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Drought risks are projected to increase in
the future in central and southern regions
of the Middle East

Check for updates

Younes Khosravi & Taha B. M. J. Ouarda

Drought prediction is vital for sustaining water security in regions highly exposed to climate change.
Here we present a machine learning-based method that integrates climate model outputs to improve
drought monitoring in the Middle East. We introduce a spatially adaptive index called the
Geographically Weighted Temperature Vegetation Dryness Index, developed using local regression
techniques and trend analysis. This index integrates temperature and vegetation signals while
accounting for variations across space and time. It substantially improves prediction accuracy
compared to previous methods. We used recent climate projections under three socioeconomic
scenarios to estimate future drought patterns. Results show spatial shifts and intensification of
drought conditions in parts of the region by the endof the century under high-emission conditions. Our
method also detects localized drought hotspots that broader indices may miss, offering valuable
insights for targeted and adaptive water resource planning.

In recent decades, both natural variability and human-induced climate
change have driven remarkable shifts in globalweatherpatterns, profoundly
impacting water resources, agriculture, and ecosystems1–3. However,
growing evidence highlights that anthropogenic factors such as greenhouse
gas emissions and land-use changes are key contributors to the increasing
frequency and intensity of meteorological disasters worldwide4. The situa-
tion is especially pronounced in arid and semi-arid regions, including the
Middle East, where water scarcity and drought pose serious threats to the
sustainability of natural resources and long-term food security5–9. Rising
temperatures not only profoundly impacts hydrological processes10 but also
drives profound changes in regional climates, leading to more frequent and
intense extreme events such as droughts and heat stress11. According to the
Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate
Change, a global mean temperature increase of 0.85 °C between 1880 and
2012 has already heightened the frequency of meteorological disasters
including droughts, floods, and typhoons12.

Drought is among the most devastating outcomes of climate change,
ranking second only to floods in its global impact and affecting ~7.5%of the
population13,14. Its far-reaching repercussions include diminished natural
resources, reduced agricultural productivity, constrained water availability,
disrupted ecological functions, and compromised economic resilience in
local communities15–18. As climate change accelerates, rising global tem-
peratures and shifting precipitation patterns are not only increasing the
frequency of drought events but also amplifying their intensity, with arid

and semi-arid regions facing the most severe impacts19–21. Reliable drought
prediction and efficient water resourcemanagement can helpmitigate such
adverse consequences and reduce economic losses22–24. Thus, developing
sophisticated predictive systems and employing innovative scientific
approaches to lessen drought impacts and ensure sustainable resource
management is an urgent global priority25,26.

The growing complexity and unpredictability of droughts under cli-
mate change challenge traditional monitoring and prediction methods.
Classical drought indices, such as the Palmer Drought Severity Index
(PDSI)27, the Standardized Precipitation Index (SPI)28, the Standardized
Precipitation Evapotranspiration Index29, and the self-calibrating PDSI30,
provide global-scale drought assessments but often lack the spatial and
temporal resolution needed for accurate local drought monitoring. These
indices, originally developed for large-scale applications, are often insuffi-
cient for capturing fine-scale drought variations in regions with complex
topography and heterogeneous climate conditions31,32. Studies have shown
that traditional drought indices may fail to reflect regional drought condi-
tions accurately, especially in areas where land surface-atmosphere inter-
actionsplay a significant role indrought development33,34. Recognizing these
limitations, the development of integrated and localized drought indices has
emerged as a critical necessity35. Localized drought indices, such as the
Geographically Weighted Temperature Vegetation Dryness Index
(GWTVDI), incorporate high-resolution climatic and topographical data to
improve drought monitoring accuracy. Unlike traditional drought indices,
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which assume spatial stationarity, localized indices leverage advanced sta-
tistical techniques such as Geographically Weighted Regression (GWR) to
account for spatial heterogeneity, improving prediction performance at
finer scales33. Recent studies have emphasized that localizeddrought indices,
when integrated with high-resolution climate projections, provide a more
accurate assessment of drought severity, particularly inwater-scarce regions
like the Middle East36–38. Accordingly, the Middle East was selected as the
evaluation domain in this study, given its acute vulnerability to drought,
substantial climatic diversity, and projected increase in future drought
severity39–41. These characteristics make it an ideal and high-priority region
for testing the effectiveness of advanced drought indices in capturing local
variations and enhancing climate resilience. However, these conventional
approaches often struggle to capture intricate spatiotemporal dynamics and
the complex interplay among climatic, hydrological, and ecological factors
interactions that are increasingly significant in a changing climate42,43.
Recognizing these limitations, the development of integrated and localized
indices has emerged as a critical necessity44,45. To address these challenges,
this study introduces the GWTVDI. This index harnesses advanced GWR
while incorporating key climatic variables such as precipitation, tempera-
ture, and evaporation as well as geographical parameters (e.g., latitude,
longitude, elevation, slope, and aspect). By further integrating a
Mann–Kendall-based trend analysis, GWTVDI accounts for both spatial
heterogeneity and temporal dynamics, thereby refining droughtmonitoring
beyond the static limitations of older indices. This localized, trend-sensitive
framework captures subtle variations in drought onset, severity, and dura-
tion, offering critical insights for proactive resource management and long-
term planning.

While localized indices like GWTVDI address these challenges, Gen-
eral Circulation Models (GCMs) remain essential for broader climatic
assessments. However, GCMs, despite their significance for long-term cli-
mate predictions, are insufficient as standalone tools for accurate local-scale
drought forecasting due to their low spatial resolution (100–300 km) and
challenges in capturing small-scale climatic variations46,47. These limitations
further underscore the importance of integrating localized indices with
GCM outputs to enhance prediction accuracy. By combining the spatial
specificity of localized indices with the broader climatic trends offered by
GCMs, this integrationprovidesapromisingpathway to enhanceprediction
accuracy48,49. Such synergy bridges the resolution gap, providing actionable
insights for drought mitigation and supporting precise monitoring,
improved forecasting, and adaptive strategies tailored to local needs, par-
ticularly in regions vulnerable to water scarcity and extremeweather events.

Recent advances in machine learning (ML) have substantially
improved drought prediction by enabling the processing of complex data-
sets and uncovering nonlinear relationships often missed by traditional
methods50. These techniques have enhanced climate model ensembles and
contributed to reducing uncertainties in climate projections51,52. However,
challenges such as data quality issues including observational biases and
missing records53,54, limited interpretability in deep learning models40,41,55,
and computational burdens in handling high-dimensional climate data39

continue to constrain their effectiveness. To address these limitations,
ensemble learning approaches have gained attention, especially when
combined with high-resolution datasets like CMIP6, to improve prediction
accuracy and reduce uncertainty56–59. Widely used ML algorithms such as
Random Forest (RF), Gradient Boosting (GB), XGBoost, LightGBM, and
Support Vector Machine (SVM) have demonstrated strong capabilities in
forecasting drought and mapping spatial patterns across diverse regions.
Several studies confirm these advances: for example, ML-enhanced
ensembles have improved projections of precipitation and temperature60,
assessed future drought impacts on crop yields61, and outperformed tradi-
tional methods in predictive accuracy62–64. Despite these successes, single
MLmodels often fail to fully capture the complex interdependencies among
climate variables. To overcome this, ensemble strategies particularly
stacking have emerged. Stacking integrates multiple base models through a
meta-learner, improving generalization and reducing sensitivity to data
sparsity65–67. This method has been applied effectively to predict variables

such as temperature25,68,69, precipitation65,70,71, and soil moisture72–74. How-
ever, its application specifically in drought prediction remains limited.
Nonetheless, some efforts have begun to explore this potential. For instance,
stacking has been used for drought vulnerability mapping in Iran75, soil
moisture estimation in the Tibetan Plateau76, and agricultural drought
forecasting in Kenya and India77. In South Asia, ensemble MLmodels have
supported regional drought projections and assessments of agricultural
impacts61. Other studies have enhanced CMIP6-based rainfall and drought
estimates using hybrid ML approaches and satellite data78–80. In summary,
while ML and ensemble learning methods have advanced drought predic-
tion capabilities, the targeted use of stacking models with CMIP6 data for
this purpose is still limited representing a key research gap that this study
seeks to fill.

This study presents a methodological framework that markedly
advances the state-of-the-art in drought prediction by integrating spatial
and temporal dimensions into a unified model. The core innovation lies in
the development of the GWTVDI, which synergistically combines Geo-
graphicallyWeightedRegression (GWR)with themodifiedMann–Kendall
trend analysis to capture both local spatial heterogeneities and non-
stationary temporal dynamics in climate variables. This spatiotemporal
design enables the detection of fine-scale drought signals and evolving cli-
matic patterns that traditional indices such as Temperature Vegetation
Dryness Index (TVDI) often overlook. Moreover, the framework incor-
porates a stacking-based ensemble machine learning approach to refine
climate projections derived from CMIP6 models, thereby enhancing pre-
dictive resolution and reducing uncertainty. By integrating topographic
factors, trend indicators, and advanced machine learning outputs,
GWTVDI not only improves accuracy but also facilitates the early identi-
fication of high-risk drought hotspots. These methodological advances
collectively offer a robust tool for climate-resilient water management in
arid and data-scarce regions such as the Middle East.

