep learning in biophotonics
data analysis owing to insufficient data availability. Deep learning models inherently rely on large
datasets, and data inadequacy risks overfitting, resulting in poor generalizability to new datasets
[188].

Understanding how DL models make decisions is crucial for medical imaging and modern
healthcare systems. It is essential to ascertain whether deep neural networks base their
predictions on biomolecular information rather than being influenced by background effects or
image noise. At times, this distinction can be quite challenging to researchers, which is considered
one of the drawbacks of using such methods [140]. DL holds significant potential for clinical
healthcare, yet it faces challenges in standardization compared with established radiological or
histopathological techniques [140]. The absence of an international consensus on evaluating the
performance of biophotonics devices hampers data reproducibility, making machine learning
models trained on such data less dependable. Enhancing the quality of clinical studies, promoting
data comparisons across different laboratories and systems, encouraging open databases, and
enabling quantitative comparisons between different models are pivotal for developing robust
computational models [140]. DL techniques are formidable analytical tools for microscopy,

demonstrating superior performance compared to traditional image processing pipelines.
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Although DL technology has sparked enthusiasm and innovation, the demand for robust and
compatible resources to train DL networks creates an accessibility barrier that is particularly
challenging for inexperienced users to overcome [189]. This hurdle involves the availability of
high-performance computing and extends the expertise required for practical DL model training.
Bridging this accessibility gap is crucial for empowering a broader user base by leveraging the
capabilities of DL in microscopy and fostering the widespread adoption of these advanced
analytical tools [189].
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2 OVERVIEW OF RESEARCH ARTICLES

This thesis delves into integrating artificial intelligence into SHG microscopy to enhance its
application in biomedical imaging. It is structured around four interrelated articles, each
contributing uniquely to the overarching thesis's objectives. This section provides a
comprehensive overview of each article, detailing its title, objectives, hypotheses, methodological
approach, and relationship with other articles to form a coherent whole that addresses the general
objectives of the thesis.

2.1  General thesis objectives

The primary aim of this thesis was to address the inherent limitations of SHG microscopy, thereby
enhancing its capability for accurate and practical biomedical imaging. The specific objectives

include:

Enhancing image quality: Machine learning techniques are implemented to reduce noise and
improve resolution, thereby enhancing the effectiveness of SHG microscopy in clinical and

research applications.

Enabling Automated Analysis: Employing automated analysis to minimize human error and

increase efficiency in the processing and interpretation of biomedical images.

Expanding Clinical Applications: Extending the potential applications of SHG microscopy in
clinical settings by improving its imaging capabilities, aiding in diagnosing and studying various

diseases.

The following sections present summaries of the four articles that form the core of this thesis.
Based on the above background information, these articles address specific challenges in SHG
microscopy. Each article summary includes the study's objectives, methodological approach, key

findings, and relation to the overall thesis goals.

2.2  Article summaries
2.21 Article 1: “Second harmonic generation microscopy: a powerful tool for
biological imaging”

Objective: This article provides an overview of the historical development and theoretical basis
of biomedical SHG microscopy, tracing its evolution from its early discovery in nonlinear optics to

its modern applications in biomedical imaging. It explores key technological advancements and



advanced imaging modalities that have expanded SHG’s capabilities in biological research. By
synthesizing these developments, this review serves as a comprehensive resource for new
researchers entering the field, offering insights into the foundational principles and the latest

innovations in SHG microscopy.

Hypotheses: This study hypothesizes that SHG microscopy’s intrinsic ability to selectively
visualize non-centrosymmetric structures provides unparalleled insights into select biological
structures. It highlights the unique advantages of SHG microscopy in visualizing complex
biological systems. Unlike fluorescence-based techniques, which rely on external labeling agents,
SHG generates contrast through intrinsic molecular properties, making it particularly suited for
imaging non-centrosymmetric structures such as collagen, myosin, and microtubules. This label-
free, specific imaging approach allows researchers to study structural organization, and disease
progression in a minimally invasive manner. These properties position SHG as an indispensable
tool in biomedical imaging, neuroscience, and tissue diagnostics, with the potential for further

enhancement through emerging computational techniques.

Methodological Approach: This article conducts a comprehensive literature review to
synthesize historical, theoretical and experimental research on SHG microscopy across various
biological fields. It consolidates data from neuroscience, cancer imaging, tissue analysis and
extracellular matrix studies to present an interconnected picture of the current state of SHG
technology, identifying its strengths and areas needing improvement. This synthesis provides a

crucial rationale for integrating computational technologies to address identified limitations.

Relation to Thesis Objectives: This article sets the foundation for this thesis, providing a
detailed account of SHG microscopy’s strengths, challenges, and potential for enhancement
through computational approaches. It identifies key areas where Al-driven methods, such as
deep learning-based denoising and GAN-based super-resolution, can improve SHG imaging

quality, reduce acquisition time, and enhance automated analysis.

Key Findings: This review confirms that SHG microscopy excels in imaging non-centrosymmetric
biological structures, with significant applications in neuronal pathways, collagen networks, and
myosin filaments. Unlike fluorescence microscopy, SHG provides high spatial resolution without
photobleaching, making it ideal for long-term live imaging of delicate tissues. However, several
challenges persist, including signal interference and resolution constraints. These findings
emphasize the need for advanced denoising, enhanced resolution, and computational post-

processing techniques to further enhance SHG’s imaging quality.
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Support for Hypotheses: The findings support the hypothesis that SHG microscopy is
indispensable for studying complex biological systems, owing to its unique imaging properties.
Moreover, this review highlights specific areas where deep learning can mitigate SHG’s current
limitations, including noise reduction, resolution enhancement, and real-time image interpretation.
These insights reinforce the broader objective of integrating computational techniques to optimize

SHG imaging for biomedical applications.

Novel Contributions: This article consolidates current knowledge and offers a comprehensive
overview of SHG microscopy. By identifying key technological gaps, such as signal optimization,
imaging speed, and real-time analysis, it establishes a roadmap for future innovations, particularly

in Al-enhanced imaging applications.

Comparison with Existing Research: This article reaffirms prior findings on SHG’s advantages
while introducing new perspectives on improving its capabilities, contributing significantly to the

existing literature on SHG microscopy.

This comprehensive review sets the stage for subsequent studies by identifying key areas in

which DL can significantly enhance the SHG microscopy capabilities.

2.2.2 Article 2: “Nonlinear microscopy and deep learning classification for
mammary gland microenvironment studies”

Objective: This study explores the application of deep learning techniques to classify SHG
images of naive and tumor-bearing murine mammary gland tissues. By leveraging supervised
learning and transfer learning with the MobileNetV2 architecture, this research aims to improve
the accuracy and efficiency of automated tissue classification. The study specifically evaluates
how deep learning models can enhance SHG-based cancer diagnostics by detecting subtle ECM
modifications associated with tumor progression. Additionally, it assesses the feasibility of deep
learning classification with a highly limited dataset, reflecting the real-world constraints of SHG
image acquisition. Given that deep learning models typically require large-scale datasets, this
study investigates optimization strategies, including data augmentation and transfer learning, to

improve model generalization and prevent overfitting.

Hypotheses: This study hypothesizes that deep learning models can accurately classify SHG
images by detecting collagen organization patterns and subtle ECM modifications that distinguish
naive from tumor-bearing tissues. Given SHG’s unique ability to visualize collagen fibrillar
architecture, deep learning algorithms can enhance image-based diagnostics by identifying

tumor-associated collagen signatures (TACS) that are difficult to quantify through traditional
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manual analysis. Additionally, the study investigates whether transfer learning can improve
classification accuracy in small SHG datasets, addressing the common challenge of limited

training data in biomedical imaging.

Methodological Approach: This study employs a supervised deep learning approach to classify
SHG images of naive and tumor-bearing murine mammary glands. The classification task is
performed using a custom CNN and transfer learning with MobileNetV2, a lightweight neural
network architecture optimized for image recognition. To mitigate the challenges of small dataset
size, the study implements data augmentation techniques, including rotation, flipping, and
zooming, to artificially expand the training dataset. The performance of the model is evaluated
using accuracy, precision, recall, F1-score, and area under the curve (AUC) metrics. Additionally,
this study investigates overfitting and underfitting challenges, optimizing hyperparameters such
as dropout rate, data split ratio, and number of convolutional layers to improve model

generalization.

Relation to Thesis Objectives: This article contributes to the thesis objective of enhancing SHG
microscopy through deep learning-based automation. By demonstrating that CNNs can
accurately classify small SHG image datasets, it supports the broader goal of reducing manual

intervention in SHG-based diagnostics.

Key Findings: This study demonstrates that deep learning models significantly improve SHG
image classification, distinguishing between naive and tumor-bearing mammary gland tissues
with an optimal test accuracy of 73%. However, classification performance is highly dependent
on dataset size and preprocessing techniques. The study found that data augmentation improved

model robustness, but excessive augmentation led to overfitting in some cases.

Support for Hypotheses: The findings validate the hypothesis that CNNs can accurately classify
SHG images, confirming that deep learning models can detect fine structural variations in collagen
organization that differentiate tumor-bearing from naive tissues. The results support the thesis

objective of developing Al-driven methods for automated SHG image interpretation.

Novel Contributions: This study identifies key challenges in applying deep learning to SHG
image classification, particularly small dataset constraints, model generalization issues, and
hyperparameter sensitivity. It systematically examines how transfer learning, data augmentation,
and dropout optimization influence model performance, providing a roadmap for future Al-driven

SHG imaging approaches.
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Comparison with Existing Research: Compared with traditional classification methods, this
study offers insight into accuracy, efficiency, and the unique challenges of applying CNNs to SHG
image analysis with a very small dataset. Unlike conventional deep learning studies in biomedical
imaging, which typically rely on large datasets, this study evaluates classification performance
under realistic low-data conditions, reflecting practical constraints in SHG imaging. The limited
number of training images posed significant challenges in model generalization, leading to issues
such as overfitting, data imbalance, and sensitivity to hyperparameter selection. However, this
study demonstrates that parameter optimization and data augmentation can help mitigate these

limitations, making Al-based SHG classification feasible even in low-data scenarios.

Building on the foundation established in Article 1, this study demonstrated the practical

application of Al in enhancing SHG image analysis.

223 Article 3: “A comparative study of CARE 2D and N2V 2D for tissue-
specific denoising in second harmonic generation imaging”

Objective: This study evaluates the performance of two deep learning-based denoising
techniques, Content-Aware Image Restoration (CARE 2D) and Noise-to-Void (N2V 2D), in
improving the SHG image quality of different tissue types, including tumor-bearing murine
mammary glands and zebrafish muscle structures. Beyond general noise reduction, this study
explores the impact of glycerol concentration on SHG image noise and how deep learning can be
used to restore image quality when fixation-induced artifacts are present. Additionally, it
investigates low-power SHG imaging, assessing whether denoising models can compensate for
the reduction in laser power, which is critical for reducing photodamage and enabling live imaging

applications.

Hypotheses: This study hypothesizes that both CARE 2D and N2V 2D will effectively reduce
noise in SHG images while preserving critical structural details, thereby improving the
visualization and analysis of biological structures. Given that CARE 2D is a supervised model
trained with ground-truth images, it is expected to provide strong noise suppression, contrast
enhancement, and intensity restoration. However, since it relies on paired training data, its
performance may be limited in cases where noise originates from fixation chemicals or sample
preparation artifacts. Since N2V 2D does not require explicit ground-truth training, it is expected
to outperform CARE 2D in situations where noise is introduced due to fixation chemicals and
sample preparation-related artifacts. However, because it learns noise patterns from the input

images themselves, it may be less effective in enhancing overall contrast compared to CARE 2D.
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This study also examines whether deep learning-based denoising can compensate for low-laser-
power SHG imaging by restoring image clarity without compromising structural integrity. The
hypothesis is that deep learning models can effectively restore structural details under low-power
conditions, thereby making SHG microscopy a more viable tool for live imaging applications where

reducing photodamage is critical.

Methodological Approach: This study applied CARE 2D and N2V 2D models to SHG images
of murine mammary gland tumors and zebrafish muscle tissues. Performance was assessed
using the modified Structural Similarity Index Metric (mSSIM) and Peak Signal-to-Noise Ratio
(PSNR). In addition to standard noise reduction evaluation, the study analyzed the impact of
glycerol fixation on SHG image noise by testing how different concentrations of glycerol (50%,
80%, and 100%) affected image quality. This experiment aimed to determine whether deep
learning models could restore image clarity when images were degraded by improper fixation.
Another critical aspect of the methodology involved a low-power SHG imaging experiment, where
laser power was reduced by 70% to evaluate the effectiveness of deep learning models in
compensating for weaker signals. The study also examined tissue-specific denoising
performance by comparing the ability of the models to restore collagen fiber structure in tumor-

bearing mammary glands and preserve fine muscle fiber details in zebrafish tissues.

Relation to Thesis Objectives: By focusing on deep learning-based SHG image restoration, this
study aligns with the thesis objective of enhancing SHG microscopy through Al-driven methods.
It contributes to improving the versatility of SHG as a biomedical imaging tool by demonstrating
how denoising models can compensate for imaging limitations caused by low laser power and
sample fixation inconsistencies. The results establish the feasibility of applying deep learning for
low-power SHG imaging, reinforcing the broader objective of expanding SHG’s applicability

beyond fixed samples and making it a viable tool for real-time imaging in biological research.

Key Findings: The study demonstrates that both CARE 2D and N2V 2D improve SHG image
quality, but their effectiveness is highly dependent on tissue type, signal-to-noise ratio (SNR), and
imaging conditions. CARE 2D performs well in moderate-SNR images, delivering strong noise
suppression and improved contrast. However, in very low-SNR cases, the model generates
hallucinated structures, which misrepresent biological features . This limitation suggests that while
CARE 2D is effective in well-structured images, it may not be reliable when the original signal is
extremely weak, as it can create artifacts rather than reconstruct missing information accurately.
N2V 2D, in contrast, excels at preserving muscle structures in zebrafish samples. Unlike CARE

2D, it avoids over-smoothing and maintains the natural appearance of fine biological structures,

52



even though it does not enhance SHG intensity to the same degree. At low laser power, CARE
2D was better at matching high-intensity reference images of ECM, whereas N2V 2D was superior
in preserving structural integrity, particularly in muscle tissues. Another important finding is that
glycerol concentration significantly affects SHG noise levels, with higher concentrations leading
to increased signal degradation. Because CARE 2D requires paired reference images for training,
it could not be applied in these cases. However, N2V 2D effectively restored images affected by
high glycerol content, making it the preferred choice for denoising when sample preparation
inconsistencies impact SHG image quality. These findings indicate that while no single model is
universally superior, CARE 2D is preferable for structured tissues with moderate SNR due to its
strong contrast enhancement. In contrast, N2V 2D is more effective in preserving structural
integrity when noise stems from fixation artifacts or low SNR conditions. The choice between
CARE 2D and N2V 2D depends on the specific imaging conditions and the need for either
intensity restoration (CARE 2D) or fine-detail preservation (N2V 2D).

Support for Hypotheses: The findings support the hypothesis that both CARE 2D and N2V 2D
effectively reduce noise in SHG images while preserving critical structural details, though their
performance depends on imaging conditions and tissue type. CARE 2D demonstrated strong
noise suppression, contrast enhancement, and intensity restoration, particularly in structured
tissues with moderate-to-high SNR, such as the extracellular matrix of tumor-bearing mammary
glands. However, in low-SNR conditions, it introduced artificial structures (hallucinations),
particularly within tumor boundaries, suggesting that it may misrepresent biological features when
the original signal is weak. In contrast, N2V 2D, performed better in conditions where noise was
introduced due to fixation chemicals and sample preparation inconsistencies, effectively restoring
images affected by high glycerol concentrations while preserving fine structural details, especially
in muscle tissues. Although it did not enhance SHG intensity to the same extent as CARE 2D, it
avoided over-smoothing and maintained structural integrity more reliably in complex biological
structures. Both models were effective in compensating for low-laser-power SHG imaging, with
CARE 2D excelling in intensity restoration and N2V 2D preserving fine morphological details,
confirming their potential for enhancing SHG microscopy while reducing photodamage in live
imaging applications. However, at extremely low power, both models showed diminished
performance, indicating that deep learning-based restoration has limitations when the SHG signal

is excessively weak.

Novel Contributions: This study presents one of the first direct comparisons of CARE 2D and

N2V 2D in SHG microscopy across different tissue types, providing valuable insights into the
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strengths and limitations of these denoising models. It introduces deep learning based
compensation for low laser power SHG imaging, a concept that has significant implications for
live-cell imaging and photodamage reduction. Additionally, the study demonstrates that deep
learning can correct fixation-induced artifacts in SHG images, suggesting applications beyond
noise reduction in cases where sample preparation inconsistencies affect imaging quality. By
identifying tissue-specific denoising preferences, this work also provides practical guidelines for
selecting appropriate deep learning models based on image characteristics and research

objectives.

Comparison with Existing Research: This study advances previous research by providing a
comprehensive evaluation of deep learning-based denoising models in SHG microscopy and
expanding upon prior studies that have focused on single-method applications. The study also
introduces deep learning for low-power SHG imaging, a concept that has not been widely
explored in prior research. By demonstrating that Al-based denoising can compensate for imaging
constraints related to laser intensity and fixation artifacts, this study broadens the applicability of
deep learning in SHG microscopy, reinforcing the importance of tailored model selection based

on specific imaging conditions.

While Article 2 focuses on image classification, this study expands on image quality

enhancement, addressing another key challenge identified in Article 1.

224 Article 4: “Accelerating whole-sample polarization-resolved second
harmonic generation imaging in mammary gland tissue via generative
adversarial networks”

Objective: This article introduces a novel approach to whole-sample P-SHG imaging, utilizing
ESRGAN to upscale low-resolution images while significantly reducing imaging time. P-SHG
imaging provides valuable insights into collagen fiber orientation and ECM organization, but
traditional high-resolution imaging methods require extended acquisition times and increased
laser exposure, leading to potential photodamage. The goal of this study is to determine whether
deep learning-based techniques can serve as a viable alternative by preserving image quality

while improving acquisition speed.

This study systematically evaluates different ESRGAN variants to determine which model best
balances image sharpness, structural accuracy, and computational efficiency for P-SHG imaging.
Since resolution enhancing methods can introduce unwanted artifacts or distort fine image details,

it is critical to assess which ESRGAN model is best suited for SHG microscopy applications.
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Hypotheses: This study hypothesizes that ESRGAN can improve P-SHG imaging resolution
under reduced acquisition time conditions without compromising image quality. It investigates
whether ESRGAN can accurately reconstruct fiber orientation information and ECM structures,
maintaining analytical reliability for P-SHG studies. Another key hypothesis is that certain
ESRGAN variants will perform better than others, with specific architectures preserving texture

and structural integrity more effectively in SHG imaging applications.

Methodological Approach: This study applied ESRGAN to low-resolution SHG and P-SHG
images and evaluated its effectiveness using image quality assessment (IQA) metrics, including
Structural Similarity Index (SSIM), Peak Signal-to-Noise Ratio (PSNR), and Mean Squared Error
(MSE). Since different ESRGAN variants exist, this study tested multiple architectures to
determine the most suitable model for mammary gland SHG imaging, balancing resolution
improvement with artifact suppression and computational efficiency. In addition to evaluating
general image quality, the study conducted a detailed analysis of fiber orientation data and texture
features, assessing whether ESRGAN-upscaled images retained the essential structural
characteristics needed for quantitative P-SHG analysis. The upscaled images were compared to
high-resolution ground-truth images to determine whether ESRGAN could serve as a reliable

alternative to direct high-resolution acquisition.

Relation to Thesis Objectives: This article directly aligns with the thesis’s goal of enhancing
SHG microscopy through machine learning-based image enhancement. By demonstrating that
deep learning-based image enhancement can reduce acquisition time while maintaining image
quality, this study contributes to making SHG imaging more efficient, cost-effective, and less
resource-intensive. The work also complements GAN-based approaches explored elsewhere in
this thesis, reinforcing the broader objective of leveraging Al-driven solutions to optimize SHG

image acquisition and analysis.

Key Findings: The study demonstrates that ESRGAN successfully reduces imaging time while
maintaining high image quality and analytical accuracy, making it a viable tool for improving P-
SHG imaging efficiency. ESRGAN exhibits superior structural preservation, contrast
enhancement, and reduced artifacts, enabling accurate fiber orientation analysis in upscaled
images. The model successfully reconstructs ECM structure and fiber orientation details, ensuring
that upscaled images retain key biological features necessary for P-SHG analysis. One of the
critical findings was that not all ESRGAN variants performed equally well for SHG imaging
applications. Certain ESRGAN variants introduced undesirable artifacts, such as over-smoothing,

texture loss, and edge distortions, while others failed to preserve fine details in fiber orientation
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data. The study identified the most suitable ESRGAN architecture, which provided the best
balance between sharpness, structural accuracy, and computational efficiency for P-SHG
imaging. The ability to select the optimal ESRGAN variant enhances the practical implementation
of this method in biomedical imaging. Another key finding was that ESRGAN allows for a
significant reduction in imaging time, demonstrating its potential to minimize acquisition time in P-
SHG imaging. This advancement makes SHG microscopy more cost-effective and accessible,

enabling high-quality imaging without the need for extended acquisition times.

Support for Hypotheses: The findings confirm the hypothesis that GAN-based super-resolution
can improve imaging resolution under reduced acquisition time conditions while preserving image
quality. ESRGAN successfully reconstructed collagen fiber orientation and ECM structures,
ensuring that critical biological information was retained in upscaled images. The results also
confirmed that imaging time could be reduced without sacrificing image clarity, supporting the
idea that deep learning-based super-resolution can mitigate photodamage in P-SHG imaging.
The study further validated the hypothesis that certain ESRGAN variants performed better than
others, with specific architectures proving more effective at preserving texture and structural
integrity while minimizing upscaling artifacts, reinforcing their potential as a practical alternative

to direct high-resolution imaging in SHG microscopy.

Novel Contributions: This research presents a novel application of GAN-based resolution
enhancement in biomedical SHG imaging, demonstrating a method that balances image quality,
acquisition speed, and structural accuracy in P-SHG imaging. By systematically evaluating
different ESRGAN variants, this study provides a clear framework for selecting the most effective
architecture for SHG applications, reducing the risk of artifact introduction while maximizing
resolution improvements. The ability to reduce acquisition time without sacrificing analytical
accuracy offers a practical solution for overcoming cost and time constraints in high-resolution
SHG imaging, making advanced imaging techniques more accessible to the biomedical research

community.

Comparison with Existing Research: This study builds upon existing research by applying
GAN-based upscaling specifically to P-SHG imaging. Unlike previous approaches that rely on
direct high-resolution acquisition, this study demonstrates that GAN-based models can reduce
the need for extensive imaging time and laser exposure, making P-SHG imaging more practical
for long-term studies and live imaging applications. The work also contributes to the broader field

of biomedical imaging by highlighting the importance of selecting the proper resolution-enhancing
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model to achieve optimal results, providing a structured approach for implementing Al-driven

methodologies in SHG microscopy.

2.3 Thematic cohesion across articles

The four articles presented in this thesis are intricately connected through their collective focus
on enhancing second harmonic generation (SHG) microscopy. Article 1 provides the theoretical
and historical context and sets the foundation for the entire research. It offers insights into the
existing capabilities and limitations of SHG microscopy, highlighting the need for technological
advancements. Building on this foundation, Article 2 focuses on image classification and employs
deep learning techniques to improve the accuracy of identifying different tissue types. Automated
image analysis demonstrated how CNNs can transform SHG microscopy into a more precise tool
for clinical applications. Article 3 examines the effectiveness of denoising techniques, highlighting
how these models can enhance image quality by reducing noise while preserving crucial structural
details. These advancements are pivotal for biomedical imaging, where clarity and accuracy are
essential. Finally, Article 4 explores improvements in imaging speed and resolution. This
demonstrates that generative adversarial networks (GANs) can significantly reduce imaging time
without sacrificing quality, making SHG imaging more efficient and accessible. Together, these
articles form a unified narrative supporting the overarching thesis of advancing SHG microscopy

with machine learning.

Articles 2, 3, and 4 addressed the limitations identified in Article 1 by demonstrating the capability
to improve image classification accuracy, enhance image quality through denoising, and increase
imaging speed without compromising quality with different ML methods. These advancements
overcome key challenges in SHG microscopy, such as the need for expert interpretation, image

noise interference, and lengthy acquisition times for high-quality images.

Collectively, these articles address the thesis objectives by exploring SHG microscopy and
demonstrating the role of machine-learning techniques in enhancing image quality, speed, and
clinical applicability. They present significant technological advancements in terms of image
quality, analysis speed, and clinical applicability. This integration illustrates a holistic approach to
revolutionizing SHG microscopy, aligning with the thesis’s goal of making SHG a robust tool in
biomedical research and clinical practice. The articles highlight the potential of overcoming current
limitations, expanding SHG applications, and setting new standards for accuracy and efficiency

in biomedical imaging.
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This progression reflects a comprehensive approach to advancing SHG microscopy from the
foundational understanding of the key limitations to implementing enhancements in image quality

and speed.

2.4 Consolidated research findings

The combined results demonstrated significant advancements in image quality, automated
analysis, and imaging speed in SHG microscopy. Denoising techniques (Article 3) have shown a
remarkable ability to enhance image clarity while preserving crucial structural details, thereby
addressing a fundamental challenge in SHG microscopy. The deep learning classification model
(Article 2) demonstrated the potential for rapid, automated tissue analysis, which could
significantly accelerate research and diagnostic processes. The application of GANs to P-SHG
imaging (Article 4) represents a major leap forward in reducing the image acquisition time without
sacrificing quality, making whole-sample imaging more feasible. Together, these advancements
have brought SHG microscopy closer to widespread clinical adoption by addressing key practical

limitations.

Collectively, these findings directly address the core objectives of this thesis by demonstrating
how machine learning can overcome the technical limitations of traditional SHG microscopy. By
integrating denoising, automated analysis, and super-resolution techniques, this research
establishes a clear path for making SHG microscopy more efficient, accessible, and clinically
viable. These advancements not only reinforce the potential of SHG microscopy in biomedical

imaging but also lay the groundwork for its broader adoption in both research and clinical settings.

