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Abstract: 33 

Study Region 34 

This study focuses on the thermal regime of pristine Atlantic salmon rivers located across northeastern 35 

Canada and the USA. These rivers are critical habitats for Atlantic salmon and represent a diverse 36 

range of climatic and watershed conditions in the region. 37 

Study Focus 38 

To simulate water temperature in ungauged rivers, we explore the regionalization of thermal 39 

parameters within the CEQUEAU model—a deterministic, semi-distributed hydrological and water 40 

temperature model. Additionally, a global sensitivity analysis is conducted to identify the most 41 

sensitive thermal parameters within the study region. We employed the support vector regression 42 

algorithm (SVR), to map the dependence of these parameters with climatic and watershed 43 

characteristics. 44 

New Hydrological Insights for the Region 45 

Parameters controlling radiative and sensible heat fluxes are the most critical for CEQUEAU water 46 

temperature modeling within the study region. Key explanatory variables include low cloud coverage, 47 

high wind speed quantiles, upstream land cover percentages, distance to the coast, watershed 48 

orientation, and topographical features describing surface curvature and elevation. Using a leave-one-49 

out cross validation, SVR outperformed the commonly used multiple linear regression (MLR) method, 50 

with a mean regional RMSE of 1.89 °C.  The machine learning-based regionalization approach offers 51 

a robust alternative for deriving water temperature model parameters from watershed attributes, 52 

especially in ungauged regions where flow measurements are available.  53 
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1-Introduction 54 

Adequate thermal conditions in rivers are essential for the well-being of aquatic ecosystems and the 55 

survival of various aquatic species (Dugdale al., 2017b; FitzGerald & Martin, 2022; Johnson et al., 56 

2024). In many regions of the world, human activities and climate change are rapidly increasing river 57 

temperatures, which is particularly alarming for cold fish-bearing watersheds (Boyer et al., 2021; 58 

Ficklin et al., 2023; Isaak & Luce, 2023; St-Hilaire et al., 2023; Wanders et al., 2019). Among the 59 

many species affected, the plight of the iconic Atlantic salmon (Salmo salar) is particularly alarming. 60 

These species are experiencing heightened stress and mortality rates, posing a significant threat to their 61 

existence and the overall biodiversity of our rivers (Gillis et al., 2023; Hani et al., 2023; Railsback & 62 

Harvey, 2023; St-Hilaire et al., 2021). 63 

To effectively model these habitats in the context of climate change, deterministic models are gaining 64 

increasing attention (Khorsandi et al., 2023; Oyinlola et al., 2023; Wade et al., 2024). This is 65 

particularly crucial in Canada, where most river systems lack sufficient water temperature (Tw) data  66 

(Boyer et al., 2016; Shrestha et al., 2024; St-Hilaire et al., 2018). When combined with climatic 67 

reanalysis data, deterministic models can expand their geographic applicability and improve discharge 68 

and Tw estimates (Bosmans et al., 2022; Gatien et al., 2022; Rincón et al., 2023). In many instances, 69 

these models encompass a wide range of parameters to assist in accurately representing hydrological 70 

and thermal dynamics (Hay et al., 2023; St-Hilaire et al., 2015). Water temperature deterministic 71 

modeling aims at solving a heat budget and therefore relies on various inputs, including hydrological 72 

and Tw observations, land cover, and climatic forcing. However, parameterizing a deterministic model 73 

on a large scale or in remote areas poses significant challenges due to the scarcity of Tw measurements. 74 

Nonetheless, research indicates that basin characteristics can elucidate broad-scale patterns in Tw, 75 

suggesting that these relationships can be effectively transferred between catchments (Jackson et al., 76 

2017; St-Hilaire et al., 2019; Wade et al., 2023). Recent studies have shown that river thermal regimes 77 

result from a complex interplay of physio-climatic attributes, with each stream temperature reflecting 78 
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a unique combination of these characteristics (Abidi et al., 2022; Charron et al., 2021; Loerke et al., 79 

2023; Souaissi et al.,, 2023a). This concept is closely associated with parameter regionalization, which 80 

involves transferring deterministic model parameters from gauged to ungauged locations using 81 

regression models (Clark et al., 2017; Gallice et al., 2015). However, deterministic modeling can 82 

encounter significant challenges in relating landscape properties to hydrological behavior due to the 83 

problem of equifinality (Feigl et al., 2020; Hundecha & Bárdossy, 2004; Samaniego et al., 2010). 84 

The process of regionalization is often considered as a twofold process: first, the identification of 85 

homogeneous regions based on physio-climatic and hydrological conditions, and second, the use of 86 

different statistical models, including machine learning (ML) regression techniques to transfer 87 

information from gauged to ungauged locations (Abidi et al., 2022; Ouali et al., 2016; Ouarda et al., 88 

2001). This second step often requires a significant number of explanatory variables to achieve 89 

accurate predictions (Ouarda et al., 2018). However, a common pitfall in model design is the inclusion 90 

of redundant variables, known as feature selection bias, as this can negatively impact the model's 91 

effectiveness (Varadharajan et al., 2022). While many studies use expert knowledge-based feature 92 

selection and simple correlation tests to address collinearity, they often overlook the interactions 93 

between features. 94 

In deterministic modeling, multiple linear regression (MLR) is commonly utilized to establish the 95 

relationship between basin characteristics and model parameters (Arsenault et al., 2019; Feigl et al., 96 

2021; Pagliero et al., 2019; Song et al., 2022). However, the assumption of a linear relationship may 97 

not accurately capture the complex interactions between parameters and catchment attributes 98 

(Hundecha et al., 2008). Additionally, multicollinearity among predictors in MLR models can 99 

compromise their predictive effectiveness and interpretability, potentially leading to overfitting 100 

(Maxwell & Shobe, 2022). Hydrological studies often reveal intricate, nonlinear, and nonstationary 101 

relationships between physical catchment attributes and model parameters, indicating that simpler 102 

models may not adequately reflect underlying hydrological dynamics (Guo et al., 2021; Kuczera & 103 
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Mroczkowski, 1998; Yang et al., 2018). To address these challenges, feature selection algorithms (FS) 104 

are applied as a preprocessing step to refine the feature subset by mitigating multicollinearity issues 105 

(Gharib & Davies, 2021; Guyon & Elisseeff, 2003; Wade et al., 2023). Two potential downsides of 106 

incorporating irrelevant or redundant features are overfitting the model's parameters to the training 107 

data and compromising the model’s interpretability (Quilty & Adamowski, 2020).  108 

Comparative studies on FS methods have been widely conducted for environmental variables. For 109 

example, Fouad & Loáiciga. (2020) compared seven FS methods for river flow quantile estimation in 110 

ungauged basins found that FS methods outperformed dimension reduction techniques, such as 111 

principal component analysis, in reducing multicollinearity in feature subsets. However, few studies 112 

have evaluated the performance of FS methods for river thermal regime estimations in ungauged 113 

watersheds, as the number of available predictors increases, along with the risk of redundancy and 114 

overfitting. Among the exceptions, Souaissi et al. (2023a) assessed the ability of Recursive Feature 115 

Elimination (RFE) and the Least Absolute Shrinkage and Selection Operator (LASSO) in a regional 116 

modeling context of Tw river quantiles in Switzerland. 117 

ML models, such as artificial neural networks and Gradient Boosting Machines (GBM), have shown 118 

advantages over conventional MLR in regionalizing deterministic hydrological model parameters 119 

(Heuvelmans et al., 2006; Song et al., 2022)., Most studies focus solely on transferring thermal 120 

signatures from gauged to ungauged watersheds (Abidi et al., 2022; Charron et al., 2020; Souaissi, 121 

Ouarda, & St-Hilaire, 2023a, 2023b).  Ouarda et al. (2022) were the first to develop a statistical 122 

regional framework for Tw modeling. They used Generalized Additive Model (GAM) to transfer 123 

temperature duration curves (TDCs) from gauged to ungauged locations in eastern Canada. The 124 

estimated TDCs were combined with spatial interpolation to obtain daily Tw estimates at ungauged 125 

sites, effectively combining daily data from multiple sources as a data augmentation technique. 126 

Building on this research, Siegel et al, (2023) used a GAM model and physio-climatic covariates to 127 

estimate daily Tw for over 200,000 stream reaches across the Pacific Northwest USA, achieving 128 
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RMSEs below 2°C. In another study, Weierbach et al. (2022) developed a regional ML framework to 129 

predict monthly Tw in pristine and human-impacted catchments across the Mid-Atlantic and Pacific 130 

Northwest USA regions. The study employed physio-climatic catchment attributes and ML models 131 

such as extreme Gradient Boost Machines (XGboost) and Support vector regression (SVR). These 132 

models outperformed traditional MLR and accurately predicted Tw in both temporal and spatial 133 

scenarios. 134 

However, a significant knowledge gap persists in regional Tw modeling using deterministic models. 135 

The limited research using deterministic models includes innovative contributions like those from 136 

Gallice et al. (2015), who developed a hybrid regional model to predict temperatures at ungauged sites 137 

in Switzerland. Building on this work, Rahmani et al. (2023) recently introduced a cutting-edge 138 

framework that integrates neural networks with process-based models via differentiable programming, 139 

significantly enhancing the accuracy of Tw parameter estimation (Bindas et al., 2024; C. Shen et al., 140 

2023; Tsai et al., 2021). This methodological evolution highlights a growing recognition of ML's 141 

potential to provide nuanced insights into complex hydrological processes. Incorporating spatially 142 

distributed geophysical catchment properties into model parameter definition would improve model 143 

performance, reduce uncertainty, and enable predictions in ungauged basins (Feigl et al., 2020).  144 

As part of the Atlantic Salmon Research Joint Venture (www.asrjv.com), this study assesses the 145 

potential for transferring deterministic Tw model parameters from gauged to ungauged locations to 146 

estimate daily mean Tw in Atlantic salmon bearing watersheds. To achieve this, we used CEQUEAU 147 

a deterministic hydrological and thermal model and selected 35 pristine Atlantic salmon rivers in 148 

northeastern Canada and the U.S (Morin & Paquet, 1995; St-Hilaire et al., 2015). To guide our 149 

regionalization efforts, we conducted a sensitivity analysis to identify critical parameters within the 150 

study region. Subsequently, ML regression models are employed to establish relationships between 151 

key physio-climatic characteristics and CEQUEAU most critical thermal parameters.152 
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2- Methods 153 

Figure 1 provides an overview of the methodology employed in this study. The process begins with 154 

calibrating the CEQUEAU hydrological module to simulate daily streamflow. A sensitivity analysis is 155 

then conducted to identify the most critical CEQUEAU Tw model parameters (MP) for the study 156 

region. These parameters are regionalized using the Support Vector Regression (SVR) algorithm and 157 

physio-climatic attributes describing watershed characteristics. The regionalized parameters are 158 

subsequently injected into the CEQUEAU model to estimate daily mean water temperatures at 159 

ungauged locations. Leave-One-Out cross validation is used to evaluate the generalizability and 160 

performance of this approach.  161 

 162 

Figure 1: Flowchart of CEQUEAU thermal parameter calibration and regionalization. SFS, RFE, 163 
LASSO, and ENET– Feature selection algorithms, MLR –multiple linear regression; SVR –support 164 

vector regression; RMSE – Root mean square error; 𝑅𝑅2– Coefficient of determination; 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 165 
improvement skill score. 166 

2.1- Study region and datasets  167 

This study focuses on the thermal regimes of rivers that are home to significant Atlantic salmon 168 

populations. Catchments were selected based on two criteria: minimal human impact (near-pristine 169 
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rivers) and availability of at least two summers of observed Tw data (May 1st to September 1st). 170 

