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ABSTRACT
Viruses adapt and modulate cellular pathways to allow their replication in host 
cells. The catabolic pathway of macroautophagy, for simplicity referred to as 
autophagy, is no exception. In this review, we discuss anti-viral functions of 
both autophagy and select components of the autophagy machinery, and how 
viruses have evaded them. Some viruses use the membrane remodeling ability 
of the autophagy machinery to build their replication compartments in the 
cytosol or efficiently egress from cells in a non-lytic fashion. Some of the 
autophagy machinery components and their remodeled membranes can even 
be found in viral particles as envelopes or single membranes around virus 
packages that protect them during spreading and transmission. Therefore, 
studies on autophagy regulation by viral infections can reveal functions of the 
autophagy machinery beyond lysosomal degradation of cytosolic constituents. 
Furthermore, they can also pinpoint molecular interactions with which the 
autophagy machinery can most efficiently be manipulated, and this may be 
relevant to develop effective disease treatments based on autophagy 
modulation.
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1. Introduction on virophagy, the selective degradation of 
viruses by autophagy

Virus particles carry their blueprints as RNA or DNA genomes. They contain 
protein shells as capsids for blueprint protection. Additional proteins in the 
virus particles ensure host cell selection and immediate early host cell manip-
ulation upon entry [1]. For all other aspects of their replication in host cells, 
viruses heavily depend on the host cell machinery which, at the same time, 
tries to restrict their replication, both by cell intrinsic mechanisms and com-
munication with the host’s immune system. Therefore, successful viruses, 
whom we note as pathogens due to heterogenous outcomes of infections 
at least in immune compromised individuals, have developed strategies to 
evade cellular restriction mechanisms in their adaptation to at least one host 
species. Autophagy, a group of cellular degradation pathways for intracellular 
proteins, protein complexes and organelles, is no exception to this rule.

Macroautophagy, the most commonly studied of these pathways and 
hereafter referred to as autophagy, involves cytosolic membrane remodeling 
and formation of double-membrane vesicles termed autophagosomes to 
deliver macromolecules to lysosomal degradation [2-5]. Autophagosome 
biogenesis is mediated by the so-called ATG (autophagy related) proteins, 
which compose a protein kinase complex, a lipid kinase complex, ATG9A- 
positive vesicles, a lipid transfer complex, and two ubiquitin-like/Ubl conju-
gation systems [6]. The protein kinase complex consists of ULK1 (unc-51 like 
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autophagy activating kinase 1) or ULK2, ATG13, RB1CC1/FIP200 (RB1 induci-
ble coiled-coil 1) and ATG101. It is activated upon starvation, via inhibition of 
the MTOR (mechanistic target of rapamycin kinase) complex 1 (MTORC1) and 
activation of the AMP-activated protein kinase (AMPK) [6]. This complex then 
phosphorylates multiple targets [7], including the class III autophagy-specific 
phosphatidylinositol 3-kinase (PtdIns3K) complex I. This PtdIns3K complex 
I includes PIK3C3/VPS34 (phosphatidylinositol 3-kinase catalytic subunit 
type 3), PIK3R4/VPS15 (phosphoinositide-3-kinase regulatory subunit 4), 
BECN1 (beclin 1), ATG14, NRBF2 (nuclear receptor binding factor 2) and 
AMBRA1 (autophagy and beclin 1 regulator 1) and it is responsible for the 
synthesis of phosphatidylinositol-3-phosphate/PtdIns3P in the membranes of 
autophagosome precursors, known as phagophores, whose lipids are 
recruited from ATG9A-positive vesicles and an ATG2-containing lipid transfer 
complex that stabilizes channels with the ER. Phosphatidylinositol-3-phos-
phate formation leads to the recruitment of several effectors belonging to the 
ATG machinery, including WIPI1 (WD repeat domain, phosphoinositide inter-
acting 1), WIPI2, WDR45B/WIPI3 (WD repeat domain 45B), WDR45/WIPI4 and 
ZFYVE1/DFCP1 (zinc finger FYVE-type containing 1). While WDR45/WIPI4 is 
important for the assembly of the ATG2 protein-WDR45/WIPI4 complexes, 
involved in the transfer of lipids from the endoplasmic reticulum (ER) to the 
phagophore for expansion, WIPI2 is crucial for the conjugation to phospha-
tidylethanolamine (PE) of the members of the Atg8-protein family, which 
contains six members in humans: MAP1LC3A/LC3A (microtubule associated 
protein 1 light chain 3 alpha), LC3B, LC3C, GABARAP (GABA type A receptor- 
associated protein), GABARAPL1 and GABARAPL2/GATE16. ATG8 proteins are 
first C-terminally processed by the ATG4 proteases (ATG4A to ATG4D), expos-
ing a glycine that is covalently linked to PE or, in rare cases, to phosphati-
dylserine, through the action of the two Ubl conjugation systems [8]. For this 
purpose, ATG8 proteins are activated by ATG7, transferred to ATG3 and then 
finally conjugated to PE by the ATG12–ATG5-ATG16L1 complex. ATG12 is also 
an Ubl molecule that is activated by ATG7, transferred to ATG10 and then 
conjugated to ATG5 before associating with the ATG12–ATG5-ATG16L1 com-
plex. ATG8 proteins which are located at the inner membrane of phago-
phores, mediate the recruitment of specific cargoes via the so-called selective 
autophagy receptors (SARs) that bridge phagophores to autophagy sub-
strates via their LC3-interacting regions (LIRs) and ubiquitin-interacting 
motif (UIM)-like sequences. ATG8 proteins located at the outer membrane 
of phagophores mediate its elongation, autophagosome closure and recruit 
the machinery for fusion with late endosomes and/or lysosomes. They are 
finally recycled by ATG4-mediated cleavage from their lipid anchor. 
Autophagosomes fuse then with late endosomes and/or lysosomes with 
the help of specific RAB GTPases, tethering factors and SNARE proteins such 
as STX17 (syntaxin 17), YKT6 (YKT6 v-SNARE homolog), VAMP8 (vesicle 
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associated membrane protein 8) and SNAP29 (synaptosome associated pro-
tein 29) [9,10], resulting in the degradation of their cargoes and of the inner 
autophagosomal membrane. Autophagy flux or autophagosome maturation 
refers to the completion of this pathway and to its cargo degradation. If this 
cargo is a pathogen, i.e. a bacterium or a virus, this selective type of autop-
hagy is called xenophagy. In the case of viruses, the term virophagy is also 
used.

