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Abstract: Efficient utilization of wind energy resources, including advances in weather and

seasonal forecasting and climate projections, is imperative for the sustainable progress of

wind power generation. Although temperature and precipitation data receive considerable

attention in interannual variability and seasonal forecasting studies, there is a notable gap

in exploring correlations between climate indices and wind speeds. This paper proposes

the use of an ensemble of artificial neural networks to forecast wind speeds based on

climate oscillation indices and assesses its performance. An initial examination indicates a

correlation signal between the climate indices and wind speeds of ERA5 for the selected

case study in eastern Canada. Forecasts are made for the season April–May–June (AMJ) and

are based on most correlated climate indices of preceding seasons. A pointwise forecast is

conducted with a 20-member ensemble, which is verified by leave-on-out cross-validation.

The results obtained are analyzed in terms of root mean squared error, bias, and skill score,

and they show competitive performance with state-of-the-art numerical wind predictions

from SEAS5, outperforming them in several regions. A relatively simple model with a

single unit in the hidden layer and a regularization rate of 10−2 provides promising results,

especially in areas with a higher number of indices considered. This study adds to global

efforts to enable more accurate forecasting by introducing a novel approach.

Keywords: wind energy; climate indices; wind speed forecasting

1. Introduction

The effective utilization of renewable resources is essential for the sustainable advance-

ment of renewable power generation and is a crucial component in mitigating climate

change. As the world increasingly transitions toward cleaner and more environmentally

friendly energy sources, the management and optimization of wind energy plays a pivotal

role in meeting growing global energy demands. Reliable forecasts enable efficient energy

balance, generation, and storage planning and affect dispatch and maintenance choices.

In Canada, wind energy is the most economical way to generate new electricity [1]. Ac-

cording to [2], the eastern Canadian territories (Ontario, Quebec, New Brunswick, Nova

Scotia, Prince Edward Island, and Newfoundland and Labrador) have great potential to

meet the growing demand for wind energy, emphasizing the selected area for a case study.

Forecasting remains the biggest challenge in integration of wind power [3]. Seasonal

climate forecasting allows decision makers to take advanced actions to minimize the risks

associated with adverse climate conditions or maximize the benefits of favorable ones. It

relies on the interactions of the atmosphere with slower components of the climate system,

such as the ocean, which produce modes of low-frequency variability [4].
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Climate oscillations are strong indicators for seasonal climate changes and have been

used for practical forecasting in various areas. In fact, the field of forecasting seasonal

weather fluctuations has evolved into a regular operational practice in meteorological

forecasting services. Numerous operational meteorological centers around the world

regularly generate seasonal climate anomaly predictions based on global circulation mod-

els [5]. In contrast to traditional weather predictions, seasonal forecasts offer projections of

seasonal-average weather conditions, usually for a period of up to three months preceding

the target season. Numerous studies are available investigating the correlation between

climate oscillations and temperature and precipitation. However, the field lacks an analysis

of correlations between climate indices and wind speeds, confirming the fact that wind

speed records have been studied much less than other climate and weather measures such

as temperature and precipitation data when it comes to long-term variability [6]. Recent

developments in machine learning, including transformer-based models, graph neural

networks, and probabilistic ensembles, are creating new opportunities for wind speed

forecasting, particularly in North American applications.

2. Background

2.1. Wind Forecasting

Literature extensively discusses various wind forecasting methods, frequently clas-

sified as physical-based, data-driven, and hybrid methodologies [7]. For long-term fore-

casting, physical approaches, such as Numerical Weather Prediction (NWP), are standard

and produce highly accurate predictions under stable weather conditions [8,9], but are

expensive and require a significant amount of time [10]. In comparison, data-driven models

extract functional relationships from the data themselves to construct models that illustrate

the connections between wind power and other input variables [11]. Statistical approaches

encompass models based on time series and (Artificial) Neural Networks (ANNs) [12–14].

Hybrid approaches have demonstrated improved forecasting capabilities. In particular,

the incorporation of neural networks significantly improves the utility of NWPs [15].

