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Abstract 9 

Accurate root zone soil moisture (RZSM) estimation using remote sensing (RS) in areas with dense vegetation is 10 

essential for real-time field monitoring and precise irrigation scheduling. Traditional methods often face challenges 11 

due to the dense crop cover and the complexity of soil and climate interactions. These challenges include the coarse 12 

spatial resolution of available soil moisture products, the influence of vegetation and surface roughness, and the 13 

difficulty of estimating RZSM from surface data. Aiming to overcome these limitations, two RZSM estimation 14 

methods were developed by combining synthetic aperture radar (SAR) data from Sentinel-1 (VV and VH 15 

polarizations) and optical and thermal RS data from Landsat-8. These data sources were used in conjunction with 16 

various machine learning (ML) models such as M5-pruned (M5P), support vector regression (SVR), extreme 17 

gradient boosting (XGBoost), and random forest regression (RFR) to improve the accuracy of soil moisture 18 

estimation. In addition to RS data, soil physical and hydraulic properties, meteorological variables, and 19 

topographical parameters were selected as inputs to the ML models for estimating the RZSM of sugarcane crops in 20 

Khuzestan, Iran. This study identified the temperature vegetation dryness index (TVDI) as a critical parameter for 21 

estimating RZSM in combination with the Sentinel-1 SAR data under high vegetation conditions. In both methods, 22 

the RFR algorithm outperformed, with similar performance, the XGBoost, SVR, and M5P algorithms in estimating 23 

soil surface moisture (R2=0.89, RMSE=0.04 cm3cm-3). However, the accuracy of the RFR algorithm decreased with 24 

increasing depth for both the optical-thermal and combined SAR and optical-thermal RS data. This decrease was 25 

more pronounced in the combined approach, particularly for the root zone, where the RMSE reached approximately 26 

0.073 cm3cm-3. Accordingly, the key findings demonstrated that the optical-thermal RS data outperformed the SAR 27 

RS data for retrieving RZSM in high-vegetated areas. However, combining TVDI with SAR data is a substantial 28 

improvement that opens a new path in radar-based RZSM estimation methods under high vegetation conditions.  29 

Keywords: Soil moisture retrieval; Landsat-8; Sentinel-1 SAR; Machine learning algorithms; Agricultural areas. 30 

1. Introduction 31 

Soil moisture, or soil water content, is a crucial variable influencing agricultural management, biophysical and 32 

hydrological cycles, environmental and ecological activities, land surface energy partition into sensible and latent 33 

heat flux, and land surface-atmosphere interactions (Toth et al., 2019). Moreover, the spatio-temporal monitoring of 34 

soil moisture changes can help characterize soil fertility, irrigation scheduling, and yield prediction (Gill et al., 35 
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2006). In the past decade, soil moisture mapping and monitoring at various levels, from field to global scales, have 36 

evolved considerably (Baghdadi et al., 2017; Wang et al., 2022). Nonetheless, locally measuring soil moisture at fine 37 

spatial scales across a vast domain is challenging because it necessitates additional field and laboratory work, as 38 

well as the problem of extrapolating measured values due to inhomogeneities, soil texture, and micro-topography, 39 

which will inevitably result in substantial inaccuracies (Gill et al., 2006). These limitations can be overcome by 40 

remote sensing (RS) techniques and technologies, which provide greater spatial and temporal coverages and have 41 

the advantages of being fast, economical, and non-destructive (Adab et al., 2020; Wang et al., 2022). 42 

The main RS methods for monitoring soil moisture are based on optical, thermal, and active and passive microwave 43 

Earth observations. Several satellite missions, including Soil Moisture and Ocean Salinity (SMOS), Advanced 44 

Scatterometer (ASCAT), and Soil Moisture Active Passive (SMAP), have been utilized to estimate soil moisture 45 

successfully (Brocca et al. 2011; El Hajj et al., 2018; Min et al., 2022). These soil moisture products have limited 46 

usability at the farm and field scales due to their large spatial resolutions of several kilometers (Zhang et al., 2021). 47 

Active microwave sensors in Band-C, such as Radarsat-2 and Sentinel-1 synthetic aperture radar (SAR), have 48 

effectively addressed the challenges of monitoring near-surface soil moisture (SSM) over field areas by directly 49 

correlating the microwave backscattering to the soil water content (Hosseini and McNairn, 2017; Nguyen et al., 50 

2022). The main features that highlight microwaves are their low sensitivity to clouds, sunlight, and all atmospheric 51 

conditions. However, achieving a satisfactory estimation can be challenging because measurements are affected 52 

significantly by surface roughness and water content, especially in the presence of moderate to heavy vegetation. In 53 

contrast, optical and thermal RS have the benefit of generating high-resolution maps. Due to their physical 54 

relationship with soil moisture in vegetation conditions, they are frequently used to predict soil moisture (Guo et al., 55 

2022; Ryu et al., 2021). However, the accuracy of this approach is easily affected by weather conditions. Notably, 56 

active microwaves, optical, and thermal RS can only detect soil moisture changes in the upper surface layer. 57 

Therefore, it is necessary to determine an appropriate approach to estimate root zone soil moisture (RZSM) with a 58 

high spatial resolution at farm and field scales. 59 

Based on the physical nature of electromagnetic waves, using RS alone to retrieve RZSM in dense agricultural areas 60 

has significant flaws in the theory that the effect of vegetation cover must be eliminated for more precise prediction. 61 

Also, soil properties and topography are crucial parameters that affect the spatial-temporal changes in soil moisture 62 

(Nguyen et al., 2022). So, these properties can be used along with RS methods to increase soil moisture estimation 63 

accuracy. However, the high volume of required data in estimating soil moisture using different RS approaches and 64 

soil properties for linear regression analysis may limit the applicability of some statistical hypotheses, such as 65 

further data, nonlinearity, heterogeneity, and several others (Yeh and Lien, 2009). This indicates a fundamental 66 

requirement to improve and develop RS techniques for a more satisfactory RZSM determination at farm and field 67 

scales. 68 

In recent years, several researchers have developed methods to avoid complicated physical relationships and 69 

effectively address nonlinear problems to meet application needs better (Carranza et al., 2021; Toth et al., 2019; 70 

Wang et al., 2022). Among these methods, deep learning models, such as convolutional neural networks (CNN), 71 
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recurrent neural networks (RNN), and deep neural networks (DNN), have demonstrated higher accuracy in soil 72 

moisture estimation. However, these models have a significant drawback: their requirement for large datasets poses 73 

a severe challenge in regions with limited data availability (Guo et al., 2022). This limitation restricts their practical 74 

application in many real-world scenarios. On the other hand, machine learning (ML) models such as artificial neural 75 

networks (ANN), decision trees (DT), support vector machines (SVM), random forests (RF), and extreme gradient 76 

boosting (XGBoost) are widely and successfully employed for soil moisture prediction due to their simplicity and 77 

greater interpretability (Fathololoumi et al., 2020; Babaeian et al., 2021). These models can work effectively with 78 

smaller datasets, making them more suitable for regions where data collection is limited. 79 

In this context, Acharya et al. (2021) employed tree-based models and ANN to model field soil moisture in the Red 80 

River Valley of the North. They demonstrated that tree-based models outperform ANN in training speed, ease of 81 

parameter adjustment, and overall predictive performance. Similarly, Adab et al. (2020) found that the RF model 82 

outperformed both SVR and ANN in estimating soil moisture content (SMC). Their findings highlighted that ANN 83 

is prone to overfitting, significantly reducing its generalizability. Furthermore, ANN’s performance is heavily 84 

dependent on its network architecture and the complexity of the sample data, making it less stable in varying 85 

conditions. On the other hand, tree-based models offer an interpretable structure, allowing for a deeper 86 

understanding of the importance of different features and their interactions, even when dealing with limited data (Al-87 

Aizari et al., 2024). This interpretability is crucial for applications like soil moisture estimation, where 88 

understanding the contributing factors is essential. In contrast, due to their complex architectures, ANN models are 89 

often perceived as black boxes, where the internal decision-making processes are opaque and less transparent to 90 

users. Moreover, ANNs typically require a large volume of data to achieve optimal performance, and their predictive 91 

power diminishes, especially when validation data falls outside the training data range or when using small datasets 92 

(Melesse et al., 2020). Considering these factors and aiming for higher accuracy and better interpretability, tree-93 

based models were selected for this study. 94 

Carranza et al. (2021) estimated RZSM using RF and meteorological data, leaf area index, and hydraulic soil data. 95 

