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Dispersal shapes compositional and functional diversity in 
aquatic microbial communities
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ABSTRACT Segregation and mixing shape the structure and functioning of aquatic 
microbial communities, but their respective roles are challenging to disentangle in 
field studies. We explored the hypothesis that functional differences and beta diver
sity among stochastically assembled communities would increase in the absence of 
dispersal. Contrariwise, we expected biotic selection during homogenizing dispersal 
to reduce beta and gamma diversity as well as functional variability. This was exper
imentally addressed by examining the compositional and functional changes of 20 
freshwater bacterial assemblages maintained at identical conditions over seven growth 
cycles for 34 days and subjected to two consecutive dispersal regimes. Initial disper
sal limitation generated high beta diversity and led to the repeated emergence of 
community types that were dominated by particular taxa. Compositional stability and 
evenness of the community types varied over successive growth cycles, reflecting 
differences in functional properties. Carbon use efficiency increased during cultivation, 
with some communities of unique composition outperforming the replicate community 
types. Homogenizing dispersal led to high compositional similarity and reduced gamma 
diversity. While a neutral and a competition-based (Elo-rating) model together largely 
explained community assembly, a pseudomonad disproportionally dominated across 
communities, possibly due to interaction-related genomic traits. In conclusion, microbial 
assemblages stochastically generated by dispersal limitation can be gradually “refined” 
into distinct community types by subsequent deterministic processes. Segregation of 
communities represented an insurance mechanism for highly productive but competi
tively weak microbial taxa that were excluded during community coalescence.

IMPORTANCE We experimentally assessed the compositional and functional responses 
of freshwater bacterial assemblages exposed to two consecutive dispersal-related events 
(dispersal limitation and homogenizing dispersal) under identical growth conditions. 
While segregation led to a decreased local diversity, high beta diversity sustained 
regional diversity and functional variability. In contrast, homogenizing dispersal reduced 
the species pool and functional variability of the metacommunity. Our findings highlight 
the role of dispersal in regulating both diversity and functional variability of aquatic 
microbial metacommunities, thereby providing crucial insight to predict changes in 
ecosystem functioning.

KEYWORDS assembly processes, coexistence, carbon use efficiency, community 
functioning, Elo-rating, dispersal limitation, homogenizing dispersal

M icrobial community assembly involves stochastic processes like passive dispersal, 
drift, and diversification, leading to random fluctuations in species abundances 

(1), and deterministic, niche-related phenomena that affect species through abiotic 
and biotic selection (2). The relative importance of different assembly processes may 
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shift during succession, from predominantly stochastic during initial colonization to 
increasingly deterministic in mature communities (3–5).

This transition is disrupted if extremely low and high dispersal rates override 
deterministic abiotic selection (6). For instance, dispersal limitation promoted the 
emergence of distinct microbial assemblages in identical bioreactor habitats (7) and 
lake water microcosms (8). Conversely, homogenizing dispersal mitigated the effects of 
abiotic selection and increased community similarity (9–11). Moreover, dispersal need 
not be a continuous process but also encompasses extremes like transient isolation or 
total coalescence (12). While the interplay of dispersal and biotic selection is not fully 
understood, evidence suggests that antagonistic and facilitative interspecific interac
tions, modified by historical contingency (13, 14), shape community dynamics upon 
habitat colonization (6). Moreover, similar climax communities may emerge despite 
moderate dispersal (15), indicating that biotic interactions may act as stabilizing filters for 
community structure.

Metacommunities are networks of local communities interconnected by source-sink 
dynamics (9). The spatial insurance hypothesis predicts that dispersal mitigates the 
negative effect of suboptimal local (abiotic or biotic) conditions (16). Neighboring 
communities may rescue depleted ones via dispersal to circumvent local extinction and 
preserve metacommunity diversity. However, connectivity is a double-edged sword, as 
the isolation of local communities may protect species from superior competitors (17–
19). Such competitively weak rare species may promote functional diversity (20), and 
thus possibly affect community performance.

We experimentally investigated the interplay between dispersal-related processes 
and biotic interactions in shaping bacterial community structure and functioning. 
Dispersal limitation served to generate parallel bacterial assemblages with contrasting 
composition and functioning at identical environmental conditions (8). We hypothe
sized (i) that functional differences and beta diversity among stochastically assembled 
communities would increase during semi-continuous cultivation in the absence of 
dispersal, but (ii) that subsequent homogenizing dispersal would cause a decrease in 
beta and gamma diversity, as well as a reduction in functional variability due to biotic 
selection of disproportionally competitive populations from the metacommunity. Finally, 
we assessed the implications of species interactions on the observed decrease in beta 
and gamma diversity, and functional variability, following homogenizing dispersal (i.e., 
mixing of all communities).

RESULTS

Initial colonization and compositional changes during semi-continuous 
growth cycles

We conducted a 34-day culture experiment in artificial lake water using 20 parallel 
freshwater bacterial assemblages over six semi-continuous growth cycles (Fig. 1a). 
The putative 16S reads represented 0.04% ± 0.04% (mean ± standard deviation) 
of total metagenomic reads per sample (Table S1). Altogether, 118 bacterial genera 
were identified, with Pseudomonas (10.9%), Flavobacterium (9.2%), Aeromonas (6.7%), 
Acidovorax (5.9%), and Limnohabitans (5.9%) being the most abundant ones (Table S2).

Experimentally induced dispersal limitation (growth cycle 0, C0) resulted in communi
ties with distinct structures (Fig. 1). Acidovorax, Aeromonas, and Pseudomonas were both, 
abundant (>30% of reads) and prevalent (present in 20, 15, and 15 microcosms, respec
tively). C0 was also characterized by genera that were only abundant in single micro
cosms, such as Rhodoferax, Caulobacter, Rheinheimera, and Deefgea (Fig. 1b).

Initially prevalent taxa like Acidovorax and Pseudomonas persisted from the growth 
cycle 1 to 6 (C1–C6). Some rarer taxa, such as Pelomonas, Cellvibrio, Paucibacter, and 
Duganella, also increased in abundance over the growth cycles but remained restricted 
to few microcosms (Fig. 1b). In C6, half of the communities were dominated by Acido
vorax, Pseudomonas, or Aeromonas (i.e., >40% of total read numbers), while the other half 
were unique with respect to the most abundant taxon.
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Local operational taxonomic unit (OTU) richness per microcosm significantly 
decreased throughout the cultivation cycles, from 111 ± 33 OTUs at C0 to 78 ± 38 OTUs 
at C6 (linear mixed model, P < 0.001). By contrast, the total number of OTUs in all 
microcosms tended to remain stable from C0 to C6 (CV = 5.1%, Fig. 2a). Most C0 com
munities were more dissimilar than expected by chance (βRC > 0.95). The proportion of 
community pairs more dissimilar than expected by chance gradually decreased over the 
cycles (from 73% to 46% of the pairwise comparisons). By contrast, pairs more similar 
than by chance (βRC < −0.95) increased, from 11% at C0 to 19% at C6 (Fig. 2b).

Community type affects changes in composition and bulk parameters

We categorized communities according to dominant taxon. Acidovorax-type communi
ties transitioned from predominantly dissimilar pairs at C0 (βRC > 0.95) to increasingly 
more similar in subsequent cycles (Fig. 2c). An even steeper decrease of βRC was 
observed for Pseudomonas-type communities, with all pairwise comparisons 
being <−0.95 by growth cycle 4 (C4). Aeromonas-type communities were already highly 
similar (βRC < −0.95) at C0 and remained stable over the growth cycles (Fig. 2c).

The three community types together harbored 82% of all genera detected at C6 (Fig. 
3a). The three dominant genera only co-occurred during the early growth cycles (Fig. 3b). 
The community types exhibited similar OTU richness (repeated measurement analysis of 
variance [ANOVA], P > 0.05), but Aeromonas-type communities were less even (Pielou’s 
evenness) than the other two types and the unique communities (repeated measure
ment ANOVA, P < 0.001) (Fig. 3c). Twice as many genera were exclusive to the Acidovorax-
type communities than to those of the other two types (Fig. 3d).