A recent emerging approach considers the spatial relationship between wind speeds,

using the correlation between speeds at various locations. Models predicting wind speed,

often employing neural networks or adaptive neurofuzzy networks, leverage data from

specific and nearby locations, considering temporal lags [16,17]. Another method that

is gaining increasing attention is the search for transformer architectures for wind speed

forecasting, which find promising results both for standalone models and for transformer-

based enhancements [18–20].

Early studies, such as Watson et al. [21], demonstrate the potential for fossil fuel sav-

ings of 15% to 25% by incorporating different levels of wind power through a combination

of NWP models, a physical flow model and a statistical model for forecasting.

The current Wind Power Forecasting (WPF) method generates deterministic spot

predictions based on conditional expectations. Efforts to improve prediction accuracy have

been a focal point of research [22,23]. Due to the unpredictable nature of atmospheric

conditions, inherent uncertainty is associated with all forecasting methods. Recent years

have seen a growing emphasis on uncertainty prediction and probabilistic forecasting in

prediction theory, particularly in weather forecasting [24], providing quantitative insight

into the variability associated with wind power generation and serving as an optimal input

for decision-making under uncertain conditions [25,26].

While NWP remains dominant in weather forecasting, machine learning-driven

weather forecasting is emerging as a viable alternative. Recent cases showcase the po-

tential of machine learning-driven weather forecasting, particularly in areas where tradi-

tional NWP may be relatively weak [27]. ANNs have been applied in wind forecasting
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and spatial correlations for several decades [28–30]. The latest studies, such as that of

Ti et al. [31], demonstrate that ANN models make a reasonable prediction of wind power

and outperform analytical models due to their flexibility and capacity to capture nonlinear-

ity in the process. Ensemble forecasting has led to significant advances in NWP models

in recent years. It offers multiple equally probable scenarios of meteorological variables,

as opposed to the single scenario typically provided by the traditional NWP [25]. Stud-

ies such as Wu et al. [32] examine the correlation between wind surface data and climate

characteristics, such as, for example, temperature, dew point, and sea level pressure, con-

firming the correlation between wind speeds and climate characteristics. Modern hybrid

modeling approaches, which incorporate machine learning techniques, exhibit promising

potential [33]. For instance, Singh et al. [34] demonstrate succesful hybridization of autore-

gressive integrated moving average (ARIMA) and ANN compared to separate models for

wind power forecasting in Denmark. Recent advances in machine learning have expanded

the range of methods used for wind speed forecasting. Transformer-based models are a

promising development, especially for capturing long-range dependencies in time series

data. Models such as Autoformer and FFTransformer have shown improved performance

over traditional Long Short Term Memeory (LSTM) and Convolutional Neural Network

(CNN) approaches, particularly for short- to medium-term forecasting tasks [18,20]. These

models are now being applied to wind datasets with increasing success.

Graph Neural Networks (GNNs) have also gained attention in the wind forecasting

domain as they can represent spatial relationships between locations more effectively than

standard models. GNNs trained on both reanalysis and station data have been used in

studies across North America, including in the northeastern US, where they significantly

reduced forecasting errors compared to interpolation or location-specific models [35].

At the same time, probabilistic forecasting frameworks are becoming more widely

used. These models can better capture the uncertainty that comes with forecasting weather

and climate. For example, generative models such as Graph-EFM and GenCast have shown

skill in producing ensemble forecasts for wind speed that include uncertainty estimates,

which can be especially useful in decision-making contexts [36,37].

While NWP models still dominate operational wind forecasting, machine learning-

based approaches are increasingly being used to complement or replace traditional methods.

Some of these models have been applied directly to North American regions or trained

on global datasets like ERA5 that include Canada and the US. In particular, they show

promise in capturing large-scale modes of variability that are important for seasonal and

subseasonal forecasting [27,38].

2.2. Case

An extensive assessment of teleconnection-based ensemble learning approaches for

wind prediction remains a notable gap in the current research domain. Hence, this study

seeks to address this gap by thoroughly assessing the seasonal wind prediction capabilities

of an ensemble of Artificial Neural Networks (EANN) model based on large-scale climate

oscillations. The performance of the EANN is in contrast to that of the state-of-the-art

models that compose the C3S seasonal forecasting system.

Eastern Canada was selected as a study due to its potential to expand wind power [2]

and its unique energy profile which can synthesize hydropower with wind power [39].

