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ABSTRACT 

Over the last couple of decades, there has been a surge in various approaches to multiple-point statistics simulation, 

commonly referred to as MPS. These methods have aimed to improve several critical aspects of realism in the results, 

including spatial continuity, conditioning, stochasticity, and computational efficiency. Nevertheless, achieving a 

simultaneous enhancement of these crucial factors has presented challenges to researchers. In the approach that we 

propose, CCSIM is combined with the Discrete Wavelet Transform (DWT) to address some of these concerns. The 

primary step in the method involves the computation of the DWT for both the Training Image (TI) and a region shared 

with previously simulated grids at a specific level of wavelet decomposition. Then, the degree of similarity between 

the wavelet approximation coefficients is measured using a Cross-Correlation Function (CCF). These approximation 

coefficients offer a compressed representation of the pattern while capturing its primary variations and essential 

characteristics, thereby expediting the search for the best-matched pattern. Once the best-matched pattern in the 

wavelet approximation coefficients is identified, the original pattern can be perfectly reconstructed by integrating the 

DWT detail coefficients through an Inverse-DWT transformation. Experiments conducted across diverse categorical 

TIs demonstrate simulations comparable to multi-scale CCSIM (MS-CCSIM), accompanied by an enhancement in 

facies connectivity and pattern reproduction. The source code implementations are available at 

https://github.com/MBS1984/CCWSIM. 

 

Keywords: MPS simulation, Wavelet transform, Texture synthesis, Computational efficiency, Cross-Correlation, 

Computer graphics 
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1. Introduction 

Accurate characterization and modeling of geological heterogeneity, along with associated uncertainties, are essential 

in quantitative resource evaluation. This importance is particularly evident when utilizing geostatistical models for 

estimating extractable resources in reservoirs or assessing potential hazards related to groundwater pollution. This 

significance is demonstrated in industries such as oil and gas, hydrogeology, and mining [1]. 

The limitations of variogram-based geostatistics in characterizing and modeling complex and long-range curvilinear 

geological features, which hinder the accurate capture of geological connections, led to the introduction of MPS 

algorithm. In the realm of advancing MPS implementations, it becomes evident that dedicated efforts are directed 

toward enhancing several pivotal facets. These include enhancing physical realism (spatial continuity), optimizing 

data conditioning, and boosting computational efficiency, particularly within large-scale systems [2]. Striking the 

appropriate equilibrium among these elements unveils new opportunities for addressing intricate problems. 

In this research, we propose a new MPS implementation designed to rapidly simulate grids with millions of cells. 

Beyond its computational efficiency, the proposed methodology prioritizes the maintenance of spatial continuity and 

adherence to data conditioning principles to a considerable degree. To attain this objective, we incorporate CCF into 

the DWT to address some of the concerns mentioned earlier. Within our proposed method, the measurement of 

similarity between the TI patterns and data events takes place within the space of wavelet approximation coefficients. 

It is worth noting that each of these tools has been independently employed in geostatistical simulation [3-5]. However, 

in the current study we introduce a novel hybrid approach that combines these tools to enhance MPS simulation. 

The structure of this work is as follows: In Section 2, we introduce earlier works related to the subject. In Section 3, 

we provide some background necessary for understanding our proposal. In Section 4, we provide a detailed 

explanation of the proposed method. Moving on to Section 5, we perform examinations, benchmarking, and in-depth 

analyses of the proposed method using various test cases. Finally, in Section 6, we engage in a discussion and draw 

our conclusions. 

2. Related work 

After the first non-iterative MPS algorithm [6], ENESIM, a more efficient extension of the original algorithm based 

on Single Normal Equation Simulation (SNESIM) was created [7]. This concept involved the incorporation of search 

trees to retain all multiple-point statistics from the TI. To improve pattern connectivity in realizations and accelerate 

algorithmic performance, pattern-based algorithms have been developed. These algorithms draw inspiration from the 

computer graphics community [8]. Pattern-based MPS techniques provide an alternative approach to deriving 

conditional probabilities for random variables at different points. Here, a 'pattern' refers to a set of values defined by 

a specific template. For example, it could be a 20 by 20 square in a 2D context over the TI grid. This method inherently 

examines the probabilities of entire multiple-point patterns, conditioned on the specific data events associated with 

those points in the TI. At each node location, the technique identifies the data event using a template and systematically 

explores all patterns in the TI to find the most similar one. Subsequently, the identified pattern is applied to the 

Simulation Grid (SG), and this iterative process continues until all nodes on the SG are visited. The similarity search 

for the data event and patterns takes into consideration the conditioning of neighboring data values, giving priority to 

a local pattern similarity criterion over local conditional distribution [9]. 

