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Abstract

The recent discovery of atmospheric chemosynthesis has caused a paradigm shift in the way H2-oxidizing bacteria (HOB) are examined. The
field has transitioned from the consideration of HOB as a specialized functional group benefiting from the energy potential of H2 for mixotrophic
growth or persistence to a versatile group of bacteria using multiple trace gases. We discuss four life history strategies supported by H2, namely
chemolithoautotrophic growth, mixotrophic growth, persistence, and atmospheric chemosynthesis. There is experimental evidence supporting
the role of HOB in various ecosystem services beyond the uptake of H2 including, for instance, carbon cycling, plant growth promotion, and
primary production. Decoupling between the intensity of HOB activation in soil and compositional change of microbial communities remains
puzzling, highlighting our poor understanding of the ecological role of HOB. We call for new experimental approaches to delineate the interactions
between HOB and the other members of the community. We propose a dedicated framework integrating life history strategies of HOB for
mechanistic assessment of microbial interactions and processes supported by H2 in soil.
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Glossary

Chemolithoautotrophic growth: From chemolithoautotrophy,
meaning an organism that nourishes (trophic-) on chemical
energy source (chemo-), inorganic electron donor (litho-), and
inorganic carbon source (auto-). For example, Cupriavidus
necator growth supported by H2 and CO2.

Heterotrophic growth (chemoorganoheterotrophy): Refer-
ring to an organism that feeds on chemical energy source
(chemo-), organic electron donor (organo-), and organic car-
bon source (hetero-).

Facultative chemolithoautotroph: Organism exhibiting
potential chemolithoautotrophic and chemoorganoheterotr
ophic growth.

Mixotrophic growth: Growth supported by more than
one electron donor or carbon source. For example, C.
necator exhibits mixotrophic growth combining H2 and
CO2 (chemolithoautotroph) as well as organic compounds
(chemoorganoheterotroph). If H2 is used in conjunction
of organic compounds without CO2 fixation, chemolitho-
heterotrophy can occur, where organic carbon is used for an-
abolism and H2 as an energy source.

Persistence: Metabolic state exhibiting low or no growth
allowing the organism to survive when resources are limited.

Atmospheric chemosynthesis: Extreme chemolithoau-
totrophic growth based on the uptake of atmospheric gas for
energy, carbon, and nitrogen needs.

Life history strategy: Patterns of resource allocation by an
organism based on trade-offs between its survival, growth,
and reproduction. They are associated with sets of traits that
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etermine the fitness of the organisms in different environ-
ents.
Succession: The process by which species composition of

he community change over time.
HOB activation: Increased apparent H2 oxidation rate fol-

owing H2 supplementation based on a metabolic cascade
nd/or increase in HOB biomass.

ntroduction

2-oxidizing bacteria (HOB) are thriving in aerobic and
naerobic environments. This literature review focuses on
erobic conditions, where the oxidation of H2 is supported
y [NiFe]-hydrogenase catalyzing the interconversion of H2

nto protons and electrons. The enzyme comprises two main
ubunits: the large subunit comprising the binuclear nickel
Ni)—iron (Fe) active site coordinated by cyanide (CN) and
arbon monoxide (CO) ligands, and the small subunit act-
ng as an electron relay to the physiological electron accep-
or of the enzyme. A systematic analysis of the physiological
ole and gene sequences led to the definition of four different
roups of [NiFe]-hydrogenases (Vignais and Billoud 2007).
hese groups integrate multiple subgroups defined on the ba-
is of gene sequence homology (Søndergaard et al. 2016).
nzymes encompassing groups 1, 2, and 3 are particularly
elevant in upland soil. The uptake [NiFe]-hydrogenase sub-
roups 1d, 1h, and 2a preferentially catalyze the oxidation
eaction supplying electrons to the respiratory chain for ATP
d Microbiology International. This is an Open Access article distributed
mons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution,
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eneration (Fig. 1; Vignais and Billoud 2007, Pandelia et al.
012, Greening et al. 2014, Grinter et al. 2023). The regula-
ory [NiFe]-hydrogenase included in subgroup 2b acts as H2