In addition, the influence of El Niño-Southern Oscillation (ENSO) on precipitation, as well

as Atlantic Multi-decadal Oscillation (AMO) on temperature [40], assist in the investigation

of the correlation between climate indices and wind.

The analysis is performed for the April–May–June (AMJ) season as this season cur-

rently provides a significant share of wind power production in Canada [41]. Further-
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more, the AMJ period is critical for potential integration with hydropower and is thus

essential to evaluate. The purpose of this study is to evaluate the performance of an en-

semble of artificial neural networks for forecasting wind speeds in eastern Canada based

on teleconnection.

The rest of the document is structured as follows: In Section 3, the datasets are

introduced. The methodology employed to build the EANN and the validation process

are detailed in the Methods Section 3. A comparison of statistical and dynamical models

is presented in the Results and Discussion Section 4, which also examines the correlation

between model performance, index correlation, and seasonal dependence. Lastly, Section 5

provides a recap, an analysis of the key findings, and suggestions for future research.

3. Materials and Methods

3.1. Data

The predictant data used in this approach are the ERA5 data of the European Centre

for Medium-Range Weather Forecasts (ECMWF). The reanalysis data are available in grid

form with a spatial resolution of 0.25° × 0.25° and were extracted for the period 1950–2022.

The selected study area extends from 55° W to 92° W in longitude and from 44° N to 65° N

in eastern Canada.

To reduce computational load, the data were further sharpened to a resolution of

1° × 1°. A land–sea mask was applied to disregard grid points in large bodies of water.

The dependent variable is the 10m average wind speed standardized anomalies of the AMJ

computed at each point in the grid of the selected area.

The predictors are made up of correlated climate indices. The Pearson correlation

coefficient has been used as an indicator of the linear relationship between predictors and

predictands. The covariables are the seasonal mean values of any of the listed climate

indices. At each grid point in the selected area, the correlation is computed between

the predictors (lagging from the previous year’s FMA to the current year’s DJF) and the

AMJ predicitant. Climate indices with statistically significant correlations based on a

two-tailed t-student test at 95% [42] are included in a pool of possible predictors. Finally,

the lagged season that results in the highest correlation is selected for each climate index

with statistically significant correlations. All variables were linearly detrended prior to

analysis. A list of the monthly climate indices considered can be found in Table 1.

Table 1. List of climate indices selected for the case study and their symbols retrieved from

NOAA [43].

Climate Index Symbol

Atlantic Meridional Mode AMM
Atlantic Multidecadal Oscillation AMO
Arctic Oscillation AO
Dipole Mode Index DMI
North Atlantic Oscillation NAO
Niño 4 Nino4
Niño 1 + 2 Nino12
Pacific Decadal Oscillation PDO
Pacific North American Index PNA

3.2. Dynamical Models Data

Since 1997, ECMWF has continuously improved its seasonal forecast systems. These

models predict climate conditions up to nine months in advance, using extensive observa-

tional data and integrating various models of climate variables. The models selected for
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performance comparison are SEAS5, UK Met Office GloSea5 (UKMET), National Centers

for Environmental Prediction (NCEP), Météo-France’s System 7 (Météo-France), and the

German Weather Service (DWD). Their common validation period spans from 1993 to

2016. The fifth generation system, SEAS5, launched in November 2017, replaced SEAS4.

SEAS5 incorporates significant advances in models and initial conditions, particularly

in the Integrated Forecast System’s (IFS) atmosphere model. The project began with the

extended range ensemble forecast for 10 to 46 days, leading to the development of SEAS5

with enhanced accuracy through various modifications [44].

The UK Met Office’s GloSea5 system, operational since 2013, integrates a high-

resolution atmosphere–ocean coupled model, providing detailed seasonal forecasts that

benefit from advanced data assimilation techniques and improved physical parameteriza-

tions. Similarly, NCEP’s Climate Forecast System (CFSv2), operational since 2011, leverages

a model combining the atmosphere, ocean, land, and sea ice, emphasizing real-time data

assimilation to enhance forecast precision. Météo-France’s System 7, operational since

2015, utilizes the CNRM-CM model, a high-resolution coupled system designed to capture

detailed interactions between atmospheric and oceanic components. Lastly, the German

Weather Service (DWD) employs the Seasonal Forecasting System based on the Max Planck

Institute’s Earth System Model (MPI-ESM), which focuses on precise climate projections

using sophisticated Earth system modeling techniques.