In the evolution of MPS algorithms, the transition from pixel-based to pattern-based simulation began with the 

introduction of the SIMPAT algorithm [9]. In a similar vein, a pattern-based algorithm, incorporating specific 

adjustments and amalgamating SIMPAT with texture synthesis concepts, has been developed [9, 10]. Their approach 

involves the gradual expansion of a randomly placed patch within the SG. To reduce computation time for similarity 

computation, they utilized DWT to compress extracted patterns from the TI. To further enhance simulation speed, 

some researchers proposed the concept of clustering patterns into a limited number of clusters [11-13]. Derived from 

Shannon [14], a direct sampling (DS) method has been developed for finding the desired pattern from the TI based on 

a pre-defined threshold, instead of searching through a pattern database [15]. To reduce the substantial computational 

workload associated with DS, the bunch pasting method was proposed, employing a strategy of pasting a group of 

nodes at each step [16]. 

Taking cues from the advancements in computer vision highlighted in the original study [17], CCF was used to 

calculate pattern similarity using a raster path for simulation [3]. Building on the concept of Image Quilting (IQ), 



3 

 

minimal error boundary cuts between successive patches have been employed to enhance the spatial continuity of 

MPS simulation [18, 19]. 

2.1. Review of the MS-CCSIM (CCSIM) 

In CCSIM algorithm, the need to construct pattern data from small data events was obviated. The algorithm introduced 

a novel similarity function to compare the generated pattern with the TI, employing CCF along a raster path. This 

function seamlessly integrated with effective strategies to uphold continuity and faithfully reproduce patterns. The 

primary objective was to discern a pattern or a set of patterns that aligned with a specific data event (OR) within a TI. 

This process hinged on the utilization of CCF, acting as a metric to gauge the similarity between two patterns. 

Additionally, there was a substantial reduction in CPU usage by a factor of 30–80 and a considerable decrease in the 

memory requirements for computations [3]. 

Subsequently, a fast extension of the CCSIM algorithm emerged, known as MS-CCSIM, designed specifically for the 

rapid simulation of categorical variables. This enhancement centered around the implementation of a multi-scale (MS) 

framework, diverging significantly from conventional multi-grid methods found in established methodologies. Within 

the proposed multi-scale framework, the original high-resolution TI underwent a transformation, resulting in a 

pyramid structure comprising progressively coarse-grid perspectives of the TI. This pyramid not only expedited the 

identification of patterns but also facilitated their seamless integration over a mutually shared overlapping area with 

previously simulated patterns. The multi-scale perspective not only showcased its effectiveness in data conditioning 

but also contributed to accelerating the conventional CCSIM algorithm [20]. 

Recently, there have been novel implementations leveraging cutting-edge computer vision approaches. These 

implementations excel in swiftly and effectively reproducing TI [21]. Regrettably, a considerable portion of these 

implementations either entirely neglect conditioning or suggest very restricted conditioning capabilities. 

3. Background 

Before delving into the core components of the proposed method, it is essential to revisit some fundamental concepts 

of DWT and CCF in the context of the present study. 

3.1. Brief review of DWT 

DWT is a signal processing multi-resolution decomposition technique [22]. It breaks a signal into sets in both the 

frequency and spatial domains through the convolution of low-pass and high-pass filters. When considering an image 

as a 2D signal, DWT extracts important directional and omnidirectional features in the form of low and high-frequency 

coefficients [23]. DWT decomposes a signal into shifted and dilated wavelet functions (mother wavelet) 𝜓𝐵 and a 

scaling function  𝜙𝐿𝐿  forming an orthonormal basis in the square integrable Hilbert space L2 (ℜ2) function [24] . For 

a given image, DWT can be computed at different decomposition levels denoted by j (j=1, 2, …, J). In each 

decomposition level, one omnidirectional approximation coefficient (a) and three directional detail coefficients (H, V, 

D) in the horizontal, vertical, and diagonal directions are provided. It is important to note that each of the four sub-

bands has 
1

4𝑗 dimension of the original image, i.e., the number of dimensions depends on the decomposition level. If 

𝑇𝐼(𝑥, 𝑦) is considered as a 2D image with size N × N the DWT of TI at level j is formulated by [24, 25]: 