ensor for the gene transcription regulation of the oxygen-
olerant membrane-bound [NiFe]-hydrogenases 1d (Fig. 1),
lso referred to as 6C [NiFe]-hydrogenase (Pandelia et al.
012). [NiFe]-hydrogenases belonging to subgroups 3b and
d include soluble bidirectional hydrogenases combining the
xidation of H2 and the reduction of NAD(P) into NAD(P)H
r the reverse reaction to lower reductant level in the cell
Fig. 1).

The energy potential of H2 oxidation reaction is determined
y the local concentration of H2 and the kinetic parameters
overning the catalytic activity of [NiFe]-hydrogenase. The
eminal work of Schuler and Conrad (1990) has demonstrated
he occurrence of two contrasting subpopulations of HOB in
oil, namely high- and low-affinity HOB. The architecture of
he active site of [NiFe]-hydrogenase and their physiological
lectron acceptor define their affinity for H2 (Grinter et al.
023). HOB displaying a low affinity for H2 are involved in a
apid uptake of elevated concentrations of H2, whereas HOB
isplaying a high affinity for H2 have the capacity to con-
ume sub-atmospheric H2 concentrations (0.53 ppmv; Schuler
nd Conrad 1990, Häring and Conrad 1994, Constant et al.
010). It is now accepted that HOB do not form two distinct
roups, but rather a continuum according to the affinity spec-
rum of their [NiFe]-hydrogenase towards H2 (Constant et al.
010).
Atmospheric H2-oxidizing bacteria (atmHOB) are expected

o display high affinity for H2 with an apparent KM, lower
han 800 nM H2 (Conrad 1996). [NiFe]-hydrogenases in these
acteria are more efficient to scavenge trace levels of H2 than

ow-affinity HOB. AtmHOB are responsible for 80% of the
lobal sink of the atmospheric H2 (Constant et al. 2009). Few
NiFe]-hydrogenase subgroups have a high enough affinity to
nable the bacterial uptake of atmospheric H2. The activity
as demonstrated for group 1 h (also named group 5) and the
roup 2a, by hydrogenase gene knockouts in Mycobacterium
megmatis (Greening et al. 2014) and Streptomyces avermitilis
Liot and Constant 2016). The examination of H2-oxidation
ctivity in multiple bacterial isolates further corroborated the
bility of these enzymes to oxidize atmospheric H2 concentra-
ions, as discussed in Greening and Grinter (2022). Bacteria
ossessing the group 1 h, Hhy type, have the highest affinity
or H2 and use the energy potential of H2 to supply their sur-
ival and persistence. The group 2a, Huc type, displays higher
xpression and activity during growth on organic carbon, sug-
esting a role in mixotrophic growth (Cordero et al. 2019, Is-
am et al. 2020). There is evidence that other subgroups of
NiFe]-hydrogenases may be involved in the oxidation of at-
ospheric H2. Isolates possessing only a group 1f (Hyo type;
yers and King 2016) or 1l (Hyl type; Ortiz et al. 2021)

NiFe]-hydrogenases have shown the ability to oxidize H2 at
ub-atmospheric concentrations. The group 1 h is recognized
s more abundant and likely more important for the biolog-
cal sink of H2 (Bay et al. 2021). This supposition still needs
o be validated considering that biogeochemical processes are
enerally decoupled from the abundance of functional genes
n soil (Rocca et al. 2015).

