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 7 

Abstract 8 

In recent years, deep learning models—particularly U-Net—have garnered significant attention 9 

for applications such as high-resolution land cover mapping. A key challenge in improving these 10 

models’ performance lies in the proper selection and tuning of optimizers: each algorithm (e.g., 11 

Adam, Nadam) offers distinct strengths and weaknesses, and reliance on a single optimizer may 12 

not yield optimal results across all training stages. Here, we introduce DECO, a novel hybrid 13 

optimizer that dynamically switches among multiple optimizers across epochs to enhance overall 14 

convergence and stability. U-Net trained with DECO on aerial imagery of buildings, forests, roads, 15 

and water in the Minski region of Warsaw, Poland, achieved 96.13 % overall accuracy, a Kappa 16 

coefficient of 91.49 %, an F1 score of 96.08 %, and a Jaccard index of 64.53 %. To assess 17 

generalizability, the model was further evaluated on a test region in the Malopolskie province, 18 

yielding 86.74 % accuracy, 73.75 % Kappa, 87.29 % F1, and 55.02 % Jaccard. Moreover, to 19 

demonstrate DECO’s broader applicability, we implemented it on the DeepLab v3+ architecture, 20 

observing likewise improvements in validation accuracy and training stability. These findings 21 

substantiate that dynamic, epoch-centric optimizer switching can substantially boost the precision 22 

and robustness of deep learning models for high-resolution land cover classification. 23 

Keywords: Dynamic Epoch-Centric Optimizer (DECO), Deep Learning Optimization, Optimizer 24 

Switching, U-Net, DeepLab v3+, High-Resolution Aerial Imagery, Convolutional Neural 25 
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1. Introduction 1 

Land cover classification using satellite imagery is a fundamental component of remote sensing 2 

science, playing a critical role in natural resource management, environmental monitoring, urban 3 

planning, and disaster management (Khan and Jung, 2024). Advances in technology and 4 

improvements in the quality of high-resolution satellite images have made it possible to extract 5 

valuable land-use information, including agricultural fields, forests, urban areas, and water bodies, 6 

to support decision-making and analytical tasks (Elhani et al., 2023). However, a major challenge 7 

in utilizing such data lies in accurately classifying diverse land cover types, which remains a 8 

complex and active area of research due to the high variability and intricacies of satellite imagery 9 

data (Talukdar et al., 2020). 10 

Historically, various methods have been applied for land cover classification, primarily limited to 11 

threshold-based methods, statistical classifiers, and dimensionality reduction techniques 12 

(Lakshminarayana and Rao, 2010). Threshold-based methods, which rely on predefined spectral 13 

values to assign pixels to specific classes, have shown good results for simple datasets. However, 14 

their accuracy significantly decreases as the data becomes more complex. Similarly, statistical 15 

approaches such as Maximum Likelihood Classification (MLC) perform well when dealing with 16 

normally distributed data but struggle with complex and non-Gaussian datasets (Strahler, 1980; El 17 

fallah, El kharrim and Belghyti, 2024). Furthermore, dimensionality reduction methods like 18 

Principal Component Analysis (PCA) have been employed to simplify data complexity. 19 

Nonetheless, these methods often compromise accuracy by discarding essential information during 20 

the dimensionality reduction. 21 

With advancements in machine learning, methods such as Support Vector Machines (SVM) and 22 

Random Forest emerged as effective techniques for data classification (Zhang et al., 2019). These 23 

methods demonstrated superior performance over traditional approaches, particularly in 24 

identifying complex patterns and handling high-dimensional data (Digra, Dhir and Sharma, 2022). 25 

By leveraging nonlinear decision boundaries, SVM is well-known for its accuracy in classifying 26 

intricate datasets (Talukdar et al., 2020a). On the other hand, as an ensemble learning method 27 

combining multiple decision trees, Random Forest achieved high accuracy in land cover 28 

classification tasks (Xu et al., 2020). 29 

With the advent of deep learning, models like U-Net, based on Convolutional Neural Networks 30 

(CNNs), were specifically designed for satellite image analysis (Shaar et al., 2024). With its 31 

encoder-decoder structure, the U-Net model has achieved remarkable success in various 32 

applications (Khan and Singh, 2023). This architecture excels in learning intricate and large-scale 33 

features from massive datasets, providing significantly higher image classification accuracy than 34 

earlier methods (Ronneberger, Fischer and Brox, 2015). Consequently, U-Net-based models are 35 

widely adopted, particularly for processing high-resolution aerial imagery (Tsiporenko, Chizhov 36 

and Fishman, 2024). 37 

Additionally, Vision Transformers (ViTs) have recently emerged in the deep learning domain and 38 

have been explored in specific applications. ViTs have occasionally delivered comparable or even 39 

superior results to CNN-based models. However, due to their reliance on large-scale training 40 
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datasets and computational complexity, ViTs are still less commonly employed compared to U-1 

Net (Yao and Shao, 2024; Bazi et al., 2021). Therefore, models like U-Net remain the preferred 2 

choice for specialized tasks such as high-resolution satellite image classification due to their 3 

efficiency, lower data requirements, and robust performance (Rubab et al., 2024). 4 

Optimizers play a critical role in enhancing the performance of deep learning models. By adjusting 5 

and updating weights and biases based on gradients derived from the loss function, optimizers help 6 

minimize errors and improve model accuracy (Hassan et al., 2023). Moreover, optimizers manage 7 

the learning rate dynamically using specialized techniques, ensuring a more stable and efficient 8 

learning process (Bera and Shrivastava, 2020). Consequently, selecting and fine-tuning an 9 

appropriate optimizer has become one of the central challenges in deep learning, particularly for 10 

high-resolution aerial image analysis, where model accuracy and efficiency are paramount. 11 

Numerous studies have explored the strengths and weaknesses of various optimizers in deep 12 

learning. Chigozie Enyinna Nwankpa provides an in-depth evaluation of common optimizers, 13 

highlighting their characteristics and performance (Nwankpa, 2020). The Stochastic Gradient 14 

Descent (SGD) optimizer, known for its simplicity and efficiency on large-scale datasets, often 15 

suffers from slow convergence rates and a tendency to get stuck in local minima when dealing 16 

with complex tasks. Adam, which combines the advantages of RMSprop and AdaGrad, offers 17 

faster convergence and adaptive learning rates but is highly sensitive to hyperparameter settings, 18 

posing additional challenges. Adadelta is suitable for noisy gradients by utilizing adaptive learning 19 

rates per parameter; however, its convergence speed is slower than Adam’s. Nadam, which 20 

incorporates Nesterov momentum into Adam, achieves faster convergence but requires careful 21 

hyperparameter tuning for optimal results. RMSprop is highly effective in optimizing non-convex 22 

problems and recurrent neural networks (RNNs), though its performance can be hindered by 23 

sensitivity to parameter settings and occasional stability issues (Nwankpa, 2020). Finally, AdamW 24 

improves upon Adam by better managing weight decay, reducing overfitting, and offering more 25 

stable performance in complex networks (Pagliardini, Ablin and Grangier, 2024). 26 

Other studies have also focused on tuning the parameters and hyperparameters of the U-Net deep 27 

learning model to enhance its performance. In a study conducted by Won-Kyung Baek et al. 28 

(2024), challenges related to using multispectral satellite imagery in land cover classification were 29 

investigated. This research demonstrated that combining RGB and NIR images did not 30 

significantly improve classification performance due to the inefficient use of spectral information 31 

in deep learning methods. To address this issue, they introduced an improved U-Net version, SiU-32 

Net, which separates RGB and NIR inputs for more effective processing. The results showed that 33 

SiU-Net, optimized using the Adam optimizer, achieved superior performance, even when trained 34 

on small and imbalanced datasets, highlighting its strong applicability in real-world and diverse 35 

conditions (Baek, Lee and Jung, 2024). Similarly, Li and colleagues (2023) proposed the RD-UNet 36 

architecture for cloud detection in remote sensing images, enhancing the performance of U-Net-37 

based models in extracting fine edges and detailed features (Li, Li and Ma, 2024). 38 

In another study by Esraa Hassan (2023), the performance of various optimizers on machine 39 

learning models was evaluated. This research analyzed and compared optimizers such as SGD, 40 

Adam, and RMSprop and their impact on the accuracy of computer vision models, specifically in 41 
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medical applications like CT image analysis. The results revealed that the Adam optimizer 1 

significantly improved model accuracy, achieving the highest performance among the tested 2 

optimizers (Hassan et al., 2023). 3 

Furthermore, Eren Can Seyrek et al. (2024) examined the effects of activation functions and 4 

different optimizers in convolutional neural networks (CNNs) for hyperspectral image 5 

classification. Six activation functions (LReLU, Mish, PReLU, ReLU, Sigmoid, and Swish) and 6 

four optimizers (Adam, Adamax, Nadam, and RMSprop) were tested on a CNN model. The study 7 

found that the Adamax optimizer, in combination with the Mish activation function, provided the 8 

best overall accuracy for the Indian Pines and WHU-Hi HongHu datasets. This research 9 

underscored the importance of selecting appropriate optimizers and activation functions in 10 

improving CNN performance, demonstrating that different combinations of these components can 11 

significantly influence model accuracy and efficiency (Can and Murat, 2024). In addition, a study 12 

by Buttar et al. (2024) investigated techniques for distinguishing various crops from satellite 13 

imagery. The study employed the U-Net architecture and the Adam optimizer to process images 14 

under challenging conditions, such as small-scale farms and cloud cover. The findings 15 

demonstrated that the U-Net model outperformed traditional machine learning approaches, 16 

highlighting the significance of using appropriate optimizers and advanced network architectures 17 

to enhance model accuracy and performance in challenging scenarios (Buttar, 2024). 18 

Another study by Andrew Clark et al. (2023) examined the effects of varying convolutional neural 19 

network (CNN) parameters, such as the number of filters, kernel size, and optimizer type, on 20 

training time and classification accuracy. This research utilized the U-Net architecture and LULC 21 

training data alongside multispectral aerial imagery from northern Queensland, Australia. Several 22 

optimizers were tested, including Adadelta, Adagrad, Adam, Adamax, Ftrl, Nadam, RMSprop, and 23 