2. Anti-viral functions of autophagy

2.1 Restriction of viral entry by autophagy

Many viruses trigger autophagy early during infection. The same viruses often 
subsequently interfere with the late stages of autophagy, strongly suggesting 
that autophagy represents an innate and cell autonomous host defense. Early 
events associated with viral infection include virion attachment and inter-
nalization, and intracellular delivery of the viral genetic material and asso-
ciated proteins. The foot-and-mouth disease virus/FMDV, a picornavirus, can 
interact with Arg-Gly-Asp (RGD)-binding integrins or with heparan sulfate to 
enter cells and both these virus binding partners appear to be able to activate 
an early autophagic response against the foot-and-mouth disease virus cap-
sid proteins [11]. The complement regulating factor CD46 (CD46 molecule) 
mediates the attachment of vaccinal but not clinical strains of measles virus/ 
MeV, a paramyxovirus, and rapidly induces autophagy by recruiting the 
PIK3C3-BECN1 complex via the CD46-Cyt1-GOPC pathway [12,13]. Similar to 
measles virus, the peste des petits ruminant’s virus/PPRV, another paramyx-
ovirus, rapidly activates autophagy via the AKT1 (AKT serine/threonine 
kinase 1)-MTORC1 axis after binding to NECTIN4 (nectin cell adhesion mole-
cule 4) [14]. The toll like receptor 2 (TLR2)-MYD88 axis can activate autophagy 
in response to the envelope gH/gL glycoproteins of herpes simplex virus 1/ 
HSV-1 [15-17], and of human cytomegalovirus/HCMV, two orthoherpes-
viruses [18,19]. Upon infection of CD4+ T cells, the envelope glycoprotein 
Env of human immunodeficiency virus 1/HIV-1, a retrovirus, induces an early 
autophagy response that restricts viral production if not counteracted by the 
virus [20]. HIV-1 Env, expressed at the surface of infected cells, also induces 
autophagy in bystander uninfected CD4+ T cells, triggering their cell death 
[21,22]. In Drosophila, anti-viral autophagy has been observed in vivo upon 
recognition by Toll-7, the fly homolog of TLR7, of the glycoprotein of the 
vesicular stomatitis virus/VSV, a rhabdovirus [23]. Toll-7 is also important for 
Drosophila autophagic resistance to the infection by the Rift Valley fever 
virus/RVFV, a bunyavirus, but not to other viruses [24]. Remarkably, virion- 
containing endosomes can initiate antiviral mammalian autophagy through 
the endosomal protein SNX5 (sorting nexin 5), which activates the PtdIns3K 
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complex I in cells infected with viruses, including the togaviruses Sindbis 
virus/SINV and chikungunya virus/CHIKV, West Nile virus/WNV, an orthoflavi-
virus, and a mutant autophagy-sensitive HSV-1. A curvature signature of 
virion-containing endosomes appears central for SNX5-mediated autophagy 
induction [25]. Activation of AMPK in response to hepatitis B virus/HBV- 
induced reactive oxygen species/ROS production stimulates autophagy initia-
tion and HBV restriction [26]. Thus, virus entry or activation of pathogen- 
associated molecular pattern recognition receptors can stimulate autophagy 
during infection.

The detection of viral nucleic acids is another mechanism that rapidly 
mobilizes autophagy. Viral RNA sensing can involve TLRs [27-29], NOD-like 
receptors (NLRs), such as NOD2 (nucleotide binding oligomerization domain 
containing 2) [30,31] or, host enzymes such as EIF2AK2/PKR (eukaryotic 
translation initiation factor 2 alpha kinase 2) [32]. In the latter case, the 
autophagic degradation of HSV-1 virions is opposed by two viral proteins, 
Us11 and ICP34.5 [33,34]. The ICP34.5-inhibited autophagic restriction of HSV- 
1 appears particularly efficient in neurons [35]. Autophagy activation can also 
occur via the sensing of viral DNA of HSV-1 or HCMV, a mechanism that is 
connected with the CGAS (cyclic GMP-AMP synthase)-STING1 (stimulator of 
interferon response cGAMP interactor 1) pathway [18,36,37], potentially lead-
ing to viral DNA degradation (Figure 1).

Figure 1. Examples of autophagy in targeting of viral entry, of sensors of viral genomes 
and of innate immune receptors of danger associated molecular patterns. During the 
cytoplasm entry by non-enveloped viruses, endosomal damage or virus capsids them-
selves can be recognized and targeted to degradation by autophagy. Viral DNA is 
detected by the CGAS-STING1 pathway, leading to type I interferon production. 
STING1 can also be degraded by autophagy. Damaged mitochondria activate inflamma-
somes triggering IL1 and IL18 production, and both are turned over by autophagy. 
Overall, autophagy restricts viruses during entry but at the same time dampens immune 
activation. ATG8, mammalian Atg8 homolog.
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Host factors can play important roles in early antiviral autophagy. The 
E3 Ub ligase SMURF1 (SMAD specific E3 ubiquitin protein ligase 1) is 
instrumental for the degradative targeting of SINV capsid by the SAR 
SQSTM1/p62 (sequestosome 1) [38,39]. Fanconi anemia proteins, especially 
FANCC (FA complementation group C) serve also as SARs for virophagy 
[40]. Other central regulators are some members of the RING Ub ligases of 
the tripartite motif-containing (TRIM) protein family, such as TRIM5/TRIM5α 
which opposes retrovirus infection before reverse transcription takes place 
[41]. TRIM5 also acts as a receptor to target the HIV-1 capsid protein p24 
for autophagic degradation [41]. In Langerhans cells, the C-type lectin 
CD207/Langerin is central for HIV-1 internalization and TRIM5-associated 
degradation [42]. Other TRIM proteins are involved against either a specific 
or several viruses. TRIM23, which is engaged in response to infections by 
influenza A virus/IAV, an orthomyxovirus, HSV-1 or encephalomyocarditis 
virus/EMCV, a picornavirus, can promote SQSTM1/p62-driven selective 
autophagy via TBK1 (TANK binding kinase 1) activation and contribute to 
adenovirus 5, HSV-1 and SINV antiviral autophagy [43]. The targeting of 
capsid proteins by selective autophagy is also observed in plants as the 
SAR NBR1 (NBR1 autophagy cargo receptor) drives autophagic degradation 
of the capsid protein or virions of cauliflower mosaic virus/CaMV, 
a caulimovirus, in a Ub-independent manner in Arabidopsis thaliana [44]. 
Host factors can also be recruited by viruses to counter the autophagic 
restriction that they face during cell invasion. A prominent example is 
adenovirus 5 whose capsid undergoes structural changes to expose the 
protein VI (PVI) and ruptures the endocytic vacuole to enter the cytosol. 
The detection of membrane damages by particular galectins (LGALS), 
primarily LGALS8, along with TBK1 activation and SAR engagement trig-
gers the formation of autophagosomes. This is antagonized by the PVI- 
driven recruitment of the E3 Ub ligases NEDD4 and NEDD4L, leading to 
delayed autophagy until viral escape from endosomal remnants is 
achieved [45-47] (Figure 1). Kaposi sarcoma-associated herpesvirus/KSHV 
also causes endosomal damage during entry, recruiting LGALS8 and 
CALCOCO2/NDP52 (calcium binding and coiled-coil domain 2), resulting 
in autophagosomal degradation of incoming virions [48]. This, however, 
seems to be also rapidly inhibited by KSHV after 2 h but the underlying 
mechanism remains unclear. HBV envelope proteins are recognized and 
targeted by the SAR CALCOCO2/NDP52 to the lysosome for degradation, 
which is independent of LGALS8 [49]. In the case of endocytosed picorna-
viruses, conformational changes in the capsid proteins induce small pores 
into the endosomal membrane for translocation of viral RNA into the 
cytosol. This step requires the in-situ recruitment of host PLAAT3/ 
PLA2G16 (phospholipase A and acyltransferase 3) by damaged mem-
branes, causing an inhibition of the LGALS8-mediated autophagic 
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response to viral entry [50]. Thus, ubiquitination of viral components and/ 
or glycan exposure upon endosomal damage can recruit SARs and the ATG 
machinery to restrict viral entry.

