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Abstract: Climate change is threatening the sustainability of crop yields due to an increasing
frequency of extreme weather conditions, requiring timely agricultural monitoring. Remote
sensing facilitates consistent and continuous monitoring of field crops. This study aimed
to estimate alfalfa crop height through satellite images and machine learning methods
within the Google Earth Engine (GEE) Python API. Ground measurements for this study
were collected over three years in four Canadian provinces. We utilized Sentinel-2 data to
obtain satellite imagery corresponding to the same timeframe and location as the ground
measurements. Three machine learning algorithms were employed to estimate plant
height from satellite images: random forest (RF), support vector regression (SVR), and
extreme gradient boosting (XGB). The efficacy of these algorithms has been assessed and
compared. Several widely used vegetation indices, for instance normalized difference
vegetation index (NDVI), enhanced vegetation index (EVI), and normalized difference red-
edge (NDRE), were selected and assessed in this study. RF feature importance was utilized
to determine the ranking of features from most to least significant. Several feature selection
strategies were utilized and compared with the situation where all features are used. We
demonstrated that RF and XGB surpassed SVR when assessing test data performance. Our
findings showed that XGB and RF could predict alfalfa crop height with an R2 of 0.79 and
a mean absolute error (MAE) of around 4 cm Our findings indicated that SVR exhibited
the lowest accuracy among the three algorithms tested, with R2 of 0.69 and an MAE of
4.63 cm. The analysis of important features showed that normalized difference red edge
(NDRE) and normalized difference water index (NDWI) were the most important variables
in determining alfalfa crop height. The results of this study also demonstrated that using
RF and feature selection strategies, alfalfa crop height can be estimated with comparably
high accuracy. Given that the models were fully trained and developed in Python (v. 3.10),
they can be readily implemented in a decision support system and deliver near real-time
estimations of alfalfa crop height for farmers throughout Canada.

Keywords: alfalfa; crop height; machine learning; Google Earth Engine; remote sensing;
Sentinel-2
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1. Introduction

The agricultural sector supplies most food resources, guarantees food security, and
promotes sustainable development [1]. The need for accurate agricultural monitoring is
increasing due to the impact of climate change on crop yield sustainability [1]. Given
these changing conditions and an uncertain future, it is critical to track and offer accurate
projections of the effects of climate conditions on crop status to create early warning systems
and manage limited resources efficiently [2–4].

Forages, which are various herbaceous plant species used as animal feed, are es-
sential in agriculture. Alfalfa (also called lucerne, Medicago sativa L.) is one of the most
widely grown forage crops globally, covering an area of 35 million hectares in more than
80 countries [5]. Alfalfa is an extensively cultivated perennial legume forage species that is
known for its superior quality and high productivity [6]. In contrast to other silage crops
like maize (Zea mays L.) and soybean (Glycine max L.), the growth of alfalfa is challenging to
delineate using a conventional phenological curve due to its monthly harvesting and rapid
regrowth [7]. Given that it serves as a principal feedstock, declining alfalfa production
is of considerable concern worldwide. It may result in a shortage of forage for grazing
dairy animals.

Agricultural crops’ biophysical parameters, including biomass, leaf area index (LAI),
and vegetation water content, are some of the most crucial indicators of crop productivity,
growth, and health [8–11]. Crop height, which is among important crop biophysical pa-
rameters, provides essential insights into crop growth and serves as a significant factor in
various agricultural practices, including crop health evaluation, phenological monitoring,
biomass and yield calculation, and precision fertilization [12,13]. Accurate, reliable, and
systematic monitoring and retrieval of crop height is essential, therefore, to support agri-
cultural crop management operations [14]. Maps indicating current crop height can assist
farmers in making informed decisions and managing fields by zone [15].

Conventional techniques for monitoring crop growth, such as quadrat or point-frame
sampling and ground sensors, are time-intensive, challenging, and costly in collecting
agricultural data [16,17]. Sampling methods frequently overlook spatial variability in
most areas, resulting in the absence of optimal management that is adapted to in-field
variability [15,18]. Employing ground sensors might, therefore, be unfeasible to implement
over large areas [19] or to acquire timely information on a broad scale [17].

A Light Detection and Ranging (LiDAR) sensor is a common payload for crop height
model development [20], which measures the distance between the unmanned aerial
vehicle (UAV) and the target using a laser scanner. Despite their high precision, survey-
grade LiDAR sensors are currently costly [21], require specialized operational skills, and
have limited geographical coverage [22], making them unsuitable for routine monitoring
of remote areas.

To address these problems, satellite-based remote sensing technology allows large-
scale surface monitoring with different temporal and spatial resolutions [17]. Prior research
has estimated the height of various crops utilizing synthetic aperture radar (SAR) [12,23–25]
and optical satellite sensors [22,25,26]. Among various crop parameters, plant height di-
rectly indicates vegetative growth and canopy development [27], which is linked to spectral
reflectance, because of changes in plant appearance due to phenological development [28],
and consequently, vegetation indices (VIs). Various optical satellite imagery has been used
in the agricultural domains recently, such as RapidEye [29,30], Sentinel-2 [31–33], Landsat
missions [31,33], Worldview-2/3 [34,35], and MODIS [36]. While Landsat multispectral
missions, among freely available satellite images, have been used to estimate crop parame-
ters in prior research [37–39], these sensors do not include essential components, such as the
red-edge region of the electromagnetic spectrum, which is essential for characterizing crop
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biophysical and biochemical parameters. Sentinel-2 ensures data continuity and interoper-
ability with prior missions such as Landsat [40], while offering higher spatial (up to 10 m),
temporal (revisits of every 5 days), and spectral resolution (red-edge bands) [41]. Using
multispectral remote sensing imagery, plant biochemical and morphological characteristics,
along with canopy structure, influence the canopy reflectance signature [42]. However, to
our knowledge, the relationship between Sentinel-2 spectral bands and VIs derived from
Sentinel-2 imagery and alfalfa height remains unexplored.