The purpose of this review is to propose a theoretical frame-
ork to study the life history strategies of HOB in upland

oil. We first introduce four life history strategies based on
acterial isolates exhibiting a range of metabolic responses to
2 concentrations and the availability of organic substrates.
e then explore an important ecological niche supporting
OB: the rhizosphere of legume plants. H2 released as obli-

ate by-product of nitrogen fixation likely acts as biostimulant
hrough enigmatic mechanisms reviewed in the text. A partic-
lar emphasis is put on the enrichment of HOB in the rhizo-
phere and the succession of sub-populations encompassing
he four life history strategies. Methods to study the life his-
ory strategies of HOB in the environment are put forward
ith consideration with the idiosyncratic nature of HOB re-

ponses to H2 exposure. Our inability to predict the fate of
OB subpopulations and their interactions with the other
embers of soil microbial communities in different soil and

cosystem types is highlighted with a few case studies. We
onclude the review with prospective research directions in-
egrating life history strategies in lab-scale and field-scale ex-
erimental designs.

ife history strategies of HOB

OB encompass four different life history strategies, namely
i) obligate chemolithoautotrophic growth, (ii) mixotrophic
rowth, (iii) persistence, and (iv) atmospheric chemosynthe-
is supported by H2. These four life history strategies are
ut forward as a model of microbial succession in the en-
ironment (Fig. 2a). Chemolithoautotrophic growth strat-
gy is the hallmark of the first HOB isolates, exhibiting
rowth supported by carbon dioxide (CO2) and H2 as car-
on and energy sources, respectively (Repaske 1966). Obli-
ate chemolithoautotrophic growth strategy (Fig. 2a) is par-
icularly well suited to extreme environments such as burning
oal piles from which Streptomyces thermoautotrophicus was
solated (Gadkari et al. 1990) and hot springs where the ther-
ophilic Hydrogenobacter thermophilus originated (Kawa-

umi et al. 1984). Most low-affinity HOB display facultative
hemolithoautotrophic or mixotrophic growth in upland soil
Fig. 2a). They include symbiotic or free-living nitrogen-fixing
lpha-proteobacteria (Schwartz et al. 2013). The bacterium
upriavidus necator (formerly Ralstonia eutropha) has been
tilized as a model to study H2 metabolism and the biochem-
cal basis of [NiFe]-hydrogenase maturation, activation, and
atalysis (Friedrich et al. 2005, Fritsch et al. 2011). Cultiva-
ion of C. necator in the presence of CO2 and organic car-
on shed light on the mixotrophic growth of HOB (Schwartz
t al. 2013). The expression of group 1d [NiFe]-hydrogenase
n C. necator is derepressed when local H2 concentrations
re high enough to be detected by the two-component H2

ensor and gene activator system or under nutrient depri-
ation conditions. In contrast, high nutrient availability in-
uces a catabolic repression of hydrogenase gene expression,
upporting a transition to heterotrophic growth (Friedrich et
l. 1981). The combination of inorganic and organic sub-
trates for mixotrophic growth is beneficial to occupy eco-
ogical niches, including the soil in the surroundings of H2-
mitting nodules, where the enrichment of HOB leads to net
O2 fixation (Dong and Layzell 2001, Stein et al. 2005).
ixotrophic growth thus supports well-adapted metabolic