Discharge and Tw stations were required to be on the mainstem as far downstream as possible, with 171 

only one station per stream channel within the same drainage network. Where multiple stations existed 172 

on the same river segment, the station with the longest record was retained to ensure data independence 173 

and prevent simplistic transfer of Tw data from upstream stations during regionalization. This process 174 

resulted in a set of 35 rivers, with Tw station locations and channel widths depicted in Figure 2a, and 175 

elevation and drainage area in Table 1. The study's geographical scope extends from the subarctic 176 

Canadian Aux Mélèzes (QC) and Reid (NL) rivers to the southern edge distribution of Atlantic salmon 177 

in North America, the Sheepscot River (ME) (Kocik et al., 2022), covering the north-south axis and 178 

from the Conne River (NL) to the Gouffre River (QC) for the east-west axis. 179 

The catchments in this study represent a diverse range of environmental conditions (Figure S2). The 180 

region's landscape and physiography vary significantly, featuring subarctic rivers in northern Quebec 181 

and Labrador, islands such as Anticosti, Prince Edward Island, and Newfoundland, and peninsulas like 182 

Gaspésie, New Brunswick, and Nova Scotia. Catchment size varies between 14 𝑘𝑘𝑘𝑘2 and 40 000  𝑘𝑘𝑘𝑘2. 183 

The study region is characterized by diverse land uses, including crop and urban dominance in Prince 184 

Edward Island's watersheds, forested areas in Quebec and New Brunswick, abundant shrubland cover 185 

in Newfoundland's watersheds, and significant wetland presence in Maine's rivers.  186 
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Watershed name Station ID Drainage Area 
(𝑲𝑲𝑲𝑲𝟐𝟐) 

Tw station 
elevation (m) 

Miramichi SW 1 7255.29 34.50 
Miramichi NW 2 3555.35 43.01 

Restigouche 3 5330.54 221.57 
Matapedia 4 3803.95 152.04 

Upsaqluitch 5 2306.79 170.15 
Moisie 6 18963.00 48.54 

Natashquan 7 15814.57 26.71 
Ste-Anne 8 824.08 24.85 

Ste-Marguerite 9 1111.26 107.67 
Ouelle 10 823.69 41.49 

Nouvelle 11 1164.53 35.85 
Bonaventure 12 1918.40 103.73 

Petite-Cascapedia 13 1337.09 67.66 
Jupiter 14 543.82 177.46 
Gouffre 15 753.08 178.71 
Godbout 16 1941.93 135.50 

Dartmouth 17 907.59 44.93 
Cascapedia 18 2133.21 130.32 

Huile 19 177.18 13.20 
Narragagus 20 586.52 29.41 
Sheepscot 21 368.12 52.25 
Ducktrap 22 43.07 53.38 
Gilbert 23 420.48 92.59 
Conne 24 607.71 81.47 

St-Lewis 25 2153.09 86.74 
Highland 26 162.25 18.65 

Reid 27 147.06 18.76 
LaHave 28 467.72 72.17 

Sackville 29 130.96 18.03 
Margaree 30 372.57 107.80 

West 31 99.25 50.50 
Carruthers 32 49.74 12.76 

Wilmot 33 46.36 15.67 
Bear 34 13.98 19.53 

Aux Mélèzes 35 40027.57 138.03 
Table 1: Watersheds name and weather stations elevation and drainage area 187 
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 188 

Figure 2: a) Stations locations and channel width at Tw station. b) The largest basin: Aux Mélèzes 189 
River, QC (ID:35), with a discretization of 13km x 13km. c) The smallest basin: Bear River (ID:34) 190 

with a discretization of 300m x 300m 191 

A preliminary analysis of the chosen catchments sought to categorize the rivers based on their thermal 192 

behavior, to later determine if the models' performance was impacted by the river's thermal regime. 193 

Using the slope (thermal sensitivity) and intercept values of the Tair-Tw relationship for thermal 194 

classification, two distinct groups of catchments were identified. The first group consists of watersheds 195 

where a significant portion of discharge originates from deep aquifer infiltration (rivers id 31, 32, 33, 196 

and 34 in Table 1), labeled as “groundwater-fed streams” in Figure 3. This group is characterized by 197 

low slope and high intercept values, consistent with findings from numerous studies (Boyer et al., 198 

2021; Caissie, 2006; Gallice et al., 2015; Webb et al., 2008). The Baseflow Index (BFI) for these 199 

catchments was high, indicating a higher ratio of stream baseflow to total discharge volume (Figure 200 
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S2). The second group, which consists of most watersheds, relies on precipitation as the primary source 201 

of discharge. These watersheds are labeled as “thermally climate-driven” and are characterized by 202 

relatively low intercept and high slope values, indicating a strong correlation between stream and air 203 

temperatures. BFI is computed from observed discharge data using the Lynne-Hollick (LH) baseflow 204 

filter with the hydrostats R package (Bond & Bond, 2022; Ladson et al., 2013; Lyne & Hollick, 1979). 205 

 206 

Figure 3: Slopes and intercepts of the regression lines fitted to the respective catchments' stream–air 207 
temperature points. All points with negative air temperature values have been discarded prior to 208 

fitting. The bars indicate the standard error estimates. 209 

2.2.1- Calibration datasets 210 

Discharge data for Canadian rivers were collected from the Ministry of the Environment and the Fight 211 

Against Climate Change website (https://www.cehq.gouv.qc.ca) and the HYDAT database via the 212 

ECCC data explorer (https://collaboration.cmc.ec.gc.ca/cmc/hydrometrics/www/). Tw time series for 213 

Canadian rivers were obtained from the RivTemp database (https://www.rivtemp.ca) (Boyer et al., 214 

https://collaboration.cmc.ec.gc.ca/cmc/hydrometrics/www/
https://www.rivtemp.ca/
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2016). The RivTemp database is the result of a partnership between universities, provincial and federal 215 

governments, watershed organizations and organizations dedicated to the conservation of Atlantic 216 

salmon. For the rivers considered in the U.S, discharge and Tw data were obtained from the USGS 217 

website (https://waterdata.usgs.gov/monitoring-location). Figure 4 illustrates the Tw data availability 218 

from January 1, 1979, to December 31, 2020. 219 

 220 

Figure 4: Daily Tw availability for the selected sites (35). For each site on the y-axis, a colored mark 221 
indicates instances where the daily mean Tw was recorded for a given site. 222 

Due to limited meteorological data availability, we utilized daily ERA5 reanalysis data from the 223 

European Center for Medium-Range Weather Forecasts (ECMWF) website 224 

(https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5) with a native grid resolution of 225 

0.25°×0.25° (Hersbach et al., 2020). The meteorological inputs and their corresponding units required 226 

by the CEQUEAU model are enumerated in Table 2. To calculate the saturation vapor pressure of 227 

water, we employed the daily dew temperature from ERA5 and the Tetens equation (Tetens, 1930). 228 

https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
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Variable Description Units 
Ptot Total precipitation Mm 
tMax & tMin 2m surface air temperature ◦C 
SSR Incoming surface solar radiation MJ/m2 
VP Vapour pressure mmHg 
VV Wind speed km/h 
CC Cloud cover % 

Table 2: ERA5 daily data used in this study. 229 

2.2.2- Regional attributes 230 

The physio-climatic features characterizing the watershed upstream of the Tw gauging station were 231 

extracted using ArcGIS Pro software. We have identified 23 relevant predictors for this study, defined 232 

in Table 3. These predictors include three related to the geographical location of the Tw station (LAT, 233 

LONG, and D2O), four related to climate forcing (90thPtot, 90thSSR, 25thCC, and 90thVV), four related 234 

to land uses (FOREST, LAKE, WET, and CROP), one related to topsoil texture (LOSA), and eight 235 

related to geomorphology and topography (MIND, DD, SLP, ORUP, ORWSH, ASPC, ELVT, DVME, 236 

DFME, GSCV, and DOGS). The refined set of covariates and key references used in this study can be 237 

found in Table 3. 238 

Abbreviation Description Units Key reference 
LAT, LON Tw station geographical coordinates ◦ (R. D. Moore, 2006; Wuebbles et 

al., 2017) 
MIND depth of the river reach m (Ebersole et al., 2003; Jackson et 

al., 2017; Story et al., 2003) 
ELVT Tw station elevation m (Mohseni et al., 1998; Souaissi et 

al., 2021)  
DD Drainage density  𝑘𝑘𝑘𝑘−1 (Godsey & Kirchner, 2014; T. B. 

Ouarda et al., 2022) 
SLP Tw station slope - (Caissie, 2006; Ouarda et al., 

2022; Souaissi, Ouarda, St-
Hilaire, et al., 2023) 

ORUP Upstream station channel 
orientation 

◦ (Garner et al., 2017) 

ORWSH Watershed orientation ◦ (Arora et al., 2018) 
D2O Tw station distance to the ocean  km (Collins, 2023; Jackson et al., 

2018)  
FOREST Percentage of upstream forests  % (Garner et al., 2014; St-Hilaire et 

al., 2000) 
LAKE Percentage of upstream lakes % (Abidi et al., 2022; Arora et al., 

2018; J. A. Leach et al., 2021) 
WET Percentage of upstream wetlands % (O’Sullivan et al., 2019)  

CROP Percentage of upstream crops % (Charron et al., 2021; Essaid & 
Caldwell, 2017)  
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LOSA upstream topsoil texture: loamy 
sand (USDA) 

% (Kandala et al., 2024; Kurylyk et 
al., 2014; Sepaskhah & Boersma, 
1979)  

90thPTOT Summer total precipitation (90thQ) mm (Coffey et al., 2019; Raymondi et 
al., 2013) 

90thSSR Summer insolation (90thQ) Mj (Bray et al., 2017; Jeppesen & 
Iversen, 1987; Laizé et al., 2017) 

25thCC Summer Cloud coverage (25thQ) - (Girard et al., 2003; J. Leach & 
Moore, 2010; Sinokrot & Stefan, 
1993)  

90thVV Wind speed (90thQ) m/s (Garner et al., 2014; Laizé et al., 
2017; J. Leach & Moore, 2010; 
Sinokrot & Gulliver, 2000)  

ASPC Slope orientation ◦  (McCutchan & Fox, 1986; 
O’Sullivan et al., 2019) 

DFME Difference between the grid cell 
elevation and the mean of its 

neighbouring cells. 

- (Houndekindo & Ouarda, 2023, 
2024; I. D. Moore et al., 1991; 
Wilson, 2018)  

DVME Difference between the grid cell 
elevation and the mean of its 

neighbouring cells normalized by 
the standard deviation. 

- (Houndekindo & Ouarda, 2023, 
2024; I. D. Moore et al., 1991; 
Wilson, 2018) 

GSCV Product between the maximal and 
the minimal curvature. Measure of 

surface curvature 

𝑘𝑘−2  (Florinsky, 2017; Houndekindo & 
Ouarda, 2023, 2024; I. D. Moore 
et al., 1991; Wilson, 2018) 

DOGS Difference between two copies of 
the DEM smoothed with two 

different gaussian kernel. Measure 
land surface curvature. 

