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ABSTRACT
Farming methods efficiency, agrifood systems sustainability, food traceability, and supply chain transparency depend on robust
data management systems. However, current agricultural data structures (schemas, models, frameworks, file systems, etc.) and
infrastructures remain disjointed across pre‐ and post‐harvest processes, often focussing on certain supply chain stages. This
paper contributes an assessment of the scope and limitations of current agricultural data structures through a new proposed
framework named AgrIMAF (Agricultural Information Model Assessment Framework). AgrIMAF is a three‐layered framework
composed of (a) supply chain stages, (b) stakeholders, and (c) data flows produced and required by stakeholders across the
chain, each serving as a criterion to assess agricultural data structures identified through a systematic literature review. We
assessed 30 data structures with AgrIMAF, revealing a predominant emphasis on preharvest stages, while postharvest stages are
markedly underrepresented. Stakeholders such as customers, insurers, dietitians, and waste managers were predominantly
neglected in the investigated data structures. The analysis indicates extensive coverage of crop, weather, and soil data, however
post‐harvest categories such as traceability, marketing, consumption, and waste are frequently absent. Sustainability initiatives
and biodiversity metrics are infrequently acknowledged. AgrIMAF provides a diagnostic instrument to evaluate information
systems and enhance sustainable, transparent supply chains.

1 | Introduction

With growing worldwide socio‐environmental concerns, the
agricultural sector is increasingly being challenged to deal with
complex issues related to food security, environmental and so-
cial justice, as well as consumer expectations [1, 2]. Given this
context, data becomes the lifeblood of the industry as it is
instrumental to meet several objectives related to efficiency,
sustainability, agility, resilience, as well as stakeholders re-
lationships along the entire supply chain [3–5]. Indeed, data
represent the unique ingredient that enables the concept of
precision agriculture, which is rooted in the premise of reducing

agricultural inputs, minimising environmental impact, and
enhancing sustainability of agricultural practices [6, 7]. Due to
this paradigm, it becomes possible to perform targeted appli-
cations of agricultural inputs [8]. Despite the numerous benefits
of agricultural data, the real challenge lies in their adequate
management due to their heterogeneous nature, which hinders
seamless integration and use in integrated analyses [9].

Access to timely and seamlessly interpretable data is rarely on
par with grower decision‐making processes, which depend on
multidimensional heterogeneous data sources [10]. Indeed, data
management and curation along the entire data value chain
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remains the main bottleneck to achieve this goal [11–14]. For-
ney and Dwiartama [15] describe the agricultural data man-
agement process as a ‘very messy and complex process’. This
complexity may have arisen from the proliferation of short-
sighted idiosyncratic solutions focussing on specific components
or steps of the supply chain [16, 17]. Consequently, these frac-
tured solutions make it arduous to set up a streamlined and
consistent data system that integrates the relevant supply chain
information in a findable, accessible, interoperable and reusable
(FAIR) manner [11, 18].

Current agricultural information models designs do not fully
embrace the plurality of data (a) produced by various agricul-
tural technologies and (b) needed by every actor along the
supply chain. For instance, recent analyses [19] have criticised
the parochial view of existing agricultural data models and
highlighted that farm‐to‐fork transparency challenges are only
addressed from the moment of harvest. Thus, the pre‐harvest
processes, while holding the potential to catalyse new
sustainability‐oriented consumer markets and ecolabel‐based
revenue models, are currently neglected in information
models that aim to support farm‐to‐fork data management.
With the emergence of environmentally conscious consumer
markets [20] and corporate environmentalism as market strat-
egy [21], it becomes imperative to bridge the gap between pre‐
harvest and post‐harvest processes to truly enable a compre-
hensive farm‐to‐fork information pipeline.

A standard and comprehensive data model facilitating discovery
and interoperability between different acquisition platforms and
devices is widely regarded as an sinae qua non condition to
bridge the pre‐to post‐harvest gap while delivering numerous
benefits to the agricultural sector [19, 22, 23]. To develop a
comprehensive information model, a thorough analysis of
existing agricultural information models to identify their scope
and limitations is a prime requirement. However, currently,
there is a lack of a clear understanding of the capabilities of
existing information models and the components of the supply
chain they cover. One way to address this gap is to conduct a
systematic literature review. But, even a systematic literature
review would only provide a partial understanding of this gap.
Prior work in this area focused on features and barriers to
adoption of Farm Management Information Systems [24] and
on the mapping of current applications, benefits, and challenges
of the internet of Things (IoT) in the agricultural sector [25].

These achievements overlooked the data dynamics (data supply
and demand) among stakeholders across the supply chain,
which represents a more transparent way to address the data
flow challenge across the entire supply chain. Hence, we argue
that a holistic framework integrating all stages of the supply
chain, actors, and data requirements and production of every
actor would be a complementary but a more potent tool to
further assess the scope and limitations of existing information
models while providing the basis for guiding the development of
more streamlined and more holistic information models.

The objective of this paper is to introduce a more holistic and
integrated perspective on current agricultural information
models which suffer, for example, from the following frag-
mentation issues: (a) a parochial view (field trials, farm ma-
chineries, field operations, or food traceability) of the supply
chain [13, 26, 27], (b) poor interoperability due to lack of stan-
dards data schemas and controlled vocabularies adoption [11,
12, 18, 28]. We begin by retrieving and assessing relevant
existing information models focussing on crop production,
highlighting their unique features to, finally, illustrate the stages
along the supply chain these models cover. To round this
assessment, we propose a new Agricultural Information Models
Assessment Framework (AgrIMAF) as an objective framework
to assess the scope and limitations of agricultural data structures
found in the literature.

2 | Methods

Our study adopts a fully streamlined approach to realize a sys-
tematic literature review to minimise references selection bias
and enhance the reproducibility of the results. In a first step, we
use the PRISMA framework (Preferred Reporting Items for
Systematic Reviews and Meta‐Analyses [29] and its flow dia-
gram composed of 4 steps (identification, selection, eligibility
and inclusion) designed to select relevant studies based on
predefined inclusion and exclusion criteria and research ques-
tions. While the framework introduces the critical elements for
a systematic review report and ensures adequate transparency
in literature review procedure, it does not support the references
searching process. This is an important aspect to avoid selection
bias and to enhance the reliability of results [30, 31]. To
compensate for this shortcoming, we used an emerging and
promising framework named STAR [32], which is a trans-
position of the PICO (Population, Intervention, Comparison,
and Outcomes [30]) framework for application in environ-
mental sciences. We illustrate this approach in Table 1.

