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An interpretable machine learning model
for seasonal precipitation forecasting
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Seasonal climate forecasting is important for societal welfare, as it supports decision-makers in taking
proactive steps to mitigate risks from adverse climate conditions or to take advantage of favorable
ones. Here, we introduce TelNet, a sequence-to-sequence machine learning model for short-to-
medium lead seasonal precipitation forecasting. The model takes past seasonal precipitation values
and climate indices to predict an empirical precipitation distribution for every grid point of the target
region for the next six overlapping seasons. TelNet has a simple encoder-decoder-head architecture,
allowing the model to be trained with a limited amount of data, as is often the case in climate
forecasting. Its deterministic and probabilistic performance is thoroughly evaluated and compared
with state-of-the-art dynamical and deep learning models in a prominent region for seasonal
forecasting studies due to its high climate predictability. The training, validation, and test sets are
resampledmultiple times to estimate the uncertainty associatedwith a small dataset. The results show
that TelNet ranksamong themost accurate andcalibratedmodels acrossmultiple initializationmonths
and lead times, especially during the rainy season when the predictable signal is strongest. Moreover,
the model allows instance- and lead-wise forecast interpretation through its variable selection
weights.

Recent developments in sequence-to-sequence (seq2seq) machine
learning models led to increased machine learning-based weather pre-
diction (MLWP) models. The Convolutional Long-Short Term Memory
(ConvLSTM) network was one of the first seq2seq models employed for
precipitation nowcasting1. The model successfully captured the spatio-
temporal patterns of its training dataset, outperforming previous state-
of-the-art nowcasting models. Nevertheless, Long-Short Term Memory
(LSTM) networks are limited in modeling very long sequences2. The self-
attention mechanism, part of the transformer model3, solved these issues
and led to a new generation of MLWP. For instance, MetNet was
developed based on axial self-attention mechanism4 for probabilistic
precipitation forecasts up to 8 h lead time and at a 1 km spatial
resolution5. ClimaX, a foundation model for weather and climate mod-
eling, was built upon vision transformer6 and able to cover a great range
of tasks such as nowcasting, weather and subseasonal-to-seasonal (S2S)
forecasting, and climate projections7. GraphCast8 was recently intro-
duced for deterministic medium-range weather forecasts. It was based on
Graph Neural Networks (GNN)9,10, a network suitable for learning
complex physics, such as weather dynamics. GenCast11, a diffusion model
developed as an adaptation of GraphCast for probabilistic forecasting,
also used transformer blocks in addition to GNNs. GraphCast and
GenCast models outperformed the state-of-the-art European Centre for

Medium-Range Weather Forecasts (ECMWF) weather forecasting sys-
tem in several cases.

Numerical weather prediction (NWP) models, also known as dyna-
mical models, map the current state of the atmosphere to future states by
deterministically solving a set of partial differential equations thatmodel the
atmospheric dynamics. The rapid growth of uncertainty in the initial
atmospheric condition andmodels’ imperfect representations12,13 result in a
limited forecasting horizon. Additionally, it is essential to track how the
initial condition uncertainty evolves, which is done through ensemble
forecasting. Ensemble forecasting uses the Monte Carlo method to
approximate a stochastic dynamic forecast by repeatedly sampling from the
initial condition probability distribution and running it through the deter-
ministic NWP model14. This process is highly time-consuming and com-
putationally intensive.

In contrast, MLWP models take advantage of other stochastic fore-
casting approaches that are faster at inference time and only computa-
tionally intensive at training time. For instance, MetNet directly maps a set
of initial conditions to a probability distribution of target weather
conditions5. GenCast11 features a diffusion model that iteratively refines a
possible candidate state, initialized as pure noise, conditioned on the pre-
vious two atmospheric states. The process is repeated with different noise
samples to generate an ensemble of forecasts. Another example is the
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Ensemble of Artificial Neural Networks15 for seasonal precipitation fore-
casting trained with different subsets of the original training set generated
through the Bagging algorithm16.

Most of the seq2seq MLWP models mentioned previously were imple-
mented for weather forecasting. In terms of seasonal forecasting, there is a gap
in the applicability of these models for two main reasons: (1) Deep Neural
Network (DNN) models are usually highly complex with millions of para-
meters, requiring a big dataset to learn its patterns properly. Climate datasets
have a limited number of samples, i.e., they have only a few samples per year,
whereas weather datasets can have thousands of samples per year; (2) weather
forecasting is an initial condition problem, i.e., the next state of the atmosphere
is conditioned on the previous ones, whichmakes autoregressive models, such
as seq2seq models, perfectly suitable for the task. Seasonal forecasting is a
boundary condition problem in which the future climate state depends more
on interactions of the atmosphere with its boundaries, such as land and ocean,
than on its previous states. In this context, large-scale climate oscillations (for
short, climate oscillations) are recurring patterns of variability of the atmo-
sphere circulation or coupled atmosphere-ocean system. Climate oscillations
trigger teleconnection patterns, i.e., energy transport and wave propagation in
the atmosphere and ocean circulation, that result in remote climate anomalies
across the globe17–19. Thus, climate oscillations yield climate predictability to
some regions due to their teleconnections, and using their information in
regression models is a natural choice for seasonal forecasting20–24.