Non-canonical LC3B conjugation to single endosomal membranes, called 
LC3-associated phagocytosis (LAP), LC3-associated endocytosis/LANDO or 
CASM (conjugation of ATG8/LC3 to single membranes) [51-54], can also 
delay virus entry, as has been shown for lung epithelial cells and IAV infection 
[55]. In mice expressing mutant ATG16L1 that lacks the WD40 domain that is 
required for LC3B conjugation to single membranes, IAV fusion with the 
limiting membrane of endosomes was accelerated, thereby increasing infec-
tion and associated pathology. Thus, both canonical autophagy and non- 
canonical functions of the autophagy machinery can compromise virus entry.

Overall, these findings highlight that autophagic responses opposing viral 
infections can be triggered by distinct early events. Those include virus 
receptor binding, sensing of infection-associated membrane remodeling/ 
perturbation (fusion, curvature, rupture) or engagement of germline- 
encoded receptors able to detect conserved microbial molecular patterns 
(envelope/capsid proteins and nucleic acids).

2.2 Autosis of virus infected cells

Autosis, initially described by the laboratory of Beth Levine, is a unique form 
of non-apoptotic, non-necrotic cell death specifically relying on ATP1A1 
(ATPase Na+/K+ transporting subunit alpha 1) and autophagy [56]. Autosis 
was characterized by increased numbers of autophagosomes, autolysosomes, 
and empty vacuoles, in combination with ER dilation and fragmentation. This 
is followed by nuclear membrane convolution, focal ballooning of the peri-
nuclear space, depletion of ER, reduction of autophagosome and autolyso-
some numbers, mitochondria swelling, and focal rupture of the plasma 
membrane [56]. Autotic cells are resistant to apoptosis or necrosis inhibitors, 
but sensitive to autophagy machinery suppression. Inhibition of autophago-
some fusion with lysosome does not affect autosis, indicating that excessive 
autophagosome formation, rather than degradation, is probably the trigger 
of this process [56]. Additionally, cardiac glycosides, e.g. digoxin, which 
inhibit Na+/K+-ATPases, suppress autosis [56]. The interaction between 
BECN1 and the α subunits of Na+/K+-ATPase, i.e., ATP1A1, ATP1A2 or 
ATP1A3, on both intracellular membranes and at the plasma membrane is 
crucial, though the precise molecular mechanisms underlying autosis remain 
unclear.

The potential for selective autosis is a promising area of research for cancer 
treatments. This is illustrated by oncolytic virotherapy with myxoma virus 
(MYXV), a poxvirus that is endemic to rabbits and hares [57]. Preclinical 
studies suggest that therapies combining oncolytic viruses with tumor- 
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specific T cells expressing chimeric antigen receptor (CAR), could enhance 
efficacy of this latter system, particularly, via direct injection into tumors [58]. 
Tumor-specific T cells rely on direct contact to induce apoptosis and pyrop-
tosis, but this often fails to elicit strong primary responses in solid tumors or 
prevent resistance due to tumor antigen escape. Research by Zheng and 
coworkers [59] demonstrated that MYXV-infected, CAR-expressing tumor- 
specific T cells (CAR-TMYXV) can overcome primary resistance by delivering 
MYXV systemically to solid tumors. These CAR-TMYXV cells induce not only 
apoptosis and pyroptosis but also ATP1A1-dependent autosis through 
a synergy of T cell-derived IFNG/IFNγ and AKT1 signaling with the MYXV 
M-T5 protein-triggered SKP1 (S-phase kinase associated protein 1) and 
PIK3C3 signaling, significantly assisting tumor eradication.

Another example is HIV-1 infection that increases ATP1A1 expression in 
macrophages and memory CD4+ T cells, making them more susceptible to 
autosis when treated with autophagy-inducing peptides or nanoparticles 
[60,61]. The autophagy-inducing peptide Tat-beclin 1, which inhibits HIV-1 
replication at low doses [62], becomes a potent inducer of autosis at higher 
doses or upon prolonged exposure [56,59-61,63]. This peptide selectively 
triggers autosis in latent HIV-1-infected primary CD4+ T cells and macro-
phages [60,61]. Similarly, the anti-apoptotic α2-helix from the death effector 
domain 1 of the K13 protein of KSHV, i.e., v-FLIP-α2, which impairs FAS (Fas 
cell surface death receptor)-dependent cytotoxic T cell killing of HIV- 
1-infected cells and activates HIV-1 transcription [64], also selectively induces 
autosis in HIV-1-infected primary resting memory CD4+ T cells and macro-
phages [60,61]. These findings highlight the therapeutic potential of autosis 
in treating infectious diseases and cancers, by targeting infected or malignant 
cells while sparing normal tissues.

2.3 The ATG machinery as an effector or restriction factor of 
interferons

Interferons (IFNs) have been recognized since the mid-twentieth century as 
secreted host factors that interfere with productive viral infection [65,66]. 
Three IFN types (I, II, III), with multiple subtypes of type I and III and a single 
type II, i.e., IFNG, have been identified [67]. Both the IFN system and autop-
hagy are evolutionarily ancient mediators of the cell autonomous host 
defense [67-70]. As key arms of the innate immune system, autophagy and 
IFN coordinate an effective antiviral response. As such, viruses have evolved 
mechanisms to subvert the signaling and effectors of these systems to evade 
or co-opt the host response (see sections 3 and 4 of this review). This section 
will focus on how canonical autophagy and in some cases selected ATG 
proteins outside their role in autophagy, mediate IFN-regulated host antiviral 
immunity.
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Autophagy is an inducible process during various physiological cues and 
in response to environmental stressors, including immune responses [71]. The 
role of IFN in the regulation of autophagy has previously been reviewed [72]. 
Direct and indirect evidence of type I IFN involvement in autophagy regula-
tion exists. Type I IFN treatment induces autophagy in various human cell 
lines [73,74], and primary cells [75]. Consistently, IFN-inducible antiviral and 
IFN-regulating proteins, called IFN-stimulated genes (ISGs), are required for 
the autophagic control of viruses, such as EIF2AK2 during HSV-1 infection 
[34], RNASE1/RNAse l in EMCV and VSV infection [76], OASL (2’-5’- 
oligoadenylate synthetase like) in the degradation of non-structural protein 
2 (nsp2) of infectious bursal disease virus/IBDV, a birnavirus, [77], and BST2/ 
tetherin 1 (bone marrow stromal cell antigen 2) in porcine epidemic diarrhea 
virus/PEDV, a coronavirus [78]. Additionally, the ISG SHISA5/SCOTIN (shisa 
family member 5) interferes with the replication of hepatitis C virus/HCV, 
a hepacivirus, through the autophagic degradation of its NS5A protein [79]. In 
murine RAW264.7 macrophage-like cells, however, the type I IFNs IFNA/IFNα 
and IFNB/IFNβ did not induce autophagy [80]. Therefore, type I IFN may play 
a role only in specific cell types, or potentially only in the context of viral 
infections. Extensive evidence for IFNG induction of autophagy exists for 
diverse cell types, including murine RAW264.7 cells [80-83], murine embryo-
nic fibroblasts [84], various human cell lines [77,81,82,85,86], primary macro-
phages [82,87,88], and primary hepatocytes [85]. Type III IFN or IFNL/IFNλ, the 
most recently discovered type of IFN, is also implicated in regulating autop-
hagy. Specifically, a short form of ATG10, ATG10S, can induce degradation of 
various viral proteins in the presence of IFNL in human cell lines [89].