𝑇𝐼(𝑥, 𝑦) = ∑ 𝑎𝐽,𝑘,𝑖
𝑘𝑁𝑗−1

𝑘,𝑖=0 𝜙𝐽,𝑘,𝑖
𝐿𝐿 (𝑥, 𝑦) + ∑ ∑ ∑ 𝑍𝑗,𝑘,𝑖

𝐵𝑁𝑗−1

𝑘,𝑖=0
𝐽
𝑗=1𝐵∈𝐷 𝜓𝑗,𝑘,𝑖

𝐵 (𝑥, 𝑦), 

where 𝐵 = {𝐻, 𝑉, 𝐷}, 𝜙𝐽,𝑘,𝑖
𝐿𝐿 ≡ 2

−𝑗

2 𝜙(2−𝑗𝑥 − 𝑘, 2−𝑗𝑦 − 𝑖), 𝜓𝑗,𝑘,𝑖
𝐵 ≡ 2

−𝑗

2 𝜓𝐵(2−𝑗𝑥 − 𝑘, 2−𝑗𝑦 − 𝑖), 𝑁𝑗 = 𝑁 2𝑗⁄  

The terms 𝑎𝐽,𝑘,𝑖 = ∬ 𝑇𝐼(𝑥, 𝑦)𝜙𝑗,𝑘,𝑖𝑑𝑥𝑑𝑦 and 𝑍𝑗,𝑘,𝑖
𝐵 = ∬ 𝑇𝐼(𝑥, 𝑦) 𝜓𝑗,𝑘,𝑖

𝐵 𝑑𝑥𝑑𝑦 are approximation coefficients and detail 

coefficients at level j, respectively. 

The main steps to compute 2D DWT on a discrete signal are: 

• Convolution of image rows using low- and high-pass filters; 

• Down-sampling on filtered image columns; 

• Convolution of resulting image columns using same low- and high-pass filters; 

• down-sampling on the resulting image rows. 
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Consequently, after these analyzing steps, four DWT sub-bands are produced at each level of decomposition. Fig. 1 

illustrates a one level two-dimension DWT and its corresponding sub-bands. DWT approximation coefficients are 

capable of capturing the low-frequency variations within an image. Essentially, these coefficients encapsulate the most 

significant global variability present in the image. Furthermore, the inclusion of bijective filters, known as Inverse-

DWT, enables a smooth transition from the wavelet feature space back to the original space [22]. To clarify this topic 

Fig. 2 illustrates a TI alongside its corresponding DWT coefficients at two different decomposition levels. 

 

Fig. 1. One level 2D DWT on approximation coefficients (cAj) obtained from level j and four sub-bands at level 

j+1: approximation (𝑐𝐴𝑗+1), horizontal (𝑐𝐷𝑗+1
𝐻 ), vertical (𝑐𝐷𝑗+1

𝑉 ) and directional coefficients (𝑐𝐷𝑗+1
𝐷 ) [22] 

 
Fig. 2. Two levels of DWT: (a) the original image (b) approximation (cA2) and detail coefficients (𝑐𝐷(𝑉,𝐻,𝐷)) at two 

different levels. 

3.2. Combination of CCF and DWT 

The CCF serves as a fundamental technique in computer vision for pattern matching. It aids in identifying similarities 

or matches between a template pattern and an image. The process involves multiplying the pixel values of the template 

and the image and then summing up the result. Peaks in the matching score map correspond to locations where the 

template is most similar to the image region. However, when dealing with large images or templates, direct 

computation of the correlation at every possible position can be time-consuming. This is because the time complexity 

of CCF is directly proportional to the product of the image size and the template size, leading to significant 

computational overhead when working with large inputs. 

To tackle the aforementioned challenges, we present an innovative approach that merges the CCF with the DWT to 

pinpoint the most suitable pattern within TI. Following a single-level decomposition using the Haar mother wavelet, 

the approximation subband retains only a quarter of the total pixels from the original image. However, it's crucial to 
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emphasize that the information within the approximation coefficients is not lost; instead, it is efficiently stored within 

the detail coefficients. 

The concept behind the proposed method is to compute the CCF at a coarser level, utilizing the approximation 

coefficients from both the TI and the data event. This approach helps alleviate computational costs when compared to 

calculating the CCF at the original image resolution. The key advantage of this approach lies in the ability of 

approximation coefficients to capture low-frequency or global features that exist in both the TI and shared region in a 

pre-defined template called Overlapping Region (OR). Once a potentially matched pattern is identified within the 

approximation coefficients of the TI, it can be restored to its original form through a reverse transformation using the 

Inverse-DWT. A more detailed explanation of the proposed method will be provided in the subsequent sections. 

4. The proposed method: CCWSIM 

Within this section, we explore key concepts essential for gaining a comprehensive understanding of the proposed 

method. We begin by addressing the SG, raster path, OR. Following that, we delve into the details of conducting DWT 

for the compression of OR and TI. Subsequently, we elaborate on how the proposed method measures the similarity 

between patterns, identifies, and reconstructs desired patterns from approximation coefficients of TI. Fig. 3 illustrates 

the schematic workflow of the proposed method. In the following sections, we provide detailed insights into each step 

of this workflow. 

4.1. Simulation grid and overlapping region 

The first step involves establishing a lattice on the SG and a pre-defined raster path, which is determined by factors 

like dimensions of the SG, template size, and OR. The proposed method employs the concept of OR resembling the 

well-established image-quilting (IQ) technique used in texture synthesis [18]. To superimpose patterns along with the 

raster path, a small portion of the previously simulated pattern is defined as a data event (OR). The shape and size of 

OR change depending on the simulation's location, appearing as either an L-shaped or rectangular (vertical or 

horizontal). Three distinct scenarios for extracting OR unfold based on the location of the grids that are being 

simulated. Three potential scenarios in the proposed method are shown in Fig. 3a-c with blue regions. The simulation 

commences from the origin of the SG, progressing in a consistent trajectory either horizontally or vertically (see Fig. 