- (Florinsky, 2017; Houndekindo & 
Ouarda, 2023, 2024) 

Table 3: Physiographical and meteorological predictors 239 

The river temperature at the Tw gauging station is significantly influenced by the physical 240 

characteristics of the drainage basin (Jackson et al., 2017; Ouarda et al., 2022; Souaissi et al., 2023a). 241 

These factors include watershed orientation, drainage density, land use, and soil types, with the latter 242 

two expressed as a percentage of the total drainage area. To prevent redundancy and overlapping 243 

effects, only selected land use and soil type variables are considered, as they do not sum up to 100%, 244 

and there is collinearity among these predictors. 245 

Climate-related factors have a significant impact on vegetation, soils, and landforms, influencing 246 

hydrological and thermal processes (Caissie, 2006; Leach & Moore, 2010). Recent regionalization 247 

studies underscore the importance of considering these predictors (Charron et al., 2020; Ouarda et al., 248 

2022; Souaissi et al., 2023a). For this study, we used high and low summer quantiles [25𝑡𝑡ℎ, 90𝑡𝑡ℎ] 249 
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calculated between May 1st and October 1st (1979-2020) extracted from ERA5 daily reanalysis data 250 

(Hersbach et al., 2020).  251 

Additionally, we included the percentage of upstream dominant topsoil texture, as it affects soil 252 

properties such as hydraulic conductivity and soil matric potential, which in turn influence runoff, 253 

groundwater recharge, stream discharge, and temperature (Fernandez‐Illescas et al., 2001; Kurylyk et 254 

al., 2014). The Harmonized World Soils Database v2 provided the topsoil texture features at a 1km 255 

spatial resolution (Nachtergaele et al., 2023). Moreover, land cover variables, such as lakes, croplands, 256 

wetlands, and vegetation, significantly impact river temperatures by affecting evaporation and surface 257 

runoff temperature (Abidi et al., 2022; Garner et al., 2014; O’Sullivan et al., 2019; St-Hilaire et al., 258 

2000). We obtained information about land cover types from the North American Land Change 259 

Monitoring System (2020) available at (http://www.cec.org/north-american-environmental-atlas/land-260 

cover-30m-2020/) with a 30m spatial resolution.  261 

Furthermore, topographical features like aspect, channel slope, gaussian curvature, and relative 262 

topographical position are crucial for modeling terrain landscape configuration and estimating various 263 

energy heat fluxes (Jackson et al., 2018; Maxwell & Shobe, 2022; O’Sullivan et al., 2019; Teutschbein 264 

et al., 2018; Tovar-Pescador et al., 2006). These variables were extracted from a 30m spatial resolution 265 

DEM using the NASA shuttle radar topography mission (Nasa, 2013) and computed with the 266 

WhiteboxTools developed at the University of Guelph, Canada (Lindsay, 2014). 267 

2.2- CEQUEAU model 268 

 The CEQUEAU model is a conceptual and semi-distributed hydrological model designed to simulate 269 

stream discharge and Tw. Watersheds are divided into equal-sized whole squares (CE, from the French 270 

acronym), which are further subdivided into smaller partial squares (CP) based on drainage 271 

characteristics and sub-basin divisions (Morin & Paquet, 2007; St-Hilaire et al., 2015). The chosen 272 

grid size aims to strike a balance between resolution and model run-time (Dugdale et al., 2017a) 273 

http://www.cec.org/north-american-land-change-monitoring-system/
http://www.cec.org/north-american-land-change-monitoring-system/
http://www.cec.org/north-american-environmental-atlas/land-cover-30m-2020/
http://www.cec.org/north-american-environmental-atlas/land-cover-30m-2020/
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(Figure 2a and 2b). The model operates through two core functions: a production function (Equation 274 

S1), which calculates a water balance for each CE at every time (t) and distributes precipitation among 275 

the conceptual storage units (e.g., rivers, lakes, marshes, upper and lower soil layers) based on land 276 

use data. Then a transfer function, routes available water downstream between CP units to simulate 277 

discharge over time (Figure S1). At the same time step, the hydrological simulation results are fed to 278 

the thermal module in addition to other meteorological data (solar radiation, wind speed, air vapor 279 

pressure and cloud cover) and for each CP, the change in Tw is given by: 280 

𝛥𝛥𝑇𝑇𝑊𝑊𝑖𝑖 = 𝛥𝛥𝑄𝑄𝑡𝑡
𝑉𝑉𝑡𝑡∗𝜃𝜃

       (1) 281 

𝛥𝛥𝑄𝑄𝑡𝑡 is the total change in enthalpy (MJ), V is the volume of water (𝑘𝑘3) (output of the hydrological 282 

calibration), 𝜃𝜃 is the heat capacity of water (4.187 𝑀𝑀𝑀𝑀 𝑘𝑘−3°𝐶𝐶−1). 𝛥𝛥𝑄𝑄𝑡𝑡 is computed by summing the 283 

various components of the heat budget including the advective and air-water interface heat fluxes on 284 

each CP as follows: 285 

𝑄𝑄𝑡𝑡 =  𝑄𝑄𝑠𝑠𝑠𝑠𝑡𝑡 + 𝑄𝑄𝑙𝑙𝑠𝑠𝑡𝑡 + 𝑄𝑄𝑠𝑠𝑡𝑡 + 𝑄𝑄𝑠𝑠𝑡𝑡 + 𝑄𝑄𝑎𝑎𝑡𝑡   (2) 286 

Where 𝑄𝑄𝑠𝑠𝑠𝑠𝑡𝑡  represent shortwave radiation heat flux, 𝑄𝑄𝑙𝑙𝑠𝑠𝑡𝑡 is the longwave radiative heat flux, 𝑄𝑄𝑠𝑠𝑡𝑡 is 287 

the latent heat transfer, 𝑄𝑄𝑠𝑠𝑡𝑡 is the sensible heat transfer and 𝑄𝑄𝑎𝑎𝑡𝑡 represent the local advective heat 288 

transfer from the upstream grid cells, groundwater, and subsurface flow (Equations S2, S3, S4 and S5 289 

in supplementary material). The model's capabilities have been improved with the introduction of 290 

'pycequeau,' a new Python-based physiographical toolbox (https://github.com/erinconv/pycequeau), 291 

employed in this study. This toolbox enhances the model's functionality, making sub-basin divisions 292 

and routing more efficient and accurate. 293 

The CEQUEAU model has consistently proven effective in simulating the hydrological and thermal 294 

regimes of various Canadian watersheds and conditions (Charron et al., 2021; Khorsandi et al., 2023; 295 

Kwak et al., 2017; Rincón et al., 2023; St-Hilaire et al., 2023).. Notably, the model has consistently 296 

https://github.com/erinconv/pycequeau
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achieved RMSE values below 2°C in its Canadian applications, showcasing its precision and reliability 297 

in Tw modeling.  298 

This study represents a significant achievement as it is the first instance of applying the CEQUEAU 299 

model at a regional scale, covering 35 watersheds. Previous applications were predominantly confined 300 

to individual watersheds. We utilized a 30-meter spatial resolution DEM obtained from the NASA 301 

shuttle radar topography mission (Nasa, 2013) and a 30m spatial resolution raster from the North 302 

American Land Change Monitoring System accessible at (http://www.cec.org/north-american-303 

environmental-atlas/land-cover-30m-2020/) to discretize catchments in CEQUEAU.  304 

2.2.1- Sensitivity Analysis 305 

. 306 

A sensitivity analysis provides a thorough assessment by examining model responses across the entire 307 

feasible parameter range, involving extensive input factor samples and output variation analysis 308 

(Saltelli et al., 2008). It also helps mitigate equifinality risks, where multiple parameter sets produce 309 

identical results, underscoring its importance before calibration for more precise outcomes (Feigl et 310 

al., 2020; Klotz et al., 2017). 311 

In this study, we used the Variogram Analysis Response Surfaces (VARS) framework to conduct a 312 

comprehensive sensitivity analysis for CEQUEAU's thermal model parameters (Razavi et al., 2019; 313 

Razavi & Gupta, 2016a, 2016b). This would not only provide a detailed evaluation of parameter 314 

influence but also plays a pivotal role in the regionalization process by identifying the most critical 315 

thermal parameters. By focusing calibration efforts on these key parameters and fixing the less 316 

sensitive ones, we enhance regionalization efficiency and streamline the modeling process. 317 

VARS provides a robust and efficient approach, integrating variance and derivative-based methods and 318 

offering a wide range of sensitivity information. It incorporates directional variograms across various 319 

perturbation scales and generates sensitivity indices known as IVARS (Integrated Variograms Across 320 

http://www.cec.org/north-american-land-change-monitoring-system/
http://www.cec.org/north-american-land-change-monitoring-system/
http://www.cec.org/north-american-environmental-atlas/land-cover-30m-2020/
http://www.cec.org/north-american-environmental-atlas/land-cover-30m-2020/
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a Range of Scales) (Razavi & Gupta, 2016a). Variograms display the variability of a function at 321 

different length scales. Let’s suppose the function f that relates CEQUEAU thermal parameters (MP) 322 

to Tw: 323 

𝑇𝑇𝑠𝑠 = 𝑓𝑓(𝑴𝑴𝑴𝑴)                   (3) 324 

where  𝑴𝑴𝑴𝑴 = {𝑀𝑀𝑀𝑀1, … ,𝑀𝑀𝑀𝑀10} 325 

Sensitivity analysis of 𝑇𝑇𝑠𝑠 with respect to 𝑀𝑀𝑀𝑀𝑖𝑖 is a scale-dependent property that can be characterized 326 

by the multidimensional variogram (𝛾𝛾) and covariogram (𝐶𝐶) functions: 327 

𝛾𝛾 (𝒉𝒉) =  1
2
𝑉𝑉�𝑇𝑇𝑠𝑠(𝑴𝑴𝑴𝑴 + 𝒉𝒉) − 𝑇𝑇𝑠𝑠(𝑴𝑴𝑴𝑴)�  (4) 328 

𝐶𝐶(𝒉𝒉) = 𝐶𝐶(0) −  𝛾𝛾 (𝒉𝒉) = 𝑉𝑉�𝑇𝑇𝑠𝑠(𝑴𝑴𝑴𝑴)� − 𝛾𝛾 (𝒉𝒉) (5) 329 

Where V represents variance 𝐡𝐡 = 𝐌𝐌𝐌𝐌𝐀𝐀- 𝐌𝐌𝐌𝐌𝐁𝐁 refers to the increment and represents the distance 330 

vector, 𝐡𝐡 = {h1, … , h10} between any two points A and B in the parameter space. Greater values of 331 

𝛾𝛾 (ℎ𝑖𝑖) indicate a higher sensitivity at that scale h. Razavi & Gupta. (2016a) introduced IVARS as an 332 

index to summarize global sensitivities, which is calculated as the average 𝛾𝛾 (ℎ𝑖𝑖) up to a certain scale 333 

limit (10%, 30%, 50%). For example, 𝐼𝐼𝑉𝑉𝐼𝐼𝑅𝑅𝑆𝑆50 is the average of 𝛾𝛾 (ℎ𝑖𝑖) up to 50% of the range of 𝑀𝑀𝑀𝑀𝑖𝑖 334 

and it is defined as follows: 335 

𝛤𝛤(𝐻𝐻𝑖𝑖) = ∫ 𝛾𝛾(ℎ𝑖𝑖)
𝐻𝐻𝑖𝑖
0 𝑑𝑑ℎ𝑖𝑖     (6) 336 

In this study, we use 𝐻𝐻𝑖𝑖=50% (𝐼𝐼𝑉𝑉𝐼𝐼𝑅𝑅𝑆𝑆50) of the parameter scale range. This approach led to a total of 337 

9100 function evaluations for each watershed. The sensitivity analysis results are presented using 338 

normalized 𝐼𝐼𝑉𝑉𝐼𝐼𝑅𝑅𝑆𝑆50 values that sum up to 100% (ratio of sensitivity, see supplementary material for 339 

details), enabling straightforward interpretation of sensitivity indices and facilitating a consistent 340 

comparison across different metrics and watersheds.  341 
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VARS is conducted for the first time to assess the sensitivity of semi-distributed Tw model parameters. 342 

We classified parameters with a normalized IVARS sensitivity ratio over 10% as highly sensitive 343 