The precise factors that transduce IFN signaling to increase autophagy 
activity are incompletely understood. For type I IFN, MTORC1 [72] and 
PtdIns3K [90] signaling have been implicated. The ISG RSAD2 (radical 
S-adenosyl methionine domain containing 2) mediates IFNB-induced autop-
hagy in primary human cornea-associated trabecular mesh cells [75]. In the 
case of IFNG, an unconventional JAK2 (Janus kinase 2)-PtdIns3K-MAPK (mito-
gen-activated protein kinase)-dependent, STAT1-independent, pathway may 
be required in murine macrophages [83], while a role for IRF1 (interferon 
regulatory factor 1) [85] and MTORC1 [88] has been demonstrated in 
Huh7 hepatocytes and human macrophages, respectively. IFNG-induced 
autophagy may also be countered by other cytokines that induce STAT6 
(signal transducer and activator of transcription 6) [87]. As autophagy reg-
ulates many facets of the antiviral sensing and IFN response, and viruses 
extensively target autophagy to suppress the IFN response, selective manip-
ulation of these mechanisms may be leveraged for therapeutic induction of 
antiviral IFN responses via autophagy.

Beyond a regulatory role of IFN in autophagy induction, the role of the ATG 
machinery as an effector mechanism has also been described for diverse virus 

AUTOPHAGY REPORTS 9



classes. As mentioned, the ISG EIF2AK2 is required for autophagic clearance of 
HSV-1 virions [34,91]. HSV-1 encoded neurovirulence protein ICP34.5 antag-
onizes BECN1 to evade antiviral autophagy and promote viral encephalitis 
[91]. However, the role of IFN in protection against the BECN1-binding 
mutant virus remains unknown. Autophagy is also activated by HSV-1 viral 
genomic DNA sensing by the CGAS-STING1 pathway to limit IFN production 
and exerts a negative feedback loop by directly targeting viral genomes, as 
well as CGAS and STING1 themselves to degradation [36] (Figure 1). In order 
to limit RNA sensing, Sendai virus/SeV and VSV infection activates 
CALCOCO2/NDP52-mediated selective autophagy that targets MAVS (mito-
chondrial antiviral signaling protein) into degradation by a mechanism invol-
ving the ISG BST2, limiting IFN signaling [92]. Similarly, autophagy of 
depolarized mitochondria removes endogenous danger associated molecular 
patterns for inflammasome activation and pro-inflammatory cytokine pro-
duction, such as IL1 (interleukin 1) and IL18 [93]. Furthermore, components of 
inflammasomes are also directly targeted for autophagy (Figure 1). However, 
the relative contribution of viral genome targeting by autophagy versus 
inhibition by elevated IFN and pro-inflammatory cytokine production in 
restricting viral replication when autophagy is inhibited, has not been dis-
sected [36]. Furthermore, in primary mouse neurons, ATG5 restricts HSV-1 
replication via a type I IFN-independent mechanism [35]. Therefore, the role 
of IFN in regulating HSV-1 may be cell type-specific, and redundant IFN- 
mediated mechanisms may exist to control HSV-1.

A role for the ATG machinery in mediating IFNG-dependent restriction of 
murine norovirus (MNV), a calicivirus, in a non-canonical manner has been 
extensively studied. Initially, it was shown that type I IFN and IFNG exhibit 
non-redundant activity in limiting MNV, and IRF1 is required for cell intrinsic 
effects of IFNG [94]. Subsequently, a role for the Ubl conjugating machineries, 
in particular ATG5, ATG7, and ATG16L1, were demonstrated as the mediators 
of IFNG activity, while LC3B, ATG4B, and lysosomal fusion mediator RAB7A 
were dispensable [95]. In vivo, mice with myeloid-specific deletion of ATG5 
infected with an acute strain of MNV exhibit increased susceptibility in the 
absence of type I IFN signaling, further underscoring both the non-redundant 
roles of these IFNs and the specificity of autophagy for IFNG [95]. The Ubl 
conjugation machinery required for MNV restriction also includes ATG3, and 
redundancy in the ATG8 homologs, while ATG14, ULK1 and ULK2 are dis-
pensable [96]. In addition, the ISGs IGTP/IRGM3 (interferon gamma induced 
GTPase) and GBP2 (guanylate binding protein 2), but not IRGM1, GBP1, GBP3, 
GBP5 or GBP7, are required for IFNG activity, and are recruited to the MNV 
replication complexes to dismantle them [96]. Of note, murine GBP2 is 
orthologous to human GBP1.

A more complete list of ATG components required in IFNG-mediated 
restriction of viruses was elucidated recently. Using a candidate approach 
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and CRISPR-Cas9-based screening of an autophagy-targeted library in the 
BV2 microglial cell line, ATG9A, WIPI2 and the ATG8 protein GABARAPL2/ 
GATE16, but not LC3A, LC3B, GABARAP, or GABARAPL1, were identified as 
effectors of IFNG inhibition of MNV infection [97]. BECN1, ATG14, and UVRAG 
were dispensable [97]. Studying the role of human GBPs in HeLa cells treated 
with IFNG, the ATG16L1 interacting protein CAPRIN1 (cell cycle associated 
protein 1) was shown to mediate restriction of MNV in conjunction with WIPI2 
and GBP1 [98]. IFNG also induces chicken GBP1 to restrict infectious bronch-
iolitis virus/IBV replication and to degrade nucleocapsid protein [89]. This 
activity is not pan-viral, as ECMV, murine hepatitis virus/MHV, and West Nile 
virus were equally well-controlled by IFNG in cells with or without ATG5 [95]. 
Collectively, these findings support a selective role for the Ubl conjugation 
machineries, together with the GBP1 system, in restricting different viruses in 
multiple species, without other ATG components.