They showed that RF could obtain the spatiotemporal variability of soil moisture and estimate RZSM with 96 

reasonable accuracy, while RF predictions for extreme dry and wet conditions were less accurate. However, it is 97 

difficult to generalize their approach on the scale of agricultural areas due to the limitations of interpolation and 98 

extrapolation of the auxiliary variables and the spatial heterogeneity of soil texture. To address these limitations, this 99 

study utilized vegetation, soil, and moisture indices derived from Landsat-8 satellite images to obtain RZSM data 100 

with better spatial-temporal consistency. 101 

In microwave RS approaches, several investigations have demonstrated that using the normalized difference 102 

vegetation index (NDVI) as the sole vegetation descriptor enables the computation of vegetation effects on the total 103 

backscattered coefficients with adequate precision (Baghdadi et al., 2017; Liu et al., 2022). NDVI is widely 104 

employed due to its simple estimation, straightforward availability at various spatial and temporal resolutions, and 105 

ability to eliminate noise induced by changing sun angles, topographic illumination, clouds, or shadow (Kumari et 106 

al., 2021). Using a DT model, Bazzi et al. (2022) investigated the potential of the Sentinel-1 SAR data to detect 107 
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irrigation events in corn, soybean, sorghum, and potato fields. The results showed that developed vegetation cover 108 

was a significant constraint in detecting irrigation events. Accordingly, NDVI values higher than 0.70 reduced the 109 

accuracy of irrigation detection to less than 40%, while moderate vegetation cover (NDVI<0.60) yielded 110 

approximately 60% accuracy. On the other hand, Ryu et al. (2021) suggested a relationship between surface soil 111 

moisture derived from the global land data assimilation system (GLDAS) and the temperature vegetation dryness 112 

index (TVDI) using linear regression. This approach estimates SSM by analyzing the triangular/trapezoidal feature 113 

space, incorporating temperature variability and its association with vegetation density. Building on this foundation, 114 

this study’s key innovation is the use of TVDI to enhance the prediction of RZSM at the field scale. This approach is 115 

particularly effective in addressing the limitations associated with NDVI in microwave RS under dense vegetation 116 

conditions. As per our review, this is the first study to specifically investigate the effectiveness of combining TVDI 117 

with Sentinel-1 SAR data over agricultural lands. This innovative approach offers a more accurate and robust 118 

solution for RZSM estimation in environments where more commonly used vegetation indices (VIs), like NDVI, 119 

may not perform optimally. 120 

Most previous studies on soil moisture estimation using RS data, whether optical, thermal, or SAR, have focused on 121 

SSM in areas with low vegetation cover. However, none of these studies has comprehensively addressed the 122 

estimation of RZSM in regions with dense vegetation cover. Therefore, this study aims to address this gap by 123 

employing two approaches: the first using optical-thermal information from Landsat-8, and the second combining 124 

VIs derived from Landsat-8 data with SAR data from Sentinel-1 in advanced ML algorithms for accurate RZSM 125 

estimation. The proposed approach, which also incorporates climatic data and the physical and hydraulic properties 126 

of the soil, enhances the accuracy and comprehensiveness of RZSM estimation compared to earlier studies, which 127 

primarily relied on coarse resolution data and more straightforward modeling techniques. Additionally, this study 128 

provides a more detailed assessment of RZSM estimation at the field scale, which can assist farmers and water 129 

resource managers in improving irrigation decision-making and enhancing agricultural productivity. To achieve the 130 

primary objectives of this study, the following research questions were posed: (i) Can integrating meteorological 131 

parameters and soil physical and hydraulic properties with Landsat-8 data using ML methods improve the accuracy 132 

of field-scale RZSM estimation? (ii) Is retrieving RZSM using Sentinel-1 SAR data and ML algorithms in the areas 133 

with dominant vegetation cover possible? (iii) Which vegetation descriptor, NDVI or TVDI, has shown superior 134 

efficacy when combined with the Sentinel-1 SAR RS approach? (iv) Can ML models (M5P, SVR, XGBoost, and 135 

RFR) effectively monitor RZSM and identify critical variables? (v) Can including SSM data points enhance RZSM 136 

retrieval using the ML methods? 137 

 138 

2. Materials and Methods 139 

2.1.  Study area 140 

Field experiments were conducted at Hakim Farabi Sugarcane Agro-Industrial Company (HFSAIC) in the 141 

Khuzestan province of Iran (latitude: 30° 54ʹ 1ʺ N to 31° 3ʹ 34ʺ N, longitude: 48° 31ʹ 5ʺ E to 48° 39ʹ 4ʺ E Fig. 1). 142 

The area exhibits sparse precipitation and intense evaporation. The climate is arid and semi-arid with an average 143 
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yearly temperature of 22.92 ℃, annual rainfall of 203 mm, and 2270.24 mm yr−1 of yearly evaporation from open 144 

pans. Its average altitude is 6 m above the mean sea level, and the slope of the lands of this unit is between 0.1 to 0.2 145 

per thousand. This region’s primary agricultural crop is sugarcane. The study area, with a total area of 14000 146 

hectares, was evenly partitioned into rectangular units (about 480 units) with 25 hectares (250 m × 1000 m), of 147 

which nine farms were selected for this study. The soil texture in the region ranges from moderate to very heavy. 148 

The sugarcane farms had identical planting, harvesting, and agricultural operations. The field irrigation system was 149 

surface irrigation, and the total irrigation water consumption was 3000 mm. Overall, the information presented in 150 

this section was obtained from the HFSAIC Research Center and is based on local meteorological reports, soil and 151 

agronomy studies, and direct field observations conducted in the study area. 152 

 153 

Fig. 1. Study area. (a) The location of the case study, (b) Overview of the HFSAIC with sampling locations, and (c) Detailed 154 
view of a subset of the sampling distribution 155 

 156 

2.2. Data collection and preparation 157 

During the sugarcane crop growth seasons, soil moisture measurements were taken from twenty-seven different 158 

locations of the specified farms at five depths: 0-10, 10-30, 30-50, 50-70, and 70-90 cm. Several samples were taken 159 

from different plots with various crop ages inside the research area to measure the SMC from November 2019 to 160 

October 2020 crop years. Also, to eliminate inadvertent measurement error, each sampling location’s SMC was 161 

measured three times, and the ultimate mean value was used to determine the sampling point’s actual SMC. Over 162 

4400 samples were gathered from the study area during the sugarcane season.  163 

The soil samples were air-dried, crushed, and sieved through a 2 mm mesh at the HFSAIC laboratory. Soil 164 

properties, e.g., textural characterization (clay, silt, and sand %), dry bulk density (BD), water content at field 165 
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capacity (θFC), water content at the permanent wilting point (θPWP), and porosity (ϕ) were measured (Klute, 1988). 166 

The ϕ was derived using the measured BD and considering a mean value of soil particle density of 2.65 g cm−3, 167 

which is usual in croplands containing silica-rich soils and devoid of a substantial quantity of organic matter (Flint 168 

and Flint, 2002). ROSETTA pedotransfer functions (PTFs) were used to derive soil hydraulic parameters (Schaap et 169 

al., 2001). The PTFs provide statistical estimates of hard-to-obtain hydraulic soil parameters based on easily 170 

measured fundamental properties such as BD and soil texture. For this research, the van Genuchten (1980) model 171 

was used to estimate saturated hydraulic conductivity (Ks), residual volumetric moisture (θr), saturated volumetric 172 

moisture (θs), scaling parameter(α), and shape parameter (n). Some physical and hydraulic soil properties are listed 173 

in Table 1. 174 

Table 1. Basic statistics of soil physical and hydraulic properties in the root zone of the study area. 175 

Soil 

Property 

Min  Max  Mean 

0-10 

 

10-30 

 

30-50 

 

50-70 70-90 

 
 

0-10 

 

10-30 

 

30-50 

 

50-70 

 

70-90 

 
 

0-10 

 

10-30 

 

30-50 

 

50-70 

 

70-90 

 

Sand 

 (%) 
7 8 2.2 3 2.2  20 22 21 20 19  12.8 13.2 12.77 13.5 11.4 

Silt 

(%) 
45 43 45 46 44  56 57 59 57 58  51.1 52.3 51.47 50.2 50.1 

Clay 

(%) 
33 33 32 33 34  44 45 44 45 46  36.1 36.7 35.75 36.7 38.5 

BD  

(g cm-3) 
1.3 1.33 1.35 1.3 1.3  1.5 1.52 1.6 1.5 1.48  1.4 1.41 1.44 1.4 1.39 

θFC  

(cm3 cm-3) 
0.33 0.33 0.34 0.36 0.37  0.41 0.41 0.4 0.42 0.44  0.38 0.38 0.39 0.38 0.39 

θPWP  

(cm3 cm-3) 
0.14 0.14 0.13 0.15 0.15  0.19 0.19 0.19 0.18 0.20  0.17 0.17 0.18 0.16 0.17 

Φ 

 (cm3 cm-3) 
0.43 0.42 0.41 0.43 0.44  0.50 0.50 0.49 0.51 0.51  0.47 0.46 0.45 0.47 0.48 

Ks  

(cm d-1) 
11.6 12.14 12.25 11.59 11.77  12.8 14.2 14.3 14.7 15.55  12.3 12.6 12.65 12.7 12.93 