2.5 Tools and resources for DL-based microscopy enhancement

To facilitate the integration of deep learning in microscopy, several open-source tools have been
developed to streamline image processing, model selection, and visualization. These tools
significantly reduce the technical barrier for researchers by providing pre-trained models, user-

friendly interfaces, and cloud-based platforms that do not require extensive coding expertise.

OpenModelDB (https://openmodeldb.info/) is a community-driven database of Al models for
image upscaling and enhancement. It provides researchers with an accessible platform to
compare, select, and download deep learning models tailored for imaging applications. By offering
a variety of models, OpenModelDB enables efficient selection of Al-based solutions for SHG

image processing.
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CAREamics (https://github.com/CAREamics) is a deep learning framework designed for
microscopy image restoration. It incorporates Al-based denoising models such as N2V 2D and
CARE 2D, both of which were explored in this thesis for enhancing SHG image quality.
CAREamics offers a streamlined, user-friendly approach to Al-based denoising, making it

accessible to researchers.

ZeroCostDL4Mic (https://github.com/HenriquesLab/ZeroCostDL4Mic) is a Google Colab-based
platform that enables researchers to apply deep learning pipelines to microscopy images without
programming expertise. It provides pre-configured workflows for tasks such as image restoration,
segmentation, and super-resolution, making Al-powered microscopy analysis accessible to a
wider range of users. By eliminating the need for local computational resources, ZeroCostDL4Mic

facilitates rapid deployment of Al techniques in biomedical imaging.

ChaiNNer (https://github.com/chaiNNer-org/chaiNNer) is a node-based, no-code Al workflow tool
designed for image processing. It allows users to build complex deep learning pipelines using a
visual interface rather than writing code. ChaiNNer supports a variety of Al-based image
restoration and enhancement techniques, making it particularly useful for researchers looking to
apply deep learning to microscopy images without extensive programming knowledge. Its
modular design enables easy experimentation with different models, including upscaling,

denoising, and super-resolution techniques.

Netron (https://netron.app) is an intuitive neural network visualization tool that allows researchers
to analyze, debug, and optimize Al models used in SHG image processing. By providing a
graphical representation of neural networks, Netron enhances model interpretability, helping
users identify key parameters, adjust architectures, and fine-tune models for microscopy

applications.

The integration of these tools supports this thesis’s objective of enhancing SHG microscopy
through deep learning while ensuring accessibility to a broad range of researchers. By leveraging
platforms like ChaiNNer, Careamics, and ZeroCostDL4Mic, researchers can apply advanced Al
techniques without requiring extensive coding knowledge, making deep learning more practical

for SHG microscopy.
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3.1 Main article
Abstract

Second harmonic generation (SHG) microscopy is an important optical imaging technique in a
variety of applications. This article describes the history and physical principles of SHG
microscopy and its more advanced variants, as well as their strengths and weaknesses in
biomedical applications. It also provides an overview of SHG and advanced SHG imaging in
neuroscience and microtubule imaging and how these methods can aid in understanding
microtubule formation, structuration, and involvement in neuronal function. Finally, we offer a
perspective on the future of these methods and how technological advancements can help make

SHG microscopy a more widely adopted imaging technique.

Keywords: Nonlinear microscopy, SHG, neuroimaging, interferometry, polarimetry

Introduction

Despite being tremendously powerful tools, conventional linear optical microscopes suffer from
scattering and a lack of optical sectioning in thick and complex samples [190]. Over the past two
decades, Second Harmonic Generation (SHG) microscopy has become a key method for optical
imaging with many applications in materials and biomedical science. Advancements in the
development of reliable and robust ultrafast mode-locked laser technologies have been pivotal
for the improvement of nonlinear optical microscopy techniques [191-193], especially for
biomedical imaging. Using these laser sources, turn-key microscopes have been developed and

are now widely spread within research laboratories.

SHG microscopy imposes a requirement: the structure of interest needs to be non-
centrosymmetric [39], which makes it highly sensitive to filamentous proteins in biological samples
[48,87]. Otherwise, samples must be stained with appropriate SHG dyes [109]. While this
requirement limits SHG application to only a few structures, it is also a key strength since the
signals are highly specific and offer sharp contrast images. Beyond that, SHG microscopy has
several advantages over fluorescence imaging: it is based on an endogenous contrast (i.e., the
contrast arises from the sample itself and not in a e.g., a fluorophore). Lastly, unlike fluorescence,
SHG is free from photobleaching (the signal generated is not limited in time) and occurs

instantaneously (no limitation on the laser repetition rate) [14].

In this review, we will first provide an overview of SHG microscopy of highly organized biological

structures from its history and theoretical principles to its application to various tissues. We will
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then focus on several advanced SHG modalities and lastly, we will discuss SHG application in

neuroscience.
Second harmonic generation microscopy for biomedical imaging

In this section, we will briefly describe the history behind SHG microscopy, and we will provide a
brief introduction of the principles behind the SHG signal generation and how it can be applied to

biomedical research.
History

An exhaustive historical overview on SHG would start in the 19" century, during which Lord
Rayleigh introduced the non-linearity of acoustic waves in his theory of sound [194,195]. In this
review, we will focus on the use of laser driven SHG processes to provide imaging contrast in
biological samples in parallel to the development of advanced microscopy techniques. For a more
comprehensive and in-depth look into the history and development of SHG microscopy we refer
to Masters and So [196].

In 1931, two-photon absorption was theoretically predicted by Goeppert-Mayer [197]. Three
decades later, in 1960, the ruby laser was created by Maiman [20] based on the theoretical
foundation developed by Schawlow and Townes [21]. For more details on laser invention and its
fundamental impact in science and technology, we suggest the excellent review by Siegman
[198]. Almost immediately after this discovery, different non-linear optical processes were
observed starting with SHG in 1961, when Franken et al. observed frequency doubling of a ruby
laser in a quartz crystal [22]. At this time, the measured SHG signal was so dim that it was
famously mistaken by the Physical Review editor as a speck of dust. In 1962, Bloembergen and
Pershan derived the SHG equations and described key principles ruling light-matter non-linear
interaction through an in-depth review of Maxwell's equations [23]. For a comprehensive and
detailed explanation of the fundamentals and formulations of non-linear optics, we strongly
recommend the Nonlinear Optics book [39]. As for biological samples, the first attempts to
understand piezoelectric and pyroelectric effects in bone and tendon were realized in 1964 by
Fukada and Yasuda [199] and in 1966 by Lang [200]. They demonstrated that tendon has a
macroscopic polar structure using piezoelectric [199] and pyroelectric measurements [200],
although without successfully identifying the structural origin of piezoelectric and pyroelectric

effects.

In parallel, the confocal microscope, originally developed by Minsky in 1955 to image unstained

neural networks of the brain [12,201], encountered a tremendous success, leading to the first
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implementation of laser scanning confocal microscopy in the late ’60s. In 1974, Hellwarth and
Christensen already combined SHG with optical microscopy by applying a focused laser on
potassium deuterium hydrogen phosphate (KDP) crystals [24]. However, this method was solely
based on very strong SHG converters as the entire field was illuminated with a CW laser. In 1977,
Sheppard et al. imaged quartz with a scanning SHG microscope using a tight focusing that
allowed to detect the non-linear optical signal [25]. Simultaneously, Parry and Craig showed,
using electron microscopy (EM), that collagen fibrils composing tissues, such as tendons,
possess an architecture with mixed polarity with neighboring fibrils pointing in opposite directions
[26]. This was later confirmed using the combination of atomic and piezoelectric force microscopy
[27,28]. In 1978, Roth and Freund reported on comparative measurements between the SHG
signal of a reference quartz sample and a rat-tail tendon. They found that the SHG signal was 3-
4 orders of magnitude lower in the biological sample than in the reference material and already
highlighted that SHG measurements could be advantageously used in vivo [29]. Finally, in 1986,
Freund and Deutsch were the first to perform SHG microscopy of biological samples and proved
that the macroscopic polar structure in the tendon arises from the network of fine structures that
happen to be collagen fibrils, within the whole tissue volume [30]. In that pioneering publication,

the viability of using SHG microscopy for biomedical imaging was demonstrated.

In 1990, Denk et al. introduced two-photon excitation fluorescence (2PEF) laser scanning
microscopy using pulsed lasers and a modified confocal microscope [31]. Following the success
of 2PEF, in 1996, three-photon excitation microscopy was demonstrated [202]. Although the SHG
modality is older than 2PEF microscopy [31], it was forgotten for over a decade and rediscovered
in 1998 [33,34] and combined with 2PEF in the early 2000s in many studies [35-37]. Since then
and following the progress in commercially available mode-locked lasers and user-friendly
multiphoton microscopes [203], SHG has become a powerful method for multimodal high spatial

resolution optical imaging.
SHG microscopy

In the context of microscopy, 2PEF and SHG present many technical similarities, which allows to
combine them easily and efficiently in the same instrument. A typical implementation of a modern

SHG microscope, obtained after many experimental setup iterations, is depicted in Figure 3-1.
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Figure 3-1: Typical SHG microscopy setup, with source, power control unit, scanning system, objective lens,
and detectors. Detectors are connected to a PC that controls the microscope and synchronizes laser scanning
with signal acquisition using a detector which is typically a photo multiplier tube (PMT).

Since the obtained imaging depth depends on the excitation wavelength [14,190], the employed
laser is traditionally in the NIR-I region (700-1000 nm) [204] to minimize absorption from
biomaterials (water, hemoglobin) [36]. It is worth noting that other optical “windows” matching this
criterion are available, as indicated in Figure 3-2. Using longer wavelengths, e.g. NIR-2 (1000-
1300 nm), allows to limit scattering and hence to increase the penetration depth in the tissues
[14,190] however at the expense of a reduced spatial resolution. Despite the higher penetration
depth provided by longer wavelengths, it has been shown that, at least for imaging collagenous
tissues, longer wavelengths result in lower SHG signal as the hyper-polarizability tensor
decreases [205]. Therefore, shorter wavelengths should still be favored for performance. Besides
that, the use of long wavelength lasers (1230 nm), such as Cr:forsterite lasers, provides the
opportunity to simultaneously perform SHG and third harmonic generation (THG) microscopy in

the visible range, avoiding the UV absorption of biological samples [206].
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Figure 3-2: Top: energy level diagram of SHG. Two incident photons interact with the molecules
(harmonophores) through virtual states, leading to the generation of a photon at 2®, exactly twice the input
frequency (®). SHG is a parametric process, and no energy transfer occurs. Reproduced under CC BY 4.0 from
[292]. Bottom: Absorption spectrum of the human skin, indicating 3 possible transparency windows. Adapted
with permission from [36].

To favor the efficient generation of the non-linear optical signal, the typical pulse duration is about
100 fs at a repetition rate of a few tens of MHz [14]. High numerical aperture (NA>1) objectives
are used to tightly focus the light on the sample and spatially concentrate laser pulse energy [47].
For thin samples, where the light can be detected in the forward direction (see Figure 3-1), a high
numerical aperture condenser is added to efficiently collect the light [87]. Both modalities (2PEF
and SHG) present a quadratic dependence of the generated signal to the input laser intensity
[191], leading to an intrinsic three-dimensional spatial resolution due to the signal generation
being confined in the focal volume [40].
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Despite these similarities, SHG and 2PEF techniques are based on fundamentally different
processes. In SHG, the frequency conversion is achieved through virtual states without a net
transfer of energy to the system (Figure 3-2). This contrasts with 2PEF which involves population
transfer from the electronic ground state to excited electronic states. These different origins lead
to radically different, and often complementary properties that explain the rising popularity of SHG

microscopy.
SHG microscopy of endogenous proteins

Second-order non-linear processes, such as SHG, can be efficiently described through an
anharmonic oscillator model in which a non-linear restoring force is generated by the molecular
potential. At the molecular level, SHG originates from the hyperpolarizability of peptide bonds in
collagen and tubulin, usually considered as single SHG emitters [207]. Indeed, an electric field
oscillating at a high frequency and reaching an harmonophore will repeatedly pull the electrons

back and forth, leading to the induction of a molecular dipole [39,40,48]:
p =p® + aF + BEE + YEEE + - 3.1

where a is the polarizability of electrons of the peptide bond, E the incident electric field and 8
and y the hyperpolarizabilities of the first and second order, respectively. The first term p@ is the
permanent dipole of the molecule. The second term corresponds to the linear response, the third
one defines second order non-linear interactions, such as sum and difference frequency
generation [39], and the fourth term describes third order non-linear effects (e.g. two-photon
absorption [40], third harmonic generation [41], Kerr effect [42], self-phase modulation [43], cross-

phase modulation [44], and stimulated Raman scattering [45]).

As a degenerate case of sum frequency generation, SHG arises from the third term in Equation
1. Molecules capable of emitting SHG are characterized by a high hyperpolarizability 8, which
strongly depends on their symmetry. Indeed, in the case of a molecule having a center of
symmetry, elements contributing to the molecule’s hyperpolarizability cancel each other,
preventing SHG formation. More generally, the generation of even harmonics is only possible in

non-centrosymmetric materials.

The coherent nature of SHG implies that the signal results from interferences of individual
contributions of harmonophores. Figure 3-3 illustrates the case with simple dipoles, separated by
a distance negligible with respect to the wavelength of the incoming light wave. When the electric

fields emitted by the two dipole moments are in phase and thus constructively interfere, the
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resulting SHG is coherently added (central row). In contrast, there is destructive interference when

the dipole moments have opposite directions and the SHG signal vanishes [39] (bottom row).
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Figure 3-3: Comparison of the SHG signal from a single dipole (upper row) to the SHG from two parallel (central
row) and anti-parallel dipoles (bottom row). Adapted from [208].

At macroscopic scale, SHG is described by the non-linear susceptibility y?, which results from
the coherent summation of the individual hyperpolarizabilities of all harmonophores within a

volume. The relation between the molecular and macro-molecular nonlinear response is given by
[47,48]:

X(Z) =N < ﬁ > 3.2

where N; is the density of molecule S and <B> is the orientational average of the first

hyperpolarizability [39]. For SHG to occur, at this scale, the medium should exhibit a ¥ # 0

[40,47], which only happens for non-centrosymmetric macromolecular organization.

Consequently, to perform SHG microscopy in biological samples, the tissue must present a non-
centrosymmetric structure both at the molecular scale (B # 0) and at the macro-molecular level
(< B>+ 0) as well as a high density of harmonophores. Interestingly, this constraining origin of
the signal can be exploited as a contrast enhancing mechanism, since it makes the occurrence
of the SHG signal highly specific to only a few biological entities, with collagen as a prime

example. SHG can thus act as a unique probe of the multiscale distribution of molecules within
the sample.
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Properties of the SHG signal

Before discussing the properties of the SHG signal, one should have a closer look at the

hyperpolarizability and second order nonlinear susceptibility.

In the general case B, and therefore y(?, are third order tensors with 27 components (Xi(jz;b-

However, depending on the symmetry of the molecules, the number of non-zero and independent
components can be reduced. In this review, we will assume that the Kleinman symmetry condition
holds true [39], which requires that the excitation and emission wavelength must be far from
resonance, which is the case in most biological samples (e.g. collagen) [55]. Under this

assumption, the last two indices of )(.(.2) can be freely permuted. Thus, we can regroup the two
ijk

last indices (jk) into a single index / and introduce the new tensor:

di1 dyiz diz dig dys die 1 3.3

dy =|da1 dyz daz dyy dys dae =_)(i(jzl2

2
d3; d3; dizz dzy dzs dsg

Note that with the Kleinman symmetry and the permutation, not all 18 components in the matrix
are independent (d,, = d,¢ and dy, = d,5). Considering only the second order effect in Equation

1, the dipole momentum induced by the incident laser is given by:

EZ (w)
) EZ(w
pxz zw) diy diz diz diy dis dig E)ZIE(U; 34
PJ(, )(20)) < [dy1 dayz dp3 dys dis dyp z
Ay dyy das day das  dagl|2Ev(@Ez (@)
(2) 2 31 32 33 34 35 36
Pz (20) 2E(0)E,(0)
[2Ey (w)Ey (w)]

Equation 4 shows that the polarization of the input laser beam is of utmost importance since it is
directly related to the tensor elements [91,209] and therefore largely determines the formation of
SHG signal.

In the following case, we will use collagen as an example, but this can also be extended to other
materials by considering their specific symmetry. A collagen fibril presents a cylindrical symmetry.
We will make two assumptions: first that the Kleinman symmetry is applicable [55] and secondly
that the chiral components of the tensor can be neglected since we do not take the out-of-focus

orientation into account [55]. In this condition, the nonlinear susceptibility tensor has only two
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independent components which are y,., and y.,,, where x is the fibrillar axis. Thus, considering

that the input laser is linearly polarized and propagates along the z-axis, the SHG intensity in

every pixel of an image is:

Isye(0,1u) = A+ Bcos(2u — 28) + Ccos(4u — 40) 3.5

where u is the polarization angle with respect to the x axis, 6 the azimuthal angle of the fibril (see
schematic in Figure 3-8) with the x axis, and A, B, C are coefficients depending on the
harmonophore concentration and arrangement [99]. Therefore, varying the incident polarization
strongly affects the SHG intensity. This, in turn enables to probe macro-molecular organization of
harmonophores within the focal volume [37]. Alternatively, the use of circularly polarized excitation

light ensures that all molecules respond similarly, regardless of their in-plane orientation [40].

Since SHG is a coherent process, the phase plays a key role in the signal formation, from the
molecular to the macromolecular scale. This can be clearly highlighted considering the case of
SHG from bulk media. A complete description of the formalism in this case can be found in [39].
In brief, considering an incident laser beam with fixed polarization and propagation direction, and
assuming the slowly varying envelop approximation, the SHG intensity can be expressed as:
Igye o |P|*L?sinc? (%) = Iinszsincz(Li) 36

Cc

where s is the complex amplitude of the incident beam, lin is the intensity of the incident laser
beam, L is the length over which SHG occurs in the medium, Ak = 2k, — k,,, is the phase
mismatch between the excitation and the emitted light (expressed as the difference of wave-
vectors) and L. = 2/Ak is the coherence length. Consequently, when the phase-matching
condition Ak = 0 is fulfilled, the SHG intensity directly scales with the square of the input laser
intensity and with the square of L. However, if Ak # 0, the SHG intensity reaches a maximum
value after an interaction length of wL./2. In that case, if the interaction length L is any longer in
the material, the SHG intensity oscillates between zero and the maximum value over a spatial

period of 21L..

In biological samples, the phase matching condition is rarely fulfilled, leading to a directionality of
the SHG signal. However, AkL is nearly equal to zero for the forward direction since the length of

interaction is small compared to L. (few microns), due to the tight focusing. In backward direction,
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this is not the case since 4k is much larger and the coherence length is much shorter (a few tens
of nanometer). This explains why “pure” backward SHG is always very weak. This effect will be

further discussed in section Il.
SHG microscopy in biological samples

One of the most ubiquitous proteins in body tissue that can be imaged using SHG microscopy is
collagen, a family of proteins found in most connective tissues. At the molecular scale, collagen
consists of three a-chains, called tropocollagen, which are hydrogen bonded to each other [40].
In some collagen types (mostly | and Il) these triple helices spontaneously self-assemble into
highly organized collagen fibrils [87] leading to very strong SHG signals [86]. In contrast, non-
fibrillar collagen (e.g. type 1V), which forms sheets in basal laminae [87], cannot be visualized with

SHG microscopy [35].

The first demonstration of SHG microscopy in biological tissue has been performed using rat-tail
tendons by Freund and co-workers [30]. In this tissue, collagen type | forms a highly organized
multiscale structure as depicted in Figure 3-4. SHG microscopy has been used to image Achilles
tendon and fascia [210]. It has also found application to monitor the healing process of tendons
[211].
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Collagen structure from procollagen to fiber

Collagen Fiber

Procollagen

Collagen
Fibrils
tropocollagen
Collagen organization in lamellar cornea  Collagen organization in tendon Collagen organization in skin

Figure 3-4: Hierarchical structure of collagen. Modified under CC BY-SA 3.0 from [212] . Bottom: Collagen
organization in different biological entities [213—-215].

The eye is one prominent example containing — mostly — collagen type | in two different
components: the cornea and the sclera [216], which hence can be visualized using SHG
microscopy. An example is shown in Figure 3-5(a) and (b). Within the cornea, the collagen is
arranged in a lamellar configuration contributing to corneal transparency [216] while in the sclera,
collagen fibrils are randomly packed and highly scattering [217]. Tendon and cartilage are two
other tissues that have been well-studied using SHG microscopy with examples shown in Figure
3-5(c) and (d) [72,214]. The skin is another biological component that has been imaged by SHG

microscopy. As an example, a recent study by Ogura et al. compared skin samples from humans
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in their young, middle and old age, reporting that the concentration of thick collagen declines with
age [218] (see Figure 3-5(e) and (f)).

Example of SHG imaging from different samples

Figures A and B removed due to copyrights issues

(¢) Tendon

Figure 3-5: Examples of SHG images for various biological samples. SHG images from (a) cornea and (b)
sclera, the scale bar is 20 ym. Extracted from [219]. (c) Tendon (500%x150um), extracted with permission from
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[214]. (d) Cartilage (350%200um), extracted with permission from [72]. SHG image of skin in young (e) vs. old
age (f) (1.6x1.6mm), extracted with permission from [218].

In addition, SHG microscopy has been proven useful to image cartilage and bones [220,221],
which are composed of collagen type Il. This opened avenues to investigate damages of the
extracellular matrix that can result in loss of structure integrity, which leads to various pathologies
such as osteoarthritis. Many pathologies such as cancer can be investigated and characterized
using these techniques but are beyond the scope of this review. Extensive details on these
applications can be found in the literature [40,125,222,223].

Beyond collagen, other biological structures have been investigated by means of SHG
microscopy. Myosin is a motor protein involved in a wide variety of functionalities, such as muscle
contraction, or cellular movements that are largely influenced by the interaction between actin
and myosin [224]. Therefore, the visualization of the myosin structure is bound to increase our
understanding of fundamental mechano-cellular mechanisms. Mohler et al. first observed a strong
SHG signal in mouse muscle and then confirmed in C.elegans that the signal arises from the
heavy-chain B of myosin [48]. Studies combining SHG microscopy and 2PEF revealed enlarged
lysosomes in Pompe disease and provided advanced characterization of the morphology of
cardiomyocytes [101,225]. A combination of SHG and coherent anti-Stokes Raman scattering
has also been used to study muscle structure [226]. More recently, wide-field SHG was applied

for imaging muscle contractions, which will be briefly discussed in section 1l [83].

Microtubules (MTs) are another key element that can be imaged using SHG microscopy [125],
allowing fascinating studies in neurosciences and developmental biology. Section lll is specifically

dedicated to present the recent advances of SHG microscopy for MTs studies.

Finally, beyond the study of body tissues, another application of SHG microscopy is for imaging
polysaccharide chains in plants and notably in starch. Starch plays an important role in energy
storage for plants and represents a major source of food for humans. In 2005 Cox et al. reported
on SHG signal from cellulose and starch, which can be explained by their highly crystalline
structure [227]. However, while the starch SHG signal can easily be detected at low input powers,
acceptable for biological tissue imaging, cellulose was found to be a weak SHG emitter. In the
same study, the authors suggested that the origin of the SHG signal in starch granules is from
two polysaccharides, namely amylopectin and amylose. By performing SHG and polarization
resolved SHG microscopy on starch from rice and rice flour, Zhuo et al. demonstrated that the
SHG emitter in starch were only amylopectin and not amylose [228]. Building upon this study,

Cisek et al. examined barley and found that wild-type amylopectin crystals generate higher SHG
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signal due to their long-range order [229]. On the other hand, structures containing amylose, have
much lower crystalline order leading to much lower SHG emission (~20 times less) [229].
Moreover, the hydration state strongly affects the SHG intensity of starch granules [229,230].
Hydrated granules have a higher SHG intensity (Figure 3-6) due to the more ordered crystalline
hydroxide and hydrogen bonds forming long-range orders, whereas ultra-dry structures have a

more disordered structure [229].

Figure removed due to copyrights issues

Figure 3-6: SHG imaging of three types of barley starch granules in different hydration states. a) WX (Waxy
barley with only amylopectin) exhibits a very high SHG intensity even in ultra-dry conditions. b) WT (wild-type
barley with ~30% amylose content) SHG signal is dimmer than in panel a) but still detectable. c) AO (amylose
only barley) has the lowest SHG signal intensity among the three, which is barely detectable in ultra-dried
condition. Extracted from [224].

Advanced SHG microscopy

Beyond the imaging capability, the coherent and tensorial nature of the SHG process enables us
to extract additional information about the sample. This section will outline the main approaches

that have been developed over the years and applied to various biological investigations.
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Forward over backward second harmonic generation (F/B-SHG)

Forward over backward (also called “directional”’) SHG microscopy is a method that takes full
benefit from the directionality of the SHG radiation pattern. For complete description, we suggest
ref. [40].