Satellite imagery data includes a wealth of information described by variables that
have complex interactions. Linear regression models are useful for comprehending in-
teractions and drawing inferences, but they are constrained in their ability to capture
intricate non-linear correlations among variables [43]. Conversely, machine learning (ML)
techniques provide improved accuracy and are designed to tackle complex interactions [44].
Moreover, they are recognized as effective approaches to crop research [1]. Machine
learning algorithms, such as random forest (RF), support vector regression (SVR), extreme
gradient boosting (XGB), and Gaussian Process Regression have been extensively employed
in estimating crop parameter estimation [11,35,45]. For example, Narin, Bayik, Sekertekin,
Madenoglu, Pinar, Abdikan and Balik Sanli [17] utilized the RF regression model to esti-
mate wheat crop height using Sentinel-1. They reported a correlation of 0.87 in the early
stage by using RF. In another research, Zhang et al. [46] utilized several ML models, such
as RF, SVR, and gradient-boosting regression tree to estimate maize crop height. They
reported the R2 value ranging from 0.79 to 0.99 using the gradient-boosting regression tree.

This study aims to develop a monitoring model for the intra-field variability of alfalfa
height based on multispectral remote sensing data and machine learning techniques on a
large scale. The specific objectives were (1) to evaluate the efficacy of VIs and the precision
of machine learning models in predicting alfalfa crop height across various growth stages
and locations, (2) to analyze the importance of different features in studying alfalfa crop
height, and (3) to apply various feature selection strategies and assess the effect of feature
reduction on the accuracy of the models.

2. Materials and Methods

2.1. Ground Measurements

Ground measurements, including stem counts and crop heights, were collected over
three years (2021, 2022, and 2023) across 597 alfalfa fields that are located in the Canadian
provinces of Nova Scotia, Quebec, Ontario, and Manitoba (Figure 1). Table 1 provides
province-specific information. There were 33 agronomist consultants and 192 producers
who were involved in the field procedures. A randomized design for performing mea-
surements was employed in each field. Each sampling location was represented by three
sampling spots representing the corners of a 2 m isometric triangle. Five stems within a
quadrat with an area of 1 ft × 1 ft (~0.3 m × 0.3 m) were randomly selected, and their
height was measured for average height at each spot (Figure 2). The average stem height
at each location and date was calculated as the average height of the 15 stems measured
at that location and date. The geographic coordinates of triangle centers were used to
collocate remote sensing and associate them with the corresponding average height of each
triangle (Figure 2).

The histogram of the alfalfa crop height measurements collected during the three years
is depicted in Figure 3.
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Figure 1. Study area and data collection sites.

Table 1. Number of fields monitored within each Canadian province.

Province
Year

2021 2022 2023

Manitoba 46 22 21

Nova Scotia 4 4 4

Ontario 15 9 14

Quebec 532 492 464

Total 597 527 503

 

tt

 

Figure 2. The details of the protocol used in data collection, 3 sampling spots were placed in the field;
measurements were taken within quadrats (red rectangles, 1 ft. × 1 ft.) and placed on the corner of
each landmark. Please note that the scale has been changed to visualize the procedure better. The
background image is one of the drone images that was collected over an alfalfa field by the team.
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Figure 3. Distribution of the in-situ alfalfa crop height measurements.

2.2. Satellite Data

The multispectral Sentinel-2 satellite dataset that was utilized in this study was ac-
quired through the Google Earth Engine (GEE) Python API. GEE was launched in 2010
and is a parallel cloud computing platform that facilitates worldwide geospatial analysis
using Google’s infrastructure [47]. The system comprises a multi-petabyte data catalog
that is designed for analysis with a high-performance, intrinsically parallel computing
service [47].

The Sentinel-2 mission consists of two satellites: Sentinel-2A, which was launched
on 23 June 2015, and Sentinel-2B, which was launched on 7 March 2017. Sentinel-2 is a
multispectral sensor including thirteen bands: eight in the Visible and Near-Infrared (VNIR)
portions of the spectrum and five in the Shortwave Infrared (SWIR) range, featuring a
10-day revisit cycle for a single satellite and a 5-day cycle when employing both satellites.
The images that are employed in this study were Sentinel-2 Level-2A data, the atmospheric
correction of which had already been applied to the images. We utilized images from
three days before and following the date of ground measurements. Only images with a
cloud coverage percentage of less than 15% were considered, and masking for clouds and
cloud shadows was applied to the images.

The Sentinel-2 multispectral datasets were extracted separately for the center of the tri-
angles. For Sentinel-2 data, the spectral bands with 20 m spatial resolution were resampled
to 10 m; 60 m spatial resolution bands (Bands 1 and 9) were not used in this study. A buffer
zone with a radius of 10 m was applied around the field measurement center points. The
reflectance of various bands was retrieved by computing the average value of the pixels
within the buffer.