 176 

The meteorological station located in HFSAIC provided the weather data for this study. The climatic station 177 

collected air temperature (T), relative humidity (RH), wind speed (W), sunshine hours (Sh), solar radiation (Rn), and 178 

class A evaporation pan (E). 179 

 180 

2.3. Satellite data and image analysis  181 

2.3.1. Data acquisition  182 

This study aimed to estimate soil moisture from two satellite Earth observations, i.e., level-1 Landsat-8 multispectral 183 

data and Sentinel-1 C-band dual polarimetric SAR imagery. The Landsat-8 data were acquired from the specific path 184 

and row coordinates (path 165, row 39) covering the study area. These images are freely accessible to global users 185 

through the United States Geological Survey’s data distribution website (https://glovis.usgs.gov/) (USGS). In 186 

addition, high-resolution Level-1 ground range detected (GRD) Sentinel-1 images with 10m×10m pixels and dual-187 

polarization (vertical-vertical (VV) polarization and vertical-horizontal (VH) polarization) acquired in 188 

interferometric wide swath (IW) mode were obtained from the ESA Copernicus data hub 189 

Jo
urn

al 
Pre-

pro
of



(https://scihub.copernicus.eu). Table 2 provides the acquisition dates from Sentinel-1 and cloud-free Landsat-8 190 

satellites during the specified period. 191 

Table 2. Details of satellite data used in the study. 192 

Satellite Date of acquisition Resolution 

Landsat-8 

 

11-Nov, 27-Nov, 29-Dec. (2019); 30-Jan, 15-Feb, 2-

Mar, 3-Apr, 21-May, 6-Jun, 22-Jun, 24-Jul, 9-Agu, 25-

Agu, 10-Sep, 26-Sep, 12-Oct. (2020) 

 

OLI (30 m) 

TIRS (100 m) 

Sentinel-1 

10-Nov, 27-Nov, 28-Dec. (2019); 31-Jan, 14-Feb, 2-

Mar, 20-May, 6-Jun, 23-Jun, 24-Jul, 10-Agu, 24-Agu, 

10-Sep, 27-Sep, 11-Oct. (2020) 

10 m 

 193 

2.3.2. Data preprocessing 194 

The Landsat-8 images were processed via two main steps presented in Fig. 2. The environment for visualizing 195 

images (ENVI) 5.3.1 software preprocessed the Landsat-8 images (ITT Systems, ITT Exelis, Herndon, VA, USA). 196 

The fast line-of-sight atmospheric analysis of spectral hypercubes (FLAASH) module in ENVI 5.3.1 was applied for 197 

atmospheric correction to retrieve surface reflectance accurately. The study area was then extracted from the 198 

corrected scenes, and the spatial resolution of the images was resampled to 10 meters using the nearest neighbor 199 

method. Subsequently, standard and efficient spectral indices were used to develop an effective combination for 200 

constructing the retrieval model. 201 

In this study, in addition to spectral indices, the TVDI based on the land surface temperature (LST) - NDVI space 202 

was utilized to capture spatial and temporal variations in soil moisture. As described in Table 3, LSTMax and LSTMin 203 

represent the surface temperature under dry and wet soil conditions derived from the LST-NDVI trapezoid for a 204 

specific location (satellite scene). These values are calculated using the dry and wet edges of the trapezoid for each 205 

NDVI value: 206 

LSTMax = id + Sd NDVI (1) 

LSTMin= iw + Sw NDVI (2) 

 207 

In these equations, id and Sd denote the intercept and slope of the dry edge, respectively, while iw and Sw represent 208 

the intercept and slope of the wet edge. For more details, refer to Moran et al.’s (1994) and Sadeghi et al. (2017) 209 

research. TVDI and other vegetation, soil, and moisture indices used in this study have been identified as sensitive 210 

indices of soil moisture conditions. This makes it particularly valuable for monitoring areas with heterogeneous soil 211 

moisture levels, such as arid and semi-arid regions. Table 3 lists the spectral indices derived from Landsat-8 used in 212 

this study. 213 

Table 3. Vegetation, soil, and moisture indices from optical and thermal RS observations. 
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 214 

The Sentinel-1 images were chosen based on their acquisition times to ensure that the SAR and optical data were 215 

approximately synchronous in pairs. Afterward, the SAR images underwent preprocessing with the Sentinel 216 

Application Platform (SNAP) version 9.0.0 of ESA with the Sentinel-1 Toolbox version 8.0.5. The preprocessing 217 

procedures include applying an orbit file, removing the thermal noise, radiometric calibration, speckle filter to 218 

reduce the speckle noise, terrain correction, and conversion to dB using a logarithmic transformation (Foumelis et 219 

al., 2018). Terrain correction was performed with the Range-Doppler terrain correction module using the Shuttle 220 

Radar Topography Mission (SRTM) 1-sec digital elevation model (DEM). From it, the slope and aspect were 221 

computed with ArcGIS 10.8. It has been proven that vegetation indices in the form of the backscatter intensity ratio 222 

are efficient for characterizing vegetation morphology and estimating soil moisture using Sentinel-1 images 223 

(Bhogapurapu et al., 2022). Therefore, in addition to extracting the two principal polarizations (VV, VH), the 224 

vegetation index (VI) obtained from the dual SAR dataset was used to reduce the vegetation’s effect on soil 225 

backscatter. The DpRVIc index can be calculated using equations 3 and 4, where q, the ratio parameter, is 226 

determined by dividing the backscattering coefficients of VH and VV. 227 

(3) DpRVIC= 
q(q+3)

(q+1)2 
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(4) q =
σVH

σVV
 

 228 

2.4. Methodology 229 

2.4.1. Overall retrieval framework 230 

This study used diverse input data, including RS information, meteorological data, soil properties, and topographic 231 

features, to accurately estimate RZSM using four ML algorithms (M5P, SVR, XGBoost, and RFR). Preparing these 232 

input data meticulously and appropriately before applying them to the algorithms is essential for improving the 233 

accuracy of the results. The following will detail the process and strategies to ensure reliable estimations. A critical 234 

aspect of data preparation involved addressing the study area’s spatial and temporal dimensions. Meteorological 235 

variables were considered uniform across the study area and only varied by measurement days. In contrast, the 236 

Kriging interpolation method in ArcMap 10.8.2 generated spatially continuous maps based on field sampling data 237 

for soil physical and hydraulic properties. 238 

Following the meticulous preparation of the input data, the initially vital step in the modeling process was to 239 

determine the effective parameters for estimating soil moisture. Conducting this preliminary step before modeling 240 

can enhance result quality, mitigate the risk of overfitting, and significantly reduce training time. To this end, the 241 

information gain ratio (IGR) technique was employed to identify the most influential parameters for predicting 242 

RZSM. Subsequently, the top-ranked parameters exhibiting the highest IGR values were integrated into soil 243 

moisture estimation algorithms, and their accuracy was evaluated (Gibson, 2020). 244 

The predictor variables were divided into two datasets: 70% of the data (comprising six fields and 293 points) were 245 

allocated for the training phase, while the remaining 30% (3 fields and 125 points) were reserved for the testing 246 

phase. The training dataset was employed to develop the ML algorithms, and the testing dataset was used for 247 

validation. Notably, the normalization was performed before modeling to improve the data’s integrity and minimize 248 

redundancy. 249 

In the subsequent step, recognizing that the performance of ML models is highly contingent on properly tuning 250 

hyperparameters, this study employed a combination of 5-fold cross-validation (CV) and grid search (GS) to 251 

optimize these parameters. The 5-fold CV method involves partitioning the training data into five subsets, 252 

sequentially excluding one subset to serve as the validation subset and using the remaining data to fit the model. 253 

This process is repeated five times to ensure a robust estimate of the test error rate. The models were implemented in 254 

Python, leveraging essential libraries such as Pandas, scikit-learn, NumPy, m5py, and XGBoost for data processing, 255 

model development, and evaluation. Fig. 2 depicts the framework for estimating RZSM in this paper. 256 

To address the primary research questions, this study employed various ML algorithms to estimate RZSM in three 257 

distinct scenarios: (1) Estimating RZSM using optical and thermal RS methods, meteorological data, and soil 258 

physical-hydraulic properties. (2) Estimating RZSM using Sentinel-1 SAR data combined with NDVI, TVDI, and 259 
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topographic parameters. (3) Incorporation of SSM as an auxiliary input parameter into scenarios 1 and 2 to assess 260 

potential improvements in RZSM estimation. 261 

 262 

 

Fig. 2. Flowchart of the study procedure 

 263 

2.4.2. Machine learning algorithms 264 

2.4.2.1. M5- pruned (M5P) model tree 265 

Wang and Witten (1996) rebuilt and proposed the M5P algorithm from the M5 algorithm, a binary DT using a linear 266 

regression function at the leaf (terminal node) to predict continuous numerical properties. The main advantage of 267 

M5P is that it can perform better in the data set than M5 by reducing tree size. For more explanation, refer to 268 

Quinlan’s study (1992). This model analyzes the data’s implicit patterns and relations based on several principles, 269 

Jo
urn

al 
Pre-

pro
of



rules, and regression equations. However, this part of the operation in the other artificial intelligent models, such as 270 