The previous two decades have revealed multiple mechanisms for the 
regulation of both autophagy by IFNs and of viral infections by autophagy. 
As the evidence for IFN-regulation of viruses derives primarily from in vitro 
studies, the in vivo physiological relevance remains to be explored in many 
cases. Along these lines, the relative role of cell-autonomous IFN responses, 
for example type I IFN production, or IFN from immune cells, for example 
IFNG, in antiviral control remain to be determined. Moreover, the precise 
molecular mechanisms behind autophagy machinery-mediated control of 
viral replication, beyond degradation of virions and viral components, 
remains incompletely understood. Finally, the relative contribution of restrict-
ing viral infections via direct viral component degradation versus regulation 
of anti-viral cytokines remains poorly defined. Answers to these open ques-
tions will be important to translate our basic understanding into antiviral 
therapeutics.

3. Inhibition of the ATG machinery by viruses to prevent 
virophagy

Viruses benefit from inhibiting autophagy. The most obvious reason being to 
prevent their degradation since autophagy has been described as an antiviral 
mechanism. More generally, inhibition of autophagy enables viruses to create 
a favorable environment for their replication. This is also underscored by the 
fact that mutations in ATG genes have been associated with disease severity 
in patients infected by poliovirus, a picornavirus, herpes simplex virus 2/HSV- 
2, varicella zoster virus/VZV, another orthoherpesvirus, and possibly severe 
acute respiratory syndrome coronavirus 2/SARS-CoV-2 [99-102].

Many viral proteins are capable of interfering with the autophagy machin-
ery. One of the first anti-autophagy viral protein to be identified was ICP34.5 
encoded by HSV-1 [32]. ICP34.5 is a key protein for successful HSV-1 
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propagation in the central nervous system and multitasks in counteracting 
the host immune responses. Among those functions, ICP34.5 can interact 
with BECN1 to inhibit autophagy initiation [91]. Interestingly, the role of 
autophagy on the restriction of HSV-1 multiplication appears to be different 
depending on the cell type. The replication of HSV-1 is not modified in ATG5 
deficient fibroblasts while ICP34.5 capacity to bind BECN1 is critical for 
neurovirulence [35,91]. HSV-1 encodes at least two other proteins that can 
inhibit autophagy initiation through different mechanisms: Us3, which 
directly phosphorylates BECN1, and Us11, which inhibits the PKR-EIF2A path-
way to prevent virus-induced autophagy [33,103].

Targeting BECN1 is one of the main strategies developed by viruses to 
evade autophagy and several examples can be found in different viral 
families. Already among the Orthoherpesviridae family, HCMV, KSHV and 
murid herpesvirus 68/MHV-68, all express proteins that block BECN1 [104- 
106]. Additionally, HIV-1-encoded Nef protein impairs the formation of autop-
hagosomes by interacting with BECN1 in T cells and might also inhibit the 
fusion of autophagosomes with lysosomes in macrophages [107,108].

Autophagy and innate immunity are closely interconnected, and autop-
hagy can be both a modulator and an effector of antiviral immune responses. 
RVFV is an arbovirus from the Phenuiviridae family. In Drosophila, RVFV 
triggers antiviral autophagy via the Toll-7 receptor, a mechanism that 
seems to be conserved in mammalian cells [24]. A recent study showed 
that NSs, a virulence factor encoded by RVFV, can interact with ATG8 proteins 
and sequester them in the nucleus [109]. These interactions are detected at 
later stages of RVFV infection and lead to an inhibition of autophagy. 
Interestingly, although a virus expressing a variant of NSs unable to bind all 
six ATG8 orthologs, replicates less efficiently than the wild-type virus, this 
difference is no longer observed in IFN-deficient cells, confirming the impor-
tant crosstalk between these pathways.

Activation of autophagy with drugs was shown to restrict replication of 
SARS-CoV-2 in different cell lines, giving hope for a potential antiviral treat-
ment, although the interplay between autophagy and coronaviruses seems 
more complex [110]. Several proteins encoded by this virus seem to be able 
to inhibit autophagy at different steps of the pathway. For example, expres-
sion of the accessory factor ORF3a leads to an accumulation of autophago-
somes by inhibiting their fusion with the lysosomes [111]. Specifically, ORF3a 
disrupts the interaction between the homotypic fusion and protein sorting 
(HOPS) tethering complex and RAB7, preventing the tethering of autophago-
somes with lysosomes. Additionally, ORF7a inhibits the autophagic flux by 
inducing the cleavage of SNAP29 by the CASP3 (caspase 3) protease [112]. 
Another respiratory virus, IAV, is capable of blocking autophagosome- 
lysosome fusion by expression of its structural protein M2 [113,114]. 
Additionally, it has also been shown that M2 is able to hijack LC3B for stable 
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IAV particle production. Finally, adenoviruses prevent autophagosome 
maturation via a conserved PPxY peptide motif in their capsid protein VI 
that recruits the ubiquitin ligase NEDD4L/NEDD4.2. Mutating the PPxY motif 
in turn renders adenoviruses susceptible to autophagic clearance and 
increases its antigen presentation [45,115].

Some of the latest publications on viruses and autophagy shed light on the 
modulation of selective autophagy. Viral proteins can be targeted for autop-
hagic degradation by SARs. However, several members of the Picornaviridae 
family encode proteases that can cleave these receptors. Two recent publica-
tions on Seneca Valley virus/SVV, a picornavirus, showed that the SARs 
SQSTM1/p62 and OPTN (optineurin) can target the capsid protein VP1 for 
turnover by autophagy and OPTN is also involved in IFN signaling via the 
TBK1-IRF3 pathway [116,117]. SVV encodes a protease, 3Cpro, that cleaves 
SQSTM1/p62 and OPTN to counteract the antiviral activity of these SARs, 
preventing the degradation of capsid proteins and dampening IFN response. 
Other picornaviruses also evolved similar strategies to block selective autop-
hagy, like coxsackievirus B3 (CVB3), which encodes two proteinases, 2A and 
3C, that can cleave SQSTM1/p62, NBR1 and CALCOCO2/NDP52 [118,119]. In 
the case of CALCOCO2/NDP52, interestingly, the cleavage by 3Cpro allows 
the formation of a stable fragment that exerts proviral properties. 
Reticulophagy is a form of autophagy that selectively degrades the ER via 
specific ER-localized SARs, such as RETREG1/FAM134B, RTN3L, CCPG1 and 
ATL3 [120]. The NS3 protease of several orthoflaviviruses, including dengue 
virus/DENV and Zika virus/ZIKV, cleaves RETREG1, whereas SARS-CoV 
-2-encoded ORF8 sequesters FAM134B and ATL3 in SQSTM1/p62 conden-
sates, inhibiting reticulophagy in both cases [121,122]. Inhibition of autop-
hagy can also be a consequence of viral subversion of selective autophagy, as 
it has been described for a plant-infecting pathogen called Tomato bushy 
stunt virus/TBSV, a tombusvirus [123]. TBSV replication protein p33 diverts 
both ATG8 proteins and NBR1 into its replication organelles, resulting in the 
inhibition of autophagy in infected cells. These latest studies provide further 
demonstrations that manipulation of autophagy by viruses is a widely con-
served mechanism.