Bacterial abundance per microcosm did not correlate with biomass (Fig. S2): bacterial 
abundance decreased over the growth cycles (Fig. 4a and b), whereas communities 
produced increasingly more biomass, i.e., larger cells (Fig. 4c and d). Cellobiose consump
tion in the microcosms did not significantly change over cycles (cycle, repeated 

FIG 1 (a) Schematic depiction of the experimental design, simulating dispersal limitation (left panel), biological interactions in semi-continuous cultures (center 

panel), and a homogenizing dispersal event (right panel) over seven consecutive growth cycles (C0–C7). (b) Proportions of reads of 16S rRNA genes affiliated with 

the 10 most abundant genera in metagenomes from the experimental communities at C0, C1, C4, C6, and C7.
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measurement ANOVA, P = 0.126, Table S3; Fig. 4e and f), but carbon use efficiency (CUE) 
increased 1.5-fold. (Fig. 4g and h).

Community type affected both, magnitude and temporal changes of some commun
ity bulk parameters (Fig. 4). Acidovorax-type communities had higher bacterial abundan
ces than Pseudomonas and Aeromonas types (Fig. 4a). Bacterial abundances decreased 
over the growth cycles in Acidovorax- and Pseudomonas-type communities but increased 
in the Aeromonas-type ones (Fig. 4b). The overall increase in biomass was mainly driven 
by the steep rise in the Acidovorax-type communities (Fig. 4c and d). By contrast, the rate 
of CUE increases only slightly varied between community types (Fig. 4g and h). Commun
ities of unique composition showed high variability in bulk parameters amongst each 
other: some unique communities had more than three times higher biomasses and 
cellobiose consumption rates than the average of the common community types (Fig. 4c 
and e).

FIG 2 (a) OTU richness per microcosm (left axis) and total OTU richness across all the microcosms (right axis) over the cycles. (b) Percentage of Raup–Crick (βRC) 

pairwise dissimilarities among the 20 microcosms per cycle according to whether they are less (βRC > 0.95)/more (βRC < −0.95) similar than expected by chance, 

or they do not differ from stochastic assembly processes βRC < |0.95|. (c) Pairwise βRC index computed for microcosms belonging to the same community type 

over the growth cycles. Dashed lines represent βRC values of 0.95 and −0.95.
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Changes in genus-level competitiveness over time (Elo-rating)

We used Elo-rating (originally developed to rank chess players across multiple tourna
ments [21]) as an index to assess the overall performance of individual taxa within the 
metacommunity over time, i.e., how often they occurred in the microcosms, and their 
relative abundances in these communities.

The Elo-rating was used to generate rank distributions of genera with >0.1% relative 
abundances in at least one microcosm between C0 and C6 (Fig. 5). Several successful 
primary colonizers (rating above 75th percentile at C0), such as Flavobacterium, Pseudar
cicella, and Aquabacterium, significantly declined in their Elo-rating, whereas Rhodoferax 
became more competitive (Fig. 5). While most of the initially less competitive genera did 
not significantly change or even decreased in Elo-rating (e.g., Polaromonas, Rheinhei
mera, and Methylibium), several others, such as Paucibacter, Duganella, Variovorax, Bosea, 
and Pelomonas significantly improved in competitive performance over the cycles 
(Spearman rank correlation, P < 0.05; Fig. 5).

The Elo-rating of Acidovorax, Aeromonas, and Pseudomonas were all above the 
median. While the ratings of the former two did not change over the cycles, Pseudomo
nas slightly but significantly decreased (from 1,039 to 996, Spearman rank correlation, P 
< 0.05; Fig. 5), reflecting its increasingly restricted occurrence across microcosms. 
Acidovorax had the third-highest Elo-rating in C0, and the highest one by a large margin 
in C6.

Homogenizing dispersal event

We experimentally induced a homogenizing dispersal event (growth cycle 7, C7) using 
the 20 parallel microbial communities from C6 (Fig. 1a). Homogenizing dispersal 
produced highly similar microbial assemblages (βRC < −0.95; Fig. 2b) dominated by the 
genera that already formed the highest abundances in 50% of the C6 microcosms 
(Pseudomonas, Acidovorax, and Aeromonas, Fig. 1b). Moreover, 20% of genera from C6 
were not detected in C7, including some that represented a sizable fraction of the C7 
inoculum (e.g., Caulobacter, Fig. 6a).

A neutral and a competitive model were compared in their power to predict the 
community composition after the homogenizing dispersal event (C7, Fig. 6a). The neutral 
model was based on the principle of mass effects (9, 22), i.e., the respective abundances 
of each genus in C6 microcosms explained their abundances in C7. It successfully 
predicted 20% of the genera, representing ~44.8% ± 9.9% of abundances (Fig. 6b and c). 

FIG 3 (a) Specific and shared genera in community types, i.e., communities dominated by Acidovorax (n = 5), Pseudomonas (n = 3), or Aeromonas (n = 3) at 

C6. (b) Relative abundance of the three representative genera in their community type (% reads number). (c) OTU richness and Pielou evenness indices per 

community type in the experimental cycles. (d) Relative abundances of genera in the three community types.
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The competitiveness model, based on genus-specific Elo-ratings from C6, most accu
rately predicted the C7 abundances of three of the top 10 most abundant genera 
(Pelomonas, Bosea, and Cellvibrio), accounting for 11.2% ± 2.3% of abundances. Only 
Pseudomonas outperformed both predictors, whereas many rare genera performed 
worse than predicted by either model (Fig. 6c).

Bulk community parameters of the C7 communities were highly similar (Fig. 4). 
Biomass and CUE in C7 matched the average values of the C6 communities (Table S3), 
while total cell abundances and cellobiose consumption were ~13% and ~10% lower 
than before homogenizing dispersal (Table S3).

FIG 4 Left panels: (a) cell abundances, (c) biomass, (e) cellobiose consumption, and (g) CUE over the six cycles of semi-continuous growth (C1 to C6) and the 

homogenizing dispersal event (C7) in the three microcosms community types and the set of other assemblages. Right panels: slopes derived from the mixed 

linear model for (b) cell abundances, (d) biomass, (f) cellobiose consumption, and (h) CUE. The dashed lines indicate slope = 0. Asterisks: *, P < 0.05; **, P < 0.01; 

***, P < 0.001.
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We processed the metagenomes from C6 and C7 to retrieve metagenome-assembled 
genomes (MAGs) that defined the C6 “community types,” which were affiliated with the 
most abundant taxa across the microcosms. From the dominant genera Pseudomonas, 
Acidovorax, and Aeromonas, we obtained 4, 15, and 4 MAGs from C6 and 4, 19, and 21 
from C7, respectively (Table S4). Additionally, we retrieved nearly single MAGs from the 
most abundant taxa in microcosms of unique composition at C6, including the genera 
Caulobacter, Cellvibrio, Dugannella, and Pararheinheimera (Table S4).

Based on the ANI distance of the MAGs, a single Pseudomonas genotype, P. azotofor
mans, dominated in C7 communities (Table S5). Acidovorax and Aeromonas were each 
represented by two mutually exclusive genotypes, A. temperans or A. soli, and A. hydro
phila or A. bestiarum, respectively (Tables S6 and S7).

Genomic traits of dominant community members

We assessed genes for secretion systems, amino acid biosynthesis, and cellobiose 
degradation in the dominant genera at C7 and genera dominating at least one C6 
microcosm (Fig. 6d). Type 2 secretion systems (T2SS) were found in all MAGs. Only MAGs 
affiliated with Pseudomonas, Aeromonas, and Acidovorax featured T3SS, T5SS, and T6SS, 
indicating strong competitive traits (23).

FIG 5 Elo-rating of genera after (a) C0 and (b) C6 contributing >0.1% to average read numbers. Colored dots indicate genera significantly increasing (blue) or 

decreasing (red) Elo-ratings over the experimental cycles (n = 4, Spearman rank correlation). Black dots present genera with no significant change in Elo-ratings.
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Of the studied taxa, only A. hydrophila was prototrophic for amino acids. Pseudomonas 
and Acidovorax MAGs each lacked synthesis pathways for specific amino acids (Fig. 6d). 
Aeromonas MAGs and P. azotoformans MAGs contained genes involved in cellobiose 
consumption (bgl-B and bgl-X, respectively), whereas Acidovorax MAGs did not. All MAGs 
dominating single microcosms at C6 were prototrophic for amino acids and featured 
genes coding for β-glucosidases (Fig. 6d).