(𝑛𝑛𝐼𝐼𝑉𝑉𝐼𝐼𝑅𝑅𝑆𝑆50 ≥ 10%), while those below 10% were deemed low sensitive or insensitive (Abdelhamed et 344 

al., 2023). VARS-TOOL on MATLAB environment is employed for this purpose, see Razavi et al. 345 

(2019) for more details. 346 

 347 

2.2.2- Calibration procedure 348 

The CEQUEAU calibration procedure involves a sequential approach, calibrating the hydrological 349 

model followed by calibrating the thermal component. The hydrological component of the CEQUEAU 350 

model is governed by 31 parameters (Table S1), while the Tw component is controlled by 10 351 

parameters, with specific details on Tw parameters provided in Table 4. 352 

Description Low bound Upper bound Units Name 

Fitting coefficient controlling the minimum 

depth of the river reach 

0.01 2 - COPROM 

Fitting coefficient controlling the river width 0.01 2 - COLARG 

Fitting coefficient for incoming solar radiation 0.1 2 - CRAYSO 

Fitting coefficient for longwave radiation flux 0.1 2 - CRAYIN 

Fitting coefficient for latent heat flux 0.1 2 - CEVAPO 

Fitting coefficient for sensible heat flux 0.1 2 - CCONV 

Threshold for snow stock controlling Tw 0 250 mm CRIGEL 

Groundwater temperature 1 10 ◦C TNAP 

Minimum precipitation to define days with 

low solar radiation 

5 15 mm BASSOL 

Correction factor for BASSOL 0 1 - CORSOL 

Table 4: CEQUEAU water temperature model parameters 353 
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To ensure the capture of full variability in discharge and water temperature signals, the entire dataset 354 

was used for both calibration and validation. This approach is essential in our regionalization context 355 

where retaining the variability in the data is critical for parameter transferability, especially given the 356 

relatively short duration of many water temperature datasets, with some stations recording only two 357 

summers of data (Rakovec et al., 2016; H. Shen et al., 2022). 358 

Once the local hydrological discharge calibration is completed, the thermal component is calibrated in 359 

two phases. First, an automatic calibration is performed for all thermal parameters at the catchment 360 

scale, resulting in an initial parameter set referred to as 𝑀𝑀𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆. In the second phase, calibration focuses 361 

solely on the most sensitive parameters (low-sensitivity parameters are fixed at their 𝑀𝑀𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆 values), 362 

producing the benchmark parameter set, termed 𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆. This approach allows for evaluating whether 363 

the identified low-sensitivity parameters truly have minimal influence within the study region and 364 

quantifying the impact of fixing these parameters between the two calibration steps (Abdelhamed et 365 

al., 2023; Feigl et al., 2020).  366 

2.2.3- Optimization algorithm and objective functions 367 

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is used as a stochastic global 368 

optimization algorithm for both hydrological and thermal components (Auger & Hansen, 2012; 369 

Hansen & Ostermeier, 2001). CMA-ES has demonstrated state-of-the-art performance in deterministic 370 

discharge and water temperature modeling, proving particularly effective for CEQUEAU applications 371 

in recent years (Arsenault et al., 2014; Khorsandi et al., 2022, 2023; Oyinlola et al., 2023; Rincón et 372 

al., 2023).  373 

For discharge calibration, the Kling-Gupta Efficiency (KGE) coefficient was maximized as the 374 

objective function (Gupta et al., 2009). However, the pronounced seasonality in Tw time series can 375 

inflate KGE values, as most temporal variance is driven by consistent seasonal patterns (Ouellet‐376 

Proulx et al., 2019). To address this, we minimized the RMSE between observed Tw and simulated 377 
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values generated using the 𝑀𝑀𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆 and 𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆 parameter sets (Figure 6). A termination criterion was 378 

established at 4000 evaluations, as this was found to be sufficient for achieving convergence for both 379 

discharge and Tw. For each station, the CMA-ES calibration was independently executed ten times. 380 

The final optimal parameters for each station were determined by averaging the results from these ten 381 

iterations (Khorsandi, 2024). 382 

2.3- Regional modeling 383 

In this study, all stations were considered without defining homogeneous regions or neighborhoods. 384 

Additionally, we tested an alternative approach, which involved using the two predefined thermal 385 

regions in Figure 3 as separate homogeneous regions. However, this approach did not yield conclusive 386 

results. Therefore, using the first scenario allowed us to leverage the full breadth of our dataset, 387 

maximizing the use of available data to inform the transfer of CEQUEAU thermal parameters. In the 388 

results, we present this approach where no homogeneous regions or neighborhoods were defined.  389 

2.3.1- Model description 390 

For this study, we selected a classical ML model : The support vector regression (SVR), a model widely 391 

used in hydrology and known to excel with small and tabular datasets (Deka, 2014; Lange & Sippel, 392 

2020; Weierbach et al., 2022). This study uses the epsilon-insensitive SVR (ε-SVR) formulation 393 

(Vapnik, 2013). Unlike traditional least squares methods, ε-SVR employs the ε-insensitive tube 394 

concept, which combines mean absolute error and L-2 norm penalty. This approach allows for some 395 

samples to be at a specific distance (ξ or ξ*) from their correct margin boundary, acknowledging that 396 

problems are not always perfectly separable with a hyperplane. The goal is to fit the error within a 397 

threshold (ε) while minimizing the coefficient norm using the penalty term (C), which controls the 398 

strength of this penalty and acts as an inverse regularization parameter.  399 
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Given training vectors 𝑥𝑥𝑖𝑖 ∈ ℝ𝑝𝑝, 𝑖𝑖 = 1, … , 𝑛𝑛, and a vector y ∈ ℝ𝑛𝑛 , our goal is to find the regression 400 

weight coefficient w ∈ ℝ𝑝𝑝  such as the prediction given by (𝑤𝑤𝑇𝑇𝜃𝜃(𝑥𝑥𝑖𝑖) + 𝑏𝑏) is accurate for most 401 

samples. ε-SVR solves the following primal problem: 402 

𝑘𝑘𝑖𝑖𝑛𝑛𝑠𝑠,𝑏𝑏,ξ,ξ∗  1
2

 𝑤𝑤𝑇𝑇𝑤𝑤 + 𝐶𝐶 ∑ (ξ𝑖𝑖 + ξ𝑖𝑖
∗)𝑛𝑛

𝑗𝑗=1   𝑃𝑃𝑠𝑠𝑏𝑏𝑠𝑠𝑃𝑃𝑠𝑠𝑃𝑃 𝑃𝑃𝑃𝑃 :  �
y𝑖𝑖 −  𝑤𝑤𝑇𝑇𝜃𝜃(𝑥𝑥𝑖𝑖) − 𝑏𝑏 ≤ 𝜀𝜀 + ξ𝑖𝑖
−y𝑖𝑖 + 𝑤𝑤𝑇𝑇𝜃𝜃(𝑥𝑥𝑖𝑖) + 𝑏𝑏 ≤ 𝜀𝜀 + ξ𝑖𝑖

∗

ξ𝑖𝑖ξ𝑖𝑖
∗ ≥ 0 𝑖𝑖 = 1, … ,𝑛𝑛

 (7) 403 

We penalize samples whose predictions deviate from their true targets by at least ε. These samples 404 

incur a penalty of ξ or ξ*, depending on whether their predictions fall above or below the ε tube.  405 

Although SVR handles non-linear decision boundaries of arbitrary complexity, by using kernel 406 

functions, we limit ourselves in this paper to linear kernel because of the nature of the data sets under 407 

investigation (Gallice et al., 2015). Using simple linear models helps address issues of parsimony and 408 

overfitting, especially given the limited dataset (stations and years). Moreover, the interpretability of 409 

linear models allows regression coefficients to clearly reflect the strength and direction of the 410 

relationship between predictors and sensitive CEQUEAU thermal parameters, avoiding 411 

multicollinearity (Houndekindo & Ouarda, 2023). For a linear kernel, the primal problem can be 412 

equivalently formulated as follows:  413 

𝑘𝑘𝑖𝑖𝑛𝑛𝑠𝑠,𝑏𝑏  1
2

 𝑤𝑤𝑇𝑇𝑤𝑤 + 𝐶𝐶 ∑ 𝑘𝑘𝑚𝑚𝑥𝑥(0, �y𝑖𝑖 − (𝑤𝑤𝑇𝑇𝜃𝜃(𝑥𝑥𝑖𝑖) − 𝑏𝑏) − 𝜀𝜀�)𝑛𝑛
𝑗𝑗=1  (8) 414 

we used the LinearSVR Python function in the scikit-learn library sklearn.svm (Pedregosa et al., 2011), 415 

and equation 9 is the form that is directly optimized by this model. Through leave one out cross 416 

validation we will assess the generalizability and the trade-offs between complexity (C and ε 417 

hyperparameters) and predictive accuracy. We compared the performance of linear SVR with a 418 

standard MLR, commonly used as a benchmark in recent Tw regional studies (Charron et al., 2021; 419 

Gallice et al., 2015; T. B. Ouarda et al., 2022; Souaissi, Ouarda, & St-Hilaire, 2023b; Weierbach et al., 420 

2022; Weller et al., 2024). 421 
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2.3.2- Input Feature Selection and Preprocessing 422 

In this study, we compare four FS algorithms, presented as follows: 423 

Recursive Feature Elimination  424 

RFE is a wrapper backward elimination algorithm that involves fitting an estimator to remove the least 425 

important predictors iteratively until a specified minimum number of features is reached (Guyon et al., 426 

2002). First, the estimator is trained on the initial set of features, and the importance of each feature is 427 

obtained through the magnitude of the weight coefficient vector or inherent feature importance in the 428 

model. Then, the least important features are pruned from the current set of features. This procedure is 429 

recursively repeated on the pruned set until the desired number of features to select is reached. The 430 

RFE requires a specified number of features to be retained and leave-one-out cross-validation is used 431 

to evaluate different subsets of features and select the best subset. 432 

Sequential Forward Selection  433 

Sequential forward feature (SFS) selection is a greedy wrapper method that progressively adds features 434 

that significantly enhance the model’s performance (Derksen & Keselman, 1992; Hastie et al., 2017). 435 

Initially, the process begins with no features and identifies the one that maximizes a cross-validated 436 

score when the estimator is trained on this single feature. After selecting the first feature, the procedure 437 

is repeated by adding another feature to the existing set. The iteration continues until a stopping 438 

criterion is met, determined through leave-one-out cross-validation. However, SFS might be slower as 439 

it requires the evaluation of a larger number of models. 440 

Least absolute shrinkage absolute operator 441 

LASSO is a penalized linear regression approach introduced by  Tibshirani. (1996), which can be 442 

used as an FS-embedded method. It applies an L1-norm penalty to the regression coefficients using 443 

the regularization parameter λ, which controls the severity of the penalty. This penalization 444 

effectively reduces some coefficients to zero, thus leading to a model that is both sparse and 445 
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interpretable. One notable limitation highlighted for LASSO is the potential for reduced predictive 446 

accuracy when the predictors are highly correlated (Yamada et al., 2014; Zou & Hastie, 2005).  447 

Elastic Net 448 

Elastic Net (ENET) improves upon LASSO by adding an L-2 norm penalty (Zou & Hastie, 2005). 449 

This combination helps to overcome some of LASSO's limitations, particularly its tendency to select 450 

only one variable from a group of highly correlated variables while potentially ignoring others. It is a 451 

particularly useful approach when dealing with highly correlated data or when the number of predictors 452 

exceeds the number of observations. An additional parameter α is used to balance the L-1 and L-2 453 

penalties, where α=1 corresponds to LASSO (pure L-1 penalty) and α=0 corresponds to Ridge (pure 454 