Building on the strengths of these ensemble methods, this study
introduces a stacking ensemble model designed for high-precision drought
prediction. Our approach proceeds in four phases: (1) calculating TVDI for
the historical period across theMiddle East; (2) identifying high-performing
MLalgorithms (HPMLA) andhigh-accuracy scenarios (HAC) for historical
TVDI modeling using RF, XGBoost, LightGBM, CatBoost, and SVM; (3)
implementing a stacking-ensemble ML model to predict maximum tem-
perature, minimum temperature, and precipitation under three
CMIP6 scenarios (SSP1-2.6, SSP2-4.5, SSP5-8.5), followed by TVDI pre-
dictions under these same scenarios; and (4) employing GWR to introduce
GWTVDI, an integrated model of drought monitoring that accounts for
both temporal trends and spatial heterogeneity. By integrating multivariate
climatic and topographic datasets with machine learning, this study pro-
poses, to the best of our knowledge, a new approach to address the chal-
lenges of localized drought prediction, offering actionable insights for
adaptive water management and climate change mitigation strategies.
Another contribution of this study is the development of a hybrid model
that integrates the Modified Mann-Kendall Test and GWR to simulta-
neously account for temporal trends and spatial patterns in drought ana-
lysis. The results confirm that this combined frameworkmarkedly enhances
predictive performance and captures evolving drought dynamics with
greater spatial precision than conventional approaches.

Results
Performances of the individual ML models for TVDI historical
The predictive performance of fivemachine learningmodels (i.e., XGBoost,
CatBoost, RF, SVM, and LSTM) were evaluated for forecasting the TVDI
under two scenarios with different input variables (Table 1). The results in
Table 1 are based on performance metrics derived from the final test subset
(20% of the data), which remained completely unseen during training. The
evaluation followed an 80–20 train–test split along with a 5-fold cross-
validation procedure for hyperparameter tuning. This approach ensures
that the reported performance accurately reflects the generalization cap-
ability of the models while minimizing the risk of overfitting. Scenario 1
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(SC1) incorporated climatic variables: precipitation, maximum tempera-
ture, and minimum temperature. Scenario 2 (SC2) expanded the input set
by including Geographical parameters including longitude, latitude, eleva-
tion, slope, and aspect alongside the climatic variables.Under SC1,XGBoost
and CatBoost demonstrated superior performance, achieving R² values of
0.8606 and 0.8603, respectively, with lower RMSE and MAE compared to
the other models. The inclusion of geographical variables in SC2 markedly
improved the models’ predictive capabilities. CatBoost and XGBoost again
outperformed the others, with R² values rising to 0.9372 and 0.9365,
respectively, and further reductions in RMSE and MAE. These enhance-
ments highlight the significance of integrating geographical parameters to
capture spatial variability in drought conditions. The superior performance
of gradient boosting algorithms, particularly CatBoost andXGBoost, can be
attributed to their ability to handle complex nonlinear relationships and
interactions among input variables81. CatBoost’s handling of categorical
features and mitigation of overfitting through effective regularization likely
contributed to its marginally better performance82. The Random Forest
model showed modest improvements, while SVM and LSTM exhibited
relatively lower predictive accuracies in both scenarios. Based on these
evaluations, CatBoost and XGBoost emerged as the top-performingmodels
forTVDIprediction, effectively capturing the complex interactions between
climatic and geographical parameters.

Performances of the stacking ensemble models
Predicting the TVDI required accurate forecasts of three essential climatic
variables: maximum temperature, minimum temperature, and precipita-
tion. To achieve this, we developed a Stacking-EML model tailored for
different climate scenarios.Ourmodeling approachcomprised two levels. In
the first level, five machine learning algorithms (RF, XGBoost, LightGBM,
SVM, andCatBoost) served as basemodels, generating initial predictions of
the climatic variables (Table 2). The second level integrated the best-
performing base models into meta-models specifically ANN83,84, Multiple
Linear Regression (MLR)85, and LASSO regression86,87 to further refine
prediction accuracy (Table 3). The performance metrics in Table 2 and 3

were obtained from the final test dataset (20% of the total data), ensuring
unbiased evaluation. The models were trained using an 80–20 train–test
split, and hyperparameters were optimized via a 5-fold cross-validation
procedure to ensure generalization and prevent overfitting.

Table 2 shows that LightGBM and RF consistently outperformed the
other base models, demonstrating lower RMSE and higher R² across
maximumtemperature,minimumtemperature, andprecipitation forecasts.
These results underscore the efficiency of gradient-boosting frameworks
and ensemble-based methods (LightGBM, RF) in processing complex cli-
matic datasets. Next, we combined these two base models with three meta-
model regressors (ANN,MLR, LASSO), creating afinal stacking layer under
two input scenarios. Scenario 1 (SC1) utilized only climatic variables
including maximum temperature, minimum temperature, and precipita-
tion, while Scenario 2 (SC2) supplemented these with key geographical
parameters (longitude, latitude, elevation, slope, aspect). As summarized in
Table 3, incorporating geographic information (SC2) markedly enhanced
predictive performance in the meta-model stage. For instance, the ANN’s
RMSE for maximum temperature decreased from 2.37 to 1.83, with R²
improving from 0.972 to 0.990. Precipitation forecasts showed a similar
gain, as RMSEdropped to 0.689 andR² rose to0.821under SC2.Overall, the
ANN consistently outperformed MLR and LASSO, suggesting that non-
linear architectures can more effectively capture complex interactions
among climatic and topographical variables.

Figure 1a–c offers a high-level visual comparison of model perfor-
mances, effectively summarizing the relationship between RMSE andR² for
each approach. The stacking ensemble model with ANN under SC2
achieved thehighest performanceamongall tested frameworks, consistently
surpassing individual CMIP6models (AWI-CM-1-1-MR, MIROC6,MRI-
ESM2-0), which showed higher and lower correlation coefficients. These
performance metrics were further supported by 95% confidence intervals
derived fromfivefold cross-validation, ensuring statistical robustness. These
findings underscore the limitations of rawCMIP6 outputs and highlight the
advantage of a stacking approach, particularly when geographic factors are
incorporated. In the final step, the HPMLA and the most accurate scenario
(HAC) identified here were employed to project GWTVDI under three
Shared Socioeconomic Pathways (SSP1-2.6, SSP2-4.5, and SSP5-8.5). This
pipeline ensures that the best local-scale predictive strategies feed into
drought assessments, improving the reliability of future projections.

Introducing GWTVDI as an index for prediction drought
Two approacheswere employed tomodel theTVDI usingGWR. In thefirst
(basic) approach, a GWR model used the best-performing Stacking-EML
outputs for maximum temperature, minimum temperature, and pre-
cipitation as auxiliary variables to estimate TVDI, thus focusing on the
spatial heterogeneity of drought through local relationships among these
climatic factors. In the second approach, referred to as GWTVDI, this
GWR-based framework was enhanced by (a) adding key geographical
features (latitude, longitude, elevation, slope, aspect) as independent vari-
ables, and (b) incorporating the Mann–Kendall-derived temporal trend
indicator (as described in Eq. 8). The integration of these geographical
parameters to refine GWR estimates had been previously validated in the

Table 2 | Assessment of the machine learning model’s
performance

Model Tmax Tmin Precipitation

RMSE R2 RMSE R2 RMSE R2

RF 2.4464 0.9444 2.4621 0.9266 0.8493 0.6457

SMV 2.4580 0.9438 2.4679 0.9262 0.8535 0.6401

LGBM 2.4287 0.9452 2.4588 0.9268 0.8479 0.6476

XGB 2.4583 0.9438 2.4707 0.9261 0.8502 0.6445

CB 2.4715 0.9432 2.4819 0.9254 0.8543 0.6392

Table 3 | Performance Metrics of Meta-Model Regressors
under Two Scenarios

Model Tmax Tmin Precipitation

RMSE R2 RMSE R2 RMSE R2

SC1 ANN 2.3686 0.972 2.7005 0.966 0.823 0.705

MLR 2.3642 0.970 2.7027 0.964 0.844 0.704

LASSO 2.3641 0.971 2.7016 0.965 0.826 0.704

SC2 ANN 1.8304 0.990 1.5006 0.988 0.689 0.821

MLR 1.8381 0.988 1.5061 0.987 0.691 0.817

LASSO 1.8326 0.989 1.5039 0.971 0.689 0.819

Table 1 | comparative performance of machine learning
models for TVDI prediction under two scenarios