The first step of the PICO framework application, thus of the
STAR framework, is to establish research questions governing
this literature review.

� How effective are existing agricultural data structures in
addressing farming operations to meet the needs and chal-
lenges of stakeholders across the supply chain?

Based on the STAR framework, we developed our search
strategy using similar terms and keywords organised as Boolean
equations to retrieve references related to data structures

Summary

� A framework named AgrIMAF is proposed and used as
a three‐tier assessment structure to evaluate the scope
and limitations of 30 existing agricultural data struc-
tures taken from the literature.

� The results reveal a disproportionate emphasis on pre‐
harvest stages data management compared to post‐
harvest stages along with a notable schism across the
farm‐to‐fork data value chain.

� AgrIMAF is designed to guide the development of more
comprehensive agricultural data models aimed to meet
the requirements of sustainability, traceability, and
interoperability across the agricultural supply chain.
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corresponding to each of the STAR elements Table 2. Thus,
bibliographic references were collected independently for
each one.

Using the sample Boolean equations defined in Table 2, 1565
references were identified from different databases including
Web of Science, Scopus, EngineeringVillage, andGoogle Scholar.
The software tool named Rayyan [33] was used to filter the ref-
erences to determine the truly relevant ones. 376 of the references
were deemed duplicates and, hence, omitted. After this first stage,
the remaining 1189 records were analysed based on their title and
abstract, resulting in the exclusion of 1125 based on the eligibility
criteria defined below. The full text of the remaining 65 references
were all retrieved and further assessed for relevance; 35 of them
were excluded as they did notmeet our criteria. Finally, 30 studies
were deemed eligible for inclusion in this review. This process is
summarised in Figure 1. Our inclusion criteria for the references
found in the literature were as follows:

� Thematic relevance: articles must focus specifically on crop
information systems and not on a sub‐system information
such as soil, climate, etc.

� Period of publication: articles published from 1990 through
2024 because more comprehensive agricultural information
systems started with precision farming technologies devel-
opment around the 1990s.

� Type of publication: only research articles, systematic re-
views, and case studies.

� Articles themes: articles that discuss agrifood databases,
datasets, file systems and information models.

To thoroughly assess the effectiveness, thus scope and limita-
tions, of agricultural information systems introduced in the
selected papers, we have designed the Agricultural Information
Model Assessment Framework (AgrIMAF; Figure 2) based on
four fundamental guiding principles:

a. Systems thinking, that is, AgrIMAF is designed from the
supply chain (from farm to fork) perspective, in response
to the aforementioned shortcomings of existing models,
which are often limited to certain stages (e.g. cultivation,
harvesting). We have therefore structured the framework
around 12 key stages of the agri‐food system, from pre‐
planting to post‐consumer waste management, in order
to foster a systemic and comprehensive view of the supply
chain when designing agricultural data structures. Hence,
this principle is a cornerstone for the framework to address
current challenges such as poor representativeness, and
incompleteness in agri‐food system data [34, 35].

b. Modularity and extensibility, that is, AgrIMAF is thought as
a referential for case‐specific agricultural information
models design. Therewith, it considers the inclusiveness of

TABLE 1 | Summary of the translation of the PICO framework to the STAR framework.

PICO components STAR components Definition
P (population) S (system) Agricultural systems or sub‐systems; soils; cropping systems; agricultural

supply chain stakeholders.

I (intervention) T (trouble/treatment) Farming operations; agronomic inputs (e.g., pest management, irrigation,
fertilization); prescriptive information; precision agriculture; agronomic

amendments.

C (comparison) A (alternative) —

O (outcome) R (response) Biophysical properties (e.g., growth stages, yield, vegetation indices);
agricultural data modelling; farm management information systems.

TABLE 2 | Summary table of the research strategy adopted.

STAR
components Terms Sample keywords and Boolean equations
S (system) Agricultural systems and sub‐

systems
Cropping systems database OR soil data management OR agri‐food

supply chain traceability information OR farm machinery management
information.

T (treatment) Agronomic treatments Agricultural operations management OR precision nutrient sensing OR
precision pest management data OR precision agricultural inputs OR
crop pest and disease management OR irrigation management OR
fertilization prescription maps OR smart agriculture systems OR soil
amendment management OR farm management information system OR
agricultural information system OR agricultural decision support

system.

A (alternative) — —

R (response) Physical and digital responses Biophysical data in agriculture OR crop productivity information OR
crop status information OR agricultural yield data OR vegetation

indices.
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concerned actors and their information along with their
roles as data suppliers or data requisitioners. Accordingly,
AgrIMAF incorporates a cross‐actor/phase typology to
assess whether existing or under‐development data models
effectively meet the information requirements of a present
case study or can be extended to support a future case study.

c. Scalability, that is, the framework is conceived to cater to the
spatially‐distributed nature of supply chain actors, espe-
cially when considering the ‘distributed farmer’ concept in
the context of precision agriculturewhere farming decisions
are perceived as the result of an assemblage of human and
non‐human actors beyond the farmer [36, 37].

d. Interoperability: AgrIMAF is also intended to be used as a
diagnostic tool to gauge the capability and relevance of
generic and community‐led data models from other dis-
ciplines, such as the Observations Data Model (ODM2)
[22] or the Open Geospatial Consortium's Observations
and Measurements (O and M [38]) developed for obser-
vations data, to be repurposed or adapted to agri‐food
systems data. These ‘exogenous’ data models with

adequate metadata could become a standard agricultural
data model that enacts the farm‐to‐fork data management
goal of the paper. Hence, beyond the design‐for‐
interoperability principle, these data models could sup-
port the preceding three design principles.

These four principles are operationalised in a structured and
reproducible analysis grid, which can be used to evaluate any
existing information model according to its coverage of the
supply chain stages, actors and data. As an original contribution
of the paper, AgriMAF is presented in the Results section rather
than as part of the Methods section.