Each of these systems brings unique strengths and innovations to seasonal forecasting,

contributing to more reliable and accurate climate predictions.

Wind speed predictions are influenced by inaccuracies caused by limitations in accu-

rately simulating all relevant processes that contribute to climate variability [45]. Dynamical

forecasts require a bias adjustment phase to statistically mirror the observational baseline,

reduce prediction inaccuracies, and establish reliable predictions. The wind energy industry

has recognized the need to de-bias the wind speed to ensure reliability for decision-making

purposes [46]. In this study, a bias correction has been performed according to [47,48]

yij = (xij − x̄)
œref

œe
+ ō (1)

where yij denotes the new seasonal mean for each forecast year i and member j after bias

correction, xij represents the seasonal average of each forecast for each year i and member j,

x̄ signifies the ensemble mean of the seasonal averages, σre f denotes the reference standard

deviation, σe represents the interannual standard deviation of the ensemble members,

and ō stands for the climatological mean of the reference dataset, which is added to the

bias-corrected values to obtain the final result. Applied independently to each grid cell,

this procedure refines the ensemble wind speed forecast, aligning it with the mean and

standard deviation of the reference dataset [48].

3.3. Artificial Neural Network Ensembles

ANNs are models used in Machine Learning (ML) and have emerged as a viable

alternative to traditional regression and other statistical models in terms of their utility [49].

This implemented model uses the method of Pinheiro and Ouarda [50], adapted for

flexible selection of covariables per grid point. The model has a feedforward structure

that consists of an input, a hidden, and an output layer. The input layer of this multilayer

perceptron ANN has the same number of units as the predictors, potentially differing for

each gridpoint. The hidden layer is run with one and three units, and the output layer is

made up of one unit.

To create the ensemble, several ANNs are combined in redundant ensembles, which

makes the model more stable and improves its generalizability [51–53]. The model is imple-
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mented in Python 3.10, with the Tensorflow and Keras libraries. The number of members

of the ensemble is set to 20, as a minimum of 10 members is typically suggested (see Shu

and Burn [51]). The ensemble members are created using the Bagging Algorithm [54]

because of its simplicity and proven effectiveness in reducing variance and improving

generalization in neural network models [50,51]. Other ensemble techniques like boosting

or stacking were considered during the design phase, but Bagging was selected for its

straightforward implementation and strong track record in similar applications. This algo-

rithm works by resampling the original sample with a replacement to generate diversified

subsets of the original dataset. Each model is trained using a different subset, which is

then combined through regular mean to generate the final prediction. This methodology

was shown to improve overall predictive performance and reduce overfitting compared to

single models [51,55]. Another measure to reduce overfitting is L2 regularization, which is

implemented to increase the loss function by adding the squared magnitude of coefficients,

multiplied by a regularization constant of 10−2 or 10−5 as different sets of hyperparameters.

Together with the different numbers of units in the hidden layer, this results in a total of

four different sets of hyperparameters run. Each ANN is subject to training using the con-

ventional backpropagation algorithm, which adjusts the weight matrix by computing the

loss function gradient with a learning rate parameter fixed at 10−3. The network operates a

hyperbolic tangent activation function for the hidden layer and linear activation for the

output layer. The training process is completed when either the loss function gradient

reaches below 10−2 or the number of epochs reaches 104.

The training process is illustrated in Figure 1.

Figure 1. Schematic illustration of the training process.

3.4. Forecast Verification and Evaluation

Seasonal predictions must be evaluated against a standard or reference to gauge

their comprehensive performance referred to as forecast-quality assessment [45,48]. In

this study, the ensemble assessment is carried out using leave-one-out cross-validation.

In cross-validation, the year to be predicted is removed from the sample that generates

the forecast. This was undertaken for each year between 1993 and 2016 to match hindcast

and forecast periods, leaving out the years one by one while calculating the long-term

mean and standard deviations of the observation based on the remaining 23 years in

addition to the period 1992–1992, resulting in a training set with 70 samples. Subsequently,

standardized anomalies were calculated for the 70-year training set. In addition, anomalies

for the excluded year were calculated using the same long-term statistics as the training set.