In this study, we introduce TelNet, an interpretable seq2seq model for
probabilistic seasonal precipitation forecasting that considers past pre-
cipitation information in an autoregressive manner and climate oscillation
indices as covariates. To the best of the authors’ knowledge, seq2seqmodels
were not yet employed for probabilistic seasonal forecasting. The model
architecture is simpler than other seq2seq models to compensate for the
limited number of samples available (Fig. 1). Moreover, we use overlapping
seasonal values as an augmentation strategy to maximize the number of
training samples. As will be shown in the following section, TelNet’s fore-
casting skill ranks among the most accurate and calibrated models across
multiple initialization months and lead times in a prominent region for
seasonal forecasting studies.

Results
Comparison of TelNet with baseline models
This section compares TelNet and six baseline models deterministic and
probabilistic performances. Only the results of forecasts made for seasons

that match dynamical models forecasts and that do not overlap with the
season of the input data are shown. For instance, if the latest seasonal state
available is November-December-January, themodel can issue a forecast in
early February for the next six overlapping seasons, from December-
January-February (DJF) toMay-June-July (MJJ), butwe only present results
for the last three seasons (MAM, AMJ, MJJ).

The model is evaluated for the state of Ceara in northeastern Brazil.
This region is one of the most predictable regions worldwide in terms of
seasonal forecasting25,26, where both empirical and dynamical models have
high forecasting skills27. The seasonal precipitation cycle in the state ofCeara
has a well-defined rainy period from mid-December to mid-July, which is
further divided into three seasons, i.e., the pre-season inDJF,main season in
March-April-May (MAM) and post-season in JJA, each with different
dynamical rainfall precursors. In thepre-season, the rainfall is closely related
to upper-level cyclonic activity associated with the South American mon-
soon system28. The main season accounts for over 70% of the total annual
rainfall, and its main rain-bearing system is the Intertropical Convergence
Zone (ITCZ). The ITCZ positioning during this season depends on the
inter-hemispheric gradient of SST anomalies in the tropical Atlantic
sector29. Finally, post-season rainfall only accounts for about 7% of the total
annual rainfall and it is closely related to easterly waves that form inwestern
Africa, propagate through the Atlantic, and reach the South American
coast30. The rest of the year is mostly dry with low seasonal totals, such as
11mm on average in September-October-November (SON). Therefore,
accurate forecasts for the year’sfirst half are of great importance for sectorial
decision-making in the state.

The median Root Mean Squared Error Skill Score (RMSESS) and
Ranked Probability Skill Score (RPSS) scorebars are shown in Fig. 2 and
Fig. 3, respectively. TelNet outperforms the baseline models across sev-
eral initialization months and lead times, with accuracy improvement
exceeding 30% in some cases. However, the large error bars highlight
substantial variability in the skill scores due to differences in the testing
samples. This variability is more pronounced for RMSESS compared to
RPSS. Moreover, RPSS tends to improve as the forecasts approach the
rainy season, whereas most dynamical models outperform TelNet during
the dry season. Subsequently, we will discuss the models’ performance for
short- and medium lead forecasting. We examine the lead-1 forecasts
issued in February and the lead-3 forecasts issued in November, as these
forecasts target the rainy season when the predictable signal is strongest
throughout the year.

Fig. 1 | Schematics of the input dataset structure and model architecture. The
model receives Xcov, Xlag, and Xstatic, alongwith a binarymask. Gray pixels in Xlag
represent masked grid points. The input data set first goes through an encoder that
maps the different arrays into model dimension D. The processed arrays go through
a decoder that weights the features according to their importance and aggregates

them, followed by an LSTM. Finally, the prediction headmaps the decoder output to
an empirical distribution of standardized precipitation anomalies for every grid
point. The model also outputs the variables selection weights, allowing the user to
interpret the feature importance lead- and instance-wise.
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The median RMSESS (RPSS) for the MAM forecasts issued in Feb-
ruary (lead 1), shown inFig. 2 (Fig. 3), indicates thatTelNetoutperformsfive
(four) baseline models. The only exception is SEAS5 that yields up to a 17%
(4%) improvement over TelNet in RMSESS (RPSS). Themedian skill scores
forApril-May-June (AMJ) forecasts are similar to those forMAM, although
TelNet’s performance shows an overall decrease. ForMJJ forecasts, the skill
scores decrease further, with most models performing similarly to TelNet.
However, SEAS5 outperforms TelNet by over 20% (15%) in deterministic
(probabilistic) forecasting. In contrast, ClimaX underperforms TelNet by
20% in terms of RMSESS.

We further analyze the MAM forecasts issued in February by com-
paring the sample-mean spatial distribution of Root Mean Squared Error
(RMSE) and Ranked Probability Score (RPS) across the models (Figs. 4
and 5). TheRMSEpatterns are generally consistent among themodels, with
smaller errors in the north than in the southern region. However, ClimaX
exhibits the highest errors in the northernmost region, while GFDL yields
the largest errors overall, especially in the south. SEAS5 presents the lowest
RMSE in the north, whereas TelNet shows the lowest error in the southern
region.TheRPSmaps showa similar pattern across themodels,with smaller
errors in the north than in the south.Whilemostmodels performwell in the
north, only TelNet and SEAS5 present small errors in the south. TelNet
achieves the lowest sample-mean RPS.