ANN, is hidden, and just the analysis outcomes are presented (Wang and Witten, 1996). M5P tree development 271 

consists of three primary steps: tree construction, tree pruning, and tree smoothing. The M5P model tree construction 272 

procedure aims to maximize a metric known as the standard deviation reduction. The standard deviation reduction 273 

(SDR) is determined using the following formula: 274 

SDR = sd(S) − ∑
Si

|S|
× sd(Si) (5) 

sd(Si) = √∑
(Si − S̅)2

N − 1

N

1

 (6) 

S̅ = ∑
Si

N

N

1

 (7) 

where Si is the set resulting from splitting the node based on a specified attribute, S is the set of the data records 275 

reaching the node, and sd is the standard deviation (Wang and Witten, 1996). 276 

2.4.2.2. Support vector regression (SVR) 277 

The support vector machines were developed by Cortes and Vapnik (1995), and they can deal with classification 278 

(SVM) or regression (SVR) problems. SVR offers the advantages of a simple structure, robust adaptability, and 279 

potent capacity for addressing difficulties with few samples and nonlinear and high-dimensional data. The objective 280 

of backup vector regression is to identify the function f(x) for training patterns 𝑥𝑖. So that it has the largest possible 281 

margin of training values 𝑦𝑖. The SVR model’s regression function can be represented as: 282 

f(x)= w × ϕ(x) +b (8) 

where f represents the regression function, w and b stand for the weight and the bias, respectively, and ϕ is the 283 

transfer function. The problem of regression might be stated as follows: 284 

Minimize: 
1

2
‖w‖2 + C ∑ (ξi + ξi

∗)N
i=1  (9) 

Subject to: {

{yi − f(x) ≤ ε + ξi

f(x) − yi ≤ ε + ξi

ξi, ξi
∗ ≥ 0, i = 1,2,3, … . , N

 (10) 

where ε is the boundary value, ξi and ξi
∗ are the slack variables and C is the penalty parameter. Using the Lagrange 285 

multipliers, the optimization problem largely converts to quadratic programming, and a nonlinear regression 286 

function solution can be expressed as: 287 

f(x)= ∑ (αi − αi
∗)K(x, y) + bN

i=1  (11) 

where K (x, xi) is the kernel function and αi, αi
∗are the dual variables.  288 
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It should be noted that the SVR method's generalization ability considerably depends on the choice of the kernel 289 

function. This study employed various kernel functions, including linear, Polynomial (Poly), Sigmoid, and Gaussian 290 

(RBF).  291 

2.4.2.3. Random forest regression (RFR) 292 

RF is an ensemble learning method based on statistical theory that combines the concepts of DTs and bagging to 293 

solve classification and regression problems. Leo Breiman developed this algorithm at the end of the 90s. RF is an 294 

advanced method based on the combination of bootstrap aggregation. The algorithm generates multiple bootstrap 295 

samples with replacements from the original training data set (about 67 %) to create multiple regression trees 296 

(ntree), known as ‘in bag’ data. In comparison, the excluded data set (about 33 %) is known as ‘out-of-bag’ data 297 

(OOB) (Breiman 2001). In addition, the OOB samples are used to measure the variable importance, which indicates 298 

the predictive power of each variable and is used to optimize the selection of input parameters.  299 

Consequently, this model simplifies the method, reduces the computational costs of analysis, and helps understand 300 

the relationship between variables and the dependence of one variable on another. The variable importance measure 301 

is based on the percentage increase in mean squared error (% IncMSE). Finally, the predicted value of an 302 

observation is calculated by averaging over all the trees. Breiman (2001) has provided a more detailed description of 303 

RF methods and parameters.  304 

2.4.2.4. Extreme gradient boosting (XGBoost) 305 

In recent years, the XGBoost model, a scalable tree-boosting system, has emerged. Chen and Guestrin (2016) 306 

introduced this algorithm to enhance the efficacy and speed of gradient-boosted decision trees. The XGBoost 307 

algorithm employs additive learning to produce a powerful learner by combining several feeble learners, i.e., each 308 

tree (Chen and Guestrin, 2016). In the sequential modeling procedure of XGBoost, each DT relies on the prior tree’s 309 

result to generate an improved predictor (Zhu and Zhu, 2019). Also, the XGBoost model increases the weight of 310 

incorrectly classified training samples (with significant errors) and decreases the weight of those satisfactorily 311 

classified. The prior wrongly categorized subsamples are processed several times with increased vigilance to 312 

minimize the error rate (Chen and Guestrin, 2016). The final prediction computed by XGBoost is based on the sum 313 

of all decision trees’ weighted contributions. The calculation formula is as follows: 314 

fi
(t)

= ∑ fk(xi) =

t

k=1

fi
t−1 + fi(xi) (12) 

where fi(xi) is the learner of step t, fi(xi) and fi
t− 1 are steps t and t-1, respectively, and xi is the input variable. 315 

The XGBoost model has the advantages of powerful generalization ability, overfitting prevention, high 316 

expandability, and fast computing speed.  317 

 318 

2.5. Accuracy assessment of model performance 319 
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To quantitatively evaluate the performance of the developed models, the coefficient of determination (R2), root mean 320 

square error (RMSE), and mean absolute error (MAE) were used as evaluation metrics.  321 

R2 = 1 −
∑ (Oi − Ei)

2N
i=1

∑ (Oi − O̅)2N
i=1

  (13) 

RMSE = √
∑ (Oi − Ei)

2N
i=1

N
 (14) 

MAE =
∑ |Oi − Ei|

N
i=1

N
 (15) 

where N shows the number of the output data series; Oi and O̅ are the measured and average of actual SMC, 322 

respectively, and Ei is predicted SMC. 323 

 324 

3. Results and Discussion 325 

3.1. Spatial variability of soil moisture 326 

Fig. 3 provides the average measured soil moisture at observation depths of 0-10, 10-30, 30-50, 50-70, and 70-90 327 

cm. At different depths, the measured soil moisture ranged from 0.11 to 0.63 cm3cm-3, with a standard deviation 328 

ranging from 0.11 to 0.12 cm3cm-3. Also, the maximum soil moisture was recorded during September at all depths, 329 

when the crop evapotranspiration (ETc) peaked. Fig. 4 shows the relationship between soil moisture’s spatial 330 

coefficient of variation (CV) and mean soil moisture during the sugarcane growing season. Fatichi et al. (2015) 331 

stated that precipitation, topography, and vegetation significantly impact soil moisture variability. Nevertheless, 332 

according to the area’s topographical and climatic conditions, the soil moisture changes are mainly driven by ETc 333 

(irrigation), vegetation, and soil properties. Also, the highest CV was observed between July and September, 334 

coinciding with the peak crop growth and water requirement. According to Fig. 4, RZSM has a lower CV than SSM, 335 

which could be due to significant land-atmosphere interactions in a semi-arid region affecting the surface layer 336 

(Srivastava et al., 2020). 337 
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Fig. 3. Time series of soil moisture content at different depths during satellite overpasses (0–10 cm, 10–30 cm, 30–50 cm, 50–

70 cm, and 70–90 cm) 

 338 

 
Fig. 4. The spatial CV of soil moisture versus mean soil moisture at different depths 0-10, 10-30, 30-50, 50-70, and 70-90 cm. 

 

 339 

3.2. Feature selection  340 

The IGR approach was used to assess the sensitivity of the variables in estimating soil moisture in both scenarios. 341 

This can aid us in determining which potential predictive features to include in our model. The analysis results in 342 

Scenario-1 are shown in Fig. 5, which uses a 5-fold CV technique to determine the IGR of each parameter. 343 

According to Fig. 5, the most influential factors for soil moisture estimation detected by IGR were NTR at 0-10 cm 344 

depth, R at 10-50 cm depth, and Wetness at 50-90 cm depth. At 0-10 cm depth, factors such as NTR (0.65), Wetness 345 

(0.63), Greenness (0.61), NMDI (0.50), TVDI (0.44), Brightness (0.43), LST, B, and NSMI (0.41) demonstrated 346 
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higher IGR values, indicating their more significant influence compared to other variables. The relevance of SWIR2 347 

and Albedo (0.39), G and R (0.38), SWIR1, and EVI (0.34) were moderate. Also, MNDWI (0.24), Ks (0.23), R 348 

(0.27), θFC (0.20), and θPWP (0.19) all demonstrate a below modest level of significance. Some input parameters 349 

include VSDI, T, RH, E, W, Sh, Rn, sand, silt, clay, θr, α, n, BD, and φ have an IGR value of 0.00, so they are 350 

ineffective in predicting soil moisture at 0-10 cm depth. Similarly, Fig. 5 indicates the effective parameters for the 351 

rest of the soil depth (10-90 cm). The IGR technique generally indicates that when compared to meteorological 352 

variables and soil physical and hydraulic parameters, NTR, Wetness, TVDI, and SWIR2 had the strongest predictive 353 

power for soil moisture at all depths investigated (Fig. 5). Some research also demonstrated that spectral 354 

information, directly and indirectly, affect soil moisture (Fathololoumi et al., 2020; Ryu et al., 2021). Particularly, 355 

spectral indices that can reduce background error to extract new information and facilitate interpreting and 356 

processing satellite images can generally reveal soil moisture changes better than individual spectral bands (Nguyen 357 

et al., 2022). 358 

The relationship between VIs and soil moisture in the root zone is affected by vegetation type and climatic 359 

conditions (Liu et al., 2012). However, in this study, the response of VIs to soil moisture variations in the root zone 360 

was almost similar across different depths. These findings could be attributed to complex processes such as root 361 

uptake, capillary action, soil drainage, and ETc (Alavi et al., 2024; Chang et al., 2012; Holzman et al., 2014). 362 