L-2 penalty).  455 

In this study, selected covariates were standardized to a zero mean and unit variance prior to model 456 

fitting, and model parameter controlling solar radiation (CRAYSO) was log-transformed to reduce 457 

skewness and render the data more normally distributed (Jackson et al., 2018). The FS algorithms were 458 

implemented using the following functions: ElasticNetCV, SequentialFeatureSelector, RFECV, and 459 

LassoCV, available in the scikit-learn library sklearn.feature_selection (Pedregosa et al., 2011). We 460 

tested all combinations of FS algorithms (RFE, SFS, LASSO, ENET) and regional models (MLR, 461 

SVR), resulting in 8 model combinations: RFE-MLR, SFS-MLR, LASSO-MLR, ENET-MLR, RFE-462 

SVR, SFS-SVR, LASSO-SVR, and ENET-SVR. 463 

2.3.3- Spatial and temporal evaluation 464 

Spatial evaluation 465 

. To mimic the estimation of CEQUEAU most sensitive thermal MP at ungauged sites, a Leave-One-466 

Out cross validation procedure was implemented. This approach systematically excludes one 467 

watershed from the calibration process, using it exclusively for validation (pseudo-ungauged). This 468 

ensures that the calibrated model is evaluated across diverse climatic and physiographical conditions, 469 
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enhancing its robustness and suitability for regionalization. To compare between calibrated and 470 

regionalized thermal parameters (𝑴𝑴𝑷𝑷𝑷𝑷𝑷𝑷𝑺𝑺𝑺𝑺𝑀𝑀𝑀𝑀 and 𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀) (Spatial evaluation in Figure 1), RMSE and 471 

the coefficient of determination (𝑅𝑅2) are used to assess the performance of ML regional models: 472 

𝑅𝑅𝑀𝑀𝑆𝑆𝑅𝑅𝑀𝑀𝑀𝑀 =  �
∑ (𝑴𝑴𝑷𝑷𝑷𝑷𝑷𝑷𝑺𝑺𝑺𝑺𝑀𝑀𝑀𝑀𝑖𝑖 − 𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀𝑖𝑖)2
𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 473 

𝑅𝑅𝑀𝑀𝑀𝑀2 = 1- 
∑ (𝑴𝑴𝑷𝑷𝑷𝑷𝑷𝑷𝑺𝑺𝑺𝑺𝑀𝑀𝑀𝑀𝑖𝑖 − 𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀𝑖𝑖)

2𝑛𝑛
1

∑ (𝑴𝑴𝑷𝑷𝑷𝑷𝑷𝑷𝑺𝑺𝑺𝑺𝑀𝑀𝑀𝑀𝑖𝑖 − 𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀𝚤𝚤��������)2𝑛𝑛
1

 474 

Where n, represents the total number of watersheds. Additionally, we decided to use the RMSE skill 475 

score to compare the performance of the SVR model with that of the MLR model. The RMSE-based 476 

skill score is calculated using the following equation: 477 

𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 1 −
𝑅𝑅𝑀𝑀𝑆𝑆𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑇𝑇𝑤𝑤
𝑅𝑅𝑀𝑀𝑆𝑆𝑅𝑅𝑀𝑀𝑀𝑀𝑆𝑆𝑇𝑇𝑤𝑤

    (10) 478 

If the prediction (SVR) has lower errors compared to the benchmark prediction (MLR), the skill score 479 

values are positive. Conversely, if the errors are higher, the skill score values are negative. If the errors 480 

are equal, the skill score values are zero.  481 

Temporal evaluation: 482 

. Subsequently, for each watershed, daily mean Tw time series produced by the most effective regional 483 

model (𝑇𝑇𝑠𝑠𝑅𝑅𝑅𝑅) are compared with the ones generated using local benchmark calibration parameter set 484 

𝑇𝑇𝑠𝑠𝑴𝑴𝑷𝑷𝑷𝑷𝑷𝑷𝑺𝑺𝑺𝑺using RMSE (Temporal evaluation in Figure 1): 485 

𝑅𝑅𝑀𝑀𝑆𝑆𝑅𝑅𝑇𝑇𝑤𝑤 =  �
∑ (𝑇𝑇𝑤𝑤𝑴𝑴𝑷𝑷𝑷𝑷𝑷𝑷𝑺𝑺𝑺𝑺−𝑇𝑇𝑤𝑤𝑆𝑆𝑅𝑅)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
  (11)486 

Where n, represents the daily time step from 01-01-1979 to 31-12-2020. 487 
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3- Results 488 

3.1- Global Sensitivity Analysis  489 

The results from VARS indicated that COLARG, CRIGEL, TNAP, and BASSOL had low sensitivity 490 

(𝑛𝑛𝐼𝐼𝑉𝑉𝐼𝐼𝑅𝑅𝑆𝑆50 ≤ 10%) (Figure 5). Additionally, certain parameters such as COPROM, CEVAPO, and 491 

CORSOL showed low variability during the calibration process and remained almost constant across 492 

all watersheds (Figure S3). Consequently, these parameters were given a fixed value based on the first 493 

calibration results (𝑀𝑀𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆). 494 

The VARS analysis further showed that parameters associated with the main heat fluxes exchange 495 

energy at the air-water interface (CRAYSO, CRAYIN, CEVAPO, CCONV) were the most sensitive 496 

across all rivers (𝑛𝑛𝐼𝐼𝑉𝑉𝐼𝐼𝑅𝑅𝑆𝑆50 ≥ 10%). River 17 deviated from this trend, with COPROM, a parameter 497 

controlling the depth-width ratio of the mainstem channel, being identified as the most sensitive 498 

parameter. 499 
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 500 

Figure 5: Sensitivity analysis summary for CEQUEAU Tw model parameters. The number within the 501 
bars refers to the river IDs, and the colors refer to the 𝑛𝑛𝐼𝐼𝑉𝑉𝐼𝐼𝑅𝑅𝑆𝑆50 values 502 

The sensitivity analysis findings in Figure 5 showed that CRAYSO, CEVAPO, and CCONV are 503 

sensitive parameters for most of the rivers in the study region. These parameters were found to be 504 

highly sensitive for sixteen, fourteen, and five rivers, respectively, with nIVARS > 0.4. CRAYIN was 505 

found to be sensitive to eight rivers but with low nIVARS values (< 0.2) and was fixed to its optimal 506 

value (𝑀𝑀𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆). Subsequently, our calibration and regionalization efforts focused on highly sensitive 507 

parameters with high variability, namely CRAYSO and CCONV. 508 

CRAYSO showed high sensitivity (nIVARS > 0.4) for rivers with wide mainstem channels at Tw 509 

stations (> 20m). These include rivers flowing into Chaleur Bay (5, 13), Quebec rivers flowing into 510 

the St. Lawrence estuary (6, 8, 14, 16), southern Quebec rivers (9, 10), rivers in Nova Scotia and Maine 511 

(28, 29, 30; 20, 21), coastal and subarctic Labrador rivers (25, 27), and the Conne River (24) in 512 

southern maritime Newfoundland. 513 
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CEVAPO, on the other hand, had low variability and remained nearly constant for most considered 514 

catchments. However, it was highly sensitive for rivers with wide mainstem channels at Tw stations, 515 

such as the Natashquan River (7), rivers flowing into Chaleur Bay (1, 2, 3, 4, 11, 12, 18), high latitude 516 

subarctic rivers (23, 35), and the Gouffre and Highland rivers (15, 26). The West River (31) in PEI, 517 

characterized by high cropland uses, is an exception in this regard, with channel width inferior to 10 518 

m.  519 

The Sackville River (29) was highly sensitive to both CRAYSO and CEVAPO, as the Tw station 520 

location is in a highly urbanized area with no riparian vegetation. On the other hand, CCONV showed 521 

high sensitivity for the smallest basins with channel widths less than 10 m, such as the Huile River in 522 

Anticosti Island, Ducktrap River in Maine, and groundwater-fed rivers in PEI (19, 22, 32, 33, 34). The 523 

Huile and Dartmouth rivers (17, 19) also showed high sensitivity towards CORPOM. Additionally, a 524 

considerable cumulative sensitivity effect was observed through parameters controlling surface solar 525 

radiation (CRAYSO, CORSOL) for the Dartmouth River.  526 

3.2- Calibration performance 527 

Figure 6 illustrates the discharge and Tw calibration performance using CEQUEAU model and 528 

compared results before and after the sensitivity analysis. The 𝑀𝑀𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆 results showed the initial 529 

calibration state, whereas the 𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆 results illustrated the recalibration made after identifying and 530 

fixing parameters with low variance and sensitivity for the Tw component as listed in Table S2 and  531 

S3. The CEQUEAU model demonstrated robust performance for discharge, achieving a mean Kling-532 

Gupta Efficiency (KGE) value of 0.84 across the evaluated rivers, with individual performance values 533 

ranging from 0.65 to 0.94 However, Sackville, Margaree, and Wilmot rivers exhibited the lowest 534 

performance for discharge calibration, with KGE values below 0.7. 535 

For the Tw modeling, 𝑀𝑀𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆 configuration yielded a mean RMSE of 1.59°C, with values ranging from 536 

0.77 °C (Aux Mélèzes river) to 3.04 °C (Sheepscot river). Eight rivers had an RMSE over 2 °C, 537 
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specifically, Maine rivers (Narragagus, Sheepscot, and Ducktrap), Nova Scotian rivers with an outlet 538 

in the north Atlantic shore (LaHave and Sackville), as well as Matapedia, Gouffre, and Highland rivers. 539 

The mean RMSE for the 𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆 configuration slightly increased to 1.75°C, with values spanning from 540 

0.77°C to 3.26°C, and nine rivers had an RMSE over 2°C. The results before (𝑀𝑀𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆) and after 541 

(𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆) addressing the low and non-sensitive parameters showed a mean decrease in accuracy of less 542 

than 20% in terms of RMSE across all catchments. However, the Highland River stands out with a 543 

significant loss in accuracy before and after sensitivity analysis (43%, +0.9°C). Consistent 544 

performance across various watersheds indicates that the CEQUEAU model reliably captures the key 545 

processes governing water temperature dynamics, supporting its use for parameter transfer to 546 

ungauged locations. 547 

 548 

Figure 6: Discharge and Tw calibration performance. 𝑀𝑀𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆 refers to the results of the first 549 
calibration considering all Tw model parameters. 𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆 refers to the second calibration where low 550 

sensitive parameters are fixed to their previous optimal value. 551 
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The estimated mean daily discharge and Tw time series (1979–2020) were uploaded to the RivTemp 552 

database. These datasets have already proven valuable in a recently submitted paper that we co-553 

authored, titled "Changes in size-at-age of juvenile Atlantic salmon cohorts over the past 50 years and 554 

linkages to environmental factors," the estimated time series effectively captured variability in the 555 

Atlantic salmon growth cycle within two of the most important Atlantic salmon watersheds in eastern 556 

Canada—the Restigouche and Miramichi rivers. 557 

3.3- Regionalization modeling performance 558 

3.3.1- Thermal parameters 559 

Figure 7 presents a comparative analysis of regional models' performance across all FS methods. The 560 

results showed that SVR consistently outperforms MLR in both R² and RMSE metrics across all FS 561 

methods. This suggests SVR model is better suited for handling the complexities of the dataset. Given 562 

these findings, the decision to focus exclusively on SVR as the regional estimation model in the 563 

subsequent sections is justified. 564 

 565 

Figure 7: Leave-one-out cross validation results for the regional models MLR and SVR, using 𝑅𝑅2and 566 
RMSE as performance metrics 567 

Our findings indicated that feature selection methods significantly impact the performance of SVR 568 

model in estimating the most critical parameters of CEQUEAU. Regarding CRAYSO, the following 569 
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models: RFE-SVR, LASSO-SVR, and ENET-SVR demonstrated top performance, with R² values of 570 