2.3. General Workflow

The flowchart of the proposed methodology is depicted in Figure 4. In this study,
Sentinel-2 images were collected from GEE, and several VIs were then computed. If
Sentinel-2 images were unavailable during that period (three days before and after the
ground measurement date) or if clouds and their shadows had affected areas adjacent to
the sampling location, that sampling data were excluded from data analysis. The remaining
data after preprocessing were randomly split into training and testing sets (70% and 30% of
data points, respectively). We used 5 different “random_state” values in PythonTM to
control the randomness in the dataset splits. The random_state parameter regulates the
shuffling of data before the split implementation. We partitioned the data utilizing several
random_state values and reported assessment metrics for each random_state. Then, we
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calculated the average assessment metrics for each model and plotted the distribution
of the MAE and RMSE to determine the most stable models. We employed a stratified
method for data separation to ensure that the data distribution is preserved in both training
and testing sets. The regression data were categorized according to the year in which the
ground measurements were taken, allowing thus to apply the same training and testing
percentages (70% and 30% of the data, respectively) to each year.  

 

ffi

Figure 4. The flowchart of the methodology that was used in this study. ML stands for machine
learning, RF stands for random forest, SVR stands for support vector regression, XGB stands for
extreme gradient boosting, RMSE stands for root mean square error, MAE stands for mean absolute
error, and R2 stands for coefficient of determination.

The training data were then fed into three ML algorithms, including RF, SVR, and XGB.
The accuracy of the models was then validated using the test dataset. The most accurate
model was then used to map alfalfa height during the growing season.

The parameters of each machine-learning algorithm were optimized using GridSearch
cross-validation (GridSearchCV) tool in the scikit-learn library [48]. Determining the
optimal values for the parameters in each model necessitates thoroughly adjusting the
model’s hyperparameters with GridSearchCV. We employed 5-fold cross-validation for
training purposes. Five equal, or roughly equal, segments are randomly chosen from the
dataset. Four parts are utilized for model training, and the remaining part is designated
for validation. Each iteration of this method uses a separate part as the validation set.
The model’s total performance estimate is derived by averaging the performance metrics
across the five iterations, including accuracy, precision, and recall. It should be noted that
cross-validation was only applied to the training data.

While an increased number of variables may enhance the representation of features
and improve ML accuracy, this does not ensure that such a strategy would consistently
result in superior accuracy. Indeed, highly correlated input variables might adversely affect
the performance of a modeling algorithm [49]. The feature selection (FS) technique, which
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aims to identify the ideal subset of features that exhibit the lowest redundancy and maximal
relevance to the objects, is highly effective in minimizing redundant information [50].

After training the models with all features, we conducted an analysis utilizing several
feature selection techniques to identify the most optimal and important features for alfalfa
crop height estimation while minimizing computational complexity. This study employed
RF feature importance to assess the importance of each input variable. Scikit-learn in
Python includes a built-in feature importance calculator for RF. This approach employs the
model’s internal computations to assess feature importance, including Gini importance
and mean reduction in accuracy. This method quantifies the reduction in impurity within
a decision tree node when a certain attribute is employed to partition the data. A higher
score indicates that the variable will have a more significant influence on the model used to
estimate alfalfa crop height.

In considering the aforementioned, feature selection was performed under various
scenarios: (1) evaluating the correlation among all features, selecting those with an absolute
correlation greater than r = 0.9, and eliminating the feature with the lower RF feature
importance value; (2) assessing the correlation among VIs, selecting those with an absolute
correlation greater than r = 0.9, eliminating the feature with the lower RF feature importance
value; (3) focusing exclusively on bands; (4) concentrating solely on VIs; (5) choosing the
10 m bands (Blue, Green, Red, Near-Infrared). The reason behind selecting r = 90 is to
eliminate the less important feature among highly correlated features. We can explore
how correlated features and VIs impact the models’ accuracy by executing Scenarios 1 and
2, as well as whether eliminating highly correlated and redundant features will increase
estimation accuracy. Additionally, we can determine if the estimation accuracy of bands or
the VIs is superior by utilizing Scenarios 3 and 4. Lastly, we can determine whether greater
spatial resolution bands can more accurately predict alfalfa crop height by using Scenario 5.

Table 2 presents the details of the VIs that were employed in this study. In total,
10 bands and 16 VIs were used for Sentinel-2.

Table 2. The details of the VIs used in this study.

Vegetation Index Formula (Using Sentinel-2 Bands) Reference Abbreviation

Normalized Green Red
Vegetation Index

B3−B4
B3+B4 Gitelson, et al. [51] NGRVI

Visible Atmospheric Resistance Index B3−B4
B3+B4−B2

Gitelson, Viña, Arkebauer,
Rundquist, Keydan

and Leavitt [9]
VARI

Visible-band Difference
Vegetation Index

2B3−B2−B4
2B3+B2+B4 Wang, et al. [52] VDVI

Green–Red Ratio Index B3
B4 Gamon and Surfus [53] GRRI

Normalized Difference
Vegetation Index

B8−B4
B8+B4 Rouse, et al. [54] NDVI

Normalized Difference Index 45 B5−B4
B5+B4 Delegido, et al. [55] NDI45

Normalized Difference Water Index B3−B8
B3+B8 McFeeters [56] NDWI

Normalized Difference Red Edge B8A−B5
B8A+B5 Gitelson and Merzlyak [57] NDRE

Soil Adjusted Vegetation Index 1.5(B8−B4)
B8+B4+0.5

Huete [58] SAVI

Modified Soil Adjusted
Vegetation Index

2B8+1−
√

(2B8+1)2−8(B8−B4)
2

Qi, et al. [59] MSAVI

Enhanced Vegetation Index 2.5(B8−B4)
B8+6B4−7.5B2+1

Huete, et al. [60] EVI

Chlorophyll Vegetation Index B8∗B4
B32 Vincini and Frazzi [61] CVI
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Table 2. Cont.