Because it is a coherent process, SHG conserves the spatial coherence of the excitation. The
harmonic photons are scattered over an angle smaller than the Gaussian beam angle of the
excitation. As previously mentioned, (see section 1.4), perfect phase-matching is never met in
SHG microscopy. The coherence length for forward SHG (F-SHG) is a few microns in most
materials, which is enough for a consistent phase matching within a focal volume (not accounting
for Gouy phase shift effects though). In contrast, the coherence length for backward SHG (B-
SHG) is only a few tens of nanometers in most materials, which means that the B-SHG signal is
always poorly phase matched. In practice, the B-SHG signal is always smaller than the F-SHG
one, reaching equality only when one dipole or an extremely thin structure is excited along the
propagation direction (Figure 3-7 (a-b)). The F-SHG contribution becomes much larger when
many dipoles are stacked along the focal volume (Figure 3-7 (c-d)), which is usually the case in
biological samples. Importantly, since the B-SHG signal is usually weak it should not be
confounded with backscattered F-SHG signal. Indeed, since most biological samples are highly
scattering, a significant part of the F-SHG gets scattered or reflected towards the backward

direction after its generation (see Figure 3-7) [210].
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Forward and backward SHG principle and example
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Figure 3-7: Radiation pattern for different dipole configurations in the focal volume. (a) A single dipole,
indicated by the green arrow, creates equal F-SHG and B-SHG (F/B=1). (b) Several dipoles in the same plane
also create the same amount of SHG signal in the forward and backward direction (F/B=1). (c) The coherent
contribution of many induced dipoles packed in the optical direction will generate a strong forward SHG signal
and a weak backward SHG signal (F/B>1). (d) For a bulk material, only a strong forward SHG signal is present
with a negligible amount of backward SHG. Adapted under CC BY-SA 4.0 from [231]. Forward (e) and backward
(f) SHG images of fascia. (g) and (h) respectively represent longitudinal and transverse intensity profiles (with
respect to the fibrillar axis (horizontal axis)), as depicted by the yellow crosshair in (e), taken in forward (blue)
and backward (red) direction. In the backward direction the sheet boundaries are easier to spot than in the
forward SHG image. Extracted from [232].
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Figure 3-7 shows an example of F/B SHG images. The F-SHG signal along the fibrils direction
(longitudinal) remains exceptionally smooth (Figure 3-7 (e)), revealing that fibril bundles form
domains of constant y(? that can lead to a better fulfilment of the phase-matching condition. On
the contrary, in the direction perpendicular to the fibrils (transverse), multiple/different y®
domains boundaries are encountered, leading to rapid changes in phase-matching and high
modulation of the F-SHG signal (Figure 3-7(f) and (h)). This is in agreement with the conclusion
of Freund and Deutsch [30] as well as with the measurements of Parry and Craig using electron
microscopy [26]. It is important to highlight that the dark lines in the collagen sheets in the forward
image (e) are not due to the lack of collagen fibrils, but due to long ¥ domains whose macro-
molecular structure results in poor phase-matching, leading to low signal along the full length of
the domain. In contrast, since the coherence length in B-SHG is much shorter, the arrangement
of the domains has almost no impact on the amount of signal generated. Therefore, the backward

image is mostly uniform along the whole tissue.

Effectively, due to the different coherence lengths for F- and B-SHG, the F-SHG signal images
display ordered structures whose size are on the order of Asye (SHG wavelength), while smaller
or more random structures are better revealed in B-SHG, both directions providing
complementary images [40]. In the case of collagen, the F/B ratio increases either with the fibrils’
diameter or when fibrils of the same polarity are bundled [49,233]. Since this ratio is usually
averaged over the whole field-of-view, it quantifies the average size and global arrangement of

the collagen bundles in the sample [40].
Polarization-resolved second harmonic generation (P-SHG)

P-SHG couples the benefit of SHG microscopy (high specificity and contrast) and polarimetry
(sensitivity to molecular alignment). Usually applied to collagen, it can reveal more accurately the
complex hierarchical structures of fibrils in the image plane. One of its first demonstrations has
been realized on rat-tail tendon fascia by Stoller and co-workers in 2002 [90]. Acquiring different
linear polarization scans in the axial and transverse plane, they identified that the SHG signal was
highly affected by the polarization of the input laser light source, allowing the determination of the
orientation of collagen fibrils. Figure 3-8 provides an example of a P-SHG system with an

application example from an adult horse meniscal collagen.
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Figure 3-8: a) Schematic of a typical P-SHG microscope with sample in focus. A half-wave plate (A/2) and a
quarter-wave plate (A/4) are used to control the pump polarization state. Adapted from [63]. b) Collagen fibril

orientation in adult horse specimens measured by P-SHG. In this study, the maturation of meniscal collagen
was studied in young and adult horses using P-SHG. Extracted under CC BY 4.0 from [234].

To characterize the collagen fibrils’ orientation, various parameters can be measured such as the
average in-plane azimuthal angle 6, in every pixel, and the anisotropy parameter p as indicated
in the upper right corner of Figure 3-8 [234]:

Iy ) » 3.7
— =pgcos“d + 3sin“4d
I,

where J; (resp. I,) is the SHG intensity when the incident polarization is parallel (resp. orthogonal)

to the fibril, & is the out-of-plane tilt angle of the fibril and py = p(6§ =0) = dg?/dg? is the

anisotropy parameter for no tilt (i.e. § = 0) [235].

Alternatively, for no out-of-plane tilt, the measure of the “anisotropy parameter” r [47] can be used:
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Here r = 0 corresponds to an isotropic orientation and r = 1 to the fully aligned case. In practice,
r ~ 0.7 in highly aligned collagen tissue such as tendon [47]. Other parameters such as the
entropy of orientation [236] or the orientation index (O.1.) [237] can also be extracted from P-SHG
and some studies also reported the variance of the contrast-per-pixel as meaningful metrics for
P-SHG [169].

One efficient approach to extract information from P-SHG is based on Fourier transform analysis.
In that case, only the input polarization is rotated using half- and quarter-wave plates [92] (Figure
3-8). Afterwards, the relevant information can be retrieved from the P-SHG images using an
analysis based on the Fourier transform of the measured intensity with respect to the input
polarization angle. This method is applicable to B-SHG and backscattered F-SHG signal, making

it particularly well suited for thick in vivo samples [92].

A more advanced modality, called PIPO (Polarization In — Polarization Out) [238], introduces an
additional rotating analyzer in the detection path, in order to extract the asymmetry of fibrils

distribution ¢ , in complement to the anisotropy p:

< sind > 3.9

g=<c058>

where <...> is the weighted average.

In the past, P-SHG emerged as a powerful tool for biomedical applications, especially to probe
protein structure. Previously, cryo-EM [56] and X-ray crystallography [57] were the tools of choice
for this study but both methods require complex and intensive sample preparation, preventing
their use on live dynamic samples let alone on living animals [58]. Alternatively, to investigate
structural dynamics of proteins, other methods have been used, such as nuclear magnetic
resonance and Forster resonance energy transfer (FRET), which are more readily available but
have lower spatial resolution and low sensitivity [58]. In contrast, P-SHG can be applied in pristine
samples and does not rely on complex and expensive devices for analysis since it only requires
adding a few optical components to a regular SHG microscope [58]. Recently, P-SHG has been

used to study collagen alteration in aging [59], keratoconic cornea [60], and collagen structure
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alteration in lung cancer [61]. Note that high precision control of the polarization can be achieved

using electro-optical modulators [52].
Circular dichroism second harmonic generation (CD-SHG)
Beyond P-SHG, the use of laser light with left- and right-handed circular polarization (LCP and

RCP respectively) allows to extract the so-called circular dichroism SHG [238,239]:

I(Z(u)LCP - I(Zw)RCP 3.10
(I(Z(u)LCP + I(Zw)RCP)/Z

Iep—sue =

where lcpsie is obtained from subtracting two SHG images acquired with LCP and RCP,
respectively. Just like circular dichroism detected in linear microscopy, CD-SHG requires an
optical activity to be non-zero (which is concomitant to a chiral symmetry). Yet, non-linear CD
does not mandatorily originate from the interaction between electric and magnetic dipole moments
(as for linear CD) but can result from electric dipoles alone [240]. A recent study demonstrates
the use of CD-SHG to investigate and characterize 3D collagen distribution. Indeed, the absolute
Ico-sHe enables to determine whether the fibrils are oriented in the imaging plane (small lcp-ste
values) or out of it (high lcp-sHe values) [241,242] and it notably shows great promise in measuring
the polarity of out-of-plane collagen fibrils. As an example, Figure 3-9 shows CD-SHG and its

application in imaging human cornea.
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Figure 3-9: Example of CD-SHG applied in the transverse imaging of a human cornea. (a) Schematics and SHG
intensity image of the cornea. (b) and (c) shows the CD-SHG imaging of the same region of the sample in two
different configurations. As it is evident, the CD-SHG sign in both configurations is the same for almost 80%
of the imaged pixels. Lastly, in (d) the SHG intensity profile (in green) and the CD-SHG absolute value (in
magenta) are plotted along the yellow arrow shown in (a) and (b). Modified from [241].

81



Consequently, CD-SHG shows tremendous potential in pathological tissue diagnosis, for which

disordered collagen and 3D remodeling of collagen are critical structures and processes.
Stokes vector based second harmonic generation microscopy

While changing the linear or circular input polarization state and measuring the change in SHG
intensity allows to measure linear birefringence and anisotropy of the sample, this does not
provide the full polarimetric response of a sample [243]. Indeed, in previously presented methods
(1.2 and 11.3) fully polarized light is used, represented by Jones calculus, and does not consider
all states of light, namely incoherence, partially polarized and unpolarized light [243-245]. Besides
the input light state, biological samples are not always well-organized and non-regular
arrangements can lead to incomplete polarimetry results. For a complete description of the

polarimetric response of the material Stokes-Mueller matrix formalism is better suited.

The state of polarization of light can be fully characterized through a 4x1 Stokes vector S:

So Iy + I 3.1
S = S1 _ Iy — Iy

S Iys — 145

S3 Ig =1,

where I, is the intensity at 0°, Iy, is the intensity at 90°, I, ,5 is the intensity at +45°and I and I,
represent the intensity at right and left polarization states. All the elements of the matrix are
between -1 and +1, as they are normalized to the value of S,. From this, vector, we can describe
important polarimetric parameters such as the degree of polarization (DOP), the degree of linear
polarization (DOLP) and the degree of circular polarization (DOCP) [243,244]:

1
(St + 57 +59)2

DOP =
So
L 3.12

S2 +82)2

DOLP =M
So

S
DOCP =M

So
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Stokes vector based SHG microscopy has been implemented using a four-channel-Stokes
polarimeter [243], as depicted in Figure 3-10:

PSG

S M2 P F

M4

out

V'I:i;Sapphire - P A2
76 MHz

Figure 3-10: Example of a four channel-Stokes-polarimeter SHG microscopy setup. After the SHG from the
sample, the signal passes through a polarization state generator consisting of a polarizer, a half-wave plate,
and a quarter-wave plate before passing through a polarization state analyzer comprised of a beam splitter, a
Fresnel rhomb and two Wollaston prisms. It is detected simultaneously by a time corelated single photon
counting (TCSPC) system consisting of four detectors. Reproduced under CC BY 4.0 from [243].

Scanning Mirrors

The relation between the output Stokes matrix S,,,; and the four detected intensities is given by:

Sout = Agxa-1 = Aty [I, 1, I3, 1L]" 3.13

where Az}, is the polarimeter instrument matrix and I is composed of the four detected SHG
intensities [243,245]. This technique has recently been used to characterize collagen fibers in

adult mice tails, as shown in Figure 3-11:
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Figure 3-11: Stokes vector based SHG microscopy of collagen fibers. (a) represents the 2D Stokes vector
images of the collagen fibers with vertical and horizontal input polarization. (b) shows the DOP, DOLP, DOCP
and anisotropy parameter of the collagen fibers. Modified under CC BY 4.0 from [246].

One of the main drawbacks of this method is its restriction to forward detection configuration and
hence thin samples [246]. In addition, this method assumes a linear relation between the
incoming laser light and the SHG signal and still does not provide a complete polarimetric

response of the sample [247].

A more generalized approach is the double Stokes Mueller polarimetry method (DSMP). In this
method, a complete and model-independent SHG polarimetric response is represented by
measuring 36 polarizations at minimum to calculate all observable laboratory-frame tensor
components [247]. The relationship between the polarization of the output SHG signal and the

polarization state of the input laser beam is given by the double Mueller matrix [247]:
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Ssue(2w) = M(Z)Sin(w) 3.14

where Sgy;(2w) is the 4x1 SHG signal Stokes vector at 2w frequency, S;,(w) is the 9x1 input
double Stokes vector describing the state of the two incident photon at w frequency and M® is
the 4x9 double Mueller matrix which is dependent on the nonlinear susceptibility of the material
[247].

A complete characterization requires 9 polarimetric measurements for DSMP: horizontal and
vertical linear polarization (HLP and VLP), right-handed and left-handed circular polarization (RCP
and LCP), diagonal polarization (+45°), right-handed and left-handed elliptical polarization (REP
and LEP) and a linear polarization at —22.5°. The DOP is then calculated and filtered, for removing
the scattering contribution, prior to calculate the double Mueller matrix of the sample. Using the
six non phase matrix elements of the double Mueller matrix, the laboratory frame non-linear
susceptibility tensor values can be completely retrieved. In the end, the molecular-frame
orientation and non-linear susceptibility tensor ratios can be obtained by choosing a sample
symmetry model. For the complete DSMP analysis and formulation please refer to [247] and
[248]. An example of using the DMSP SHG technique is shown in Figure 3-12 for wall muscle in

Drosophila larvae:
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Figure removed due to copyrights issues

Figure 3-12: DMSP SHG images of the wall muscle of Drosophila melanogaster larva. a) Measured Stokes
matrix elements. b) Maps of DOP, DOLP and DOCP. c) Double Mueller matrix elements normalized to the value
obtained for x_ZXX*((2)) from imaging. The scale bar is 10pm. Modified from [247].

Interferometric second harmonic generation (I-SHG)

While the coherent nature of SHG advantageously offers additional information about the sample,
it is also a weakness since the pattern seen on SHG images results from complex interferences
[68,249]. This can lead to serious imaging artifacts, depending on the microscopic arrangement
[249], and eventually hide the actual underlying structure (especially in biological samples).
Indeed, within the focal volume, dipoles of opposite (respectively same) polarity will destructively
(constructively) interfere, leading to areas with a lower (higher) SHG signal. In the image, this
results in bright and dark regions without direct correlation with the actual density of
harmonophores (compare Figure 3-7 (e-f)). Hence, to extract quantitative information, it appears

necessary to measure the local polarity inside the sample.

It is worth noting that an inversion of polarity (i.e. of the x® sign) leads to a 1 phase-shift on the

emitted SHG signal (see also bottom row of Figure 3-3):
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Therefore, the phase of the signal keeps a signature of the polarity within the sample, which can
be mapped in each pixel of the image. To do so, the most classical optical technique to record
the phase of a signal is based on interferometry. While I-SHG has been originally proposed in
2004 to enable phase measurements on a scanning SHG microscope [70], it was only in 2013

that the technique was first applied to tendon [250] and later to cartilage [72].

In this method, the relative polarity of harmonophores is probed by a direct phase measurement.
It relies on combining two SHG signals, one from a reference non-linear crystal placed before the
microscope (reference SHG) and the second one from the sample (sample SHG), which interfere
together (Figure 3-13(a)). Since both SHG beams are spatially and temporally coherent, the total

intensity on the detector follows the usual two-wave interferometry equation:

Ishg = Is + Ires + 2\/ Isler COS(@S - (Pref) 3.16

where Is and @s (resp. ler and @rer) represent the intensity and the phase of the sample (reference)
SHG beam.

Adjusting the phase difference between the two beams enables to record the interferogram and
to extract the argument of the cosine (i.e. the relative phase) and its multiplicative factor (the
interferometric contrast) by fitting the experimental curve (Figure 3-13) [251]. This technique for
fitting the cosine from many points is known as Phase-Shifting Interferometry (PSI). In brief,
changing the optical path between the reference and the sample arm (Figure 3-13(b)) induces a
change in the cosine argument from 0 to 2x. To remove the constant term I + I..¢, tWo n-phase
shifted raw images are subtracted. Then, in every pixel, the experimental cosine (blue circles in
Figure 3-13(d)) is fitted to determine both the amplitude (interferometric contrast) and the relative
phase (¢n.q¢), the interpolated phase of the signal at each point in the material. It is the phase
offset found for each interpolated cosine wave at each pixel. The procedure provides phase and

interferometric contrast maps.

Various approaches can be used to adjust the phase difference between the two SHG signals,

such as a gas cell, variation of distance, a rotating glass plate [74], as well as more advanced
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approaches, notably the use of an electro-optic phase modulator (EOM) [75]. Originally, a rotating
glass plate was used to induce an optical phase shift between the reference and the sample
SHGs (Figure 3-13). The refraction at different angles between the SHG and the fundamental and
differences in refractive index at these two wavelengths both play a role in changing the relative
optical path length between the pump and the SHG when the glass plate is rotated. For a full
description of the setup and details on the technique see [75] and for a more comprehensive

explanation of the phase extraction technique please refer to [242].
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Figure 3-13: I-SHG principle. (a) Example of an I-SHG inverted microscope. The A2 (half-wave plate) and
polarizer are used for power control and afterwards the non-linear crystal plate generates the reference SHG
signal. After that, a delay compensator is used to match the optical length of the pump arm and the reference
SHG arm superposed along a common path in the interferometer. The polarizations are made parallel after the
phase shifter and introduced to the microscope setup for interference between the reference SHG and the
sample SHG. (b-e) Schematic diagram of the algorithm for calculating the relative I-SHG phase. The 2N raw
images (b) are subtracted 2 by 2 to give N contrast images (c). In every pixel, the intensity follows a cosine law
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with respect to the phase-shift of the interferogram (d), which can be interpolated to find the optical phase and
interferometric contrast image (e). Extracted from [8].

An example of the PSI method can be seen in Figure 3-14. In this study, Rivard et al. were able
to reveal the bipolar structural organization of myosin using I-SHG microscopy [250]. Figure 3-
14(a) displays an SHG image of muscle sarcomeres acquired in the forward direction. The
following panels are raw I-SHG images taken with ¢,..r at 105° (b), 285° (c), and 465° (d). Those
were the phase shifts resulting in maximal interferometric contrast for this specific image
acquisition. Panel (e) and (f) show the results of subtracting two raw I-SHG images taken at ¢,.. =
285° and 105° (c —b) and at ¢,..,= 465°and 285° (d — c) respectively [250]. The final phase image
has been extracted from the 36 images at different reference phase (15 ° steps) that were taken
during this measurement and is shown in panel (g). Lastly, (h) displays the phase histograms
associated with image g), highlighting the bimodal distribution of the phase. The distribution of
the phase is also represented in histograms to better show some details of the content of that
image (h). These results show without ambiguity that, for each sarcomere (white band of the

signal) in image (a), there are two associated x® domains with opposite polarities.

(09*)'/? = 0.07m (6p*)'/2 = 0.067

-1 /2 72 2 0 n/2 n Qe [rad]
Figure 3-14: I-SHG imaging in muscle sarcomere adapted from [250]. (a) F-SHG image in the absence of a
reference SHG beam. (b-d) raw I-SHG images acquired with a reference phase of 105°, 285°, and 465°
respectively. (e) and (f) images resulting from the subtractions of (c) - (b) and (d) - (c). (g) depicts the relative

SHG phase in the muscle and (h) the histogram of the relative SHG phase for all pixels in (g).
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Fast I-SHG microscopy

Because of the optical path difference induced by scanning the laser beam inside the objective of
the microscope (and the relay lenses), laser scanning microscopy is not directly applicable to I-
SHG. Changing the laser angle onto the objective adds a radial phase distortion in the I-SHG
images. I-SHG was thus first developed with a sample-scanning setup [250], and was later
adapted to laser-scanning by correcting the phase distortion with a calibration phase map [251],

which improved the imaging time by about 98%, from a few hours down to a few minutes.

However, acquiring an I-SHG image in a few minutes still imposes significant limitations in terms
of temporal resolution, since it necessitates that the sample remains steady in the field of view
along this time frame. Yet, in biological samples, many dynamic processes happen on a shorter
time scale: for instance, monitoring cellular mitosis would require a temporal resolution below 30
seconds to properly resolve moving microtubules (MTs) [126]. Moreover, SHG from MTs is

relatively weak, which additionally leads to decreased accuracy of the I-SHG measurements [75].

In this context, classical PSl is not optimal since it implies to acquire 18 images of the same zone
at different phase-shifts (Figure 3-13) and leads to long dead time due to the slow speed of the
mechanical phase-shifter (the glass plate). Therefore, different interferogram points used in the
phase extraction (Figure 3-13(c)) are separated in time by up to a minute, which leads to

significant artifacts due to instabilities.

An improved method, called single-scan I-SHG (1S-ISHG), has been recently demonstrated and
consists in applying the phase-shifts within each pixel of the image, rather than between the

images (Figure 3-15).
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a) Old method b) New method (1S-ISHG)
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0° —->18x(3+1)=72secs

Mechanical glass-plate ~ 1s Final image: ~3 (to 30s)

» ~ 18 seconds dead-time in total v 1 scan only

» 18x the same scan v' Latency of few us - enhanced precision

» Latencies between phase-shifts> loss in precision

Figure 3-15: Standard (a) and fast (b) methods for phase shift in I-SHG. Extracted from [8].

To that end, the mechanical phase-shifter was replaced by an electro-optic modulator (EOM),
specifically developed in collaboration with Axis Photonique Inc. (Varennes, Canada), enabling
them to tune the phase-shift at high speed (up to 50 kHz). This technique results in only one scan
of the area, with a settable exposure time (usually between 20 and 200 ps), ensuring only few
microseconds of latency between each point of the interferogram [75]. The amount of time
required to image a large area (500 um x100 pm) can be seen in Figure 3-16 when the fast and
normal I-SHG method are used to image the central part of an adult horse meniscus.
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Figure removed due to copyrights issues

Figure 3-16: SHG phase-map of an adult horse meniscus with fast I-SHG and normal I-SHG. The scale bar is 50
Hum. (a)-(c) show fast I-SHG with different phase scan durations and (d) shows the normal I-SHG at work. (a) 20
us phase scan is acquired in ~0.5min, (b) 200 ps phase scan is acquired ~2min, (c) 2000 ps phase scan is
acquired in ~8min and (d) using the normal I-SHG method, acquisition takes ~32 min. Note that reducing the
phase scan duration increases the speed of acquisition, but it also increases the phase errors. Nevertheless,
even the longest phase scan duration of fast I-SHG (i.e., 2000 ps) cuts the acquisition time by 25% compared
to normal I-SHG which is a huge improvement overall. Adapted from [75].

Aside from the improved temporal resolution, any sample instability in the implementation would
result in image distortion rather than incorrect polarity determination. Consequently, this method

appears to be remarkably robust.
Wide-Field SHG imaging

Scanning SHG imaging is a well-established method which, over the years, has been successfully
used for many applications. However, one of the main implementation limitations is its low imaging

throughput (photons detected per frame per second). This drawback impedes its application to
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label-free imaging of very fast biological processes (millisecond time scale) [252]. To overcome
this limitation, two strategies can be envisioned: either to increase the scanning speed or to
parallelize photon emission. For scanning speed improvement, acousto-optic deflectors [253] and
resonant scanners [254] have been successfully used. Yet, they remain ultimately limited by the
dwell-time required to generate enough photons to obtain a recordable signal. For the latter
strategy, wide-field SHG microscopy appears as the ultimate parallelization, since the complete
area of interest is illuminated simultaneously and signals are detected on a pixelated detector
[76,77]. Traditionally, wide-field SHG microscopy was performed using high energy (uJ) pulses
from lasers operated at multi-kHz repetition rate. It has been proven that wide-field SHG
microscopy improves imaging throughput by 2-3 orders of magnitude compared to scanning

microscopy [76]. A typical wide-field SHG setup can be seen in Figure 3-17.

Figure removed due to copyrights issues

Figure 3-17: Typical wide-field SHG microscopy setup. The laser light source is in the range of 700-1100 nm. A
half-wave plate and a polarizer are used for power control. An achromat doublet lens (AD) is used to focus the
incoming laser beam and the sample is placed slightly above the focus to capture a larger FOV. The SHG signal
is collected using an objective and a tube lens, spectrally filtered, and detected on a camera. Adapted from
[255].

Due to the delicacy of living cell samples, particular care must be taken to avoid photodamage.
Several studies investigated light damage in wide-field SHG microscopy for different cell lines
allowing to determine a range where pulse energy and hence heat deposition remains below the
damage threshold of the samples [83]. In recent advances, a high repetition rate (MHz) wide- field
SHG microscope has been designed for live imaging of contracting muscle tissue that utilizes

laser pulses with pulse energy as low as approximately 60 nJ per pulse (Figure 3-18).
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Figure removed due to copyrights issues

Figure 3-18: wide-field SHG images of fixed larval muscle (a) 425 ym2 and (b) 213 pm2 area with a frame
integration time of 100 ms. (c) and (d) represent the SHG intensity profiles of (a) and (b) respectively from the
designated regions of interests in the images. This method provides single shot imaging of large areas and is
used to acquire live larvae contractions. Extracted from [255].

Lastly, holographic SHG microscopy, a variant of wide-field SHG, has been proposed to make
use of the signal phase [256,257]. Other methods beside wide-field SHG microscopy also exist
for improving the image acquisition speed and we suggest [258] for a recent comprehensive

review of these methods.
SHG and enhanced SHG in neurons
The nervous system and neuron structure

The nervous system is a sine qua non organ for most living animals, responsible for information
processing and transmission [105]. As depicted in Figure 3-19, neurons have a cell body called
the soma, which contains the nucleus of the neuron. The receiving branches of the neuron are
called dendrites, where most of the incoming signals are integrated [106]. The outgoing signal
drives through a structure called the axon. Although a neuron can have many dendrites, it will
always have only one axon. At the end of the axon, there are the axon terminals and synapses

that contain the neurotransmitters necessary for chemical communication between the neurons.
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Neuron anatomy and polarity
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Plus-end distal MTs

Minus-end distal MTs

Figure 3-19: (a) Anatomy of a neuron from soma to the synapse. Extracted from [259] (. (b) Neuron polarity

diagram. Adapted with permission from [260].

Studying neurons and their building components is one of the highest challenges of our times

since many of their mechanisms and dysfunctions remain unknown. The following section will

cover how well-suited SHG microscopy is to study these structures.

SHG microscopy in neurons

Traditionally, neuronal mechanisms have been studied using electrophysiology in which
electrodes are inserted into the neurons to measure the electrical potentials and currents. This
approach is considered the gold standard to study neuronal activity and has led to invaluable

information about neuron functioning. Nevertheless, this approach still presents several
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significant limitations. Firstly, it requires a rather invasive protocol and remains challenging to use
in living animals [107]. Moreover, despite recent advances, patch clamping is bounded to record
data from a limited number of neurons, drastically impeding the investigation of a neuronal
network [108].