Furthermore, Holzman et al. (2021) reported that the correlation between VIs and soil moisture in the root zone can 363 

be linked to the structure and depth of the root system and physical constraints like soil resistance. Specifically, 364 

sugarcane roots can extend up to 4.25 meters deep, with approximately 50% of the root biomass located within the 365 

first meter of soil (Laclau and Laclau, 2009). As a result, the significant influence of VIs at various soil depths up to 366 

90 cm in our study is likely due to the extensive water absorption by sugarcane roots within this depth. For example, 367 

Santos et al. (2014) demonstrated that the soil layer between 0 and 60 cm is where most water uptake by roots 368 

occurs in coffee plants, and the highest correlation between the EVI-2 index and soil moisture was observed within 369 

this depth. 370 

From a physiological perspective, a reduction in soil moisture prompts stomata to respond to chemical signals 371 

produced by drying roots, leading to stomatal closure, reduced internal CO2 concentration, and decreased 372 

transpiration. This process consequently reduces leaf chlorophyll content while the leaf water status remains 373 

relatively stable (Davies and Zhang, 1991). Additionally, water stress induces photochemical changes immediately 374 

following stomatal closure, but a decrease in leaf water content only occurs when soil moisture reaches a critical 375 

threshold (Chaves et al., 2002; Liu et al., 2012). However, a scheduled irrigation management strategy was 376 

implemented in our study area, thereby minimizing water stress on the crops. This approach maintained consistent 377 

soil moisture levels across the study area (Fig. 3), likely contributing to the observed uniformity in VIs responses 378 

across different soil depths. 379 

Compared to other factors, meteorological variables were inefficient in estimating soil moisture across all depths 380 

(Fig. 5). Although Araya et al. (2021) reported that precipitation is one of the most crucial variables in determining 381 

soil moisture, in our study area, which is in a hot and arid climate, there was no significant precipitation during the 382 
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study period. This likely explains the minimal impact of meteorological variables on soil moisture estimation in this 383 

region. Generally, meteorological variables play a significant role primarily at larger spatial scales, such as 384 

watersheds. In contrast, at smaller spatial scales, like farms and limited areas, factors such as topography and soil 385 

properties have a more pronounced effect on soil moisture variability (Karthikeyan and Mishra, 2021). 386 

Among all the physical soil properties examined, θFC and θPWP appear to have the most significant impact on soil 387 

moisture at the 0-10 cm depth (Fig. 5). Babaeian et al. (2021) confirmed that the increase in correlation is achieved 388 

due to the sequential addition of soil physical and hydraulic properties, including soil texture, θFC, and θPWP. Soil 389 

particle size is crucial in agricultural fields because it affects the pore diameter and their ability to store and retain 390 

water. This has been detailed in the study by Wang et al. (2022). However, in the present study, soil particle size did 391 

not significantly influence soil moisture prediction at different depths, likely due to the limited variation in soil 392 

texture within the study area.  393 
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Fig. 5. Evaluating influential factors in soil moisture prediction at different depths (a) 0-10 cm, (b) 

10-30 cm, (c) 30-50 cm, (d) 50-70 cm, and (e) 70-90 cm using IGR in Scenario-1. 

 394 

Nonetheless, other studies have documented significant correlations between soil moisture and physical soil 395 

properties (Acharya et al., 2021; Karthikeyan and Mishra, 2021), indicating that such results may be location-396 

specific. 397 

Despite the limited variation in soil texture in the study area, Ks was still identified as a significant factor across all 398 

soil depths. This finding suggests that Ks, due to its fundamental role in controlling water movement within the soil, 399 

remains a key variable in predicting soil moisture, even under conditions where soil texture does not vary 400 

significantly (Acharya et al., 2021). Given the heavy soil texture of the fields, containing 33 to 46% clay, Ks is 401 

expected to be a critical factor in estimating RZSM. In Scenario-1, four distinct Models were defined based on the 402 

IGR value for each ML method to estimate soil moisture at different depths. It is worth mentioning that different 403 

variables may have varying levels of influence depending on the SMC. As a result, the Models were designed for 404 

each depth of soil. Table 4 lists the Model inputs in a hierarchical sequence, including meteorological factors, soil 405 

hydraulic and physical properties, spectral bands, and the indices obtained from the Landsat-8 satellite. 406 

The analysis results in Scenario-2 are shown in Fig. 6 that VH and VV polarization and DpRVIC from Sentinel-1 and 407 

NDVI and TVDI from Landsat-8 images indicate a more substantial relationship with the RZSM than topographic 408 

parameters. The TVDI (0.68) and NDVI (0.16) were more significant with high IGR values than other variables of 409 

influence, according to the findings of IGR at 0-10 cm depth. Also, the relevance of the local incidence angle and 410 

VH (0.08), DpRVIC (0.062), and VV (0.058) were moderate (Fig. 6). The optical features’ high correlation, 411 

particularly the vegetation and thermal indices, appears to result from their inherent and indirect effect on soil 412 

moisture estimation. Moreover, because vegetation cover dominates the researched area, vegetation and thermal 413 

indices could more accurately represent and model the existing reality. 414 

 415 

(e) 
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Table 4. Combination of different models using the IGR technique in Scenario-1. 

 

 416 

 

Fig. 6. Evaluating influential factors in predicting soil moisture at different depths using IGR in Scenario-2. 

 417 
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This was in agreement with the study of Wakigari and Leconte (2022), which found less importance of VV and VH 418 

than NDVI in soil moisture retrieval in the Susquehanna watershed. In contrast, Bai et al. (2019) highlighted VV, 419 

LST, and VI as the most robust predictors for estimating soil moisture in regions with sparse vegetation. Their study 420 

demonstrates that the effectiveness of these variables is heavily influenced by local environmental conditions and 421 

vegetation cover. This underscores the importance of adopting context-specific strategies when selecting input 422 

parameters to ensure accurate soil moisture estimation. Since the topographical parameters were less effective in 423 

estimating soil moisture, they were excluded from the estimation. On the other hand, estimating soil moisture from 424 

SAR data remains challenging because of the effects of vegetation and surface roughness. In previous studies, 425 

researchers used NDVI to reduce the impact of vegetation cover in soil moisture retrieval using derived data from 426 

Sentinel-1 (Bhogapurapu et al., 2022; Liu et al., 2022; Wakigari and Leconte, 2022). The first model was defined 427 

based on prior research, including VV, VH, local incidence angle, DpRVIC, and NDVI. The second model was 428 

developed using the first model’s parameters and TVDI. The goal behind adding TVDI to the retrieval Models was 429 

to introduce a new effective parameter that may reduce vegetation cover’s impact due to the dominance of dense 430 

vegetation in the study area, considering the use of surface temperature in addition to vegetation cover. 431 

 432 

3.3. Hyperparameters tuning 433 

Table 5 presents the results of the 5-fold-CV-based hyperparameter selection described in section 2.4.1. The optimal 434 

values of the user-defined parameter M for the M5P algorithm at all depths and in both scenarios were determined 435 

by the 5-fold-CV method as 4. For the SVR algorithm in the first Scenario, the kernel type was linear for estimating 436 

surface and near-SSM, and the RBF was determined for deeper layers. In Scenario-2, the Poly and linear kernels at 437 

0-70 cm and 70-90 cm depths, respectively, had the lowest RMSE values for soil moisture estimation. On the other 438 

hand, the number of trees varied from 200 to 900 at different depths in both XGBoost and RFR algorithm Scenarios. 439 

More details about setting hyperparameters in the ML algorithms are given in Table 5. 440 

Table 5. Hyperparameters tuning in different ML methods 441 

ML methods 
Hyper-

parameters 

Scenario-1  Scenario-2 

0-10 10-30 30-50 50-70 70-90  0-10 10-30 30-50 50-70 70-90 

SVR 

 

Kernel type Linear Linear RBF RBF RBF  Poly Poly Poly Poly Linear 

C 3.145 1.310 7.515 9.486 8.099  1.212 1.873 2.142 1.020 1.672 

ɣ - - 0.695 0.494 0.627  0.680 0.067 0.584 0.256 - 

d - - - - -  1.726 2.399 1.034 2.648 - 

ε - - 0.448 0.368 0.148  0.065 0.080 0.057 0.607 - 

XGBoost 

Colsample_bytree 0.798 0.799 0.798 0.899 0.688  0.599 0.798 0.799 0.599 0.799 

gamma 0.380 0.388 0.380 0.398 0.278  0.161 0.388 0.388 0.161 0.388 

Learning_rate 0.058 0.058 0.058 0.062 0.054  0.158 0.058 0.058 0.158 0.058 

Max_depth 7 7 7 9 7  3 7 7 3 7 
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N_Estimators 246 240 246 250 240  688 246 246 688 246 