3 | Results

3.1 | AgrIMAF: The Agricultural Information
Models Assessment Framework

Agricultural data are the most important ingredients in enabling
targeted application of input resources [6]. However, it has been

FIGURE 1 | PRISMA flow diagram illustrating the research selection process.

4 of 20 Modern Agriculture, 2025
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noted that most of the data structures used to handle them are
limited in scope, often focussing on specific steps of the supply
chain [19], while neglecting those steps that are relevant to the
farm‐to‐fork context [3, 18]. AgrIMAF (Figure 3) is developed as
a structured mechanism to objectively assess the scope and
limitations of existing agricultural data structures. This is
ground zero for the development of a more integrated agricul-
tural information model that meets this complex web of infor-
mation supply and demand along the supply chain.
Accordingly, it forms the basis for a wider effort to develop in-
formation models and data systems that bridge the data chasm
of the agricultural supply chain by taking into consideration the
interdependency among actors involved and, more importantly
the information they exchange.

AgrIMAF is designed to embody, in a layered layout, three
pillars of the agri‐food systems, that is, the supply chain, the
actors and the data, which occupies each one a layer of the
framework. Each of these layers serves as an evaluation cri-
terion for agricultural data structures, an approach that high-
lights gaps in current agricultural data systems and at the same
time develop grounds for comprehensive, agricultural data
structures that adheres to the farm‐to‐fork concept. AgriMAF
is also designed to support the characterisation of information
exchange among actors, that is, data supply and demand
schemes across the supply chain [39]. These features are
certainly pivotal to a comprehensive assessment of the scope
and limitations of agricultural data structures presented in the
selected papers.

FIGURE 2 | AgrIMAF: the Agricultural Information Model Assessment Framework. The orange dots represent the 12 stages of the supply chain,
while the blue dots identify the actors at each stage of the supply and the green dots the data produced or required by the actors.
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The first layer includes the 12 key stages of the agricultural
supply chain, from pre‐planting (P0) to waste management
(P11), a consideration that allows the tracking of the entire life
cycle of agricultural products. In Table 3, we define all stages of

the supply chain to evaluate how well existing models support
them. The number of stages covered by a data structure is an
indication of the level of visibility required to track the flow of
data and information across the supply chain [40]. Thus, the

TABLE 3 | A listing of the 12 stages of the agricultural supply chain actors considered as part of the AgrIMAF implementation.

Phase ID Description
Pre‐plantation P0 Encompasses all soil preparation and planning work before crops planting.

Plantation P1 Seeds planting in prepared soil after careful planning and safety guidelines of
farmers.

Cultivation P2 Ongoing management of the planted crops to harvest stage.

Harvesting P3 Activities such as cutting or picking, gathering, threshing, and so on.

Storage P4 Storage of products according to standards and preservation rules.

Processing P5 Transformation of raw products into consumables.

Packaging P6 Protecting processed products and putting them into a presentable format.

Distribution P7 Delivering products to retail and consumption sites.

Retail P8 Selling agricultural products to end consumers or businesses.

Marketing P9 Product promotion and distribution using demographic analysis and market
data.

Consumption P10 Consumer feedback phase.

Waste management P11 Treatment of waste generated throughout the supply chain.

FIGURE 3 | Chronological evolution of the coverage of supply chain stages by existing data structures. Each row corresponds to a data structures
identified in the literature, sorted by publication year (descending). Green cells indicate that the corresponding supply chain phase is covered by the
data structures, while white cells indicate non‐coverage. A red dashed vertical line separates pre‐harvest stages (on the left) from post‐harvest stages
(on the right).
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larger the number of stages covered, the more suitable the data
structure might be at enhancing the efficiency of agricultural
resource allocation and at mitigating waste generation
throughout the supply chain [41]. The second layer encom-
passes the different stakeholders and their association with the

supply chain stages of the first layer, a strategy that illustrates
roles and interactions across the supply chain. In Table 4, we
provide the list of the different actors defined in AgrIMAF and
their main roles. Finally, the third layer describes the data flows
between the stakeholders.

TABLE 4 | A listing of the actors of the agricultural supply chain considered as part of the AgrIMAF implementation.

Actors Main roles
Researchers Provide data on biodiversity, soil, and crop adaptation, supporting scientific

research and agricultural practices.

Agronomists Central actors linking scientific research to agricultural practices, offering
advice and yield data based on meteorological and soil information.

Policy makers Produce agricultural policy data and rely on market, economic, and
demographic data for relevant policymaking.

Suppliers/seed companies Generate information on seeds, logistics, and cultivars; require market data to
guide their production.

Farmers Key producers of yield data, reliant on weather forecasts, logistics, and
agronomic advice for optimised production.

Agricultural technicians Offer data on treatments, intervention plans, and equipment; require safety
guidelines for their activities.

Machinery operators Produce reports on machinery performance and maintenance; need safety
guidelines to execute tasks effectively.

GIS consultants Provide geospatial and soil mapping data; require accurate farm delimitation
for resource optimization.

Agro‐economists Analyse market and economic trends, producing insights to guide agricultural
decision‐making.

Insurance companies Offer risk management services for agricultural stakeholders.

Financial institutions Provide funding and financial solutions for agriculture‐related operations.

Storage operators Manage storage conditions and preservation standards; produce inventory and
performance reports while requiring yield and weather data.

Quality assurance Define norms for storage and production; provide inspection reports and
ensure adherence to safety standards.

Food processors Transform raw products into consumables, producing detailed reports on
processing rates and logistics requirements.

Packaging manufacturers/suppliers Provide product specifications and logistics data; require consumer trend data
to adapt to ecological and market needs.

Distribution companies Offer transport and environmental condition data; rely on market and product
traceability information for logistics optimization.

Supply chain managers Ensure timely delivery of products, offering product specifications and quality
reports while needing supply chain data.

Retailers Produce marketing data to understand sales trends and require consumer and
product‐specific information for strategy refinement.

Marketing professionals And brand managers Develop marketing campaigns and produce market analysis to attract
consumers and improve product performance.

Consumers Provide feedback on products, enabling companies to refine quality; require
information on health and safety standards.

Dieticians Offer personalised dietary advice based on nutritional studies, helping
consumers make informed dietary choices.

Authorities/government Produce and enforce regulations to ensure compliance across agricultural
practices.