3a). During the geostatistical simulation, best-matched patterns with OR (detailed in the section 4.3 and 4.4) are 

positioned along the raster path within the SG. This approach to navigating the SG pixels is inspired by the 

methodology employed in MPS algorithms [26]. 

4.2. Computing DWT 

Once OR has been extracted from the SG, the subsequent task involves assessing the similarity between OR and the 

patterns within the TI. The computation of CCF takes place within the space of wavelet approximation coefficients. 

Therefore, it becomes essential to decompose both the TI and OR to a specified level of decomposition. Fig. 4 

illustrates the process of conducting a 2-level DWT using the Haar mother wavelet on both the TI and OR, 

encompassing their respective approximation coefficients. The Haar mother wavelet basis function stands out as a 

particularly suitable choice for binary images. The Haar mother wavelet, along with its corresponding scaling 

function, has been defined as described by [22]. 

𝜓𝐵(𝑡) = {
1

−1
0

                          
0 ≤ 𝑡 ≤ 1/2
1/2 ≤ 𝑡 ≤ 1
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                 ,      𝜙𝐿𝐿(𝑡) = {
1
0

                    
0 ≤ 𝑡 ≤ 1
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

4.3. Computing similarity using CCW 

For a given TI and OR, we introduce a new criterion called CCW that measures the similarity between the TI patterns 

and OR patterns through approximation coefficients, which is formulated for pixel locations (s,t) as follows: 

𝐶𝐶𝑊(𝑥, 𝑦) =  ∑ ∑ 𝑐𝐴𝑗
𝑇𝐼(𝑥 + 𝑠, 𝑦 + 𝑡). 𝑐𝐴𝑗

𝑂𝑅(𝑠, 𝑡)

𝑀𝑗−1

𝑠=0

𝑁𝑗−1

𝑡=0

 

where 𝑁𝑗 =
𝑁

2𝑗, 𝑀𝑗 =
𝑀

2𝑗 , 𝑐𝐴𝑗
𝑇𝐼 and 𝑐𝐴𝑗

𝑂𝐿  are the approximation coefficients of TI and OR at level j, respectively. 
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Fig. 3. A schematic illustration of the proposed method workflow. (a-c) The SG with three distinct OR scenarios 

from previously simulated patterns, (d) computing wavelet transform between TI and OR and (e) selecting best-

matched pattern (For interpretation of the references to color in this figure legend, please refer to the online version 

of this article) 

 

Fig. 4. Conducting 2-level DWT on both the TI and OR, along with their respective wavelet approximation 

coefficients. 
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The size of TI after undergoing j level(s) of decomposition is denoted as 𝑀𝑗 × 𝑁𝑗. Consequently, the size of the original 

pattern can be significantly reduced depending on the wavelet decomposition level. For instance, consider a 2D TI 

with dimensions of 2000 × 2000 (4,000,000 pixels). When subjected to the 3 levels (j=3) of wavelet decomposition, 

the vector's length shrinks from 4,000,000 pixels to 62,500 pixels (250 × 250), representing a substantial reduction. 

This computational advantage also extends to OR. 

The key feature introduced by the proposed method is the integration of CCF with DWT to measure the similarity 

between patterns. In contrast to conventional interpolation techniques such as bicubic interpolation, the proposed 

method utilizes DWT for feature extraction and compression of the pattern. After computing the approximation 

coefficients of OR (data event) and TI (𝑐𝐴𝑗
𝑇𝐼) at a specific DWT level, their similarity is measured through CCW. 

During this process, CCW score map is examined to identify locations of patterns with the highest similarity to the 

approximation coefficients of OR (𝑐𝐴𝑗
𝑂𝑅) using the CCW score (see Fig. 3d). 

4.4. Identifying and reconstruction a best-matched pattern 

After calculating the CCW score map, the pattern selection process differs depending on the simulation type, whether 

it is unconditional or conditional. In unconditional simulation, the procedure entails sorting the CCW scores, selecting 

a specific number of top-ranked candidates’ locations, and then performing a random draw to determine the location 

of the best-matched pattern. The pseudocode provided in Algorithm 1 summarizes the unconditional simulation 

through the proposed method. In line 2, DWT of the TI is computed based on a user-defined level (j). To introduce 

variability between realizations, variations in the origin of the raster path are implemented (line 3). At each location l 

= (x, y), if no simulated pattern exists in the SG, a pattern is randomly selected from the TI (lines 5 and 6). 