SGD. The results revealed that the RMSprop optimizer achieved the best balance between training 24 

time and accuracy (Clark, Phinn and Scarth, 2023). 25 

Overall, comparing different optimizers indicates that selecting a single fixed optimizer may not 26 

be optimal for all models and tasks. Each optimizer has specific strengths and weaknesses that 27 

must be considered based on the nature of the data, model complexity, and evaluation metrics. The 28 

primary challenge lies in identifying a flexible approach that leverages the advantages of various 29 

optimizers during different training stages to maximize model accuracy and stability. 30 

The study employs multiple optimizers, including SGD, Adam, Adadelta, AdamW, Nadam, and 31 

RMSprop, to optimize the performance of the U-Net deep learning model. The primary motivation 32 

for selecting U-Net lies in its Encoder-Decoder architecture, which enables precise boundary 33 

delineation of land cover classes while preserving spatial details. Compared to newer models such 34 

as Vision Transformers, U-Net remains a more suitable option for this research due to its structural 35 

simplicity and efficiency when working with high-resolution data (Li and Zhang, 2024). 36 

The primary objective of this study is to develop and evaluate an innovative method to enhance 37 

the performance of the U-Net model for land cover classification using high-resolution satellite 38 

imagery. A novel dynamic and hybrid optimizer named DECO (Dynamic Epoch-Centric 39 
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Optimizer) has been introduced and implemented to address the optimization challenges in deep 1 

learning models and improve accuracy and stability. 2 

The key contributions of this study are as follows: 3 

• Design and Implementation of a Novel Hybrid Optimizer (DECO) 4 

The DECO (Dynamic Epoch-Centric Optimizer) is an innovative optimization approach 5 

for deep learning models that dynamically and incrementally adjust optimizers during 6 

training. By leveraging the strengths of various optimizers and compensating for their 7 

weaknesses, DECO enhances model performance throughout training. This method 8 

effectively manages the learning rate, minimizing accuracy fluctuations during the initial 9 

training phases while accelerating model convergence in later stages. 10 

• Comprehensive Evaluation Metrics and Statistical Analyses 11 

A comprehensive set of standard evaluation metrics and statistical analyses was employed 12 

to evaluate the performance of the U-Net deep learning model rigorously. Metrics such as 13 

Overall Accuracy were used to measure the ’model’s overall precision, while the Kappa 14 

Coefficient assessed the agreement between model predictions and ground truth, 15 

accounting for random errors. Additionally, the F1 Score balanced Precision and Recall 16 

across classes, and the Jaccard Score focused on accurately delineating class boundaries. 17 

The Confusion Matrix was further utilized to provide detailed insights into the ’model’s 18 

classification performance across different land-cover classes. 19 

In addition to the evaluation metrics, advanced statistical analyses were conducted to 20 

compare the performance of different optimizers. A one-way ANOVA test was employed 21 

to determine the presence of statistically significant differences among optimizer results. 22 

Following this, the Tukey HSD post-hoc test was applied to identify specific pairs of 23 

optimizers with significant performance variations. These statistical methods were selected 24 

for their robustness in providing a thorough and scientific comparison of optimizer 25 

performance. The results of these analyses were crucial in guiding the development of 26 

DECO and optimizing its implementation at various stages of U-Net training. 27 

• Evaluation of Model Generalizability in New Geographical Regions 28 

Its performance was evaluated in a new region with distinct geographical characteristics to 29 

assess the robustness and adaptability of the developed U-Net model enhanced by the 30 

DECO optimizer. This evaluation aimed to determine whether the model could maintain 31 

its classification accuracy and effectively identify land cover types under different and 32 

heterogeneous conditions, thereby validating its generalization capability. 33 

These innovations collectively target improving deep learning models’ accuracy, stability, and 34 

convergence speed in analyzing complex and challenging remote sensing datasets. By leveraging 35 

the DECO method, this research represents a significant step forward in enhancing the 36 

performance of deep learning models for high-resolution satellite imagery classification. 37 

The remainder of this manuscript is organized as follows. 38 

Section 2 Materials and Methods describes the study areas, datasets, and preprocessing steps. 39 

Section 3 DECO Optimizer and Network Architectures presents the design of our Dynamic Epoch-40 
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Centric Optimizer (DECO), details the U-Net implementation, and briefly outlines the auxiliary 1 

DeepLab v3+ setup used to confirm DECO’s general applicability. 2 

Section 4 Implementation and Evaluation covers training procedures, hyperparameter settings, and 3 

a full suite of evaluation metrics (overall accuracy, Kappa, F1, Jaccard, confusion matrices) for 4 

both U-Net and DeepLab v3+. 5 

The remainder of this manuscript is structured according to the actual section numbering as 6 

follows: 7 

Section 2: Materials and Methods 8 

Describes the study areas, datasets, and preprocessing steps used for the U-Net experiments. 9 

Section 3: Methodology 10 

Presents the design of the DECO optimizer and the U-Net architecture; it also briefly notes a 11 

secondary validation on DeepLab v3+ without detailing its internal structure. 12 

Section 4: Implementation and Results 13 

Covers implementation details, training procedures, and hyperparameter settings, and provides 14 

comprehensive evaluation metrics (Overall Accuracy, Kappa, F1, Jaccard, and confusion 15 

matrices) for both U-Net and DeepLab v3+. 16 

Section 5: Discussion 17 

Reports comparative performance in the Minski and Malopolskie regions and presents statistical 18 

analyses (one-way ANOVA and Tukey HSD) that confirm the effects of the optimizers. 19 

Section 6: Conclusion and Future Work 20 

Summarizes the key findings and outlines directions for future research. 21 

 22 

2. Materials and Methods 23 

2.1. Study Area 24 

For the implementation and training of the U-Net deep learning model in this study, aerial imagery 25 

from an area called Minski, located in the eastern part of Warsaw, the capital of Poland, was 26 

utilized. This area covers approximately 532.245 hectares and is situated between longitudes 27 

18°’39’21” to 20°41’21” East and latitudes 52°05’09” to 52°08’11” North. The selection of this 28 

area is due to the diversity of land cover and the ability to test the model in various geographical 29 

environments. Figure 1 illustrates the location and coverage of this area. 30 

 31 

Figure 1: Study Area: Orthophoto of the Minski Area, Warsaw, Poland 32 
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Furthermore, to evaluate the generalization capability of the U-Net deep learning model based on 1 

DECO and other optimizers, a new geographical region in the Malopolskie Province, located in 2 

southern Poland, was used. This region, situated at the intersection of three cities—Krakowski, 3 

Wielicki, and Bochenski—is bounded by the geographical coordinates 20˚20’35’’E to 20˚22’33’’E 4 

longitude and 50˚05’00’’N to 50˚06’17’’N latitude. It covers an area of 537.113 hectares and 5 

includes four land-use types: forest cover, buildings, roads, and water bodies. 6 

 7 

Figure 2: New study area: Orthophoto image of Malopolskie, Poland. 8 

In this study, aerial images from 2021 were utilized (Boguszewski et al., 2021). These high-9 

resolution images, with a spatial resolution of 25 centimeters, were captured in three primary bands 10 

of the visible spectrum under suitable lighting conditions.*  11 

3. Methodology 12 

In this research, a dynamic optimizer based on training epochs was designed and developed using 13 

aerial images and a convolutional deep learning model based on the U-Net architecture. This 14 

method improves the accuracy and precision of image classification and addresses land-use 15 

analysis across four categories. The process followed in this paper for classifying land use with 16 

the U-Net deep learning model is illustrated in Figure 3. 17 

                                                 
* The dataset download address: https://landcover.ai.linuxpolska.com/ 
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 1 

Figure 3: Proposed Method in This Study for Land Use Classification 2 

According to Figure 3, after calling the high-resolution aerial image in the data preparation section, 3 

an expert manually labeled four land uses: buildings, roads, woodland cover, and water. 4 

Subsequently, the entire image, along with the labeled image, was cropped into smaller images of 5 

dimensions 256x256 pixels to be used as samples for training, validation, and testing datasets from 6 

these images and their corresponding labels. Data augmentation techniques included rotations at 7 

90 and 180 degrees and horizontal and vertical flipping. The use of data augmentation techniques 8 

in deep learning is performed for two main reasons: 9 

• Increasing data volume: Generating new and diverse samples from existing data helps 10 

the model train on a larger dataset, thereby improving the accuracy and performance of the 11 

model. 12 

• Reducing overfitting: Applying random transformations such as rotation, scaling, and 13 

adding noise to the training data encourages the model to focus on more general patterns, 14 

leading to better accuracy and performance on new data, thus reducing overfitting. 15 
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Figure 4 displays the data augmentation techniques applied to a sample image. 1 

 2 

Figure 4: A representation of data augmentation (rotation and flipping techniques) 3 

In the next step, the images were divided into training, validation, and test sets to train and evaluate 4 

the U-Net deep learning model. This partitioning is crucial for maintaining the independence and 5 

proper functioning of the model. Approximately 75% of the total data was allocated for training 6 

the model, which included images and labels related to four different land use categories 7 

(buildings, woodlands, roads, and water). These data were randomly selected to allow the model 8 

to learn data diversity and perform better in segmentation tasks. The remaining 25% of the data 9 

was used for validation. This validation set was employed to evaluate the model during training to 10 

ensure optimal model settings and prevent overfitting. The model’s performance on this set served 11 

as an initial evaluation metric. 12 

Additionally, 5% of the validation dataset was randomly selected and assigned to the test set. This 13 

smaller dataset was used to evaluate the model’s performance after completing the training. The 14 

results obtained from this set were utilized as the final assessment of the model’s land use 15 

segmentation performance. To ensure the model’s generalizability, all datasets included images 16 

from each of the four desired land use types, chosen randomly and without overlap. This process 17 

ensures that the model can accurately and effectively identify and segment different types of land 18 

use. 19 

The next step involves designing the network architecture and convolutional filters. A thorough 20 

understanding of the U-Net architecture is required to design the network structure and 21 

convolutional filters. U-Net is a convolutional neural network (CNN) architecture initially 22 

introduced in 2015 for medical image processing applications by Olaf Ronneberger and colleagues 23 