Model R² RMSE MAE

SC 1 XGBoost 0.8606 0.0539 0.0399

CatBoost 0.8603 0.05402 0.04

RF 0.8587 0.0543 0.0402

SVM 0.8438 0.0571 0.0432

LSTM 0.768 0.07 0.0547

SC 2 XGBoost 0.9365 0.0364 0.0269

CatBoost 0.9372 0.0362 0.0267

RF 0.86032 0.05402 0.04

SVM 0.91772 0.0414 0.0299

LSTM 0.8438 0.0571 0.0432
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study conducted by Khosravi, Homayouni and St-Hilaire88. By fusing local
spatial weights (via GWR), temporal evolution (viaMann–Kendall trends),
and a broader set of input features, GWTVDI provides a more compre-
hensive depiction of drought conditions across the region. Incorporating
temporal trends allows the model to account for non‐stationarity in the
underlying climate drivers, which is especially pertinent for regions
experiencing rapid changes in temperature andprecipitation regimes. Thus,
GWTVDI combines the strengths of geographically weighted regression, in
capturing local spatial variability, with the ability to track evolving climate
patterns over time. To assess which model provides greater explanatory
power and predictive accuracy for drought conditions in the Middle East,
two keymetrics, R² and adjusted R², were utilized. Additionally, the Akaike
Information Criterion corrected (AICc) was employed to evaluate model

fit89. In this analysis, themodel achieving the highestR² and the lowest AICc
value was identified as the most appropriate based on the goodness‐of‐fit
criteria. Thesemetricswere computed for three SSP scenarios namely SSP1‐
2.6, SSP2‐4.5, and SSP5‐8.5 across future horizons of 2040, 2070, and 2099,
thereby offering a thorough assessment of predictive performance under
varying emission pathways. The resulting values are summarized in Table 4.
Overall, theGWTVDImodel consistently outperformed the baseline TVDI
approach, as evidenced by higher Adjusted R² scores and more favorable
AICc values across most time periods and scenarios. This observation is
further supported by the Local R² maps (Fig. 2a–c). The data presented in
these figures clearly indicate that GWTVDI outperforms TVDI in terms of
R² values. Notably, Fig. 2 illustrates that most areas of the study region
exhibit highR² values, underscoring the robust performanceof theproposed

Fig. 1 | Model performance comparison for climate variable prediction. a R² and
RMSE scores for maximum temperature predictions across individual climate
models and ensemble approaches. b Same performance metrics for minimum
temperature prediction. cModel performance in precipitation prediction. In all
panels, blue bars represent R² and orange bars indicate RMSE. Models include three

individual CMIP6models (AWI-CM-1-1,MIROC6,MRI-ESM2-0) and six stacking
ensemble models (S-EML) using ANN, MLR, and LASSO under two scenario
configurations (SC1 and SC2). Error bars denote 95% confidence intervals from
fivefold cross-validation.
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approach in capturing the spatial variability of drought. However, certain
subregions warrant closer scrutiny. Based on these maps, the central part of
the study area which includes the majority of Iraq as well as eastern Iran,
southeastern parts of Saudi Arabia, and portions of Egypt, exhibit sig-
nificantly lower values of local R² (below 0.5). These lower values may
indicate either greater climate variability or the influence of additional
factors (e.g., groundwater abstraction, land‐use change, or irrigation

practices) not fully captured by the current GWTVDI formulation. Our
analysis reveals that the overall number of high R² pixels has actually
increased compared to earlier scenarios.However, a keydifference lies in the
spatial arrangement of these values, as the central region of the study area
exhibits a more scattered and less structured pattern compared to previous
scenarios. This suggests that while model accuracy remains high under
SSP8.5, increasing climate variability disrupts the spatial coherence of
drought predictability, likely due to intensifying hydroclimatic fluctuations.
Comparing the three SSP scenarios reveals that the GWTVDImodel yields
the best estimates under SSP5‐8.5, as evidenced by consistently superior
metrics. This trend is especially notable toward the end of the century
(2099), when higher emission pathways give rise to more pronounced cli-
matic extremes, thereby accentuating the importanceofmodeling both local
spatial heterogeneity and time‐dependent signals. The superior perfor-
mance of GWTVDI in these more extreme scenarios suggests that incor-
porating temporal trends becomes increasingly critical as climate forcings
intensify, highlighting the potential of GWTVDI as a versatile tool for
drought prediction in regions highly vulnerable to future climate change.

Spatiotemporal patterns of GWTVDI
The GWTDVI-based results reveal a gradual yet profound transformation
in the spatial and temporal patterns of drought across theMiddle East under
three distinct climate scenarios (SSP2.6, SSP4.5, and SSP8.5) throughout the
twenty-first century. Early in the period, much of the region, particularly its
northern and more elevated areas, remains near normal conditions, while

Table 4 | Comparison of AICc Values and Adjusted R² for TVDI
and GWTVDI Models

SSP Scenario-Year TVDI GWTVDI

Adjusted R² AICc Adjusted R² AICc

SSP2.6-2040 0.9912 −15,582.2 0.9924 −15,505.9

SSP2.6-2070 0.9811 −15,547.7 0.9816 −15,563.1

SSP2.6-2099 0.9932 −15,873.9 0.9933 −16,040.9

SSP4.5-2040 0.9832 −15,569.1 0.9836 −15,944.4

SSP4.5-2070 0.9702 −18,912.5 0.9745 −18,992.4

SSP4.5-2099 0.9845 −17,634.3 0.9897 −17,823.1

SSP8.5-2040 0.9798 −18,653.9 0.9812 −19,436.5

SSP8.5-2070 0.9909 −15,324.7 0.9955 −15,830.2

SSP8.5-2099 0.9842 −15,074.3 0.9891 −15,256.7

Fig. 2 | Local R² distribution of GWTVDI predictions under three climate sce-
narios for theMiddle East. a shows localR² values for the year 2040 under SSP1-2.6,
b for 2070, and c for 2099 under the same scenario. Under SSP2-4.5, d presents
results for 2040, e for 2070, and f for 2099. Similarly, g displays local R² for 2040

under SSP5-8.5, h for 2070, and i for 2099. Grid cells are colored by local R² values,
with dark blue indicating highmodel performance (R² > 0.8) and red indicating poor
performance (R² < 0.5).
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drought events are largely confined to southern and central domains with
onlymild tomoderate intensities. This initial pattern indicates that climatic
and environmental heterogeneity can, at least temporarily, act as a partial
buffer for certain areas. Yet as the century advances, the increasingly pro-
nounced signals of warming and drying progressively erode this early-stage
resilience, ultimately revealing the underlying vulnerability of even osten-
sibly stable regions. Under the more optimistic SSP2.6 scenario (Fig. 3a–c),
althoughmild to moderate drought affects portions of the south and center
by around 2040, pockets of relative stability persist in northern areas,
including Anatolia and northwestern Iran. These relatively moderate zones
withstand rising temperatures and declining soil moisture well into mid-
century. Nevertheless, by 2099, intensifying climatic changes within even
this low-emission scenario force most of these formerly stable areas into
moderate drought. Over this period, what initially appear as scattered pat-
ches of mild drought progressively coalesce under deteriorating climatic
conditions into a continuous matrix of moderate to severe drought, dis-
regarding former geographical and climatic boundaries. Thus, despite the
lower emissions of SSP2.6, widespread drought becomes inevitable over
time. By the endof the century, regions across southern and easternArabian
Peninsula, as well as southwestern Iran, which had been only minimally
affectedby severe drought around2040, arenowmore extensively impacted.
In the intermediate SSP4.5 scenario (Fig. 3d–f), the intensification of climate
change emerges earlier andmore clearly. Bymid-century, the southern and
central areas experience moderate to severe drought with greater frequency

and intensity, and these conditions gradually extend northward. By 2070,
even regions previously characterized by relative stability face increasingly
persistent drought conditions. By century’s end, severe and widespread
drought patterns dominate, and only some northern tracts remain under
milder drought conditions. Although the rate of change under lower-
emission scenarios is slower, by the long-term horizon of 2099, virtually no
part of the region escapes these escalating stresses. The high-emission
SSP8.5 scenario (Fig. 3g–i) represents the most extreme end-state of this
continuum. Severe drought appears in many southern and central areas
from the earliest decades examined, and local mitigating mechanisms such
as natural vegetation cover, limited groundwater reserves, or seasonal
rainfall patterns rapidly lose their effectiveness.As the century advances, this
critical state becomes so pervasive that not only do near-normal conditions
vanish, but even mild droughts are rarely observed. Under these circum-
stances, the fundamental climatic structure is changing at a rapid pace.
Northern areas that once enjoyed notable resilience now face pressures
comparable to those that southern regions have endured for decades. In
scenarios with higher emissions (such as SSP8.5), this trend accelerates and
intensifies further, rendering the control, mitigation, and management of
drought by the century’s end markedly more challenging than at its outset.