Vegetation Index Formula (Using Sentinel-2 Bands) Reference Abbreviation

Simple Ratio B8
B4 Jordan [62] SR

Optimized Soil Adjusted
Vegetation Index

B8−B4
B8+B4+0.16

Qi, Chehbouni, Huete, Kerr
and Sorooshian [59]

OSAVI

Modified Chlorophyll Absorption in
Reflectance Index

(B5 − B4)− 0.2 ∗ (B5 − B3) ∗
(B5 − B4)

Daughtry, et al. [63] MCARI

Inverted Red-Edge Chlorophyll Index B7−B4
B5/B6 Frampton, et al. [64] IRECI

B2: Band 2 (Blue) in Sentinel-2; B3: Band 3 (Green) in Sentinel-2; B4: Band 3 (Red) in Sentinel-2; B5: Band 5
(Red_edge1) in Sentinel-2; B6: Band 6 (Red_edge2) in Sentinel-2; B7: Band 7 (Red_edge3) in Sentinel-2; B8: Band 8
(NIR) in Sentinel-2; B8A: Band 8A (Red_edge4) in Sentinel-2.

2.4. Machine Learning Algorithms

2.4.1. Random Forests

RFs [65] are ensemble learning models which are employed for classification and
regression tree applications. Ensemble approaches utilize many learning algorithms to
improve performance. Boosting and bagging are the main approaches in ensemble learning.
Boosting involves developing a series of models, each of which is designed to correct the
errors of its previous one. Several base models are individually trained in the bagging
process, leading to a more stable composite model with less variation, thereby making
it insensitive to the overfitting problem [66]. A collection of decision trees is used and
combined to enhance model accuracy utilizing RF [66]. Each tree utilizes a random subset
of training samples to predict the target values [67]. The RF approach reduces model
variance by averaging the outputs of all decision trees [68]. The grid parameters that are
used in this research for RF tuning are listed in Table 3.

Table 3. GridSearchCV parameters used in the RF model.

Parameters Description Grid Search Values

n_estimators No. of trees in the forest 10, 30, 50, 100, 300

max_depth Maximum depth of the trees 3, 4, 5,

max_features
The number of features to consider

when looking for the best split
3, 5, 10

2.4.2. Support Vector Machine

The SVM model [69] is a widely employed kernel-based ML algorithm for classification
purposes. SVM aims to identify a hyperplane that maximizes the margins between different
classes of training data [68]. The SVM model can be modified for regression tasks [70].
In ε-SVR, the goal is to identify a function f(x) that diverges from the targets by no more
than epsilon (ε). Utilizing SVR, a flexible tube is formed around the estimation function,
ignoring absolute error values below a specified threshold. Points that are located within
the tube, regardless of their position relative to the prediction function, suffer no penalties;
conversely, points that are situated outside the tube are penalized. The grid parameters
that are utilized for SVM tuning in this study are presented in Table 4.

2.4.3. Extreme Gradient Boosting

XGB [71] is a widespread implementation of gradient boosting, which was originally
developed by Chen and Guestrin [72]. The method employs a gradient-boosting framework
and operates as an ensemble machine-learning technique. XGB enhances the performance,
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velocity, adaptability, and efficiency of a machine learning model. Table 5 presents the grid
search parameters that are employed for optimizing the XGB hyperparameters.

Table 4. GridSearchCV parameters set for the SVR.

Parameters Description Grid Search Values

Kernel Specifies the kernel type to be used in the algorithm. ‘rbf’, ‘poly’, ‘linear’

Gamma Kernel coefficient for ‘rbf’, ‘poly’, and ‘sigmoid’ 0.0001, 0.001, 0.05, 0.01, 0.05, 0.1, 0.5

C Penalty parameter 1, 5, 10, 50, 100

Degree degree of the polynomial kernel function 2, 3

Table 5. GridSearchCV parameters set for the XGB.

Parameters Description Grid Search Values

learning_rate Shrinks the contribution of each tree 0.001, 0.05, 0.01, 0.1, 0.2, 0.3

n_estimators The number of boosting stages to be conducted. 10, 30, 50, 100, 200, 300

max_depth Limits the number of nodes in the tree. 3, 4, 5, 7

2.4.4. Evaluation Criteria

We assessed the performance of ML models in predicting the alfalfa stem heights
using the root-mean-square error (RMSE), mean absolute error (MAE), and the coefficient
of determination (R2):

RMSE =

√

∑
n
i=1(ŷi − yi)

2

n
(1)

MAE =
∑

n
i=1|ŷi − yi|

n
(2)

R2 = 1 −
∑

n
i=1(ŷi − yi)

2

∑
n
i=1(ŷi − y)2 (3)

where ŷ is the estimated crop height (cm), y is the observed crop height (cm), and n is the
number of observations. RMSE and MAE (cm) provide a quantifiable assessment of the
residuals’ distribution and distance between predicted and observed data, while R2 allows
quantifying the correlation between the predicted and observed data. Lower values of
RMSE and MAE and higher values for R2 indicate better model fit.

3. Results

3.1. Derived Crop Height Accuracy

The performance statistics of the ML models for crop height estimation, using ran-
dom_state of 26 as an example, are shown in Table 6 and Figure 5. The results of the
training data showed that XGB has the highest accuracy, with an R2 value of 0.79, RMSE
of 3.02 cm, and MAE of 2.35 cm. RF and SVR were in the second and third place in terms
of training accuracy, respectively. RF had an RMSE of 4.86 cm and an MAE of 3.83 cm,
while SVR had an RMSE of 5.72 cm and an MAE of 4.27 cm in the training data. XGB
seems to be overfitted to the training data, while there is no sign of overfitting in RF and
SVR. In terms of test accuracy, RF showed a greater accuracy (R2 = 0.80, RMSE = 5.13 cm,
and MAE = 3.90 cm) compared to XGB (R2 = 0.79, RMSE = 5.30 cm, and MAE = 4.03 cm,
and SVR (R2 = 0.70, RMSE = 6.30 cm, and MAE = 4.71 cm) for estimating crop height using
Sentinel-2 data. Figure 5 illustrates the scatterplots comparing estimated and observed
alfalfa crop height. For heights less than 10 cm, XGB and SVR show a small amount of
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overestimation. No evidence of saturation is observed in RF and XGB. However, a slight
degree of saturation can be seen in SVR.