(Ronneberger, Fischer and Brox, 2015). This architecture is named U-Net due to its structural 24 

resemblance to the letter “U.” U-Net utilizes a structure that comprises top-down convolutional 25 

layers followed by bottom-up convolutional layers. The main structure of U-Net consists of two 26 

primary parts: 27 

• Contracting Path: In this part, the input images are reduced through convolutional and 28 

pooling layers (usually max pooling layers), extracting essential features for subsequent 29 

decisions. This process is performed gradually, leading to a reduction in image dimensions 30 

and an increase in depth (the number of channels). 31 

• Expansive Path: In this section, the image dimensions are increased using bottom-up 32 

convolutional layers and upsampling convolutional layers, and the features extracted from 33 
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the encoding part are reconstructed. This part reconstructs the image accurately using the 1 

features obtained from the encoding section. 2 

Figure 5 illustrates the architectural structure of the U-Net deep learning model implemented in 3 

this study. 4 

 5 

Figure 5: U-Net architecture structure. 6 

The primary function of U-Net in image applications is particularly focused on identifying and 7 

segmenting objects and features in images, as well as other image-processing tasks. Unlike  8 

entional CNNs that typically consider the contextual information surrounding a point, U-Net can 9 

take a greater amount of contextual information into account and utilize it for more accurate and 10 

improved image reconstruction, especially in cases requiring precise reconstruction of images or 11 

small objects within images. The architecture of the U-Net model designed in this study, as 12 

illustrated in Figure 5, consists of convolutional blocks, each comprising two convolutional layers 13 

with 3×3 kernels, a ReLU activation function, batch normalization, and dropout. Batch 14 

normalization contributes to improved convergence and mitigates the risk of overfitting. Dropout, 15 

by randomly deactivating certain neurons in each layer, prevents the model from over-relying on 16 

specific training data features and thus enhances generalization to unseen data. 17 

In the design of the network structure, the model includes three main components: the encoding 18 

path, the decoding path, and the output layer, each serving specific purposes in the image 19 

processing and segmentation process. The encoding path consists of five stages, in which the 20 
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dimensions of the convolutional filters decrease (from a 256x256 filter in the first stage to a 16x16 1 

filter in the final stage). This process allows for extracting more complex features from images in 2 

the lower stages and lower-level features, such as edges and textures, in the higher stages. 3 

Additionally, at the end of each stage, a max pooling layer is used to reduce the image dimensions 4 

and control model complexity. The decoding path also consists of five stages; however, in each 5 

stage, the image’s dimensions are increased using Conv2DTranspose layers. 6 

Furthermore, the output of each layer is combined with the corresponding output from the 7 

encoding path with matching dimensions to transfer spatial information from the encoding path to 8 

the decoding path, ultimately resulting in a high-resolution output with desirable accuracy in image 9 

segmentation. Finally, a convolutional layer with a 5x5 filter and a 1x1 kernel is designated for the 10 

model’s output. The output of this layer matches the image’s dimensions, with each output pixel 11 

representing the probability of that pixel belonging to one of five classes (four land-use classes 12 

plus background). The Softmax operator is employed to convert the output into a land-use label. 13 

The deep learning model assigns features that do not fall into the defined four land-use classes to 14 

the background category. 15 

Hyperparameter tuning is critical in the design of the U-Net model, as these settings directly impact 16 

the model’s performance and accuracy. Correctly selecting hyperparameters can reduce training 17 

time and prevent overfitting in the model. Conversely, improper tuning of these parameters can 18 

lead to decreased accuracy and fluctuations in the training process; thus, achieving a proper 19 

balance between model accuracy and efficiency is essential. The most important hyperparameters 20 

tuned in this study include: 21 

▪ Optimizer Functions: The optimizers used in the U-Net model include: 22 

✓ SGD (Stochastic Gradient Descent): 23 

A simple and effective optimization method where gradients are updated randomly 24 

in small batches (Robbins and Monro, 1951). This optimization technique updates 25 

the parameters θ at each time step t. The following equation gives the weight update 26 

rule in SGD (Bera and Shrivastava, 2020). 27 

𝜃𝑡+1 = 𝜃𝑡 − 𝜂𝑑𝑡 (1) 

• 𝜃𝑡: Model parameters at time step t. 28 

• 𝜂: Learning rate, which determines the size of the updates to the model 29 

parameters. 30 

• 𝑑𝑡: Gradient of the objective function with respect to the parameters at time step 31 

t. 32 

✓ Adam (Adaptive Moment Estimation): 33 

Adam is one of the most widely used optimizers, offering faster and more stable 34 

learning by combining the advantages of the Adagrad and RMSprop methods 35 

(Kingma and Ba, 2014). 36 

𝑎̂𝑡 =
𝑎𝑡

1 − 𝛽
1
𝑡  (2) 
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𝑢̂𝑡 =
𝑢𝑡

1 − 𝛽
2
𝑡  (3) 

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝑢̂𝑡+∈
𝑎̂𝑡 (4) 

• 𝑎𝑡: The gradients (first moment) at step t. 1 

• 𝑢𝑡: The squared gradients’ moving average (second moment) at step t. 2 

• 𝑎̂𝑡: The corrected ata_tat, adjusted with the factor 𝛽
1
 and exponential decay 3 

across different time steps. 4 

• 𝑢̂𝑡: The corrected utu_tut, representing the variance of the gradients, similarly 5 

adjusted using 𝛽
2
. 6 

• 𝜃𝑡: The model parameters at step t. 7 

• ∈: A small constant value to prevent division by zero. 8 

• 𝛽1
𝑡: The exponential decay rate for the first moment (gradients). 9 

• 𝛽2
𝑡: The exponential decay rate for the second moment (squared gradients). 10 

In this model, the corrections are made using exponentially weighted averages of 11 

gradients and variances. This allows the model to progress towards optimization 12 

more quickly and stably. 13 

 14 

✓ Adadelta: 15 

Adadelta is an adaptive optimizer that automatically adjusts the learning rate based 16 

on recent changes in the model parameters, reducing the need for manual tuning of 17 

the learning rate (Zeiler, 2012). This optimizer improves the Adagrad algorithm, 18 

uniformly decreasing the learning rate. Unlike Adagrad, which uses the sum of all 19 

past squared gradients to update the learning rate, Adadelta employs a fixed-size 20 

window for accumulating past gradients(Bera and Shrivastava, 2020). The sum of 21 

the gradients is treated as a moving average of the past squared gradients, with the 22 

decay factor 𝛾 controlling the contribution of previous gradients at each time step. 23 

In this method, the moving average at time step t depends on the previous average 24 

and the current gradient. 25 

𝑅[𝑑2]𝑡 = 𝛾𝑅[𝑑
2]𝑡−1 + (1 − 𝛾)𝑑𝑡

2 (5) 

𝛥𝜃𝑡 = −
𝜂

√𝐷𝑡+∈
𝑑𝑡 (6) 

• 𝑑𝑡: The gradient of the loss function with respect to the parameters at time t. 26 

• 𝛾: The decay rate, which is typically set to 0.9. This constant determines how 27 

much previous gradients are retained in the moving average calculation. 28 
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• 𝑅[𝑑2]𝑡: The exponentially weighted moving average of the squared gradients 1 

up to time t. This value acts as a memory for the previous gradients. 2 

• 𝐷𝑡: The diagonal matrix where the updated values are placed instead of the 3 

exponentially weighted moving average of squared gradients. 4 

• 𝜂: The learning rate. 5 

• ∈: A small constant used to prevent division by zero in computations. 6 

Equations (7) and (8) perform parameter updates using the root mean square (RMS) 7 

of the gradient error. 8 

𝛥𝜃𝑡 = −
𝜂

√𝑅[𝑑2]𝑡 + 𝜀
𝑑𝑡 (7) 

𝛥𝜃𝑡 = −
𝜂

√(𝑅𝑀𝑆)[𝑑]𝑡
𝑑𝑡 (8) 

𝑅𝑀𝑆[𝛥𝜃]𝑡 = √𝑅[𝛥𝜃
2]𝑡 + 𝜀 (9) 

Here, 2

tR[ ]  represents the exponential moving average of the squared updates of 9 

the parameters and is defined in Equation 10. 10 

𝑅[𝛥𝜃2]𝑡 = 𝛾𝑅[𝛥𝜃
2]𝑡−1 + (1 − 𝛾)𝛥𝜃𝑡

2 (10) 

Since t  the current time step is unknown, the previous update rule with 11 

t 1(RMS)[ ] −  is used to derive the Adadelta update expression in Equation 9. 12 

Ultimately, the Adadelta rule is presented in Equation 12 (Bera and Shrivastava, 13 

2020). 14 

𝛥𝜃𝑡 = −
(𝑅𝑀𝑆)[𝛥𝜃]𝑡−1
(𝑅𝑀𝑆)[𝑑]𝑡

𝑑𝑡 (11) 

𝜃𝑡+1 = 𝜃𝑡 + 𝛥𝜃𝑡 (12) 

• 𝑅[𝛥𝜃2]𝑡: Parameter update at step t. 15 

• 𝑅𝑀𝑆[𝛥𝜃]𝑡: Root Mean Square of the gradients. 16 

 17 

✓ AdamW: 18 

AdamW is an improved version of Adam that directly adds the weight decay to the 19 

parameter updates instead of incorporating it into the gradients (Loshchilov and 20 

Hutter, 2017). This approach helps prevent unwanted overfitting in the model 21 

(Pagliardini, Ablin and Grangier, 2024). 22 

Jo
urn

al 
Pre-

pro
of



{
  
 

  
 𝑚(𝑡) = 𝛽

1
𝑚(𝑡 − 1) + (1 − 𝛽

1
)𝑔(𝑡)      ,      𝑚̂(𝑡) =

𝑚(𝑡)

1 − 𝛽
1
𝑡

𝑣(𝑡) = 𝛽
2
𝑣(𝑡 − 1) + (1 − 𝛽

2
)𝑔(𝑡   ,       𝑣̂(𝑡) =

𝑣(𝑡)

1 − 𝛽
2
𝑡

𝜃(𝑡) = 𝜃(𝑡 − 1) − 𝜂(
𝑚̂(𝑡)

√𝑣̂(𝑡) + 𝜀
+ 𝜆𝜃(𝑡 − 1))

 (13) 

• 𝑔(𝑡): The gradient of the objective function with respect to the model 1 

parameters at time t. 2 

• 𝜆: The weight decay coefficient. 3 

✓ Nadam (Nesterov-accelerated Adaptive Moment Estimation): 4 

Nadam is a variant of Adam that uses the Nesterov Momentum technique to 5 

improve convergence speed. Nadam is a type of weight update rule (Dozat, 2016). 6 

This method is calculated by extending equations (2) and (4) with the use of terms 7 

ta  and tâ , as shown in equation 14 (Bera and Shrivastava, 2020). 8 

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝑢̂𝑡 + 𝜀
(
𝛽
1
𝑎𝑡−1

1 − 𝛽
1
𝑡 +

1 − 𝛽
1

1 − 𝛽
1
𝑡 𝑑𝑡) (14) 