Discussion
The findings of this study underscore the importance of combining geo-
graphically weightedmodeling and temporal trend detection for advancing

Fig. 3 | Spatiotemporal distribution of drought severity (GWTVDI) in the
Middle East under future climate scenarios. a shows drought severity for the year
2040 under SSP1-2.6, (b) for 2070, and c for 2099 under the same scenario. Under
SSP2-4.5, (d) presents drought classification for 2040, (e) for 2070, and f for 2099.
Similarly, (g) displays drought severity for 2040 under SSP5-8.5, (h) for 2070, and

i for 2099. Drought severity is categorized into four classes: normal, mild drought,
moderate drought, and severe drought. Grid cells are colored accordingly, with
lighter shades indicating less severe conditions and darker shades representingmore
intense drought. Country borders are outlined in black.
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drought research in theMiddle East under various SSP scenarios. The newly
developed GWTVDI has demonstrated superior explanatory power and
predictive skill compared to the baseline TVDI model, which is limited to
utilizing only the stacking-EML outputs of maximum and minimum
temperature and precipitation.

Building upon these findings, compared to conventional indices such
as the TVDI, the GWTVDI introduced in this study offers substantial
methodological and predictive enhancements.While TVDI assumes spatial
stationarity and lacks sensitivity to temporal dynamics, GWTVDI inno-
vatively integrates Geographically Weighted Regression with the modified
Mann–Kendall trend analysis, enabling it to simultaneously capture spatial
heterogeneity and evolving drought trends over time. This integrated fra-
mework allows for the detection of local-scale drought anomalies and long-
term climatic shifts that traditional indices like TVDI often overlook. Fur-
thermore, GWTVDI benefits from the incorporation of advanced stacking
ensemble machine learning predictions, refining the spatial and temporal
resolution of input climate variables and substantially improving model
accuracy. The superior performance of GWTVDI over TVDI, as demon-
strated by consistently higher Adjusted R² values and lower AICc scores
acrossmultiple scenarios, reinforces its potential as a robust and scalable tool
for adaptive drought monitoring under climate change. This advancement
offers critical insights for early warning systems and proactive water man-
agement strategies in arid and vulnerable regions.

This improvement aligns with previous research emphasizing the
advantages of integrating spatiotemporal features into drought prediction
models. For instance75 utilized ensemble models to improve drought vul-
nerability mapping, but their methods lacked the temporal dynamics that
are effectively addressed by the Mann–Kendall trend analysis in this study.
This significant improvement is attributable to two primary factors. First,
the spatially varying coefficients within a GWR framework accommodate
local heterogeneities in climatic and geographical drivers. Second, the
Mann–Kendall-based trend analysis captures evolving temporal signals,
addressing the non-stationary nature of drought processes. Traditional
models often assume global stationarity, overlooking local nuances that can
strongly influence drought propagation and severity90. By contrast,
GWTVDI leverages spatially adaptive weights to depict how climate vari-
ables (e.g., temperature, precipitation) and geographic parameters (e.g.,
longitude, latitude, elevation, slope, aspect) jointly shape regional drought.
This approach is consistent with findings by ref. 91, who highlighted the
importance of GWR in capturing local climatic interactions. Furthermore,
the incorporation of geographic parameters such as elevation and slope in
GWTVDI directly addresses gaps identified in previous CMIP6-based
studies, such as Song, Xia, She, Li, Hu andHong57, which relied primarily on
bias-corrected precipitation data without integrating topographic factors.

Critically, the inclusion of temporal trends as an additional predictor in
this study revealed notable improvements in model metrics, such as
Adjusted R² and AICc, across multiple future projections. This enhance-
ment supports the conclusions of ref. 68, who demonstrated that incor-
porating temporal variability substantially improves the predictive
performance of climate models, particularly for extreme events such as
droughts. Moreover, the Mann–Kendall-based Ti parameter provides
valuable temporal insight into evolving drought conditions across the
region. For instance, central and southern subregions including much of
Iraq, eastern Iran, and parts of the Arabian Peninsula exhibit significant
upward trends in drought severity under higher-emission scenarios such as
SSP5-8.5, indicating a statistically robust increase in Ti values over time and
an accelerated shift toward drier conditions. Conversely, northern and
mountainous areas (e.g., Anatolia or northwestern Iran) display weaker or
delayed upward trends, implying a relative buffering effect against early- or
mid-century drought intensification. Nevertheless, by the latter part of the
century, even these higher-latitude regions experience a more pronounced
Ti signal, aligning with broader warming and drying patterns.

As with any modeling framework, GWTVDI is not immune to
uncertainties. Multiple factors can affect its reliability, including the reso-
lution and quality of remote sensing inputs, assumptions inherent in the

GWR formulation, and the natural variability embedded within CMIP6
projections. In particular, consistently acquiringNDVI and LST data can be
challenging in regions prone to persistent cloud cover or atmospheric dis-
turbances. Moreover, GWR’s performance relies heavily on the density and
precision of spatial climate observations, indicating that areas with sparse
data may necessitate additional calibration. While bias correction and
downscaling techniques have been employed on CMIP6 datasets, they
cannot entirely eliminate uncertainties especially under high‐emission
scenarios. Lastly, decisions regarding kernel bandwidth and spatial
weighting in GWR can further influence the outcomes, introducing an
additional layer of complexity to the modeling process.

Despite these uncertainties, the integration of ensemble machine
learning approaches helps to mitigate some of these limitations by refining
the prediction of key climatic variables. By leveraging stacked ensemble
machine learning techniquewith outputs fromCMIP6, this study presents a
comprehensive and enhanced framework for drought forecasting.Machine
learningmodels, such as XGBoost andCatBoost, were critical for accurately
predicting key climatic variables, and their integration into the GWTVDI
workflow markedly improved the accuracy and resolution of drought
modeling. Coupling these ML-based predictions with GWR’s locally
adaptive parameter estimation has proven especially valuable for dissecting
intricatepatterns ofdrought variability atfine spatial scales. TheuseofGWR
enhances the model’s sensitivity to spatial heterogeneities, while the
Mann–Kendall trend analysis addresses non-stationarydynamics in climate
systems. This combination, to the best of our knowledge, delivers superior
explanatory power, as evidenced by higher R² values and reduced AICc
scores, but also identifies high-risk drought hotspots that may remain
hidden in lower-resolution approaches. The results are particularly alarm-
ing under high-emission scenarios (SSP5–8.5), where extensive high-risk
drought areas emerge by the end of the century. Even under moderate
pathways, previously resilient regions are shown to experience worsening
drought conditions over time, underscoring the cumulative impacts of
progressive warming and drying trends. By integrating topographic factors,
climate variables, and trend indicators, GWTVDI provides a comprehen-
sive lens throughwhich to understand themultifaceted interactions shaping
regional drought patterns.

The enhancement offered by this framework is further underscored by
the ensemble machine learning strategy. Leveraging stacking, where mul-
tiple base models including RF, XGBoost, LightGBM, CatBoost, and SVM
are integrated via a meta-learner, substantially improves predictive skill, as
evidenced by higher correlation coefficients and reduced RMSE compared
to standalone CMIP6 projections. This outcome aligns with findings by
Anaraki, Kadkhodazadeh, Morshed-Bozorgdel and Farzin78, who showed
that stacking models provide superior accuracy in projecting localized cli-
mate impacts, particularly for regions with high topographic and climatic
variability. Furthermore, the enhanced precision in forecasting maximum
andminimum temperatures under high-emission scenarios (e.g., SSP5-8.5)
mirrors the results of Kelly et al.92, who emphasized the critical role of
advanced modeling techniques in understanding nonlinear drought
intensification. In this study, by incorporating fine-scale topographic and
climatic data, specific areas of heightened sensitivity were identified that
might be missed by broader models, providing a crucial step for regions
where local variability can momentarily reduce or amplify drought
severity93. For example, the identification of hotspots in the central and
southern regions of the Middle East under SSP4.5 and SSP5-8.5 aligns with
the findings of Gerten et al.94, who observed that even moderate climate
change can progressively erode local environmental buffers. This localized
analysis is crucial for regions like the Middle East, where climatic hetero-
geneity plays a significant role in shaping drought impacts, as highlightedby
Spinoni et al.95.