Themodels rank histogram (Fig. 6) and reliability diagrams (Fig. 7) are
analyzed next to assess other important attributes of probabilistic fore-
casting. Bothdiagrams’ statistics have been computedusing area-aggregated
statistics. Therefore, these results should be interpreted carefully given the
high dimensionality of the verification problemand the small test set, which
also shows substantial spatial correlation.

The rank histograms (Fig. 6) show that CCSM4 and GEM-NEMO are
prone to under-dispersion, whereas GFDL and SEAS5 are slightly over-
dispersed. CanCM4i ensemble members frequently overestimate observa-
tions, leading to a highly populated first bin. TelNet shows the flattest
histogrambut has large error bars, highlighting its sensitivity to the choice of
the test set.

The reliability diagram (Fig. 7) reveals that TelNet and SEAS5 are
calibrated for the Below Normal (BN) category (red curves), although both
show an under-forecasting bias. The BN sharpness diagrams (red bars) of
these twomodels are different,with SEAS5 featuring apositively skewedand
TelNet a symmetric marginal distribution. The other four models show
worse reliability and resolution thanTelNet and SEAS5 for the BNcategory,
featuring over-confidencewhen assigning high probabilities. For the Above
Normal (AN) category (blue curves in Fig. 7), SEAS5 is the most reliable
model, although it exhibits an over-forecasting bias. The other models
display poor calibration.The large error bars in theANcalibration functions
suggest high uncertainty, possibly due to the scarcity of wet events in the
region over the last 20 years. Specifically, only three wet events occurred
during Ceará’s rainy season within the test period, compared to seven dry
events, including a multi-year drought from 2012 to 201631.

To analyze the performance of TelNet for extreme events, Supple-
mentary Fig. 1 shows the February-issued MAM rank histogram for events
where the absolute observation value exceeds one standard deviation. The
rank histogram shows that TelNet is prone to underestimation bias which is
further evidenced in the MAM forecast examples from the test set of an
extremely wet (Supplementary Fig. 2) and dry (Supplementary Fig. 3),
respectively. Biased estimates of extreme values are a well-known issue of
statisticalmodels trainedwith loss functions such as theMean SquaredError

Fig. 2 | Median RMSESS [in %] scorebars computed on the test set across the last three lead times of February, May, August, and November initialization. Positive
values indicate better performance of TelNet, and negative ones indicate better performance of baseline models. Error bars indicate the 90% confidence interval.
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or Median Absolute Error32. Overall, the dynamical model rank histograms
for extreme events also exhibit underestimation bias, except for GFDL and
SEAS5. Moreover, Supplementary Fig. 3 demonstrates that while TelNet
often forecasts the correct most likely category, it exhibits underconfidence,
i.e., ensemble members rarely converge on a single tercile. This under-
confidence is reflected in theTelNet sharpnessdiagram(Fig. 7),which shows
a low frequency of the highest probability bin (0.9–1.0) for extreme cate-
gories. Another study also reported a similar finding using an Ensemble of
Artificial Neural Networks with a different ensemble-generation method15.

For FMA forecasts initialized in November (lead 3), the RMSESS
(Fig. 2) and RPSS (Fig. 3) scorebars show that TelNet outperforms all
baseline models. The sample-mean RMSE (Fig. 8) and RPS (Fig. 9) maps
indicate worse performance among the models compared to the MAM
forecasts issued in February, likely due to the longer lead time. TelNet
consistently presents lower spatial errors across all regions of the state.

The rank histograms (Fig. 10) show that TelNet has the flattest his-
togram among the models, although with large error bars at the extremes.
GEM-NEMO, GFDL, and SEAS5 are over-dispersed, while CCSM4 and
CanCM4i are under-dispersed.

The reliability diagrams (Fig. 11) indicate that TelNet and GFDL are the
most calibratedmodels for theBNcategory,while SEAS5 yields overconfident
forecasts. All models feature low reliability for the AN category. Similar to the
MAMforecasts issued inFebruary, the limitednumberofwet events in the test
period likely hinders a meaningful evaluation of the AN category.

Interpretability of the forecasts
An essential aspect of TelNet is that it allows users to identify features
that play a prominent role in a specific forecast due to its variable

selection weights. Figure 12 shows the variable selection weights averaged
over the test years for the last three leads of forecasts initialized in Feb-
ruary, May, August, and November. On average, the variable selection
weights show slight variation, suggesting that all indices contribute to the
forecasts. However, differences among the indices are evident. For
instance, the MAM forecasts issued in February tend to assign higher
weights to the gradient of SST anomalies in the tropical Atlantic (ATL-
SST), followed by the Oceanic Niño Index (ONI). This is further evi-
denced in the two forecast examples from the test set shown in Sup-
plementary Figs. 2 and 3.

Lagged precipitation (YPRED) generally plays a minor role since
autocorrelation is usually low for seasonal forecasting. However, in some
instances, themodel learns touse this information insteadof climate indices,
as indicated by the high 95th percentile of its weights.