Subsequently, OR is extracted from the previously simulated pattern, and its DWT at level j is computed (lines 8 and 

9). Moving to line 10, CCW score between the approximation coefficients of the TI and OR are computed. Based on 

the score map, K top-ranked candidates are selected, and one candidate pattern is randomly drawn (lines 11 and 12). 

Finally, the Inverse-DWT of the selected pattern, using detail coefficients, is computed, and the reconstructed 

(original) pattern is pasted into the SG (lines 13 and 14). Fig. 5 provides a visual illustration of the identification and 

reconstruction of best-matched patterns in the proposed approach. 

Algorithm 1 

Pseudocode for unconditional simulation using the proposed method 

Require: TI= Training Image 

Require: Tsize = Template size 

Require: ORsize = Overlapping Region size 

Require: J = Wavelet decomposition level 

Require: K= Maximum candidate patterns 

Require: nr= Number of realizations 

1:   𝐟𝐨𝐫 r = 1 to 𝐧𝐫𝐞𝐚𝐥 𝐝𝐨 

2:          𝐜𝐀𝑱
𝑻𝑰 ← compute DWT of 𝐓𝐈 at  level 𝑱 

3:          simulation_path ← Randomize(origin, direction) 

4:          𝐟𝐨𝐫 each location 𝒍 in the SG 𝐝𝐨 

5:                 if there is no simulated patch in the SG then 

6:                    select randomly a patch from TI 

7:                 else 

8:                       𝐎𝐑𝒍 ← extract ovelapping region 

9:                       𝐜𝐀𝑱
𝐎𝐑 ← compute DWT𝐽( 𝐎𝐑𝒍) 

10:                     𝐂𝐂𝐖𝒍 ← compute CCW( 𝐜𝐀𝑱
𝑻𝑰 , 𝐜𝐀𝑱

𝐎𝐑)  

11:                     𝐜𝐚𝐧𝐝_𝐩𝐚𝐭𝐭𝐫𝐞𝐧 ← find 𝐊 best candidate patterns   
12:                     𝐬𝐞𝐥_𝐩𝐚𝐭𝐭𝐞𝐫𝐧 ← drawn randomly (𝐜𝐚𝐧𝐝_𝐩𝐚𝐭𝐭𝐫𝐞𝐧) 

13:                     𝐫𝐞𝐜_𝐩𝐚𝐭𝐭𝐞𝐫𝐧 ← Inv − DWT(𝐬𝐞𝐥_𝐩𝐚𝐭𝐭𝐞𝐫𝐧) 

14:                     SG(𝒍) ← paste(𝐫𝐞𝐜_𝐩𝐚𝐭𝐭𝐞𝐫𝐧) 

15:               end if 

16:        𝐞𝐧𝐝 𝐟𝐨𝐫 

17: 𝐞𝐧𝐝 𝐟𝐨𝐫 
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For conditional simulation, a methodology reminiscent of that introduced by [20] is adapted. In this context, a virtual 

template encompassing the Template (T) is considered and partitioned into two distinct segments: a causal region that 

governs the conditional location within T, and a non-causal region that incorporates conditional data originating from 

a pioneering region within the virtual template. Therefore, after the similarities (CCW) are sorted, a sequential search 

strategy is employed to identify the location of a best-matched pattern, while simultaneously ensuring the preservation 

of conditional data within both the causal and non-causal regions. Further insights into the data conditioning process 

can be found in the original paper [20]. 

5. Experiments  

All simulations in this research were performed using MATLAB on a laptop equipped with an Intel Core i7 processor 

running at 2.6 GHz and 16 GB of RAM. 

5.1. Unconditional simulation 

In the initial experiment, we utilized the proposed method to create unconditional realizations using the Channel TI. 

Fig. 6 displays the Channel TI, simulation input parameters, and various unconditional realizations generated through 

the proposed method. The realizations appear to be satisfactory in terms of preserving the pattern and overall 

continuity. 

 
Fig. 5. Schematic illustration of the identification and reconstruction of best-matched patterns using the CCW score 

map in the proposed method. 
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5.2. Conditional simulation 

Data conditioning, particularly hard data conditioning in geostatistical simulations, is a crucial aspect that involves 

integrating and honoring real-world data collected in the field. In the following sections, we assess the performance 

of the proposed method in various conditional simulations. To ensure consistent conditioning data with matching 

histogram and variogram patterns for all conditional simulations in this study, the process starts by generating an initial 

unconditional realization. Then, random samples are selected from this initial realization as hard data. 

 

Fig. 6. (a) The Channel TI [7] and (b) three unconditional realizations obtained using the proposed method (average 

CPU time: 6.52 seconds). 