Table 6. The results of the ML algorithms on the train and test data.

RF SVR XGB

Train Test Train Test Train Test

RMSE (cm) 4.86 5.13 5.72 6.30 3.02 5.30

MAE (cm) 3.83 3.9 4.27 4.71 2.35 4.03

R2 0.75 0.80 0.74 0.70 0.79 0.79

tt

 

tt

ff tt

ff

Figure 5. Scatterplot between estimated and observed alfalfa stem height in the testing dataset using
RF (a), SVM (b), and XGB (c).

Table 7 summarizes the comprehensive results utilizing different splitting sets for
training and testing. Each time, we selected a random_state value, partitioned the data into
training and test sets, trained the models with the training set, and evaluated the models
using the test set. The results (Table 7) are related to the evaluation of the models over the
test set. This table demonstrates that on average, XGB surpassed other models in terms of
MAE and RMSE. The XGB exhibited an average RMSE of 5.22 cm and an MAE of 3.95 cm.
RF ranked second, with an average RMSE of 5.37 cm and an MAE of 4.03 cm. SVR occupied
the third position with RMSE values of 6.14 cm and MAE of 4.63 cm.

Table 7. The analysis of the performance of various ML algorithms using different training and
test datasets.

Model Criteria
Random State

Average
0 10 25 26 42

RF

RMSE 5.03 5.52 5.44 5.13 5.50 5.37

MAE 3.84 4.07 4.13 3.90 4.08 4.03

R2 0.80 0.78 0.79 0.80 0.79 0.79

SVR

RMSE 6.30 6.06 6.12 6.30 6.07 6.14

MAE 4.73 4.50 4.64 4.71 4.64 4.63

R2 0.68 0.69 0.69 0.70 0.68 0.69

XGB

RMSE 5.26 5.06 5.35 5.30 5.20 5.22

MAE 4.02 3.84 4.04 4.03 3.89 3.95

R2 0.79 0.80 0.78 0.79 0.79 0.79
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Figure 6 depicts violin plots of observed RMSEs and MAEs over various ML algorithms
reported in Table 7. Each violin plot consists of a kernel density estimate (KDE) plot and a
box plot illustrating the data peaks. The KDE plot includes a box plot that illustrates the
median (white line) and the interquartile range (darker line) for the specific backscatter
coefficient. The results indicated that violin plots regarding both RMSE and MAE for
RF are wider compared to XGB and SVR, showing high variability in the RMSE or MAE
values across different runs. This may indicate that the model’s performance is sensitive to
changes in the random state, and the model may not be stable or reliable. In contrast, the
violin plots for XGB and SVR are narrower, indicating that they are likely more stable and
less affected by random initialization. The median of XGB for RMSE and MAE is lower than
those for RF and SVR, indicating a better overall performance of XGB. The median of SVR
in both RMSE and MAE is higher than that of RF and XGB, indicating poorer performance
of SVR.

tt ffi

ff

ff
tt

 

−
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Figure 6. Violin plots of the errors of the various ML algorithms using various training and test
datasets that were extracted from Table 6 (RMSE on the left and MAE on the right).

3.2. RF Feature Importance and Correlation Analysis

The result indicated that NDRE held the highest importance in predicting alfalfa crop
height using RF feature importance, whereas NDWI and Band 8 ranked second and third,
respectively (Figure 7). The high importance of NDRE, NDWI, and Band 8 indicates that
the NIR and red-edge bands are highly important for estimating the alfalfa stem height.

The Pearson correlation study that was conducted on the VIs is illustrated by the
heatmap in Figure 8, where variables with 100% correlation are represented by the value
one. The analysis indicates that in estimating alfalfa crop height, the vegetation indices
exhibited strong correlations among themselves, except for CVI, which showed minimal
correlation with all variables. In alfalfa crop height estimation, the correlation between
NDRE and NDWI, the foremost and second most significant features, exhibited a strong
negative correlation (R = −0.95), indicating one of the highest correlations. The RGB-driven
VIs (NGRVI, VARI, VDVI, and GRRI) were highly correlated when assessing alfalfa crop
height. For instance, the correlation coefficient between NGRVI and VARI was 0.99. The
results showed that there is a strong positive correlation (r > 0.84) between B2, B3, B4, and
B5, and high correlation (r > 0.98) was observed between B6, B7, B8, and B8A as well. The
examination of the correlation matrix for the VIs revealed a strong relationship among
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the indices that were formulated with spectral bands at the VNIR wavelength, exhibiting
correlations between 0.8 and 1, except for MCARI, which demonstrated a relatively weak
correlation compared to other VIs that were derived from the VNIR wavelength.

 

Figure 7. Analysis of the importance of features in this study using RF. The VIs are presented
according to the abbreviations listed in Table 2. The term “Band” has been reduced to “B” in this
figure. For example, B2 represents Band 2 in Sentinel-2 data.