4. Pro-viral functions of autophagy

4.1 Building viral replication compartments with the help of the 
autophagy machinery

Cellular stress caused by viral infection often triggers the activation of 
autophagy. Despite the antiviral nature of autophagy’s degradative ability, 
many viruses, particularly positive single-stranded RNA (+ssRNA) viruses, 
have evolved to resist and benefit from autophagy (Figure 2). The pro-viral 
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nature of autophagy activation, or at least of components of the ATG 
machinery, is well documented for a wide variety of viruses [104,124- 
128]. This section focuses on how the autophagy machinery assists in 
the formation of virus-induced specialized organelles that harbor the 
replication of +ssRNA viruses.

The cytoplasmic replication of +ssRNA viruses requires membrane rear-
rangement to form replication factories, also called replication organelles/ 
ROs, which concentrate and protect viral factors essential for efficient replica-
tion and transcription of the viral genomes. Pioneering ultrastructural studies 
of cells infected with viruses from the Picornaviridae, Flaviviridae, Caliciviridae, 
Coronaviridae, and Arteriviridae families by electron microscopy have revealed 
the cytoplasmic accumulation of double-membrane vesicles (DMVs) [129- 
134]. Because autophagosomes are also characterized by a double- 
membrane, it has been suggested that autophagy may contribute to the 
formation of these virus-induced DMVs [135,136], but it needs to be pointed 
out that the formation of DMVs might often utilize only individual compo-
nents of the autophagy machinery. Notably, proteins involved in autophagy 
and related processes have been determined to be in close proximity to the 
coronavirus replication complex at DMVs [137]. Lately, 3D-reconstruction of 
replication organelles by electron tomography analysis confirms the presence 
of components of viral replicases on the inner membrane of DMVs, suggest-
ing their involvement in the replication of at least coronaviruses [138] and 
hepaciviruses [139]. Importantly, the involvement of ATG proteins has been 
linked to DMVs formation by several +ssRNA viruses [140-144].

Figure 2. Viruses hijack autophagosomal membranes to establish or protect their 
replication in the cytosol, and for envelope acquisition during egress. Positive single- 
stranded RNA viruses often replicate in association with membrane compartments that 
can be assembled with the help of the ATG machinery. Once encapsulated, the viral 
particles can egress in virus packages within ATG8 protein-decorated membranes. Some 
DNA viruses also acquire their envelope from/with autophagosomal membranes and 
then carry parts of the ATG machinery in their virus particles. ATG8, mammalian 
Atg8 homolog.
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Coronaviruses and HCV are known to induce DMV accumulation in the 
cytoplasm of infected cells [139,145], to benefit from autophagy activation 
[144,146-148], and the direct involvement of the ATG machinery in DMV 
formation has been suggested [142,148-151]. However, due to conflicting 
data, it has remained unclear which part of the ATG machinery is essential for 
DMV formation. Recently, Twu and colleagues identified PtdIns3K as an 
essential factor for SARS-CoV-2 and HCV-induced DMV formation and their 
RNA replication [143], which in parallel requires the viral proteins SARS-CoV-2 
nsp3 and nsp4 [150,152], or HCV NS5A and NS4B [139,153]. Interestingly, 
ATG5−/− Huh7-Lunet cells were still able to form virus-induced DMVs, sug-
gesting that the autophagy elongation complex is dispensable 
[139,150,152,153]. Similarly, the replication of human astrovirus 1/HAstV-1, 
an astrovirus, localized at DMVs that required PtdIns3K for their formation 
[141], highlighting the importance of part of the ATG machinery in initiating 
DMV formation during infection. For coronaviruses, nsp6 is a multiple span-
ning membrane protein that localizes to the ER where it cooperates with nsp3 
and nsp4 to generate DMVs as the replication organelle. Interactions between 
nsp3 and nsp4 extrude spherical replication organelles from the ER into the 
cytosol, where they house the viral RNA replicase proteins and at the same 
time 12 copies of nsp3 and nsp4 assemble into a pore complex to export viral 
RNA into the cytosol [154,155]. The replication organelles remain tethered to 
the ER by thin membrane connectors formed by nsp6, which induced ER 
zippering to collapse ER cisternae, assumed to exclude host proteins that 
might inhibit replication but to maintain membrane connections allowing 
entry of lipids [156]. A three amino acid deletion in nsp6 increased both ER 
zippering and virulence. Interestingly, when expressed alone in cells, nsp6 
induces formation of LC3B puncta independently of activation of autophagy 
by starvation or inhibition of mTOR [149]. Formation of LC3B puncta by nsp6 
required ATG5 suggesting conjugation of LC3 to membranes by the ATG12– 
ATG5-ATG16L1 complex. Nsp6 induced the formation of ZFYVE1/DFCP1- 
positive domains of the ER enriched for phosphatidylinositol-3-phosphate 
leading to recruitment of WIPI2 and the ATG8 conjugation machinery with 
ATG12–ATG5-ATG16L1. LC3B puncta are also induced by nsp6 of IBV, MHV 
and SARS-CoV-2 and the equivalent nsp5-nsp7 ortholog encoded by the 
arterivirus porcine reproductive and respiratory syndrome virus/PRRSV 
[149]. Interestingly, the LC3B puncta generated by nsp6 are small compared 
to LC3B puncta generated by canonical autophagy because nsp6 prevents 
autophagosome expansion normally seen in response to starvation [157]. 
Nsp6 proteins remain in the ER and do not travel with autophagosome 
membranes to lysosomes suggesting nsp6 disrupts early events in autopha-
gosome formation. Affinity purification of tagged nsp6 [158] and proximity 
biotinylation [159] has shown that nsp6 interacts with proteins involved in 
membrane fusion such as SIGMAR1, VAMP7, ESYT2, ATP2A2/SERCA2 and 
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TBK1 [159]. This complex of proteins regulates the formation of hybrid 
phagophore assembly sites/pre-autophagosomal structures/HyPAS gener-
ated early during autophagy by fusion of endosomal membranes containing 
ATG16L1 with cis-Golgi membranes enriched for RB1CC1 [159]. It is likely that 
nsp6 disrupts hybrid phagophore assembly sites formation to limit the 
maturation of autophagosomes induced during coronavirus infection.

Picornaviruses such as poliovirus and CVB3 also benefit from autophagy 
and induce the cytoplasmic accumulation of DMVs in infected cells 
[135,160,161]. Noticeably, CVB3-induced DMVs seem to rely on the autop-
hagy machinery for their generation [140]. CVB3- and poliovirus-induced 
DMVs, however, appear somewhat later in the replication process [160,161]. 
In the case of poliovirus, it has been shown that poliovirus induced DMVs 
originate from cis-Golgi membranes appearing during the early stages of 
infection as single membrane structures that transform in a complex manner 
into double membrane structures [160]. Thus, additional studies on picorna-
viral infections are required to determine the interrelation between autop-
hagy, DMV formation, and the viral life cycle.