Waste management companies Manage waste effectively to ensure sustainability within the agricultural
supply chain.
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The third layer is founded on the primary categories of data
identified from the various agricultural data structures exam-
ined in the literature research. The data kinds were derived
inductively by analysing the recurrent areas of information
transferred across stakeholders. To guarantee terminological
consistency and wider applicability, this first categorisation was
later consolidated and confirmed using AGROVOC [42], the
multilingual agricultural lexicon created by the Food and
Agriculture Organization (FAO).

3.2 | Analysis of the Features of Existing
Agricultural Data Structures

In Table 5 below, we describe each of the identified data
structures from the selected references by specifying: (a) the
citation, (b) the name of the solution, (c) the type of data
structures (frameworks, conceptual models, structured files,
etc.), (d) their purpose, and (e) their main features. We noticed
that current structures take into account the sustainability as-
pects of agricultural practices, thus, precision agriculture, such
as reducing inputs, optimising resources and minimising post‐
harvest losses [6, 7].

We noticed some chronological patterns in the development of
the data structures described in Table 5. For instance, before
2010, data models focused mainly on supporting basic farm
management needs including stock, cost monitoring and basic
decision support. A particular observation is that some data
structures comprise structured and non‐structured file systems
rather than database management systems [50, 54] For
example, the DSSAT model [54] was created to estimate crop
growth, development, and yield using biological, economic, and
environmental variables. By allowing modular software archi-
tecture and integrating with GIS settings, it made basic crop
rotation analysis and decision‐making possible. Its limited
integration capabilities and dependence on stand‐alone mod-
ules, however, were indicative of the early emphasis on basic
tools as well as InfoCrop [50] designed for assessing crop yields,
pest‐related losses, and environmental impacts in tropical agro‐
ecosystems. While it provided valuable insights into crop per-
formance under varying conditions, it lacked real‐time data
processing or interoperability with other systems, typical of pre‐
2010 tools.

The fundamental criteria for data were advanced between 2010
and 2015 to include more intricate data models that enable more
comprehensive decision‐support tools and flexible software
systems. Research highlights a Record‐keeping and Decision‐
support System, which is based on PDAs (Personal Digital As-
sistant) [48]. To help in the production of cucumbers, it makes
use of real‐time record‐keeping, decision support, and trace-
ability thanks to its integration of GIS, fertilization recommen-
dations, and early warning models for pesticide application, it
illustrated the growing emphasis on real‐time data synchroni-
zation and regulatory compliance. Additionally, the ABC [45]
model complements the farm management approaches of
Activity‐Based Costing and Direct Costing. It made it possible to
allocate costs accurately according to activities, which made

detailed managerial decision‐making easier. This model high-
lighted the transition from basic cost monitoring to compre-
hensive cost control systems. Even the Farm Management
Information System (FMIS) for fruit orchards [49] is designed to
manage field operations, optimise resource usage, and improve
yield and product quality thanks to its geospatial data, real‐time
sensor inputs, and mobile/web interfaces for manual and
automated data entry, demonstrating the increasing adoption of
precision agriculture technologies.

From 2016 to 2019, the internet of Things (IoT), intelligent sen-
sors and predictive analysis systems appeared to have a trans-
formative influence on information systems to support the
monitoring of agricultural operations in real‐time and automated
recommendations. It is the case for the AgDataBox API [55] that
integrates both spatial and non‐spatial agricultural data to
enhance agricultural input resources. The ifarma/ifarma‐ffa
model [43] is another notable example integrating financial
analysis (non‐spatial data) and tractor communication (spatial
data) to optimise resources and streamline agricultural
operations.

From 2020 onwards, we have observed a shift towards a focus
on interoperability and collaborative data management between
agricultural actors across the supply chain. An example of the
implementation of these features is the QUHOMA application
that implements the EPCIS model [19] to enable, in a standard‐
oriented manner, the tracking of the movement and status of
products across the supply chain, ensuring transparency and
compliance. A second example is the iStar‐based data model
[44] that focuses on data exchange and the interdependency
between farmers, distributors, decision‐makers and other
stakeholders, reinforcing coordination and efficiency in the
supply chain. A third example is the ifarma/Prefer module [58]
that implements a geodatabase to overcome data engineering
issues as a foundation for decision‐making processes in preci-
sion agriculture.

We have also observed, there was also a particular emphasis on
data sovereignty, traceability and sustainability. For example,
the Ploutos model [46] perfectly illustrates this evolution with
its semantics‐oriented approach that enables stakeholders to
control their data while ensuring interoperability with existing
systems, thus facilitating more sustainable food supply chains.
Similarly, the proposed Farmers' Digital Information System
(FDIS) [47] aims to provide small‐scale farmers with integrated
access to essential services such as agricultural advice, markets
and financial services, creating a one‐stop shop to improve their
resilience and productivity. Finally, the Voluntary Food Trace-
ability Framework [65] considers supply chain processes map-
ping, identification of tasks and processes that produce data
along with their associated format, as well as the acquisition and
analysis of traceability data, and the communication of
comprehensible and useful food information to the end con-
sumers. All these examples demonstrate that agricultural data
systems have evolved from simple tasks recording to integrate
resource optimization, processes sustainability, food traceability
and collaborative data management throughout the supply
chain.

8 of 20 Modern Agriculture, 2025
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TABLE 5 | Characteristics of agricultural data structures selected for our analysis according to the literature search strategy defined.

Reference System name Type Purpose Key features
Paraforos
et al., 2017 [43]

ifarma/ifarma‐ffa Computational
tool

A modular farm management
information system designed to
plan, monitor and keep records

of all farming activities.

Support for financial analysis
and tractor communication;
cloud‐based tool with multi‐
level automation capability.

Braun et al.,
2020 [44]

iStar‐based agricultural
data platform

Conceptual
model

A data and service exchange
platform designed for smart
farming, enabling inter‐

organizational collaboration.

Support for data sovereignty and
stakeholders communication;
provision for data‐driven

services.

Moysiadis
et al., 2023 [19]

QUHOMA Application
(web and
mobile)

A web and mobile application
for tracking the movement and
status of goods throughout any

supply chain.

Integration of data on ‘what,
where, when, and why’ of
product movements; global
interoperability based on the
EPCIS standard; integration of
controlled vocabularies; IoT
sensor data for real‐time

monitoring.