A set of 100 realizations was generated using the TI displayed in Fig. 6a. Three individual realizations, simulation 

input parameters and ensemble average map of 100 realizations are depicted in Fig. 7a, b, respectively. The conditional 

realizations not only faithfully honor the provided conditioning data but also strive to preserve the connectivity of the 

channels. Additionally, the ensemble average map in the vicinity of the conditional locations highlights the structure 

of the channels. On average, the proposed method has attained convergence in locations near the conditional hard 

data. 

The performance of the proposed method was assessed using a different TI that incorporates facies with a higher 

degree of complexity, derived from a satellite image of the Ganges delta in Bangladesh. Fig. 8 displays the TI, various 

conditional realizations generated using the proposed method, and the locations of the conditional hard data. The 

outcomes indicate that the proposed method is well-suited for reproducing complex pattern structures, preserving 

continuity, and adhering to hard data conditioning. 

5.3. Validation of the results 

In this section, we validated the simulation results of the proposed method using two metrics: the variogram and the 

probability of connection. The graphical representation of these metrics is shown in Fig. 9a, b, encompassing the 

variograms and the probability of connection associated with both the Channel TI in Fig. 6a and the set of 100 

realizations generated through the proposed method. Variograms were computed along two cardinal axes: the North-

South and East-West directions. Because of the dominant continuity of channels in the East-West orientation, the 

evaluation of the probability of connection was limited to this specific direction. It appears that the proposed approach 

allows reaching an acceptable level of consistency in reproducing the variograms and the probability of connections 

with the TI, particularly within the specified direction. 
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Fig. 7. Conditional simulations using the proposed method: (a) three distinct conditional simulations and (b) the 

ensemble average map obtained from 100 conditional realizations using the proposed method (average CPU time: 

2.42 seconds). Conditional hard data are indicated by blue and red circles. 

 

Fig. 8. Conditional realizations of the Gange delta TI obtained using the proposed method (average CPU time: 7.7 

seconds). The blue and red circles mark the positions of the conditional data. (For interpretation of the references to 

color in this figure, the reader is referred to the web version of this article) 



11 

 

 
Fig. 9. (a) The variograms and (b) the probability of connection for the Channel TI and 100 realizations obtained 

from the proposed method. 

5.4. Benchmarking 

In this section, we evaluated the performance of the method by benchmarking it with MS-CCSIM algorithm, which 

is available at https://github.com/SCRFpublic/MS_CCSIM [20]. MS-CCSIM was specifically developed to enhance 

computational efficiency for large-scale categorical systems. Both MS-CCSIM and the proposed method share the 

common objective of expediting the simulation process by searching for desired patterns within a coarse-grid TI. The 

first comparative study involves generating conditional simulations using Fig. 6a at various multi-scale and wavelet 

levels. Additionally, different sets of conditional hard data were introduced into the conditional simulation to assess 

their impact on the simulation results. Comparative results for the proposed method and MS-CCSIM, obtained from 

different multi-scale levels, wavelet levels, and conditional hard data, are presented in Fig. 10. Upon visual inspection, 

it appears that the proposed method generates patterns with spatial continuity that align more with the TI. 

In the next comparative experiment, conditional realizations were generated using a categorical version of the 

Stonewall TI (Fig. 11a). For this experiment, 300 conditional hard data points were extracted from a reference image. 

Conditional simulation, input parameters and different realizations generated through MS-CCSIM and the proposed 

method are shown in Fig. 11. It appears that the proposed method produces patterns with fewer discontinuities when 

compared to MS-CCSIM. 

5.5. Quantitative evaluation 

By using Analysis of Distance (https://github.com/SCRFpublic/ANODI) introduced by [27], one can quantitatively 

evaluate the performance of MPS implementations. This metric is constructed based on two key components: between-

realization variability and within-realization variability. Between-realization variability measures the spatial 

uncertainty within a set of realizations, while within-realization variability assesses the algorithm's ability to reproduce 

the patterns present in the TI. These measures are presented as a ratio described in the following equation: 

𝑟(𝐴,𝐵) = ∑ 𝑤𝑝

𝑃

𝑝=1

𝑑(𝐴,𝐵)
𝑏𝑒𝑡𝑤𝑒𝑒𝑛

𝑑(𝐴,𝐵)
𝑤𝑖𝑡ℎ𝑖𝑛

 

where w is the corresponding weights at the level of resolution p. 

https://github.com/SCRFpublic/MS_CCSIM
https://github.com/SCRFpublic/ANODI
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Fig. 10. Conditional simulations obtained through the proposed method and MS-CCSIM algorithm using different 

multi-scales, DWT levels and conditional hard data. The positions of the conditional hard data in the proposed 

method are indicated by circles in both blue and red colors. 

If algorithm A performs better in terms of spatial uncertainty, then 𝑑(𝐴,𝐵)
𝑏𝑒𝑡𝑤𝑒𝑒𝑛  will be greater than 1. Conversely, if it 

excels in pattern reproduction, 𝑑(𝐴,𝐵)
𝑤𝑖𝑡ℎ𝑖𝑛 will be less than 1. Therefore, 𝑟(𝐴,𝐵) greater than 1 indicates that algorithm A 

outperforms algorithm B. 