Max_delta_step 6 6 6 7 7  2 6 6 2 6 

Subsample 0.70 0.70 0.70 0.80 0.60  0.65 0.70 0.70 0.65 0.70 

RFR 

N_Estimators 900 900 900 100 100  300 200 800 700 200 

Max_Depth 50 90 80 40 10  60 70 110 80 10 

Min_Samples_Leaf 2 2 2 2 2  2 2 2 4 1 

Min_Samples_split 2 10 5 2 2  5 2 10 10 10 

                  Note: ML: Machine learning 442 

3.4. Models’ performance  443 

To assess the accuracy of the models, the estimated soil moisture for the surface, near-surface, and root zone 444 

predicted using the specified models in Scenario-1 was compared with the corresponding on-site measured values 445 

(Fig. 7). As illustrated in Fig. 7, the M5P algorithm yielded similar results for soil moisture estimation with Model-1 446 

(R²=0.90, RMSE=0.04, MAE=0.028 cm³cm-³) and Model-4 (R²=0.88, RMSE=0.043, MAE=0.03 cm³cm-³). In other 447 

words, the exclusion of meteorological factors, soil physical and hydraulic properties, spectral indices (RVI, MSI, 448 

GVMI, NDWI, NDVI, fNDVI, SAVI, and SWI), and the spectral band (NIR) did not significantly impact the results. 449 

Furthermore, the M5P algorithm based on Model-1 provided reliable estimates for soil moisture at depths of 10-30 450 

cm (R²=0.84, RMSE=0.049, MAE=0.033 cm³cm-³), 30-50 cm (R²=0.82, RMSE=0.053, MAE=0.035 cm³cm-³), 50-451 

70 cm (R²=0.80, RMSE=0.053, MAE=0.036 cm³cm-³), and 70-90 cm (R²=0.80, RMSE=0.053, MAE=0.04 cm³cm-³). 452 

These findings indicate that incorporating all input parameters into the M5P algorithm significantly enhances the 453 

model’s accuracy. Although the M5P model, which uses decision trees to partition data and linear regression models 454 

for prediction in each leaf, has a relatively simple structure, its decision-making power is more pronounced 455 

compared to many widely used models (such as ANN), effectively interacting with various and complex features 456 

(Yukseler et al., 2023). 457 

The highest accuracy of the SVR algorithm in estimating SSM (R2=0.79, RMSE=0.059, MAE=0.043 cm3cm−3) and 458 

near-SSM (R2=0.75, RMSE=0.069, MAE=0.046 cm3cm−3) was observed in Model-1. The poor performance of 459 

Models-2 to 4 can be attributed to excluding some input parameters. According to Fig. 7, the best performance of 460 

SVR in estimating soil moisture at 30-50 cm depth (R2= 0.74, RMSE=0.064, MAE= 0.049 cm3cm−3), 50-70 cm 461 

depth (R2=0.73, RMSE=0.062, MAE=0.047 cm3cm−3) and 70-90 cm depth (R2=0.74, RMSE=0.064, MAE=0.049 462 

cm3cm−3) was observed using Model-4. Excluding meteorological variables, soil physical and hydraulic parameters, 463 

and some spectral indices from the input data (Model-4) in soil moisture estimation by the SVR algorithm led to 464 

increasing R2 and decreasing RMSE and MAE trends for all depths in the root zone (30-90 cm). 465 

According to Fig. 7, the highest accuracy of the XGBoost algorithm in estimating soil moisture at 0-10 cm depth 466 

(R2=0.98, RMSE=0.020, MAE=0.015 cm3cm−3), 10-30 cm depth (R2=0.97, RMSE=0.025, MAE=0.016 cm3cm−3) 467 

and 30-50 cm depth (R2=0.93, RMSE=0.035, MAE=0.028 cm3cm−3) were observed in Model-3. Also, the omission 468 

of meteorological parameters, physical and hydraulic soil properties, and some spectral indices (e.g., 1, 2, and 3) in 469 
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Model-4 improved the XGBoost algorithm’s soil moisture estimation accuracy at depths of 50-70 (R2=0.91, 470 

RMSE=0.035, MAE=0.029 cm3cm−3) and 70-90 (R2=0.89, RMSE=0.042, MAE=0.029 cm3cm−3). 471 

As shown in Fig. 7, the best performance of RFR in estimating soil moisture at 0-10 cm depth (R2=0.98, 472 

RMSE=0.018, MAE=0.011 cm3cm−3) and 10-30 cm depth (R2=0.97, RMSE=0.024, MAE=0.015 cm3cm−3) was 473 

observed using Model-3 and Model-2, respectively. Also, the RFR method more accurately estimates soil moisture 474 

at 30-50 cm depth (R2=0.93, RMSE=0.036, MAE=0.024 cm3cm−3), 50-70 cm depth (R2= 0.93, RMSE=0.035, 475 

MAE=0.022 cm3cm−3) and 70-90cm depth (R2=0.91, RMSE=0.039, MAE=0.025 cm3cm−3) based on Models 3, 4, 476 

and 4, respectively (Fig. 7). The effect of Ks was evident as soil depth increased from 0 to 50 cm when using the 477 

SVR, XGBoost and RFR algorithms to estimate soil moisture. However, by increasing the depth from (50-70 cm) to 478 

(70-90 cm), the highest value of R2 and the lowest value of MAE and RMSE were obtained only by combining 479 

spectral indices and spectral bands (Model-4). Spectral information was the only parameter that affected the SVR, 480 

XGBoost, and RFR algorithms in estimating soil moisture at high depths. 481 

Fig. 8 demonstrates the correlations between M5P, SVR, XGBoost, and RFR predicted and observed soil moisture at 482 

each studied depth employing the specified Models in the testing phase of Scenario-1. The mean values of R2 483 

(RMSE) between predicted and on-site measured SSM produced from the M5P, SVR, XGBoost, and RFR methods, 484 

respectively, were 0.83 (0.054 cm3cm-3), 0.74 (0.066 cm3cm-3), 0.87 (0.042 cm3cm-3) and 0.89 (0.041 cm3cm-3), 485 

based on the test data. The most accurate soil moisture prediction at 0-10 cm depth is observed by RFR using 486 

Model-3 (R2=0.89, RMSE= 0.04, MAE=0.027 cm3cm-3), and the lowest could be seen at 70-90 cm depth by SVR 487 

using Model-4 (R2=0.51, RMSE=0.085, MAE=0.062 cm3cm-3). RFR’s soil moisture prediction accuracy was 488 

significantly higher than M5P and SVR (Fig. 8). Furthermore, the proximity of the data to the line of the perfect 489 

agreement indicates the accuracy with which the model estimates the measured data. 490 

Nevertheless, considerable scattering of data points from the agreement line demonstrates poor performance of M5P 491 

and SVR algorithms in modeling measured soil moisture data, thus lacking generalization. The main difference 492 

between the M5P, SVR, and RFR algorithms is the large number of input parameters and the consequent inability to 493 

detect soil moisture heterogeneity due to the variability of spectral data and physical and hydraulic soil attributes.  494 

On the other hand, based on Fig. 7 and 8, XGBoost produced nearly similar results to RFR in RZSM estimation. 495 

Notably, RFR has fewer tunable hyperparameters than XGBoost, which reduces its complexity and makes it easier 496 

to use. Also, RFR outperformed XGBoost in the estimation during the testing phase based on the metrics (R2, 497 

RMSE, and MAE) (Fig. 8). However, the XGBoost algorithm’s results were also satisfactory. Araya et al. (2021) 498 

confirmed that RS data and soil characteristics could affect soil moisture estimation using the RFR algorithm. Wang 499 

et al. (2022) evaluated the performance of five ML models (polynomial regression, ridge regression, lasso 500 

regression, elastic net regression, and RFR) in SSM estimation using RS data and various parameters, such as 501 

geographical location, elevation, vegetation coverage, soil texture, and seasonal patterns. The results demonstrated 502 

that the RFR model with an MAE less than 0.02 cm3cm-3 performed better than other ML models. 503 
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The permutation feature importance technique was employed to evaluate the significance of different input variables 504 

in predicting soil moisture across various depths using the RFR algorithm. Fig. 9 illustrates the importance of input 505 

variables in the top models. Despite variations in the importance rankings at different depths, TVDI consistently 506 

emerged as the most significant factor across all examined depths. This consistency underscores TVDI’s critical role 507 

in accurately reflecting soil moisture depletion, primarily due to its effect on plant stomatal regulation (Krishnan and 508 

Indu, 2023). Additionally, during more advanced stages of water stress, where moisture levels near the root zone 509 

significantly decrease, a notable reduction in VIs can be observed (Holzman et al., 2014). These results align with 510 