0.94, 0.91, and 0.88, respectively. The SFS-SVR method also showed good overall performance with 571 

an R² of 0.79. However, for CCONV, the models exhibited lower accuracy, with R² values ranging 572 

from 0.58 to 0.66. Once again, RFE-SVR outperformed all models, with SFS-SVR ranking second, 573 

while LASSO-SVR and ENET-SVR showed similar performance, with LASSO-SVR displaying fewer 574 

underestimated values. Our results indicated that our modeling procedure was able to explain a greater 575 

variance in CRAYSO compared to CCONV. Overall, using SVR, features selected using RFE 576 

consistently outperformed regularization and SFS selected features for both parameters.  577 

Figure 8 illustrates observed versus predicted regression plots using the SVR model (Leave-one-out 578 

spatial evaluation in Figure 1). The figure revealed strong agreement between observed and estimated 579 

model parameters, particularly with RFE-SVR. The plots showed that high CRAYSO and CCONV 580 

values were typically associated with larger basins featuring wider channels (rivers: 1, 2, 6, 7, 9, 16, 581 

23, 25, 35), while lower values were observed in smaller basins with narrower channels (rivers: 22, 582 

27, 29, 31, 32, 33, 34). For CRAYSO, some minor deviations were noted for certain rivers, particularly 583 

for Gilbert River (23), LaHave River (28), and rivers with an outlet in Chaleur Bay, such as rivers 5, 584 

12, 13, 15, and 17. Conversely, the data points for CCONV exhibited more scattering, indicating less 585 

consistent model performance. However, the LASSO-SVR plot demonstrated reduced scattering, 586 

particularly for underestimated CCONV values in rivers 1, 5, 8, 20, 23, 28, and 35.  587 

 588 
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 589 

Figure 8: Regression plots for SVR as the regional estimation model across all feature selection 590 
algorithms. 591 

Figure 9a displays the optimal number of selected features for CRAYSO and CCONV using all FS 592 

methods. On average, CRAYSO had 14 features selected, while CCONV had 11. It is worth noting 593 

that SFS-SVR selected the least features for CRAYSO, whereas RFE-SVR, LASSO, and ENET chose 594 

13, 15, and 17 features, respectively. As for CCONV, LASSO resulted in the most parsimonious model, 595 

choosing 7 features, while SFS-SVR, ENET, and RFE-SVR selected 11, 12, and 14 features. 596 

Figure 9b shows the condition number (C) obtained from the correlation matrix of the chosen feature 597 

sets. The condition number was used to evaluate multicollinearity among predictors. According to 598 

Chatterjee & Hadi. (2015), a threshold of 15 suggests potential multicollinearity and values above 30 599 

necessitate corrective action. It is promising to note that all models constructed using the chosen 600 
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features have C values below 15, indicating that they are likely to be more concise and less susceptible 601 

to multicollinearity issues. 602 

 603 

Figure 9: a) Optimal number of features for each FS method and b) the corresponding condition 604 
numbers for both the most sensitive parameters, CRAYSO and CCONV. 605 

3.3.2- Water temperature 606 

We injected SVR and MLR-generated parameters in the CEQUEAU model to compute the Tw time 607 

series. In Figure 10, we compared the performance of SVR and MLR using the skill score and found 608 

that SVR consistently outperformed the standard regression benchmark model (MLR), with a median 609 

skill score of 0.05 across all feature selection methods (Temporal evaluation in Figure 1). We will focus 610 
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on SVR model going forward. For detailed MLR results, the reader is referred to Figure S4 in the 611 

supplementary materials. 612 

 613 

Figure 10: Skill Score of ML Models (SVR) in reference to benchmark MLR Model. 614 

Figure 11 compares the Tw regional modeling performance using SVR as the regional estimation 615 

model (Temporal evaluation). The benchmark model, 𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆, showed a mean RMSE of 1.75 °C, with 616 

26 rivers achieving an RMSE below 2 °C. The highest RMSE (3.26 °C) was observed in the 617 

southernmost watershed, the Sheepscot River (21), while the lowest RMSE (0.77 °C) was found in the 618 

northernmost watershed, the Aux Mélèzes River (35). 619 

Models 2 and 4 had the highest mean RMSEs of 2.1°C and 2.03°C, respectively, with greater 620 

variability in their predictions. Model 3 demonstrated an improvement in reducing this variability, with 621 

a mean RMSE of 1.95°C. Model 1 performed the best, achieving a mean RMSE of 1.89°C, closely 622 

aligning with the benchmark model 5.  623 
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Some outliers were identified, with models 3 and 4 showing significant prediction errors for the 624 

Gouffre River (15), with RMSEs of 3.70°C and 4.47°C, respectively. Model 1 faced accuracy 625 

challenges for the Nova Scotian rivers, LaHave and Sackville (28, 29), although it slightly improved 626 

performance in the Sheepscot River (from 3.26 to 3.08 °C). Overall, Model 1 performed well, with 25 627 

rivers achieving RMSE values below 2 °C, while Models 3 and 4 followed with 22 rivers, and Model 628 

2 with 18 rivers. 629 

 630 

Figure 11: Water temperature modeling performance using regional models (1 to 4) and local 631 
calibrations (5 & 6). 632 

3.4- Feature importance 633 

The detailed heatmap in Figure 12 shows the selected predictors for CRAYSO and CCONV 634 

parameters. A selection count of four indicates unanimous choice across all models. For CRAYSO, 635 

five predictors (LAKE, FOREST, LOSA, D2O, DVME) were consistently selected by all models, and 636 

nine features were selected by at least three models. Each model discarded different features: RFE-637 

SVR (cropland uses), SFS-SVR (elevation, upstream wetlands percentage, watershed orientation, low 638 
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cloud coverage quantiles, aspect, and Gaussian surface curvature), LASSO (high insolation quantiles), 639 

and ENET (drainage density).  640 

All models consistently selected three main land use features (LAKE, FOREST, CROP), except RFE-641 

SVR, which chose WET over CROP. Each model included at least two climatic features (25thCC, 642 

90thSSR, 90thPtot), although SFS-SVR exclusively used 90thSSR, which impacted its prediction 643 

accuracy. Regarding topographical features, SFS-SVR selected upstream channel orientation over 644 

watershed orientation and used DOGS instead of GSCV for land surface curvature. 645 

Five predictors were systematically selected to estimate CCONV: MIND, LAKE, ORWSH, D2O, and 646 

90thVV, while four features were selected three times. All models included upstream cropland uses, 647 

but SFS-SVR uniquely chose upstream lake percentage as the land cover predictor. While all models 648 

used two orientation features (ORUP, ORWSH), LASSO solely used watershed orientation. For 649 

topographical features, all models selected at least two features from GSCV, DFME, and DVME. 650 

However, LASSO chose only DVME, and SFS-SVR preferred DFME over DVME. 651 

 652 

Figure 12: Selection count heatmap for selected features across FS methods for both most sensitive 653 
parameters CRAYSO and CCONV. 654 

Linear regression models have the advantage of interpretability, providing a clear understanding of the 655 

relationships between predictors and the dependent variable. However, when using SVR with a linear 656 
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kernel as the regional estimation model, the direction of the regression coefficients can be misleading 657 

due to the unitless nature of the target variables (CRAYSO and CCONV). To address this, feature 658 

importance was determined by the square of the regression coefficients in the SVR models (Guyon et 659 

al., 2002). Additionally, preprocessing is crucial in linear models, as standardization to zero mean and 660 

unit variance ensures that feature scales are comparable. 661 

Figure 13 showed the importance of features for CRAYSO and CCONV. The figure consisted of two 662 

parts: Figure 13 (a1) and (a2) displays the average feature importance based on the frequency of feature 663 

selection, while Figure 13 (b1) and (b2) provided detailed feature importance plots for each regional 664 

estimation model, offering a comprehensive view of feature importance. Using the top-performing 665 

RFE-SVR model, the most influential features for CRAYSO (with absolute weight coefficients > 0.1) 666 

are: 25thCC, DVME, D2O, DD, FOREST, LOSA, GSCV, ELVT, LAKE, ORWSH, ASPC, and WET. 667 

In contrast, it was the least sparse model for CCONV (14 features), and the most important features 668 

using this model are MIND, 25thCC, 90thVV, LAKE, LONG, 90thSSR, ORWSH, ORUP, DD, CROP, 669 

DVME, GSCV, ASPC, and D2O. However, LASSO-SVR significantly reduced underestimations 670 

across most rivers with low to medium CCONV values, achieving an RMSE comparable to RFE-SVR 671 

while maintaining a more parsimonious model with only seven features, ranked as follows: 90thVV, 672 

MIND, LAKE, CROP, ORWSH, D2O, and DVME 673 
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 674 

Figure 13: Squared regression coefficient of the SVR regional model to assess feature importance for 675 
both CRAYSO and CCONV. 676 

This study tested the abilities of commonly used regression MLR and machine learning SVR for 677 

regional estimation of CEQUEAU's highly sensitive parameters, CRAYSO and CCONV. The findings 678 

revealed that for both parameters, SVR consistently outperformed the benchmark MLR model. Four 679 

different FS algorithms were evaluated to identify optimal features. RFE-SVR emerged as the most 680 

parsimonious model for CRAYSO, striking a balance between high predictive accuracy and 681 

complexity. While LASSO-SVR, ENET-SVR, and SFS-SVR also showed good performance for 682 

CRAYSO, they were less parsimonious and provided no significant improvement in accuracy 683 

compared to RFE-SVR. For CCONV, both RFE-SVR and SFS-SVR were top performers, but they 684 

tended to significantly underestimate values. In contrast, LASSO-SVR effectively balanced between 685 

accuracy and complexity by selecting a sparse feature set, roughly half the size of the top performers, 686 

and delivered a robust predictive performance for previously underestimated values. Overall, the 687 

condition number of the feature set correlation matrix revealed no collinearity issues among the 688 
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relevant predictors for CRAYSO and CCONV, indicating that all models effectively selected a relevant 689 

and non-redundant feature set.690 

 691 

4- Discussion 692 

 This study aimed to assess the feasibility of regionalizing CEQUEAU thermal parameters to estimate 693 

Tw in ungauged locations. This includes pristine rivers spanning from the southernmost habitats of 694 

Atlantic salmon in the Gulf of Maine (USA) to the arctic climates of northern Quebec (Ungava Bay) 695 

and Labrador. A key challenge was defining parameter boundaries that account for diverse watershed 696 

characteristics while ensuring physically plausible relationships. Through sensitivity analyses and a 697 

two-phase calibration strategy, we effectively addressed this issue, highlighting the value of fixing 698 

low-sensitivity parameters within homogeneous regions to improve calibration efficiency and mitigate 699 

equifinality issues (Feigl et al., 2022).  700 

CEQUEAU in northeastern America 701 

Local calibration demonstrated a minimal RMSE increase of 0.25 °C after fixing low-sensitivity 702 

parameters, with an overall mean RMSE below 2 °C. These results indicate a robust calibration process 703 

suitable for regionalization purposes (Figure 11). This finding highlights the suitability of the chosen 704 

parameter boundaries for regionalization. Most thermal parameters proved stable enough to be fixed, 705 

with CRAYSO and CCONV identified as the most sensitive parameters. This finding suggests that 706 

CEQUEAU may be over-parameterized for this region. 707 

RFE-SVR and LASSO-SVR emerged as the most effective regional models for estimating CRAYSO 708 

and CCONV in ungauged locations offering both high predictive accuracy and simplicity, as 709 

demonstrated through a leave-one-out cross validation procedure within the study region. RFE and 710 