Our spatially detailed assessment of drought evolution, based on the
GWTVDI, shows how warming and drying progressively change the
hydrological and climatic landscape across the Middle East. The results
indicate that even under lower-emission scenarios, temporary pockets of
relative climate stability give way to more extensive dryness over time,
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reflecting earlier findings of increasing aridity in Mediterranean and Near
Eastern regions96. This pattern, in which maximum and minimum tem-
peratures and precipitation anomalies gradually weaken environmental
buffers, aligns with research linking extreme temperature thresholds and
reduced rainfall to more frequent drought conditions97, and it is consistent
with global assessments emphasizing the vulnerability of semi-arid regions
to ongoing climate shifts98. The temporal progression of drought risk under
the SharedSocioeconomicPathways (SSP2.6, SSP4.5, and SSP5.8) illustrates
how emission levels strongly influence both the speed and extent of drought
intensification.

To establish a clearer link between the continuous spatial expansion of
drought signals (as shown in Fig. 3) and the discrete identification of high-
risk drought zones (Fig. 4), a threshold-based classification approach was
adopted. In this process, the broader GWTVDI trends representing
cumulative changes in surface dryness, were refined through specific
percentile-based criteria to delineate areas where climate stressors have
converged to critical levels. Thus, while Fig. 3 illustrates the evolving mag-
nitude and spatial extent of drought intensification over time, Fig. 4 presents
a distilled synthesis, where locations meeting concurrent extremes in tem-
perature sensitivity, precipitation decline, and trend significance were sys-
tematically isolated as drought hotspots. This methodological linkage
ensures that high-risk zones are interpreted not as isolated anomalies, but as

spatial expressionsof persistent and intensifying climate-drivendegradation
captured through GWTVDI evolution.

In constructing our high-risk maps, we employed a multi-criteria
threshold-based approach usingGWTVDI outputs. Specifically, we focused
on areas where the maximum and minimum temperature coefficients
exceeded the 90th percentile, precipitation coefficients fell below the 10th
percentile, and the Mann–Kendall-based drought trend indicator (Ti)
showed a statistically significant increase. By combining these criteria, we
isolated zones where warming signals, reduced precipitation, and intensi-
fying drought trends intersect. This method aligns with previous recom-
mendations for identifying drought hotspots97, as it ensures that only
regions experiencing pronounced climatic stressors are highlighted for
further risk analysis. Moreover, the finding that high-risk zones expand
markedly under SSP5-8.5 supports the conclusions of 99, who projected
severe drought risks for the Middle East under high-emission scenarios.
Notably, the spatially varying coefficients derived from the GWR model
reveal that the identified high-risk drought zones are not driven by a single
climatic factor, but rather emerge from the combined and location-specific
effects of multiple climatic elements used in this study. Through GWR, we
capture how local variations in temperature, precipitation, and drought’s
trends interact under climate change, demonstrating that these hotspots are
inherently linked to the shifting climatic conditions across the region.

Fig. 4 | Projected high-risk drought hotspots across the Middle East under three
climate scenarios. a shows high-risk drought areas for the year 2040 under SSP1-2.6,
(b) for 2070, and c for 2099 under the same scenario. Under SSP2-4.5, (d) presents
high-risk zones for 2040, (e) for 2070, and f for 2099. Similarly, (g) shows projected

hotspots for 2040 under SSP5-8.5, (h) for 2070, and i for 2099. High-risk drought
zones are delineated with red outlines, highlighting areas projected to experience the
most severe and persistent drought conditions.
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Indeed, the combined impact of these factors, quantified through the
GWTVDI and informed by spatially varying coefficients from the GWR
model, underlies the intensifying drought risk, reflecting the synergistic role
ofmultiple climatic elements rather than the influence of any single variable.
This underscores that climate change not only alters the magnitude of
individual climate variables but also reshapes their interrelationships,
making certain locales more vulnerable than others.

Under SSP2.6, the early decades (e.g., 2040) feature scattered high-risk
locations identified by these criteria, as depicted in Fig. 4a-c. These isolated
hotspots, initially limited in extent, steadily spread by mid-century (2070)
and become widespread by 2099, transforming once-modest dryness into
extensive high-risk zones of drought. This gradual merging of risk areas is
consistent with evidence that even moderate climate change can progres-
sively erode local resilience over multiple decades100, and it aligns with
analyses showing how incremental warming and drying can push ecosys-
tems beyond their historical operating ranges94. Under the intermediate
SSP4.5 scenario, the spread of high-risk zones is observed earlier and spans a
broader territory. By the 2040 s (Fig. 4d–f), areas that previouslymaintained
relative stability begin to show robust drought severity signals, limiting the
time available for effective adaptation. This rapid emergence of dryness
under mid-range emissions scenarios supports earlier work indicating that
insufficientmitigation can lead to quick environmental decline101,mirroring
studies that underscore how intermediate warming levels still exert sub-
stantial pressure on regional water supplies102. In the high-emission
SSP8.5 scenario, the pattern is more immediate and expansive. As early as
2040 (Fig. 4g–i), large parts of central and northern regions face intense
drought risks, and by 2070 and 2099, these high-risk hotspots intensify
dramatically. Such abrupt amplification resonates with findings that
stronger warming signals and altered precipitation patterns can induce
nonlinear and amplifying drought conditions92, aligning with broader
research demonstrating that severe emissions trajectories push arid eco-
systems toward critical thresholds103. Local stabilizing factors, such as sea-
sonal rainfall, groundwater stores, or vegetation, are unable to counter these
compounded stressors, leading to a substantial shift in the region’s climatic
structure by century’s end. This shift parallels predictions that severe
greenhouse gas forcing can cause significant reductions in freshwater
availability and agricultural viability99. To more clearly synthesize the
emerging patterns and risks under different SSP pathways, a comparative
overview reveals that while the SSP2.6 scenario initially allows for partial
climatic resilience, even modest warming leads to widespread moderate
droughts by the century’s end. Under SSP4.5, drought intensification
emerges earlier and more aggressively, with high-risk zones expanding
substantially by mid-century. The SSP8.5 scenario presents the most
alarming trajectory, where severe drought conditions dominate large parts
of the Middle East from early decades onward, leaving almost no areas
unaffected by 2099. These findings underscore that without significant
mitigation efforts, regional drought resilience rapidly erodes across all sce-
narios, with the timing and intensity of impacts strongly dependent on the
emissions pathway. Thus, the need for proactive adaptation strategies
becomes more urgent as emissions increase.

These findings have profound implications for policy formulation,
resource management, and agricultural planning across the Middle East.
The region’swell-established vulnerability to climate change, combinedwith
the identification of high-risk drought hotspots under various SSP scenarios,
highlights the urgent need for targeted interventions and adaptive strategies.
These strategies include drought-tolerant crops, improved irrigation prac-
tices, strengthened water-sharing agreements, and early-warning systems
that integrate real-time GWTVDI outputs to enhance preparedness and
optimize resource management22,104,105. Such measures align with research
advocating proactive and localized adaptation in regions facing complex
socio-environmental challenges106. In addition to traditional adaptation
strategies, integrating GWTVDI-based insights into multi-scale decision-
making frameworks especially those enhanced by machine learning can
greatly enhance drought readiness and climate resilience. The ability of
GWTVDI to identify priority hotspots makes it an effective foundation for

equitable water allocation, sustainable farming design, and anticipatory alert
systems across vulnerable regions. The high-risk drought hotspots identified
through GWTVDI, and the stacking ensemble approach hold significant
importance for both national and transboundary strategies. Thesemaps can
inform collaborative efforts among Middle Eastern countries, such as Iran
and Iraq, to enhance sharedwater governance in arid regions. Incorporating
additional data, such as hydrological metrics, soil moisture, and socio-
economic indicators, can further refine hotspot identification and optimize
resource allocation.While early reductions in greenhouse gas emissions can
mitigate the severity of future droughts, as evidenced by slower dryness
progression under SSP1-2.6, accelerating changes observed in SSP4.5 and
SSP5-8.5 underscore the limitations of partial mitigation efforts102. To
advance this framework, future iterations of GWTVDI could benefit from
the inclusion of high-resolution hydrological parameters, groundwater
extraction records, and more granular socio-economic datasets. Such
refinements would enable even more responsive and just drought-risk
governance under evolving climate regimes. Since future climate patterns
may deviate fromhistorical baselines107,108, continuousmodel improvements
and high-resolution analyses remain critical. Integrating these projections
with ecosystem and societal factors can help shape more adaptive and
flexible policies. These policies may include groundwater conservation
measures and early-warning drought systems to effectively address the
evolving conditions in the Middle East’s agricultural and hydrological sec-
tors, fostering greater resilience and ensuring long-term sustainability.