ersatility for HOB to thrive under nutrient starvation and
ypoxia stress (Berney and Cook 2010), in extreme envi-
onments (Ortiz et al. 2021), and environments facing feast
nd famine nutrient regimes (Berney et al. 2014). The local
oncentration of H2 and affinity of HOB to H2 lead to a
ransition between mixotrophic growth and persistence un-
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Figure 1. Conceptual metabolic implications of [NiFe]-hydrogenases in four model HOB. The hydrogenase affinity continuum for H2 is represented with a
color gradient, where the dash line represents the affinity threshold for the oxidation of atmospheric concentrations. The 1 h [NiFe]-hydrogenase in
Cupriavidu necator is weakly expressed and does not exhibit a high affinity for H2. Reversible reactions are represented with double-sided arrow, and the
size of arrowhead reflects what is believed to be the usual direction of catalysis. More comprehensive assessments are available for Cupriavidus necator
(Friedrich et al. 2005, Schäfer et al. 2013), Methylocapsa gorgona (Schmider et al. 2024), Mycobacterium smegmatis (Cordero et al. 2019, Greening and
Grinter 2022, Grinter et al. 2023), and Streptomyces avermitilis (Liot and Constant 2016).
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der nutrient-exhausted conditions (Fig. 2a). The first exper-
imental evidence of such bacterial persistence was reported
in Streptomyces sp. PCB7 displaying H2 oxidation activity
during the sporulation stage (Constant et al. 2008). The per-
sistence of the Streptomyces avermitilis spore population re-
lies on the energy potential of atmospheric H2, as supported
by the drastic reduction of spore viability in a hydrogenase
knockout strain (Liot and Constant 2016). Similar contribu-
tions of H2 to bacterial persistence under energy-limited con-
dition was also noticed in other Actinomycetota isolates such
as Rhodococcus equi (Meredith et al. 2014) and Mycobac-
terium smegmatis (Berney and Cook 2010, Cordero et al.
2019), as well as within two Chloroflexota strains (Islam et al.
2019) and numerous of Acidobacteriota isolates (Greening et
al. 2015, Myers and King 2016, Giguere et al. 2021). Distinc-
tion between persistence and slow mixotrophic growth can
be challenging in certain cases due to the absence of sporu-
lation in the dormant state. The oxidation of atmH2 supplies
just enough energy, in theory, to support the vital needs of
dormant cells (Conrad 1999). However, more cells of Strepto-
myces spp. are present in soil than the theoretical population
number based on their activity, supporting the hypothesis of
persistence mixotrophy (Constant et al. 2010). The regulation
f metabolic network supporting mixotrophic persistence is
ostly driven by nutrient availability. In S. avermitilis, sat-
rating high-affinity [NiFe]-hydrogenase under elevated H2

xposure changed gene expression profiles towards a prefer-
ntial utilization of H2 instead of organic carbon for mini-
al energy requirement supply (Liot and Constant 2016). The

ombination of atmospheric H2 with other trace gases can,
owever, lead to growth through atmospheric chemosynthe-
is (Tveit et al. 2021). Methylocapsa gorgona MG08 was the
rst isolate demonstrating growth on air at atmospheric gas
oncentrations. Atmospheric chemosynthesis of the strain is
upported by the energy and carbon from H2, CO, CO2, and
H4, and the nitrogen obtained from N2 fixation (Tveit et
l. 2019, Tveit et al. 2021). Uneven distribution of [NiFe]-
ydrogenase among different taxonomic groups, combined
ith the metabolic flexibility of HOB make the distinction
f the four life history strategies difficult. Life history strate-
ies likely encompass a continuum rather than discrete classes.
ure culture studies suggest that HOB possessing multiple
NiFe]-hydrogenases exhibiting different catalytic properties
ay switch along this continuum according to environmental

onstraints shaped by H2 concentration gradients (Schwartz
t al. 2009, Berney et al. 2014).

art/ovaf061_f1.eps
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Figure 2. (a) Different life history strategies of HOB and (b) microbial mediated processes influenced by H2 gradient in the rhizosphere of H2-emitting
legume. The response of HOB within the H2 gradient varies according to their history strategy. A color code is used to position the life history strategies
along the gradient, along with four representative bacterial isolates. Facultative chemolithoautotrophs are active member of the Hup− legume
rhizosphere. The high level of H2 in legume rhizosphere niche modulate the metabolism toward H2 leading to net CO2 fixation associated to
chemolithoautotrophic and mixotrophic growth. The rhizosphere is a well-suited environment for mixotrophic growth. Root exudates sustain more
abundant and active microbial communities according to the so-called rhizosphere effect. The combination of high H2 concentration and carbon
gradients in the rhizosphere favors the mixotrophy growth strategy. The abundance of chemolithoautotroph is expected to decrease along the H2

concentration gradient. This is accompanied by a rise of high-affinity HOB displaying mixotrophy growth and persistence. Soil H2 exposure is linked with
higher rate of pollutant degradation (b). The combination of H2 with polychlorinated biphenyls (PCB) is suggested to support mixotrophic growth. Some
HOB isolates exhibiting chemiolithoautotrophic growth were associated with production of plant growth-promoting compound (b), but the actual life
history strategies of potential plant growth-promoting HOB are unknown.
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s H2 exerting a biostimulant effect?