DISCUSSION

Compositional and functional variability in the absence of dispersal

Dispersal limitation during initial colonization of the microcosms (Cycle 0) led to a set 
of stochastically assembled communities with high β-diversity (Fig. 1b) (8). Subsequent 
semi-continuous cultivation (i.e., zero dispersal rates) revealed contrasting effects of 
local isolation on different levels of diversity (24, 25) (Fig. 2a and b). Our findings align 
with observations in anaerobic bioreactors, where stochastically assembled communities 
decreased in richness during the transition to a deterministic regime (26). They also 
experimentally support microbial metacommunity models predicting that the absence 
of dispersal will strengthen local biotic selection (11). Other experimental systems, such 
as freshwater nematode metacommunities, maintained stable diversity levels despite 
prolonged local isolation (27). This difference in our findings is probably due to resource 
availability: our experimental system relied on a limited number of resources (cello
biose and glucose), thereby promoting biotic selection and diversity loss. By contrast, 
nematodes could exploit a wide range of resources, including bacteria, microphytoben
thos, protists, meiofauna, or organic debris (28). This likely led to reduced substrate 
competition and niche separation, which in turn stabilized diversity during segregation.

FIG 6 (a) Homogeneous dispersal event (Cycle 7) and per genus performance prediction. Relative abundance of genera predicted from their abundances in 

C6 with a neutral model (gray line) or from their competitiveness, i.e., Elo rating (orange line). The observed relative abundance of genera in each microcosm 

of C7 is depicted with symbols whose color indicates if the observed abundance matched a model (gray or orange), if the genera were overperforming 

(blue), underperforming (green), or were undetectable in C7 (black). (b) Number of genera and (c) corresponding read proportions predicted by the 

neutral, the competitiveness model, that out- or underperformed for both models and excluded ones from C7 communities. (d) Selected genomic traits in 

metagenome-assembled genomes (MAGs) of the dominant taxa in C7 (Acidovorax soli, Acidovorax temperans, Aeromonas hydrophila, Aeromonas bestiarum, and 

Pseudomonas azotoformans) and of taxa that dominated in single microcosms in C6 (Duganella fentianensis, Cellvibrio sp02115825, Caulobacter sp013181195, and 

Pararheinheimera texasensis).
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Interestingly, total compartmentalization rarely resulted in the extinction of OTUs (or 
their decrease below the detection level of our method) at the metacommunity level, 
as illustrated by stable γ-diversity over the growth cycles (Fig. 2a). Instead, it led to a 
decline in OTU occurrence or even to “endemism” within single microcosms, illustrating 
both their redundant roles in most local assemblages and their likely dependence on 
positive biotic interactions to circumvent elimination (29). This gradual “purging” of OTUs 
from microcosm communities during their transition to more deterministic assembly 
processes was also the main driver of increasing β-diversity (Fig. 2b).

The simultaneous increase in biomass and CUE of microcosm communities during 
growth cycles contrasted with stable cellobiose consumption rates (Fig. 4). This suggests 
that their improved performance was not directly driven by specialized taxa that could 
degrade the primary resource, but is best attributed to increasing efficiency of using 
the “common good,” cellobiose-derived glucose. Other biotic interactions might have 
also contributed to reduced energy waste, e.g., enhanced cross-feeding on secreted 
metabolites (30), or energy reallocation from metabolically costly competitive traits to 
growth yield due to reduced interspecific competition (decrease in α-diversity; Fig. 2a) 
(31). Our findings also speak for MacArthur’s minimization principle in communities 
developing under competition at stable conditions: unutilized resources decreased 
with community maturity due to niche complementarity among species (32). While 
this concept has received little attention (33), an experimental study using synthetic 
phytoplankton communities confirmed its predictions regarding biomass production 
(34). Our results extend these findings by showing that cellobiose-derived carbon was 
increasingly fixed into microbial biomass across growth cycles, irrespective of community 
structure (Fig. 4g and h). Finally, microevolutionary adaptation toward more efficient 
glucose consumption (35) could also explain the increasing efficiency.

Originally designed for assessing dyadic interactions within game tournaments (21), 
Elo-rating has been used in biology to assess the social structure in primates (36). 
Our implementation demonstrated suitability for metacommunity analysis by clearly 
highlighting Acidovorax as the overall “winner” across multiple communities (Fig. 1b). 
More importantly, it gave insight into subtle community re-arrangements during growth 
cycles that would have been challenging to detect without context-dependent measure, 
e.g., the increasing importance of Paucibacter, Bosea, or Pelomonas, and the concomitant 
decline of Flavobacterium, Pseudodarcicella, or Aquabacterium (Fig. 2 and 5). Additionally, 
it was the best predictor for the performance of three of the top ten most abundant 
genera after metacommunity mixing (Fig. 6). Thus, Elo-rating could be an additional tool 
to assess the overall success of taxa in metacommunities based on their competitive 
performance within and among local assemblages.

Community types

Stochastic assembly processes can generate compositional and functionally distinct 
communities (7). We show that dispersal limitation within metacommunities may 
produce recurrent community types with different carrying capacities (Fig. 4a and d), 
evenness (Fig. 3c), and subsets of exclusively associated taxa (Fig. 3d). We defined 
types from genera dominating three or more microcosms (Acidovorax, Pseudomonas, 
and Aeromonas) (Fig. 1b and 3). These genera are typically members of the rare aquatic 
biosphere that proliferate upon input of organic matter or in substrate-rich microniches 
(37, 38). Acidovorax was initially seeded into all microcosms, and all local populations 
survived over the growth cycles. Since these bacteria lack a known cellobiose degrada
tion mechanism (Fig. 6d), cellobiose-derived glucose must have been available to them 
as a “common good.” By contrast, both Pseudomonas and Aeromonas were dispersal-limi
ted and more vulnerable to biotic selection. In general, the community types self-stabi
lized: while initial stochastic dispersal established the state for subsequent development 
(Fig. 1B, C0), the biological interaction cycles resulted in their deterministic “purification.” 
This led to stable or increasing within-type similarity against a background of increasing 
metacommunity-level β-diversity (Fig. 2a and c).
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Effects of homogenizing dispersal on the metacommunity

Experimental homogenizing dispersal increased α-diversity and similarity (lower 
β-diversity) of local microcosm communities but led to a reduction of total metacom
munity (γ) diversity (Fig. 2a and b). These observations do not align with the theoretical 
predictions for a fully connected metacommunity subjected to high dispersal rates (9, 
39). Thus, the effects of a singular coalescence event differ from the source-sink dynamics 
resulting from a continuous process of connectivity. Moderate local species sorting in 
post-coalescence microcosms was suggested by the large proportion of abundances of 
individual genera explained by the parent communities (i.e., by the neutral model, Fig. 
6c). The appearance of novel positive interactions among previously allopatric popula
tions may also have contributed to the increased local diversity (40). Since our experi
ment was limited to a single growth cycle after coalescence, we cannot assess if this high 
initial diversity was only temporary. A gradual loss of diversity over a 6-week period was 
demonstrated in an experimental study of mixed soil and carcass communities (41).

Upon coalescence, the heterogeneous assemblages transitioned to novel, more 
uniform communities that differed from all source communities (Fig. 1b). Homogeniza
tion of synthetic bacterial communities has been observed already at low dispersal 
rates (42). Comparable findings have been reported from long-term field observations 
at the landscape scale: the anthropogenic connection of freshwater bodies (related to 
the construction of a reservoir) led to the homogenization of the zooplankton metacom
munity (43).