Conclusion
This study introduced the GWTVDI, an advanced spatially adaptive index
designed to improve regional drought prediction. By integrating GWR and
Mann–Kendall trend analysis, GWTVDI effectively models both spatial
heterogeneity and temporal evolution of drought conditions. It enables the
detection of localized drought signals and long-term trends with high
accuracy, addressing limitations inherent in traditional, spatially stationary
indices. GWTVDI’s key strength lies in its ability to dynamically adjust
model coefficients based on local climatic and geographic variables, while
maintaining comparability across space and time. The incorporation of
satellite-derived NDVI and LST further enhances its operational utility,
particularly in data-scarce regions like the Middle East. Despite these
advantages, GWTVDI’s performance is influenced by the quality and
resolution of remote sensing data, the computational demand of GWR, and
theuncertainty inherent in climate projections.Addressing these limitations
particularly by incorporating additional data layers such as groundwater,
soil moisture, and socio-economic indicators can improve future versions.
The study also demonstrated the utility of stacking-based ensemble learning
for refining climatic inputs from CMIP6 models. This hybrid strategy
enhanced the spatial and temporal resolution of drought forecasts, parti-
cularly under high-emission scenarios, identifying regions at increasing risk.
From a policy perspective, GWTVDI offers actionable insights for sus-
tainable water governance, adaptive agriculture, and cross-border resource
planning. Future research should aim to integrate high-resolution hydro-
logical and socio-economic datasets into the GWTVDI framework, ulti-
mately enhancing regional resilience to climate-induced drought risks.

Methods
Themethodological framework for this study (Fig. 5) is structured into five
interconnected phases: (I) Data Assembly, (II) Computation of the Tem-
perature Vegetation Dryness Index (TVDI), (III) Historical Modeling of
TVDI Using Machine Learning, (IV) Projection of Future TVDI via
Stacking-EnsembleMachine Learning, and (V) Introducing the GWTVDI.
This sequential design leverages multiple data sources, cutting-edge mod-
eling approaches, and comprehensive validation strategies to enhance the
spatial and temporal understanding of drought patterns.

Phase I: data assembly
This study leverages datasets from multiple sources to ensure comprehen-
sive analysis of climate variables anddrought indicators.Monthlydatasetsof
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Fig. 5 | Proposed workflow for developing an enhanced stacking ensemblemodel
for GWTVDI projections. The workflow is organized into five sequential phases.
Phase I involves the assembly of satellite and climate datasets from MODIS, ERA5,
and three CMIP6 models across multiple SSP scenarios. Phase II computes the
Temperature VegetationDryness Index (TVDI) using the relationship between land
surface temperature (LST) and the normalized difference vegetation index (NDVI).
In Phase III, TVDI is modeled historically using five machine learning algorithms to

identify the highest-performing model and input scenario. Phase IV integrates
future climate projections through a Stacking Ensemble Machine Learning (Stack-
ing-EML) framework to predict TVDI under SSP1-2.6, SSP2-4.5, and SSP5-8.5.
Finally, Phase V introduces the GWTVDI by incorporating temporal trends (via
Mann–Kendall) and spatial heterogeneity (via Geographically Weighted Regres-
sion), resulting in a spatially and temporally adaptive drought index.
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maximum and minimum temperatures, along with precipitation, were
obtained from three high-performing General CirculationModels (GCMs)
within the CMIP6 framework, covering the period 2015-2100. These
datasets were accessed through the Earth System Grid data distribution
portal (https://cds.climate.copernicus.eu/). TheCMIP6GCMswere selected
based on four key criteria: (1) a nominal spatial resolution ranging from100
to 250 km; (2) availability of model outputs for both historical experiments
and future SSP scenarios (SSP1-2.6, SSP2-4.5, and SSP5-8.5); (3) strong
performance in simulating precipitation, a variable recognized for its sen-
sitivity and greater prediction challenges compared to temperature109; and
(4) alignment of the model’s reference period with the ERA5 reanalysis
dataset. Based on these criteria, three models were selected: AWI-CM-1-1-
MR110,MIROC6111, andMRI-ESM2-0112. To assess their reliability, previous
studies have evaluated the ability of these models to reproduce key climatic
variables in the Middle East. These models have shown robust skill in
capturing temperature patterns, precipitation variability, and climate
extremes such as heatwaves anddroughts. Compared to the broaderCMIP6
ensemble, theymore accurately simulate seasonal precipitation, particularly
peak winter rainfall in northern subregions and reproduce long-term
warming trends alignedwithmulti-model consensus. Their ability to reflect
historical drought frequency and intensity further supports their suitability
for future projections in this region113–115.

Despite their strengths, raw GCM outputs often exhibit systematic
biases, especially inmountainous or data-sparse regions116. To address these
limitations and reconcile spatial resolutiondiscrepancies, themodel outputs
were downscaled to a 0.5° × 0.5° grid using co-Kriging interpolation,
incorporating topographic features such as elevation, slope, and aspect to
enhance spatial accuracy117. A two-step bias correction process, Linear
Scaling followed by Quantile Mapping, was then applied to align the
downscaled data with observational benchmarks118. Although this proce-
dure cannot eliminate all uncertainties, it has been widely validated and is
effective in reducing systematic errors and improving agreement with real-
world observations116. Overall, these procedures ensured that the selected
GCMs retained their demonstrated skill in reproducing regional climate
patterns across the Middle East119–121.

Additionally, ERA5, the fifth-generation reanalysis product from the
European Centre for Medium-range Weather Forecasts, provided high-
resolution data (0.1°) for maximum and minimum temperatures, pre-
cipitation, and evaporation, spanning 1995–2014 was applied. This dataset
offers significant improvements over its predecessor, ERA-Interim, in terms
of spatial resolution, observational coverage, representation of radiative
forcing, precipitation-evaporation balance, and sea-ice dynamics122,123.
Complementing these, satellite-derived products from the Moderate
Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua were
utilized, specifically the Land Surface Temperature (LST) (MOD11C3) and
Normalized Difference Vegetation Index (NDVI) (MOD13C2) at 0.05°
resolution. These datasets, known for their precision and extensive appli-
cation in drought monitoring, provide critical insights into land surface
dynamics and vegetation health, ensuring the robustness and reliability of
this study’s methodological framework124. The LST product exhibits
superior spatial continuity compared to in situ data, offering higher reso-
lution and amore suitable temporal range than LSTobtained fromAVHRR
PAL. Frequently used in droughtmonitoring, this dataset provides valuable
insights into land surface temperature125. Similarly, MODIS NDVI data is a
primary resource for evaluating vegetation health and dynamics126. The
following table provides a structured summary of the datasets used in this
study (Supplementary Table 1).

Phase II: computation of TVDI
TVDI employs the spatial relationship between Land Surface Temperature
(LST) and the Normalized Difference Vegetation Index (NDVI) to char-
acterize drought conditions. Changes in surface moisture influence LST
through variations in thermal properties such as heat capacity and con-
ductivity, particularly in areas with sparse vegetation. As NDVI increases,
representing denser plant cover, the LST response to soil moisture

fluctuations becomes more gradual127. In remote sensing analyses, the
relationship betweenLST andNDVI commonly delineates a set of reference
conditions that form the conceptual foundation for TVDI derivation. Since
LST responds dynamically to soil moisture variations and vegetation cover,
it is the fundamental variable in TVDI computation, which relies on the
LST-NDVI relationship to assess drought conditions. Unlike air tempera-
ture, which reflects atmospheric conditions, LST is directly influenced by
surface energy balance, evapotranspiration, and vegetation stress, making it
amore reliable indicator for assessing drought evolution128. Previous studies
(e.g., Moran, Clarke, Inoue and Vidal129; Sandholt, Rasmussen and
Andersen130) have demonstrated that these reference lines define a gradient
spanning from environments with abundant soil moisture and maximum
evapotranspiration to those exhibiting minimal or no evapotranspiration.
The lower boundary, typically associated with higher vegetation cover and
moisture availability, corresponds to regions under conditions ofmaximum
evapotranspiration. Conversely, the upper boundary marks areas
approaching zero evapotranspiration, indicative of severe moisture deficits.
The intermediate range between these reference lines captures a continuum
of water availability and vegetation stress, thereby enabling a nuanced
characterization of drought intensity across the landscape. As NDVI rises
along the horizontal axis, maximum LST diminishes, defining a “dry edge”
with a negative slope derived via least squares regression. Conversely, the
“wet edge” typically appears ashorizontal or slightly inclined lines indicating
moist conditions. Vertically, at constant NDVI, LST increases from the wet
to the dry edge, reflecting escalating soil water stress. During this transition,
soilmoisturedecreases correspondingly128,131, andTVDIvaluesmove from0
(extremely wet) to 1 (extremely dry) (Supplementary Fig. 1).