HBV is a DNA virus that replicates both in the nucleus and cytoplasm. HBV 
infection stimulates autophagy through an increase in the PIK3C3/VPS34- 
BECN1 complex activity induced by the viral regulatory protein HBx [162,163]. 
HBV core particles are associated with the phagophore in the cytoplasm, 
which is required for the packaging of viral pregenomic RNA [164]. The 
precore protein derivatives, which form secreted viral antigens, are associated 
with autophagosomes. These findings suggest that differential autophagy 
membrane-related trafficking routes are involved in the secretion of virions 
and viral antigens [164].

In conclusion, the pro-viral roles of autophagy in viral replication have 
been well-documented for several viruses. Accumulating evidence demon-
strates that virus-induced DMVs are the replication organelles of many 
+ssRNA viruses but the precise functions of ATG proteins in their formation 
still remain to be better understood.

4.2 Viral envelope acquisition from autophagosomal membranes

Enveloped viruses are generally composed of a capsid that houses the viral 
genome, enclosed in a lipid bilayer decorated with virus-encoded glycopro-
teins. For numerous virus families, non-glycosylated matrix or tegument 
proteins are found on the inner side of the envelope, ensuring the link 
between the capsid and the envelope. This latter is acquired by budding 
through either the host cell plasma membrane or organelles, such as the 
Golgi apparatus and the ER, but recent evidence also indicates that this can 
occur at autophagosome membranes (Table 1). For viruses that bud at the 
plasma membrane, such as IAV or rabies virus/RABV, a rhabdovius, this 
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assembly stage also enables the release of the virion from the cell. Conversely, 
when the envelope originates from the endomembrane system, viral particles 
are transported luminally to the trans-Golgi network (TGN) and from there to 
the plasma membrane in vesicles to exit the cell by fusion.

Numerous studies have shown that the proviral effect of autophagy can be 
linked to the optimization of envelope acquisition and increased extracellular 
virus production. In this context, viral infections usually induce autophago-
some accumulation, often associated with an inhibition of the autophagic 
flux, in particular by matrix proteins.

The autophagy machinery has been involved in the budding of several 
viruses at the plasma membrane [113,114,165-169]. For example, respiratory 
syncytial virus/RSV, a pneumovirus, induces the accumulation of immature 
autophagosomal structures by blocking autophagosome-lysosome fusion, to 
improve its viral production [165]. Knockdown of LC3B decreases RSV propa-
gation and interestingly, treatment with exogenous IL22 restores the autop-
hagic flux with concomitant reduction in RSV production. Both the 
mechanism of inhibition and the viral protein(s) involved in autophagy 
regulation are still unknown. RABV also induces incomplete autophagy in 
mouse neuroblastoma cells to favor its extracellular viral production [166]. At 
least two RABV proteins could be responsible for the accumulation of autop-
hagosomes and the inhibition of autophagosome-lysosome fusion, i.e., the 
phosphoprotein RABV-P through interaction with BECN1 and the matrix 
protein RABV-M [166,167]. RABV-M interacts with NEDD4, an E3 Ub ligase 
and its ubiquitination is crucial for the accumulation of autophagosomes 
[166,167]. Inhibition of autophagy, by ATG5 knockdown or 3-methyladenine 
(3MA) treatment, decreases both RABV-M recruitment at the plasma mem-
brane and generation of virus-like particles in the supernatant, revealing 
a possible role of autophagy in RABV budding [166,167]. The autophagy 
machinery is also hijacked by two viruses belonging to the Arenaviridae 
family, the Lassa virus/LASV, a rodent virus responsible for hemorrhagic 
fever in humans, and the Mopeia virus/MOPV, to favor their envelopment 
[168]. Silencing of ATG5 has no impact on viral DNA replication but decreases 
the generation of LASV and MOPV infectious particles. The matrix protein of 
LASV, i.e., LASV-Z, is able to impede autophagosome-lysosome fusion, lyso-
some acidification, and lysosomal enzyme transport by disrupting the cytos-
keleton via its interaction with CCT2 (chaperonin containing TCP1 subunit 2) 
[169]. In the same way as for RABV-M, LASV-Z is decreased in plasma mem-
brane-derived fractions and accumulates in the Golgi apparatus, when cells 
are silenced for ATG5 or ATG7, or treated with 3MA [169].

The proton-selective ion channel protein M2 of IAV is responsible for the 
stabilization of LC3B conjugated membranes during virus replication and 
egress, including SQSTM1/p62 containing vesicles with intraluminal mem-
branes that resemble autophagosomes and amphisomes [113]. In particular, 
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GFP-LC3B binds M2 via a highly conserved LC3-interacting region in M2, and 
this interaction localizes GFP-LC3B in two main pools, one in vesicles of the 
perinuclear region and one at the plasma membrane [114]. M2-LC3B interac-
tion is not required for viral genome replication but is important for filamen-
tous viral particle budding and stability of resulting virions. Indeed, 
knockdown of ATG16L1 decreased the proportion of filamentous particle 
budding. A small amount of membrane conjugated LC3B is found in extra-
cellular viral particles and LC3B interaction with M2 that is disrupted by 
caspase cleavage seems required for optimal infectious particle production 
[170], but autophagy per se does not seem to directly contribute to IAV 
envelopment or egress. M2 induces an autophagy-related lipidation of 
LC3A/B, which nonetheless depends on ATG16L1 for the recruitment of the 
E3-like ATG12–ATG5-ATG16L1 complex, but it is independent of RB1CC1 and 
WIPI2 [171]. In fact, M2 induces the conjugation of LC3 to single membranes, 
in particular to the plasma membrane, through CASM. The proton-selective 
ion channel activity of M2 is responsible for this conjugation [172,173], via 
ATG16L1 recruitment by the ATP6V1H/V1H subunit of the vacuolar-type H+- 
translocating ATPase/V-ATPase [174]. Thus, IAV infection causes accumula-
tion of LC3B conjugated membranes that are protected from lysosome fusion 
and required for stable virion production.