To overcome such shortcomings, optical methods appear highly desirable by offering the
necessary flexibility to complement such electrophysiological measurements. 2PEF and SHG
microscopy have found many applications in neuroscience and are vastly gaining popularity
because they provide complementary access to distinct features. Although most SHG microscopy
experiments have been based on endogenous cell properties, SHG dyes have also been used in
different studies [109-113]. Using FM 4-64 dye, Dombeck et al. demonstrated a huge
improvement in signal-to-noise ratio (SNR) over fluorescent probes [111]. Using the same dye,
Nuriya et al. were able to demonstrate for the first time that action potentials enter dendritic spines
[112], and later characterized the SHG response to an action potential and its propagation from
the soma to the axons [114]. In parallel, Nemet et al. reported that all trans retinal chromophores
are suitable candidates for SHG neuronal membrane imaging [110]. Jiang et al. showed that the
limited SNR obtained in the previous studies could be overcome (Figure 3-20) using photon
counting detection [115] and later reported that the potential sensing capacity of FM 4-64

originates from electro-optical mechanisms [113].
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Figure 3-20: Single neuron and neuron population using FM-4-64 dye and SHG imaging. Scale bars: 20um. (a)
shows a single pyramidal neuron from a mouse visual cortex that has been injected with the dye and imaged
using SHG microscopy. (b) shows a multitude of pyramidal neurons bathed and labeled by a SHG chromophore
and imaged using SHG microscopy. Extracted with permission from [115].

To summarize, among many existing tools and methods for neuronal mechanism studies, optical
imaging techniques can be advantageous for studying various aspects of the neurons. SHG
microscopy is reliant on the cell properties for SHG signal production. In some studies, SHG dyes

are necessary to further improve the SNR and the contrast in the images [110,111,113,114].
SHG microscopy in microtubules

In neuroscience, one of the interesting structures that has been investigated using SHG
microscopy are microtubules (MTs). MTs are among the most important cytoskeleton filaments
and their functionality encompasses the maintenance of the cell integrity and the morphology or
regulation of intracellular trafficking, while also playing an important role in cell division [116-119].
MTs are structured as hollow tubes with a 25 nm outer diameter that is made of two dimers a-
and B-tubulin. When these two heterodimers bind in a head-tail manner, they create a linear
protofilament polymer [119,120]. MTs are fundamentally polar because all protofilaments are

parallel to each other and all the dimers comprising the filament share the same orientation [120].
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Many studies have focused on how MTs produce SHG [121,122,125,261]. One of the recent
highlights [261] reports that the number, organization and polarization all play an important role
in the formation of SHG signal from MT [261].

Although the polarity was not the focus of these studies, the MT polarity was later deduced, using
the protein plus method which tags the microtubule-associated protein (MAP) with a fluorophore
and the tagged MAP then binds to the positive end of MTs [118,124]. Combined with SHG
microscopy, it was shown that the MTs polarity in the axons is well-defined and always the same,
with the minus end pointing to the cell body and the positive end pointing to the axon terminals,
where neurotransmission takes place [118]. However, this method is invasive since it uses
fluorescent markers for determining the polarity of the MTs. Importantly, while paraformaldehyde
is the gold standard in cell fixation, this fixation method was also investigated in this study and it
causes drastic losses of SHG signal which reveals that it changes the protein conformation [261].
In contrast, MTs polarity in dendrites remains poorly characterized, but seems to be not so well-
defined [116]. Even if some previous studies have suggested that there might be a mix of polarity
in dendrites [121] and that domains of polarity exist among them [122], these claims remain
hypothetical and a full characterization is required to verify them. Notably, many questions remain
unanswered, e.g., why do axons have uniform polarity, but dendrites do not? Is this mixed polarity
functionally relevant? SHG and specifically I-SHG are great candidates for studying the underlying

mechanisms of the dendrites and the relevance of their polarity in their operation.
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Using fluorescence (red) and SHG (green) to image microtubules in

neurons

Figure removed due to copyrights issues

Using I-SHG to image the mitotic spindle during cell division

150

t0 + Imin

2

t0 + 2min lt0 + 3min

0
phase phase

Figure 3-21: Microtubule imaging in neuron (top) and mitotic spindle (bottom). Complementation of neuron
imaging using fluorescence and SHG (top). In (a), only TauRFP (tau red fluorescent protein) dye is visible in
the image of the neuron. In (b), we only see the SHG image of the neuron. Finally, (c) is a combination of the
fluorescence and the SHG images to benefit from both imaging techniques (Stoothoff et al. 2008). Image and
histogram of SHG phase in the mitotic spindles (bottom). The red and green pixels are mw-phase shifted signals.
At the beginning of the metaphase (t0), the two poles are starting to have opposite polarities. At the end of the
metaphase (t0+1min) and the beginning of the anaphase (t0+2min), a more uniform polarity can be seen where
one pole is red and the other pole is green. At the end of the anaphase (t0+3min), a mix of red and green pixels
can be seen in both poles which means that the two poles have a random polarity. Reproduced under CC BY
4.0 from [126].

Lastly, embryogenesis is an entire field in developmental biology, in which SHG microscopy has
been instrumental in providing time-lapse images of the distinct stages of cell division.

Specifically, SHG rises and falls have been used to investigate the dynamics of mitotic spindles,
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composed of highly oriented MTs, in different embryos, including Caenorhabditis elegans, zebra
fish, mouse, rat and sea urchins [125]. While several methods allow to study the polarity of MTs,
most of them are invasive and I-SHG microscopy appears to be a promising non-invasive
alternative. In a study using the I-SHG technique, Bancelin et al. [126] successfully mapped the
polarity of MTs forming the mitotic spindle during cell division in zebrafish embryos as shown in
the bottom part of Figure 3-21. While the polarity of MTs in mitotic spindles had been previously
studied indirectly with a combination of SHG and fluorescence microscopy [262], this was the first
direct evidence of change in MTs polarity upon mitosis. This achievement was made possible by
the advances in the I-SHG imaging speed, as discussed in section 11.5. It was found that at
different stages of the cell division, the SHG signal varied due to the change of alignment and
polarity of the MTs’ network. Bancelin et al. observed the SHG signal during various phases. First
occurring in the pro-metaphase, the signal further increased in the metaphase and anaphase,
and gradually vanished during the telophase when the mitotic spindle uncondensed. Besides the
SHG intensity, they could extract the polarity of MTs during each phase. They observed that at
the beginning of the metaphase and the end of anaphase, MTs had a mixed polarity revealing a
more disorganized structure. In contrast, at the end of the metaphase and the beginning of the
anaphase, the MTs are highly aligned with uniform polarity [126]. This study showcased the power
of the I-SHG microscopy technique and how it would be advantageous to use this method for
studying the polarity in dendrites and other neuronal activities. More generally, SHG and
advanced SHG microscopy are versatile tools that were utilized in many MTs studies. They have
shown promising potential and are a great candidate for in-depth studies of different aspects and

unknown mechanisms of MTs and related diseases [126,261,263].
Conclusion and prospects

Over the past two decades, SHG microscopy has become an invaluable tool in bio-imaging and
neuroimaging. Many studies illustrate its potential to investigate non-centrosymmetric biological
structures such as fibrillar collagenous tissues [40], tendon [30,210,211], cartilage [220], cornea
[92,219], sclera [219], fascia [68], meniscus [234], muscle [48,71,101,214,225,250], MTs
[111,121,122,125,126], otoconia [264], the origin of SHG signal in neurons [121,261] and how it
can a be great tool for tauopathies [263] and tubilinopathies [265]. While originally limited to point-
scanning imaging of endogenous structures, over the years, many groups have demonstrated

innovative approaches to minimize the invasiveness and to improve the imaging throughput,
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notably through wide-field imaging or the development of specific SHG probes, constantly pushing

the frontier of SHG imaging into new systems and structures.

In this context, conceptual and technological advances in SHG microscopy continue to define a
fast-progressing frontier in biophotonics. Aiming to improve the spatial resolution by means of
coherent structured illumination [266] and utilizing post-processing methods such as pixel
reassignment [128,129] , increasing the imaging depth through adaptive optics approaches [14]
or pushing non-linear imaging into the spectroscopic realm using hyperspectral microscopy
approaches based on sum-frequency generation [267] are all examples of this fast ongoing

progress.

Despite many advances, a fully quantitative interpretation of SHG images remains elusive owing
to the coherent nature of the process involved. While the different approaches presented in this
review, notably F/B-SHG, P-SHG, I-SHG, CD-SHG and Stokes vector based SHG all appear as
relevant pieces to this puzzle, their combination in the same instrument has yet to be done but

could potentially provide a definitive answer to this long-lasting topic.

With its tremendous advantages, SHG microscopy still requires overly expensive equipment and
specialized training, which impedes its larger use in routine biomedical practice. This is
particularly evident for the more advanced SHG techniques that rely on state-of-the-art optical
implementation and complex hardware system. The recent advancement in laser technology has
led many groups to shift away from the gold-standard of Ti:Sapphire lasers towards more robust
and power-efficient fiber and semiconductor lasers enabling smaller and more efficient SHG
microscopes [37]. This crucial simplification and cost reduction is expected to open new
perspectives for biomedical applications of SHG microscopy. Such wide application would be
promoted by the progress in endoscopic SHG, which has gained popularity in recent years [268].
There are still significant technological challenges that need to be overcome to make this
technology more accessible, but the efforts required to solve these technological challenges

would be matched with even greater potential reward, like enabling in vivo imaging of organs.

Besides hardware implementation, software analysis and computational approaches for
enhancing imaging capabilities have also made great strides in microscopy. These computational
advancements complement the optical setups and even correct some of their flaws and
shortcomings in imaging. Notably, fast image processing has been made possible in recent years
thanks to improvements in graphical processing units and field-programmable gate arrays that
can process large amounts of raw data at high-speed. In addition, machine learning is currently

revolutionizing many fields including image processing and has naturally made its way into SHG
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microscopy. For example, a few groups recently ventured to develop deep learning algorithm
based on neuronal networks to classify and diagnose cancer using SHG footprints
[154,155,223,269].

Lastly, many current imaging systems are unique setups, customized differently in each lab [258].
A unification and standardization of the imaging process appears highly desirable for

reproducibility and portability.

Regardless of the challenges and limitations we mentioned, SHG and non-linear optical
microscopy imaging modalities provide a plethora of information that is not readily available with
traditional linear or incoherent optical imaging techniques. With all the technological
advancements in optics, machine learning and laser technology, non-linear imaging modalities
are only going to get better and much simpler over time, opening new horizon for widespread

applications in both fundamental science and medical applications [37].
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4.1 Main article

Abstract: Tumors, their microenvironment, and the mechanisms by which collagen morphology
changes throughout cancer progression have recently been a topic of interest. Second harmonic
generation (SHG) and polarization second harmonic (P-SHG) microscopy are label-free,
hallmark, methods that can highlight this alteration in the extracellular matrix (ECM). This article
uses automated sample scanning SHG and P-SHG microscopy to investigate ECM deposition
associated with tumors residing in the mammary gland. We show two different analysis
approaches using the acquired images to distinguish collagen fibrillar orientation changes in the
ECM. Lastly, we apply a supervised deep-learning model to classify naive and tumor-bearing
mammary gland SHG images. We use transfer learning with the well-known MobileNetV2
architecture to benchmark the trained model. By fine-tuning the different parameters of these
models, we show a trained deep-learning model that suits such a small dataset with 73%

accuracy.

Introduction

Over the last decade, we have improved our understanding of the microenvironment in which a
tumor grows; composed of co-mingling tumor cells, immune cells, stromal cells, and the
extracellular matrix (ECM) [270]. Various studies have correlated the arrangement of collagen in
the microenvironment surrounding the tumor with patient survival [271-277]. Collagen
organization at the tumor-stroma boundary is an essential indication of breast cancer disease
progression and subsequent risk of local invasion and metastasis. Studying these so-called
tumor-associated collagen signatures (TACS) can help to determine the invasiveness of a breast
tumor [271,278]. TACS classification sorts heterogeneous tumor-associated collagen patterns
into three physically distinct types: TACS-1, representing densely packed collagen close to the
tumor boundary; TACS-2, a sphere-like collagen organization around TACS-1; and TACS-3, is
linear collagen pointing away from the tumor boundary [271]. Studying the underlying mechanism
of the formation of these TACS (especially TACS-3) can give valuable information about the pro-
metastatic features of the tumor, as locally invasive tumor cells have been shown to use radially
aligned collagen fibers as migration tracks to leave the primary site [279-281]. Moreover, it has
been demonstrated that collagen fiber width, length alignment, and angle provide cues for the
distinction between malignant/benign tumors and patient survival [278].

Many methods are available for studying the ECM around a tumor, of which histological staining
is the most common [278]. There are many stains available, but the resolution of these stains,

and the inability to quantify collagen features from them, have been limiting factors for ECM
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studies in cancer [278]. Another method used for ECM studies is liquid crystal polarizing
microscopy [282]. It is fast, not expensive and can be added to a microscope with a few optical
components, but the signal processing and structure distinction are challenging [278].

To image collagen in tissues, SHG microscopy is the gold standard in imaging methods and has
improved spatial resolution, limitation of phototoxicity, photobleaching, focal plane selectivity, and
simple sample preparation [283]. This label-free non-invasive method provides a way to detect
alterations of fibrillar collagen in the tumor microenvironment, which is impossible using other
imaging techniques. SHG has played an essential role in cancer studies and has been
successfully applied to assess collagen restructuring in breast [273,284,285], ovarian [286],
prostate [287], and lung cancers [61]. All these studies have documented collagen morphological
changes around the tumor using SHG microscopy. Nevertheless, orientation studies only based
on SHG intensity can be subject to interference that masks the underlying structure [232] and
make fibril orientation imaging impossible [52].

Polarization-resolved SHG microscopy (P-SHG) overcomes such limitations and combines the
advantages of SHG microscopy with polarimetry [47,52,92,169]. It is used in collagen-related
studies and provides accurate information about the structure of the fibrils in the imaging plane,
which is highly advantageous for cancer research [288]. More advanced P-SHG microscopy
systems exist, such as polarization-in, polarization-out (PIPO), that can also extract the
asymmetry of fibril distribution [238] and have been successfully applied in lung [61] and breast
cancer studies [289].

SHG and P-SHG image analyses have also developed over the past few years due to increasing
amounts of information that can be extracted from acquired images. Collagen fiber alignment,
width, length, texture, density, and TACS are all exciting metrics that can be identified using post-
image-processing methods [278]. Image analysis and processing usually rely on human visual
inspection for data validation. Deep learning can eliminate manual data inspection and automate
image analysis, such as image classification [154—157]. Deep learning and machine learning in
SHG microscopy have been applied to lymphedema [154], ovarian tissue [155,290], and breast
cancer [156], to name a few. Care must be taken using these methods, as deep learning for
smaller datasets can be challenging and therefore requires measures for the trained model to be
accurate [159].

In this study, we imaged naive and tumor-bearing murine mammary glands using an automated
SHG and P-SHG microscopy system. From the SHG images, we identified collagen aggregations
around the tumor boundary and dim SHG signal due to the tumor's takeover of a major portion of

the mammary gland. Afterward, we applied our custom-written python program to analyze P-SHG
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images and CurveAlign to analyze SHG images to measure fibrillar orientations. CurveAlign is an
effective technique for quantifying collagen fibers and can quickly extract orientation data from
SHG images [291]. Nonetheless, it requires human inspection and can be prone to missing the
finer fibers in images. In contrast, our automated P-SHG image analysis can resolve and detail
finer collagen fibers, at the cost of requiring increased imaging acquisition time. Following this,
we trained a supervised deep-learning model for the SHG images to evaluate whether we could
classify naive and tumor-bearing mammary glands using a small dataset. In this process, different
data splits were tested, and other parameters of the trained model were also fine-tuned for each
case to find the best possible deep learning model for our data. A comparison was made with the

well-known image classification model MobilenetV2 [292].

Methodology

Tissue preparation
Female BALB/c mice were purchased from Charles River Laboratories. All animal experiments

were conducted according to the regulations established by the Canadian Council of Animal Care,
under protocols approved by the McGill University Animal Care and Use Committee. For the
collection of naive glands, mice were euthanized at approximately 8 weeks of age, and the 4th
(inguinal) mammary gland was removed. Whole mount preparations were made using blunt
tweezers to manipulate the mammary glands, spreading the tissue flat against a Superfrost
microscope slide (VWR). Mounted mammary glands were then immediately placed in Carnoy’s
fixative (60% ethanol, 30% chloroform, 10% acetic acid) for 24 hours at 4° C, after which they
were stored in 70% ethanol.

The murine tumor-bearing samples used in this study were derived from two orthotopic models:
(1) injection of 4T1 cells into nulliparous mice and (2) injection of 66cl4 cells into mice in the
postpartum period (an aggressive form of breast cancer). The 4T1 cells were provided by
Dr. Peter Siegel’s group (McGill University) and were cultured in DMEM (Wisent) supplemented
with 10% FBS and antibiotics. The 66cl4 cells were provided by Dr. Josie Ursini-Siegel's group
(McGill University) and cultured in RPMI (Wisent) supplemented with 10% FBS and antibiotics.
Cells were maintained at a low passage number before use. For both models: 1 x 10° cells were
injected into the 4th mammary fat pad, and tumors were allowed to grow for two weeks. At 14
days post-injection, mice were euthanized, and primary tumors and surrounding stroma were
removed. Samples were fixed in 10% Neutral Buffered Formalin (VWR) for 48 hours at 4° C, after
which they were stored in 70% ethanol.

Following fixation, naive and tumor-bearing mammary glands were embedded in paraffin and

serially sectioned (5 ym thickness). Slides were deparaffinized and rehydrated by submersion in
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three rounds of xylene, two rounds of 100% ethanol, one round of 95% ethanol, and one round
of 70% ethanol (5 minutes per round). Rehydrated slides were rinsed for 5 minutes in distilled
water. Coverslips (VWR, No. 1) were then mounted onto slides using Permount mounting medium

(Fisher). Slides were allowed to dry overnight before downstream microscopy.

SHG imaging setup
SHG microscopy and P-SHG microscopy were performed using a custom laser stage scanning

inverted microscope (for more details, see Figure 4-1 and Figure 4-2). A mode-locked Ti:Sa laser
(Tsunami, Spectra-Physics) pumped by a 12 W Millenia Pro laser (Spectra-Physics) was used.
This laser emits pulses around 810 nm and delivers 150 fs pulse duration at 80 MHz repetition
rate with an average power of 2.5 W. For power control, a half-wave plate and a Glan-Thompson
polarizer were used to adjust the average power to 50 mW (0.625nJ pulse energy) at the focus
of the objective. Given the size of the samples to image, sample scanning using a high-speed
motorized XY scanning stage (MLS203, Newton, NJ) was used. The focus was adjusted coarsely
and finely with mechanical and piezoelectric motors (Pl Nano-Z, USA). An air objective
(UplanSApo 20X, NA 0.75, Olympus, Japan) was used for illumination. A condenser was used to
collect the sample's SHG emission, which was detected by a photomultiplier tube (R6357,
Hamamatsu Photonics) set at 800 V. The SHG signal was isolated by two spectral filters placed
before the photomultiplier. A short pass filter that blocks any wavelength higher than 720 nm (i.e.,
the input laser light) is employed with a bandpass filter centered at 405 nm to filter out any residual
input light. A multichannel I/O board (National Instruments) and a custom-written Python program
were used for signal acquisition and synchronization. Given the sample size and the acceleration
and deceleration times of the motorized scanning stage, each SHG image had an acquisition time
of a few minutes. Raw data were visualized using Fiji-lmaged (NIH, USA). For P-SHG
measurements, 1000 x 1000 um regions of interest were imaged, and for image

classification, 9000 x 5000 ym whole sample images were taken.
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Figure 4-1: Layout of the SHG and P-SHG inverted microscope setup. When using only SHG, the motorized
half-wave plate is removed. For P-SHG, the angles range from 0 to 170 degrees. The microscope and the
motorized half-wave plate work under a unified custom python program for P-SHG measurements.

For P-SHG, a motorized half-wave plate was used to rotate the linear polarization of the laser
beam used to acquire the images. To avoid any polarization distortion and due to the size of the
sample, we used sample scanning instead of laser scanning. Images were taken for 18
polarizations states in 10-degree steps from 0 to 170 degrees. The motorized half-wave plate and
the sample scanning were all synchronized with a home-built python program (for a complete
description of the program, see [242]). A custom MATLAB script based on [63,236] was used for
processing the P-SHG images. Fourier transform of the measured intensity about the angle is
taken with a spatial fast Fourier transform algorithm. For more theoretical information about the
script and how to obtain the polarization angle based on the SHG intensity, please refer to
[63,236]. To summarize, the SHG intensity of collagen fibers with respect to the linear polarization

angle of the input light source Q can be written as [236]:

Ispe () = K[Acos(4Q — 46) + Bcos(2Q — 268) + 1] 4.1

Where A and B are associated with the susceptibility components, K is the mean number of
photons detected, and 6 is the collagen fiber in-plane orientation. By varying the angle Q (i.e.,
using the half-wave plate to change the linear polarization of the input laser), the main direction
of the fibrils (8) can be extracted [18,19]. After a reliability test between the associated
susceptibility components and the experimental data, P-SHG data can be extracted [63]. This

modified MATLAB script integrates with our imaging pipeline and accepts 32-bit images [92].
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In this study, we benchmark our method with CurveAlign, a well-known tool for fibrillar collagen
quantification at the tumor boundary [291]. CurveAlign is a curvelet transform-based fibrillar
collagen quantification platform. It consists of a few steps; first, a two-dimensional fast discrete
curvelet transform is performed. Second, based on the scale of interest and the threshold of the
remaining coefficients, the center and spatial orientation of each curvelet are found, and by
grouping the adjacent curvelets, the local fiber orientations are estimated [293]. The simplified

diagram of P-SHG and CurveAlign analysis is depicted in Figure 4-2.

P-SHG analysis

Input image TR AT
18 SHG images folder and image transform, Store image
of ROl around parameters to arz;rr::gpsg g and histogram
the tumor custom written dF:ata file to P-SHG data
FFT process analysis script

CurveAlign analysis

Analyze in Extract

SHG image of - Fiber analysis overlay Store image
the ROI around - method: ; and
the t " L9 g | g (UECEas histogram
€ tumor representation curvfe et histogram dagta
mode transform, data
Boundary: No

Figure 4-2: Simplified P-SHG and CurveAlign analysis flowchart. For P-SHG analysis 18 SHG images (32-bit
TIFF) of the regions of interest (ROI) are taken in 10-degree steps from 0 to 170 degrees and the results
(colorwheel, orientation map, anisotropy parameter map, and histogram data) are stored. For CurveAlign a
single SHG image is inputted to the CurveAlign script, and the results (overlay image alongside its histogram
data) is stored.

Image classification using deep learning and transfer learning
The image classification was done using TensorFlow [294], an open-source Python library

developed by Google. Moreover, transfer learning was performed using the MobileNetV2
architecture since it is the most common architecture used for the image. Forty-six images
comprising 28 naive and 18 tumor bearing mammary gland samples were used. Due to the small
sample size, data augmentation involving flip, rotation, and zoom was performed before the image
classification. The data was trained for twenty-five epochs, and the accuracy and loss of the
training and test data were recorded for a data split of 10, 20, 30, and 40% between the training

and test data, and the results were plotted to determine the overall performance of the model.
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Results and discussions

SHG imaging

Given the sample size, 9000 x 5000 ym area was selected to encompass most of the mammary
gland and its surroundings. In this configuration, stage scanning was used for the imaging, and
each image was taken over 3 min with a step size of 10 um/pixel and 150 ms exposure time.
Figure 4-3(a, b) are from naive, non-tumor bearing, mammary glands. As can be seen, the

mammary gland and its surroundings have well-defined ductal structures.

Figure 4-3: SHG images with normalized intensity calibration bars of (a, b) naive and (c-f) tumor-bearing
mammary glands. SHG microscopy can resolve the intricacies of the microenvironment. It shows that the
tumor and the lymph nodes (LN) do not produce SHG signal, which leads to a loss of SHG signal as it
progresses throughout the gland. Moreover, the yellow arrows in (c,d) indicate the collagen barrier formed
between the tumor and the rest of the mammary gland ECM. (e,f) are more advanced cases where the tumor
has taken over the majority of the mammary gland, with little normal tissue structure remaining.

The mammary gland tumors in the bottom row do not generate SHG. In Figure 4-3(c,d), the tumor
edge is more pronounced, and aggregated collagen can be seen forming a barrier in the boundary
between the tumor and the stroma, which is evident from the stronger SHG signal in the center
of the Figure (see yellow arrow). This finding agrees with previous studies that suggest collagen

deposition around a tumor can form a barrier (collagen fibers being parallel to the tumor

112



boundaries) which provides a protective layer to physically constrain the spread of the tumor
[278,295]. The fibrillar orientation and angle of the formed barriers will be addressed in later
sections. In extreme cases such as Figure 4-3 (e,f), there is a very dim SHG signal since the
tumor has taken over most of the mammary gland. Although the SHG intensity reveals some
aspects of tumor biology, for extracting the orientation of the collagen fibrils and defining potential

risk of invasion, P-SHG acquisition and image post-processing is necessary.

P-SHG and CurveAlign analysis

Restructuring of collagen fibers at the tumor-stroma junction is known to help promote local
invasion and metastasis; therefore, extraction of fibrillar orientation data is essential [296]. Two
approaches can be used for orientation extraction of the collagen fibrils: (i) P-SHG and extraction
of angle data afterward using a custom MATLAB script or (ii) taking SHG images and processing
them using CurveAlign. For P-SHG microscopy, a 1000 x 1000 ym area was chosen with a
3 pm/pixel step size and 90 ps exposure time, leading to a 4 min acquisition time for each image.
For each P-SHG analysis, 18 images were taken, bringing the whole imaging process to 72 min
per sample. The boundaries around the tumor of three samples were examined and afterward
processed using the Fast Fourier transform process mentioned above.