In the present study, between-realization variability is computed by averaging Jensen-Shannon divergence values 

pairwise among the 50 realizations across three resolution levels and 8 × 8 window size. In addition, within-realization 

variability is determined by averaging Jensen-Shannon divergence values between the 50 realizations and the TI across 

these same three resolution levels. Quantitative comparisons are conducted between MS-CCSIM and the proposed 

method using different TIs are shown in Fig. 6a and Fig. 11a. The results, which encompass both within and between 

variability, for three resolution level are summarized in Table 1. In most cases, 𝑑(𝐴,𝐵)
𝑏𝑒𝑡𝑤𝑒𝑒𝑛  falls below 1, indicating that 

MS-CCSIM exhibits greater variability between realizations (spatial uncertainty). Conversely, within-realization 

variability ratios are lower than 1, signifying that the proposed method more faithfully reproduces the patterns of the 

TI. The 𝑟(𝐴,𝐵) (where A and B represent the proposed method and MS-CCSIM, respectively) surpass 1 (1.01 and 1.19) 

for the Channel and Stonewall TIs, respectively. This suggests that the proposed method outperforms MS-CCSIM, 

especially in the case of the Stonewall TI. 

In addition, for visual inspection Fig. 12a, b displays the Multidimensional Scaling (MDS) of 50 realizations for Fig. 

6a and Fig. 11a, respectively . In each plot, the black dot denotes the TI, while the blue and green points represent 

realizations generated with MS-CCSIM and the proposed method, respectively. The axes were omitted to emphasize 

the relative distances between points. 
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Fig. 11. Conditional simulations obtained from the proposed method and MS-CCSIM algorithm. In the proposed 

approach, circles of both blue and red colors denote the locations of the conditional hard data. (For interpretation of 

the references to color in this figure legend, please refer to the online version of this article) 

5.6. Quantifying computational gain 

To evaluate the computational efficiency of the proposed approach, we conducted a comprehensive study. In the first 

experiment in this section, the average CPU times for 20 conditional simulations of the TI in Fig. 6a, considering three 

different DWT levels and five SG sizes were recorded, as depicted in Fig. 13. As the DWT level increased from 1 to2,  

Table 1 Between and within-realization variability ratio for three resolution levels obtained from the proposed 

method and MS-CCSIM. 

  𝑑(𝐴,𝐵)
𝑏𝑒𝑡𝑤𝑒𝑒𝑛     𝑑(𝐴,𝐵)

𝑤𝑖𝑡ℎ𝑖𝑛   𝑟(𝐴,𝐵) 

TI Level 1 Level 2  

 

Level 3  Level 1 Level 2 Level 3   

Fig. 11a 0.95 0.92 1.02  0.79 0.79 0.95  1.19 

Fig. 6a 0.79 0.78 0.88  0.78 0.77 0.99  1.01 
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Fig. 12. MDS plots to illustrate the variability and pattern reproduction in both MS-CCSIM and the proposed 

method realizations, (a) Channel (Fig. 6a) and (b) Stonewall (Fig. 11a). (For interpretation of the references to color 

in this figure, the reader is referred to the web version of this article) 

the CPU times decreased on average by 54.8% across various SG sizes. This reduction in computational cost after 

each DWT level follows an exponential trend, owing to the exponential nature of dimension reduction. Therefore, 

the improvement in computational efficiency from the second DWT level to the third DWT level is notably lower 

(17.4%) than the efficiency gain observed when transitioning from the first DWT level to the second DWT level. 

 
Fig. 13. Average CPU times for five different SG sizes using the TI in Fig. 6a at different DWT levels (1, 2 and 3). 

In the next experiment, we extensively compared CPU times between the proposed method and MS-CCSIM (CCSIM), 

considering various TIs and related parameters such as multi-scale level, DWT level, and conditional data. For each 

scenario, we recorded average CPU time for simulating 20 conditional realizations using two sets of conditional data 

(1000 and 2000 sample points) for Channel (Fig. 6a), Stonewall (Fig. 11a), and Gang delta (Fig. 8a) TIs.  

Table 2 Comparison of average CPU time (s) for MS-CCSIM (CCSIM) and the proposed method using different 

TIs, muli-scale, DWT levels and conditional data (CD). 

Algorithm Channel   Stonewall   Gange delta  

  1000 CD 2000 CD   1000 HD 

 

2000 CD  1000 HD 

 

2000 CD  

MS-CCSIM (level 1)  26.78 41.18   14.53 21.62   30.57 42.52  

MS-CCSIM (level 3)  2.35 3.42   1.93 3.05   2.52 3.35  

Proposed (level 1)  10.45 23.09   9.27 16.76   14.71 28.18  

Proposed (level 3)  2.49 2.82   2.3 2.45   2.75 2.91  
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The realizations have a grid size of 512 × 512 pixels, generated with a template size of 32 × 32 and an OR size of 8. 