2 is an obligatory byproduct of N2 fixation occurring in
egume nodules (Hunt and Layzell 1993). This reaction,
ediated by symbiotic N2-fixing bacteria (NFB), accounts

or an investment of ∼20% of net photosynthesis energy
Layzell et al. 1979). H2 leak alone represents ∼35% of
his energy loss (Hunt and Layzell 1993). To compensate
or this loss of energy, NFB can be equipped with “recy-
ling” hydrogenases (Hup+). The fact that Hup+ symbiosis
s more energy efficient was considered to explain higher

art/ovaf061_f2.eps
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plant biomass in Hup+ vetch than their Hup− counterparts
(Sotelo et al. 2021). Counter-intuitively, the hup− genotype
is more abundant in nature and tends to be associated to
larger root biomass (Annan et al. 2012). Thus, H2 pro-
duction from nodules usually escapes N2-fixing bacteria to
diffuse in soil. There is likely an evolutionary advantage
for plants to release H2 in the rhizosphere to recruit HOB.
H2 is entirely consumed in the first centimeters surrounding
N2-fixing nodules inducing a H2 concentration gradi-
ent ranging from over 10 000 ppmv to sub-atmospheric
levels (La Favre and Focht 1983, Piché-Choquette
et al. 2018).

Two hypotheses were proposed to explain the so-called H2

fertilization effect: one plant-centric and the other microbe-
centric. The first hypothesis posits that H2 antioxidant poten-
tial triggers a pleiotropic action culminating in interference
with phytohormones controlling growth under stress condi-
tions in plants. Alwazeer et al. (2024) published a review ex-
ploring the use of H2 in agriculture and the possible mech-
anism linked with this hypothesis. However, there is a lack
of experimental evidence to support the proposed mechanism
(Alwazeer et al. 2024).

The microbe-centric hypothesis is based on direct and in-
direct effect of HOB on plants. Direct effect is founded on
the recruitment of plant growth-promoting HOB in the rhi-
zosphere of N2-fixing legume plants. This is supported by
the isolation of HOB strains promoting root growth by 1-
aminocyclopropane-1-carboxylate (ACC) deaminase enzyme
activity (Maimaiti et al. 2007). This evidence is indirect be-
cause the exposure to H2 was not associated with higher ACC
deaminase activity in soil, thus the impact of H2-emitting nod-
ules on microorganisms and plants may also be attributed to
a more general mechanism involving non-HOB. It was first
proposed by La Favre and Focht (1983), who considered the
leakage of H2 not as an energy loss for the soil-plant ecosystem
but as a transfer to HOB as an integral part of this system. As
HOB encompass broad taxonomic and functional diversity,
their activation through H2 supply is expected to activate bio-
geochemical processes in soil. This mechanism is analogous
to the soil carbon priming effect, whereby the energy derived
from H2 in the community initiates a cascade of biochem-
ical reactions, leading to the secretion of enzymes and sec-
ondary metabolites. This ultimately mobilizes and enhances
the availability of nutrients for plants and other microorgan-
isms. This vision is rooted by the observed impact of H2 on
a range of microbial processes, including some that are rel-
evant to the carbon cycle (Fig. 2b). For instance, HOB can
contribute to soil organic carbon degradation through their
production of a wide spectrum of extracellular enzymes, in-
cluding cellulase, laccases, and peroxidases (Piché-Choquette
and Constant 2019). Soil exposure to elevated H2 concentra-
tion also led to a diversification in carbon degradation pro-
file of the soil community (Khdhiri et al. 2017) and an in-
crease in overall microbial activity (Stein et al. 2005). The dis-
tance at which H2 diffuses is one order of magnitude higher
than the rhizosphere exudate (de la Porte et al. 2020). The
exact contribution of H2 to the rhizosphere effect is un-
known, but Islam et al. (2023) have proposed a framework
for investigating the contribution of hydrogen to agricultural
soils and, conversely, the effect of agricultural practices on
HOB.