To benchmark the capabilities of our P-SHG imaging and data analysis in studying the
environment around the tumor boundary, CurveAlign software was used on SHG images taken
from the same region of interest. Figure 4-4 provides a summary of the results obtained during

this experiment:
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SHG P-SHG CurveAlign

Figure 4-4: shows SHG, P-SHG, and CurveAlign analysis of 5 samples with normalized intensity calibration
bar. Each row represents the same region of interest. P-SHG images are accompanied by a color wheel, with
each angle (0-360 degrees) represented by a color, and the fibrillar histogram. Both approaches provide an
excellent distinction between the tumor and its surroundings, although in both cases, there are some
underfilling and overfilling of regions shown using white dashed lines in P-SHG and red dashed lines in

114



CurveAlign. As an example, in the first row, when we compare both approaches to the reference SHG image
we can see that the P-SHG method is overfilling in one region indicated by the white dashed line, and there are
four areas in which CurveAlign has either underfilled or overfilled indicated by the red dashed lines. Similar
errors can be seen in the consecutive rows as well.

For our samples, P-SHG analysis provides orientation details for smaller and finer collagen fibers
than its CurveAlign counterpart. In CurveAlign, the estimation of the orientation angle leads to
insufficient detection in regions where the SHG signal is dim and overestimation in other regions
(red dashed lines in Figure 4-4). Overall P-SHG analysis is more detailed, albeit noisier, and with
some overfilling in different samples (white dashed lines in Figure 4-4). Overfilling in the P-SHG
analysis is due to the goodness of fit (R?) (range between 0 and 1 of the pixel intensity) that is
defined during analysis. If the intensity of a pixel is lower than the goodness of fit, it will be omitted
from the analysis. Therefore, it is necessary to keep the goodness of fit between 0.3-0.4 so that
noisier pixels are not omitted from the analysis which would lead to overfilling of the images in
some areas. We also performed multi-scale structural similarity index (MS-SSIM) (ranging from O
to 1, with 0 being not similar and 1 being identical) by taking the SHG images used for the analyses
as the ground truth (GT) and comparing the P-SHG analysis and CurveAlign analysis to the GT

images and each other:

Table 4-1: MS-SSIM index of P-SHG and CurveAlign analysis

P-SHG vs
R? range of CurveAlign
P-SHG vs GT CurveAlign
Sample No. P-SHG overlay vs GT
. MS-SSIM overlay MS-
analysis MS-SSIM
SSIM
1 0.4-1 0.76 0.27 0.25
2 0.4-1 0.33 0.23 0.25
3 0.4-1 0.76 0.45 0.4
4 0.4-1 0.84 0.37 0.36
5 0.4-1 0.36 0.3 0.2

Based on the results of Table 4-1, a quality metric for image similarity is a necessity to fine tune
the parameters of both analysis methods. In addition, our study found that by increasing the R?
minimum of the P-SHG analysis, the MS-SSIM between the P-SHG and CurveAlign analysis
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overlay image is increased (Please refer to supplementary information Table S1-S5 for more
details). The solution for the underfilling and overfilling is to have a noise threshold (which our
analysis method provides) that can be changed by the user based on the similarity and quality
metric index between the analyzed image and GT image in the form of either a noise-free SHG
image or a complementary fluorescence image. Given that P-SHG image acquisition takes 72 min
compared to the 3 min of standard SHG imaging followed by the CuveAlign image processing,
there is a tradeoff between imaging time and accuracy that depends on the study and
experimental goals, such as boundary requirements and imaging time. To summarize, CurveAlign
is a powerful image processing tool that can be used for collagen quantification around the tumor
boundary but requires human inspection and high-quality SHG imaging and can miss or overfill
some fiber orientations in the images. However, P-SHG imaging provides a more detailed view
of the tumor microenvironment. It can resolve finer fibers but at the cost of the image being noisier
and imaging acquisition being much more time-consuming. A solution for overfiling and
underfilling in both methods is to introduce a similarity index metric for comparison between the
analyzed image and the GT image (complementary fluorescence image or high quality SHG

image) and to have flexible noise threshold metric as it varies from sample to sample.

Image classification

Image classification was performed on the data using the SHG images discussed in the previous
section. SHG images of naive and tumor-bearing mammary glands were first preprocessed in
Imaged to adjust brightness and denoise. Two models were trained for the dataset. A custom
sequential model was made using the Keras library, an open-source library from Google
integrated by Tensorflow, and transfer learning was performed using the MobilenetV2 model. Both
models were written and trained using Google Colaboratory. Finally, to determine the
effectiveness and precision of the architecture, the accuracy and loss are plotted to visualize how
the models fit the data. The image processing pipeline can be seen in Figure 4-5 and the

architecture of the sequential model is seen in Figure 4-6.
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Figure 4-5: Image processing pipeline from SHG imaging to evaluate the trained model's accuracy and
precision.
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Figure 4-6: Architecture of the convolutional neural network (CNN) model built using the Keras API. The data
augmentation layer (sequential) creates new training examples by applying random transformations to existing
images, such as rotating, flipping, or zooming. The rescaling layer rescales the input image pixel values from
the range [0, 255] to the range [0, 1]. The conv2D layer applies a convolutional operation with 16, 32 and 64
filters and Maxpooling2D reduces the spatial dimensions of the input by taking the maximum value in each
2x2 window. The Dropout layer randomly sets a fraction of the input units to zero during each training epoch
(the rate is 0.2). Flatten layers flatten the output of the previous layer into a one-dimensional vector, which is
fed into two dense fully connected neural network layers (Dense). We added more Conv2D and Maxpooling2D
layers up to 20 layers to test how the addition of layers affected the accuracy of the classifier model.

Overall, this model consists of convolutional layers that extract features from the input image,
followed by a fully connected neural network layer that makes the final classification decision. The
model is trained using the Sparse Categorical Cross entropy loss function and optimized using

the Adaptive Moment Estimation backpropagation algorithm.
Deep learning feasibility on a small dataset

Before we examine the efficiency of the trained model, we must define some terms used to
quantify its performance. There are performance markers that are used for measuring the
capability of a trained model but, for simplicity, we will perform cross-validation by splitting the
data into training and test datasets, e.g., a percentage of the data will be selected as the training
dataset, and the remaining percentage as the test dataset. The model uses the training data to

learn from, and the test data is used for assessing the model’s performance [135]. We chose the
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following data split percentages: (90% training data, 10% test data), (80% training data, 20% test
data), (70% training data, 30% test data) and (60% training data, 40% test data). For simplicity,
they will be called 10%, 20%, 30%, and 40% data splitting, respectively.

With the definition of the data splits that will be evaluated, we can define some terms that refer to
each data set. Training/test accuracy refers to how well the model fits the specified training/test
data. Training/test loss assesses the model’s error when learning from the training/test data.
Training/test accuracy and loss are good metrics to assess the model’s fit on the data. When test
loss is greater than the training loss, the model is “memorizing” the training data set, and therefore
its ability to be applied to unseen data is impaired [188]. This is called overfitting. There is also
underfitting, in which the model needs more steps (epochs) to go through the data and be fully
trained. One good indicator that can reveal many aspects of the system is the training/test loss
curve, which shows how well the model performs. Each case presented in this section will be
summarized in a table that shows the average training/test accuracy after 25 epochs and

represented in the training/test loss curve to give a clearer picture of the model’s performance.

Data augmentation and more complex architectures are unique strategies to avoid overfitting
[135,297,298]. Many complex architectures solve overfitting by adding extra processing layers,
but data augmentation targets the problem's root: the available training data. As in the case of
image classification, the number of available data is artificially inflated by changing different
aspects of the training image dataset, such as cropping, flipping, rotating, etc.[135,297,298] . All

these measures mitigate overfitting.

Due to the small sample size of the data available, we also apply a variety of data augmentation
such as crop, zoom, translation, and flip to inflate our dataset artificially. We also introduced a
20% dropout layer to avoid overfitting by randomly removing 20% of the nodes and their
connections from our neural network, resulting in a new network architecture independent of the
parent network [299]. The accuracy and loss curve of the first model can be seen below in Table
4-2.
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Table 4-2: Average training and test accuracy for different data splits using a custom sequential model

Data split Training accuracy Test accuracy
10% 0.82 0.76
20% 0.73 0.80
30% 0.53 0.73
40% 0.69 0.74

It is evident from the data split of 10% that the test accuracy is constant, which can be due to the
small test data set. Still, the training accuracy increases with each epoch, meaning the model
better fits the training accuracy. In the 20% data split, we see that the accuracies are closer, and
there are some epochs where the model was more accurate for the test dataset than the training
set. In the 30% data split, we see a gap between the training and test accuracy, which is higher
than the training accuracy. This gap could mean that the test data set is more straightforward for
the model to understand than the training dataset. It could also be because the data augmentation
we introduced makes it harder for the model to learn from the training dataset.

Moreover, since we are using dropout during training, in which some information from the training
data is lost, it could be that consecutive layers will try making predictions based on incomplete
data, thereby making it harder for the model to adapt. We will explore solutions to this problem in
later sections when we change different parameters to see how it affects the trained model. There
is also a gap in the 40% data split between the training and test accuracy, where the training
accuracy is lower than the test accuracy.

Besides accuracy, the loss curve can provide relevant information about the model's state,
whether it is fitting, overfitting or underfitting. Figure 4-7 provides the loss curve of the four data

splits that were evaluated with the model:
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Figure 4-7: Loss curve of the model for 4 data splits. We have clear overfitting for the first data split after epoch
5, which is undesirable. The model fits the data well for 20% data splitting besides the overshoot seen at epoch
10. The best-case scenario from all the splits can be seen for 30% data splitting, where the model performs
perfectly for the data provided. For the last case, we have underfitting until epoch 10, followed by overfitting.

Therefore, the test accuracy of this model, without overfitting, is 30% data splitting at
approximately 73%. Based on this first investigation, we can now fine-tune other model
parameters to see whether we can overcome the training and test accuracy gap. We performed
receiver-operating characteristic (ROC) analysis but in the case of our data, we have 44% data
bias (33 healthy cases vs. 13 cancer cases) which indicates a significant class imbalance in the
data. Therefore, we implemented Precision, Recall, F1 score and area under the curve (AUC)
metrics together to better understand our model accuracy. The model has a high recall (1.00),
which means it can correctly identify the positive cases at the cost of having false positives. The
precision of our model was low (0.3) and the F1 score of our model was 0.5. We have an AUC

range of 0.51-0.55 which is expected given the high-class imbalance in the data.

Addition of more data augmentation layers and elimination of dropout

As previously mentioned, two elements, namely (i) dropouts and (ii) insufficient data, could explain
the gap between the test and training accuracy. Therefore, we can introduce more data
augmentation layers to the model to increase available data, eliminate the dropout in the model,

and see how well it performs. The result of these changes is summarized in Table 4-3:
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Table 4-3: Average training and test accuracy for different data splits using more data augmentation layers
and no dropout

Data split Training accuracy Test accuracy
10% 0.64 0.76
20% 0.66 0.78
30% 0.65 0.79
40% 0.64 0.76

Table 4-3 shows that due to the extra layers of data augmentation implemented, the training
accuracy decreases as we have made it harder for the model to learn from the training dataset.
In one scenario, we also preferentially augmented the tumor bearing data to balance out the
dataset. Nevertheless, the test accuracy of the model remains the same even with the elimination
of dropout and having more training data. For this trained model, the 10% data splitting has
underfitting until epoch 18, and afterward, the model overfits after epoch 24. Overfitting happens
in many earlier epochs for the case of 20, 30, and 40% data splits. Taking the loss curve and the
accuracy of this model into consideration, adding more data augmentation, and eliminating
dropout does not help improve the model’s performance. Experimenting with model parameters
leads to the conclusion that the test accuracy of the model is sometimes higher due to the limited
availability of data, and that the test data is more straightforward than the training data. Moreover,
it could be beneficial to also omit some of the naive samples to balance the dataset but given the
already limited dataset, it can have a negative impact on the model’s performance and therefore

we decided against it.

Transfer learning using MobileNetV2

In this section, we will explore whether transfer learning with the well-established MobileNetV2
model would be the better approach. The motivation for choosing the MobilenetV2 architecture is
due to its light weight and fewer number of tunable parameters as our dataset is very small. Other
networks such as ResNet, Alexnet and GooglLeNet were considered but these networks are much
deeper compared to MobilenetV2, with many more layers and parameters. This makes it more
prone to overfitting, especially when dealing with small datasets. The deeper architectures enable
the networks to capture more complex features in the data, including noise and outliers, which

can hinder the model’s ability to generalize to new data. As mentioned before, machine learning
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usually relies on the high quality and size of training data which is only sometimes readily available
in real-world scenarios (SHG microscopy images are an excellent example of this problem) [155].
Moreover, training models based on small datasets are usually very application-specific and
cannot be applied to other datasets. In these situations, transfer learning is appealing because
researchers can leverage models trained on much bigger datasets to conform to their datasets
and refine the learning process to be valid for their application [155]. Table 4-4 provides the

accuracies of this model when trained using our dataset.

Table 4-4: Average training and test accuracy for different data splits using MobileNetV2

Data split Training accuracy test accuracy
10% 0.84 0.78
20% 0.54 0.49
30% 0.58 0.74
40% 0.49 0.33

We see that the model’s accuracy deteriorates after a 10% data split. From the loss curve, we
have overfitting after epoch 4 for 10%, after epoch 8 for 20% and after epoch 12 for 40% data
splits. Interestingly for MobilenetV2, we see overfitting happening for just the 10% and 40% data
split cases in which overfitting happens after epochs 8 and 23. For the 20% and 30% data split,
the 0.001 dropout rate in the MobilenetV2 architecture causes the training loss to fluctuate,

whereas the gap between the test and training loss remains around the same size [299].

To summarize, with such a small dataset, training a simple classification network from scratch is
optimal but data specific. Using transfer learning with well-known networks is a solution, but due
to the complexity and number of layers present in such architectures, overfitting and underfitting

are more prominent in that case.

Conclusion

In this study, SHG and P-SHG microscopy were used to study the ECM within tumor-bearing
mammary glands. SHG microscopy can help identify the collagen aggregates that appear at the
tumor-stroma boundary, and P-SHG microscopy is an excellent tool for analyzing collagen fibrillar
orientations in the ECM. We have shown an automated SHG and P-SHG microscopy system that

minimizes human intervention. We apply two image analysis methods for the collagen fibrillar
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orientation analysis. CurveAlign is a powerful tool that can be applied to SHG images to
distinguish collagen fibrillar orientation with respect to the tumor boundary. Our custom-written P-
SHG analysis method can achieve the same results with greater detail. Furthermore, deep
learning and image classification can be powerful tools to differentiate between healthy and
tumor-bearing samples within the limitation of a small training dataset. Therefore, if deep learning
is to be used for SHG imaging, a database should be available where imaging labs worldwide can
pool their images. This would help to remove data availability as a limiting problem. After
investigating the variation of different parameters, the best model that showed promising results
with our small dataset was the 30% data split with 0.2 dropout and three layers of data
augmentation that gave a test accuracy of 73%. Another limitation in our study is the imaging
speed, that requires further studies to improve. It is worth highlighting that P-SHG analysis, in
conjunction with image classification and widefield imaging, has shown great promise in cancer
research and provides excellent insight into the underlying mechanisms of collagen formation and
remodeling in the ECM [156]. In addition, in future studies, we will explore the feasibility of
adapting the machine learning approach used in this study to other tissue types. This will allow
us to determine whether the approach is amenable to a wider range of applications and to identify
any limitations or challenges that may arise. It will be valuable to expand this work's scope to
include the analysis of metastatic lung tissue. This will let us assess the changes in collagen
patterns that occur in metastatic outgrowth and potentially identify markers for early detection.
Moreover, SHG and P-SHG imaging are well-established methods that have been successfully
used for many years. In contrast, image analysis for these methods is still in its infancy, thereby
necessitating the exploration of different analysis methods that can be used alongside these

imaging techniques.
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5.1 Main article

Abstract.

This study explored the application of deep learning in Second Harmonic Generation (SHG)
microscopy, a rapidly growing area. This study focuses on the impact of glycerol concentration
on image noise in SHG microscopy and compares two image restoration techniques: Noise2Void
2D (N2V 2D, no reference image restoration) and content aware image restoration (CARE 2D,
full reference image restoration). We demonstrated that N2V 2D effectively restored the images
affected by high glycerol concentrations. To reduce sample exposure and damage, this study
further addresses low-power SHG imaging by reducing the laser power by 70% using deep
learning techniques. CARE 2D excels in preserving detailed structures, whereas N2V 2D
maintains natural muscle structure. This study highlights the strengths and limitations of these
models in specific SHG microscopy applications, offering valuable insights and potential

advancements in the field.
Keywords: Deep learning, SHG microscopy, image restoration, myosin imaging, ECM imaging, denoising.

Introduction.

Second harmonic generation (SHG) microscopy is a powerful nonlinear optical microscopy
technique that has been successfully used in medical and nonmedical imaging for years
[2,37,300,301]. Image quality in microscopy crucially depends on the signal-to-noise ratio (SNR),
which is the ratio of signal intensity to noise. Factors such as laser power, exposure time, and the
sample itself play crucial roles in influencing the SNR. It is well known that an increase in laser
power while enhancing the SHG signal risks thermal damage to the sample [14]. For example,
increasing the laser power can produce a higher SHG signal but may cause thermal damage to
a sample [302-304]. Therefore, finding the optimal trade-off between the laser power and
achieving an acceptable SNR (i.e., having the sample structure visible with noise present) is
critical. In addition to the instrumental parameters, sample type is another critical criterion that
can affect the SNR in SHG microscopy. While we observed strong SHG signals from collagen
rich tissues [40] and skeletal muscles [97], some samples, such as microtubules, inherently have
a weak SHG signal [123]. Samples with a lower SHG signal have a low SNR, and their structure

can be buried under background noise, depending on the experimental conditions.

Within the evolving landscape of SHG microscopy, deep learning is a transformative tool for
classification, segmentation, and image restoration. We provide ample examples of different

studies focusing on different applications. In [305] a classification application, a method for

126



diagnosing ovarian cancer during surgery using SHG imaging and deep learning techniques is
introduced. By training a convolutional neural network (CNN) on a vast dataset of SHG images,
the system can differentiate between normal, benign, and malignant ovarian tissues with 99.7%
accuracy. In [306] a segmentation application, the effectiveness of a U-Net CNN for improving
the segmentation of collagen fibers in SHG images was demonstrated. The CNN successfully
addressed the challenges posed by varying the SHG image intensity across the depths. This
method consistently outperformed the traditional thresholding techniques, particularly in deeper
tissue sections. Although not focused solely on SHG, [307] compared different denoising
techniques to improve the quality of nonlinear multimodal images in head and neck tissue
analysis. In this study, traditional methods (e.g., median filter and Gerchberg-Saxton),
established deep learning networks (e.g., DnCNN), and innovative networks (e.g., Noise2Noise,
MIRNet, and incSRCNN), specifically focusing on their ability to reduce noise while preserving
critical image details. In another study, researchers introduced a fast large-area multiphoton
exoscope (FLAME) for imaging human skin [308]. The FLAME system incorporates a deep-
learning-based image restoration technique using a content-aware image restoration model
(CARE) network. This approach improves the quality of the images captured by the system.
These studies demonstrate the broad potential of deep learning in SHG microscopy. However,
tissue-specific variations in signal intensity and the impact of preparation techniques introduce
unique challenges for image restoration in SHG. The application of deep learning techniques
specifically tailored for improving low-SNR SHG imaging has not been extensively explored. This
gap presents a unique opportunity for research aimed at addressing the specific challenges
associated with SHG microscopy, particularly in tissue-specific imaging under low-SNR

conditions.

Image restoration enhances the image quality by eliminating noise, artifacts, and other distortions
[164,309] without creating hallucinations (generation of visual structures that are not based on
the actual information available in the input image [310]). Deep learning image restoration has
been successfully applied to fluorescence- [164,309], super-resolution- [311,312], structured
illumination- [313], and electron microscopy [165,314]. It has also been applied to multiphoton

microscopy [307,308].

Three of the many different types of available image restoration techniques to remove noise are
noise-to-ground truth (N2GT) [164], noise-to-noise (N2N) [315], and noise-to-void (N2V) [166].
N2GT refers to the removal of noise from an image by comparison to a reference image, also

known as the ground truth image, which is assumed to be noise-free and used as a guide in the
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denoising process [164]. The availability of GT images is a limitation of this method [164,166].
N2N refers to removing noise from an image (low SNR) by comparing it to another noisy image
(high SNR) rather than to a GT image [315,316]. This method is more widely applicable because
it does not require a noise-free image [315]. One model in this category is the content-aware
image restoration model (CARE) based on the U-net convolutional neural network [317]. It is
among the models that require high- and low-SNR image pairs to perform image restoration [316].
N2V refers to removing noise from an image by creating a deep neural network to learn the
statistical properties of the noise and the signal within one image [166]. Unlike previous methods,
which require an image pair, this method does not require such a requirement and uses a single

noisy image for training.

Common methods for evaluating denoised image quality include the Structural Similarity Index
Metric (SSIM) and Peak Signal-to-Noise Ratio (PSNR) to ensure hallucination-free image
generation. Both metrics were used to compare the similarities between the original and
processed images. The PSNR is calculated by taking the ratio of the maximum signal to the mean
squared error (MSE) between the original and processed images. The higher the PSNR value,
the higher is the quality of the processed image. The SSIM is a metric that uses structural and
textural information. It compares structural information by measuring the similarities between the
original and processed images’ mean value, standard deviation, and cross-covariance [318]. The
value of SSIM ranges between 0 and 1, where 1 indicates perfect similarity, O indicates poor
similarity, and -1 indicates perfect anti-correlation. The SSIM and PSNR metrics have different

sensitivities to image degradation [175,181,319].

Our study uniquely addressed the tissue-specific imaging challenges of collagen and myosin
within the SHG microscopy domain, investigating the effects of glycerol concentration on
zebrafish fixation [320], and exploring low-laser-power imaging across diverse biological
specimens, including muscle tissues from two zebrafish strains, and the intricate extracellular
matrix barrier of tumor-bearing mouse mammary glands. This focus on tissue specificity coupled
with our tailored application of advanced denoising techniques sets our research apart. By
applying CARE 2D and N2V 2D in such a targeted manner and evaluating their effectiveness with
mSSIM and PSNR metrics, our study not only highlights the adaptability and efficacy of deep
learning for SHG microscopy but also emphasizes its potential for tissue-specific imaging under
low-SNR conditions. This approach ensures the preservation of structural details and effective
noise elimination, contributing significantly to the advancement of the field and opening new

avenues for precision in biomedical imaging.
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Methodology.

Tissue Preparation.

Adult wild-type and mutant Survival Motor Neuron (SMN) zebrafish (Danio rerio) were maintained
at 28 °C under a light/dark cycle of 12/12 h according to the Westerfield zebrafish book [320].
Embryos were raised at 28.5 °C, collected, and staged as previously described [321]. All animal
experiments were performed in compliance with the Canadian Council for Animal Care guidelines
and approved by the INRS-LNBE ethics committee. Genotyping of SNM larvae was performed
by high-resolution melting analysis (HRM) using genomic DNA extracted by a noninvasive
genotyping protocol [322]. Larval (5-day postfertilization 5 (dpf)) SNM —/- (homozygous) and wild-
type zebrafish were fixed in 4% paraformaldehyde overnight at 4° C. After fixation, the larvae
were rinsed several times (1 hour) with PBS-Tween and mounted on slides in 50—-100% glycerol,

and finally, their muscles were imaged using SHG microscopy.

Female BALB/c mice were purchased from Charles River Laboratories. All animal experiments
were conducted according to the regulations established by the Canadian Council of Animal Care
under protocols approved by the McGill University Animal Care and Use Committee. The murine
tumor-bearing samples used in this study were derived from orthotopic injection of 4T1 cells into
nulliparous mice. 4T1 cells were provided by Dr. Peter Siegel (McGill University) and cultured in
DMEM (Wisent) supplemented with 10% FBS and antibiotics. Cells were maintained at a low
passage number prior to use. For both models, 1 x 10° cells were injected into the 4th mammary
fat pad and tumors were allowed to grow for two weeks. Fourteen days post-injection, the mice
were euthanized, and the primary tumors and surrounding stroma were removed. The samples
were fixed in 10% Neutral Buffered Formalin (VWR International LLC) for 48 h at 4 °C, after which
they were stored in 70% ethanol. Following fixation, naive and tumor-bearing mammary glands
were embedded in paraffin and serially sectioned (5 pum thickness). The slides were
deparaffinized and rehydrated by submersion in three rounds of xylene, two rounds of 100%
ethanol, one round of 95% ethanol, and one round of 70% ethanol (5 min per round). The
rehydrated slides were then rinsed for 5 min in distilled water. Coverslips (VWR International LLC,
No. 1) were mounted onto slides using the Permount mounting medium (Fisher). The slides were

allowed to dry overnight before downstream microscopy.
SHG imaging setup.
SHG microscopy was performed using a custom-stage inverted scanning microscope, as shown

in Figure 5-1. A mode-locked Ti:Sa laser (Tsunami, Spectra-Physics) pumped by a 12 W Millenia

Pro laser (Spectra-Physics) was used. This laser delivered pulses of approximately 810 nm with
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150 fs pulse duration, at 80 MHz repetition rate with an average power of 2.5 W. For power
control, a half-wave plate and a Glan-Thompson polarizer were used to adjust the average power
from 20 mW to 110 mW (0.25 to 1.38 nJ pulse energy). Given the size of the samples for imaging,
sample scanning was performed using a high-speed motorized XY scanning stage (MLS203,
Newton, NJ). The focus was adjusted coarsely and finely by using mechanical and piezoelectric
motors (Pl Nano-Z, USA). An air objective (UplanSApo 20X, NA 0.75, Olympus, Japan) was used
for the illumination. A condenser was used to collect the SHG signal of the sample, which was
detected using a photomultiplier tube (R6357, Hamamatsu Photonics) set at 800 V. The SHG
signal was isolated using two spectral filters that were placed before the photomultiplier. A short-
pass filter that blocks any wavelength higher than 720 nm (i.e., the input fundamental laser light)
was employed with a bandpass filter centered at 405 nm to filter out any residual input light. A
multichannel 1/0 board (National Instruments) and custom-written Python program were used for
signal acquisition and synchronization. Given the sample size and acceleration and deceleration
times of the motorized scanning stage, each SHG image had an acquisition time of a few minutes.

Raw data were visualized using Fiji-ImagedJ software (NIH, USA).