Conclusions
In this study,we presentedTelNet, an interpretablemachine learningmodel
for short-to-medium lead seasonal precipitation forecasting basedon lagged
climate indices (covariates) and precipitation. This is a simple model with
three components: (1) an encoder that maps input data set with variables of
different structure (spatial, temporal, and static variables) into the model
hidden dimension; (2) a decoder that selects and aggregates the most pro-
minent features instance- and lead-wise and process them through an
LSTM layer to learn temporal relationships; and (3) a prediction head that
maps the hidden features into an empirical distribution for every grid point
of the target area.

In the variable and model selection phase, we sampled training and
validation sets from 1941 to 2001 and pre-selected the most informative

Fig. 3 | Median RPSS [in %] scorebars computed on the test set across the last three lead times of February, May, August, and November initialization. Positive values
indicate better performance of TelNet, and negative ones indicate better performance of baseline models. Error bars indicate the 90% confidence interval.
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covariates for the predictand using the Partial Mutual Information method
computedon the training set. TelNetwas then trainedusing the pre-selected
covariates, and the best architecture was chosen based on the average RPS
computed on the validation set. In the testing phase, we retrained and

validated the model on the same period as the variable and model selection
phase and testedonbootstrapped samples from2003 to 2023. Both selection
and testing phases were repeated 1000 times to account for the uncertainty
associated with the limited sample size.

Fig. 4 |Mean RMSEmaps of February-issuedMAM (lead 1) forecasts of TelNet and baselinemodels computed on the test set.The colorbar is presented in standardized
anomalies.

Fig. 5 | Mean RPS maps of February-issued MAM (lead 1) forecasts of TelNet and baseline models computed on the test set. The colorbar is unitless.
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It is important to note that interleaved training and validation years
were used. While we acknowledge that this approach evaluates the model’s
ability to interpolate rather than predict future events in a dataset with
autocorrelation,we selected this strategy to avoid having training, validation

and test periods toodistant fromeachother. This choicewasmade to reduce
the risk of evaluating the model under potentially different climate regimes
caused by the non-stationarity of the climate system and ongoing climate
change.

Fig. 6 | Median rank histogram of February-issued MAM (lead 1) forecasts of TelNet and baseline models computed on the test set.Normalization is done by dividing
the observation rank by the number of ensemble members +1. Error bars indicate the 90% confidence interval.

Fig. 7 | Reliability and sharpness diagrams of February-issued MAM (lead 1) forecasts of TelNet and baseline models computed on the test set. Blue lines and bars
represent median probabilities for the above tercile, green the normal, and red the below. Error bars indicate the 90% confidence interval.
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The model was evaluated in the state of Ceara, northeastern
Brazil—a prominent region in seasonal forecasting studies due to its
high predictability. Results demonstrated that TelNet outperformed
several state-of-the-art baseline models for different initialization

months and lead times across the rainy season, when the predictable
signal is strongest. However, TelNet performance decreased during
the dry season and often underperformed dynamical models
probabilistic skill.

Fig. 8 |Mean RMSEmaps of November-issued FMA (lead 3) forecasts of TelNet and baselinemodels computed on the test set.The colorbar is presented in standardized
anomalies.

Fig. 9 | Mean RPS maps of November-issued FMA (lead 3) forecasts of TelNet and baseline models computed on the test set. The colorbar is unitless.
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For the 1-month lead forecast of the MAM season, TelNet out-
performed 5 (4) out of 6 (5) baseline models in deterministic (probabilistic)
forecasting, with SEAS5 being the only model that consistently out-
performed TelNet. For the 3-month lead FMA forecast, TelNet showed

better skill than all baselinemodels. Additional analysis of other probabilistic
attributes showed that TelNetwas among themost calibratedmodels for the
BN category but exhibited low reliability for the AN category. However, it is
important to note that during the testing period, only three wet events

Fig. 10 |Median rank histogram of November-issued FMA (lead 3) forecasts of TelNet and baselinemodels computed on the test set.Normalization is done by dividing
the observation rank by the number of ensemble members +1. Error bars indicate the 90% confidence interval.

Fig. 11 | Reliability and sharpness diagrams of November-issued FMA (lead 3) forecasts of TelNet and baseline models computed on the test set. Blue lines and bars
represent median probabilities for the above tercile, green the normal, and red the below. Error bars indicate the 90% confidence interval.
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occurred in the rainy season, compared to seven dry events. This imbalance
hinders a meaningful evaluation of the AN category. Future studies should
consider alternative sampling strategies or testingmethods to achieve amore
balanced representation of events. Furthermore, while this study focused on
Ceará, a region with high seasonal forecasting predictability, it is important
to assess TelNet’s performance in other regions with different levels of
predictability to better understand its broader applicability.

Another key feature of TelNet is its use of the Variable Selection
Network of the Temporal Fusion Transformer33, which assigns weights to
features and allows users to interpret individual forecasts. Analysis of the
variable selectionweights indicated that the gradient of SSTanomalies in the
tropical Atlantic Ocean is often the most important feature followed by the
Oceanic Niño Index, aligned with previous studies.