The biostimulation effect of H2 is not universal, likely re-
quiring a combination of multiple factors. The complexity of
iogeochemical feedback loops activated by H2 can explain
ontradicting reports on plant growth promotion supported
y the gas. Enhanced plant biomass yield upon soil H2 sup-
lementation varied from 15% to 48% for wheat, canola, bar-
ey, and non-symbiotic soybean (Dong et al. 2003) to no sig-
ificant gain on maize (Peoples et al. 2008) and wheat (de la
orte et al. 2024). Mechanistic assessment of plant and mi-
robiological processes contributing to the H2 biostimulation
ffect is necessary to achieve benefits in the agricultural sector.

hether beneficial HOB for plants are restricted to specific life
istory traits also remains to be elucidated.

ow to determine HOB life history strategies
n the environment

he life history strategies of HOB can be determined in iso-
ates (Fig. 2a), but extrapolations in environmental samples
re a challenging task. Two main methods can be used to in-
er life history strategies in HOB populations, namely (i) mea-
urement of potential H2 oxidation activity and (ii) genomic
pproaches. Potential H2 oxidation activity measurement is a
roxy for HOB cell density (Conrad 1999). The energy po-
ential of H2 oxidation reaction, the minimal energy require-
ent to support cellular maintenance, and H2 oxidation rates

an be integrated to predict the population size of HOB rely-
ng only on H2. Application of this principle to bacterial iso-
ates and soil samples led to the conclusion that population
ensity is higher than expected, suggesting that mixotrophic
ife history strategy dominates (Constant et al. 2010). Distinc-
ion between mixotrophic persistence, mixotrophic growth,
r atmospheric chemosynthesis is not resolved by that
pproach.

A second level of resolution can be achieved by integrating
enomic techniques. For instance, potential HOB were identi-
ed with DNA stable isotope probing (SIP) following the in-
orporation of 13CO2 in presence of elevated H2 concentra-
ion (Pumphrey et al. 2011). The method is efficient to iden-
ify HOB fixing CO2, without distinguishing chemolithoau-
otrophy or mixotrophy growth strategies. For atmospheric
hemosynthesis, the use of 13CO2 DNA SIP under atmo-
pheric conditions with trace gas levels and in which pho-
oautotrophs are inhibited is proposed to identify this strat-
gy in environmental samples (Ray et al. 2023). The poten-
ial metabolic features of metagenome-assembled genomes
MAGs) led to the identification of potential HOB fixing CO2

nd utilizing multiple trace gases (Lynch et al. 2014, Ortiz et
l. 2021, Xu et al. 2021). Genomic techniques when used in
onjunction with environmental gradients can link HOB suc-
ession to their life history strategies (Li et al. 2023, Garvin
t al. 2024). However, assessing the life history strategies of
OB in the environment is complicated by a decoupling be-

ween HOB activation intensity and response at the microbial
ommunity level.

ntensity of HOB activation is idiosyncratic and
ecoupled from compositional change of
icrobial communities

2 leakages from Hup− symbiosis in legume nodules are ex-
ected to exert a beneficial impact on soil microbial communi-
ies through microbial growth or activation. Bacterial prolif-
ration promoted by H2 was supported by culture-dependent
ethods showing an enrichment of chemolithoautotrophic
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OB along H2 gradients (La Favre and Focht 1983). Enrich-
ent of mixotrophic HOB, chemolithoautotrophic HOB, and
romotion of mixotrophic persistence were not distinguish-
ble, impairing an assessment on the importance of root exu-
ates to shape the succession of HOB across the H2 concen-
ration gradient. The potential benefit of HOB activation on
rowth performance of non-HOB was not assessed.