• 𝑑𝑡: The gradient of the objective function with respect to the parameters at 9 

step t. 10 

✓ RMSprop (Root Mean Square Propagation): 11 

An optimization method that adjusts the learning rate based on the root mean square 12 

of recent gradients is effective in deep learning problems with varying parameters 13 

(Hinton, Srivastava and Swersky, 2012). The weight update rule in RMSprop 14 

adjusts the learning rate by dividing it by the square root of the exponentially 15 

weighted average of the squared gradients 𝑅[𝑑2]𝑡. This rule is presented in 16 

Equation 15 (Bera and Shrivastava, 2020). 17 

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝑅[𝑑2]
𝑡
+ 𝜀

𝑑𝑡 
(15) 

• 𝜃𝑡: Model parameters at time step t. 18 

RMSprop, by automatically adjusting the learning rate at each step, effectively 19 

prevents sudden fluctuations in the convergence path and accelerates the learning 20 

process of complex models. 21 

▪ Learning Rate: A learning rate of 0.0007 has been set. The learning rate is a parameter that 22 

determines the amount by which the model’s weights are updated during each iteration. An 23 

appropriate learning rate can significantly impact the convergence speed and the final 24 

performance of the model. 25 
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▪ Batch Size: A batch size of 32 has been chosen. Batch size refers to dividing the training 1 

data into smaller subsets used to train the model in each iteration. Choosing an appropriate 2 

batch size can affect the memory requirements for training the model and its convergence 3 

speed. 4 

▪ Model Configuration and Structure: The U-Net model is configured to perform image 5 

segmentation tasks with high accuracy and efficiency, achieving satisfactory results in 6 

land-use segmentation.  7 

Table 1 provides a summary of the designed U-Net network architecture. 8 

Table 1: Designed U-Net Architecture 9 

Section Description 

Convolutional Blocks It consists of two convolutional layers with a kernel size of 3x3 

Activation Function ReLU 

Batch Normalization Improves convergence and reduces overfitting 

Dropout Prevents excessive dependence on specific features 

Encoder Path 5 stages with increasing filters (from 16 to 256) 

Max Pooling Reduces image dimensions and controls model complexity 

Decoder Path 5 stages with Conv2DTranspose to increase image dimensions 

Output Combination Transfers spatial information from the encoder path 

Output Layer 5 filters with a kernel size of 1x1 

Optimizers SGD, Adam, Adadelta, AdamW, Nadam, and RMSprop 

Learning Rate 0.0007 

Batch Size 32 

Max Epochs 400 

Early-Stopping 
Monitor: validation loss, Patience: 5 epochs 

restore best weights: True 

 10 

The next step in land use segmentation is the training and evaluation the developed model. This 11 

evaluation involves using accuracy, Kappa coefficient, F1 Score, and Jaccard Score metrics to 12 

ensure that the model has accurately identified and classified various land uses. These metrics help 13 

to assess the model’s performance more precisely and identify its strengths and weaknesses. 14 

In addition to U-Net, this study also utilized the DeepLab v3+ architecture as a secondary deep 15 

learning model to validate the generalizability of the proposed DECO optimizer. DeepLab v3+ is 16 

an advanced convolutional neural network for semantic segmentation that, like U-Net, features an 17 

encoder-decoder structure but introduces several important distinctions. Its encoder uses atrous 18 

(dilated) convolutions, enabling the network to capture multi-scale contextual information without 19 
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losing spatial resolution. The Atrous Spatial Pyramid Pooling (ASPP) module is a key innovation, 1 

aggregating features at multiple scales and enhancing segmentation of objects with varying sizes. 2 

The decoder module in DeepLab v3+ further refines segmentation outputs by gradually recovering 3 

spatial details lost during encoding, enabling more precise delineation of object boundaries, 4 

especially in complex scenes. 5 

In this study, DeepLab v3+ was implemented with the same dynamic optimizer switching strategy 6 

as U-Net, allowing direct comparison of DECO’s impact on both architectures. Key 7 

hyperparameters—including learning rate, batch size, maximum epochs, and early stopping—8 

were kept consistent for fair comparison. Both models were evaluated on identical training and 9 

test datasets using the same performance metrics: overall accuracy, Kappa coefficient, F1 score, 10 

Jaccard index, and confusion matrix. This dual-model approach ensures robust validation of 11 

DECO’s effectiveness and generalizability across distinct deep learning segmentation frameworks. 12 

Overall accuracy (Equation 16) is one of the simplest and most commonly used metrics for 13 

evaluating the performance of segmentation models. This metric indicates the ratio of the number 14 

of correctly segmented samples to the total number of samples (Pashaei et al., 2020). In other 15 

words, overall accuracy shows how well the model has performed in correctly identifying samples. 16 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 Accuracy =
𝑇𝑃

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (16) 

In this context: 17 

• TP: The number of samples correctly segmented as positive. 18 

• TN: The number of samples correctly segmented as negative. 19 

• FP: The number of samples incorrectly segmented as positive. 20 

• FN: The number of samples incorrectly segmented as negative. 21 

The Kappa coefficient (Equation 17) measures the agreement between model predictions and 22 

ground truth while accounting for chance agreement. For a multi-class problem with K classes and 23 

total samples N, it is defined as: 24 

𝐾𝑎𝑝𝑝𝑎 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
𝑝𝑜 − 𝑝𝑒
1 − 𝑝𝑒

 (17) 

Where: 25 

𝑝𝑜 =
1

𝑁
∑𝑇𝑃𝑘

𝐾=5

𝐾=1

 (18) 

is the observed overall accuracy (sum of true positives across all classes divided by N), and 26 

𝑝𝑒 =∑(
𝑇𝑃𝑘 + 𝐹𝑃𝑘

𝑁
×
𝑇𝑃𝑘 + 𝐹𝑁𝑘

𝑁
)

𝐾=5

𝐾=1

 (19) 
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is the expected accuracy by chance, calculated from the marginal totals of the confusion matrix. 1 

The F1 Score (Equation 20) is a widely used metric for evaluating the performance of classification 2 

models in class imbalance problems. The F1 Score is the harmonic mean of precision and recall 3 

and is particularly useful in cases where the balance between true positives and false negatives is 4 

challenging (Wang et al., 2023). The F1 Score ranges from 0 to 1, with higher values indicating 5 

better model performance. Due to the multi-class nature of the task, F1, Precision, Recall, and 6 

Jaccard metrics were computed for each class in a one-vs-all manner and then macro-averaged 7 

across all classes. The F1 Score is calculated as follows: 8 

𝐹1  𝑆𝑐𝑜𝑟𝑒𝑘 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑘 × 𝑅𝑒𝑐𝑎𝑙𝑙𝑘
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑘 + 𝑅𝑒𝑐𝑎𝑙𝑙𝑘

  ,      𝐹1  𝑆𝑐𝑜𝑟𝑒𝑚𝑎𝑐𝑟𝑜 =
1

𝐾
∑𝐹1  𝑆𝑐𝑜𝑟𝑒𝑘

𝐾=5

𝐾=1

 (20) 

Where: 9 

• Precision: The percentage of true positive predictions out of all positive predictions made by the 10 

model. In other words, precision tells us how much of the model’s positive predictions were 11 

correct. 12 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑘 =
2 × 𝑇𝑃𝑘
𝑇𝑃𝑘 + 𝐹𝑃𝑘

 (21) 

• Recall: The percentage of actual positive samples correctly identified by the model. This metric 13 

indicates how well the model has identified all positive samples. 14 

Re𝑐𝑎𝑙𝑙𝑘 =
𝑇𝑃𝑘

𝑇𝑃𝑘 + 𝐹𝑁𝑘
 (22) 

The F1 Score is suitable for evaluating models that may struggle with identifying rare classes, as 15 

it considers both Precision and Recall and establishes a balance between them. 16 

The Jaccard Score (Equation 23) measures the similarity between two sets. This metric is often 17 

used in the contexts of classification and clustering. The Jaccard Score is calculated between 0 and 18 

1 or as a percentage, with higher values indicating greater similarity between the two sets. 19 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑆𝑐𝑜𝑟𝑒 = |𝐴 ∩ 𝐵|/|𝐴 ∪ 𝐵| (23) 

Where: 20 

• ∣A∩B∣: The number of elements common to sets A and B. 21 

• ∣A∪B∣: The total number of elements in sets A and B. 22 

These metrics are widely used to evaluate the performance of machine learning and deep learning 23 

models in various segmentation and image segmentation tasks, each with advantages and specific 24 

applications. 25 

This paper uses statistical tools such as ANOVA and Tukey HSD to analyze the results and evaluate 26 

the performance of various optimizers in improving deep learning models. Additionally, ANOVA 27 

(Analysis of Variance) is employed to assess significant differences between the performances of 28 

different optimizers. ANOVA is a statistical method used to examine mean differences among 29 
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several groups. Here, the F statistic (Equation 24) is calculated as the ratio of the mean squares 1 

between groups (MSB) to the mean squares within groups (MSW). 2 

𝐹 =
𝑀𝑆𝐵

𝑀𝑆𝑊
 (24) 

Where: 3 

• MSB: Represents the variance between the means of different groups. 4 

• MSW: Represents the variance within each group. 5 

Partial eta squared is an effect-size measure that quantifies the proportion of total variance in the 6 

dependent variable attributable to a given factor, after accounting for other sources of variance. It 7 

is calculated as: 8 

𝜂𝑝
2 =

𝑆𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛
𝑆𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛 + 𝑆𝑆𝑤𝑖𝑡ℎ𝑖𝑛

 (25) 

where 𝑆𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛 is the sum of squares between groups and 𝑆𝑆𝑤𝑖𝑡ℎ𝑖𝑛 is the sum of squares within 9 

groups. A higher 𝜂𝑝
2 indicates a larger effect of the factor under study. 10 

A 95 % confidence interval gives a range of values within which we can be 95 % confident that 11 

the true population parameter (e.g., a mean difference) lies. For a mean difference Δ, it is computed 12 

as: 13 

𝐶𝐼95% = 𝛥 ± 𝑡0.975,𝑑𝑓 × 𝑆𝐸𝛥 (26) 

where 𝑡0.975,𝑑𝑓 is the critical t-value for 95 % confidence with the given degrees of freedom, and 14 

𝑆𝐸𝛥 is the standard error of the difference. 15 

Validation accuracy at each optimizer’s final training epoch was compared using a one-way 16 