Carli and
Canavari,
2013 [45]

ABC Conceptual
model

A conceptual data model
designed to support direct
costing and activity‐based

costing methodologies in farm
management.

Accurate cost allocation based
on activities; detailed

managerial decision‐making;
farm management systems for

enhanced cost control.

Brewster et al.,
2024 [46]

Ploutos Data sharing
framework

A semantic‐based architecture
designed to facilitate sustainable
food systems by enabling data
sharing in agricultural supply

chains.

Data control and sharing by
stakeholders; interoperability
with legacy systems; integration
of semantic technologies;
implementation of food

traceability and sustainability
monitoring.

Mushi et al.,
2023 [47]

Farmers' digital
information system (FDIS)

Computational
tool

A data management system
designed to provide smallholder
farmers with access to essential

agricultural services for
sustainable farming.

Integration of farmers, agro‐
dealers, advisory services,

market, and financial services
data; improvement in
agricultural services

sustainability; agricultural
practices monitoring; one‐stop
shop for services essential to

farmers.

Li et al.,
2010 [48]

PRDS Application
(mobile)

A mobile PDA‐based record‐
keeping and decision‐support
system designed to assist in
cucumber production through
real‐time record‐keeping,
decision support, and

traceability, in addition to
compliance with regulations.

Implementation of a GIS
environment; support for real‐
time data synchronization;

implementation of fertilization
recommendations and an early
warning model for pesticide use.

Tsiropoulos
and Fountas,
2015 [49]

Farm management
information system (FMIS)

for fruit orchards

Computational
tool

A system designed for fruit
orchards to manage field

operations, optimise resource
usage, and improve yield and
product quality through
precision agriculture.

Geospatial data and real‐time
sensor data; mobile and web‐
based interfaces for manual and
automated data entry; decision
support for irrigation and

harvesting.

(Continues)
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TABLE 5 | (Continued)

Reference System name Type Purpose Key features
Aggarwal
et al., 2006 [50]

InfoCrop Computational
tool

A dynamic simulation model
integrated in a graphical user
interface (GUI) for assessing
crop yields, losses due to pests,
and environmental impacts in
tropical agro‐ecosystems.

Crop growth simulation; soil
nitrogen balance; greenhouse
gas emissions; pest impacts; and
climate change scenarios; MS‐
Access as database management

system.

Nash et al.,
2009 [51]

Data‐flow model for
precision agriculture

Conceptual
model

A comprehensive data‐flows
model designed to optimise and

automate information
management in precision

agriculture in support of better
decision‐making, data
utilization, and precision
technologies adoption.

Cross‐domain datasets
integration (e.g., yield data, soil
data); sustainability indicators
and management zones

generation; UML state diagram.

Papadopoulos
et al., 2011 [52]

Decision support system
for nitrogen fertilization

Computational
tool

A fuzzy logic‐based decision
support system designed to

optimise nitrogen fertilization in
site‐specific crop management

and improve both
environmental and economic

outcomes.

Expert knowledge and fuzzy
systems; nitrogen balance
simulation; site‐specific

nitrogen recommendations.

Ngo et al.,
2023 [53]

Electronic agricultural
records

Computational
tool

A cloud‐based data wharehouse
leveraging big data analytics and
standardized data management
to recommend optimal fertiliser
quantities for crops, based on

historical data and
environmental factors.

Data standardisation; cloud‐
based hosting (Hive and
Elasticsearch for data

processing); big data; statistical
methods for fertiliser

recommendations; nutrient
optimization for major crops.

Jones et al.,
2003 [54]

DSSAT model Computational
tool

A modular decision support
system for simulating crop

growth, development, and yield.

Consideration of environmental,
economic and biological
datasets; link to GIS

environments; crop rotation
analysis; modular software

design.

Bazzi et al.,
2019 [55]

AgDataBox API Computational
tool

A web‐based API designed to
store, integrate, and manage
agricultural data for precision
agriculture applications to

enable real‐time data access and
software interoperability.

Integration of spatial and non‐
spatial data; modular

architecture; HTTP‐based
communication; scalable for
multiple applications; data

standardisation.

Ozcelik and
Nisanci,
2015 [56]

LADM‐TAM Conceptual
model

A geospatial data model
designed to integrate tea

agricultural land management
with land administration

systems, ensuring sustainable
tea cropping and compliance
with regional policies.

Consideration of the land Parcel
identification system (LPIS) core
model and the crop Speciality
agricultural model; registration

of land use rights and
restrictions; implementation of
geospatial data management;
compliance with INSPIRE and

national (Turkish) GIS
standards.

(Continues)
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TABLE 5 | (Continued)

Reference System name Type Purpose Key features
Khan et al.,
2018 [57]

Building integrated
agriculture information
modelling (BIAIM)

Plug‐in tool An integrated framework
combining Building information
modelling (BIM) and Building
integrated agriculture (BIA)
supported by a custom‐made
database and data schema to
optimise the design and
management of urban
agriculture facilities.

Support for real‐time
environmental conditions
monitoring; BIM for spatial

data.

Karydas et al.,
2023 [58]

ifarma/PreFer module Computational
tool

A precision fertilization service
(PreFer) integrated into an

FMIS (ifarma) and designed to
provide site‐specific prescription
maps for fertilization operations
using multiple data sources (soil
surveys, satellite imagery, yeild

monitors) and machine
learning.

Support for crop, inventory and
financial management;
implementation of a GIS

environment; machine learning‐
based fertilization maps

creation; integration of Google
earth engine data.

Tummers
et al., 2021 [59]

Reference architecture for
FMIS

Conceptual
model

A reference architecture
designed to guide the
development of Farm

management information
systems (FMIS) based on a

structured approach to integrate
diverse data sources and
optimise farm management

processes.

Support stakeholders
communication; consideration

of all possible modules
(activities) supported by FMIS;
application in livestock and crop

farming.

Köksal and
Tekinerdogan,
2019 [60]

IoT‐based FMIS
architecture

Conceptual
model

An architecture design
approach to develop IoT‐based
farm management information
systems (FMIS) that meet
specific smart farming

requirements, ensuring effective
data collection and processing

for farming systems
management.