Coalescence also led to functional uniformity (Fig. 4): community performance didn’t 
improve after mixing but instead stabilized around the median value of the parent 
communities (Table S3). This contrasts with previous observations where the best-per
forming parent community dictated both, the structure and function of post-coales
cence methanogenic assemblages (44). The loss of functional variability most likely 
resulted from the disproportional decline or extinction of functionally distinct taxa 
(Fig. 6d) that dominated in single C6 communities and significantly contributed to this 
variability (Fig. 4c and e). These “endemic” populations, Rheinheimera, Duganella, and 
Caulobacter (Fig. 1b), proved to be extremely vulnerable to competitive exclusion (45–
47). Thus, our experimental observations shed light on how homogenizing dispersal 
can affect species trait distributions and lead to a loss of functional variability at 
the metacommunity level (Fig. 4), thereby potentially altering ecosystem functioning 
through the replacement of specialists at the expense of generalists (48) and functionally 
inefficient species (49).

The post-coalescence dominance of one genotype of Pseudomonas from a single 
isolated microcosm, P. azotoformans, conspicuously exceeded our predictions (Fig. 1 and 
6; Table S5). The analysis of the corresponding MAGs revealed that P. azotoformans was 
the only abundant community member that featured T5SS and T6SS. These secretion 
systems confer competitive advantages to pseudomonads by delivering effectors such 
as nucleases, amidases, hydrolases, or phospholipases to neighboring bacterial cells and 
the external milieu (50, 51).

Taken together, our findings suggest that dispersal limitation may play a key role 
in defining community performance, by stochastically segregating highly efficient 
“bottom-up” specialists from taxa that outcompete them via negative biotic interactions 
(52, 53). This holds relevance for a rational selection of stable microbial assemblages for 
both industrial and ecosystem restoration purposes (54). Specifically, we demonstrate 
the feasibility of a “top-down” design approach to optimize degradation efficiency in 
synthetic communities by producing rare variants that outperform the more common 
types: the highest levels of cellobiose degradation occurred in a unique dominated 
community stable over the six growth cycles (i.e., Caulobacter; Fig. 1b) but did not survive 
community coalescence (Fig. 6a). Our findings thus provide a potential alternative to 
classical bottom-up approaches (55), by allowing for intrinsic biotic relationships from 
initial stochastic assembly to serve as stabilizing force during deterministic selection (56).
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MATERIALS AND METHODS

Sampling site and experimental design

Water for the inoculum of the experiment was collected at 5 m depth from the preal
pine oligo-mesotrophic Lake Zurich (Switzerland) on 4 October 2019. It was prefiltered 
using 0.8 µm pore size filters (polycarbonate membrane, Whatman, Maidstone, UK) via 
a peristaltic pump (Ismatec, Wertheim, Germany) to exclude potential grazers and other 
eukaryotes from the microcosms.

The experiment comprised three phases: initial colonization of sterile microcosm 
environments, six growth cycles in semi-continuous culture, and a final “coalescence 
event” (Fig. 1a). Bacterial communities were grown in artificial lake water (ALW) (8) 
supplemented with glucose (10 µmol L−1) and its dimer, cellobiose (100 µmol L−1). This 
setup aimed to mimic the natural pool of dissolved organic carbon in aquatic systems, 
i.e., low concentrations of labile and higher concentrations of recalcitrant compounds 
(57). Microcosms consisted of 200 mL Erlenmeyer flasks incubated at 20°C in dark 
conditions. At the end of each growth cycle, samples for substrate utilization, bacterial 
growth, and biomass were collected.

For the initial colonization phase (growth cycle 0, hereafter C0), the filtered lake water 
was inoculated into ALW (1:100), homogenized, and distributed over 20 microcosms. 
This procedure promotes the dispersal limitation of rare lake bacteria that thrive in 
the provided environmental conditions (8). Microcosms were incubated for 6 days until 
bacteria reached the stationary phase. For the semi-continuous cultivation phase, 20 mL 
from each microcosm was transferred into 180 mL of substrate-supplemented ALW in a 
new microcosm. These cultures were incubated for 4 days between subsequent transfers, 
for altogether six growth cycles (C1 to C6; Fig. 1a). In the final phase, 20 mL from each of 
the 20 communities were mixed to simulate homogenizing dispersal, diluted with ALW 
(1:10), homogenized, and distributed across 20 microcosms. These microcosms were 
incubated for 4 days (C7; Fig. 1a).

Bacterial abundances and biomass

For bacterial enumeration, 1 mL portions were fixed with formaldehyde (2% final 
concentration), stored at 4°C, and measured within 24 h. Fixed samples were stained with 
SYBR Green and analyzed on a CytoFLEX flow cytometer (Beckman Coulter, Indianapolis, 
IN, USA). For biomass determination, 50 mL aliquots were filtered onto precombusted 
0.22 µm pore size GF/F filters (Tisch Scientific, 450°C for 6 h) and stored in small 
aluminum containers at −20°C until analysis. The total organic carbon was quantified 
on a dry combustion module cavity ring-down spectrometer (Picarro Inc, Santa Clara, CA, 
USA). Filters were combusted at 950°C, and the resulting CO2 was quantified. Standards 
with a known C-content (Miscanthus) served as the reference for calibration.

Substrate quantification

Glucose and cellobiose concentrations were determined by high-performance liquid 
chromatography (1260 Infinity series, Agilent Technologies, Santa Clara, CA, USA) 
coupled with mass spectrometry (API 5000 triple quadrupole, AB Sciex, Baden, Swit
zerland; HPLC‒MS). Aliquots (1.5 mL) were filtered through 0.1 µm membrane filters 
(Polyethersulfone, Infochroma AG, Goldau, Switzerland) and stored at −20°C until 
analysis. Measurements were conducted as described (58), using sucralose (2 µmol L−1) as 
the internal standard. Data were acquired using Analyst v1.6.1 software (AB Sciex), and 
chromatograms were analyzed via MultiQuant v2.1 (AB Sciex).

Carbon use efficiency

CUE was calculated as the ratio between the biomass produced and the correspond
ing amount of carbon (combined concentrations of glucose and cellobiose) consumed 
during each cycle.
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DNA extraction

At the end of cycles C0, C1, C4, C6, and C7, 100 mL from each microcosm were filtered 
onto a 0.22 µm pore size filter (GPWP, Millipore, Darmstadt, Germany), stored at −20°C 
until DNA extraction with the DNeasy PowerBiofilm Kit (Qiagen, Germany). Metagenomic 
DNA was sequenced using the Illumina shotgun NovaSeq 6000 platform (2 × 150 pb, 
NOVOGENE, Cambridge, United Kingdom).

16S rRNA genotyping

For bacterial community structure analysis, we retrieved reads from the C0, C1, C4, 
C6, and C7 metagenome sequences mapped to the 16S rRNA gene using published 
pipelines (59, 60). Forward and reverse reads were merged using BBmerge v38.86 (61) 
at default settings and filtered by length (>200 bp) using BBduck v38.86 (61). These 
pre-processed reads were queried against the SILVA SSU database using MMseqs2 
(e-value 1e−3) (62) to identify RNA-like sequences. Bona fide 16S rRNA sequences were 
further compared by blastn (e-value 1e−5) with SSU-ALIGN v0.1 (http://eddylab.org/soft
ware/ssu-align/) against the SILVA 99NR database v138.1 (63). OTUs were constructed 
by BLAST (v2.9.0) analysis of the identified 16S rRNA sequences against SILVA that 
simultaneously had identity values >97% and alignment lengths ≥80% (64). Reads were 
rarefied to the read count of the lowest sample (2,911; Table S1).

Genome assembly and functional annotation

Raw Illumina reads were quality and adapter trimmed using BBduck v38.86 (61) (qtrim=rl 
trimq=30). Reads were assembled per sample using MEGAHIT v1.2.9 (defaults settings, 
k-mer 29, 39, 49, 59, 69, 79, 89, 99). The metagenomic reads were mapped using BBmap 
v38.86 (61) against the assembled contigs. The abundance profile of assembled contigs 
was used for binning with MetaBAT2 (65). Completeness and contamination were 
assessed by CheckM v1.2.2 (66). Bins with contamination <5% were considered MAGs 
for further analysis (Table S4). MAGs were taxonomically classified with GTDB-tk v1.4.0 
software (67) against the GTBD database release R07-RS207. Coding sequences were 
predicted via Prokka v1.12 (68) and annotated using the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) (69). Metabolic reconstruction and genomic traits analysis were 
conducted with the KEGG mapping tools (https://www.genome.jp/kegg/mapper/recon
struct.html) using the previously annotated KO numbers. Proteins involved in cellobiose 
degradation (beta-glucosidases and cellobiose phosphorylases) we identified using the 
UniProtKB/Swiss-Prot protein database (release 2024_02 v1).