The models were then trained with subsets of the training set generated through Bagging

and applied to predict the omitted observation. This results in 20 predictions that are

aggregated by calculating their mean.
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The statistical evaluation measures used include the Root Mean Squared Error (RMSE),

as seen in Equation (2), which evaluates the accuracy of the forecasts, considering the

magnitude of errors.

RMSE =

√

1

n

n

∑
i=1

(ȳi − oi)2 (2)

where yi and o1 are the i-th of the n pairs of ensemble average and observation. Bias, which

measures the mean error of the forecasts, is calculated as follows:

Bias =
1

n

n

∑
i=1

(ȳi − oi) (3)

The RMSE Skill Score (RMSESS) is a thorough metric used to evaluate the accuracy

relative to climatological forecasts [42]. In order to compute it, the RMSE of the climatology

RMSEclim is defined as

RMSEclim =

√

1

n

n

∑
i=1

(ō − oi)2 (4)

where ō is the observation long-term mean and the oi is the i-th of the n observations.

Finally, the comparative RMSESS in [%] can be computed as

RMSESSclim = (1 −
RMSEmodel

RMSEclim
) ∗ 100 (5)

where RMSEmodel represents the RMSE computed for EANN or dynamical models forecasts.

To assess whether the differences in forecast skill between the EANN and each dy-

namical model are statistically significant, a paired t-test was applied to test if the mean

difference in RMSESSclim across grid points differs from zero at the 90% confidence level.

In order to make a direct comparison between EANN and dynamical models’ perfor-

mance we define RMSESSdyn as

RMSESSdyn = (1 −
RMSEEANN

RMSEdyn
) ∗ 100 (6)

where RMSEEANN is computed with EANN forecasts and RMSEdyn is computed with a

given dynamical model forecast.

4. Results

4.1. Climate Indices as Predictands

As the model concept is based on the dependency of wind speed standardized anoma-

lies on climate indices, Figure 2 shows the correlations between each climate index consid-

ered for different seasons leading up to the forecast season AMJ. The left column shows

the correlation with the AMJ season exactly one year before the season AMJ of interest.

From there on, we follow the seasons JJA, ASO, OND, and DJF.

Going through the indices, different intensities of signals can be observed. Overall,

the indices NINO12, PDO, NAO, and AO provide the highest values correlations, indi-

cating high predictive power. The areas with the overall highest correlations throughout

the indices are the northeastern coastal area, the central area, the eastern area, and the

southwestern area. It becomes clear that a different correlation pattern can be identified for

each index.
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Figure 2. Seasonal correlation of lagged climate indices with ERA5 data for the AMJ season covering

the years 1982–2021.

The first illustrated index, NINO4, yields a high correlation for some grid points,

especially in the AMJ season for the coastal region and relatively stable prediction zones

throughout the seasons. The second index, NINO12, shows an overall higher correlation

than NINO4, resulting in correlations ranging lower than −0.2 and higher than 0.3 in the

southwestern area for AMJ and JJA and northeastern costal area in ASO, OND, and DJF.

The NPI shows highest correlations in the DJF and ASO seasons and a generally large area

of consistent positive correlation for DJF, as well as negative for the ASO season. The PDO

index shows a strong correlation with the northeastern coastal area in JJA and OND. It also

indicates a correlation in the central southern region, most significant in the JJA and ASO

seasons. PNA shows weaker overall correlations, with some stronger signals in the central

and eastern regions in JJA and the coastal regions of Hudson Bay in DJF. The NAO index

indicates a strong correlation for the ASO season in the northwestern area of the examined

area. The same area shows a strong negative correlation in the ASO season, expanding

across the northern edge of the area, also featuring a very central area. The AMM index
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correlation displays a comparatively high signal for a distinct area in northeastern Ontario.

It also has a correlation with the eastern coast of Newfoundland and Labrador. The AO

index provides strong correlation patterns for the southeastern section of the map in DJF

and for the northwestern section in ASO.