Modular architecture for IoT‐
based FMIS; integration of
various IoT protocols (MQTT,
AMQP, DDS,..); support for data
processing and visualisation

from multiple sources; real‐time
monitoring and management of

farm assets.

Pesonen et al.,
2014 [61]

Cropinfra Computational
tool

A multi‐layered service platform
designed to support crop
production in future farms
through an internet‐based
service infrastructure that

integrates precision agriculture
and farm management systems.

Sensors in machines and
equipment; stationary sensor
network; machine control;

integration of external services
(e.g., weather and disease
forecasts); SOA‐based

architecture; real‐time data
processing.

White et al.,
2013 [26]

ICASA Conceptual
model

A comprehensive set of data
standards developed to support
agricultural research and
modelling by providing a
unified framework for

documenting and exchanging
data from field experiments,
greenhouses, and growth

chambers.

Standardized variables and units
for agricultural data

management; field experiments
documentation; data and

metadata for multiple processes
(e.g., soil, weather, management
practices); data interoperability.

(Continues)
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TABLE 5 | (Continued)

Reference System name Type Purpose Key features
Giagnocavo
et al., 2017 [62]

Intelligent traceability
system

Information
system

A traceability system designed
for agricultural cooperatives

that utilises IoT and big data to
provide comprehensive

monitoring and traceability
throughout the food supply

chain.

Provision for IoT‐based real‐time
monitoring and big data for

advanced analytics; adoption of
the net‐chain concept in the
model design; enablement of
multi‐agent cooperation as well
as compliance with food safety
standards; support for automated

reporting capabilities.

Sørensen et al.,
2010 [39]

User‐Centric FMIS for
arable farming

Conceptual
model

A reference design for farm
management information

system based on a user‐centric
approach to optimise

information flow and decision‐
making for arable farming.

Implementation of core tasks
analyses for planning,

execution, and evaluation of
farm operations; support for
external services provided by
agricultural services companies

as well as ISOBUS for
machinery communication, and
real‐time control; consideration
of data supply and demand
among actors; variants for
different planning timing
(operational, tactical, and

strategic).

Fountas et al.,
2009 [63]

University Farm
information management

system (UF‐IMS)

Conceptual
model

An information management
system designed to handle both
precision agriculture data and
research trial data for a

university experimental farm.

Support for data access via web
or mobile devices (PDA);
implementation of a GIS

environments and data sharing
among multiple users.

Sørensen et al.,
2011 [64]

Future Farm management
information system (FMIS)

Conceptual
model

A data‐flow framework for farm
management information
system designed to support
precision agriculture and
optimise farm operations
through advanced data
management and decision
support capabilities.

Support for various farm
operations (tillage, seeding,
fertilizing, etc.) as well as

agricultural services as features.

Latino et al.,
2022 [65]

Voluntary food traceability
framework

Framework A framework designed to
support the adoption of
voluntary food traceability

systems in agriculture 4.0 with
the aim to enhance

transparency, sustainability, and
consumer trust.

Designed according to the food
lifecycle approch; IoT
technologies and data
management standards

integration; software application
(data visualisation) for end‐
users; consideration of food
sustainability challenges.

Fountas et al.,
2015 [34]

Farm machinery
management information

system (FMMIS)

Conceptual
model

A specialised FMIS concept
designed to record, integrate
and manage data from farm

machinery (tractor/implements)
through the ISOBUS protocol.

Support for real‐timemonitoring
of tractor‐implement system;
implementation of financial and
environmental impact analyses;
consideration for stakeholders
communication; support for on‐
farm experimentation and
potential integration with

autonomous vehicles and robotic
systems.

(Continues)
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3.3 | Comparative Analyses of Retrieved Data
Structures

Here, we present a three‐step assessment of all retrieved agri-
cultural data structures based on each of the three AgrIMAF
layers to expose: (a) the components of the supply chain they
cover (first layer), (b) the supply chain actors considered in the
data structures design (second layer), and (c) the agricultural
sub‐systems data they account for (third layer).

3.3.1 | Analysis of Supply Chain Stages Considered in
Agricultural Data Structures

The results of this analysis are presented in Figure 3. From here
we can see that the pre‐harvest stages that is from pre‐planting
to harvest (P0–P3), coverage by current data structures, which is
not the case for post‐harvest stages. This result is corroborated
with research indicating that technological innovations focus
mainly on production phases [67].

Wemust highlight that among thepre‐harvest segment stages, the
planting stage suffers from a scant coverage despite the low
complexity of the corresponding data [68]. The cultivation and
harvesting stages have garnered significant attention due to their
direct impact on automation and production optimization [6, 69].

The results also highlight their paucity in the post‐harvest phase
(P4–P11). This may be explained by the fact that post‐harvest
value chains are often complex and involve multiple actors

and geographical locations, which complicates the data collec-
tion and integration process [67]. In the same figure, it is
noticeable that around 5 data structures or models have provi-
sion for a more consistent coverage of the post‐harvest stages.
These often enable agricultural products to be tracked from
storage to the retailer thanks to the integration of technologies
such as blockchain and the IoT [70, 71]. Waste management
(P11) is especially underrepresented in the reviewed data
structures, even though it plays a crucial role in ensuring a
sustainable circular economy and minimising the environ-
mental impact of agricultural activities [2, 72]. The consumption
phase (P10), despite of its role in a true farm‐to‐fork trans-
parency, has received very little attention [2].

From a chronological point of view, the data reveal limited
coverage of the stages before 2015, reflecting a still nascent in-
terest in data systems designed to manage data from all stages of
the chain. The published data structures mainly focused on the
pre‐harvest segment, again with the planting stage being over-
looked. The first data systems to incorporate coverage of the
post‐harvest segment, although it is a single phase, were intro-
duced in 2015 [56]. Ultimately, a data structure that systemati-
cally focuses on the post‐harvest segment was published [62].
Among the selected references, the data structure proposed by
Latino et al. [65] is the most comprehensive structure that
consistently considers both segments of the supply chain.
Despite the continuing interest in more complete data systems
arisen from the precision farming techniques, environmental
sustainability and food traceability requirements, some critical
phases of the supply chain, especially from product processing
(P5) to final consumption (P10), are still often overlooked.