3.3. Feature Selection Analysis

The details of the different scenarios and the features that were used in each scenario
are shown in Table 8. In Scenario 1, seven features finally remained, including Band 2, Band
8, Band 11, NDRE, MSAVI, CVI, and MCARI. In Scenario 2, five features finally remained
(NDRE, MSAVI, EVI, CVI, and MCARI). We have ten and sixteen features in Scenarios 3
and 4, respectively. In Scenario 5, we only have four features. After considering all of the
scenarios, we trained our models by considering the input features for each scenario.

Table 8. The details of the number of features and the selected features in each scenario.

Scenario No. No. of Features Selected Features

Scenario 1 7 B2, B8, B11, NDRE, MSAVI, CVI, MCARI

Scenario 2 5 NDRE, MSAVI, EVI, CVI, MCARI

Scenario 3 10 B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12

Scenario 4 16
NGRVI, VARI, VDVI, GRRI, NDI45,
NDVI, NDWI, NDRE, SAVI, MSAVI,
EVI, CVI, SR, OSAVI, MCARI, IRECI

Scenario 5 4 B2, B3, B4, B8
B is the abbreviation for Band. For more information about the VIs, please refer to Table 2.



Remote Sens. 2025, 17, 1759 13 of 25

 

ff

 

Figure 8. The correlation heat map among the bands and VIs that were utilized in this study.

The results of ML algorithms that were obtained by applying the feature selection
strategies can be seen in Table 9. In total, no feature selection scenarios could outperform
the case in which we considered all features together without applying feature engineering.
Among different scenarios, Scenarios 1 and 3 showed great potential for estimating alfalfa
crop height. In Scenarios 1 and 3, the RMSE of RF is 5.23 and 5.37 cm, respectively, while
it was 5.13 cm when considering all features. Using RF and Scenario 4, the RMSE for the
test data were 5.39 cm, which was slightly lower compared to Scenario 1. The best feature
selection scenario using XGB was the third one, given that RMSE and R2 were 5.34 cm
and 0.78, respectively. There was a 4% difference between R2 values of RF and XGB by
using scenario 4, i.e., 0.78 and 0.74, respectively. The results from scenarios 2 and 5 showed
inferior results compared to other scenarios. In ranking models, RF has consistently the
best performance over scenarios based on RMSE, followed by XGB and SVR.

3.4. Mapping Intra-Field Distribution of Alfalfa Stem Height Through a Growing Season

Given the ML model’s proficiency in estimating crop height, we employed RF, which
showed high performance and low overfitting compared to other ML algorithms, to map the
intra-field alfalfa height throughout the 2022 growing season for one field in southwest Que-
bec near the border with Ontario (Figure 9) and two fields in Manitoba (Figures 10 and 11).
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It should be mentioned that the RGB images in Figures 9–11 are histogram-equalized to
enhance visualization.

Table 9. The results that were obtained by applying feature selection to the input features.

Feature Engineering Scenarios
All Features

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

RF

RMSE 5.23 5.76 5.37 5.39 5.66 5.13

MAE 3.96 4.42 4.06 4.12 4.31 3.90

R2 0.79 0.74 0.78 0.78 0.75 0.80

SVR

RMSE 6.69 6.96 7.00 6.49 7.55 6.30

MAE 4.97 5.14 5.18 4.89 5.72 4.71

R2 0.66 0.63 0.63 0.68 0.57 0.70

XGB

RMSE 5.55 5.79 5.34 5.82 5.91 5.30

MAE 4.19 4.42 4.07 4.36 4.50 4.03

R2 0.77 0.75 0.78 0.74 0.74 0.79

The intra-field variability of stem height was low in the early growing season (the first
image in Figure 9). The prediction appeared accurate, given that alfalfa is in its early growth
phase, corresponding approximately to BBCH stages 0–30 (Germination/emergence to
stem elongation). The expected increase in crop height is due to alfalfa growth throughout
each growing cycle. The second image, which was captured five days after the first (on
10 May 2022), demonstrates growth to some extent, particularly in the center of the field.
The maximum height of the alfalfa crop is observed in the image captured on 25 May 2022,
indicating the end of the initial growing cycle. A substantial portion of the field attained a
height of over 35 cm, while a minor section reached a height less than 35 cm. The analysis
of the fourth height mapping image indicated a substantial reduction in alfalfa height due
to harvesting between 25 May and 4 June 2022. The results showed that the model could
successfully detect the harvests in the images. The results also showed that there is a small
region, which has been specified by a black rectangle across all predictions in Figure 9, that
continuously showed low height values during 2022.

The first cloud-free image for the field in Figure 10, which was located in Manitoba,
was available on 26 May 2022. Model predictions show average values for alfalfa height.
The prediction shows the value between 20−25 cm for the heights on 26 May 2022. The
next available cloud-free image that was captured on 17 June 2022 shows maximum values
for alfalfa height. Based on the model’s predictions, the first harvest occurred between
17 June and 2 July 2022. The growth cycle does not match the one near the Quebec-Ontario
border. This seems correct since Manitoba’s climate is colder than that of southwest Quebec.
This can also be confirmed in Figure 11, given two cloud-free images on the same dates
(5 May 2022 and 10 May 2022) as the field in Figure 9. The predictions show almost no
alfalfa growth, even on 10 May 2022, in the image related to the field in Manitoba, while
we have considerable growth in the image taken on 10 May 2022 for the field in Quebec.
The model’s predictions indicate that the alfalfa height in all three instances cannot exceed
the height seen during the first growing cycle.
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Figure 9. Sentinel-2 RGB images (rows a,c) and the corresponding alfalfa crop height mapping
estimated with the XGB model (rows b,d) for a field in southwest Quebec during the growing season
of 2022.