According to the results presented, TelNet is a forecasting model with
high predictive skill, easy to implement, and computationally cheap at
training and inference times.Nevertheless, TelNet is prone tounderestimate
extreme events and is underconfident in issuing the highest probabilities of
extreme categories. Forecast postprocessing methods could be employed in
future studies to improve those aspects. For instance, the ExEnsemble
module is a parameter-free method that increases the variance of pixel
values without altering the overall distribution, thereby producing more
extreme predictions32. Moreover, the spatially distributed input Xlag was

encoded through a series of partial convolution operations thatmapped the
HxWgrid points intomodel dimensionD. This directmappingworkswell
for small regions with homogeneous precipitation patterns but could be
limited for regions with high spatial variability. In this context, patch
embedding could provide a better representation of spatial variability. This
approach slices the spatial domain into patches, and eachpatch is embedded
individually6,7. Lastly, the model could also be applied to other forecasting
tasks due to its flexibility in receiving past states of the target variable and
covariates. For instance, sub-seasonal forecasting strongly relies on initial
and boundary conditions, making TelNet a suitable choice for this task.

Data and methods
TelNet architecture
TelNet follows an approach similar to other MLWP models implemented
for probabilistic forecasting5. The model directly predicts an empirical
continuous distribution over the target seasonal climate conditions Y1:L ¼
Ŷ for an L-month horizon conditioned on the T past seasonal states of the
target variable Y�T:0 ¼ Xlag , covariates X

�T:0 ¼ Xcov and static variables
Xstatic

p Y1:LjY�T:0;X�T:0;Xstatic

� � ¼ f θ Y�T:0;X�T:0;Xstatic

� � ð1Þ

Fig. 12 | Average variable selection weights [in %] for the last three leads of forecasts initialized in February,May, August, and November of the test set. Bars represent
the median value and error bars indicate the 90% confidence interval.
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where p Y1:LjY�T:0;X�T:0;Xstatic

� �
is an empirical continuous distribution

over the targetY1:L given the inputsY�T:0;X�T:0;Xstatic and f θ �ð Þ is a neural
network with learnable parameters θ.

The forecast model is made of three main components, as depicted in
Fig. 1. The first layer encodes the inputs into the model dimension through
linear and partial convolution operations34. The decoder layer features a
variable selection block33 that selects and aggregates the candidate variables
instance- and lead-wise, followed by a LSTM that learns the temporal
relationship of the aggregated variable. Lastly, the decoder outputs go
through a prediction head that forecasts an empirical distribution of N
seasonal precipitation standardized anomalies for every grid point. Each
component is detailed below.

Initially, each input type is encoded separately. TheK covariatesXcov 2
RT×K with T past states are encoded individually through K linear layers,
each with sharedweights across the time dimension. The lagged state of the
target variable Xlag 2 RT ×H×W with T past states, H latitudes, and W
longitudes is encoded through a 3-layer sequence of partial 2D convolution
(PConv2D)34with sharedweights across the timedimension. ThePConv2D
layers were employed instead of regular Conv2D to allow users to train the
model on a specific part of the H xWdomain. For instance, one could train
the model in areas with irregular shapes (such as a municipality or a
watershed), by passing a binary mask where 1 represents the grid points of
interest in the rectangular domain. The partial convolution operation at
every location is expressed as

x0 ¼ WT ðX �MÞ sumð1Þ
sumðMÞ þ

0;

b; if sumðMÞ > 0
otherwise

(
ð2Þ

where X is the pixel array,M is the binary corresponding mask,⊙ denotes
element-wisemultiplication,1has the same shape asMbutwith all elements
being 1. This layer also outputs an updated mask passed to the next
PConv2D layer. A complete description of the PConv2D layer is found in
the original paper34.

We use the static variable Xstatic 2 ZðTþLÞ × 12 to provide the model
with information about the position of each past and future time step in a
forecast. This variable consists of T vectors representing past time steps and
L vectors representing the lead times. Each vector is one-hot encoded with
12 elements, where a value of 1 indicates the season corresponding to that
position, and all other elements are set to 0. The static variable is embedded
using entity embedding35 and added to both encoded variables.

Finally, the encoded covariates and precipitation values are con-
catenated on the channel dimension.

The decoder comprises a Variable Selection Network33 that pro-
vides an instance- and lead-wise variable selection and aggregation,
followed by an LSTM that learns the temporal dependency of the
aggregated variable.

The Variable Selection Network is a module designed to perform
feature selection by assigning instance-wise weights to variables. This
module was shown to be effective across various forecasting tasks, such as
electricity consumption, traffic, and sales33. In seasonal forecasting, instance-
wise weights are particularly important because they capture the dynamic
and complex relationships of covariates, which can create a wide variety of
possible contexts. Additionally, theVariable SelectionNetwork is basedon a
gatingmechanism that allows themodel to applynon-linearprocessingonly
where it is needed. This flexibility is especially beneficial for small datasets,
such as climate datasets,where a simplermodel canoften yield better results.
The Gated Residual Network (GRN) is defined as

GRNω að Þ ¼ LayerNorm aþ GLU η1
� �� � ð3Þ

η1 ¼ W1;ωη2 þ b1;ω ð4Þ

η2 ¼ ELU W2;ωaþ b2;ω
� �

ð5Þ

GLUðη1Þ ¼ σðW4;ωη1 þ b4;ωÞ � ðW5;ωη1 þ b5;ωÞ ð6Þ

where ELU is the Exponential Linear Unit activation function, σ is the
sigmoidactivation function,η1 2 RD andη2 2 RD are intermediate layers,
LayerNorm is the standard layer normalization36, Wð�ÞR

D×D, bð�ÞR
D are

weights and biases, ⊙ is the element-wise multiplication, D is the hidden
model dimension and ω is an index to denotes weight sharing. When
W2;ωaþ b2;ω >>0, theELUactivationwould act as an identity function and
when W2;ωaþ b2;ω <<0, the ELU activation would generate a constant
output, resulting in linear layer behavior33.