Although vegetation cover is limited across much of the Middle East,
NDVI remains a valuable indicator for detecting subtle yet meaningful var-
iations in vegetation stress and soilmoisture. Evenminimal changes inNDVI
can signal localized improvements ordeteriorations, particularly in areaswith
small-scale irrigation, riparian zones, or mountain foothills. Several studies
have confirmed that NDVI-based indices can still reliably capture drought
onset and progression in arid and semi-arid regions, owing to the strong
coupling between surface temperature, evapotranspiration, and sparse
vegetation128,132–134. In this study, we combine NDVI with LST to mitigate
potential biases arising from low NDVI values, leveraging the contrast
between ‘wet edges’ (denser vegetation) and ‘dry edges’ (bare soil). This dual
approach allows small NDVI gradients to be interpreted more accurately
when viewed in tandem with LST, which reflects thermal responses asso-
ciated with minimal vegetation. Consequently, our TVDI formulation
remains robust across both predominantly bare-soil areas and pockets of
vegetation, ensuring broader applicability throughout the Middle East.

Following130, TVDI is calculated as:

TVDI ¼ LST � LSTmin

LSTmax � LSTmin
ð1Þ

Here, LSTmin (wet edge) and LSTmax (dry edge) are estimated through
linear regression:

LSTmin ¼ aþ b×NDVI; LSTmax ¼ cþ d ×NDVI ð2Þ

The two components of Eq. (2), derived through linear regression
analysis, represent the wet edge and dry edge, respectively. In these equa-
tions, the coefficients a, b, c, and d correspond to the parameters of the wet
and dry edges. The least squares regression method was applied to identify
the maximum and minimum LST values within the NDVI intervals,
incremented by 0.01, using the LST-NDVI scatterplot.

Phase III: historical TVDI modeling using machine learning
The third phase employed five advancedmachine learning (ML) regressors
including XGBoost135, SVM136, RF137, CatBoost138, and Long short-term
memory (LSTM)139 to model and predict TVDI over a historical baseline
period.
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In selecting these fivemachine learning regressors, particular emphasis
was placed on their proven capabilities in handling the nonlinearities and
high-dimensionality often observed in climate datasets. Past applications in
environmental modeling have repeatedly demonstrated that these algo-
rithms not only deliver robust predictive accuracy across varied climatic
regimes but also can accommodate large feature sets without substantial
performance loss. Additionally, they are recognized for managing complex
interactions among predictor variables (precipitation, maximum tempera-
ture, minimum temperature, longitude, latitude, elevation, slope, and
aspect) and the response variable (TVDI), essential for capturing the fine-
scale variability inherent to drought prediction. Beyond their predictive
power, these models present distinct advantages: for instance, Random
Forest offers relatively interpretable feature importance140, XGBoost and
LightGBM excel in computational efficiency through gradient-boosting
frameworks141,142, SVM maintains strong performance even with limited
data143, and CatBoost inherently manages categorical variables while miti-
gating overfitting144.

Two scenarios were considered: Scenario 1 (SC1): Incorporating pre-
cipitation, maximum temperature, and minimum temperature and Sce-
nario 2 (SC2): Extending SC1 by adding Geographical parameters
(longitude, latitude, elevation, slope, aspect). These scenarios were designed
to assess how topographic and spatial attributes might improve the preci-
sion of drought characterization. EachML algorithmwas optimized using a
systematic hyperparameter search to achieve the highest predictive accu-
racy. Model performance was quantitatively assessed using multiple eva-
luation criteria, including the Root Mean Square Error (RMSE)85 and the
coefficient of determination (R²). This thorough evaluation led to identi-
fying the highest performedML algorithms (HPMLA) and theHAC, which
would be employed in subsequent phases.

To ensure a robust and reliable training process, the ML models were
trained using an optimized framework. The dataset was partitioned into
training (80%) and validation (20%) subsets, ensuring a balanced dis-
tribution of climate variables. A stratified fivefold cross-validation approach
was applied to reduce predictive variance and improve model general-
ization. Additionally, hyperparameter optimization was conducted using
GridSearchCV, systematically testing different parameter combinations to
enhancepredictive accuracy. Beforefinal deployment, themodel underwent
a rigorous assessment using multiple performance indicators, such as
RMSE, R², and MAE. By quantitatively comparing various regressors
through these measures, we ensured that only the most precise and robust
models were chosen for predicting TVDI. The final trained models were
then testedon the independent test dataset to verify their predictive accuracy
on unseen data. The best-performing model configurations were validated
against historical drought events to confirm their ability to replicate
observed drought variability. To further ensure the robustness of the
developed GWTVDI index, a sensitivity analysis was incorporated into this
phase to evaluate its response to variations in selected meteorological and
geographical input variables. Regularization techniques (L1 and L2) were
applied during model training to prevent excessive dependency on any
single variable, thereby mitigating potential biases and enhancing the gen-
eralizability of themodel. L1 regularization (L1 norm) promotes sparsity by
shrinking less relevant featureweights to zero, effectively performing feature
selection, whereas L2 regularization (L2 norm) reduces themagnitude of all
featureweightswithout eliminating any, leading to amore stablemodelwith
improved generalization145,146. This approach effectively reduces overfitting
and ensures that all input features contribute meaningfully to the drought
prediction process. Furthermore, to explicitly examine the influence of
geographical factors, two comparative modeling scenarios were analyzed.
By assessing the variations inmodel performance across these scenarios, the
sensitivity of GWTVDI to different input configurations was systematically
evaluated. Given the observed differences in model performance, the
structured evaluation incorporated into the modeling framework was
deemed sufficient for capturing variations in input data, eliminating the
need for a separate sensitivity analysis.

Phase IV: future TVDI projection with stacking-EML
In the fourth phase, future TVDI projections were generated by integrating
climate projections from the CMIP6 scenarios with an ensemble modeling
framework. Initially, five base models including RF, XGBoost, LGBM142,
SVM, and CatBoost were employed as base learners to model the climate
elements (maximum temperature, minimum temperature, and precipita-
tion) of the Middle East. A 5-fold cross-validation strategy, coupled with
GridSearchCV, was employed to optimize model accuracy, and mitigate
overfitting. Model performance was rigorously evaluated using RMSE and
R². Based on these assessments, the twomost accuratemodels were selected
for further refinement. To enhance predictive accuracy, a meta-model was
constructed by integrating the predictions from these two best-performing
base models. This approach utilized stacking, a well-known ensemble
learning technique originally proposed by Wolpert147, which leverages the
diverse strengths of multiple models. An Artificial Neural Network
(ANN)148 was integrated to develop this Stacking Ensemble Machine
Learning (Stacking-EML) model, tailored to three climate scenarios
including SSP1-2.6, SSP2-4.5, and SSP5-8.5, spanning the period from 2015
to 2099.Unlike traditional climate studies that rely on the ensemblemeanof
CMIP6 models, our approach individually utilizes selected CMIP6 models
(AWI-CM-1-1-MR,MIROC6, andMRI-ESM2-0) and refines their outputs
through this stacking-based ensemble learning framework. Instead of
averaging out key spatial and temporal variations, this method ensures that
the most reliable climate projections are incorporated while improving the
precision of localized drought predictions. Finally, the Stacking-EML
model, combined with the HPMLA and HAC, was employed to produce
high-accuracy predictions of the TDVI under the specified conditions.

Phase V: introducing GWTVDI—integrating the modified
Mann–Kendall test and geographically weighted regression
In thefinalmethodological phase,we advancebeyondconventionaldrought
indices by introducing the GWTVDI. This innovative index not only
accommodates spatial heterogeneity in climate elements relationships but
also incorporates temporal trends, thus offering a comprehensive, dynamic,
and spatially explicit perspective through which to evaluate drought con-
ditions. To achieve this, we undertake three key steps: (i) Conducting a
modifiedMann–Kendall trend analysis of the time series, (ii) establishing a
baselineGWRmodel, and (iii) integrating the temporal trend indicator into
GWR, culminating in the enhanced GWTVDI framework.

To integrate temporal dynamics into ourmodeling framework, we first
apply the modified Mann–Kendall test to the time series of the previously
estimated TVDI across the study area. The Mann–Kendall test149,150 is a
nonparametric method widely employed to detect monotonic trends in
climatological and hydrological time series151,152. Its robustness to non-
normal data distributions and relative insensitivity to outliers make it par-
ticularly well-suited for analyzing climate-related variables153.