Isolation of the H2 effect was made in soil microcosms,
here stimulation of HOB activity was achieved by H2-

upplemented atmosphere (525–50 000 ppmv). However, re-
earch conducted from the two last decades leads to the obser-
ation that H2 exerts a modest impact on microbial commu-
ity (Piché-Choquette et al. 2016, Khdhiri et al. 2017, Khdhiri
t al. 2018, Piché-Choquette et al. 2018, Xu et al. 2021, de
a Porte et al. 2024). That was first noticed by Osborne et al.
2010) identifying a single bacterial ribotype responding to H2

upplementation. Deeper characterization of microbial com-
unities through high-throughput PCR amplicon sequencing

echniques first suggested a more important impact on micro-
ial communities than expected (Piché-Choquette et al. 2016),
ut that finding was inflated by elevated false discovery rates
f earliest gene abundance comparison techniques (de la Porte
t al. 2024). These results indicate that there is no major shift
n the microbial community associated with the modest effect
f H2 supplementation on microbial communities, suggesting
hat endogenous carbon sources in soil are insufficient to sup-
ort growth of HOB. This is supported by careful examina-
ions of the plateau reached in HOB activation after a few
ays of exposure to H2 at the time scale utilized for micro-
osm experiments (Dip and Constant 2025).

The silent effect of H2 supplementation on the composition
f soil microbial communities occurs with the activation of
series of biogeochemical feedback loops, including positive

nd negative effects on soil ecosystem services. For instance,
he rhizosphere of N2-fixing legumes is associated with higher
egradation rate of persistent organic pollutants such as PCB
Xu et al. 2023). The contribution of rhizospheric HOB in
his process was evaluated through the utilization of H2 sup-
lementation treatment (Xu et al. 2023). In addition to facil-

tating enhanced pollutant degradation, DNA-SIP following
3C-labeled PCB77 incorporation revealed that H2 sustains
ixotrophic growth of HOB that degrade PCB77 (Xu et al.
023). In contrast, potential negative effects can emerge from
2 supplementation. The increase in H2 oxidation rate caused

y exposure to high concentrations leads to a decrease in ox-
dation activity potential of CO and CH4 (Piché-Choquette
t al. 2018). Metabolic flexibility of HOB toward multiple
race gases is a plausible explanation for such H2 interference
n CH4 and CO oxidation. Different isolates encode more
han one enzyme for the oxidation of trace gases such as H2,
O, and CH4, reflecting their metabolic flexibility (King 2003,
chmider et al. 2024). A preferential utilization of H2 rather
han CO and CH4 is expected in soil exposed to elevated H2

oncentration. The ability to consume multiple trace gases is
herefore frequent in soil HOB. By inhibiting the microbial ox-
dation of CO and CH4, H2 leakages from N2-fixing nodules
f legume plants could be detrimental to the biological sinks
f atmospheric CH4 and CO. H2 interference, however, relies
n soil microcosms. Experimental evidence from the field or
ontrasting Hup− and Hup+ symbiosis is awaiting to eval-
ate the contribution of crop rotation practice to the global
udget of atmospheric CO and CH4. Given the rather small
ontribution of CO and CH4 biological sinks the global bud-
et of these gases (Bartholomew and Alexander 1981, Khalil
nd Rasmussen 1990, Conrad 2009), it is unlikely that H2

upplementation will have a significant impact on these bud-
ets. The metabolic flexibility of HOB towards multiple trace
ases should be integrated into the study of HOB across the
ontinuum of life history traits.