This model represents a straightforward, cost-effective, and highly efficient method
for estimating and predicting alfalfa height. Our analysis indicated that a single image
prediction for a 10-ha field requires about 5 s. If we assume there are 25 cloud-free images
of a single field throughout the growing season, from late April to early November, the
complete processing of a field with an area of 10 hectares would require about 125 s, i.e.,
around 2 min.
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Figure 10. Sentinel-2 RGB images (rows a,c) and the corresponding alfalfa crop height mapping
estimated with the XGB model (rows b,d) for a field in Manitoba during the growing season of 2022.
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Figure 11. Sentinel-2 RGB images (rows a,c) and the corresponding alfalfa crop height mapping
estimated with the XGB model (rows b,d) for a field in Manitoba during the growing season of 2022.

4. Discussion

A limited number of studies exist assessing alfalfa crop height [73–75]. Sheffield et al. [76]
obtained an R2 of 0.90 and RMSE of 4.5 cm in a linear regression model of measured
average alfalfa canopy height, utilizing the 95th percentile of LiDAR-measured height
as a sole predictor with LiDAR data. The RMSE reported in Sheffield, Dvorak, Smith,
Arnold and Minch [76] was better than that of us, as it was ~5.2 cm in XGB. Pittman,
Arnall, Interrante, Moffet and Butler [74] investigated the efficacy of terrestrial mobile
sensing sensors, including laser, ultrasonic, and spectral sensors, for estimating biomass
and canopy height of the alfalfa, bermudagrass, and wheat by establishing a relationship
between height and mass. They stated that the canopy height estimates in alfalfa and
the legume-grass mixture resulted in R2 values of 0.61 or less. These studies employed
terrestrial sensors, lasers, UAVs, or LiDAR data to acquire datasets, which are expensive to
replicate on a broader scale. To the best of our knowledge, only one study [75] has utilized
several VIs, including NDVI, SAVI, and MSAVI, extracted from Landsat data to estimate
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alfalfa height. This study reported high sensitivity between all extracted VIs and alfalfa
crop height (R2 > 90). Nevertheless, this research employed only simple regression models,
and the number of measurements was considerably lower than that employed in our study.
Additionally, the area of interest in this study was limited to only one region. Our terrestrial
measurements encompassed three years of extensive data, incorporating all growth cycles
under diverse geographical regions and environmental conditions.

The evaluation of the performance of the non-parametric algorithms used in this study
for alfalfa crop height indicated that the RF and XGB models surpassed the performance of
the SVR model utilizing Sentinel-2 satellite data. Additionally, according to this study’s
findings (Figure 6), XGB was the most stable model as it was less affected by random
initialization. However, the XGB model showed a sign of being overfitted to the training
data. Despite the fact that the XGB model incorporates regularization terms into the loss
function using the gradient lifting tree strategy, which effectively prevents overfitting and
enhances generalization capabilities [77], we were unable to reduce overfitting using all
of the recommended techniques in the earlier research. The efficacy of RF and XGB in
estimating crop height on the test data in our research agrees with similar results from the
literature [17,78–81]. However, the SVR model demonstrated a low estimation potential. Its
lower performance compared to other machine learning algorithms concurs with findings
from prior studies [82,83]. This poor performance can be linked to the sensitivity of the
SVR model to the size of training data: the larger the dataset that is utilized, the lower the
prediction accuracy can get because the training complexity increases quadratically with
sample size [84,85]. Mountrakis et al. [86] emphasized SVM models’ good generalization
ability and comparable effectiveness when training data are limited but also pointed out
that they are susceptible to dimensionality issues and noisy data. Furthermore, SVM
techniques usually map input data to higher dimensional spaces to identify patterns.
Consequently, apart from the potential increase in dimensionality attributed to the model,
the intrinsic increase in dimensionality within the data itself can also give rise to analogous
dimensionality challenges in SVMs [86].

Deep learning, a subfield of machine learning, is defined by its ability to model
complicated processes via deep, non-linear network architectures [87]. A key advantage
of deep learning is feature learning, which is the automatic extraction of features from
unprocessed data. Features from higher levels of the hierarchy are created by combining
features from lower levels [88]. Numerous studies have demonstrated the effectiveness
of deep learning techniques in a variety of agricultural sectors, most often achieving high
levels of accuracy [89,90]. We intend to use deep learning models on the alfalfa dataset as a
next step in our studies.

Previous studies have considerably used feature importance analysis to identify which
features can most influence the target parameter [91,92]. Specifically, in the ML crop
parameter inversion models and data preparation strategies, feature selection may be
crucial, and using too many redundant variables may potentially result in overfitting or
decreased model accuracy and robustness [93,94]. We examined different feature selection
techniques and compared the results with the scenario in which all variables were given to
the models. No feature selection strategy, however, could perform better than feeding all
features into the models, according to our analysis in this study. This result agrees with
the results from prior studies, as they indicated a decrease when applying feature selection
strategies [95,96]. Additionally, according to the processing time for a single field covering
an area of ~10 ha during the growth season, our investigation showed that it takes roughly
two minutes to analyze 25 cloud-free images using the trained XGB ML model. This
indicates that the model will be significantly important, cost-effective, and computationally
efficient. Therefore, feeding all features as an input in this case is not computationally
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expensive and will not limit our proposed models. However, RF includes a built-in variable
importance measure, and the variables with high scores can be considered to have a high
information value. The results of RF feature importance indicated that all input variables
influence alfalfa yield predictions, but to varying degrees. The analysis showed that NDRE
was ranked the most important feature among all features that were used in this study. The
NDRE index is derived from the red-edge spectrum, which is responsive to variations in
chlorophyll concentrations within crop tissues [79]. Chlorophyll content is the primary
indicator of crop health and photosynthetic activity [97]. Previous studies have thoroughly
explained the sensitivity of red-edge wavelength to changes in crop growth [98]. This can
explain why NDRE was the most important feature in alfalfa crop height estimation, which
is not surprising given that NDRE uses the red-edge wavelength of the spectrum in its
formulation. The findings also demonstrated that in addition to NDRE, NDWI significantly
contributed to alfalfa height estimation. These indices could be related to using the red
region of the spectrum, which is more effective for assessing green biomass and vegetation
density [79]. NDWI also offers insights into vegetation water content [99], which is tightly
connected to total crop health, stress, and vigor.