PMT
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stage £ Objective
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____________ mirror DAQ board
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Figure 5-1: Layout of the SHG inverted microscope. The microscope and data acquisition were performed
using a unified custom Python program.

Image restoration using CARE 2D and N2V 2D.

Image restoration was performed using the CARE 2D and N2V 2D models. The models were run
using the Jupyter notebook provided by the ZeroCostDL4Mic toolbox [189] on Google
Colaboratory. For the mammary gland cancer samples, the N2V 2D model was trained from
scratch for 2000 epochs on 392 image patches (image dimensions: (500,500), patch size: (64,64))
with a batch size of 128. The CARE 2D model was trained from scratch for 300 epochs on 200
image patches (image dimensions: (500,500), patch size: (64,64)) with a batch size of 16. The
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reason for having different numbers of training epochs is to compensate for the limited amount of
available reference data and allow the N2V 2D model to train for a longer time compared to the
CARE 2D model. This extended training duration is essential for N2V 2D, as it leverages self-
supervised learning, relying on inherent noise patterns within the data to improve its performance,
which necessitates additional training to effectively model and remove noise. For the zebrafish
samples, the N2V 2D model was trained from scratch for 2000 epochs on 800 image patches
(image dimensions: (333,1333), patch size: (64,64)) with a batch size of 128. The CARE 2D model
was trained from scratch for 300 epochs on 50 image patches (image dimensions: (333,1333),
patch size: (64,64)) with a batch size of 16. Data augmentation was used in its default setting in
all cases, and for CARE 2D, the Augmentor was used [323]. The essential Python packages
include TensorFlow, Keras, CSBdeep, NumPy, and Cuda. The training was accelerated using a

Tesla T4 GPU on Google servers.

Results and discussion

Fixation: evaluation of the dependence of noise as a function of glycerol content

Sample preparation is essential for any microscopic method [324]. The chemicals used in fixation
can cause image deterioration in SHG microscopy for some samples, such as microtubules [123].
Moreover, there is no universal protocol for fixation and each tissue has a unique method [300].
Three glycerol concentrations were tested to determine the best fixation composition for the SHG
imaging of zebrafish samples. Because of the different locations of the samples, different image
sizes were obtained with a laser input power of 75 mW at the focus of the microscope objective.
Figure 5-2 depicts the different samples with different glycerol concentrations that were imaged

and their denoised counterparts.
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Original Denoised

200 pm

Figure 5-2: Left column: SHG images of different zebrafish samples with a) 50%, b) 80%, and c) 100% glycerol
concentration in their fixation alongside zoom in (d,e) for samples b and c, respectively. As the glycerol content
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in the fixation increases, the SHG image becomes noisier. Right column: Denoising based on the N2V 2D
method was performed for 80 and 100% glycerol content, and it was unnecessary for 50% concentration.

Our study found a correlation between glycerol concentration and noise in the final image; the
lower the glycerol concentration, the better the image quality. The minimum amount of glycerol
that could be used without disturbing the fixation process is 50%. We then tested N2V 2D and
CARE 2D to denoise images with higher glycerol concentrations. The CARE 2D model for these
samples resulted in overfitting [188,299] during model training and was not applicable. N2V 2D
could successfully restore images in both high-concentration glycerol cases and retrieve the
structural information of the fish muscle, as shown in the right column. Given the amount of time
and effort required for sample preparation, in some cases, deep learning tools can be used to
restore the image quality instead of restarting the sample preparation to determine the perfect
chemical composition and physical location of the sample. The intensity profiles for 80% and

100% glycerol are shown in Figure 5-3.

80%

Normalized intensity

100%

Figure 5-3: The intensity profile of 80% and 100% glycerol content fixation was imaged at 75mW input laser
power for the original (black dotted line) and denoised (red solid line) images.

For the intensity profile, we plotted the intensity values of the pixels along the yellow line, as
shown in Figure 5-3. From this Figure, we can see that for 80% glycerol, the model enhances the
contrast of the image. A comparison with the original signal shows that it follows the same overall
intensity pattern as a cleaner (omission of noise) signal. For 100% glycerol, the signal fits the
intensity profile of the original, but without noisy spikes. Therefore, in cases where the chemicals
in the fixation cause noise in the sample images (glycerol content in our case), N2V 2D is a

perfect model for image restoration, given that sample preparation and fixation are time

133



consuming. Moreover, it can reduce the number of animals that need to be sacrificed for sample

preparation.

CARE 2D and N2V 2D models on tumor-bearing mammary glands.

We created low- and high-SNR SHG images by varying the laser input power at the focus of the
objective lens. Using this approach, we obtained a less noisy (ground truth) measurement with
110 mW of input laser power at the focus of the microscope objective. The CARE 2D and N2V
2D models were applied to SHG images of the boundary of a murine mammary gland tumor, and

Figure 5-4 shows the results generated by these models.

Ground Truth Original CARE 2D N2V 2D
1omw | b) s TR

P

30mw fa-tl s

Figure 5-4: CARE 2D and N2V 2D models were applied to the collagen structure at the tumor boundary of a
tumor-bearing mammary gland. a) The reference “ground-truth image is used to denoise the images using
_CARE 2D and for visual comparison. (b,c) present low SNR SHG images, and (d) presents a high SNR SHG
image.

The original image in Figure 5-4(b) shows an extremely poor SNR. Using the CARE 2D model,
we can still extract structural information about the boundary. However, this method leads to
“hallucinations,” in which a structure is created within the tumor area that is absent. Moreover, the
N2V 2D model could not provide a clean image. The original image in Figure 5-4(c) presents a
low SNR; in this case, CARE 2D provides the complete structure of the collagen boundary around
the tumor, with some fine details being blurred. N2V 2D can only denoise the bright spots in the

image; a silhouette of the boundary is visible but not usable for analysis. The original image in
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Figure 5-4(d) presents good SNR. Here, CARE 2D enhances the crispness of the SHG images
obtained, and we observe an improvement in the details and sharpness of the image. The contrast
was also improved, as shown by the intricate details of the collagen boundary structure. In this
case, N2V 2D also performs well, and the details of the collagen boundary structure are visible
and patchy, with point-like bright spots where the SHG signal is strong. The mSSIM and PSNR

parameters of the results are summarized in Table 5-1.

Table 5-1: mSSIM and PSNR metric for CARE 2D and N2V 2D model applied to the SHG imaging of the
boundary of tumor-bearing mammary glands.

Model CARE 2D N2V 2D

Laser power (mW) 20 30 70 30 70

Original v. GT mSSIM 0.3310.38]0.85| 0.38 0.85

Denoised v. GTmSSIM | 0.34 | 0.79| 0.89 | 0.55 0.80

Original v. GT PSNR (dB) (20.83(23.12(29.73( 23.12 | 29.74

Denoised v. GT PSNR (dB)|20.83]|27.57|30.01| 21.81 | 24.44

For the CARE 2D model, we observed a negligible improvement in SSIM between the original
and denoised images in the 20 mW case, and the PSNR remained the same. For 30 mW, we see
the highest improvement, as the mSSIM metric almost doubles between the original and denoised
images, while the PSNR has a substantial boost. For 70 mW, although some improvement in
mSSIM and PSNR is observed, it is not as drastic as in the case of 30 mW. For the N2V 2D
model, we see a substantial improvement in the mSSIM for the 30 mW case, but the PSNR
decreases. We can see that the image did not improve in terms of details and structural
information with visual inspection. For the 70 mW case, the mSSIM and PSNR of the denoised
image are lower than those of the original image, and a visual inspection reveals the patchy and
disjointed nature of the denoised image. In addition to the quality control metrics, we also
considered a random region of interest and measured the performance of the models by plotting

the intensity profile in Figure 5-4.
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Figure 5-5: Intensity profile of a random ROI at the tumor boundary. where a) represents the visual
representation of the ROI for the different power profiles. The intensity profiles for the ROIs can be seen at 20
mW (b), 30 mW (c), and 70 mW (d). The legends correspond to the original structure (black solid line), GT (blue
dotted line), CARE (red solid line), and N2V (orange solid line).

For 20 mW (see Figure 5-5(a,b)), we can see that the original intensity profile contains many noise
spikes, while the denoised model can smoothen these spikes and provide a profile closer to the
ground truth image with overshoots in some places. CARE 2D provides a good fit that smoothens
out the original signal and remains close to the ground truth intensity profile, but with some peaks
that are smoothed. At 30 mW (see Figure 5-5(a,c)), the performance of CARE outshines N2V 2D,
and we can see that the intensity profile for CARE resembles the ground truth image’s intensity
profile. N2V 2D, however, only provides some spots with high intensities in both the ROI and the
intensity profile. At 70 mW (see Figure 5-5(a,d)), the performances of both models are
comparable, and they both provide an intensity profile that fits close to the ground truth image.
Both models exhibited enhanced contrast, characterized by more pronounced peaks and deeper

valleys in the denoised images, indicating a clearer differentiation between features.

Overall, we conclude that the CARE 2D model performs better than N2V 2D because of the
additional information input available during training in the form of a ground-truth image.
Nevertheless, in the higher SNR cases, the performances of both models were comparable.
Therefore, for exceptionally low SNR cases, CARE 2D is a better choice for denoising the detailed
structures, especially in the case demonstrated in this section. For higher SNR cases, both

models performed well in denoising the image and providing structural details. In the next section,

136



we examine the performance of these models in the case of myosin, another common biological

structure imaged using SHG microscopy.
CARE 2D and N2V 2D for denoising zebrafish muscle structures.

The CARE 2D and N2V 2D models were also applied to two zebrafish strains: WT and SMN. The
results are shown in Figure 5-6.
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Figure 5-6: for a) wild-type (WT) and b) SMN fish along their intensity profiles from a random ROI. The ROl were
identical across all samples. The legends correspond to the original structure (black solid line), GT (blue dotted
line), CARE (red solid line), and N2V (orange solid line). The scale bar for all images is 200um.
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For WT samples at 20 mW and 30 mW, the predicted images appear to have improved in terms
of pure SHG intensity when compared to their original counterparts. However, there was also a
noticeable loss of detail in muscle structure. The CARE 2D smoothens the distinct muscle
structure, resulting in a more uniform appearance. In terms of muscle structure preservation, N2V
2D outperformed CARE 2D in all the cases. While some muscle structure distinctions can still be
seen at 70 mW with CARE 2D, most of them have been smoothed out. However, N2V 2D does
not deliver the same SHG intensity restoration as CARE 2D, except at 70 mW. Despite this, N2V
2D is preferred in muscle structure studies as it focuses on the morphology and structural changes

in different samples, as well as in intensity.

Our study also aimed to evaluate the performance of the CARE 2D and N2V 2D models for the
SMN strain, which has a lower SHG intensity than the WT samples. In low-power cases, both
models performed poorly with patchy and choppy muscle representations, although CARE 2D
showed better performance than N2V 2D at 20 mW and 30 mW. At 70 mW, both models
performed comparably, with CARE 2D delivering more SHG intensity, whereas N2V 2D preserved
more muscle details. Surprisingly, N2V 2D outperformed CARE 2D in terms of muscle detail
preservation and denoising of zebrafish muscle structures, even though it did not have a reference
image for training. Therefore, N2V 2D is the preferred model for these applications. Based on
Figure 5-6, CARE 2D matches the GT image intensity for WT samples at low power but at the
cost of smoothing out most of the signal. N2V 2D, however, provides an intensity profile that is
closer to the original image in terms of preserving details. At 70 mW, CARE 2D provides the same
intensity value as the original image while reducing noise spikes, and N2V 2D again falls in the
middle between the CARE 2D model and the original signal in terms of the intensity value while
following the patterns of the original image signal. For the SMN samples, CARE 2D excels at
producing the same intensity profile as the GT image at 20 mW. However, for the other samples,
CARE 2D overshoots the intensity values, and N2V 2D performs better at fitting the intensity

pattern of the denoised image to the GT image.
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The mSSIM and PSNR metrics of the CARE 2D and N2V 2D model are summarized in Table 5-
2:

Table 5-2: mSSIM and PSNR metric for CARE 2D and N2V 2D models applied to different zebrafish strains.

Laser Model | Sample | Original v. GT | Denoised v. GT Original v. GT Denoised v. GT
power (mW) type mSSIM mSSIM PSNR (dB) PSNR (dB)

20 CARE WT 0.07 0.58 17.38 21.03
30 CARE WT 0.15 0.56 17.7 20

70 CARE WT 0.44 0.66 19.96 22.67
20 N2V WT 0.07 0.44 17.37 19.87
30 N2V WT 0.15 0.5 17.7 20.24
70 N2V WT 0.44 0.6 19.96 21.26
20 CARE smn 0.04 0.36 18.66 20.84
30 CARE smn 0.05 0.29 18.71 20.19
70 CARE smn 0.22 0.39 19.68 21.51
20 N2V smn 0.04 0.15 18.66 19.33
30 N2V smn 0.05 0.27 18.71 20.44
70 N2V smn 0.22 0.39 19.68 21.49

From Table 5-2, we can see a significant improvement across the board, and all predicted images
are better than their original counterparts, as reflected in the mSSIM and PSNR metrics. However,

the loss of detail in the muscle structure is visually evident in Figure 5-6.

To summarize, Both CARE 2D and N2V 2D successfully reduced the noise in low-SNR SHG
images. However, CARE 2D often outperforms N2V 2D when laser power is a major constraint,
enabling details even at very low-power settings, as demonstrated in our mammary gland images
(Figure 5-5). While this holds true for mammary gland tissue, N2V 2D may better retain intricate

details such as striated muscle fibers in zebrafish when image noise is less severe (Figure 5-6).
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These nuanced denoising outcomes across tissue types suggest that while CARE 2D excels with
more homogenous patterns of stromal tissues, N2V's self-supervised learning is advantageous
for handling diverse and variable patterns in muscular tissues. This observation is supported by
the visual distinction in the muscle structure preserved by N2V, indicating its ability to maintain
important biological details that are not fully captured by traditional metrics such as mSSIM and
PSNR. The variability in performance can be tied to the representativeness of the training data,

adaptability of the algorithms to different noise distributions, and different tissues.
Conclusion

Although deep learning image restoration has been explored in the context of SHG microscopy,
our study provides novel insights by directly comparing the performance of CARE 2D and N2V
2D on SHG collagen and myosin images, revealing their tissue-specific strengths and
weaknesses. Deep learning in image restoration has gained traction over the past few years but
has not yet been thoroughly applied to SHG microscopy. SHG microscopy relies on many
parameters for high-quality imaging [14], which can be tedious and time-consuming in some
scenarios. As demonstrated here, deep learning image restoration can be an alternative solution
to enhance SHG imaging during post-processing. Our study highlights the importance of
considering a sample’s specific characteristic when choosing a denoising method. CARE 2D and
N2V 2D are powerful models used in image restoration that work with (CARE 2D) and without
(N2V) high-quality reference images [166,316].

We found that the glycerol concentration during fixation can lead to noisy images. At higher
glycerol concentrations, N2V 2D can be used to restore SHG images despite this additional noise.
Therefore, deep learning image restoration opens the possibility of fixing the significant noise and
image deterioration caused by fixation chemicals. In addition, it can reduce the number of animal
sacrifices required for sample preparation. Another crucial experimental aspect of SHG imaging
of bio-samples is limiting the input laser power to reduce the possibility of sample damage at the
cost of image SNR. This 70% decrease in the input laser power is also particularly useful for
shifting the imaging from fixed to live samples. Moreover, at 30 mW, we can see the full layout of
the structure at 110 mW. Given that the SHG signal is quadratically proportional to the input laser
power, the input power can be significantly reduced using deep learning without loss in the SHG

signal.

The nuanced denoising outcomes for 2D and N2V CARE across tissue types demonstrate their
unique capabilities. While CARE 2D excels with more homogenous patterns of stromal tissues

owing to its training on well-represented datasets, it can sometimes lead to oversmoothing,
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obscuring fine details. N2V's self-supervised learning, on the other hand, allows it to maintain
important structural nuances in tissues with variable patterns like muscle, even if this approach
sometimes results in lower quantitative metrics. This observation is supported by the visual
distinction in the muscle structure preserved by N2V, indicating its ability to maintain important
biological details that are not fully captured by traditional metrics such as mSSIM and PSNR. The
variability in performance can be tied to the representativeness of the training data and
adaptability of the algorithms to different noise distributions. A hybrid approach that combines
reference-based learning of CARE 2D with the self-learning capabilities of N2V could potentially
harness the strengths of both methods, leveraging CARE 2D's structure-preserving capabilities
in consistent-pattern tissues while utilizing N2V's detail-retaining flexibility in variable-pattern
tissues. An algorithm trained to classify tissue types can enable dynamic switching between
CARE 2D and N2V 2D based on image characteristics, providing a more robust and versatile

denoising approach.

Future research directions could include developing an adaptive framework that initially classifies
tissue types and then applies the most suitable denoising techniques. Machine learning
algorithms can be deployed to dynamically select between CARE 2D and N2V 2D based on the
visual and noise characteristics of the tissue, potentially guided by an ensemble of metrics that
include both traditional scores and assessments of structural fidelity. In summary, the optimal
denoising strategy may vary not only with the tissue type but also with the specific structural
features and noise characteristics present in the SHG images. Balancing quantitative assessment
with qualitative visual analysis is essential to advance the application of deep learning in SHG
imaging denoising. Looking ahead, we envision a composite model that synergizes CARE 2D's
structural precision with N2V 2D flexible adaptation to varied noise profiles governed by real-time,
sample-specific algorithmic decisions. This paradigm shift necessitates the construction of
comprehensive datasets, fostering model generalization across SHG applications. The broader
implications of our work suggest a transformative impact on live imaging methodologies,
advocating minimal laser usage to preserve the sample integrity. Ultimately, this study lays
foundational groundwork, steering future explorations towards more sophisticated and versatile

imaging solutions.
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6.1 Main article

Abstract: Polarization second harmonic generation (P-SHG) imaging is a powerful technique for
studying the structure and properties of biological and material samples. However, conventional
whole-sample P-SHG imaging is time consuming and requires expensive equipment. This paper
introduces a novel approach that significantly improves imaging resolution under conditions of
reduced imaging time and resolution, utilizing enhanced super-resolution generative adversarial
networks (ESRGAN) to upscale low-resolution images. We demonstrate that this innovative
approach maintains high image quality and analytical accuracy, while reducing the imaging time
by more than 95%. We also discuss the benefits of the proposed method for reducing laser-
induced photodamage, lowering the cost of optical components, and increasing the accessibility
and applicability of P-SHG imaging in various fields. Our work significantly advances whole-
sample mammary gland P-SHG imaging and opens new possibilities for scientific discovery and

innovation.
Introduction

The mammary gland undergoes hormonal remodeling post-childbirth [325], comprising the well-
studied mammary epithelium and the less-understood stroma [326], which includes adipocytes,
fibroblasts, immune cells, and an extracellular matrix (ECM) of collagen, laminins, and other
proteins [327,328]. The ECM plays a crucial role in gland development, especially during puberty,
when stromal expansion and collagen orientation precede epithelial morphogenesis [329,330].
However, the effect of dysregulated lipid metabolism on this process remains underexplored,

highlighting a gap in the understanding of mammary gland development.

SHG microscopy is the preferred method for imaging collagen in tissues because of its superior
spatial resolution, reduced phototoxicity and photobleaching, focal plane selectivity, and
straightforward sample preparation [2]. This label-free imaging technique enables the detection
of changes in fibrillar collagen within the mammary gland, a capability that is unmatched by other
imaging methods [2,158]. SHG microscopy has played a vital role in collagen research; however,
relying solely on SHG intensity for orientation studies can introduce interference [232], and
hindering fibril orientation imaging [52]. To address these limitations, polarization-resolved SHG
microscopy (P-SHG) has emerged, offering the combined benefits of SHG microscopy and
polarimetry [47,52,92,169,288]. P-SHG is extensively used in collagen-related investigations,
providing precise information about fibril structures within the imaging plane, which is a valuable
asset in mammary gland research [331,332]. In conventional P-SHG imaging, smaller sample

areas are imaged and studied. However, this approach risks overlooking essential spatial
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information, especially in developmental studies, where the macroenvironment plays a crucial
role. As the process shifts to imaging larger areas, the coherent nature of the SHG signal may
result in the cancellation of some variations, which is a limitation acknowledged in the context of
our research. In cancer boundary research the broad orientation of the collagen barrier is
informative [158,333]. The same applies to understanding macroenvironmental effects on
mammary gland development, where whole-sample P-SHG imaging is essential. While this
approach may come with the caveat of missing some finer variations and fibers, the holistic view
it offers on collagen orientation across the entire gland is essential for a comprehensive
understanding of the developmental processes at play. Acknowledging the challenges associated
with the cost and time of whole-sample P-SHG imaging, our study leveraged the capabilities of

deep learning to overcome these barriers.

Deep learning (DL) significantly enhances SHG microscopy and image analysis by automating
the interpretation and quantification of SHG signals [185,187,334,335]. DL has become a
transformative force, significantly advancing tasks, such as classification, segmentation, and
image restoration in SHG imaging. Highlighted studies have demonstrated its broad utility: one
successfully applied a convolutional neural network (CNN) to differentiate ovarian tissue types
with nearly perfect accuracy using SHG imaging [305], while another showed the effectiveness of
U-Net CNN in segmenting collagen fibers, surpassing traditional techniques in handling the
challenges of variable image intensity in SHG microscopy [306]. Despite the diverse applications
explored, from cancer diagnosis to collagen fiber segmentation, a critical gap remains: the tailored
application of deep-learning image super-resolution enhancement for P-SHG imaging. This
presents an exciting avenue for future research, focusing on the development of bespoke deep-
learning solutions that cater to the intricacies of P-SHG imaging. Our approach significantly
improves the imaging resolution under conditions of reduced imaging time and resolution,
addressing the challenges of prolonged imaging times and potential sample damage associated
with conventional whole-sample P-SHG imaging by utilizing Generative Adversarial Networks
(GANS).

Advanced techniques and super-resolution imaging supported by DL not only overcome technical
limitations but also reduce noise, as exemplified by Generative Adversarial Network-based
approaches that effectively achieve image upsampling [140]. A Generative Adversarial Network
(GAN) is an artificial intelligence framework for generating new data, particularly images, audio,
and text [336]. The framework operates by pitting two neural networks against each other in a

competitive manner: a generator and discriminator.

146



The generator network uses random noise as the input and generates data that resemble the
actual data. For example, in image generation, the generator attempts to create images that
visually resemble the actual images. The Discriminator network then acts as a judge that attempts
to distinguish between the actual data (e.g., real images) and fake data generated by the
generator. It is a binary classifier that learns to identify genuine data from generated data [336].
Over time, the generator becomes better at creating indistinguishable data from the actual data,
whereas the discriminator becomes better at distinguishing real data from fake data. Ideally, this
process results in a generator that produces high-quality data that resembles actual data. GANs
have been applied in various fields such as image synthesis, style transfer, super-resolution,

image-to-image translation, and text-to-image synthesis [336].

Another advanced form of GAN is Enhanced Super-Resolution Generative Adversarial Network
(ESRGAN), which is a deep learning-based approach for image super-resolution [337]. Image
super-resolution is the process of increasing the image resolution while preserving or enhancing
its quality. ESRGAN's architecture builds upon the idea of GANs but incorporates modifications
to improve the super-resolution process [337]. One crucial aspect is the use of a perceptual loss
function, which measures the difference between the high-resolution ground-truth image and the
generated image in terms of perceptual features. The loss function of the discriminator measures
how well the discriminator can classify real data as real and the generated data as fake. The
generator loss function measures how well the generator can fool the discriminator to classify the
generated data as real data. The generator aims to maximize the probability of the discriminator

making a mistake.

The perceptual loss function allows ESRGAN to focus on capturing high-level features of an
image, such as edges, textures, and structures, rather than relying solely on pixel-wise similarity
[337]. ESRGAN generates images that appear visually plausible and realistic to human observers.
The ESRGAN framework is trained using a combination of adversarial loss (to ensure realism)
and perceptual loss (to maintain visual quality). This training process involves iteratively updating
the generator and discriminator networks to improve the quality of the generated image over time
[337].

In this study, we acquired high-quality SHG images of the whole mammary gland. We then
obtained low-quality P-SHG images of the entire sample and upscaled them using the ESRGAN
model. Next, to test the accuracy of the method, we obtained high-quality P-SHG images of some
areas of different samples and compared the results with upscaled P-SHG image results. Quality

metric assessments were performed to ensure that the integrity and structure of the original
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images were maintained. For simplicity, we introduce those that were implemented in this study,
namely, the Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), Perceptual
Image Quality Evaluator (PIQE), and Naturalness Image Quality Evaluator (NIQE). Multiple image
quality metrics were used, because one metric is unsuitable for considering every aspect of a
generated image [169]. The PSNR measures the maximum pixel value ratio to the mean squared
error in an image [319]. Higher PSNR values indicate better image quality and correlate well with
perceived visual quality. SSIM evaluates the luminance, contrast, and structure between two
images and considers human visual perception. The SSIM ranges from -1 to 1, where 1 indicates
identical images, 0 indicates no similarity, and -1 indicates anticorrelation [318]. PIQE is designed
to evaluate the visual quality of images in a manner that closely aligns with human perception
[184]. It incorporates various visual features such as contrast, luminance, and texture to compute
a quality score that reflects perceived image quality [184]. NIQE explicitly targets the assessment
of naturalness in images [183]. It computes features related to the distribution of pixel values,
luminance, contrast, and other statistical properties [183]. Unlike SSIM and PSNR, which require

a reference image, NIQE and PIQE do not require a reference image [183,184].

In addition, we evaluated the intensity, texture, and contrast metrics to provide a comprehensive
assessment of the models and upscaled images. The intensity metrics included mean intensity,
standard deviation of intensity, median intensity, and minimum and maximum intensity values.
The mean intensity reflects the average pixel intensity of the image, whereas the standard
deviation of the intensity measures the variation in pixel intensities [338]. The median intensity
provides the middle value of pixel intensities, and the minimum and maximum intensities indicate

the range of pixel values in the image [338].

Contrast metrics included root mean square (RMS) contrast and Michelson contrast [339]. The
RMS contrast measures the overall contrast of the image, indicating the level of contrast
enhancement, while the Michelson contrast evaluates the contrast between the maximum and

minimum pixel intensities [339].