For each time step, the variable selection network processes each of the
1+K encoded variables through its ownGRN, which are then weighted by
their respective variable selection weights and combined:

St ¼
X1þK

k¼1

vkt eEk
t ð7Þ

eEk
t ¼ GRNeEðkÞ Ek

t

� � ð8Þ

vt ¼ SoftmaxðGRNvðtÞÞ ð9Þ

where t ¼ ½E1
t
T
; ; E1þK

t
T�T is the flattened vector of the 1+K encoded

variables with Ek
t 2 RD being the k-th encoded variable at time t, vt 2

R1þK is the variable selectionweights, vkt is thek-th elementofvt,GRNv and
GRNeEðkÞ are the GRNs with weights shared across time dimension for the

variable selectionweights and for thek-th encodedvariable, respectively. For
a complete description of the Variable SelectionNetwork, please refer to the
original paper33

The combined variable S 2 RT×D goes through the LSTM layer,
resulting in the first processed vector D1 2 RD, which is then added to its
corresponding lead embedding Elead static

1 2 RD. The resulting vector is
concatenated in the channel dimension to Ecov

0 2 RK×D, representing the
persistence of the latest available state of the covariates. This approach is
common in seasonal forecasting models that do not prognostic the evolu-
tion of the boundary conditions37. It often yields good results for short-term
lead forecasts since boundary conditions represent slow-evolving compo-
nents of the climate system38,39. The resulting concatenated matrix D�1 2
R1þK×D goes through the Variable Selection Network followed by the
LSTM layer resulting in the next processed vectorD2 2 RD. This process is
repeated L times, where L is the model lead time. Each pass through the
Variable Selection Network yields a different set of variable selection
weights, allowing an instance- and lead-wise evaluation of variables
relevance.

The resulting processedmatrixD 2 RL ×D goes through a linear layer
that maps from the model dimension D to an empirical distribution of N
seasonal precipitation standardized anomalies for every grid point of the
target variable.

Datasets
The Extended Reconstructed Sea Surface Temperature (SST) version 5
(ERSST5) is used in the present study40. This global gridded data set has a
spatial resolution of 2° and spans from 1854 to the present. Monthly
atmospheric variables fromERA5 reanalysis are also employed41. This is also
a global gridded data set with a spatial resolution of 0.25° that covers the
period from 1940 to the present. All variables have been linearly detrended
before the analysis.

TelNet performance is compared with state-of-the-art numerical
models from Copernicus Climate Change Service (C3S) and the North
American Multi-Model Ensemble (NMME) project42. We use
1982–2021 monthly precipitation forecasts from the latest version of
ECMWF seasonal forecasting system (SEAS5) and the latest version of the
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NMME (NMME4) project43. The monthly values are converted to total
seasonal precipitation. Systematic bias in the mean and variance of dyna-
mical models are corrected by subtracting forecasts from the model’s long-
termmean and then dividing by its long-term standard deviation. The bias
correction is done independently for each model, target season and
lead time.

Among the seq2seqMLWPmodels, onlyClimaX7 is designed for long-
range forecasts. Since the model produces point forecasts, we could only
compare it to TelNet in terms of deterministic forecasting. Following the
procedure for S2S predictions outlined in the original paper, we trained
ClimaX from scratch in its default global forecasting configuration using
seasonal values from ERA5 dataset, regridded to a 1.40625° resolution. The
input variables are seasonally averaged values of the original input variables
(as listed in Table 9 of the original paper7) and the output variable is total
seasonal precipitation.Themodel is trained for forecasts from1- to3-month
lead time on data from 1941 to 1993 and validated using data from 1994
to 2002.

The output of each baselinemodel is bilinearly interpolated ontoERA5
precipitation data set grid resolution for forecast verification.

Data preprocessing
Climate indices are computed using SST and atmospheric variables from
ERSST5 and ERA5, respectively. Even though most indices are available
online for download, their time series usually starts in 1948. To completely
use ERA5 time availability, we decided to recompute those indices following
methods well-established in the literature. The complete list of computed
climate indices with their respective references is provided in Supplemen-
tary Table 1. Moreover, the Pearson correlation of the computed indices
with their counterpart from NOAA’s climate indices website (https://psl.
noaa.gov/data/climateindices/list/) for their common period is also pro-
vided (Supplementary Table 1). All climate indices were normalized to unit
variance.

ERA5 total monthly precipitation is converted to total seasonal values.
Subsequently, season- and point-wise long-termmean, standard deviation,
and terciles are computed from part of the training set covering 1971–2020.
Standardized anomalies of the training, validation, and test sets are com-
puted based on these long-term statistics. For forecast evaluation purposes,
validation, and test sets total precipitation values are also categorized as AN,
near normal (NN), and BN based on the computed terciles.