TABLE 5 | (Continued)

Reference System name Type Purpose Key features
Singh et al.,
2020 [66]

Agri‐Info Application
(mobile
and web)

A cloud‐based autonomic
information system designed to
deliver agriculture‐as‐a‐service
using IoT and cloud computing
for effective management of

agricultural data.

Support for quality of service
(QoS)‐aware resource

scheduling; provision for data
acquisition from various IoT
sources and stakeholders

communication; utilization of
fuzzy logic for automatic

agricultural status diagnosis.

Devare et al.,
2021 [35]

AgroFIMS Information
system

A web‐based open‐source tool
designed to facilitate the

collection, management and
delivery of agronomic data
according to the FAIR

principles.

Support for digital fieldbook
creation with standard
metadata; integration of

agronomic ontologies for data
standardisation; support for
mobile‐based data collection;
enablement of data sharing with
external data repositories.

Craker et al.,
2018 [27]

ADAPT Framework A software toolkit composed of
a data schema, an API, and data
conversion plug‐ins designed to
enable seamless data exchange
among agricultural hardware

and software systems.

Plug‐ins for data formats
conversion; compatibility with
ISO 11783‐10; lossless FMIS‐to‐
FMIS communication via a
common object data model
plug‐in; integration with

industry standards (e.g., PAIL,
SPADE).
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3.3.2 | Analysis of Supply Chain Actors Considered in
Agricultural Data Structures

As we can see in Figure 4, farmers, policymakers, suppliers/seed
companies and researchers interact with data that are essential
for optimising productivity and guaranteeing post‐harvest
product quality [34]. Given the role they play, they benefit
from a more important and consistent consideration in current
information systems. On one hand, other players, such as
agronomists, financial institutions, quality assurance, con-
sumers and authorities/government are only partially covered,
despite the fact that they also play an essential role in the supply
chain. On the other hand, players such as waste management
companies, insurance companies, dieticians, supply chain
managers, packaging manufacturers/suppliers and GIS consul-
tants are under‐represented, although their contributions are
essential to ensuring the sustainability and balance of the chain.
All these gaps contribute to the data fragmentation challenges at
the core of the paper and undermine the effectiveness and
comprehensiveness of data structures. Adopting an integrated
approach with consideration of all stakeholders, their role, their
data, their interaction and promoting collaboration, is essential
to avoid informational silos and improve the efficiency and
transparency of agricultural systems [73].

Our study exposes obvious patterns in the way actors in the
agricultural supply chain are covered. Data structures concen-
trated mostly on core production actors including farmers and
researchers using tools such DSSAT [54] and InfoCrop [50]

focussing on crop and cost management, but disregarding post‐
harvest players [13]. Prior to 2010, although their coverage is
still limited, the development of precision agriculture gave rise
to data systems such as PDA‐based Record‐keeping and
Decision‐support System (PRDS) [48] and FMIS for orchards
[34, 49] which partially integrated data for agricultural techni-
cians and insurers.

Driven by traceability and environmental concerns, data struc-
tures start to feature more cross‐functional actors from 2020
onward. Researchers underline the lack of data structures
encompassing the consumption and waste management phases
as crucial stakeholders, including waste managers and di-
eticians, remain sidelined [72, 74]. This evolution shows a slow
but inadequate recognition of the significance of interactions
among all actors in the chain [67, 75].

3.3.3 | Analysis of the Data Categories Considered in
Agricultural Data Structures

The results of this analysis are illustrated in Figure 5, where a
colour gradient comprising green, light green, and grey is used
to represent the status of data fluxes covered by the selected
data structures, as well as the number of data structures
associated with each specific data flux. The colours respectively
mean: a ‘complete coverage’, a ‘partial coverage’, and a ‘no
coverage’. These categories are dictated by an important

FIGURE 4 | Representation of supply chain actors in existing data structures. Each row represents a supply chain actor and each column
corresponds to an identified data structure (sorted by year of publication). A green dot indicates that the actor is explicitly covered by the model.
White cells represent actors not addressed by the corresponding data structure.
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observation we have made in the literature on agricultural data
structures, i.e. that of a design anomaly that the majority of
data structures suffer from. We noticed that the data structures

significantly adopt the process‐oriented information modelling
[76] design approach, which hardcodes the agricultural pro-
cesses (e.g., weather, soil, crop) supported. Accordingly, when

FIGURE 5 | Detailed mapping of data categories covered by agricultural data structures found in the literature. Each row represents a specific data
category, and each column corresponds to an identified data structure, sorted by publication year (descending). The colour intensity indicates the level
of coverage: light grey for no coverage, light green for partial coverage, and green for full coverage.
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it comes to a conceptual framework, which is a generic data
structure, we assume the coverage as Full. This is because such
a structure theoretically offers flexibility in the type of data
form a data category that the actual implementation could
support. Whereas, for a conceptual data model, a computa-
tional tool or decision‐support system, we consider the
coverage as Partial when a data category is mentioned either in
the model itself or in the paper and None otherwise. For
example, the EPCIS model [19] only covers data on soil tem-
perature and moisture, as well as electrical conductivity and
salinity. Thus, we consider a Partial coverage of the category of
‘soil data’, which encompasses data such as texture, porosity/
permeability, density, structure, pH, nutrient levels, cation
exchange capacity (CEC), soil biodiversity, microbial biomass,
erosion risk, enzymatic activity, leaching potential among
others.

Based on this rationale, Figure 5 provides a detailed represen-
tation of the association between each agricultural data struc-
ture identified and the different data categories covered. It can
be noticed that data categories such as crop information, soil
data and yield data have received significant coverage in agri-
cultural data structures. This is due particularly to the impor-
tance of farm‐level operations in addition to the advent of
precision farming technologies such as soil sensors, yield
monitoring systems and farm management information
systems.

On the other hand, a significant under‐representation of data
categories related to the post‐harvest segment of the supply
chain is noted. Data on marketing strategies, biodiversity
composition, and consumer behaviour, which are crucial for
sustainability and traceability, are unfortunately overlooked
despite calls for their integration into agricultural information
systems [43, 77]. This deficiency limits the ability of agricultural
data systems to align farming practices with emerging market
expectations [74] and can be attributed to the complexity of
post‐harvest value chains, which often involve diverse actors
and fragmented data flows [67]. This is a historical shortcoming
in the development of agricultural data structures that are
geared more towards optimising production operations rather
than towards whole chain data management.