4.2. Season Selection

In order to further assess the most relevant season for the prediction process, as well

as the result of selected indices, Figure 3 shows the highest correlated seasons for each

of the individual indices. In this case, all correlated seasons with overlap are considered,

resulting in a total of 11 seasons leading up to AMJ.

Figure 3. Seasonal correlation used for prediction for each of the utilized indices.
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When looking at the seasons selected for the forecast, results differ vastly between

indices and areas. Initially, it can be stated that NINO4, as well as AMO were the two indices

with the fewest overall gridpoints selected, only covering small groups of used seasons

for the northern and coastal parts in the case of NINO4 and eastern coastal parts, as well

as southern central part for AMO, respectively. Both of these indices indicate a prominent

selection of the ASO, as well as the AMJ season. The indices NINO12, PDO, AMM, and

DMI show a greater contribution to forecasts made with a diverse selection of seasons.

For NINO12 and DMI, the AMJ and DJF seasons are featured most prominently, whereas

PDO shows a diverse mix of selected seasons. AMM shows the most frequent use of the

SON and DJF season. Additionally, the indices NPI, NAO, PNA, and AO show the overall

fullest selection coverage. The areas covered bear resemblance to each other, being aligned

in the northeast coastal area, in the eastern to central southern areas, and in dispersed

central coverage. NPI and AO show significant use of the ASO season, with AO’s large

areas of different seasons used standing out. PNA and NAO show dispersed use of

various seasons.

Overall, the Figure emphasizes the high variability of seasonal correlation in terms

of spatial distribution and season selection. The complexity of correlation emphasizes the

importance of a straightforward input variable selection approach.

4.3. Sets of Hyperparameters

Four different sets of hyperparameters were run in the configured model. The sets

differ in terms of the number of units in the hidden layer and the regularization rate.

A summary of different configurations is provided in Table 2 below, along with the overall

mean spatial RMSE and bias values.

Table 2. Overview of different sets of hyperparameters trained, showing spatial mean values of

RMSE and bias.

Regularization Units RMSE Bias

10−2 1 0.868 −0.084
10−5 1 0.871 −0.084
10−2 3 0.893 −0.087
10−5 3 0.924 −0.088

In addition, Figure 4 shows box-plots of the RMSE, as well as the bias spatial distribu-

tion of the different sets of hyperparameters.

(a) (b)

Figure 4. Comparison of different sets of hyperparameters in terms of (a) RMSE and (b) bias.

As shown in the box-plots, the first set of hyperparameters, with a regularization

rate of 10−2 and 1 unit in the hidden layer, performs best with an average RMSE of 0.868.

Reducing regularization to 10−5 does not show a significant change in RMSE. The third
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combination, with 3 units and a regularization of 10−2, results in an increase in RMSE in

most of the grid points. The last set—3 units and a lower regularization of 10−5—features a

further RMSE increase, with a significantly wider spread of the 25th and 75th percentiles.

In terms of bias, it becomes clear that the four sets of hyperparameters feature a slight

negative bias. The first two configurations perform very similarly, and configurations 3 and

4 show a slight negative shift of the overall distribution. However, when comparing the

median bias of the configurations, it becomes clear that the value is very much consistent

throughout the varying configurations.

In summary, it can be stated that a simple model consisting of just one unit in the

hidden layer and a higher regularization of 10−2 in this case outperforms the other three.

This indicates that a simple model design is a better choice than a more complex model.

Thus, the first combination of hyperparameters is selected for discussion in the following

sections. Running additional sets of hyperparameters could prove valuable; for instance,

lower convergence tolerance values could also be tested.

4.4. Ensemble Size

As part of the analysis, the effect of ensemble size on error and bias spatial distribution

was examined. The results for the first hyperparameter configuration are displayed as

box-plots in Figure 5.

(a) (b)

Figure 5. Comparison of different numbers of members in terms of (a) RMSE and (b) bias.

The figure shows the changes in the RMSE and Bias distributions depending on the

use of 1, 5, 10, 15, or 20 members in the ensemble. As the box-plots indicate, the size

of the ensemble had a small impact on the median values of both RMSE and bias using

the selected set of hyperparameters. However, there is a clear narrowing of both metrics

distributions from a single model to a five-member ensemble, indicating a decrease in the

error and bias spatial variability. Moreover, there is a slight narrowing of the 25th and 75th

percentiles as the number of members increases.