Variable selection module
The pool of candidate covariates (Supplementary Table 1) encompasses
climate indices thatmight be relevant or not to the interannual precipitation
variability of the target region. Therefore, a variable selection method is
necessary to pre-select the most important climate indices for the region.
Moreover, it iswell established in the literature that teleconnections are non-
linear44,45, requiring a suitable method for the task.

The Partial mutual information (PMI) method, a stepwise variable
selection approach, is based on the mutual information (MI) criterion46.
This criterionmeasures the shared entropybetween tworandomvariablesX
and Y as follows

MI X;Yð Þ ¼ 1
n

Xn
i¼1

ln
f X;Y xi; yi

� �
f X xi
� �

f Y yi
� �" #

ð10Þ

The PMI method uses a forward selection algorithm to select useful
inputs from a candidate set C with {j = 1, …, J} variables based on the
maximum PMI between a given candidate input Cj and the output Z,
controlling for the effects of the inputs that have alreadybeen selected,S. For
the initial selection, S is an empty set, and thefirst input is selected as the one
havingmaximumMI (Eq. 10) between the candidates inC and theoutputZ.
In our study,C is the set of climate indices lagging four overlapping seasons
behind Z, which is computed as the area-average standardized seasonal
precipitation anomalies from the training set.

Next, the residuals w and v are computed as

w ¼ Cj � Ĉj Sð Þ ð11Þ

v ¼ Z � Ẑ Sð Þ ð12Þ
where ĈjðSÞ and ẐðSÞ are estimators of Cj and Z, respectively. Differently
from other papers that employed kernel density estimators46,47, we used a
simple 2-layer multi-layer perceptron of the form

Ĉj Sð Þ ¼ W2ωþ b2 ð13Þ

ω ¼ ReLU W1Sþ b1
� � ð14Þ

where ReLU is the Rectified Linear Unit activation function, S 2 Rd1 is the
selectedsetwithd1 features,ω 2 Rd2 is an intermediate layerwithd2 ¼ 2d1
hidden features, W1R

d1d2 ; b1 2 Rd2 ;W2 2 Rd2 × 1; b2 2 R are the
weights and biases. The estimator Ĉj Sð Þ is fitted through backpropagation
byminimizing themean squared error. The estimator ẐðSÞ can be similarly
constructed.

Following, the next input Cj is selected as the one having maximum
shared entropy with Z that has not been accounted for in S, estimated as

PMIðC;ZjSÞ ¼ MIðw; vÞ ð15Þ

which is computed throughEq. 10. The selectionprocess is repeateduntil all
the candidate inputs inC are tested. The final set S is a PMI-ranked version
of the initial set C.

Forecast verification
In seasonal forecasting, it is recommended that forecasts be issued in terms
of the probability of equiprobable categories to reflect their uncertainties48.
These categories are usually three (AN,NN, BN) but there can also bemore.
We computed the probabilistic forecasts by counting the number of
members that fall in each of the three equiprobable categories and dividing
them by the total number of members N. The terciles for each season and
grid point were previously computed based on the training set (Data pre-
processing). Deterministic forecasts are computed as the ensemble mean.

The deterministic accuracy is measured as RMSE

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
ð�yi � oiÞ2

r
ð16Þ

where �yi; oi are the i-th of the n pairs of ensemble average and observation.
The probabilistic performance is measured through the RPS, which is

an evaluation metric for multicategory events defined as

RPS ¼ 1
n

Xn
i¼1

XJ
m¼1

Xm
j¼1

yj

 !
�

Xm
j¼1

oj

 !" #2
ð17Þ

where yj and oj are the forecast and observation pair for the j-th category.
For a straightforward comparison with baseline models, we also used

the RMSESS and the RPSS, defined as

RMSESS ¼ 1� RMSETelNet

RMSEBL

� �
× 100 ð18Þ

RPSS ¼ 1� RPSTelNet
RPSBL

� �
× 100 ð19Þ

where the subscription “TelNet” represents the metrics computed for our
model and the subscription “BL” for a given baselinemodel. The skill scores
range from −100% to 100%, where positive values indicate better perfor-
mance of TelNet and negative values the opposite. The spatial average
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RMSESS and RPSS for specific initialization months and lead times are
presented as scorebars.

The rank histogram is used to assess whether the forecast ensembles
and the observation being forecasted are exchangeable. More precisely, the
ensemble members and the corresponding observation are concatenated
and ranked for each lead time and grid cell. Following, the collection of
observation ranks is plotted in a histogram. If the observation and ensemble
members have been drawn from the same distribution, then the rank of the
observation is likely to be in any of the N+ 1 ranks, resulting in a flat
histogram. Observation values often ranked towards the boundaries of the
histogram (∪ -shaped) reflect an under-dispersed ensemble, i.e., ensemble
members are too similar to each other but different from the observation.
Over-dispersion can be diagnosed by a rank histogram with relative fre-
quencies centered in the middle ranks (\-shaped), i.e., ensemble members
frequently ranging beyond the observation value.Moreover, peaks on either
extremity indicate over- or under-forecasting bias14.