Genomic traits associated with biological interactions

We searched for genomic traits associated with positive and negative biological 
interactions. Amino acid biosynthesis pathways were analyzed to detect auxotrophic 
taxa. Auxotrophies for essential metabolites increase metabolic interdependencies 
within microbial communities, thereby promoting positive interactions (70). Genes 
associated with bacterial secretion systems were assessed as proxies for competitive 
advantages (23). Since some secretion systems can be associated with positive interac
tion (i.e., cell-cell communication), we operationally classified them into weak or strong 
competitive traits. Weak competitive traits comprised type I, II, and IV secretion systems 
(T1SS, T2SS, T4SS) that relate to host-pathogen interactions, and participate in bacterial 
genetic exchange (23). In contrast, strong competitive traits encompassed type III, V, 
and VI secretion systems (T3SS, T5SS, T6SS), which can provide a direct competitive 
advantage by enhancing survival and invasion capacity through the release of toxins and 
effectors into the environment or neighboring cells (71).
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Assessment of competitiveness and predictions for the homogenizing 
dispersal event

Competition among genera in our low-complexity communities at C0, C1, C4, and C6 
was assessed by a multiplayer version of the Elo-rating index used to compare the 
performance of players across multiple matches in gaming (72). For calculations, we 
used the multielo-package v0.4.0 implemented in Python (https://github.com/djcun
ningham0/multielo). Elo-ratings rely on the accuracy of a scoring function, for which 
we fitted an exponential decay function to the distribution of bacterial read numbers 
from cycle C0 to C6 (R2 = 0.90, P < 0.001; Fig. S1a). Each genus obtained a score (SoG) 
based on its ranking in the community. Subsequently, the Elo rating per genus (EloG) in 
each microcosm was calculated as

(1)EloG,n = EloG,n − 1 + K N − 1 SoG − SeG ,
where K (default = 32) corresponds to the sum of points per microcosm after all 

pairwise “matches,” N is the number of bacterial genera, and SeG is the per genus 
expected score if all community members have the same winning probability. Elo-rating 
was calculated per cycle and sequentially updated through the 20 microcosms. Because 
the order of the microcosms can influence Elo-rating results, we randomized the order of 
microcosms (n = 1,000), and the average Elo-rating was reported.

The effects of the homogenizing dispersal event at the genus level were assessed 
by comparing whether the final proportions of genera in C7 were better predicted by 
competitiveness (their Elo-ratings in C6) or neutral processes (their respective abundan
ces in the inoculum for C7). To calculate the competitive scenario, we first scaled the 
Elo-ratings in C6 by subtracting the minimum rating:

(2)EloG′ = EloG − min EloG
The scaled Elo-rating was normalized from 0 to 1 for further comparison with the 

observed abundances:

(3)Elo .normG′ = EloG′∑ EloG′ ×median Cell countsC6 ,
where Elo.normG′ represents the expected abundance of the individual genus after 

the homogenizing dispersal event according to their competitiveness.
The expected abundance of the individual genus according to the neutral scenario 

was estimated by multiplying the relative read number per genus (G) with cell abundan
ces per microcosm (i) from the C6. These results were summed up across microcosms (n), 
as follows:

(4)Abundance .neutralG = i
n (relative read numbersG, i  × cell countG, i)

Abundance.neutralG was normalized by the sum of cell counts across microcosms (n = 
20).

Statistical analysis

Statistical analyses were conducted using R (73). The modified Raup–Crick index (βRC) 
was used to assess the importance of community assembly processes using the Bray‒
Curtis distance (74) at the OTU level with the R package NST (75). The βRC performs 
a pairwise evaluation of community turnover based on a null model in which taxa 
are randomly shuffled among all communities. It indicates whether community pairs 
are more (βRC < −0.95) or less (βRC > 0.95) similar than expected by chance, or if 
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turnover does not differ from the stochastic assembly (|βRC| < 0.95). Community pairs 
more similar than by chance are expected to be influenced by either homogenizing 
dispersal or homogeneous selection, while community pairs less similar than by chance 
are influenced by dispersal limitation.

Distinct community types were defined by genera that were both, abundant and 
prevalent (76), i.e., that had the highest read proportions of all genera at C6 in at least 
three microcosms. The average community composition of these types was derived 
from C6 microcosms. One-way repeated-measurement ANOVAs were performed to 
evaluate if community type affected alpha diversity (Richness, Pielou’s evenness) and 
bulk properties (bacterial abundance, biomass, and CUE). Normality and homoscedastic
ity were tested by Kolmogorov‒Smirnov and Levene tests, respectively. Linear mixed 
models were fitted to the bulk property values of community types from C0 to C6 
to assess potential in or decrease during the semi-continuous cultivation phase (“lme” 
function, R package nlm). Spearman rank correlations of Elo-rating scores versus cycle 
number were used to test if the competitive performance of individual genera signifi-
cantly changed between C0 and C6.

One-sample Wilcoxon or one-sample t-tests (depending on data distribution) were 
performed to assess if the abundances of individual genera after the homogenizing 
dispersal event in the C7 microcosms (n = 20) were more accurately predicted by the 
neutral or the competitive model (or by neither). The abundances predicted by either 
model were considered null hypotheses (h0). If neither predictor deviated from h0, the 
model yielding the higher P-value was selected. Genera with significantly higher or lower 
abundances than predicted by both models were classified as over- or underperforming, 
respectively. Multiple testing was adjusted for by the Benjamini-Hochberg method.

ACKNOWLEDGMENTS

This study was funded by Swiss National Science Foundation Grant Number 182336 and 
10000877.

We thank Daniel Marty and Barbara Basin for their support during the sample 
collection and chemical analysis. We thank Samuel Abiven, Marcus Shiedung, and 
Severin Luca Bellè for their invaluable help in biomass quantification.

AUTHOR AFFILIATIONS

1Limnological Station, University of Zurich, Zurich, Switzerland
2Institut National de la Recherche Scientifique (INRS), Centre Eau, Terre et Environnement, 
Québec, Canada
3onCyt Microbiology AG, Zurich, Switzerland

AUTHOR ORCIDs

Angel Rain-Franco  http://orcid.org/0000-0002-0389-7154
Alizée Le Moigne  http://orcid.org/0000-0002-9709-0211
Lucas Serra Moncadas  http://orcid.org/0000-0001-5375-4074
Adrian-Stefan Andrei  https://orcid.org/0000-0003-1425-7168
Jakob Pernthaler  https://orcid.org/0000-0001-7558-909X

FUNDING

Funder Grant(s) Author(s)

Schweizerischer Nationalfonds zur Förderung der 
Wissenschaftlichen Forschung (SNF)

182336,10000877 Jakob Pernthaler

Research Article mSystems

December 2024  Volume 9  Issue 12 10.1128/msystems.01403-2414

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 0

7 
Ja

nu
ar

y 
20

25
 b

y 
19

2.
13

9.
14

9.
27

.

https://doi.org/10.1128/msystems.01403-24


AUTHOR CONTRIBUTIONS

Angel Rain-Franco, Data curation, Formal analysis, Investigation, Validation, Visualization, 
Writing – original draft, Writing – review and editing | Alizée Le Moigne, Conceptualiza
tion, Investigation, Methodology, Writing – review and editing | Lucas Serra Moncadas, 
Formal analysis, Writing – review and editing | Marisa O. D. Silva, Investigation, Meth
odology | Adrian-Stefan Andrei, Formal analysis, Writing – review and editing | Jakob 
Pernthaler, Conceptualization, funding acquisition, project administration, supervision, 
Writing – review and editing

DATA AVAILABILITY

R-scripts used for the data analyses have been published on GitHub (https://github.com/
angelrainf/cycles.dispersal). Sequence data and metagenome-assembled genomes used 
in this study are deposited in the European Nucleotide Archive at EMBL-EBI (accession 
number PRJEB73309).

ADDITIONAL FILES

The following material is available online.