roposition for future research

better understanding of the succession of HOB in the envi-
onment will shed light on their ecological roles. Here we pro-
osed four relevant life history strategies to predict the distri-
ution and activity of HOB in upland soil (Wood et al. 2023).
o validate the proposed model, we call for hypothesis-driven
esearch against the theoretical framework (Fig. 3). Examin-
ng the response of communities to environmental change will
mprove prediction of ecosystem functioning in response to
isturbances (Fig. 3a). In that sense we propose to simulate
2 concentrations gradient in soils with contrasting biologi-

al and physicochemical properties to induce microbial suc-
essions that are relevant to life history strategies of HOB
Fig. 3b). Synthetic gas supplementation or Hup− legume-
hizobium symbiosis (Xu et al. 2023) utilized alone or in
ombination are efficient approaches to recreate relevant H2

oncentration gradients found in agroecosystems integrating
egume crops. Assays using Hup+ and Hup− symbiosis offer
he possibility to delineate mixotrophic growth of HOB trig-
ered by H2 and root exudates, whereas H2 supplementation
lone is expected to promote persistence mixotrophy. These
oncentration gradients of H2 superimposed to various soil
biotic features, including CO2, CH4, CO, and soil organic
atter, can facilitate the validation of the role of each sub-

trate in shaping succession of life history strategies (Fig. 3b).
nvestigation of the incidence of abiotic determinants on HOB
ctivity can be conducted in controlled microcosms (Baril
nd Constant 2023) and by exploiting the variation in nat-
rally contrasting soils (Khdhiri et al. 2015). Biotic interac-
ions, including plant cover diversity and density in shaping
OB community and activity (Baril et al. 2022), diversity ero-

ion experiments (Saavedra-Lavoie et al. 2020), and synthetic
ommunities integrating wild-type and hydrogenase knockout
OB strains would be relevant to decipher the ecological role

f HOB and their interaction with plant and other microbes
n soil (Fig. 3c). The utilization of synthetic communities was
roven efficient to identify microbial interactions supporting
he activity of methane-oxidizing bacteria (Ho et al. 2014).
pplication of similar approaches integrating HOB represen-

ative of selected life history strategies will delineate benefi-
ial, neutral, and deleterious interactions for their prolifera-
ion and activity. Together, biotic and abiotic determinants of
OB ecological niches are expected to select traits relevant to

ife history strategies, including stress tolerance, growth rate,
nd versatility (Fig. 3d). Manipulation of biotic and abiotic
eterminants will allow to validate the proposed life history
trategies of HOB, while assessing shared sets of ecological
raits that dominate in certain niches.

onclusion

OB are supporting diverse ecosystem services, but the in-
ensity of their activation upon exposure to elevated H2 is
diosyncratic. This variable response is likely linked to en-
ironmental and intrinsic determinants of the HOB life his-
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Figure 3. Theoretical framework to be tested with hypothesis-driven studies. (a) Life history strategies of HOB are determined by their ecological traits
and the environmental abiotic and biotic factors. The colors represent the conceptual sequence of HOB’s four life history strategies according to the
three main axes. (b and c) Examples of soil abiotic and biotics determinants link to the axis in (a) and their significance for life history strategies of HOB.
(d) The proposed pertinence of ecological traits for the four strategies of HOB. The colored lines in b, c, and d represent the proposed relationships
between environmental factors or ecological traits and HOB life history strategies. Thus, lines associated with a factor or trait that covers a larger area of
a life history strategy quadrant are expected to be positively associated with that strategy.
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tory strategies. Here we propose to manipulate H2 gradients
to trigger succession of HOB encompassing the four life his-
tory strategies: chemolithoautotrophy, mixotrophic growth,
persistence, and atmospheric chemosynthesis. We call for re-
search focusing on environmental conditions and their inter-
actions with H2 supplementation regarding the effects on mi-
crobial community structure and functioning. In addition to a
better understanding of HOB response to environmental con-
ditions according to their traits. Ultimately, mechanistic ap-
proaches to HOB succession along H2 gradients may also
guide the choice of hup genotype of commercial N2-fixing
rhizobial inoculum in agriculture and improve predictions
of the fate of the biological sink of atmospheric H2 as well
as other processes supported by HOB to a future H2-based
economy.
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