Reliability and sharpness diagrams are also employed to assess three
important aspects of probabilistic forecasts: reliability, resolution, and
sharpness. Reliability measures the consistency between the forecast prob-
abilities and the relative frequency of the observed outcomes. Resolution
quantifies the degree to which the observed outcomes change as the fore-
casts change. Sharpness expresses how often each forecast probability is
issued49.

This study’s reliability and sharpness diagrams are based on a binning
of 5 forecast probabilities over the whole geographic domain (area aggre-
gated). The rank histogram is also constructed using area aggregated
observation ranks.

Model selection
We start the analysis by performing variable andmodel selection through a
grid search of 288 hyperparameter combinations. The training set consists
of 51 years, resulting in a total of 612 overlapping seasons, and the validation
set includes 10 years (120 overlapping seasons) randomly sampled from
1941 to 2001. To prevent any information leakage from the validation to the
training set, samples that share the same seasonal value in different positions
along the time dimension are removed from the training set.

Subsequently, training and validation sets are preprocessed (as
described in “Data preprocessing”) and climate indices are ranked
according to their PMI scores computed on the training set (Variable
selection module). TelNet is then trained with each hyperparameter com-
bination and evaluated on the validation set. The best model configuration
was selected as the one that minimized the validation set average RPS
(Eq. 17) taken over the valid grid points and all lead times.

As summarized in Table 1, the number of features inXcov and the time
dimension of Xcov and Xlag were also defined through grid search. The
selected features correspond to the top K climate indices according to their
PMI, ensuring that themodel is built on themost relevant climate indices for
the region.

This entire process is repeated 1000 times, and the final model con-
figuration, along with the top K climate indices, is chosen as the one that
most frequently appears as the best-performing model. The variable and

model selection entire procedure took about 3 days on a 40GB NVIDIA
A100 GPU.

Model testing
Following the approachused for variable andmodel selection, 51 years from
1941 to 2001 are randomly sampled for the training set, and 10 years are
assigned to the validation set, with the latter used for early stopping. The test
set is created by bootstrapping years from 2003 to 2023. The training,
validation and test sets are preprocessed as described in “Data preproces-
sing”, and the baseline models standardized anomalies and category prob-
abilities are computed using a leave-one-out approach across all available
years (Datasets). TelNet is then trained with the selected covariates and
architecture (Model selection), and all models are evaluated on the test set.

To account for the uncertainty associated with a small dataset, the
sampling, training, and evaluation procedures are repeated 1000 times.
Once the process is complete, confidence intervals for these statistics are
constructed independently for each model, season, and lead time, based on
the 5th and 95th percentiles of the results.

The entire procedure required ~6 h on a 40GB NVIDIA A100 GPU.

Loss function
The training objective is based on the Continuous Ranked Probability Score
(CRPS)50. The CRPS is a strictly proper and negatively oriented score that
compares the predicted F y

� �
with the target variable ground truth trans-

lated into a step function F0 y
� �

:

CRPS ¼
Z 1

�1
F y
� �� F0ðyÞ

� �2
dy ð20Þ

where

F0 y
� � ¼ 0; y < observed value

1; y ≥ observed value

	
ð21Þ

Its analytical form to estimate the expected CRPS of an empirical
distribution of afinite ensemble of sizeN for a single instance is expressed as

dcrpsðX; yÞ ¼ 1
N

XN
n¼1

xn � y


 

� 1

2N2

XN
n;n0¼1

xn � xn
0

 

 ð22Þ

where X 2 RN and y is a scalar. Our loss function is defined as

Loss ¼ 1
B× L× P

XB
b¼1

XL
l¼1

XP
p¼1

wpdcrpsðŶb;i;p; yb;i;pÞ ð23Þ

where B is the batch size, L is the number of leads, P is the number of valid
(unmasked) grid points, and wp is the latitude weighting factor of the p-th
grid point, computed as

wp ¼
cosðlatðpÞÞ

1
H

PH
h¼1 cosðlatðhÞÞ

ð24Þ

where H is the total number of latitudes. We used a Pyro51 CRPS imple-
mentation with an Nlog(N) complexity instead of the original algorithm
with an N2 complexity.

Data availability
ERSSTv5 is available at https://www.ncei.noaa.gov/products/extended-
reconstructed-sst; ERA5 is available at https://cds.climate.copernicus.eu/
cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means?tab=
overview; The North American Multimodel Ensemble forecasts are
available at https://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/;
SEAS5 forecasts are available at https://cds.climate.copernicus.eu/

Table 1 | Search matrix showing the six hypermeters tunned
for the model

Hyperparameter name Values

Hidden dimension 128, 512, 1024

Dropout 0, 0.05, 0.25

Epochs 10, 25

Learning rate 10−3, 10−4

# Features 2, 3, 4, 5

# Time steps 1, 2

A total of 288 combinations were tested, and the hyperparameter set that minimized the average
RPS computed on the validation set is highlighted in bold.
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cdsapp#!/dataset/seasonal-monthly-single-levels?tab=overview. NOAA’s
climate indices repository: https://psl.noaa.gov/data/climateindices/list/.

Code availability
All codes necessary for reproducibility of the results are available at https://
github.com/enzopinheiro/telnet.
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