Supplemental Material

Supplemental Figures (mSystems01403-24-s0001.docx). Figures S1 and S2.
Supplemental Tables (mSystems01403-24-s0002.xlsx). Tables S1 to S7.

REFERENCES

1. Zhou J, Ning D. 2017. Stochastic community assembly: does it matter in 
microbial ecology? Microbiol Mol Biol Rev 81:e00002-17. https://doi.org/
10.1128/MMBR.00002-17

2. Vellend M. 2010. Conceptual synthesis in community ecology. Q Rev Biol 
85:183–206. https://doi.org/10.1086/652373

3. Dini-Andreote F, Stegen JC, van Elsas JD, Salles JF. 2015. Disentangling 
mechanisms that mediate the balance between stochastic and 
deterministic processes in microbial succession. Proc Natl Acad Sci USA 
112:E1326–E1332. https://doi.org/10.1073/pnas.1414261112

4. Doherty SJ, Barbato RA, Grandy AS, Thomas WK, Monteux S, Dorrepaal E, 
Johansson M, Ernakovich JG. 2020. The transition from stochastic to 
deterministic bacterial community assembly during permafrost thaw 
succession. Front Microbiol 11:596589. https://doi.org/10.3389/fmicb.
2020.596589

5. Burns AR, Stephens WZ, Stagaman K, Wong S, Rawls JF, Guillemin K, 
Bohannan BJ. 2016. Contribution of neutral processes to the assembly of 
gut microbial communities in the zebrafish over host development. 
ISME J 10:655–664. https://doi.org/10.1038/ismej.2015.142

6. Langenheder S, Lindström ES. 2019. Factors influencing aquatic and 
terrestrial bacterial community assembly. Environ Microbiol Rep 11:306–
315. https://doi.org/10.1111/1758-2229.12731

7. Zhou J, Liu W, Deng Y, Jiang Y-H, Xue K, He Z, Van Nostrand JD, Wu L, 
Yang Y, Wang A. 2013. Stochastic assembly leads to alternative 
communities with distinct functions in a bioreactor microbial commun
ity. MBio 4:e00584-12. https://doi.org/10.1128/mBio.00584-12

8. Le Moigne A, Randegger F, Gupta A, Petchey OL, Pernthaler J. 2023. 
Stochasticity causes high β-diversity and functional divergence of 
bacterial assemblages in closed systems. Ecology 104:e4005. https://doi.
org/10.1002/ecy.4005

9. Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes 
MF, Holt RD, Shurin JB, Law R, Tilman D, Loreau M, Gonzalez A. 2004. The 
metacommunity concept: a framework for multi‐scale community 
ecology. Ecol Lett 7:601–613. https://doi.org/10.1111/j.1461-0248.2004.
00608.x

10. Dottorini G, Michaelsen TY, Kucheryavskiy S, Andersen KS, Kristensen 
JM, Peces M, Wagner DS, Nierychlo M, Nielsen PH. 2021. Mass-
immigration determines the assembly of activated sludge microbial 

communities. Proc Natl Acad Sci USA 118:e2021589118. 
https://doi.org/10.1073/pnas.2021589118

11. Evans S, Martiny JBH, Allison SD. 2017. Effects of dispersal and selection 
on stochastic assembly in microbial communities. ISME J 11:176–185. 
https://doi.org/10.1038/ismej.2016.96

12. Rillig MC, Antonovics J, Caruso T, Lehmann A, Powell JR, Veresoglou SD, 
Verbruggen E. 2015. Interchange of entire communities: microbial 
community coalescence. Trends Ecol Evol (Amst) 30:470–476. https://
doi.org/10.1016/j.tree.2015.06.004

13. Chase JM. 2003. Community assembly: when should history matter? 
Oecologia 136:489–498. https://doi.org/10.1007/s00442-003-1311-7

14. Fukami T. 2015. Historical contingency in community assembly: 
integrating niches, species pools, and priority effects. Annu Rev Ecol Evol 
Syst 46:1–23. https://doi.org/10.1146/annurev-ecolsys-110411-160340

15. Pu Z, Jiang L. 2015. Dispersal among local communities does not reduce 
historical contingencies during metacommunity assembly. Oikos 
124:1327–1336. https://doi.org/10.1111/oik.02079

16. Loreau M, Mouquet N, Gonzalez A. 2003. Biodiversity as spatial insurance 
in heterogeneous landscapes. Proc Natl Acad Sci USA 100:12765–12770. 
https://doi.org/10.1073/pnas.2235465100

17. Wetherington MT, Nagy K, Dér L, Ábrahám Á, Noorlag J, Galajda P, 
Keymer JE. 2022. Ecological succession and the competition-coloniza
tion trade-off in microbial communities. BMC Biol 20:262. https://doi.
org/10.1186/s12915-022-01462-5

18. Hurtt GC, Pacala SW. 1995. The consequences of recruitment limitation: 
reconciling chance, history and competitive differences between plants. 
J Theor Biol 176:1–12. https://doi.org/10.1006/jtbi.1995.0170

19. Amarasekare P, Hoopes MF, Mouquet N, Holyoak M. 2004. Mechanisms 
of coexistence in competitive metacommunities. Am Nat 164:310–326. 
https://doi.org/10.1086/422858

20. White HJ, Pakeman RJ, Buckley YM. 2022. Common species contribute 
little to spatial patterns of functional diversity across scales in coastal 
grasslands. J Ecol 110:1149–1160. https://doi.org/10.1111/1365-2745.
13858

21. Elo AE. 1978. The rating of chessplayers, past and present. Arco Pub.
22. Shmida A, Wilson MV. 1985. Biological determinants of species diversity. 

J Biogeogr 12:1. https://doi.org/10.2307/2845026

Research Article mSystems

December 2024  Volume 9  Issue 12 10.1128/msystems.01403-2415

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 0

7 
Ja

nu
ar

y 
20

25
 b

y 
19

2.
13

9.
14

9.
27

.

https://github.com/angelrainf/cycles.dispersal
https://www.ncbi.nlm.nih.gov/bioproject/PRJEB73309/
https://doi.org/10.1128/msystems.01403-24
https://doi.org/10.1128/MMBR.00002-17
https://doi.org/10.1086/652373
https://doi.org/10.1073/pnas.1414261112
https://doi.org/10.3389/fmicb.2020.596589
https://doi.org/10.1038/ismej.2015.142
https://doi.org/10.1111/1758-2229.12731
https://doi.org/10.1128/mBio.00584-12
https://doi.org/10.1002/ecy.4005
https://doi.org/10.1111/j.1461-0248.2004.00608.x
https://doi.org/10.1073/pnas.2021589118
https://doi.org/10.1038/ismej.2016.96
https://doi.org/10.1016/j.tree.2015.06.004
https://doi.org/10.1007/s00442-003-1311-7
https://doi.org/10.1146/annurev-ecolsys-110411-160340
https://doi.org/10.1111/oik.02079
https://doi.org/10.1073/pnas.2235465100
https://doi.org/10.1186/s12915-022-01462-5
https://doi.org/10.1006/jtbi.1995.0170
https://doi.org/10.1086/422858
https://doi.org/10.1111/1365-2745.13858
https://doi.org/10.2307/2845026
https://doi.org/10.1128/msystems.01403-24


23. Costa TRD, Felisberto-Rodrigues C, Meir A, Prevost MS, Redzej A, Trokter 
M, Waksman G. 2015. Secretion systems in Gram-negative bacteria: 
structural and mechanistic insights. Nat Rev Microbiol 13:343–359. https:
//doi.org/10.1038/nrmicro3456

24. Loreau M, Mouquet N, Holt RD. 2003. Meta‐ecosystems: a theoretical 
framework for a spatial ecosystem ecology. Ecol Lett 6:673–679. https://
doi.org/10.1046/j.1461-0248.2003.00483.x

25. Grainger TN, Gilbert B. 2016. Dispersal and diversity in experimental 
metacommunities: linking theory and practice. Oikos 125:1213–1223. 
https://doi.org/10.1111/oik.03018