For a time series (x1, x2,…, xn) of TVDI at location j, we calculate the
Mann–Kendall statistic S:

S ¼
Xn�1

i¼1

Xn

j¼iþ1

sgnðxj � xiÞ ð3Þ

Where:

sgnðxj � xiÞ ¼
þ1; if xj � xi > 0

0; if xj � xi ¼ 0

�1; if xj � xi < 0

8
><
>:

ð4Þ

Under the null hypothesis of no trend, S is approximately symme-
trically distributed around zero. If no data repetitions occur, the variance
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Var(S) is given by:

VarðsÞ ¼ nðn� 1Þð2nþ 5Þ
18

ð5Þ

In cases where repeated data values are present, a correction term is
applied150. The standardized test statistic Z is computed as:

Z ¼

S�1ffiffiffiffiffiffiffiffiffi
VarðsÞ

p S> 0

0 S ¼ 0
Sþ1ffiffiffiffiffiffiffiffiffi
VarðsÞ

p S< 0

8
>><
>>:

ð6Þ

If Zj j<Zα=2 (e.g., 1.96 for a 95% confidence level), the trend is statis-
tically significant.ApositiveZ indicates an increasing trend,while a negative
Z suggests a decreasing trend in TVDI. We define the obtained Z-score for
each pixel as Ti, a temporal trend indicator representing how drought
conditions evolve over time at each location.

Geographically Weighted Regression (GWR) extends traditional
regressionmodels by allowing local rather than global parameter estimates,
thus capturing spatial heterogeneity91. Initially, we implement a baseline
GWRmodel to characterize the spatial variability in TVDI as a function of
climatic predictors such asmaximum temperature,minimum temperature,
and precipitation. In this baseline formulation:

yi ¼ β0 ui; vi
� �þ

Xp

k¼1

βk ui; vi
� �

xik þ ϵi; ð7Þ

Where yi is the TVDI at location i; xik are the independent climatic vari-
ables, andβk ui; vi

� �
are spatially varying coefficients estimatedbyweighting

observations based on their proximity to i.
In this study, local weighting within the GWR framework is deter-

mined by a kernel function (Gaussian). Under this approach, grid points
that lie closer to location i receive higher weights. The kernel’s bandwidth is
also selected via automated procedures such as minimizing the AICc to
strike an optimal balance between local fit and model stability. Given the
inherently local and data-driven nature of GWR, the coefficients βk ui; vi

� �

are calculated independently for each location rather than remaining fixed
across the entire region.As a result, the relative contribution of each variable
in differentMiddle Eastern climates is dynamic.Whenever regional climatic
conditions, topography, or local data vary, the associated coefficients and
weights for each variable adjust accordingly. This adaptability accom-
modates ecological and climatic distinctions across different areas and
thereby improves the accuracy of local drought prediction patterns.

A key innovation of this study is the integration of the temporal trend
indicator Ti derived from the Mann–Kendall analysis into the GWR fra-
mework. By incorporating Ti,we effectively transform the GWRmodel into
a spatiotemporal modeling structure, capturing how both spatial hetero-
geneity and temporal evolution jointly influence drought patterns. The
extended model is formulated as:

yi ¼ β0 ui; vi;Ti

� �þ
Xp

k¼1

βk ui; vi; Ti

� �
xik þ ϵi; ð8Þ

Where coefficients further decomposed as:

βk ui; vi;Ti

� � ¼ β0k ui; vi
� �þ βTk ðui; viÞTi; ð9Þ

β0 ui; vi;Ti

� � ¼ β00 ui; vi
� �þ βT0 ðui; viÞTi: ð10Þ

In this refined specification, β0k ui; vi
� �

captures the baseline spatial
influence of each climatic variable on TVDI, while βTk ðui; viÞ quantifies how
temporal trendsmodulate this influence. Thus, a positive βTk ðui; viÞ suggests

that as drought severity intensifies over time (positive Ti), the influence of
the associated climatic variable xik on TVDI grows stronger, and vice versa.
By incorporating Ti and geographic parameters (e.g., longitude, latitude,
elevation, slope, aspect) into the GWRmodel, we derive the Geographically
Weighted Temperature Vegetation Dryness Index (GWTVDI). This geo-
graphically sensitive approach, alignedwith themethod proposed by ref. 88,
ultimately advances drought prediction accuracy and provides a refined
understanding of drought variability.

Just like TVDI, the GWTVDI values range between 0 (extremely wet)
and 1 (extremely dry). Therefore, we follow a thresholding approach similar
to TVDI for determining when a location is considered to be in drought
conditions. Specifically, GWTVDI values closer to 1 indicate increasing
levels of surface dryness, making it feasible to categorize drought intensity
(e.g., moderate, severe, extreme) by comparing local GWTVDI against
established percentile or seasonal reference levels. By combining the
GWTVDI equation with the Mann–Kendall-based trend analysis, we cap-
ture both short-term dryness and long-term changes in climate variables.
Persistently elevatedGWTVDI values, especially above the typical historical
or seasonal thresholds, are deemed indicative of abnormal climate extremes
(i.e., drought events), rather than merely reflecting a continuously dry
environment. This thresholdmechanism ensures thatGWTVDI retains the
practical clarity of TVDI while incorporating spatial heterogeneity and
temporal evolution through GWR.

To maximize the performance of the base models, an extensive grid
search with cross-validation was conducted to identify the most effective
hyperparameter configurations. This method involved systematically
exploring various parameter combinations within predefined ranges,
drawing inspiration from prior studies research18,154. Each hyperparameter
set was evaluated using a tenfold cross-validation (CV) strategy alongside
performance metrics such as RMSE and R². This approach allowed for
repeated validation across different data subsets, effectively reducing var-
iance and minimizing the potential for overfitting. Through this compre-
hensive search, we determined the optimal hyperparameters for each base
model. These optimized models were then incorporated as base learners
within the stacking ensemble framework. Detailed information on the
specific hyperparameters and their tested values for each base model is
provided in Supplementary Table 2.

Study area
The Middle East (Fig. 6a), geographically covering about 6,928,000 km²,
consists of sixteen countries with a population level reaching ~320 million.
Most of this region is hot and dry or semi-dry, with extensive deserts where
temperatures can exceed 50 °C during the summermonths across vast areas
of the Arabian Peninsula and drop below zero during winter in mountai-
nous geographical formations, such as Turkey and northern Iran155. Despite
this aridness, northeastern Iraq, western Syria, northwestern Iran, and
Lebanon appear to have relatively higher levels of precipitation that support
grasslands, forests, and cultivated lands156. Rainfall is very seasonal, peaking
between November and April through synoptic storms, with certain areas
like the Caspian Sea coast receiving 1800 mm, providing critical water
resources to reduce drought pressures157. As illustrated in Fig. 6b, the dis-
tribution of annual precipitation across the Middle East exhibits marked
regional variability. The most substantial rainfall totals occur along the
easternMediterranean coast, the western slopes of the ZagrosMountains in
Iran, the southern coastline of the Caspian Sea, and themost part of Turkey.
These areas benefit from orographic uplift and synoptic weather systems
especially during the colder months that enhance precipitation along
mountainous terrain. In contrast, extensive areas of the Middle East
including the Syrian Desert, the central and southern Arabian Peninsula,
and interior parts of Egypt and Iran receive very little rainfall annually.
Although drylands are primarily characterized by barren land and range-
lands, favorable climatic conditions support agriculture and vegetation
essential to the environment and people. These ecosystems underscore the
resiliency of the region andoffer opportunities for sustainable adaptations to
climate change.
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However, the Middle East is also widely recognized as one of the most
vulnerable regions to future climate change. Multiple studies project that
rising temperatures and shifting precipitation regimes will intensify drought
episodes, exacerbate water scarcity, and potentially challenge agricultural
sustainability53. Under more extreme emission pathways (e.g., SSP5-8.5),
rising temperatures may intensify existing heat stress in nations already
contending with insufficient water supplies. Additionally, socioeconomic
pressures such as rapid population expansion and transboundary water
dependencies further compound the region’s vulnerability to climatic shocks.
Within this context, analyzing drought patterns across the Middle East
emerges as both a scientific imperative and a pivotal step for advancing
policy development, water governance, and broader regional collaboration158.

Data availability
All data supporting the findings of this study are publicly available. The
CMIP6 general circulation model (GCM) outputs and ERA5 reanalysis
datasetswere obtained from theCopernicusClimateData Store (https://cds.
climate.copernicus.eu/). MODIS remote sensing products, including land
surface temperature (LST) and normalized difference vegetation index
(NDVI), were downloaded from the NASA LAADS DAAC platform
(https://ladsweb.modaps.eosdis.nasa.gov/). Digital ElevationModel (DEM)
data were acquired via OpenTopography (https://portal.opentopography.
org/). The source data used to generate allfigures and charts in this study are
available on Figshare: https://doi.org/10.6084/m9.figshare.28907981.v1.

Code availability
All codes necessary for reproducibility of the results are available at https://
figshare.com/articles/dataset/Codes/28915130.
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