Texture analysis included gray-level co-occurrence matrix (GLCM) metrics such as dissimilarity,
homogeneity, energy, and correlation [340]. Dissimilarity measures the difference between
neighboring pixel values, with lower values indicating more uniform texture. Homogeneity reflects
the closeness of the distribution of elements in the GLCM to the GLCM diagonal, indicating a
uniform texture [340]. The energy, or angular second moment, measures textural uniformity, and

the correlation measures the linear dependency of pixel values [340].
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We also included advanced metrics such as the Feature Similarity Index (FSIM) for evaluating
structural similarity [341], Visual Information Fidelity (VIF) for quantifying visual information
preservation [342], Edge Preservation Ratio (EPR) for assessing edge retention [343], and local
binary patterns (LBP) for texture analysis [344]. Histogram-based metrics such as histogram
intersection, histogram correlation, and Kullback-Leibler divergence were used to compare the

statistical properties of the images [345].
Methodology
Sample preparation

Sterol-CoA knockout, wild-type, and heterozygous mice were sacrificed at the following key
stages of mammary gland development: prepubertal (week 4), pubertal (week 6), and adulthood
(week 10). In adulthood, the female mice were cycled using an impedance meter that provided
resistance to the vaginal mucosa. A peak indicated proestrus. The mice were sacrificed via CO-
asphyxiation, followed by cervical dislocation. The mouse was pinned down on a foam pedestal,
the abdomen was opened, and mammary glands were visualized. The left inguinal mammary
glands were harvested immediately and placed on glass slides. The mammary gland was
stretched using pliers to regain its original shape. A parafilm film was placed on the gland and
flattened for a few minutes using heavy metal weight. The slides were immediately immersed in
a bath of Carnoy's fixative (100% EtOH, chloroform, glacial acetic acid) for four hours at room
temperature to fix the tissues. The slides were gradually rehydrated in water and alcohol baths
(95%, 75%, 50%, and 25% EtOH). The slides were then stained in a carmine alum bath (2%
carmine and 5% potassium aluminum sulfate dissolved in water) for three hours to dye the
mammary epithelium with a violet hue. The tissues were then gradually dehydrated in alcohol
baths (25%, 50%, 75%, and 95% EtOH) and incubated overnight in xylene. The colored mammary
glands were then imaged using a lightbox, camera, and measurement key to compare the
samples. Once digitized, the epithelial branches, number of terminal buds, and general

architecture of the mammary gland were analyzed using ImageJ [346].
Imaging setup

SHG microscopy was performed using a custom laser stage inverted scanning microscope. A
mode-locked fiber Ytterbium (Yb) laser (MPB Communications Inc., Montréal, CA) was used. This
laser emits at 1040 nm and delivers 125 fs pulses at a repetition rate of 25 MHz with an average
power of 3 W. A half-wave plate and a Glan-Thompson polarizer adjusted the average power

from 20 to 125 mW (0.8 to 5 nJ pulse energy). Given the size of the samples for imaging, sample
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scanning was performed using a high-speed motorized XY scanning stage (MLS203; Newton,
NJ, USA). The focus was adjusted coarsely and finely by using mechanical and piezoelectric
motors (Pl Nano-Z, USA). An air objective (UplanSApo 10X, NA 0.3, Olympus, Japan) was used
for the illumination. A condenser was used to collect the SHG signal of the sample, which was
detected using a photomultiplier tube (R6357, Hamamatsu Photonics) set to 800 V. The SHG
signal was isolated using two spectral filters that were placed before the photomultiplier. A short-
pass filter (blocking any wavelength higher than 720 nm, i.e., the input fundamental laser light)
and bandpass filter centered at 515 nm were employed to filter out the residual input light. A
multichannel 1/0 board (National Instruments) and custom-written Python program were used for
signal acquisition and synchronization. Given the sample size and the acceleration and
deceleration times of the motorized scanning stage, each SHG image had an acquisition time of
a few minutes. Raw data were visualized using Fiji-lmagedJ software (NIH, USA). The imaging

configuration is shown in Figure 6-1.
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Figure 6-1: Imaging configuration for SHG and P-SHG setups. The motorized half-wave plate was removed
during SHG imaging and added during the P-SHG imaging.
For low-quality P-SHG, a motorized half-wave plate was used to rotate the linear polarization of
the laser beam to acquire the images. Images were captured for 18 polarization states in 10-
degree steps from 0° to 170°. The motorized half-wave plate and sample scanning were
synchronized using a custom-built Python program. For high-quality P-SHG imaging, random
regions of interest of 1000x1000um were imaged from different samples, and an air objective

(UplanSApo 20X, NA 0.75, Olympus, Japan) was used for focusing.
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Upscaling images

Image upscaling was performed using multiple models: Ultrasharp_4X [347],
ESRGAN_Nomos2K [348], NMKD [348],4X-UniScaleV2_Sharp [349], and BSRGAN [350]. The
upscaling was done through the ChaiNNer program, which can be found at

https://github.com/chaiNNer-org/chaiNNer. Additionally, we explored guided upscaling

techniques via PixTransform [351], employing high-quality SHG images as references to inform
the upscaling of 18 distinct P-SHG images across a spectrum of iterations (1,000-30,000) and
channel-split modes. This process was optimized for performance using an RTX 3060Ti GPU with

a local computing setup.
Result and discussion
Model Performance and Selection Criteria

Upon rigorous evaluation, it became apparent that not all models performed equally. Despite the
potential of each method, only Ultrasharp_4X has emerged as a viable solution that closely
approximates the quality and fidelity of original high-quality SHG images (GT). This finding was
critical, as our primary goal was to ensure that the upscaled images retained as much of the
original detail and structural integrity as possible without introducing artifacts or distortions that

could compromise analytical accuracy.

To objectively assess the performance of each upscaling method, we compiled the key metrics
listed in Table 6-1.

Table 6-1: Comprehensive performance comparison of upscaling models

mSSIM NRMSE PSNR Absolute PSNR Percentage
Method Visual Inspection
Ratio Ratio Improvement Improvement
UltraSharp 0.939 1.036 -0.92 -5.02% Most true to original
Introduced noticeable
BSRGAN 0.953 1.047 -0.70 -3.84% ) )
artifacts in complex patterns
Tended to oversmooth,
NMKD 0.691 1.164 -1.83 -10.08% o )
losing fine details
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Better detail preservation
NOMOS 0.866 1.127 -1.44 -7.90% but Tended to oversmooth

and artifact

Not suitable for P-SHG

application

PixTransform 1.335 1.100 -1.13 -6.22%

Significant loss of detail and
UniScale 0.627 1.209 -2.20 -12.12%
increased blurring

Table 6-1 provides a side-by-side comparison of each evaluated upscaled model against the key
performance metrics. The mSSIM ratio reflects how well the upscaled image maintains structural
similarities with the original image, with higher values indicating better preservation.
Ultrasharp_4X (0.939) and BSRGAN (0.953) show excellent structural preservation, while
UniScale (0.627) performs poorly. The NRMSE ratio evaluates the error level relative to the
original image, where a value close to 1 indicates a minimal error. Ultrasharp_4X (1.036) and
BSRGAN (1.047) perform best in this metric. The PSNR improvement quantifies the change in
image quality, with values closer to zero indicating better preservation. While all models showed
some degradation, BSRGAN (-0.70, -3.84%) and Ultrasharp_4X (-0.92, -5.02%) showed the least

degradation.

Additionally, the Visual Inspection column assesses the ability of each model to preserve the
essential details and integrity of the original image. Ultrasharp_4X demonstrated balanced
performance across all metrics. Its mSSIM ratio of 0.939 indicates excellent structural
preservation, whereas an NRMSE ratio of 1.036 suggests minimal error introduction. Although it
shows a slight PSNR degradation (-0.92, -5.02%), this is less severe compared to the other
models. Crucially, visual inspection confirmed that Ultrasharp_4X produced images most
accurate to the original, preserving essential details and structural integrity without introducing

noticeable artifacts.

To further evaluate the performance of each model, we conducted a detailed analysis of various

image statistics and texture metrics, as presented in Table 6-2.
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Table 6-2: Statistics, texture and contrast metrics comparison of upscaling models

Low Ultrashar PixTransfor
Metric Original BSRGAN | NMKD NOMOS Uniscale
quality p m
Statistics
0 0 0 0 0 0 0 0
- min
Statistics
1 1 1 1 1 1 0.816 1
- max
Statistics
0.208 0.191 0.179 0.175 0.197 0.193 0.100 0.157
- mean
Statistics
» 0.201 0.161 0.169 0.161 0.194 0.194 0.072 0.2
-s
Statistics
. 0.133 0.137 0.118 0.125 0.129 0.122 0.078 0.082
-median
Texture- 1228.4
1299.21 333.98 485.215 400.138 995.67 127.484 1630.77
contrast 8
Texture-
dissimila 20.374 6.418 8.791 7.487 19.226 15.052 6.414 20.866
rity
Texture-
homoge 0.110 0.646 0.357 0.410 0.131 0.203 0.239 0.174
neity
0.022
Texture-
0.078 0.052 0.056 0.023 0.035 0.045 0.039
energy
Texture-
correlatio 0.753 0.901 0.869 0.882 0.749 0.796 0.811 0.687
n
Contrast-
0.959 0.836 0.940 0.912 0.976 0.994 0.708 1.259
rms
Contrast-
Michelso 1.000 1.000 0.994 1.000 1.000 1.000 1.000 1.000
n
Constrat-
mean_int 0.209 0.192 0.179 0.176 0.198 0.194 0.102 0.159
ensity
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Contrast-
intensity 0.040 0.026 0.028 0.026 0.037 0.037 0.005 0.040

_var

Table 6-2 provides a detailed comparison of various metrics between the original high-quality
image, low-quality image, and all the upscaled images. This comprehensive analysis allows us to

evaluate how each model preserves or enhances different aspects of an image.

In terms of basic statistics, all models maintained the same minimum intensity (0.000) as the
original and low-quality images. However, there were notable differences in the mean and median
intensities across the models. NMKD (mean: 0.197, median: 0.129) and NOMOS (mean: 0.193,
median: 0.122) maintained mean intensities closest to the original (0.208), potentially improving
the overall brightness. Ultrasharp_4X (mean: 0.179, median: 0.118) and BSRGAN (mean: 0.175,
median: 0.125) show slightly lower values, while PixTransform (mean: 0.100, median: 0.078) and
UniScale (mean: 0.157, median: 0.082) demonstrate more significant reductions in overall

brightness.

The standard deviation of the pixel intensities provides insight into image contrast. UniScale
(0.200) and NMKD/NOMOS (both 0.194) closely matched or slightly reduced the standard
deviation of the original image (0.201), whereas PixTransform showed a marked reduction

(0.072), indicating a significant loss of contrast.

For texture metrics, we observed varying performance across the models. NMKD (contrast:
1228.485, dissimilarity: 19.226) and UniScale (contrast: 1630.773, dissimilarity: 20.866) showed
remarkably high contrast values, even exceeding those of the original image (contrast: 1299.211,
dissimilarity: 20.374). This could indicate over-sharpening or enhancement of the noise.
Ultrasharp_4X (contrast: 485.215, dissimilarity: 8.791) and BSRGAN (contrast: 400.138,
dissimilarity: 7.487) provide a more balanced improvement over the low-quality image (contrast:
333.988, dissimilarity: 6.418). NOMOS (contrast: 995.677, dissimilarity: 15.052) falls between

these extremes, whereas PixTransform shows a significant reduction in contrast (127.484).

In terms of contrast metrics, NOMOS (0.994) and NMKD (0.976) achieved the highest RMS
contrast, surpassing the original image (0.959). UniScale shows the highest value (1.259), which
might indicate over-enhancement. Ultrasharp 4X (0.940) provided a more conservative
enhancement, closely approximating the contrast of the original image. PixTransform showed the

lowest RMS contrast (0.708), indicating a significant loss of overall contrast.
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While Table 6-1 provides a comparison of upscaled models using fundamental image quality
metrics (MSSIM, PSNR, and NRMSE), a more specialized analysis is necessary to fully
understand how each upscaled image compares to the original high-quality image across various
aspects of image quality. To this end, we employed a series of specialized metrics that focused
on feature similarity, visual information fidelity, edge preservation, texture similarity, and intensity
distribution. Table 6-3 presents the results of these analyses. These metrics offer complementary
insights into how well each upscaling method preserves or enhances the different aspects of the

original image quality.

Table 6-3: Specialized Image Quality Metrics for Upscaled vs. Original Image Comparison

Origina
Ultrasharp_4 BSRGA NMK NOMO PixTransfor | UniScal
Metric lvs
X N D S m e

Low
FSIM 0.884 0.910 0.904 0.914 0.919 0.918 0.896
VIF 0.046 0.062 0.054 0.090 0.103 0.089 0.117
EPR 0.042 0.019 0.017 0.013 0.016 0.673 0.014
LBP_Similarity 0.471 0.758 0.836 0.886 0.693 0.960 0.891

Histogram_Intersectio
0.898 0.894 0.884 0.959 0.863 0.708 0.728
n

Histogram_Correlation 0.964 0.962 0.937 0.990 0.935 0.839 0.722
KL_Divergence 0.130 0.049 0.084 0.014 0.086 1.377 0.237

Table 6-3 provides additional insights based on the comparison metrics. FSIM scores were high
across all models (ranging from 0.896 to 0.919), with NOMOS slightly outperforming the others.
VIF scores show more variation, with UniScale (0.117) scoring the highest, followed by NOMOS
(0.103) and NMKD (0.090). LBP_Similarity showed significant improvements for all models
compared to the low-quality image (0.471), with PixTransform (0.960) and UniScale (0.891)
scoring the highest.

Histogram-based metrics are particularly strong for NMKD, with high scores in
Histogram_Intersection (0.959) and Histogram_Correlation (0.990), suggesting that it is highly

effective at preserving the overall intensity distribution of the original image. The Kullback-Leibler
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Divergence shows NMKD (0.014) and Ultrasharp_4X (0.049) outperforming other models,
indicating better preservation of the original image's intensity distribution. However, it is important
to note that PixTransform showed a higher KL_Divergence (1.377), suggesting less similarity to

the original distribution in this aspect.

In our exploration of various upscaling techniques, we initially considered the PixTransform-
guided upscaling approach, which has the potential to leverage high-quality SHG images as
references for improving the upscaling process. Theoretically, this method offers a promising
avenue for enhancing the resolution and detail of P-SHG images, which is critical for accurately
identifying and analyzing collagen fiber orientation and other microstructural details. However, the
unique characteristics of P-SHG imaging, in which image properties such as signal intensity and
fiber orientation dynamically change with varying laser input angles, present unforeseen
challenges. During preliminary trials, we observed that while PixTransform effectively filled in
missing details in regions of low signal-to-noise ratio (SNR) or where details were obscured owing
to low resolution, it did so without accounting for the critical angle-dependent variation
characteristics of P-SHG images. Specifically, the guided upscaling process, in its attempt to
interpolate and enhance image details based on high-quality references, inadvertently introduced
artifacts and inaccuracies by "filling in the gaps" in a manner inconsistent with actual, angle-
dependent SHG signal variations. This discrepancy arises from the inherent design of the model
to generalize from the reference images, leading to misrepresentations where P-SHG imaging
relies on precise laser angle-specific signal variations to accurately delineate fiber orientations.
The resultant images, although visually improved in terms of sharpness and resolution,
misrepresented the underlying biological structures by overlaying or amplifying details that did not
align with the actual orientation and distribution of collagen fibers, as dictated by varying the laser

angles.

Furthermore, our exploration was extended to the BSRGAN, another sophisticated upscaling
model known for its impressive enhancements in various imaging contexts. Despite its
capabilities, BSRGAN failed to meet the stringent requirements of accuracy and detalil
preservation in P-SHG image upscaling. Similar to guided upscaling attempts, BSRGAN
introduced alterations that were detrimental to the integrity of our imaging technique, rendering it
an unsuitable option. A visual comparison of the upscaling methods elucidates the distinctions in

the performance and outcome quality, as shown in Figure 6-2.
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Figure 6-2: Comparative analysis of upscaled models for P-SHG imaging. This Figure illustrates the side-by-
side comparison of a) original high-quality and b) low-quality SHG images against images upscaled using
various models including c) BSRGAN, d) Nomos2K, e) Ultrasharp_4X, f) NMKD, g) guided upscaling via
PixTransform, and h) uniscale.

This comparative analysis highlighted the necessity of selecting an upscaling model that not only
enhances image resolution but also has an acute sensitivity to the nuances of scientific imaging.
The challenges encountered with guided upscaling and BSRGAN further reinforce the importance
of a tailored approach, particularly for specialized imaging techniques such as P-SHG, where
precision and detail fidelity are non-negotiable. Implementing "Ultrasharp_4X" using the
ChaiNNer program has marked a significant step toward democratizing advanced P-SHG imaging
enhancement. Despite its powerful capabilities, accessibility is limited. The program was
optimized for ease of use and required minimal deep learning expertise from users. Hardware
requirements were clearly documented, with the existing computational resources of most modern

research laboratories found to be sufficient for basic operations.
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Histological images

The histological images and their corresponding SHG imaging counterparts are shown in Figure
6-3.

Figure 6-3: Histological and SHG Images of both samples provide a comprehensive view of tissue
microstructure.

Comparing histological images with their SHG imaging counterparts can be immensely helpful in
providing a comprehensive view of tissue structure and organization. This combined approach
offers a more holistic understanding of tissue architecture. This integration helps during the
upscaling process by providing structural guidance from the histological images, so that the

enhanced SHG images maintain the structural fidelity of the tissue.

Original vs. upscaled SHG images
The original image of the sample, along with the low-quality image and its upscaled counterpart,

is shown in Figure 6-4.
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Figure 6-4: This Figure includes three categories of images: original high quality (1a,2a) , original low quality
(1b,2b) and upscaled images from two different samples (1c,2c). The original high-quality images (1a,2a) had
a resolution of 1800%800 pixels, low-quality images (1b,2b) had a resolution of 225%x100 pixels, and upscaled
images (1c,2c) had a resolution of 3600x1600 pixels.

The original high-quality images were characterized by a resolution of 1800x800 pixels, which
indicated a substantial amount of detail and clarity in each image. These images were captured
with high precision and provided a rich visual content. The imaging time for each image was
approximately 18 min, given the speed of the scanning stage and chosen pixel size of 10um.
Although ideal for single image application, P-SHG requires 18 images in our case; therefore, if
we apply the same imaging scenario, it will take over 4 h of imaging per sample, which also
translates to a constant laser-sample interaction that can damage the sample. In contrast, the
original low-quality images belong to a feature with a significantly reduced resolution of 225x100
pixels. This lower resolution implies a substantial loss of detail and sharpness compared with their

high-quality counterparts.

However, capturing each image takes approximately 45 s, meaning that we can capture 18
images for P-SHG in the same amount of time as it takes to capture a single high-quality image
for one polarization. Unfortunately, the P-SHG analysis method used does not perform well on
low-resolution images; therefore, the loss of detail and sharpness encountered must be
addressed. Therefore, we applied image upscaling to low-quality images using the Ultrasharp_4X
model based on the ESRGAN. As mentioned, other upscaled models were also applied to the

images; however, based on the results, it was decided that the Ultrasharp_4X model provided the
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best upscaled images in our use case. We also used high-quality images to upscale 18 low-quality
images. This method did not work well because, in P-SHG, changing the laser input angle will
cause changes in the SHG based on fiber alignment. We observed that the model attempted to
fillin missing intensities and omit specific pixels to shape the image based on the reference image;
therefore, individually upscaling each P-SHG image was optimal for our application. By applying
Ultrasharp_4X twice, we could enhance the resolution of the images by 16x and obtain higher-
resolution upscaled images of 3600%x1600 pixels. While the upscaled images appear more
detailed and visually larger than the original images, they often suffer from quality degradation
owing to the interpolation and extrapolation involved in the upscaling process. Therefore, we must
perform the detailed quality metric controls mentioned in the Introduction to ensure that the

integrity of the information is intact.

Quality control

In the quality control section of our study on image upscaling, we meticulously assessed the
effectiveness of ESRGAN in improving the quality of the low-resolution P-SHG images. Our
evaluation strategy encompassed a blend of no-reference and full-reference image quality
metrics, supplemented by statistical analysis through analysis of variance (ANOVA), to provide a
holistic understanding of the upscaled image quality in relation to their original high-quality

counterparts.

No-reference Quality Metrics

We began with no-reference quality metrics, specifically the Naturalness Image Quality Evaluator
(NIQE) and the Perceptual Image Quality Evaluator (PIQE), which assess image quality without
the need for a reference image. These metrics are particularly useful for evaluating the perceptual

quality of the upscaled images. The findings are summarized in Table 6-4.

Table 6-4: No-reference quality metrics

Sample | Method | Source | Prediction | Ground

NIQE 8.940 3.186 6.707

PIQE 40.797 23.234 46.404

NIQE 9.908 2.749 7.532

PIQE 89.992 31.906 52.931
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The lower scores for the predicted images across both the NIQE and PIQE metrics suggest an
enhancement in the image quality post-upscaling. This indicates that our method successfully
improved the perceptual quality of the images, making them more natural and visually pleasing
than original high-quality (ground) images. These results confirm the effectiveness of our
upscaling method, although it is important to note the potential difference between computational
assessments of quality and human perception. Using PIQE and NIQE in this context makes sense
because they are non-reference image quality metrics that are ideal for evaluating the quality of
upscaled images when no high-quality original is available for comparison. Their application offers
a method for quantitatively assessing improvements in image quality that may not be immediately
apparent by visual inspection alone. Despite the concern that these metrics might be optimized
for "computer perception," the lower scores for the predicted images compared with the source
images suggest a successful enhancement. However, the discrepancy between these scores and
human perception highlights the importance of using a combination of metrics, including full-
reference metrics such as MS-SSIM, PSNR, and NRMSE, to obtain a comprehensive evaluation

of image quality post-upscaling.

Full-reference Quality Metrics

Next, we assessed image quality using the full-reference metrics MS-SSIM, PSNR, and NRMSE.
These metrics require a reference image for comparison and offer different perspectives on image
quality, focusing on structural similarity, signal fidelity, and error. The results are summarized in
Table 6-5.

Table 6-5: Full-reference quality metrics

Sample Method Source Prediction
MS-SSIM 0.33 0.31
a PSNR 18.31 17.39
NRMSE 0.28 0.29
MS-SSIM 0.01 0.01
b PSNR 9.14 9.14
NRMSE 0.56 0.56
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The similar MS-SSIM, PSNR, and NRMSE values between the source and prediction images for
both samples underscores the capability of our upscaling algorithm to maintain the structural
integrity and signal fidelity of the images. Although there were slight variations in some metrics,
the overall similarity in the scores suggests that our method is adept at enhancing the images
without compromising the original quality. Building on a detailed examination of both the no-
reference and full-reference quality metrics, we further enriched our analysis by conducting
ANOVA to statistically ascertain the differences in image quality across the Source, Prediction,
and Ground groups. This statistical approach allowed us to rigorously test for significant variations
in the image quality resulting from our upscaling process. Below, we integrate the ANOVA findings

with the previously discussed quality metric evaluations.

ANOVA Results

After evaluating the image quality using both no-reference and full-reference metrics, we
performed ANOVA to statistically compare these metrics across different image groups (source
vs. prediction). ANOVA was used to identify any statistically significant differences in the image
quality, thereby providing a quantitative basis for evaluating the efficacy of our upscaling methods.

The results are presented in Table 6-6.

Table 6-6: ANOVA results

Metric Highest Effect
Metric Details | F-Value Range | P-Value Range
Category Size (n?)
No-reference NIQE and PIQE
0.654 0.543 0.109
Quality Metrics combined
MS-SSIM,
Full-reference PSNR, and
0.003 to 0.006 0.948 to 0.982 0.001
Quality Metrics NRMSE
combined
Various texture 0.248
Texture 0.442-1.651 0.216-0.811
metrics (Homogeneity)
Various 0.194 (RMS
Contrast 0.233-1.199 0.359-0.941
contrast metrics Contrast)
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Various
Comparison comparison 0.087-2.239 0.112-0.993

metrics

0.309 (Hist.

Correlation)

In Table 6-6, the F-value represents the ratio of the variance between groups to the variance
within groups, with larger values indicating greater differences between groups [352]. A p-value
indicates the probability of obtaining test results at least as extreme as the observed results,
assuming that the null hypothesis is correct [352]. A p-value less than 0.05 is typically considered
statistically significant. The effect size (n?) quantifies the magnitude of the difference between
groups with values of 0.01, 0.06, and 0.14 typically considered small, medium, and large effects,

respectively [353].

The ANOVA results indicated no statistically significant differences between the source and
prediction groups or among upscaling methods for any set of metrics (p > 0.05). However, the
variation in the F-values and effect sizes (n?) suggests practical differences that warrant
consideration. The no-reference quality metrics (NIQE and PIQE) showed a medium effect size
(n?> = 0.109), indicating a noticeable impact on perceptual image quality. In contrast, the full-
reference quality metrics (MS-SSIM, PSNR, and NRMSE) show a very small effect size (n? =

0.001), suggesting high preservation of structural similarity and signal fidelity.

Among the specific metric categories, comparison metrics, particularly Histogram Correlation,
showed the largest effect size (n? = 0.309), followed by texture metrics (homogeneity, n? = 0.248)
and contrast metrics (RMS Contrast, n? = 0.194). These moderate effect sizes suggest practical
differences in these aspects of image quality across the upscaling methods, despite the lack of

statistical significance.

It is important to note that a lack of statistical significance does not necessarily mean that there
are no meaningful differences. This may be due to several factors: our relatively small sample
size, which can limit the power of statistical tests; high variability within groups; and the nature of

the improvements made by our upscaling method, which may be consistent but subtle.

Despite the lack of statistical significance, the moderate effect sizes observed for some metrics
suggest practical differences that warrant consideration when selecting an upscaling method for
specific P-SHG imaging applications. These findings highlight the importance of considering both

statistical and practical significance in evaluating imaging enhancement techniques.