Table 2 presents the average CPU time in seconds for MS-CCSIM (CCSIM) and the proposed method. 

5.7. Dense data conditioning 

In essence, the proposed method involves selecting best-matched patterns from a coarse-scale TI within a compact 

space. In situations characterized by dense data, there may be concerns about the algorithm's ability to maintain pattern 

continuity. To address this concern, we conducted conditional simulations using 4,000 and 8,000 hard data points 

sampled from reference images to assess the effectiveness of the proposed method in the context of dense hard data. 

Fig. 14 and Fig. 15 illustrate the reference images and three distinct realizations generated by the proposed method, 

along with the TI in Fig. 6a and Fig. 11a. While some discontinuity artifacts may be observed in the realizations, it is 

evident that the proposed method demonstrates a tendency to preserve pattern connectivity even in the presence of 

dense hard data.  

 

Fig. 14. (a) Reference image for Channel TI and (b) three conditional simulations generated using the proposed 

method (average CPU time: 1.06 seconds). 

5.8. Muti-facies TI 

In the next experiment, a multi-facies TI was chosen to validate the proposed method incorporating multivariable TI. 

100 conditional simulations utilizing the TI showed in Fig. 16a were generated. The simulation parameters, the 

reproduction of facies proportion (%) in 100 realizations (solid lines) and TI (dotted lines), as well as three conditional 

realizations of the multi-facies TI obtained through the proposed method, are illustrated in Fig. 16b, c. The average 

CPU time for a 1000×1000 SG size was recorded at 3.50 seconds using 2-level DWT. Notably, the proposed method 

demonstrated the capability to achieve an acceptable quality, signifying its proficiency in accurately representing the 

characteristics of the multi-facies TI. 

5.9. Nonstationary TI 

In the last example, we evaluated the performance of the proposed method in the case of a nonstationary TI. A concern 

arises because the proposed method utilizes DWT approximation coefficients for computing the similarity between 

Bangladesh was selected. The nonstationary TI, ensemble average of 100 conditional simulations, and three different 
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Fig. 15. (a) Reference image for the Stonewall TI and (b) three conditional simulations generated using the proposed  

 

Fig. 16. (a) A Muti-facies TI, (b) The reproduction of facies proportion (%) in 100 realizations (solid lines) and TI 

(dotted lines) and (c) three conditional realizations of the muti-facies TI obtained using the proposed method. 
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patterns, which poses challenges in simulating nonstationary TIs containing structures on several scales and 

orientations. To clarify this limitation, a categorical version of a satellite image depicting the Sundarbans region in 

realizations are shown in Fig. 17. It seems that the proposed method faced challenges in reproducing fine-scale 

structures on the TI; however, the realizations and ensemble average indicate a level of agreement with TI patterns. 

Nonetheless, it is important to note that the proposed method is an extended version of the original CCSIM, which 

was not specifically designed for simulating nonstationary TIs. 

 
Fig. 17 Conditional simulations using nonstationary TI (a) a categorical satellite image showing the Sundarbans, 

Bangladesh, (b) the ensemble average map obtained from 100 conditional realizations and (c) three distinct 

conditional simulations using the proposed method. 

6. Discussion and conclusion 

In this research, we introduced a wavelet-based implementation of the CCSIM algorithm for characterizing large-scale 

categorical systems. By computing the CCF within the DWT coefficient space, we achieved a notable reduction in 

CPU time, especially when transitioning from the first level of decomposition to the second. 

While 75% of the details in the original pattern are discarded at each level of DWT decomposition, the evaluation 

results reveal a favorable balance between efficiency and accuracy in our proposed method. Quantitative comparisons 

indicate that the proposed method generates realizations on par with MS-CCSIM, with slight enhancements in 

reproducing TI patterns, at a lower or comparable computational cost. 

An intriguing feature of approximation coefficients is their ability to retain potential matching patterns effectively 

after DWT decomposition, all while achieving significant dimension reduction. Essentially, what sets the proposed 

method apart is its departure from conventional interpolation techniques (like bi-cubic) for generating coarse-scale 

patterns. Instead, it utilizes DWT as an efficient tool for feature extraction. 

Finally, from an industrial standpoint, it is noteworthy that no commercial implementation currently exists, given the 

research-oriented nature of this work. Nonetheless, one could endeavor to implement the algorithm in the C 

programming language, extending it into a three-dimensional (3D) context. This undertaking is feasible due to the 

utilization of wavelet transformation applicable in 3D domains. Such an implementation would assist practitioners in 

achieving a fast MPS implementation for characterizing large-scale geological domains with fewer artifacts and 

discontinuities. 
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