Ryu et al.’s (2021) findings, which demonstrate TVDI’s capability to effectively monitor both short-term and long-511 

term variations in soil moisture. 512 

The Brightness and NSMI variables were identified as the second most important factors at depths of 0-30 cm and 513 

30-90 cm, respectively (Fig. 9). The Brightness index plays a more crucial role in SSM estimation due to its 514 

sensitivity to surface conditions, such as soil texture, organic matter content, and surface wetness. This index 515 

influences the soil’s radiation budget and energy balance, affecting surface evaporation and transpiration processes, 516 

ultimately leading to changes in soil moisture levels (Firozjaei, 2019). On the other hand, the NSMI, with its ability 517 

to capture variations in soil moisture content, is particularly effective at greater depths where direct surface influence 518 

is diminished. 519 

Previous research has highlighted significant differences in soil reflectance between SWIR2 and SWIR1 bands. 520 

These differences are primarily attributed to water absorption characteristics, which correlate linearly with SSM 521 

levels (Sadeghi et al., 2015; Yue et al., 2019). Adab et al. (2020) investigated the relationship between SSM and 522 

optical-thermal data in this context. Their findings revealed that SWIR1 and SWIR2 bands strongly correlate with 523 

SSM in barren and vegetated areas, respectively. This correlation indicates that SWIR bands are effective indicators 524 

for differentiating SMC across various land cover types. Furthermore, Sadeghi et al. (2017) showed that SWIR 525 

reflectance is sensitive to the water content within leaves and the internal leaf structure. As a result, SWIR bands can 526 

effectively reflect changes in soil moisture within the root zone, making them valuable for monitoring vegetation 527 

health and soil moisture dynamics. 528 

Besides spectral characteristics, the RFR algorithm also identified physical and hydraulic soil properties such as θFC 529 

and Ks as highly significant, especially at depths of 0-10 cm and 0-50 cm, respectively. The θFC variable plays a 530 

crucial role in determining SSM levels by indicating the maximum water retention capacity of the soil in its surface 531 

layers. This capacity directly impacts moisture conditions around plant roots, influencing irrigation management 532 

practices. Meanwhile, Ks is vital in regulating water flow within subsurface soil layers, thereby controlling 533 

moisture’s spatial and temporal distribution at various depths. This highlights Ks’s significance in water resource 534 

management and optimizing water use, particularly at the farm scale. Similar findings by Moazenzadeh et al. (2022) 535 

suggest that soil moisture variability is a function of matric potential and hydraulic properties, differing with soil 536 

depth and time, especially in unsaturated environments. 537 

Jo
urn

al 
Pre-

pro
of



RFR XGBoost SVR M5P 

 

   

 

    

 
 

  

Fig. 7. Accuracy metrics between estimated and measured soil moisture with the M5P, SVR, XGBoost, and RFR algorithms in the training period in Scenario-1. 
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Fig. 8. Comparison of measured and predicted soil moisture by M5P, SVR, XGBoost, and RFR algorithms in Scenario-1 during 

the testing period at different depths; (a) 0-10 cm, (b) 10-30 cm, (c) 30-50 cm, (d) 50-70 cm and (e) 70-90 cm. The solid line is 

the 45-bisector line. 

 539 

Although meteorological variables did not significantly influence the selected models, this observation does not 540 

negate their potential importance. The limited impact of these variables might be due to the regional scale of the 541 

study and the relatively homogenous climatic conditions observed. However, meteorological variables will likely 542 

play a more significant role in soil moisture prediction in more humid regions or areas with substantial and variable 543 

precipitation patterns. This warrants further investigation under diverse climatic conditions to fully understand their 544 

impact.  545 
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Fig 9. RF model variable importance in Scenario-1, showing only the variables with the highest predictive performance at each 

depth. 

 546 

In Scenario-2, soil moisture was retrieved from combined Sentinel-1 SAR and Landsat-8 VIs using the RZSM 547 

estimation models. Comparing the ML algorithms results in Models 1 and 2, the accuracy of the soil moisture 548 

estimation from Model-2 was significantly higher than that from Model-1. For example, Adding TVDI to Model-2 549 

led to an increase in the R2 value and a decrease in MAE and RMSE values compared to Model-1 in all soil depths 550 

and ML algorithms (Model-1: R2
M5P=0.40, R2

SVR=0.49, R2
XGBoost=0.95, R2

RFR=0.74; Model-2: R2
M5P =0.50, R2

SVR 551 

=0.65, R2
XGBoost= 0.97, R2

RFR =0.97) (Fig. 10).  552 

These results can be attributed to the fact that the TVDI is commonly more sensitive to soil moisture (Ryu et al., 553 

2021). Furthermore, they can reduce the impact of vegetation cover in estimating SSM from SAR data more 554 

efficiently. A comparison between the results from the training data set in Model-2 (Fig. 10) shows that SMC could 555 

be predicted with high accuracy for RFR and XGBoost (R2=0.97, RMSE=0.024, MAE=0.018 cm3cm-3), while SVR 556 

(R2=0.65, RMSE=0.076, MAE=0.06 cm3cm-3) and M5P (R2=0.50, RMSE=0.092, MAE=0.07 cm3cm-3) had the 557 
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lowest accuracy of estimation soil moisture at 0-10 cm depth. Moreover, based on the statistical criteria, the RFR 558 

and XGBoost algorithms were superior to the other two algorithms (M5P and SVR) at 10-90 cm depths during the 559 

training stage. As the depth increased, the RMSE value in RFR decreased by 22% on average compared to 560 

XGBoost. Consequently, the RFR algorithm was deemed the optimal ML method for estimating SMC in Scenario-2. 561 

Fig. 11 depicts the estimated versus measured SMC scatter plots from four specified ML algorithms using Scenario-562 

2’s optimal features during the testing phase. As shown in Fig. 11, the M5P and SVR estimations at all depths were 563 

overestimated and underestimated for the low and high soil moisture ranges. The M5P algorithm did not perform 564 

satisfactorily despite using the pruning method. In contrast, the SVR algorithm had more effectively estimated soil 565 

moisture using Sentinel-1 SAR data than the M5P algorithm. By comparing Fig. 8 and 11, it is evident that both 566 

Scenarios’ estimates of the SSM produced similar results. However, as the depth increased, the R2 values in 567 

Scenario-1 increased by 9.52%, 9.87%, 11.53%, and 11.11% at 10-30 cm, 30-50 cm, 50-70cm, and 70-90 depths, 568 

respectively, compared to Scenario-2. 569 

Moreover, the RFR algorithm performed a more accurate prediction with IGR-optimized parameters derived from 570 

two multiple sensors than the other ML algorithms. Adding TVDI to the proposed RFR algorithm increased the R2 571 

value in 0-10 cm depth (R2 = 0.89). In contrast, Liu et al. (2022) did not attain a better R2 value than 0.72 in 572 

estimating SSM using the ANN prediction model with VV, VH, and NDVI input data in Australia. This indicates 573 

that the superiority of the proposed approach may be attributed to the combined use of TVDI in the RFR model. 574 

Also, the R2 values decreased from 14% to 28% for depths from 10-30 cm to 70-90 cm compared to this value at 0–575 

10 cm depth. 576 

The ML model’s important outcome was to provide a detailed soil moisture map. Therefore, the optimal SMC 577 

prediction model (RFR) in both Scenarios was operated on each pixel in the area of research to produce a spatial 578 

distribution of RZSM at various times. The differences between the multiple soil depths could be seen on the 579 

modeled soil moisture maps (Fig. 12). Fig. 12 depicts RZSM distribution on September 10, the peak growth period 580 

for sugarcane crops, when fields were irrigated every 5-7 days. Some farms were under-irrigated or irrigated, while 581 

others had soil moisture less than θFC and required irrigation (Fig. 12). Less soil moisture is shown on 0-30 cm depth 582 

maps than on 30-70 cm depth maps. The reason could be the higher topsoil layer evaporation (Fig. 12a and 12b). By 583 

our expectations, the percentage of soil moisture close to saturation is lower at 70-90 cm depth. This is due to the 584 

location of the drains that control soil moisture at this depth. 585 
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Fig. 10. Accuracy metrics between estimated and measured soil moisture with the M5P, SVR, XGBoost, and RFR algorithms in the training period in Scenario-2. 
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Fig. 11. Comparison of measured and predicted soil moisture by M5P, SVR, XGBoost, and RFR algorithms in Scenario-2 during 

the testing period at different depths; (a) 0-10 cm, (b) 10-30 cm, (c) 30-50 cm, (d) 50-70 cm and (e) 70-90 cm. The solid line is 

the 45-bisector line. 