26. Vanwonterghem I, Jensen PD, Dennis PG, Hugenholtz P, Rabaey K, Tyson 
GW. 2014. Deterministic processes guide long-term synchronised 
population dynamics in replicate anaerobic digesters. ISME J 8:2015–
2028. https://doi.org/10.1038/ismej.2014.50

27. Gansfort B, Uthoff J, Traunspurger W. 2021. Connectivity of communities 
interacts with regional heterogeneity in driving species diversity: a 
mesocosm experiment. Ecosphere 12:e03749. https://doi.org/10.1002/
ecs2.3749

28. Majdi N, Traunspurger W. 2015. Free-living nematodes in the freshwater 
food web: a review. J Nematol 47:28–44.

29. Kehe J, Ortiz A, Kulesa A, Gore J, Blainey PC, Friedman J. 2021. Positive 
interactions are common among culturable bacteria. Sci Adv 7:eabi7159. 
https://doi.org/10.1126/sciadv.abi7159

30. Mataigne V, Vannier N, Vandenkoornhuyse P, Hacquard S. 2021. 
Microbial systems ecology to understand cross-feeding in microbiomes. 
Front Microbiol 12:780469. https://doi.org/10.3389/fmicb.2021.780469

31. Craine JM. 2006. Competition for nutrients and optimal root allocation. 
Pl Soil 285:171–185. https://doi.org/10.1007/s11104-006-9002-x

32. Arthur RM. 1969. Species packing, and what competition minimizes. 
Proc Natl Acad Sci U S A 64:1369–1371. https://doi.org/10.1073/pnas.64.
4.1369

33. Ghedini Giulia, Loreau M, White CR, Marshall DJ. 2018. Testing 
MacArthur’s minimisation principle: do communities minimise energy 
wastage during succession? Ecol Lett 21:1182–1190. https://doi.org/10.
1111/ele.13087

34. Ghedini G., Loreau M, Marshall DJ. 2020. Community efficiency during 
succession: a test of MacArthur’s minimization principle in phytoplank
ton communities. Ecology 101:e03015. https://doi.org/10.1002/ecy.3015

35. Lenski RE, Rose MR, Simpson SC, Tadler SC. 1991. Long-term experimen
tal evolution in Escherichia coli. I. Adaptation and divergence during 
2,000 generations. Am Nat 138:1315–1341. https://doi.org/10.1086/
285289

36. Neumann C, Duboscq J, Dubuc C, Ginting A, Irwan AM, Agil M, Widdig A, 
Engelhardt A. 2011. Assessing dominance hierarchies: validation and 
advantages of progressive evaluation with Elo-rating. Anim Behav 
82:911–921. https://doi.org/10.1016/j.anbehav.2011.07.016

37. Gołaś I, Szmyt M, Potorski J, Łopata M, Gotkowska-Płachta A, Glińska-
Lewczuk K. 2019. Distribution of Pseudomonas fluorescens and 
Aeromonas hydrophila bacteria in a recirculating aquaculture system 
during farming of European grayling (Thymallus thymallus L.) brood
stock. Water (Basel) 11:376. https://doi.org/10.3390/w11020376

38. Schweitzer B, Huber I, Amann R, Ludwig W, Simon M. 2001. α- and β-
Proteobacteria control the consumption and release of amino acids on 
lake snow aggregates. Appl Environ Microbiol 67:632–645. https://doi.
org/10.1128/AEM.67.2.632-645.2001

39. Mouquet N, Loreau M. 2003. Community patterns in source-sink 
metacommunities. Am Nat 162:544–557. https://doi.org/10.1086/
378857

40. Castledine M, Sierocinski P, Padfield D, Buckling A. 2020. Community 
coalescence: an eco-evolutionary perspective. Phil Trans R Soc B 
375:20190252. https://doi.org/10.1098/rstb.2019.0252

41. Keenan SW, Emmons AL, DeBruyn JM. 2023. Microbial community 
coalescence and nitrogen cycling in simulated mortality decomposition 
hotspots. Ecol Process 12:45. https://doi.org/10.1186/s13717-023-00451-
y

42. Fodelianakis S, Lorz A, Valenzuela-Cuevas A, Barozzi A, Booth JM, 
Daffonchio D. 2019. Dispersal homogenizes communities via immigra
tion even at low rates in a simplified synthetic bacterial metacommunity. 
Nat Commun 10:1314. https://doi.org/10.1038/s41467-019-09306-7

43. Strecker AL, Brittain JT. 2017. Increased habitat connectivity homogeni
zes freshwater communities: historical and landscape perspectives. J 
Appl Ecol 54:1343–1352. https://doi.org/10.1111/1365-2664.12882

44. Sierocinski P, Milferstedt K, Bayer F, Großkopf T, Alston M, Bastkowski S, 
Swarbreck D, Hobbs PJ, Soyer OS, Hamelin J, Buckling A. 2017. A single 
community dominates structure and function of a mixture of multiple 
methanogenic communities. Curr Biol 27:3390–3395. https://doi.org/10.
1016/j.cub.2017.09.056

45. Ghoul M, Mitri S. 2016. The ecology and evolution of microbial 
competition. Trends Microbiol 24:833–845. https://doi.org/10.1016/j.tim.
2016.06.011

46. MacLean RC, Gudelj I. 2006. Resource competition and social conflict in 
experimental populations of yeast. Nature New Biol 441:498–501. https:/
/doi.org/10.1038/nature04624

47. Pfeiffer T, Schuster S, Bonhoeffer S. 2001. Cooperation and competition 
in the evolution of ATP-producing pathways. Science 292:504–507. 
https://doi.org/10.1126/science.1058079

48. Clavel J, Julliard R, Devictor V. 2011. Worldwide decline of specialist 
species: toward a global functional homogenization? Frontiers Ecol 
Environ 9:222–228. https://doi.org/10.1890/080216

49. Graham EB, Stegen JC. 2017. Dispersal-based microbial community 
assembly decreases biogeochemical function. Processes (Basel) 5:65. 
https://doi.org/10.3390/pr5040065

50. Navarro-Monserrat ED, Taylor CG. 2023. T6SS: a key to Pseudomonas’s 
success in biocontrol? Microorganisms 11:2718. https://doi.org/10.3390/
microorganisms11112718

51. Luo Y, Chen Z, Lian S, Ji X, Zhu C, Zhu G, Xia P. 2023. The love and hate 
relationship between T5SS and other secretion systems in bacteria. Int J 
Mol Sci 25:281. https://doi.org/10.3390/ijms25010281

52. Winter C, Bouvier T, Weinbauer MG, Thingstad TF. 2010. Trade-offs 
between competition and defense specialists among unicellular 
planktonic organisms: the “killing the winner” hypothesis revisited. 
Microbiol Mol Biol Rev 74:42–57. https://doi.org/10.1128/MMBR.00034-
09

53. Jagmann N, Brachvogel HP, Philipp B. 2010. Parasitic growth of 
Pseudomonas aeruginosa in co-culture with the chitinolytic bacterium 
Aeromonas hydrophila. Environ Microbiol 12:1787–1802. https://doi.org/
10.1111/j.1462-2920.2010.02271.x

54. Robinson JM, Hodgson R, Krauss SL, Liddicoat C, Malik AA, Martin BC, 
Mohr JJ, Moreno-Mateos D, Muñoz-Rojas M, Peddle SD, Breed MF. 2023. 
Opportunities and challenges for microbiomics in ecosystem restora
tion. Trends Ecol Evol (Amst) 38:1189–1202. https://doi.org/10.1016/j.
tree.2023.07.009

55. Rodríguez Amor D, Dal Bello M. 2019. Bottom-up approaches to 
synthetic cooperation in microbial communities. Life (Basel) 9:22. https:/
/doi.org/10.3390/life9010022

56. Swenson W, Wilson DS, Elias R. 2000. Artificial ecosystem selection. Proc 
Natl Acad Sci USA 97:9110–9114. https://doi.org/10.1073/pnas.
150237597

57. Søndergaard M, Middelboe M. 1995. A cross-system analysis of labile 
dissolved organic carbon. Mar Ecol Prog Ser 118:283–294. https://doi.
org/10.3354/meps118283

58. Horňák K, Pernthaler J. 2014. A novel ion-exclusion chromatography-
mass spectrometry method to measure concentrations and cycling rates 
of carbohydrates and amino sugars in freshwaters. J Chromatogr A 
1365:115–123. https://doi.org/10.1016/j.chroma.2014.09.007

59. Vavourakis CD, Andrei A-S, Mehrshad M, Ghai R, Sorokin DY, Muyzer G. 
2018. A metagenomics roadmap to the uncultured genome diversity in 
hypersaline soda lake sediments. Microbiome 6:168. https://doi.org/10.
1186/s40168-018-0548-7

60. Andrei A-Ş, Salcher MM, Mehrshad M, Rychtecký P, Znachor P, Ghai R. 
2019. Niche-directed evolution modulates genome architecture in 
freshwater Planctomycetes. ISME J 13:1056–1071. https://doi.org/10.
1038/s41396-018-0332-5

61. Bushnell B. 2014. BBMap: a fast, accurate, splice-aware aligner. Lawrence 
Berkeley National Lab.(LBNL), Berkeley, CA (United States).