4.5. Model Comparison

In order to assess the performance of the built EANN model, a comparison was made

with the state-of-the-art seasonal forecasting models SEAS5, UKMET, NCEP, METEO-

France, and DWD. For comparison, the RMSESS was calculated in relation to climatology

(Equation (5)) for all models and is illustrated in Figure 6.

To assess whether the observed differences in performance between the EANN and

the dynamical models are statistically significant, a paired t-test was performed on the

RMSESS values at each grid point. This adds robustness to the model comparison by

identifying areas where EANN improvements are unlikely to be due to random variation.

Especially for SEAS5, UKMET, and DWD, in the majority of squares where the EANN
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model outperforms the dynamical model, it does so at the 90% confidence level of the

paired t-test.

Figure 6. Comparison of RMSESS between the EANN and dynamical models. Blue areas indicate

regions where the models outperform climatology, while red areas indicate a worse performance

than climatology. Black dots indicate where the RMSESS of the EANN is significantly higher than

that of the dynamical models at the 90% confidence level.

Initially, it becomes clear that the comparison of the EANN model with SEAS indicates

a similar range of results, varying in performance depending on the region examined. The

relative accuracy of SEAS5 ranges from −10% to 12%, whereas the EANN performance

ranges from −10% to 14%. SEAS5 reaches a relative accuracy greater than 10% in two

points in the very northwest sub-region of the selected area. Overall, both models perform

well in the central-west, central-south, and central-east regions. SEAS5 outperforms EANN

in the north and south of Hudson Bay and in the very central area of the selected region.

The EANN has better performance in the southernmost region, especially in southern

Quebec (between 80 W and 65 W) and southeastern Newfoundland and Labrador (east-

ward of 60 W), beating climatology by up to 13% and outperforming all of the compared

models. For this region, the majority of squares has a significantly higher RMSESS than

the dynamical models at the 90% confidence level. Climatological forecasts outperform

the considered models in the southwest of the examined region, east of Hudson Bay, and

along the Hudson Strait. In these regions, the reduced EANN performance is due to the

reduced selection of indices (Figure 3). An additional reason for the lower performance

of the EANN model in the northern Quebec area could be the high variability of annual

wind speeds, with an existing and projected overall increase, especially in the area of
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Nunavik [56]. When considering the models UKMET, NCEP, METEO-France, and DWD, it

becomes clear that the models feature different zones of stronger and weaker performances.

Whilst UKMET and NCEP indicate a weaker performance ranging from −8% to more than

−16% compared to climatology in nothern Ontario, METEO-France and DWD perform

comparitively well, outperforming climatology by up to 8%, which is also a better perfor-

mance than the constructed EANN model. Overall, the performance of the last four models

is notably inferior to that of the SEAS and EANN models, thereby supporting the study

conducted and highlighting the potential benefits of incorporating a climate index-based

forecasting method into an enhanced multi-model ensemble.

This study demonstrates a correlation between climate indices and wind speeds.

In order to assess the influence of the different indices, it is of interest to determine which

single index or combination of indices produces the strongest results. A well-performing

area, such as that east of the twin islands in the southern Hudson Bay at 53° N 79° W,

uses the indices NPI, PNA, NAO, and AO. The strongest corresponding correlations are

above 0.3 for NPI and below −0.2 for NAO, indicating that those two indices are important

predictors for this area. Another strong performance area (Figure 6) east of the Akami–

Uapishk–KakKasuak-Mealy Mountains National Park Reserve, ranging from 54° N, 55°

W to 56° N, 58° W, is forecast based on NINO12, NPI, PDO, PNA, NAO, AMM, AMO,

and AO (Figure 3). When considering the level of correlation, it becomes clear that these

indices also show comparably high correlation values, ranging above and below 0.2 and

−0.2, respectively (Figure 2). A contributing factor to the model’s good performance is

likely the use of NAO winter season indices, as Ouarda and Charron [26] found NAO to

have a significant impact on wind speed distributions in eastern Canada during winter

months. To assess whether the performance of the model is more dependent on the level

of correlation versus the number of predictands, it is interesting to consider the weakly

performing area in the very northeast of the case study. Only NINO4 and PDO have

significant correlations with the wind speed ranging between 0.2 and −0.2, highlighting

the influence of the number of predictands, as well as the level of correlation. Moreover,

this also provides information on the predictive power of these two indices as, for instance,

NINO4, overall, shows low correlation values for the entire area.