Combining the no-reference and full-reference quality metrics with the ANOVA results provided a

comprehensive validation of our upscaling methods. This analysis demonstrates that our
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ESRGAN-based approach can enhance low-resolution images while preserving their quality. The
lack of statistically significant differences, coupled with the moderate effect sizes in certain
metrics, suggests that the upscaling process does not significantly alter perceived or structural
image quality. This validation confirms the efficacy of the method and underscores its potential
applicability in bioimaging and beyond, where maintaining the image integrity is paramount. The
nuanced differences revealed by the effect size analysis provide valuable guidance for optimizing
upscaling methods for specific imaging contexts, ensuring that the most critical aspects of image

quality are preserved in each application.

P-SHG analysis results
Before conducting P-SHG analysis, we performed CurveAlign measurements to determine
whether low-quality images could be analyzed using this method [158]. Figure 6-5 summarizes

the results for the two samples.

Figure 6-5: Comparative analysis using CurveAlign on samples: original high-quality (1a, 2a), low-quality (1b,
2b), and GAN-upscaled images (1c, 2c). CurveAlign accurately identifies the collagen fiber orientation in high-
quality images (1a, 2a). In low-quality images (1b, 2b), the performance diminishes, with only larger
recognizable fibers. However, the upscaled images (1c, 2c) show significantly improved analysis, with fiber
orientation discernibility comparable to that of the original high-quality images. This demonstrates the efficacy
of GAN-based upscaling in enhancing image analysis for CurveAlign.

In Figure 6-5, we present a comparative analysis using CurveAlign software on two sets of
samples: original high-quality images (1a, 2a), their lower-quality versions (1b, 2b), and images
enhanced via GAN-based upscaling (1c, 2c). CurveAlign proficiently identifies the orientation of

collagen fibers in high-quality images (1a, 2a), demonstrating the effectiveness of the software
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with images of adequate resolution and clarity. However, acquiring such images required 15 min
of continuous laser exposure per image, totaling 4.5 hours for the 18 images necessary for P-
SHG analysis. This extended exposure can damage the samples, leading to degradation and
affecting the repeatability of experiments. Additionally, fresh samples risk drying out and altering
their morphology if removed from their chemical bath for more than a few minutes, potentially
reducing SHG intensity or extinguishing harmonophores. Therefore, minimizing the laser

exposure and expediting the imaging times are desirable.

Analysis of the lower-quality images (Figure 6-5, 1b, 2b) revealed significant limitations in both
CurveAlign and our custom P-SHG algorithm. These tools struggled to accurately discern the
collagen fiber orientation, identifying only a few larger fibers. This highlights the challenges that
image analysis software faces with suboptimal image quality, where the loss of detail severely
limits the accuracy and comprehensiveness of the P-SHG analysis. Many existing P-SHG
analysis tools are optimized for higher-resolution inputs, often failing to detect finer structures or
misinterpret noise as significant features when applied to low-resolution images (please refer to

Supplement 1 Figure S1, and S2, respectively).

Remarkably, the GAN-upscaled images (Figure 6-5, 1c, 2c) showed a significant improvement,
with CurveAlign's performance on these images being comparable to that on the original high-
quality images. This comparative analysis underscores the necessity of our upscaling approach,
rather than performing P-SHG analysis directly on low-resolution images. Our analysis
demonstrates that the upscaled images provide a superior approximation of the original high-
quality images across multiple metrics. For instance, the FSIM improved from 0.884 (low quality)
to 0.910 (Ultrasharp_4X), and the LBP similarity increased from 0.471 to 0.758. Although
upscaling does not recover all fine details, it strikes a balance between detail preservation and

noise reduction.

The significant improvements in fiber orientation discernibility, as seen in Figure 6-5 (1c, 2c),
clearly demonstrate the value of this upscaling approach. These enhancements are crucial for
accurate P-SHG analysis, allowing for better differentiation of collagen structures and more
reliable orientation measurements. Our approach leverages the speed of low-resolution imaging
while obtaining analysis results that closely resemble those from high-resolution images, offering
a pragmatic solution to the trade-off between imaging speed and analysis accuracy in P-SHG
studies.In conclusion, this GAN-based upscaling approach markedly enhances the utility of lower-
quality images for detailed analysis, extending the applicability of CurveAlign software and other

tools to a broader spectrum of image qualities. It provides an efficient solution that combines
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shorter laser exposure times with image upscaling, overcoming the limitations posed by lower-
quality images and technical constraints of sample preparation, and potentially opens new

avenues for rapid, nondestructive P-SHG imaging in various biological applications.

Next, Images were captured at 18 polarization states, spanning 0°-170° degrees in 10-degree
increments, with synchronization achieved using a custom Python program. Initially, the effort
was to make the analysis software work based on low-quality images, but this was unsuccessful
because there was too much loss of detail for the analysis to be accurate. The initial phase of our
study attempted to conduct analyses based on low-quality images; however, this approach
encountered substantial obstacles owing to the significant loss of detail, which compromised the
accuracy of our analyses. To circumvent this issue, each image was individually upscaled using
the Ultrasharp_4X model, thereby enhancing the resolution and clarity essential for accurate P-
SHG analysis. A custom MATLAB script, inspired by the foundational work referenced
in[63,158,236], was pivotal for processing upscaled P-SHG images. This script employs a spatial
FFT algorithm to execute a Fourier transform on intensity measurements across different angles.

For further details consult [63,236]. Figure 6-6 summarizes the results of the analysis.

Figure 6-6: P-SHG imaging of collagen fiber orientation in mammary glands. Panels (a) and (b) display the SHG
signals of two distinct tissues, visualized in a range of colors corresponding to the collagen fiber orientations
relative to the polarization angle of the incident light. The color wheel insets map these orientations, with each
color representing a specific angle of polarization, illustrating the complex and heterogeneous arrangement
of the fibers within the samples. Notably, both images contained dark regions inside the fibers, which were
attributed to areas where the intensity of the SHG signal remained static, indicating a uniform orientation of
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collagen fibers over the polarization states captured. Owing to this uniformity, the spatial fast Fourier
transform algorithm cannot discern variations, resulting in no color assignment in these specific regions.

Our P-SHG analysis protocol, detailed in Figure 6-6, encompasses 18 SHG images (32-bit TIFF)
taken in 10-degree steps from 0°to 170°. Each angle (0-360 degrees) is denoted by a distinct
color, providing a visually intuitive depiction of the fiber orientation across the sample. In addition,
a fibrillar histogram accompanies the images, offering a quantitative analysis of the fiber
orientations. Some areas in the analyzed images appear darker than those in the original images.
Dark regions within the fiber network arise because of the uniform fiber orientation over
polarization states. This results from the smoothing effect of the upscaling algorithm and impedes
the ability of the FFT to detect internal variations within fibers. However, it is noteworthy that FFT
remains adept at discerning the periphery of fibers and accurately identifying their borders.
Importantly, the fiber borders were aligned with the interior, providing a coherent overall fiber
direction. This consistency between the border and interior orientations ensures that despite the
limitations in detecting internal variations, the method still effectively conveys the general
directionality of the fibers. For analyses in which specific internal areas of the fiber are of interest,
a targeted focus on these regions is required to overcome the limitations of these smoother,

homogeneous sections (see Figure 6-7).

Furthermore, dark areas around the sample resulted from the deliberate removal of background
elements and non-essential muscle structures surrounding the fibers, a step taken to enhance
the clarity and focus of the analysis of the collagen fibers. Figure 6-6a. shows a network of
collagen fibers with varying orientations, as indicated by the spectrum of colors present in the
tissue, where each color corresponds to a different fiber orientation relative to the polarization
angle of the incident light. The color wheel inset serves as a reference for interpreting these
orientations. The vibrant colors suggest a diverse and complex arrangement of fibers, with pink
hues indicating fibers oriented in one direction, and other colors representing different angles.
Figure 6-6b. displays a collage of colors, indicating the orientation of collagen fibers. The
presence of bright green and yellow hues suggests that the fibers have orientations different from
those in the first image. The color intensity and distribution indicated that this sample may have a
denser or more aligned collagen network than the first sample. The results, including the color
wheel, orientation map, anisotropy parameter map, and histogram data, were meticulously

compiled for each sample.
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Figure 6-7: Comparative P-SHG Analysis Across Three ROIs. Each row represents a distinct region of interest
(ROI) from different samples, showcasing original high-quality images (20X objective), low-quality images
initially captured with a 10X objective then digitally zoomed and cropped, and their GAN-upscaled
counterparts. Despite the initial lower resolution, upscaling restores detail and smoothness, yielding a fiber
orientation analysis comparable to the original high-quality images. Normalized intensity vs. laser input angle
graphs for each set illustrate the consistency of P-SHG responses across all imaging modalities, affirming the
accuracy of collagen fiber orientation details in the upscaled images.

In Figure 6-7, we focus on the analysis of regions of interest (ROIl)s extracted from different
samples and their counterparts, which were enhanced through an upscaling process. This
examination is pivotal for assessing the fidelity of upscaling techniques to preserve the structural
and optical properties that are essential for accurate P-SHG analysis. For our analysis, images of
the selected P-SHG ROIs were captured using a 20X objective. 20X is optimal for resolving the
intricate patterns of collagen fiber orientation while ensuring adequate field coverage. Notably,
the images earmarked for upscaling were initially obtained using a 10X objective, before being
digitally zoomed and cropped. This approach was strategically employed for low-quality images
to simulate the conditions in which high-resolution data were not readily available or feasible to
obtain, thus mimicking a real-world scenario in which upscaling could be particularly beneficial.

Upon comparing the original and upscaled (yet zoomed and cropped) P-SHG images, a key
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observation was the smoothness of the upscaled images. This smoothness did not detract from
the structural details within the images, but rather enhanced the visual clarity, making the
interpretation of collagen fiber orientations more straightforward. More importantly, when we
quantified the P-SHG response by plotting the normalized intensity against the laser input angle
for both the original and upscaled images, we observed remarkably consistent responses. The
graph corresponding to the upscaled P-SHG images exhibited a smoother curve, an effect
attributable to the upscaling process, which tended to reduce noise and interpolate between data

points to create a more continuous representation of the intensity response.

Crucially, despite the smoother appearance of the graphs in the upscaled images, the overall
shape and trend of the P-SHG intensity responses remained unchanged. This congruence
indicates that the upscaling process, while enhancing the visual quality of the images, did not alter
the fundamental biophysical properties captured by P-SHG imaging. Thus, the fidelity of fiber
orientation details in the upscaled images was validated, underscoring the utility of upscaling as
a viable method for improving image quality in P-SHG analysis without compromising the

accuracy of collagen fiber orientation information.

Conclusion

In conclusion, our research has demonstrated significant advancements in whole-sample
mammary gland P-SHG imaging, reducing the imaging time from a time-consuming 4.5 hours to
a mere 13.5 minutes (more than 95% reduction). Acquiring 18 high-quality images suitable for P-
SHG analysis is a time-intensive process that poses the risk of damage to samples, particularly
those of considerable size. To mitigate these challenges, we propose an innovative method that
involves capturing 18 low-quality images and subsequently enhancing their resolution by using a
GAN-based approach. This technique not only substantially reduces the required imaging time
but also ensures preservation of sample integrity during the imaging process. By leveraging the
capabilities of GANs to generate high-resolution images from their lower-quality counterparts, this
approach offers a promising alternative that balances the need for high-quality imaging with the
imperative of minimizing potential harm to delicate samples. In our pursuit of image upscaling, we
explored various models, ultimately selecting "ultrasharp_4X" based on ESRGAN owing to its
remarkable similarity to the original images. Although we initially considered using high-quality
images as references for upscaling, this approach led to undesirable alterations, making it
unsuitable for our specific application. This method saves substantial amounts of time and offers

several advantages.
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One of the most noteworthy advantages of our accelerated P-SHG imaging process is the
substantial reduction in the laser exposure of the sample. Laser-induced photodamage is a
concern when working with delicate biological specimens, and minimizing this risk is crucial for
preserving the integrity and quality of the sample. Our faster imaging method minimizes the
exposure time, reduces potential harm to the sample, and allows for extended observation without
compromising the biological or material properties under investigation. Using this technique, we
achieved fiber orientation analysis on par with that of high-quality images captured with a 20X
objective. This accelerated process was complemented by a meticulous image analysis protocol,
in which each angle of polarization was represented by a specific color on a wheel, translating
into an intuitive visual depiction of the fiber orientation throughout the sample. Accompanying
fibrillar histograms provides quantitative analysis that enhances the interpretive depth of the
study. Our results demonstrate the robustness of P-SHG responses and fidelity of collagen fiber
orientation data within upscaled images. These findings were reinforced by a comparative
analysis across three distinct ROIs, which confirmed that the GAN-based upscaling process
preserved the integrity of the sample while enhancing the detail and smoothness of fiber

alignment.

Furthermore, the expedited P-SHG imaging process allows us to reconsider the optical
components of the imaging system. Because high-resolution imaging is not required in many of
our applications, we can opt for more cost-effective objective objectives and imaging systems.
This optimization translates to significant cost savings and lowers barriers to entry for researchers
and institutions interested in utilizing the P-SHG imaging technology. This affordability and
accessibility expands the potential applications of P-SHG imaging in diverse fields and
communities. Our analysis confirmed the accuracy of the results obtained using accelerated
imaging. By comparing the P-SHG images generated using our streamlined approach with those
produced using the traditional method, we found that the results were consistent with the
characteristics of the sample. Reducing the laser exposure and equipment costs ensures that P-
SHG imaging can be adopted more widely, thereby advancing scientific understanding and
innovation across disciplines. Our work paves the way for discoveries and breakthroughs fueled
by the efficiency and accessibility of P-SHG imaging. Therefore, there are promising directions
for future research. New or emerging GAN architectures can offer more precise upscaling
capabilities, particularly for images with unique challenges that are not fully addressed by the
current models. The development of automated analysis tools tailored for upscaled images
ensures that the upscaling process enhances data interpretation. The incorporation of Al-driven

methods for identifying and quantifying specific features in upscaled images can streamline the
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analysis of complex biological structures. In addition, the effectiveness of our method was
demonstrated through mammary gland tissue imaging. Extending this approach to other tissues
or conditions such as fibrotic changes in liver disease or collagen alterations in cardiovascular
health could significantly broaden its applicability. This expansion would not only validates the
versatility of the proposed method, but also contributes valuable insights into the structural
dynamics of various diseases. Moreover, establishing guidelines for the ethical use of Al in
scientific imaging will ensure the integrity of data. Developing quality standards for upscaled

images will facilitate their acceptance and use in critical research endeavors.
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7 CONCLUSION AND FUTURE WORK

71 Conclusion

SHG microscopy has firmly established itself as a powerful tool for bioimaging, particularly in the
study of non-centrosymmetric biological structures such as collagen, myosin, and microtubules.
Integrating advanced SHG modalities, including P-SHG, I-SHG, and wide-field SHG, has
significantly expanded its capabilities, enabling researchers to probe biological tissue’s structural
and functional aspects with unprecedented detail and precision. These advancements have
positioned SHG microscopy as an essential tool in biomedical research, with potential

applications spanning neuroscience, cancer diagnostics, and tissue analysis.

Recent technological advancements have improved the accessibility and versatility of SHG
microscopy. On the hardware front, the shift towards more robust and cost-effective fiber and
semiconductor lasers promises to broaden the user base of SHG microscopy. Concurrently,
integrating machine learning and artificial intelligence in software applications is revolutionizing
image analysis and enabling automated feature detection and real-time image enhancement

during acquisition.

Despite these promising developments, SHG microscopy faces several challenges. The high
equipment cost and the need for specialized training continue to limit its widespread adoption in
routine biomedical practice. Moreover, while integrating deep learning techniques shows great
potential, it is still in its early stages. Researchers are grappling with issues such as the need for

large, well-annotated datasets and the risk of overfitting when working with limited data.

The application of SHG microscopy in clinical settings presents exciting prospects, particularly in
areas such as cancer diagnosis and pathology. Its potential applications in drug development and
personalized medicine could lead to significant breakthroughs in healthcare. However, realizing
this potential will require addressing the current challenges through cost reduction,
standardization of techniques, and improved data interpretation. Overcoming these limitations
necessitates concerted efforts in hardware development, advanced image-processing
techniques, and the establishment of standardized SHG imaging protocols. In addition to
addressing technical limitations, successfully integrating SHG microscopy into routine biomedical
practice will require collaborative efforts between researchers, industry, and regulatory bodies.
Standardizing Al-driven SHG imaging pipelines and ensuring compliance with clinical imaging

standards will be crucial for widespread adoption in pathology labs and diagnostic centers.



Developing user-friendly software solutions that enable seamless interaction between SHG
imaging systems and hospital information systems can further accelerate the transition from

research to clinical applications.

The emerging synergy with deep learning promises to overcome the current limitations and open
new avenues for research, from automated image analysis to enhanced resolution and sensitivity.
The rapid evolution of Al-driven methodologies in biomedical imaging suggests that deep learning
techniques will become integral to SHG microscopy workflows in the coming years. As models
become more efficient and computational hardware advances, the barriers to Al adoption in
microscopy—such as computational costs and training data limitations—will gradually diminish.
Refining self-supervised and few-shot learning approaches could enable deep learning models to
perform effectively even in data-scarce scenarios, making Al-based image enhancement and

classification more accessible to researchers across disciplines.

The research presented in the four articles of this thesis directly addressed its primary objectives.
Article 1 provides crucial context and identifies areas for improvement in SHG microscopy.
Articles 2 and 3 demonstrate significant advancements in image quality enhancement and
automated analysis using ML techniques, whereas Article 4 shows how GANs can dramatically

improve imaging speed and efficiency.

Future research should refine DL models for broader biological sample use, building on these
advancements, which improve imaging quality, speed, and structural analysis capabilities.
Integrating these models into clinical workflows is a priority. Further optimization of DL algorithms
for specific tissue types and imaging conditions, development of integrated hardware-software
solutions for real-time Al-enhanced SHG imaging, and exploration of multimodal imaging

techniques combining SHG with other microscopy methods are equally important.

The broader implications of this study extend beyond SHG microscopy. By demonstrating the
feasibility of Al-powered enhancements in SHG microscopy, this research contributes to a
broader shift in biomedical imaging toward automation and intelligent analysis. Similar deep
learning techniques can be adapted for other nonlinear optical modalities, such as THG and
CARS microscopy. Furthermore, the advancements in noise reduction, image upscaling, and
classification through Al can be leveraged to improve imaging accuracy in fields such as disease

diagnosis, drug development, and personalized medicine.

Improved SHG microscopy techniques can lead to more accurate and earlier disease diagnosis,

particularly in cancer detection. The increased efficiency and accessibility of these imaging
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methods could accelerate drug development, potentially reducing the time and cost of bringing
new treatments to the market. Furthermore, incorporating Al with SHG microscopy could
democratize access to advanced imaging technologies, enabling their use in a broader range of

healthcare settings and contributing to more equitable healthcare delivery.

This thesis demonstrated the transformative potential of integrating SHG microscopy with
advanced Al techniques. The findings highlight significant improvements in imaging quality and
analytical capabilities, suggesting a future in which these technologies are integral to biomedical
research and clinical applications. Further research should refine these methods for broader

accessibility and enhanced diagnostic precision.

Future research should aim to refine machine-learning models for more diverse biological
samples and explore their integration into clinical workflows. In addition, developing cost-effective

and user-friendly SHG imaging systems can enhance accessibility in various healthcare settings.

7.2 Future work

7.21 Expanding multimodal imaging techniques

A significant opportunity lies in advancing the incorporation of Al into existing multimodal imaging
techniques that combine SHG microscopy with other advanced imaging modalities. Although
these combinations provide a comprehensive view of the tissue architecture and biochemical
composition, adding machine learning can significantly enhance the analysis and interpretation
of complex datasets. Future studies should focus on developing algorithms capable of seamlessly
integrating data from these diverse modalities, offering more precise and nuanced insights into
biological systems. For example, DL can improve image registration, enhance contrast, and
extract subtle patterns that may not be visible using traditional methods. Moreover, Al-driven data
fusion can automate the identification of correlations between structural and molecular
information, facilitating a deeper understanding of complex biological processes, such as tumor
progression or tissue regeneration. This integration streamlines data processing and unlocks new
possibilities for personalized diagnostics and targeted therapeutic strategies by providing
clinicians with a more detailed and actionable understanding of patient-specific conditions. An
additional frontier in multimodal imaging involves integrating SHG with Al-driven hyperspectral
and Raman imaging techniques, allowing researchers to simultaneously extract structural and
biochemical information from tissues. By training deep learning models to interpret combined

datasets, future studies could refine disease biomarkers and improve the predictive power of
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diagnostic models. This approach holds promise for oncology, where integrating SHG and

biochemical data can enhance early tumor detection and classification.

7.2.2 Development of adaptive and hybrid deep learning models

The potential for developing adaptive and hybrid deep learning models is immense. These models
can dynamically adjust their parameters based on real-time imaging conditions and tissue
characteristics analysis, optimizing the denoising and enhancement processes. Researchers can
create more versatile and practical models across various imaging scenarios by combining the
strengths of CARE 2D and N2V 2D and exploring novel architectures, such as GANs. Developing
deep learning models incorporating physics-based priors alongside data-driven approaches could
significantly enhance SHG image reconstruction. By integrating optical physics and tissue
properties knowledge into neural networks, researchers can create more interpretable Al models
that are less susceptible to hallucination artifacts. This could be particularly useful in low-SNR
imaging conditions, where traditional deep-learning approaches struggle to distinguish true signal

from noise.

7.2.3 Enhancing classification and analysis tools

Future work should focus on refining classification algorithms to better differentiate between tissue
types and conditions. Advanced techniques, such as transfer learning and ensemble methods,
can improve accuracy and robustness. Additionally, developing automated analysis tools that
leverage Al-driven insights can facilitate real-time diagnostics, enabling faster and more accurate

decision-making in clinical settings.

7.2.4 Expanding application scope to diverse tissues

Extending the application of SHG microscopy and deep learning techniques to a broader range
of tissues and conditions can validate their versatility. Research could focus on studying fibrotic
changes in liver disease, collagen alterations in cardiovascular health, or structural dynamics in
neurodegenerative diseases. Such studies would enhance our understanding of these conditions

and provide valuable data for refining imaging and analysis techniques.

7.2.5 Ethical considerations and standardization

As Al-driven imaging has become more prevalent, establishing ethical guidelines and quality

standards is essential to ensure data integrity and reliability. Future research should address the
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ethical implications of Al in scientific imaging to promote transparency and reproducibility.
Standardizing data collection, analysis, and sharing protocols will be crucial for building trust and

facilitating collaboration across the scientific community.

7.2.6 Real-time imaging and low-power applications

The enhancement of SHG microscopy for real-time and low-power imaging applications presents
exciting opportunities for in vivo studies. By reducing the laser power required for high-quality
imaging, researchers can minimize sample damage and extend the applicability of SHG to more
delicate and dynamic biological samples. This advancement could significantly impact fields such
as developmental biology and cancer research, in which observing live processes is crucial.
Future studies should explore real-time Al-based denoising pipelines that operate during image
acquisition, enabling researchers to obtain high-quality images with minimal Implementation of
lightweight neural networks that can run on devices or embedded hardware would allow SHG
microscopy to be deployed in resource-limited settings, expanding its accessibility beyond
specialized research laboratories. This could open new opportunities for in-field biomedical

imaging applications, such as portable SHG endoscopy for minimally invasive diagnostics.

7.2.7 Integration with clinical workflows

Finally, integrating these advanced imaging techniques with clinical workflows can revolutionize
diagnostics and patient care. Developing intuitive interfaces and robust analysis tools can help
clinicians quickly and accurately interpret complex imaging data. Collaboration between
researchers, engineers, and healthcare professionals will ensure these technologies meet clinical

needs and improve patient outcomes.
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Figure S1. H&E images of the whole mammary gland with and without tumor. (a) and (b) are
naive mammary glands. (c) and (d) are tumor bearing. The red rectangles show the regions of
interest studied using SHG microscopy for [1].

ADC and DAQ controller
Motor Workers

signal
Microscope GUI
background XY stage
processes
signal
Sign:

Shutter

Shutter toggle User input
J Microscopy | Laser wavelength

signal

Figure S2. Microscope program and how the centralized program controls the signal acquisition and synchronization in this experiment. After
inputting the necessary information, every aspect of the imaging is automated.
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MS-SSIM analysis of all the samples with increasing R?

Table S1: R? minimum and MS-SSIM between P-SHG and CurveAlign images for sample 1

R? minimum P-SHG vs CurveAlign MS-
SSIM
0.3 0.24
0.4 0.25
0.5 0.27
0.7 0.27

Table S2: R* minimum and MS-SSIM between P-SHG and CurveAlign images for sample 2

R? minimum

P-SHG vs CurveAlign MS-

SSIM
0.3 0.14
0.4 0.25
0.5 0.26
0.7 0.27

Table S3: R? minimum and MS-SSIM between P-SHG and CurveAlign images for sample 3

R? minimum

P-SHG vs CurveAlign MS-

SSIM
0.3 0.32
0.4 0.39
0.5 0.42
0.7 0.46

Table S4: R? minimum and MS-SSIM between P-SHG and CurveAlign images for sample 4

R2 minimum

P-SHG vs CurveAlign MS-

SSIM
0.3 0.16
0.4 0.16
0.5 0.24
0.7 0.32

Table S5: R? minimum and MS-SSIM between P-SHG and CurveAlign images for sample 5

R2 minimum

P-SHG vs CurveAlign MS-

SSIM
0.3 0.23
0.4 0.24
0.5 0.25
0.7 0.3

211



References

1. S. E. J. Preston, M. Bartish, V. R. Richard, A. Aghigh, C. Gongalves, J. Smith-
Voudouris, F. Huang, F. Légaré, L.-M. Postovit, R. Lapointe, R. P. Zahedi, C. H.
Borchers, W. H. Miller Jr., and S. V. del Rincon, "Phosphorylation of eIF4E in the
stroma drives the production and spatial organisation of collagen type I in the mammary

gland," (2022).

212



10 SUPPLEMENTARY INFORMATION FOR ARTICLE 4

Access to all supplementary materials for Article 4 is in the following repository:
10.5281/zenodo.12788764.