62. Steinegger M, Söding J. 2017. MMseqs2 enables sensitive protein 
sequence searching for the analysis of massive data sets. Nat Biotechnol 
35:1026–1028. https://doi.org/10.1038/nbt.3988

Research Article mSystems

December 2024  Volume 9  Issue 12 10.1128/msystems.01403-2416

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 0

7 
Ja

nu
ar

y 
20

25
 b

y 
19

2.
13

9.
14

9.
27

.

https://doi.org/10.1038/nrmicro3456
https://doi.org/10.1046/j.1461-0248.2003.00483.x
https://doi.org/10.1111/oik.03018
https://doi.org/10.1038/ismej.2014.50
https://doi.org/10.1002/ecs2.3749
https://doi.org/10.1126/sciadv.abi7159
https://doi.org/10.3389/fmicb.2021.780469
https://doi.org/10.1007/s11104-006-9002-x
https://doi.org/10.1073/pnas.64.4.1369
https://doi.org/10.1111/ele.13087
https://doi.org/10.1002/ecy.3015
https://doi.org/10.1086/285289
https://doi.org/10.1016/j.anbehav.2011.07.016
https://doi.org/10.3390/w11020376
https://doi.org/10.1128/AEM.67.2.632-645.2001
https://doi.org/10.1086/378857
https://doi.org/10.1098/rstb.2019.0252
https://doi.org/10.1186/s13717-023-00451-y
https://doi.org/10.1038/s41467-019-09306-7
https://doi.org/10.1111/1365-2664.12882
https://doi.org/10.1016/j.cub.2017.09.056
https://doi.org/10.1016/j.tim.2016.06.011
https://doi.org/10.1038/nature04624
https://doi.org/10.1126/science.1058079
https://doi.org/10.1890/080216
https://doi.org/10.3390/pr5040065
https://doi.org/10.3390/microorganisms11112718
https://doi.org/10.3390/ijms25010281
https://doi.org/10.1128/MMBR.00034-09
https://doi.org/10.1111/j.1462-2920.2010.02271.x
https://doi.org/10.1016/j.tree.2023.07.009
https://doi.org/10.3390/life9010022
https://doi.org/10.1073/pnas.150237597
https://doi.org/10.3354/meps118283
https://doi.org/10.1016/j.chroma.2014.09.007
https://doi.org/10.1186/s40168-018-0548-7
https://doi.org/10.1038/s41396-018-0332-5
https://doi.org/10.1038/nbt.3988
https://doi.org/10.1128/msystems.01403-24


63. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, 
Glöckner FO. 2013. The SILVA ribosomal RNA gene database project: 
improved data processing and web-based tools. Nucleic Acids Res 
41:D590–6. https://doi.org/10.1093/nar/gks1219

64. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman 
DJ. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein 
database search programs. Nucleic Acids Res 25:3389–3402. https://doi.
org/10.1093/nar/25.17.3389

65. Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, Wang Z. 2019. MetaBAT 
2: an adaptive binning algorithm for robust and efficient genome 
reconstruction from metagenome assemblies. PeerJ 7:e7359. https://doi.
org/10.7717/peerj.7359

66. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. 2015. 
CheckM: assessing the quality of microbial genomes recovered from 
isolates, single cells, and metagenomes. Genome Res 25:1043–1055. 
https://doi.org/10.1101/gr.186072.114

67. Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. 2020. GTDB-Tk: a 
toolkit to classify genomes with the Genome Taxonomy Database. 
Bioinformatics 36:1925–1927. https://doi.org/10.1093/bioinformatics/
btz848

68. Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. 
Bioinformatics 30:2068–2069. https://doi.org/10.1093/bioinformatics/
btu153

69. Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, 
Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y. 2008. KEGG for linking 

genomes to life and the environment. Nucleic Acids Res 36:D480–4. 
https://doi.org/10.1093/nar/gkm882

70. Mee MT, Collins JJ, Church GM, Wang HH. 2014. Syntrophic exchange in 
synthetic microbial communities. Proc Natl Acad Sci USA 111:E2149–
E2156. https://doi.org/10.1073/pnas.1405641111

71. Speare L, Cecere AG, Guckes KR, Smith S, Wollenberg MS, Mandel MJ, 
Miyashiro T, Septer AN. 2018. Bacterial symbionts use a type VI secretion 
system to eliminate competitors in their natural host. Proc Natl Acad Sci 
USA 115:E8528–E8537. https://doi.org/10.1073/pnas.1808302115

72. Dehpanah A, et al. 2021. The evaluation of rating systems in online free-
for-all games. Springer International Publishing, Cham.

73. Team, R.C. 2018. R: a language and environment for statistical 
computing. R Foundation for Statistical Computing: Vienna, Austria.

74. Stegen JC, Lin X, Fredrickson JK, Chen X, Kennedy DW, Murray CJ, 
Rockhold ML, Konopka A. 2013. Quantifying community assembly 
processes and identifying features that impose them. ISME J 7:2069–
2079. https://doi.org/10.1038/ismej.2013.93

75. Ning D, Deng Y, Tiedje JM, Zhou J. 2019. A general framework for 
quantitatively assessing ecological stochasticity. Proc Natl Acad Sci USA 
116:16892–16898. https://doi.org/10.1073/pnas.1904623116

76. Avolio ML, Forrestel EJ, Chang CC, La Pierre KJ, Burghardt KT, Smith MD. 
2019. Demystifying dominant species. New Phytol 223:1106–1126. https:
//doi.org/10.1111/nph.15789

Research Article mSystems

December 2024  Volume 9  Issue 12 10.1128/msystems.01403-2417

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 0

7 
Ja

nu
ar

y 
20

25
 b

y 
19

2.
13

9.
14

9.
27

.

https://doi.org/10.1093/nar/gks1219
https://doi.org/10.1093/nar/25.17.3389
https://doi.org/10.7717/peerj.7359
https://doi.org/10.1101/gr.186072.114
https://doi.org/10.1093/bioinformatics/btz848
https://doi.org/10.1093/bioinformatics/btu153
https://doi.org/10.1093/nar/gkm882
https://doi.org/10.1073/pnas.1405641111
https://doi.org/10.1073/pnas.1808302115
https://doi.org/10.1038/ismej.2013.93
https://doi.org/10.1073/pnas.1904623116
https://doi.org/10.1111/nph.15789
https://doi.org/10.1128/msystems.01403-24

	Dispersal shapes compositional and functional diversity in aquatic microbial communities
	RESULTS
	Initial colonization and compositional changes during semi-continuous growth cycles
	Community type affects changes in composition and bulk parameters
	Changes in genus-level competitiveness over time (Elo-rating)
	Homogenizing dispersal event
	Genomic traits of dominant community members

	DISCUSSION
	Compositional and functional variability in the absence of dispersal
	Community types
	Effects of homogenizing dispersal on the metacommunity

	MATERIALS AND METHODS
	Sampling site and experimental design
	Bacterial abundances and biomass
	Substrate quantification
	Carbon use efficiency
	DNA extraction
	16S rRNA genotyping
	Genome assembly and functional annotation
	Genomic traits associated with biological interactions
	Assessment of competitiveness and predictions for the homogenizing dispersal event
	Statistical analysis