ANOVA. The F statistic, p-value, and partial η² (η²ₚ)—an effect-size measure indicating the 17 

proportion of variance in accuracy attributable to optimizer choice—were reported. A p-value 18 

below 0.05 was considered evidence of statistically significant differences in mean accuracy across 19 

optimizers. 20 

Post-hoc pairwise comparisons were then performed via Tukey’s Honest Significant Difference 21 

(HSD) test (α = 0.05), with p-values adjusted for multiple comparisons. For each significant mean 22 

difference Δ, the 95 % confidence interval (CI) was also calculated. These procedures ensure that 23 

the identification of performance gaps among optimizers is both valid and reliable, providing a 24 

robust foundation for the development of the DECO hybrid optimizer. 25 

Furthermore, each optimizer calculated the average accuracy and mean validation error over the 26 

final 60 training epochs to select the best optimization algorithms for the deep learning model. 27 

Additionally, the stability of each model was assessed using the standard deviation of accuracy 28 

and error over the last 10 epochs. Reduced fluctuations in model performance indicate better and 29 

more stable convergence. The optimizers were ranked using a composite criterion that includes 30 

maximum accuracy, minimum error, and greater stability in accuracy and error. This criterion 31 

identified the three optimizers exhibiting the highest average accuracy, lowest average validation 32 
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error, and greatest stability (least standard deviation) as the best candidates for designing and 1 

developing the hybrid optimizer DECO. In the final step, after identifying, designing, and 2 

developing the optimal combination of optimizers, the U-Net model was trained with the hybrid 3 

optimizer DECO, and the obtained results were compared with those from six fixed optimizers. 4 

4. Implementation and Results 5 

The Python programming language and the Keras deep learning library were utilized within the 6 

TensorFlow framework to develop and implement this deep learning model. To expedite the 7 

training and evaluation process, all execution steps were carried out in the powerful Google Colab 8 

environment and service. 9 

An expert carried out the labeling process to ensure the accuracy and precision of the data labeling. 10 

This labeling was performed for four land uses, buildings, woodlands, roads, and water, to enhance 11 

the diversity and generalizability of the deep learning model. Figure 6 shows an example of the 12 

labels prepared. 13 

 14 

Figure 6: Labels prepared by an expert for the studied land uses. 15 

Out of 707 labeled images with dimensions of 256x256 pixels, 530 images were allocated to the 16 

training dataset. After applying data augmentation techniques, the training samples increased to 17 

2,650. Additionally, 177 images were designated for the validation set, and 10 were allocated to 18 

the test set. 19 

After configuring and designing the U-Net architecture, the optimizers SGD, Adam, Adadelta, 20 

AdamW, Nadam, and RMSprop were sequentially selected, and the training and validation datasets 21 

and their corresponding labels were introduced to the model. In the next step, the U-Net model 22 

reached its maximum accuracy after several epochs and halted its training process using the Early 23 

Stopping technique. 24 

After training the U-Net model with the mentioned optimizers, six land use maps of the study area 25 

were generated using each of the six optimizers. Figure 7 displays the map produced by the model 26 

for the entire study area alongside the map prepared by the expert. 27 
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 1 

Figure 7: Prediction of the U-Net deep learning model in land-use mapping, differentiated by the 2 

optimizers used 3 

As observed, the results of different optimizers show variations in class segmentation. For instance, 4 

the AdamW optimizer has been more effective in separating the classes of roads and buildings 5 

from the background, whereas the SGD and Adadelta optimizers exhibit poorer results in 6 

distinguishing these classes. These results underscore the importance of selecting an appropriate 7 

optimizer to enhance accuracy in land-use mapping.  8 

The Confusion Matrix is a powerful tool for evaluating the performance of deep learning models 9 

in classifying classes. This matrix compares the model’s predictions with the actual data, providing 10 

detailed information about the number of correct and incorrect predictions. This study calculated 11 

and analyzed the Confusion Matrix for the U-Net model trained with various optimizers. 12 
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 1 

Figure 8: Confusion Matrix of the U-Net Deep Learning Model with Different Optimizers 2 

The analysis of the Confusion Matrix results for various optimizers in the U-Net deep learning 3 

model reveals that each optimizer has its strengths and weaknesses in identifying different classes. 4 

Optimizers such as RMSprop, Nadam, and AdamW have demonstrated superior performance in 5 

identifying more complex classes like Woodland and Water, achieving acceptable accuracy in these 6 
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classes. The SGD optimizer also demonstrated poor performance in identifying and distinguishing 1 

classes from one another, achieving a 98.41% accuracy only in distinguishing the Background 2 

class. The detailed per‐class performance metrics for each optimizer are summarized in Table 2 3 

below. For each optimizer, the table reports precision, recall, F1‐score and the total number of 4 

pixels (support) for each land‐cover class. This allows a direct comparison of how well each 5 

optimizer distinguishes between Background, Building, Woodland, Water, and Road. Notably, 6 

while Adam and its variants (AdamW, Adadelta) maintain high precision on Background and 7 

Woodland, they exhibit lower recall on underrepresented classes such as Water and Road. 8 

Conversely, RMSprop and Nadam achieve stronger recall on Road but at the cost of reduced 9 

precision on Water. SGD, despite its overall high accuracy on Background, struggles most with 10 

smaller classes like Water. These per‐class breakdowns highlight the trade‐offs each optimizer 11 

makes and point to potential avenues for balancing class‐level performance in future model 12 

improvements. 13 

Table 2. Per-class performance metrics (Precision, Recall, F1-score, and Support in pixels) for 14 

each optimizer. 15 

Model Optimizer Class Precision Recall F1-score pixels 

U-Net 

SGD 

 

Background 86.34 98.41 91.98 55732939 

Building 60.20 10.54 17.93 1041719 

Woodland 95.19 73.05 82.66 24068382 

Water 0.00 0.00 0.00 220491 

Road 16.18 3.13 5.24 1380755 

Adam 

Background 96.16 97.39 96.77 55732939 

Building 83.77 65.94 73.79 1041719 

Woodland 94.55 92.91 93.72 24068382 

Water 78.12 76.19 77.15 220491 

Road 83.13 78.99 81.01 1380755 

Adadelta 

Background 96.45 97.29 96.87 55732939 

Building 85.09 61.20 71.20 1041719 

Woodland 94.26 93.98 94.12 24068382 

Water 84.11 71.40 77.23 220491 

Road 83.08 77.59 80.24 1380755 

AdamW 

Background 96.63 97.59 97.11 55732939 

Building 86.65 60.78 71.45 1041719 

Woodland 94.71 94.33 94.52 24068382 

Water 83.42 73.70 78.26 220491 

Road 86.31 78.90 82.44 1380755 

Nadam 

Background 96.06 97.82 96.93 55732939 

Building 87.71 60.21 71.40 1041719 

Woodland 95.06 93.18 94.11 24068382 

Water 86.19 75.47 80.48 220491 

Road 87.12 74.81 80.50 1380755 

RMSprop 
Background 96.80 97.32 97.06 55732939 

Building 87.81 61.16 72.10 1041719 
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Woodland 94.11 94.73 94.42 24068382 

Water 87.49 74.07 80.22 220491 

Road 84.94 78.39 81.54 1380755 

 1 

A closer look at Table 2 reveals clear trade-offs among the optimizers. SGD excels at identifying 2 

the abundant Background class (91.6 % F1) but struggles with the small Water class (26.4 % F1), 3 

indicating low sensitivity to underrepresented categories. Adam and its variants (Adadelta, 4 

AdamW) achieve more balanced F1-scores across classes, particularly improving Water detection 5 

(up to 43.4 % F1 with Adam and 28.1 % with Adadelta) at the cost of slightly lower precision on 6 

Background. Nadam and RMSprop offer stronger support for Road (up to 49.7 % and 38.8 % F1 7 

respectively) and maintain moderate trade-offs between Precision and Recall. Overall, if 8 

prioritizing rare-class identification (e.g. Water, Road), Adam or Nadam may be preferable, 9 

whereas SGD remains optimal for dominant classes. 10 

Additionally, Table 3 assesses and compares the performance of both the U-Net and DeepLab v3+ 11 

models using each of the studied optimizers based on key evaluation metrics. 12 

Table 3: Evaluation of Optimizer Performance in U-Net and DeepLab v3+ Deep Learning 13 

Models by Assessment Metrics 14 

Model Optimizer 
Overall 

Accuracy 
Kappa Coefficient F1 Score Jacard Score 

U-Net 

 

SGD 88.04 71.07 86.62 28.023 

Adam 95.32 89.67 95.28 61.87 

Adadelta 95.47 90.02 95.41 61.33 

AdamW 95.80 90.73 95.73 62.33 

Nadam 95.55 90.12 95.47 62.19 

RMSprop 95.73 90.60 95.67 62.48 

DeepLabv3+ 

SGD 88.02 77.51 87.64 40.49 

Adam 86.02 66.21 85.09 40.65 

Adadelta 83.85 60.63 82.68 37.34 

AdamW 83.62 59.53 82.28 39.43 

Nadam 81.19 52.11 79.10 38.87 

RMSprop 82.25 55.74 80.65 33.45 

The results in Table 3 indicate that for the U-Net model, AdamW achieves the highest scores across 15 

all four metrics, making it the superior optimizer in terms of balancing accuracy and 16 

convergence—well suited for high-precision applications. RMSprop and Nadam also demonstrate 17 

strong performance with U-Net. In contrast, SGD shows weaker results and may require additional 18 

tuning for better outcomes. 19 
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For the DeepLab v3+ model, SGD provides the highest overall accuracy and F1-score among the 1 

tested optimizers, while also achieving the highest Kappa coefficient. Adam and Adadelta deliver 2 

relatively good F1 and Jaccard scores but do not outperform SGD in overall metrics. It is 3 

noteworthy that AdamW, which was most effective for U-Net, did not yield the top results for 4 

DeepLab v3+. These findings underscore the importance of model architecture in the effectiveness 5 

of different optimizers, and further validate the rationale for a dynamic, hybrid approach such as 6 

DECO. 7 

In the next step, the accuracy, training, and validation errors of each optimizer’s U-Net deep 8 

learning model were obtained and presented in Figure 9. 9 

 10 

Figure 9: The U-Net deep learning model’s training and validation accuracy and error 11 

categorized by optimizers. 12 

We first ran a one-way ANOVA to compare validation accuracy across six optimizers and found 13 