LASSO are particularly advantageous because they require tuning only a single parameter, making 711 

them efficient and easy to implement. SVR successfully captured the spatial variability of CRAYSO 712 
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and CCONV, the most critical parameters, across the study region. However, the models performed 713 

better for CRAYSO than for CCONV, likely due to the exclusion of key predictors or the need for non-714 

linear models to capture complex relationships between predictors and thermal parameters. 715 

Additionally, exploring surface elevation and curvature attributes at different spatial scales 716 

(resampling) may improve results (Houndekindo & Ouarda, 2024).  717 

Advancement of regional Tw modeling 718 

The leave-one-out cross validation suggested the model’s performance is in line with advance in stream 719 

temperature regional modeling in northeastern America. Prior to this work, the only research 720 

developing a regional framework for estimating Tw in ungauged northeastern Canadian rivers was 721 

conducted by Ouarda et al. (2022). Their statistical approach showed the superiority of Generalized 722 

additive model (GAM) over MLR. They utilized data from over 120 stations, each with a minimum of 723 

four years of summer records, to model river thermal regime quantiles in ungauged rivers of eastern 724 

Canada, achieving RMSEs between 2°C and 3°C through a leave-one-out validation procedure. 725 

However, their study excluded streams from Prince Edward Island, Anticosti Island, and Maine, USA. 726 

Despite these limitations, their work represents a significant advancement in Tw stream modeling in 727 

ungauged sites within the study region.  728 

In another study, Weierbach et al. (2022) shown that ML models such as SVR outperform traditional 729 

statistical approaches (MLR) in estimating monthly Tw in ungauged locations where discharge 730 

information is available in Pacific northwest and Mid Atlantic regions in the U.S. Using 78 stations 731 

and a minimum of 8 years of co-located Tw and discharge observations, they achieved a regional 732 

median RMSE of 1°C. More recently, Weller et al. (2024) developed a regression model to predict 733 

August mean stream Tw for British Columbia, Canada, using land cover, physiographic, and climatic 734 

characteristics from over 560 sites. They used a 10-fold cross-validation which yields an RMSE of 735 

1.53 °C. Our regionalization approach focused on pristine catchments, achieving improved predictive 736 
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performance in eastern Canadian rivers, while demonstrating comparable results to studies in the U.S. 737 

and western Canada. 738 

Prior regional hydrological and Tw models have required extensive datasets with numerous watershed 739 

attributes (Kratzert et al., 2019; Rahmani et al., 2021). A notable contribution of our study is the 740 

efficient use of explanatory variables. Employing different FS methods allowed for a robust procedure, 741 

as the selected attributes for each parameter were consistently validated across multiple methods. Our 742 

findings are consistent with Souaissi et al. (2023a), who employed RFE and LASSO for feature 743 

selection in a regional modeling framework to estimate thermal river quantiles in Switzerland. Their 744 

study highlighted the comparable performance of these methods, emphasizing their effectiveness in 745 

identifying relevant and non-redundant features for Tw modeling at ungauged sites. 746 

Key covariates for CRAYSO & CCONV 747 

All models accurately captured that high CRAYSO and CCONV values were typically found in larger 748 

basins with wider channels, while smaller basins with narrower channels exhibited lower values. This 749 

could be explained by the increased solar radiation and wind exposure in wider rivers with relatively 750 

lower crown closure due to reduced shading from vegetation and topographical features (Jackson et 751 

al., 2018; Maheu & Caissie, 2023; Monk & Dugdale, 2023; O’Sullivan et al., 2019; St-Hilaire et al., 752 

2023).  753 

Incoming solar radiation is the dominant flux influencing stream heat budgets (Caissie, 2006; Leach 754 

et al., 2023). CRAYSO showed heightened sensitivity in climate-driven rivers with wide mainstem 755 

channels, where low cloud cover quantiles emerged as the most significant climatic predictor, 756 

reflecting solar radiation variability caused by weather patterns and wildfire smoke (David et al., 2018; 757 

Siegel et al., 2023). Topographical features, including DVME, aspect, channel slope, and GSCV, 758 

significantly influenced CRAYSO by altering exposure to solar radiation (Lookingbill & Urban, 2003; 759 

I. D. Moore et al., 1991; O’Sullivan et al., 2019).  Land cover attributes also played a role. Upstream 760 
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forest percentage regulated the thermal regime through shading (Garner et al., 2014; St-Hilaire et al., 761 

2000) , while lakes and wetlands, warmed by solar exposure, impacted downstream Tw (Abidi et al., 762 

2022; Arora et al., 2018; O’Sullivan et al., 2019). Coastal proximity influenced CRAYSO through 763 

climatic variability (teleconnection) driven by ocean-atmospheric interactions, such as the North 764 

Atlantic Oscillation and Atlantic Multidecadal Oscillation, affecting northeastern Canadian summers 765 

(Collins, 2023; Jackson et al., 2018; Ouarda et al., 2024; Ouarda & Charron, 2018). Watershed 766 

orientation was another critical factor, with north-south streams receiving more solar radiation 767 

compared to west-east streams shaded by equatorial-facing riparian vegetation (Garner et al., 2017; 768 

Jackson et al., 2018; Leach et al., 2023). Secondary factors like drainage density and loamy sand soils 769 

contributed by affecting shading and groundwater recharge (Jeong et al., 2013; Johnson et al., 2024; 770 

Kurylyk et al., 2015; O’Sullivan et al., 2020; T. B. Ouarda et al., 2022).  771 

CCONV showed high sensitivity in island landscapes with groundwater-fed rivers and strong wind 772 

patterns, such as the rivers located in Prince Edward and Anticosti islands and Ducktrap River in 773 

Maine. Unique wind dynamics in these regions, like the channeling effect of the Gulf of St. Lawrence 774 

and coastal windstorms in Penobscot Bay, enhance convection processes (Beaucage et al., 2007) 775 

(Spicer et al., 2021; Townsend et al., 2023). Key climatic predictors include high wind speeds and low 776 

cloud coverage, with wind-induced mixing disrupting vertical stratification and enhancing heat 777 

exchange within the water column (Caissie, 2016; Ferchichi et al., 2021; Maheu et al., 2014). 778 

Topographical features such as mainstem channel depth also play a significant role, as wide and 779 

shallow channels promote efficient heat exchange, while deeper channels moderate temperature 780 

changes due to thermal inertia (Maheu et al., 2014; Sinokrot & Stefan, 1993). Land cover, including 781 

upstream lakes, influences CCONV as large lakes exposed to wind increases Tw and heat exchange 782 

(Abidi et al., 2022). Watersheds like the Ducktrap River and PEI catchments, characterized by high 783 

agricultural activity and flat terrain, have long wind fetches exposing channels to high wind speeds 784 

and amplifying convection processes (Dehghani-Sanij et al., 2022; Hall & Swingler, 2018). Additional 785 
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factors like watershed orientation, distance to the coast, and topographical attributes (DVME, GSCV) 786 

affect wind sheltering and convective heat dynamics, reinforcing the importance of geographic and 787 

climatic variability in predicting convection processes (Garner et al., 2017; Jackson et al., 2021; 788 

O’Sullivan et al., 2019). 789 

Convective heat transfer, though typically the smallest component of the total energy flux, remains 790 

significant (Maheu & Caissie, 2023; Morin & Couillard, 1990). Advances in wind speed modeling in 791 

Canada have highlighted the importance of relative topographical position (DVME) for estimating 792 

high wind speed quantiles and surface curvature (GSCV) for low wind speed quantiles (Houndekindo 793 

& Ouarda, 2023, 2024). These features play a crucial role in convection processes, supporting our 794 

findings on their importance for predicting CCONV. This understanding enhances our mechanistic 795 

view of stream Tw dynamics in Atlantic salmon habitats. 796 

5- Conclusion 797 

Our study represents a significant advancement in understanding and managing Atlantic salmon rivers 798 

in eastern North America by integrating deterministic and machine-learning approaches. For 799 

CEQUEAU, this study marks a significant milestone, showcasing its capability to accurately estimate 800 

hydrological processes in a regional context across a broad latitudinal gradient. A global sensitivity 801 

analysis, also a first for CEQUEAU, identified parameters controlling shortwave radiation and sensible 802 

heat fluxes as key drivers of thermal stream dynamics in pristine rivers northeastern Canada and Maine, 803 

USA. This work enabled the regional estimation of these parameters, enabling accurate mean daily Tw 804 

predictions for rivers with wide channels influenced by solar radiation and convection, provided 805 

discharge data is available. 806 

Despite these advancements, certain limitations remain. The CEQUEAU model oversimplifies winter 807 

river thermal regimes by setting Tw to zero when air temperatures fall below freezing, which is 808 

physically inaccurate and affects snowmelt and spring freshet timing. However, as salmonids face the 809 
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greatest thermal stress during high summer temperatures, our modeling focused on accurately 810 

simulating Tw during this critical period. The requirement for both discharge and Tw gauging stations 811 

at river outlets limited the database size, as few rivers have both measurements, restricting a more 812 

comprehensive regionalization. Nonetheless, the leave-one-out cross-validation produced satisfactory 813 

results. Model performance was notably better in regions with longer data series and lower geographic 814 

dispersion, such as Quebec, New Brunswick, and Prince Edward Island. These findings align with 815 

previous studies emphasizing the importance of data availability and quality for regional Tw modeling 816 

in eastern Canada (Charron et al., 2020; Ouarda et al., 2022). 817 

For the future regionalization perspective, research should aim to extend this study to other geographic 818 

areas and databases with varying characteristics, such as river headstreams, rivers located on the 819 

Pacific Coast, or mountainous watersheds, where additional parameters may prove to be critical. This 820 

could necessitate regionalizing additional parameters and employing non-linear models to better 821 

capture the complex relationships between predictors and model parameters. Our study did not include 822 

dammed catchments. Incorporating these regulated catchments in future research could help explain 823 

additional variability in CEQUEAU thermal parameters, as the model is capable of accurately 824 

simulating hydrological conditions in regulated systems (Khorsandi et al., 2022, 2023; Oyinlola et al., 825 

2023; Rahmati, 2023).826 
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11- Captions (Figures, tables, and equations) 1373 

 1374 

Figure S1: Schematic of CEQUEAU’s production and transfer functions. a) Production function 1375 

showing the different reservoirs in the CEQUEAU model. b) Plan view of two CEs with their 1376 

respective CPs (the thick black arrows represent the flow direction). c) Transfer scheme between CEs 1377 

(percentage indicates the amount of water drained into each CP). Adapted from Morin and Paquet 1378 

(Morin & Paquet, 2007) 1379 

𝑄𝑄𝑡𝑡𝑛𝑛 = 𝑀𝑀𝑡𝑡𝑛𝑛 − 𝑅𝑅𝑇𝑇𝑀𝑀𝑡𝑡𝑛𝑛 + �𝐻𝐻𝐻𝐻𝑡𝑡𝑛𝑛 − 𝐻𝐻𝐻𝐻𝑡𝑡𝑛𝑛−1� + (𝐻𝐻𝐻𝐻𝑡𝑡𝑛𝑛 − 𝐻𝐻𝐻𝐻𝑡𝑡𝑛𝑛−1)  (S1) 1380 