The results suggest that the indices NAO, AO, and NPI have strong predictive power.

The season with the most predictive power for the area selected is SON, followed by

the subsequent season ASO, indicating high predictive power throughout the August–

November months.

Figure 7 shows the spatial average RMSESSdyn, comparing the EANN performance

with dynamical models over the study area. The EANN outperforms most dynamical

models, except SEAS5. However, wide error bars indicate substantial variability across the

test years.

Figure 7. Median RMSESSdyn [in %] scorebars computed for the test year. Positive values indicate

a better performance of EANN, and negative ones indicate a better performance of the dynamical

models. Error bars indicate the 90% confidence interval.
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Another aspect to consider is the varying quality of ERA5 reanalysis data across the

case study region. ERA5 wind data are most accurate for flat and sea-level sites with

relatively homogeneous land cover [57], whereas heterogeneous land cover and complex

topography, such as those found in northeastern Canada, can reduce data reliability. These

limitations likely contribute to the reduced performance of the EANN model in such areas,

as the underlying input data may not fully capture local wind variability. Future work

could explore incorporating higher-resolution datasets or downscaling techniques to better

represent complex terrain and land cover variability, as well as testing the model across

different geographic regions to evaluate its robustness.

5. Conclusions

Reliable forecasting is essential for the successful implementation of wind energy

in the power system and effective scheduling. Modern approaches feature a variety

of standalone data-based models, as well as hybrid models consisting of physical and

data-driven models for different time horizons. Seasonal forecasting is often used to

obtain a better overall idea of wind patterns and capacities. The models in place to

provide seasonal forecasts are based on atmospheric and land surface conditions, as well

as numerical weather prediction models. While teleconnection-based forecasts have been

widely used for climate variables such as precipitation and temperature, their application

to wind speed forecasting remains relatively underexplored. This study demonstrates the

potential of forecasting wind speeds using correlated climate indices, achieving competitive

results compared to current numerical climate prediction models backed by a paired t-

test. In terms of RMSESSdyn the proposed model outperforms the compared dynamical

model, with an exception of SEAS5. The results indicate that a simple ensemble ANN

configuration—comprising one hidden unit, a regularization rate of 10−2, and 20 members—

yields robust performance, with an overall mean RMSE of 0.868 and a bias of −0.084. This

configuration slightly outperforms alternatives with lower regularization and shows a

significant improvement over more complex settings. The proposed EANN approach

offers practical advantages for operational forecasting due to its ease of implementation

and lower computational cost relative to dynamical models. This study contributes to

ongoing efforts toward more accurate wind speed forecasting by introducing a novel

climate index-based methodology.

Looking ahead, testing this model in different geographic regions would help us to

understand how well it performs under varied climate and terrain conditions. There is

also potential in exploring hybrid models that combine the ensemble ANN with newer

techniques like transformer architectures or probabilistic forecasting frameworks. Addi-

tionally, conducting more thorough hyperparameter tuning, including adaptive learning

rates, could further boost model performance and reliability. These steps would help move

seasonal wind forecasting forward and support the growing role of renewable energy.
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Abbreviations

The following abbreviations are used in this manuscript:

EANN Ensemble of Artificial Neural Networks

ECMWF European Centre for Medium-Range Weather Forecasts

ML Machine Learning

NWP Numerical weather prediction

ANN Artificial Neural Network

GNN Graph Neural Networks

LSTM Long Short Term Memeory

CNN Convolutional Neural Network

WPF Wind Power Forecasting

ARIMA Autoregressive Integrated Moving Average

ENSO El Niño-Southern Oscillation

AMO Atlantic Multi-decadal Oscillation

ECMWF European Centre for Medium-Range Weather Forecasts

FMA Season February–March–April

AMJ Season April–May–June

JJA Season June–July–August

ASO Season August–September–October

OND Season October–November–December

DJF Season December–January–February
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