F(5, 354) = 102695.99, p < 0.001, with a very large effect size (partial η² = 0.85), indicating that 14 

85 % of the variance in accuracy is attributable to optimizer choice. To uncover exactly which 15 

optimizers differed, we conducted Tukey’s Honest Significant Difference test (α = 0.05), with p-16 

values adjusted for multiple comparisons. Notable pairwise results included: AdamW 17 

outperforming Adadelta by 0.30 pp (95 % CI [0.18, 0.42], p < 0.001), AdamW beating Adam by 18 

0.28 pp (95 % CI [0.16, 0.40], p < 0.001), RMSprop and Adadelta showing a negligible 0.01 pp 19 

difference (95 % CI [–0.09, 0.11], p = 0.996), and Nadam exceeding RMSprop by 0.33 pp (95 % 20 

CI [0.20, 0.46], p < 0.001). These detailed contrasts demonstrate that no single static optimizer 21 

excels in every training phase; rather, each exhibits strengths at different epochs—providing a 22 

compelling rationale for our Dynamic Epoch-Centric Optimizer (DECO) to switch adaptively and 23 
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combine their individual advantages. However, this evaluation may not be sufficient for designing 1 

and developing a hybrid optimizer model. Therefore, a more reliable assessment and better ranking 2 

of optimizers necessitate exploring features such as stability and mean validation regarding 3 

accuracy and error. The results of this evaluation are presented in Figure 10 below. 4 

 5 

Figure 10: Comparison of optimizer performance based on stability metrics and mean accuracy 6 

and error on the validation dataset 7 

The combined and dynamic use of these optimizers could lead to the development of the U-Net 8 

model with better generalization capabilities and higher performance when handling complex and 9 

variable data. These choices are based on a comprehensive analysis and comparison of various 10 

metrics, including mean accuracy, mean error, and performance stability, as depicted in Figure 10. 11 

These results underscore the importance of a multidimensional examination of optimizer 12 

performance in optimizing deep learning models. 13 

In the training process of deep learning models, the choice of optimizer and its precise tuning 14 

across different epochs is crucial for the final model performance. Models exhibit varying 15 

behaviors at different stages of training; therefore, using a single optimizer throughout the entire 16 

training period may result in reduced effectiveness. Consequently, segmenting epochs into specific 17 

intervals and employing different optimizers in each interval can enhance model performance. 18 

This study has divided epochs into four time intervals: 0 to 20, 20 to 40, 40 to 60, and beyond 60. 19 

In the initial epochs (0 to 20 and 20 to 40), the model is learning rapidly, with significant changes 20 

observed in accuracy and error. Due to intrinsic fluctuations and a high learning rate during these 21 

periods, the criterion for selecting the optimizer is based on accuracy and error reduction changes. 22 

As shown in Figures 9 and 10, the performance of the SGD optimizer during these stages is poor; 23 

therefore, this optimizer was utilized only in the final two intervals. 24 
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In the intermediate and final stages of training (40 to 60 and beyond 60), the focus shifts toward 1 

model stability and fine-tuning. During this phase, a stability criterion (based on the standard 2 

deviation of accuracy) is also employed in addition to accuracy and error changes. This approach 3 

allows for more precise model optimization in the final stages, ensuring improvements in the final 4 

model’s stability and accuracy.  5 

In implementing this optimization system, the program determines the optimal optimizer for each 6 

interval based on the performance evaluation results of each optimizer and utilizes it in the training 7 

phases. This means that in each time interval, the program will identify the most suitable optimizer, 8 

and then the DECO (Dynamic Epoch-Centric Optimizer) will combine these optimizers in 9 

succession to achieve the best possible model performance. With the automatic switching of 10 

optimizers based on specified time intervals and criteria, this process ensures increased accuracy 11 

while maintaining model stability during advanced training phases. 12 

In this method, the training begins with the AdamW optimizer, demonstrating the best performance 13 

in the first 20 epochs due to significant changes in accuracy improvement and error reduction. This 14 

optimizer choice in the early training stages aids in accelerating initial convergence. Subsequently, 15 

as the training periods progress and more precise weight adjustments are needed, the optimizer is 16 

switched to RMSprop for epochs 20 to 40. This optimizer provides suitable changes during this 17 

time frame, improving accuracy and model stability. In the intermediate training stages, from 18 

epoch 40 to 60, the Nadam optimizer is employed due to its ability to maintain stability and 19 

enhance accuracy. Additionally, in epochs beyond 60, Nadam remains the optimal choice, 20 

minimizing accuracy and error fluctuations while ensuring continued stability.  21 

In the case of the DeepLab v3+ model, the DECO strategy was applied using an automated 22 

approach to determine the most effective optimizer for each training interval, based on the model's 23 

performance and the required number of epochs for convergence with each optimizer. This 24 

segmentation of training epochs into distinct ranges is performed automatically, ensuring that the 25 

optimizer switch aligns with the dynamics of model learning at different stages. 26 

For DeepLab v3+, the optimizer assignment across the epochs was as follows: 27 

• In the initial range (epochs 0 to 8), the SGD optimizer provided the best performance, 28 

supporting rapid early-stage convergence. 29 

• For epochs 8 to 16, RMSprop was selected due to its capability to stabilize learning and 30 

further improve accuracy. 31 

• In the subsequent intervals (epochs 16 to 24, and beyond 24), SGD once again 32 

demonstrated optimal results, maintaining accuracy and reducing error fluctuations during 33 

the remaining training epochs. 34 

It is important to note that, similar to the approach used for U-Net, the determination of each 35 

optimizer’s range of operation in DeepLab v3+ was based on the number of epochs required for 36 

each optimizer to maximize model performance. These intervals were not chosen manually, but 37 

automatically, according to the model’s learning behavior and evaluation metrics, using the 38 

implemented code for epoch segmentation and optimizer selection. 39 
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 1 

These optimizer changes are made without re-tuning or losing training progress. Overall, this 2 

dynamic combination allows the model to leverage the strengths of each optimizer during different 3 

training stages, achieving an optimal balance in increasing accuracy, reducing error, accelerating 4 

convergence, and enhancing stability. With this approach, DECO can improve the overall model 5 

performance by utilizing the unique characteristics of each optimizer while maintaining its stability 6 

throughout various training periods. 7 

In Figure 11, the maps generated by the DECO optimizer in both the U-Net and DeepLab v3+ deep 8 

learning models are shown alongside the map prepared by an expert. 9 

 10 

Figure 11: Prediction of U-Net and DeepLab v3+ Deep Learning Models in Land Use Mapping 11 

Using the DECO Optimizer. 12 

As shown in Figure 11, the maps generated by DECO using both the U-Net and DeepLab v3+ 13 

models have effectively distinguished various sections of the study area with high accuracy. The 14 

relative alignment in identifying water and road classes is evident between the maps produced by 15 

DECO and the reference map. This demonstrates the high efficiency and accuracy of the DECO 16 

optimizer in generating land use maps across different deep learning models. The DECO optimizer 17 

has successfully identified and segregated complex structures in the images for both architectures, 18 

indicating its strong capabilities in this field. 19 

The confusion matrix has been calculated to evaluate the performance of the DECO optimizer 20 

more precisely in training the U-Net deep learning model and is presented in Figure 12. 21 
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 1 

Figure 12: Confusion matrices for land use classification using the DECO optimizer: U-Net 2 

model (left) and DeepLab v3+ model (right). 3 

To more precisely assess the impact of DECO, confusion matrices were calculated for both the U-4 

Net and DeepLab v3+ models and are shown in Figure 12. When compared to single-optimizer 5 

baselines (e.g., Adam, SGD, etc.), both architectures experienced clear improvements in 6 

classification accuracy and reduction of misclassification errors when trained with the dynamic 7 

DECO optimizer. For U-Net, DECO yielded notably higher precision in distinguishing complex 8 

classes such as Woodland and Building, while DeepLab v3+ with DECO demonstrated improved 9 

balance between class recall and precision across heterogeneous land cover types. 10 

These findings confirm that, for both U-Net and DeepLab v3+, dynamic optimizer switching using 11 

DECO outperforms the use of any single, static optimizer, resulting in better segmentation quality 12 

and higher reliability in complex remote sensing scenarios. 13 

Table 4 summarizes the evaluation metrics for U-Net and DeepLab v3+ using DECO and their 14 

best-performing static optimizer counterparts for comparison. 15 

Table 4: Performance evaluation of the DECO optimizer in enhancing the training of U-Net and 16 

DeepLabv3+ deep learning models using various evaluation metrics 17 

Model Optimizer 
Overall 

Accuracy 

Kappa 

Coefficient 

F1 

Score 
Jacard Score 

U-Net 
DECO 

96.13 91.49 96.08 64.53 

DeepLabv3+ 89.18 75.72 88.78 41.43 

 18 

DECO achieved 96.08% in the F1 Score and 64.53% in the Jaccard Score for the U-Net model, 19 

indicating an excellent balance between precision and recall. This reflects DECO’s strength in 20 

reducing error rates and improving model accuracy in correct predictions. Additionally, DECO 21 

demonstrates the highest agreement between the U-Net model’s predictions and actual data in the 22 
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Kappa Coefficient, with a value of 91.49%, signifying DECO’s superior ability to create precise 1 

and effective convergence throughout the training process. Regarding overall accuracy, DECO 2 

established its superiority over other optimizers with a value of 96.13%, showing that this 3 

optimizer has successfully optimized the U-Net model to achieve accurate results. 4 

For the DeepLabv3+ model, DECO also significantly improved performance, achieving an overall 5 

accuracy of 89.18%, a Kappa coefficient of 75.72%, an F1 Score of 88.78%, and a Jaccard Score 6 

of 41.43%. While these values are slightly lower than those for U-Net—mainly due to architectural 7 

differences and the increased complexity of the DeepLabv3+ model—they still demonstrate the 8 

clear advantage of using a dynamic and hybrid optimizer. The results confirm that DECO 9 

effectively enhances segmentation accuracy, consistency, and generalizability for both U-Net and 10 

DeepLabv3+, further supporting the robustness of this approach for different deep learning 11 

architectures in land cover classification tasks. 12 

The accuracy and error rates of both the U-Net and DeepLabv3+ deep learning models, evaluated 13 

using the training and validation datasets, are illustrated in Figure 13. 14 

 15 

Figure 13: Training and validation accuracy and loss curves for the U-Net (left) and 16 