The saturation phenomenon is commonly known to be a problem for crop monitoring
using optical remote sensing [100]. Furthermore, the model’s performance is significantly
impacted by the saturation of optical input, particularly for tree ensemble machine learn-
ing algorithms that cannot learn from the spatial context of the observation at the pixel
scale [101], providing accurate estimations of dense canopies’ height. However, in the
present study, when we assessed the model performance using test data, the RF and XGB
did not show any saturation when estimating the alfalfa crop height. The only one with a
slight sign of saturation was SVR. This is also consistent with the findings of the previous
studies, as stated that XGB and RF are better at reducing overestimation and underesti-
mation issues, while SVR has been found to have overestimation and underestimation
problems [87,102,103]. As stated in the literature, we strongly believe that over-smoothing
is the source of the small saturation of the SVR since selecting a small value for the kernel
width parameter may result in overfitting, while selecting a big value may result in over-
smoothing [74]. This issue is a general problem in kernel-based techniques (such as radial
basis functions) and is not exclusive to SVM methods [74].

5. Conclusions

This research examined the efficacy of three machine learning algorithms—Random
Forest (RF), Support Vector Regression (SVR), and Extreme Gradient Boosting (XGB)—to
predict alfalfa crop height utilizing Sentinel-2 multispectral images. Our results indicated
that RF and XGB outperformed SVR in predicting crop height. However, XGB showed
better stability with the random selection of the training and test data. Our findings
demonstrated that alfalfa crop height may be obtained with a mean absolute error of
around 4 cm utilizing Sentinel-2 data and either RF or XGB. Our findings showed that
NDRE, NDWI, and Band 8 were the most important features, emphasizing the significance
of near-infrared and red edges of the electromagnetic spectrum in assessing alfalfa crop
height. Although this study assessed various feature selection scenarios, the results showed
that no feature selection strategy could outperform the scenario with all features as input. In
summary, we recommend using Sentinel-2 data to fulfill the need for enhanced information
regarding alfalfa height.

The current research utilized publicly accessible satellite data (Sentinel-2) in the GEE
Python API. Thus, the crop height maps can be generated quickly once the satellite data
becomes available. The crop height maps that were generated in this study can be useful for
identifying real-time growth issues at the intra-field level and facilitating decision-making
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for management zones. Agricultural research organizations can utilize these crop height
maps to provide precise recommendations that assist alfalfa farmers in preventing output
losses and customizing alfalfa crop insurance. Monitoring alfalfa crop height during various
growth cycles offers valuable spatiotemporal data for crop management and may improve
yields to satisfy rising worldwide market demands. Thus, the method is time-efficient,
cost-effective, and reliable, and may be effectively replicated in various regions.

6. Limitations and Future Work

This research employed a feature engineering technique by calculating the Pearson
correlation between pairs of features, subsequently removing the one with low RF im-
portance; however, future studies may utilize alternative feature selection and correlation
analysis methods, such as Variance Inflation Factor (VIF), to eliminate highly correlated
and redundant features. Additionally, optical satellite sensors are constrained by weather
conditions (e.g., persistent cloud cover) and by spatial and temporal resolution. This limita-
tion is particularly pronounced for alfalfa crops in regions like the northern United States
and Canada, where cloud cover is frequent and growing seasons are short. To overcome
this, future studies may benefit from utilizing satellite imagery with higher spatial and
temporal resolution, such as SuperDove data from the PlanetScope constellation. Also,
integrating Synthetic Aperture Radar (SAR) data with multispectral imagery could further
enhance model accuracy. Finally, while the models in this study were designed specifically
for alfalfa height estimation, we believe future work could validate these models for other
crops by recalibrating with crop-specific ground data.
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Abbreviations

The following abbreviations are used in this manuscript:

GEE Google Earth Engine

RF Random Forest

SVR Support Vector Regression

XGB Extreme Gradient Boosting

MAE Mean Absolute Error

RMSE Root Mean Square Error

UAV Unmanned Aerial Vehicle

VI Vegetation Index

ML Machine Learning

SVM Support Vector Machine

KDE Kernel Density Estimate

NGRVI Normalized Green Red Vegetation Index

VARI Visible Atmospheric Resistance Index

VDVI Visible-band Difference Vegetation Index

GRRI Green–Red Ratio Index

NDVI Normalized Difference Vegetation Index

NDI45 Normalized Difference Index 45

NDWI Normalized Difference Water Index

NDRE Normalized Difference Red Edge

SAVI Soil Adjusted Vegetation Index

MSAVI Modified Soil Adjusted Vegetation Index

EVI Enhanced Vegetation Index

CVI Chlorophyll Vegetation Index

SR Simple Ratio

OSAVI Optimized Soil Adjusted Vegetation Index

MCARI Modified Chlorophyll Absorption in Reflectance Index

IRECI Inverted Red-Edge Chlorophyll Index
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