4 | Discussion

This study aims to analyse existing agricultural data structures,
be it conceptual frameworks, conceptual or logical data models,
and structured or non‐structured file systems that feed
computational tools and decision‐support systems, in terms of
their consideration of: (a) the different stages of the supply
chain, (b) the data produced and needed by different actors of
the supply chain, and (c) the overall data flows across the supply
chain. To conduct this analysis, we developed an analytical
framework named AgrIMAF composed of three layers pertain-
ing to the agricultural supply chain (the stages, the stakeholders,
and the data). The results of our analyses certainly demonstrate
the overall capability of AgrIMAF to be used as a diagnostic tool
to assess the scope and limitations of agricultural data
structures.

AgrIMAF stands out as a mechanism to identify data gaps from
three different perspectives in agricultural data structures. For
instance, through our analyses, we were able to highlight the
stages, the stakeholders and the data fluxes that each of the data
structures has considered either fully or partially or not at all.
Accordingly, we anticipate a new role for AgrIMAF which is
that of being used as a tool for agricultural data structures or
information models design that reflects the data exhaustiveness
of the sub‐domain being studied. The exhaustiveness of agri-
cultural information systems may become a strategic approach
for ensuring regulatory compliance and quality standards as
consumer demands for sustainable and fully traceable agricul-
tural products increase. For instance, recent studies [19, 67]
emphasise the importance of integrating accurate and compre-
hensive data across the entire supply chain to enhance trans-
parency and accountability. This is even more necessary when
considering the multifaceted impacts of climate change on food
quality and food storage conditions [78, 79], for example. Hence,
although the AgrIMAF design as well as our analyses have been
focused on crop supply chain, they are equally applicable to
livestock supply chain data management. Accordingly, AgrI-
MAF is positioned to support the design of agricultural data
systems that aim at informing and empowering citizens with
more democratic food system as well as establishing better re-
lationships between farmers and food consumers [4, 5].

The design of AgrIMAF may be considered as a response to the
recent call ‘to treat agricultural production as a sociotechnical
phenomenon and promote a sociotechnical‐system approach to
data and information models development [80]. Accordingly,
AgrIMAF meets the definition of Agricultural Hydro-
informatics: Sociotechnology, which must identify, support and
promote corrective measures, and ultimately implement those
(if necessary) capable of improving the performance of the
technology ecosystem as a whole. It is designed to support data
modelling tasks and potentially data governance for processes
where an assemblage of stakeholders is engaged in data‐
enabling dynamics. Thus, the proposed framework can be
construed as an archetype of frameworks to diagnose the
exhaustiveness of information systems not only in the agricul-
tural sector, but also in other domains, such as healthcare [81]
and construction supply chain [82].

Despite the features and potential applications of the proposed
framework discussed above, a limitation of the current study is
that it has not considered ontologies [83] as a data structure.
The rationale for this omission is mainly based on the practical
focus of our work. For instance, our goal is to support
comprehensive and efficient data management (storage, query,
and sharing) across the supply chain to meet the data supply
and demand of the stakeholders, thus, the considered data
structures (data models, conceptual frameworks, file systems)
offer a more scalable and practical alternative to ontologies.
Furthermore, ontologies do not describe a specific computer
representation for information [84], thus, they are not designed
to support the purpose of our work [85]. However, the frame-
work itself, by considering the relationships between stake-
holders and their data supply and demand across the supply
provides the foundation for the development of an ontology that
represents the knowledge across the supply chain. A second
limitation of the framework is that it is not designed to serve as
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a formal data model for implementation. While AgrIMAF en-
ables a structured evaluation of the coverage and gaps of
existing information systems, its purpose is analytical and con-
ceptual rather than technical or computational. Therefore, it
does not propose a standardized schema or entity‐relationship
structure. However, the conceptual clarity it provides could
inform the later design of more integrated and holistic data
models. A third limitation of the framework as well as the study
is that Controlled Vocabularies used as ancillary information to
describe the data were not taken into account. However, our
review of the literature did not reveal considerations of
Controlled Vocabularies as part of the data structures analysed.
These limitations can be examined by applying the framework
to a vocabulary and ontology repository, such as the AgroPortal
[86], a task that is beyond the scope of the paper. Future de-
velopments could transform AgrIMAF into a fully operational
assessment and design tool by integrating semantic standards,
and validation through practical applications across real‐world
agricultural data systems.

Although the systematic approach adopted enabled a rigorous
assessment, we acknowledge that the study is also limited to
data structures published in academic journals. The scope of
this study could be expanded through the integration of non‐
academic or undocumented models.

5 | Conclusion

This paper introduces a new framework named AgrIMAF
designed as a diagnostic tool to assess the scope and limitations
of agricultural data structures, that is, conceptual frameworks,
conceptual or logical data models, and structured or non‐
structured file systems. The framework is composed of three
pillars of the agri‐food systems, that is, the supply chain, the
actors and the data. Each of these components constitutes a
layer of the framework and serves as an evaluation criterion for
agricultural data structures.

The three criteria were applied to assess the exhaustiveness of
existing agricultural data structures published either as stand‐
alone models or integrated in plug‐in and computational tools.
Through the analyses, we observed that current agricultural
data structures focus mainly on the pre‐harvest phases while
largely overlooking the post‐harvest phases, in particular, waste
management and consumption. This suggests the need to
develop more comprehensive data systems aiming at covering
the entire supply chain while meeting the specific data pro-
duction and demand of each stakeholder.

The originality of this work lies in the proposed AgrIMAF's
holistic approach, and its ability to expose not only the data
produced and required by each actor, but also the data‐related
dynamics between the actors of each phase of the supply
chain. This consideration is crucial to overcoming the chal-
lenges of data fragmentation and optimising agricultural prac-
tices in a context of sustainability and transparency across the
supply chain. However, this study focuses only on academically
documented data structures and does not consider the unpub-
lished private or commercial data structures. As future work, we

plan to use the framework to evaluate the relevance of existing
data models from the environmental sciences domain to gauge
their applicability in tackling the data fragmentation problem in
the agricultural sector.
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