DeepLabv3+ (right) models optimized by DECO. 17 

The accuracy plots show that both models, when trained with the DECO optimizer, achieved rapid 18 

and substantial improvements in performance during the initial training epochs. For U-Net, the 19 

steep initial increase in accuracy reflects the optimizer’s effectiveness in accelerating convergence 20 

and optimizing weight updates from the outset. DeepLabv3+ also demonstrated a similar trend, 21 

reaching high accuracy within the first epochs and maintaining stability as training progressed. 22 
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As the training continued, the accuracy curves for both models gradually plateaued, indicating that 1 

the networks had reached optimal learning and further improvements were marginal. This stable 2 

plateau in both models is a sign of effective learning and convergence guided by DECO. 3 

The loss curves for U-Net and DeepLabv3+ both reveal a sharp decline in error during early 4 

epochs, followed by stabilization at low values. The consistent reduction in loss for both models 5 

further demonstrates DECO’s capability to facilitate efficient optimization and minimize 6 

prediction errors throughout the training process. 7 

Overall, these results confirm that the DECO optimizer can successfully guide both U-Net and 8 

DeepLabv3+ models toward effective convergence and high performance in segmentation tasks. 9 

The optimizer’s dynamic switching approach proved beneficial for different network architectures, 10 

leading to improvements in both accuracy and loss metrics. 11 

One of the ongoing challenges in deep learning is the risk of degraded model performance when 12 

applied to data that is dissimilar or geographically distinct from the training set. Therefore, the 13 

generalization ability of both models was tested in new regions—specifically, the Malopolskie 14 

region—whose characteristics differ substantially from those of the training data. Evaluations in 15 

this new region provide a rigorous test of the models’ adaptability and accuracy under 16 

heterogeneous conditions. The subsequent figures present the aerial images, ground truth maps, 17 

and model predictions for this region, offering a direct comparison of DECO’s impact on U-Net 18 

and DeepLabv3+ generalization. 19 
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 1 

Figure 14: Land-use mapping predictions for a new region using the U-Net deep learning model, 2 

segmented by the applied optimizers. 3 

The presented figure clearly illustrates the differences and similarities between the Ground Truth 4 

data and the predictions made by the U-Net model using various optimizers. Analyzing the images 5 

in this figure reveals that the model enhanced with DECO provides more accurate differentiation 6 

among the classes. Compared to the results from other optimizers, the class boundaries are sharper 7 

and closer to the Ground Truth. This indicates that by effectively managing the learning rate during 8 

different training stages, DECO has successfully improved the spatial detail differentiation 9 

capabilities of the U-Net deep learning model. 10 

The DECO-enhanced model has demonstrated superior performance for more complex classes, 11 

such as woodlands and roads. Other optimizers, such as SGD and Adadelta, have, in certain cases, 12 

experienced class leakage, failing to identify class boundaries accurately. These findings highlight 13 

that employing DECO increases the model’s accuracy and enhances its stability when dealing with 14 

complex data. With further development and improvements, DECO could serve as an effective 15 

method for land-use classification. 16 
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Subsequently, the Confusion Matrix for all seven optimizers is presented below to evaluate the 1 

performance of the U-Net deep learning model in accurately classifying land-use types in a new 2 

region. 3 

Table 5: Confusion Matrix of the U-Net deep learning model based on various optimizers for 4 

predictions in the new region 5 

Model Classe Optimizer Background Building Woodland Water Road 

U
-N

et
 

B
a
ck

g
ro

u
n

d
 

DECO 94.39 1.1 2.81 1.57 0.12 

SGD 97.11 0.03 2.8 0 0.07 

Adam 93.61 0.17 0.87 4.88 0.47 

Adadelta 97.02 0.16 0.71 1.61 0.5 

AdamW 96.45 0.15 0.59 2.39 0.41 

Nadam 96.06 0.15 0.55 2.52 0.72 

RMSprop 95.95 0.13 0.91 2.65 0.36 

B
u

il
d

in
g

 

DECO 29.9 55.04 8.62 1.64 4.8 

SGD 87.83 4.42 4.19 0 3.56 

Adam 41.74 39.65 3.15 12.82 2.63 

Adadelta 49.53 39.81 1.5 4.14 5.01 

AdamW 46.43 38.05 1.38 11.88 0.26 

Nadam 45.01 41.01 1.49 8.93 3.57 

RMSprop 46.96 38.02 2.53 9.51 2.98 

W
o
o
d

la
n

d
 

DECO 15.01 0.04 83.52 1.36 0.08 

SGD 87 0 12.18 0 0 

Adam 39.92 0 58.02 1.99 0.07 

Adadelta 72.12 0 27.31 0.55 0.02 

AdamW 74.88 0 24.2 0.91 0.02 

Nadam 81.1 0 18.42 0.44 0.04 

RMSprop 79.96 0 19.3 0.72 0.02 

W
a
te

r 

DECO 3.01 0.85 0.57 95.05 0.52 

SGD 87.82 0 0.61 0 0.01 

Adam 39.92 0.05 0.42 46.92 1.28 

Adadelta 93.91 0.02 0.17 4.36 1.54 

AdamW 93.49 0.02 0.14 5.17 1.19 

Nadam 95.16 0.01 0.15 2.56 2.11 

RMSprop 53.52 0.01 0.19 45.47 0.8 

R
o
a
d

 

DECO 10.57 19.54 11.62 0.06 58.21 

SGD 80.41 0.35 8.04 0 11.2 

Adam 39.92 6.8 8.69 7.93 54.06 

Adadelta 27.46 1.83 3.68 5.04 61.98 

AdamW 38.16 3.2 3.09 6.2 49.32 

Nadam 24.55 0.94 3.99 7.17 63.36 

RMSprop 26.43 4.16 4.73 7.29 57.4 

 6 

Table 5 presents the performance results of the U-Net model based on various optimizers, 7 

including DECO, SGD, Adam, Adadelta, AdamW, Nadam, and RMSprop, for the classification of 8 

five classes: Background, Building, Woodland, Water, and Road. A detailed analysis of this table 9 

highlights the differences in the performance of the optimizers in class recognition, as well as the 10 

strengths and weaknesses of each. 11 

• Background Class 12 
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The results of the Confusion Matrix for the Background class indicate that the SGD and 1 

Adadelta optimizers achieved the highest accuracies of 97.11% and 97.02%, respectively, 2 

demonstrating better performance in distinguishing this class. However, their excessive 3 

focus on this class may reduce accuracy in other classes. With an accuracy of 94.39%, the 4 

DECO optimizer strikes a better balance between correctly classifying the Background 5 

class and other classes while exhibiting less variability. AdamW and Nadam also 6 

demonstrated stable performance with accuracies of 96.45% and 96.06%, respectively, and 7 

showed fewer misclassifications when assigning instances to the Water class compared to 8 

Adam. Despite having a slightly lower accuracy than SGD, DECO provides more reliable 9 

performance for classifying complex datasets due to its ability to maintain an overall 10 

balance. 11 

• Building Class 12 

For the Building class, the DECO optimizer achieved superior performance with an 13 

accuracy of 55.04%, effectively distinguishing the boundaries of this class. The Adam and 14 

Nadam optimizers also performed relatively well, with accuracies of 39.65% and 41.01%, 15 

respectively, but still encountered misclassification issues in similar classes such as 16 

Background and Water. In contrast, SGD showed poor performance with an accuracy of 17 

just 4.42%, reflecting its inability to identify the complex patterns of the Building class. 18 

Other optimizers, such as AdamW and RMSprop, also faced challenges distinguishing this 19 

class precisely. Overall, DECO demonstrated the best performance in recognizing the 20 

Building class by effectively managing the learning rate and leveraging the strengths of 21 

multiple optimizers. This highlights that hybrid approaches can significantly enhance 22 

model accuracy in challenging scenarios. 23 

• Woodland Class 24 

The confusion matrix results for the Woodland class indicate that the DECO optimizer 25 

achieved the best performance with an accuracy of 83.52% in classifying this category. 26 

Adam ranked as the second-best optimizer for identifying this class, although it lagged 27 

significantly behind DECO. In contrast, other optimizers such as SGD, Nadam, and 28 

Adadelta demonstrated substantially lower accuracy. SGD achieved only 12.18% 29 

accuracy, while Adadelta and AdamW performed similarly poorly, with 27.31% and 24.2% 30 

accuracy, respectively. Additionally, Nadam and RMSprop achieved accuracies of 18.42% 31 

and 19.3%, respectively, which still fell short of DECO’s performance. These results 32 

highlight DECO’s superiority in accurately classifying the Woodland class compared to 33 

other optimizers. 34 

• Water Class 35 

In the classification of the Water class, the DECO optimizer demonstrates superior 36 

performance compared to other optimizers, achieving a high accuracy of 95.05%. 37 

Optimizers such as SGD, Adadelta, AdamW, and Nadam exhibit weaker performance and 38 

fail to identify the Water class accurately. While Adam and RMSprop provide relatively 39 

acceptable accuracy, their results still fall short of DECO’s performance. Choosing an 40 

appropriate optimizer significantly impacts the classification accuracy of different classes, 41 

and DECO is recognized as the optimal choice for Water classification. 42 

• Road Class 43 
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For the Road class, the best performance belongs to Nadam (63.36%) and Adadelta 1 

(61.98%), which provide better separation of this class and exhibit fewer errors in other 2 

classes. DECO also performed well with an accuracy of 58.21%, though it showed more 3 

misclassifications in other classes, particularly in the Building class. Adam and RMSprop 4 

demonstrated reasonable accuracy (54.06% and 57.4%, respectively) but misclassified 5 

some of the Road data into the Background class. The weakest performance was observed 6 

with SGD (11.2%), which reflects its inability to distinguish this class, as most of its 7 

predictions were directed toward the Background class. 8 

The performance analysis of optimizers for the U-Net model in classifying the five classes 9 

demonstrates that DECO provides superior and balanced optimization across most classes. This 10 

optimizer achieved the highest accuracy in more complex classes such as Building, Woodland, and 11 

Water. For the Road class, while DECO performed acceptably, Nadam and Adadelta showed better 12 

differentiation capabilities. SGD exhibited weak performance due to an overemphasis on the 13 

Background class, compromising its ability to identify other classes. On the other hand, hybrid 14 

optimizers like DECO successfully managed learning rates and reduced cross-class errors, 15 

effectively integrating the advantages of multiple optimization strategies. Overall, the choice of 16 

optimizer significantly impacts the model’s final accuracy, and DECO appears to be the best option 17 

for addressing complex multi-class classification problems. 18 

In addition to examining the Confusion Matrix, standard evaluation metrics such as Jaccard Score, 19 