𝑄𝑄𝑠𝑠𝑠𝑠𝑡𝑡 = 𝐶𝐶𝑅𝑅𝐼𝐼𝐶𝐶𝑆𝑆𝐶𝐶 ∗ 𝐼𝐼𝐶𝐶𝑀𝑀 ∗ 𝑄𝑄𝑖𝑖𝑛𝑛   (S2) 1381 

𝑄𝑄𝑙𝑙𝑠𝑠𝑡𝑡 = 𝐶𝐶𝑅𝑅𝐼𝐼𝐶𝐶𝐼𝐼𝐶𝐶 ∗ 𝐼𝐼𝐶𝐶𝑀𝑀 ∗ 𝜎𝜎 ∗ (𝛽𝛽𝑇𝑇𝑎𝑎𝑖𝑖𝑠𝑠4 −𝑇𝑇𝑠𝑠4)  (S3) 1382 

𝑄𝑄𝑠𝑠𝑡𝑡   =  𝐶𝐶𝑅𝑅𝑉𝑉𝐼𝐼𝑀𝑀𝐶𝐶 ∗ 𝐼𝐼𝐶𝐶𝑀𝑀 ∗ 𝑙𝑙𝑠𝑠𝑡𝑡 ∗ 𝑅𝑅   (S4) 1383 

𝑄𝑄𝑠𝑠𝑡𝑡   =  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑉𝑉 ∗ 𝐼𝐼𝐶𝐶𝑀𝑀 ∗ [0.2 ∗ 𝑊𝑊 ∗ (𝑇𝑇𝑎𝑎𝑖𝑖𝑠𝑠 − 𝑇𝑇𝑠𝑠)] (S5) 1384 
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Parameter name                                      Description LB UB 
Hydrological model 

CIN  Coefficient of percolation from the upper zone to the lower zone  0.05 0.8 
CVMAR  Lakes and marshes drainage coefficient  0.01 1 

CVNB  Lower-zone lower drainage coefficient  0.001 0.2 
CVNH  Lower-zone upper drainage coefficient  0.001 0.2 
CVSB  Upper-zone lower drainage coefficient  0 0.5 
CVSI  Upper-zone intermediate drainage coefficient  0 0.5 

XINFMA  Daily maximum infiltration  0.001 40 
HINF Threshold of percolation from the upper to the lower zone  10 100 
HINT  Upper-zone intermediate drainage threshold  10 200 

HMAR  Lakes and marshes drainage threshold  100 500 
HNAP Lower-zone upper threshold  20 1000 
HPOT Threshold of evaporation at the potential rate  0.01 200 
HSOL Upper-zone runoff threshold  100 300 

HRIMP Upper-zone runoff threshold for impermeable surfaces  0 10 
EXXKT Routing coefficient fitting parameter  0 0.8 

Snowmelt model 
STRNE Snow-rain temperature threshold  -2 3 

TFC Potential melting rate in forest  0.1 10 
TFD Potential melting rate in open (no canopy) areas  0.1 10 
TSC Minimum temperature threshold to initiate snowmelt in forest -4.5 3 
TSD Minimum temperature threshold to initiate snowmelt in open areas  -2 5 
TTD Heat deficit coefficient  0.1 3 
TTS Minimum temperature for snow stock ripening  -5 2 

Evapotranspiration model 
EVNAP Fraction of evapotranspiration taken for the lower reservoir  0.1 1 

XAA Thornthwaite exponent  0.2 9 
XIT Thornthwaite Index  5 50 

Table S1: CEQUEAU hydrological model parameters with respective lower and upper bounds 1385 

 1386 
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 1387 

Figure S2: Watersheds environmental conditions 1388 

 1389 

Figure S3: Ratio of sensitivity (n𝐼𝐼𝑉𝑉𝐼𝐼𝑅𝑅𝑆𝑆50). Each parameter's sensitivity is calculated as the ratio of 1390 

its respective sensitivity to the sum of the sensitivity indices of all model parameters (the sensitivity 1391 

ratios sum to one). 1392 
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 1393 

Figure S4: Water temperature model performance using MLR as the regional 1394 

Watershed Province COPROM COLARG CRAYSO CRAYIN CEVAPO CCONV CRIGEL TNAP BASSOL CORSOL 

1 NB 2.00 2.00 0.98 0.34 0.10 1.84 206.58 8.00 12.10 0.10 

2 NB 2.00 2.00 1.15 0.79 0.10 1.22 198.80 8.00 12.49 0.10 

3 NB 2.00 2.00 0.65 0.10 0.14 1.20 249.38 5.30 10.28 0.11 

4 NB 2.00 2.00 0.48 0.38 0.10 1.16 178.51 6.35 10.98 0.10 

5 QC 2.00 2.00 0.58 0.10 0.31 1.11 214.31 6.60 6.70 0.10 

6 QC 2.00 2.00 1.33 0.10 0.10 0.71 125.73 8.00 11.08 0.10 

7 QC 2.00 2.00 1.82 0.19 0.10 1.84 123.16 8.00 5.46 0.10 

8 QC 2.00 2.00 0.41 0.10 0.10 0.76 250.00 6.97 7.39 0.10 

9 QC 2.00 2.00 1.51 0.94 0.10 0.98 247.82 8.00 10.85 0.10 

10 QC 2.00 2.00 0.63 0.40 0.25 1.44 83.75 8.00 5.11 0.10 

11 QC 2.00 2.00 0.26 0.10 0.10 0.27 96.02 8.00 15.00 0.10 

12 QC 2.00 2.00 0.24 0.14 0.25 0.55 248.04 6.22 14.40 0.10 

13 QC 2.00 2.00 0.44 0.10 0.44 0.45 101.05 8.00 11.52 0.10 

14 QC 2.00 2.00 0.36 0.93 0.10 0.26 175.48 8.00 5.90 0.10 

15 QC 2.00 2.00 0.93 0.94 0.12 1.07 109.42 8.00 12.07 0.44 

16 QC 2.00 2.00 1.28 0.28 0.10 1.38 75.46 8.00 12.42 0.10 

17 QC 2.00 2.00 0.45 0.39 0.10 0.57 230.36 7.05 7.58 0.10 

18 QC 2.00 2.00 0.59 0.10 0.10 0.98 162.64 6.97 12.63 0.17 

19 QC 2.00 2.00 0.50 0.84 0.10 0.54 57.39 8.00 14.85 0.10 

35 QC 2.00 2.00 2.00 0.11 0.10 1.61 64.6 4.0 13.93 0.10 
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20 MA 2.00 2.00 0.87 0.89 0.10 1.16 63.12 8.00 14.56 0.10 

21 MA 2.00 2.00 0.77 0.85 0.17 0.91 216.97 8.00 10.37 0.10 

22 MA 2.00 2.00 0.36 0.72 0.10 0.19 120.77 8.00 14.95 0.10 

23 NL 2.00 2.00 1.21 0.85 0.10 0.72 214.08 8.00 11.25 0.10 

24 NL 2.00 2.00 0.72 0.38 0.10 1.26 202.40 8.00 12.67 0.10 

25 NL 2.00 2.00 1.85 1.63 0.10 1.02 226.34 8.00 12.29 0.10 

26 NL 2.00 2.00 0.78 0.49 0.19 0.79 250.00 8.00 10.47 0.10 

27 NL 2.00 2.00 1.01 1.25 0.10 0.27 196.20 8.00 7.62 0.10 

28 NS 2.00 2.00 0.73 0.10 0.10 1.47 246.35 8.00 14.18 0.10 

29 NS 2.00 2.00 0.25 0.10 0.10 0.40 76.46 8.00 11.09 0.10 

30 NS 2.00 2.00 0.46 1.07 0.10 0.28 249.84 8.00 10.56 0.10 

31 PEI 2.00 2.00 0.45 0.90 0.10 0.24 215.62 7.93 6.99 0.10 

32 PEI 2.00 2.00 0.28 0.49 0.11 0.13 63.59 8.00 5.41 0.10 

33 PEI 2.00 2.00 0.10 0.10 0.14 0.21 80.59 7.29 9.55 0.10 

34 PEI 2.00 2.00 0.37 0.68 0.10 0.17 244.64 6.05 9.11 0.10 

Table S2: 𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆 water temperature model parameters 1395 

Watershed Province COPROM COLARG CRAYSO CRAYIN CEVAPO CCONV CRIGEL TNAP BASSOL CORSOL 

1 NB 2.00 2.00 0.88 0.34 0.10 1.69 206.58 8.0 12.10 0.10 

2 NB 2.00 2.00 1.04 0.79 0.10 1.08 198.80 8.0 12.49 0.10 

3 NB 2.00 2.00 0.78 0.10 0.14 1.27 249.38 5.3 10.28 0.11 

4 NB 2.00 2.00 0.44 0.38 0.10 1.03 214.31 6.6 6.70 0.10 

5 QC 2.00 2.00 0.46 0.10 0.31 0.99 178.51 6.3 10.98 0.10 

6 QC 2.00 2.00 1.03 0.10 0.10 0.69 125.73 8.0 11.08 0.10 

7 QC 2.00 2.00 1.47 0.19 0.10 1.66 123.16 8.0 5.46 0.10 

8 QC 2.00 2.00 0.33 0.10 0.10 0.57 250.00 6.9 7.39 0.10 

9 QC 2.00 2.00 1.04 0.94 0.10 0.87 247.82 8.0 10.85 0.10 

10 QC 2.00 2.00 0.56 0.40 0.25 1.28 83.75 8.0 5.11 0.10 

11 QC 2.00 2.00 0.25 0.10 0.10 0.24 96.02 8.0 15.00 0.10 

12 QC 2.00 2.00 0.42 0.14 0.25 0.66 248.04 6.2 14.40 0.10 

13 QC 2.00 2.00 0.43 0.10 0.44 0.49 101.05 8.0 11.52 0.10 
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14 QC 2.00 2.00 0.27 0.93 0.10 0.26 175.48 8.0 5.90 0.10 

15 QC 2.00 2.00 0.60 0.94 0.12 0.94 109.42 8.0 12.07 0.44 

16 QC 2.00 2.00 0.92 0.28 0.10 1.19 75.46 8.0 12.42 0.10 

17 QC 2.00 2.00 0.37 0.39 0.10 0.46 230.36 7.0 7.58 0.10 

18 QC 2.00 2.00 0.58 0.10 0.10 0.98 162.64 6.9 12.63 0.17 

19 QC 2.00 2.00 0.39 0.84 0.10 0.43 57.39 8.0 14.85 0.10 

35 QC 2.00 2.00 1.99 0.11 0.10 1.62 64.60 4.0 13.93 0.10 

20 MA 2.00 2.00 0.66 0.89 0.10 0.99 63.12 8.0 14.56 0.10 

21 MA 2.00 2.00 0.59 0.85 0.17 0.66 216.97 8.0 10.37 0.10 

22 MA 2.00 2.00 0.35 0.72 0.10 0.20 120.77 8.0 14.95 0.10 

23 NL 2.00 2.00 0.91 0.85 0.10 0.63 214.08 8.0 11.25 0.10 

24 NL 2.00 2.00 0.62 0.38 0.10 1.13 202.40 8.0 12.67 0.10 

25 NL 2.00 2.00 1.43 1.63 0.10 0.91 226.34 8.0 12.29 0.10 

26 NL 2.00 2.00 0.59 0.49 0.19 0.65 250.00 8.0 10.47 0.10 

27 NL 2.00 2.00 0.74 1.25 0.10 0.29 196.20 8.0 7.62 0.10 

28 NS 2.00 2.00 0.60 0.10 0.10 1.26 246.35 8.0 14.18 0.10 

29 NS 2.00 2.00 0.22 0.10 0.10 0.49 76.46 8.0 11.09 0.10 

30 NS 2.00 2.00 0.37 1.07 0.10 0.24 249.84 8.0 10.56 0.10 

31 PEI 2.00 2.00 0.30 0.90 0.10 0.18 215.62 7.9 6.99 0.10 

32 PEI 2.00 2.00 0.23 0.49 0.11 0.11 63.59 8.0 5.41 0.10 

33 PEI 2.00 2.00 0.10 0.10 0.14 0.14 80.59 7.3 9.55 0.10 

34 PEI 2.00 2.00 0.25 0.68 0.10 0.19 244.64 6.0 9.11 0.10 

Table S3: 𝑀𝑀𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆 water temperature model parameters 1396 
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