Manipulation of the early steps of autophagy has also been widely 
described for viruses acquiring their envelope through the endomembrane 
system, such as HBV, a hepadnavirus, parainfluenza virus 3/PIV3, 
a paramyxovirus, or Orthoflaviviridae family members. Both HBV and PIV3 
block autophagosome-lysosome fusion to improve virion production. HBV 
decreases SNAP29 and RAB7 levels and impairs lysosomal acidification via its 
non-structural HBx protein [125,175]. PIV3 impairs SNARE complex formation 
via an interaction of its phosphoprotein P with SNAP29 [176]. Inhibition of 
autophagy markedly inhibited the production of extracellular virions of both 
HBV and PIV3, indicating a role of autophagy in viral envelopment and/or 
release. HBV seems to exploit autophagy for its envelopment and not for its 
egress, since the abundance of intracellular and extracellular enveloped HBV 
virions was similarly impacted by autophagy inhibition [177]. Moreover, HBV 
envelope proteins partially colocalize and interact with LC3B in the cytoplasm 
[125] and HBV core particles are associated with autophagosomes and pha-
gophores, suggesting that these membranous structures are the site for the 
packaging of the viral pregenomic RNA [164]. Ding and co-workers observed 
that incomplete autophagy helps PIV3 extracellular viral production but does 
not influence viral protein synthesis or intracellular viral production, suggest-
ing a role of autophagy in PIV3 extracellular release [176]. Severe fever with 
thrombocytopenia syndrome virus/SFTSV, a bunyavirus, exploits autophagy 
for both its envelopment, in the ER-Golgi intermediate compartment/ERGIC- 
and Golgi-originated autophagosomes, and its release by exocytosis [178]. 
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Unlike HBV and PIV3, SFTSV triggers complete autophagy, via the interaction 
of its nucleoprotein NP with BECN1. Yan and co-workers proposed that 
mature SFTSV particles are released by fusion of autolysosomes with the 
plasma membrane.

Nucleocapsids of Herpesviridae family members exit the nucleus by tran-
sient envelopment across the intact nuclear membranes and acquire their 
final envelope in the cytoplasm before being released by exocytosis. It has 
been reported that several orthoherpesviruses use autophagy for their final 
envelopment in the cytoplasm (Figure 2). HCMV completely reorganizes pre- 
existing membranous compartments to create a unique compartment called 
viral assembly compartment (VAC), where SQSTM1/p62, LC3B and other ATG 
proteins are recruited [179,180]. VZV and Epstein–Barr virus (EBV), two ortho-
herpesviruses, generate a less-organized VAC but both exploit autophagic- 
derived vesicles, together with TGN- and endosome-derived vesicles for their 
final envelopment [181-183]. Autophagosomes accumulate in the cytoplasm 
of EBV, KSHV and HCMV-infected cells, due to an autophagic flux inhibition 
[104,182,184]. In contrast, VZV needs to induce a complete autophagy pro-
cess [185]. Accordingly, the lysosomal inhibitor bafilomycin A1 treatment 
significantly decreases VZV secondary envelopment [185]. Finally, the process 
of orthoherpesvirus envelopment looks similar to phagophore expansion 
(Figure 2), and autophagosomes have been proposed as potential membrane 
donors for this viral envelope. Confirming this involvement, several ATG 
proteins are found in highly purified virions. In particular, different studies 
reported the presence of the lipidated form of LC3B and SQSTM1/p62 in EBV 
and HCMV particles and the association of LC3B and the recycling endosome 
protein RAB11 with VZV virions [179-182,186]. Recent mass spectrometry 
analysis of EBV particles identified numerous ATG proteins belonging to the 
PtdIns3K complex I and the Ubl conjugation systems, and SARs such as 
SQSTM1/p62, NBR1 and TOLLIP (toll interacting protein) [186]. Interestingly, 
ATG proteins are only present in a fraction of EBV virions, suggesting hetero-
geneity of virions with respect to their composition. The presence of ATG 
proteins in mature virions is not exclusive to orthoherpesviruses. It has been 
reported that HBV virions contain ATG12 [125] and SFSTV extracellular parti-
cles copurify with several ATG proteins, such as ATG5, BECN1 and lipidated 
LC3B, together with ER-Golgi intermediate compartment and TGN mar-
kers [178].

Although this is not strictly speaking for the envelope acquisition, DENV 
maturation depends on autophagy for the processing of its envelope glyco-
protein prM and its infectivity [187]. DENV and ZIKV, two orthoflaviviruses, 
exit host cells in two distinct ways; one as free virions and the other enclosed 
within membranes. Whereas no data have connected autophagy in viral 
particle envelopment in the cytoplasm, the role of autophagy in the viral 
egress in secretory vesicles has been clearly demonstrated [188,189]. 

22 C. MÜNZ ET AL.



Unconventional secretory autophagy but not degradative autophagy allows 
the release of several infectious DENV and ZIKV particles within autophago-
some-derived vesicles through a process that depends on the sequence of 
S-receptor kinases (Srk) [188]. A similar role of autophagy was observed for 
DENV in dendritic cells [190]. Moreover, hydrolysis of lipid droplets by 
a selective autophagy known as lipophagy plays a role in the assembly and 
secretion of DENV [191]. Autophagy is also involved in the maturation and 
release of HCV [192]. Trafficking of APOE (apolipoprotein E), a cellular apoli-
poprotein critical for viral morphogenesis, depends on autophagy and block-
ing autophagic flux improves APOE association with HCV and virion 
infectivity [193]. APOE is delivered by autophagosomes to the HCV assembly 
site where it interacts with the envelope protein complex E1/E2. HCV restricts 
the autophagic flux by increasing the expression of RUBCN (rubicon autop-
hagy regulator), an inhibitor of autophagosome fusion with lysosomes 
[194,195].

Finally, picornaviruses, like poliovirus and CVB3, are non-enveloped viruses 
but they can also be non-lytically released from their host cells [196]. 
Stimulation of autophagy enhances non-lytic poliovirus spreading. This non- 
lytic spread of picornaviruses was found to occur by packages of multiple 
viruses, at least 20, within autophagosomal membranes [197,198] (Figure 2). 
These viruses utilize phosphatidylserine in the outer leaflet of autophagoso-
mal membranes, which mostly originate from the ER and Golgi apparatus, to 
enter host cells via scavenger receptors such as TIMD4/TIM-4 (T cell immu-
noglobulin and mucin domain containing 4) and MERTK (T cell immunoglo-
bulin and mucin domain containing 4) [197]. This mechanism increases viral 
spreading. In addition, membranes around the virus packages protect their 
content from environmental harm, such as antibodies. Along these lines, 
vesicle cloaked viruses have even been shown to survive fecal to oral trans-
mission [199]. Therefore, both enveloped and non-enveloped viruses hijack 
the autophagy machinery for release in autophagosomal membranes and 
efficient spreading.

5. Conclusions and outlook

Some of the first electron microcopy pictures of double-membrane 
vesicles originated from virus infected cells [134], around the time 
when Christian de Duve had coined the term autophagosome [200]. 
The information gathered in this review suggests that nearly every virus 
has to cope with the anti-viral activity of autophagy and many mod-
ulate this pathway for their survival. Some viruses even utilize the 
machinery that generates autophagosomes for building their replication 
compartments and/or acquiring envelopes. Both of these strategies, 
inhibition of autophagosome formation and blocking autophagosome 
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fusion with lysosomes, inhibit virophagy. Thus, autophagy stimulation 
might overcome these viral interference mechanisms and retore autop-
hagic flux for virion or virus component degradation. A detailed under-
standing of how every virus interacts with autophagy might also enable 
us to more specifically tilt the balance of pro-viral and anti-viral func-
tions of autophagy during viral infections for their treatment.
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