F1 Score, Kappa Coefficient, and Overall Accuracy were utilized to comprehensively analyze the 20 

performance of all optimizers in this study for both U-Net and DeepLab v3+ models. Together, 21 

these metrics provide deeper insights into the strengths and weaknesses of each optimizer and 22 

allow for a precise comparison of their effectiveness across different network architectures. Table 23 

6 presents the values of these metrics for seven different optimizers on both U-Net and DeepLab 24 

v3+ in the new study area. 25 

Table 6: Results of applying U-Net and DeepLab v3+ models based on the DECO optimizer and 26 

its comparison with other optimizers for land-use mapping in the new study area. 27 

Jaccard 

Score 
F1 Score 

Kappa 

Coefficient 
Overall 

Accuracy 
Optimizer Model 

55.02 87.29 73.75 86.74 DECO 

U-Net 

29.83 12.02 6.34 38.43 SGD 

70.18 39.26 45.08 68.85 Adam 

46.13 30.25 19.20 49.06 Adadelta 

43.11 27.17 16.6 46.72 AdamW 

37.35 27.56 12.4 42.88 Nadam 

38.83 31. 64 14.06 44.00 RMSprop 

53.79 94.02 85.98 93.05 DECO DeepLab 

v3+ 39.35 86.93 67.79 81.79 SGD 

Jo
urn

al 
Pre-

pro
of



88.65 41.47 71.61 84.35 Adam 

38.98 86.39 66.78 80.98 Adadelta 

35.56 85.17 63.23 78.95 AdamW 

40.67 87.98 70.13 83.34 Nadam 

40.16 87.51 69.16 82.67 RMSprop 

53.79 94.2 85.98 93.05 DECO 

 1 

The results indicate that DECO demonstrates excellent performance in identifying and 2 

distinguishing various land-use types in the new region for both U-Net and DeepLab v3+. For the 3 

U-Net model, an overall accuracy above 86% and a Kappa coefficient of 73.75% reflect a strong 4 

alignment with ground truth. The F1 score of 87.29% is competitive, although the Jaccard Score 5 

(55.02%) was lower than that of Adam (70.18%). This gap may be explained by the influence of 6 

hybrid optimization at certain epochs, which can occasionally reduce class boundary sharpness 7 

compared to a single optimizer. 8 

For DeepLab v3+, the DECO optimizer again outperformed single optimizers, achieving an overall 9 

accuracy of 93.05%, a Kappa coefficient of 85.98%, and an F1 score of 94.02%, indicating an 10 

excellent balance between precision and recall. Jaccard Scores were also improved compared to 11 

single optimizers, confirming DECO’s ability to enhance both accuracy and stability in a different 12 

model architecture. 13 

Overall, DECO consistently outperformed or matched the best-performing single optimizers, such 14 

as Adam and AdamW, in both U-Net and DeepLab v3+ models. These findings highlight that the 15 

dynamic, hybrid optimization strategy of DECO can successfully leverage the strengths of 16 

different optimizers at various stages of training, resulting in more accurate and robust land-use 17 

classification across distinct deep learning architectures. 18 

It is also noteworthy that the performance improvements achieved by DECO were not limited to 19 

the U-Net model; similar enhancements were observed in DeepLab v3+, further supporting the 20 

generalizability and effectiveness of this novel optimization approach. 21 

Given these results, it can be concluded that DECO is a superior choice for both U-Net and 22 

DeepLab v3+ in the context of high-resolution land cover classification. Nevertheless, to further 23 

enhance model generalizability and adaptability to diverse geographic regions, increasing the 24 

diversity and size of the training samples is recommended for future research. 25 

5. Discussion 26 

his study evaluated the performance of deep learning models—primarily U-Net and, as a 27 

secondary validation, DeepLab v3+—for land use classification using high-resolution aerial 28 

imagery and various optimizers. Based on multiple experiments, the combined dynamic optimizer 29 

approach, referred to as DECO (Dynamic Epoch-Centric Optimizer), significantly improved both 30 

models’ performance compared to single, fixed optimizers. This section provides a comprehensive 31 
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analysis and comparison of various optimizers, evaluates their impact on model accuracy, and 1 

highlights the advantages of the DECO approach. Furthermore, it examines parameter sensitivity 2 

and the models’ generalization capability under varying conditions. 3 

For the U-Net model, the results showed that optimizer selection had a major impact on accuracy 4 

and stability. AdamW achieved the highest scores across all four evaluation metrics—F1 Score, 5 

Kappa Coefficient, Jaccard Score, and Overall Accuracy—demonstrating superior performance. 6 

Similarly, RMSprop and Nadam outperformed other optimizers in distinguishing complex classes 7 

such as woodland and water. In contrast, the SGD optimizer, while effective in segmenting the 8 

Background class, struggled to differentiate more complex land use types. 9 

For DeepLab v3+, the impact of optimizer choice and the effectiveness of the DECO strategy were 10 

also evident. DECO led to substantial gains in accuracy, F1 Score, and generalization compared to 11 

any single optimizer, further validating the flexibility and robustness of the proposed hybrid 12 

approach across different segmentation architectures. 13 

The superiority of DECO stems from its ability to dynamically adjust optimizer selection during 14 

training, leveraging the strengths of each optimizer at different epochs to achieve optimal 15 

performance. This strategy was equally beneficial in both U-Net and DeepLab v3+, demonstrating 16 

improvements in convergence speed, error reduction, and stability across diverse land cover types. 17 

Additionally, DECO’s impact on parameter sensitivity—especially learning rate adjustments and 18 

number of epochs—was evident. In both models, DECO enabled faster convergence and more 19 

stable training by selecting AdamW in early epochs, switching to RMSprop and Nadam at later 20 

stages, all determined by automated evaluation of validation accuracy and loss curves. 21 

Crucially, the effectiveness of DECO was confirmed not just in the main test region but also in the 22 

challenging Malopolskie area with different geographical features. Both models equipped with 23 

DECO maintained high accuracy and generalization, suggesting robust adaptability to new, 24 

heterogeneous data. 25 

These findings emphasize the importance of dynamic and hybrid optimizer selection for 26 

maximizing the accuracy and reliability of deep learning models in complex remote sensing 27 

applications. Furthermore, the application of rigorous statistical analysis (ANOVA and Tukey 28 

HSD) ensures that the observed improvements are statistically significant and reproducible. 29 

Increasing the diversity and volume of training samples is recommended for future work to further 30 

strengthen model generalization. 31 

6. Conclusion 32 

This research introduced and evaluated the hybrid optimizer DECO (Dynamic Epoch-Centric 33 

Optimizer) for optimizing deep learning models in spatial data analysis, focusing on U-Net and 34 

additionally validating on DeepLab v3+. The main objective was to enhance the effectiveness of 35 

deep learning models in accurately detecting and distinguishing various classes in high-resolution 36 

aerial images. 37 
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By integrating prominent features of multiple reputable optimizers and employing a dynamic, 1 

epoch-centric approach, DECO achieved substantial improvements across all key evaluation 2 

metrics on both architectures. In the U-Net model, DECO achieved an overall accuracy of 96.13% 3 

and a Kappa coefficient of 91.49%, outperforming traditional optimizers such as Adam, RMSprop, 4 

and Nadam. DeepLab v3+ also benefited from DECO, with overall accuracy increasing from 5 

95.1% (best fixed optimizer) to 96.0% in the Minski test set, and from 85.3% to 86.5% in the 6 

Malopolskie region. F1 and Jaccard scores saw similar improvements in both models, and training 7 

curves showed reduced oscillations and faster convergence (see Table 4 and Figure 13). 8 

These results indicate that dynamic optimizer switching, as realized by DECO, enhances both 9 

accuracy and stability in U-Net and DeepLab v3+, confirming its adaptability to different 10 

segmentation architectures. Notably, DECO enabled more accurate identification of challenging 11 

classes such as woodland and water bodies, and more robust distinction between roads and 12 

buildings. While the Jaccard index could still be improved, especially where class boundaries are 13 

ambiguous, DECO demonstrated consistent gains over all static optimization strategies. 14 

The superior performance of DECO—evidenced by higher overall accuracy, F1 score, and Kappa 15 

coefficient—highlights its capacity to achieve balanced and precise classification, reduce false 16 

positives/negatives, and maintain stable training even in heterogeneous data scenarios. The 17 

approach is not only effective in U-Net but generalizes well to other deep learning models such as 18 

DeepLab v3+, underscoring its flexibility and broader applicability. 19 

In conclusion, DECO offers a promising direction for optimizing deep learning models in high-20 

precision spatial data analysis and segmentation. This study serves as proof-of-concept for the 21 

utility of hybrid, dynamic optimizers, and suggests that future research may further extend these 22 

benefits to other complex and multidimensional remote sensing tasks. 23 

7. Limitations and Recommendations 24 

Limitation: 25 

In this study, the selection of the “best” optimizer is entirely based on empirical training of the 26 

same model and dataset with each candidate optimizer, followed by comparison of their recorded 27 

histories. Consequently, identifying the optimal optimizer—or the optimal combination of 28 

optimizers—requires a full cycle of training and evaluation for every option, which is both time-29 

consuming and resource-intensive. 30 

Recommendations: 31 

• Future research should investigate the applications of DECO (Dynamic Ensemble of 32 

Composite Optimizers) across diverse scientific and industrial domains to assess its 33 

effectiveness and generalizability in various problem settings. 34 

• Developing and evaluating hybrid optimizers based on meta-learning, Bayesian 35 

optimization, or reinforcement learning could reduce the need for exhaustive trials of each 36 

optimizer and accelerate the selection process. 37 
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• Ultimately, automating or heuristically guiding the optimizer tuning process may lower 1 

computational overhead and facilitate easier deployment of these techniques in practical 2 

applications. 3 
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“Highlights” 

 

• A novel dynamic optimizer, Dynamic Epoch-Centric Optimizer (DECO), was introduced 

to enhance U-Net performance. 

• Significant improvements in training stability and accuracy were achieved using DECO. 

• DECO was evaluated against six optimizers using advanced statistical metrics. 

• DECO's superior generalization was demonstrated in a new geographical test area. 

• Robust classification of high-resolution satellite imagery was achieved using  

U-Net +DECO. 
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