 587 

3.5. Adding measured surface soil moisture in modeling RZSM  588 

Due to existing hydraulic connections between the top layer (0-10 cm) and the root zone (10-90 cm), RZSM 589 

estimations can be substantially more accurate based on actual surface layer soil moisture data. The RFR algorithm 590 

was used to test this supposition due to its superior performance in both Scenarios (Section 3.4). The median value is 591 

represented by the straight line that runs through each box. The whiskers stretch from the 5th to 95th percentile 592 

values, while the boxes indicate the 25th and 75th percentiles (interquartile area). The results indicated that adding the 593 

SSM improves the RZSM estimates in both Scenarios, and the best performance of the training phase was at 10-30 594 

cm depth (Scenario-1: R2=0.98, RMSE=0.016, MAE=0.009 cm3cm-3; Scenario-2: R2=0.98, RMSE=0.018, 595 

MAE=0.011 cm3cm-3) (Fig.13a and 13d). A surprising result was that the addition of SSM to Scenario-2 596 

(combination of Sentinel-1 extracted VV, VH, local incidence angle, and DpRVIC and Landsat-8 extracted NDVI 597 

and TVDI) improved the R2 values in 10-30 cm, 30-50 cm, 50-70 cm, and 70-90 cm depths by 17.39%, 19.76%, 598 

21.59%, and 22.89%, respectively (Fig. 13d-13e). 599 

(e) 
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Fig. 12. Spatial pattern of estimated soil moisture with RFR algorithm for both Scenarios on September 10, 2020. a to e (Scenario-1) and f to j (Scenario-2) indicate 0-10 cm, 30-10 cm, 30-50 cm, 

50-70 cm, and 70-90 cm depths, respectively. 
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Fig. 13. The highest accuracy of retrieved soil moisture with the RFR method by adding surface soil moisture (0-10 cm) to the datasets of Models 1 to 4 in Scenario-1 (a to c) and Models 1 to 2 in Scenario-2 (d to f) 

at all depths. 

602 

0.85

0.9

0.95

1

R
2

0

0.01

0.02

0.03

0.04

0.05

R
M

S
E

 (
cm

3
cm

-3
)

0

0.003

0.006

0.009

0.012

0.015

0.018

0.021

0.024

0.027

0.03

0.033

0.036

M
A

E
 (

cm
3
cm

-3
)

0.8

0.85

0.9

0.95

1

R
2

0

0.01

0.02

0.03

0.04

0.05
R

M
S

E
 (

cm
3
cm

-3
)

0

0.003

0.006

0.009

0.012

0.015

0.018

0.021

0.024

0.027

0.03

0.033

0.036

M
A

E
 (

cm
3
cm

-3
)

(a) 
(b) (c) 

(e) (d) (f) 

Jo
urn

al 
Pre-

pro
of



This improved performance is because evaporative factors mainly control soil moisture in the thin surface layer. On 603 

the other hand, the hydraulic connection of this layer with the lower soil layers may be lost due to extreme 604 

evaporation conditions. Comparing the results of the RFR algorithm by adding the SSM in the first and second 605 

Scenarios showed that the soil moisture estimation at 0-50 cm depth in both Scenarios performed almost similarly, 606 

and no significant difference was observed in the results. However, Scenario-1 outperformed Scenario-2 as the depth 607 

was increased. RZSM maps incorporating RFR based on SSM can better recognize tracks created by agricultural 608 

vehicles and large irrigation canals with an appropriate spatial resolution (Fig. 14). 609 

Overall, the proposed approach indicated the impressive precision of ML algorithms without relying on system 610 

dynamics assumptions. Additionally, the method can provide a comprehensive assessment of the probability 611 

distribution of the spatial map for RZSM using optical, thermal, and SAR RS data. This research selected the input 612 

variables based on the IGR method. Meanwhile, Chen et al. (2021) used three feature selection methods, including 613 

Pearson’s correlation coefficient, recursive feature elimination, and RF, to enhance the accuracy of soil moisture 614 

estimation by ML models such as SVR, RF, and GBRT. According to their findings, the RF model with the RF 615 

feature selection method was the most effective machine-learning model in estimating soil moisture (R2=0.79). 616 

However, this level of accuracy is somewhat lower than the current research’s performance accuracy of 0.89, 617 

demonstrating that the IGR method had effectively identified the influencing variables in soil moisture estimation. 618 

In addition to spectral data, the RFR algorithms used θFC, θPWP, and Ks parameters to estimate RZSM in the optical-619 

thermal (Scenario-1) RS. Therefore, it can be expected that the soil texture, characterized as medium to heavy within 620 

the study area, could significantly impact the estimates. Several researchers have emphasized that a very sandy or 621 

clayey texture is the most crucial factor affecting the uncertainty of the model (Tunçay et al., 2023). Also, Gu et al. 622 

(2021) have demonstrated that soil thermal characteristics can lead to overestimating soil water content values in 623 

clayey soils. Therefore, lighter-textured soils may affect the values of the spectral indices due to their lower water-624 

holding capacity, leading to different results. 625 

Tao et al. (2023) used a multi-feature ensemble learning algorithm to retrieve soil moisture during the principal 626 

phases of grape growth using spectral indices, topography, and evapotranspiration, which had a lower performance 627 

accuracy (R2=0.75) than RFR performance in this study (R2=0.89). Also, their investigation employed satellite 628 

imagery data with a lower spatial resolution (500 m) compared to the present study. They noted that topography and 629 

ET are the two most critical environmental factors that affect soil moisture retrieval in mountainous regions. On the 630 

other hand, Araya et al. (2021) underscored the significance of precipitation as the primary input variable for 631 

estimating soil moisture in Mediterranean areas. It should be noted that no effective rainfall was recorded during the 632 

research period in the warm and arid study area. Hence, it is imperative to emphasize that several environmental 633 

parameters, including topography, ET, and precipitation, can affect the accuracy of soil moisture estimation under 634 

diverse environmental conditions (Araya et al., 2021; Fathololoumi et al., 2020; Fatichi et al., 2015; Tao et al., 635 

2023). Consequently, it is crucial to incorporate these aspects considering the conditions into the modeling process 636 

to enhance the accuracy of the models. 637 
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Fig. 14. Spatial pattern of estimated RZSM using surface soil moisture measurement as an auxiliary input variable using RFR algorithm for both Scenarios. a to d (Scenario-1) and e to h (Scenario-2) 

indicate 10-30 cm, 30-50 cm, 50-70 cm, and 70-90 cm depths, respectively. 
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Studies have shown that modeling soil moisture using SAR data in combination with the NDVI yields satisfactory 638 

results (R2 = 0.70) owing to the strong interactions and correlations between this index and soil moisture (Liu et al., 639 

2022; Tao et al., 2023). Also, compared to other spectral indices, it has been noted that LST and features related to 640 

LST, such as TVDI, play a more significant role in the soil moisture retrieval models (Liu et al., 2022; Tao et al., 641 

2023). This implies that LST-related features are more significant indicators in soil moisture modeling than spectral 642 

indices. Therefore, this research hypothesized that combining NDVI and TVDI with SAR data could improve the 643 

accuracy of the RZSM retrieval model performance, and the findings confirmed this theory (R2=0.89). 644 

The results showed that in addition to TVDI, indices such as NSMI, Brightness, and the LST and SWIR2 bands play 645 

a crucial role in estimating RZSM due to their fundamental influence on plant stomatal regulation. These optical-646 

thermal data are sensitive to water content in both vegetation and soil, making them highly effective in environments 647 

with dense vegetation, where the canopy significantly influences the signal. Combined with the RFR model, these 648 

optical-thermal indices accurately estimated RZSM (R²=0.72-0.84). In contrast, combining TVDI with SAR data 649 

resulted in lower accuracy (R²=0.64-0.76) than the optical-thermal approach, primarily due to the different nature of 650 

SAR signals, which penetrate the vegetation canopy and interact directly with the soil surface. Overall, these 651 

findings emphasize the potential of SWIR2-based indices in estimating RZSM and highlight the limitations of SAR 652 

data in densely vegetated areas. For instance, Krishnan and Indu (2023) used TVDI to estimate RZSM (0-200 cm), 653 

but their accuracy was lower compared to the present study (R²=0.16-0.64). This comparison further underscores the 654 

importance of combining vegetation and moisture indices with TVDI in ML models to improve estimation accuracy. 655 

According to the results, the ML models’ RZSM retrieval accuracy decreased significantly compared to the SSM 656 

estimates. On the other hand, research has previously demonstrated that various indices and models have been 657 

developed to overcome the vertical limitations of microwave satellite soil moisture products and accurately estimate 658 

RZSM. These approaches involve establishing a connection between the time series of SSM and RZSM (Baldwin et 659 

al., 2019). Manfreda et al. (2014) developed a soil moisture analytical relationship (SMAR) model using the SSM 660 

series to determine RZSM. However, most of their applications are specifically tailored for satellite-based input 661 

datasets, often with a coarser spatial resolution (Baldwin et al., 2019). Therefore, including SSM as an additional 662 

input parameter along with spectral data and soil physical and hydraulic properties in ML models can help in 663 

modeling intricate and uncertain data, ultimately enhancing the accuracy of RZSM retrieval. Guo et al. (2023) 664 

employed the SMAR model to retrieve RZSM in the Xiliaohe River Basin. A genetic algorithm calibrated the model 665 

parameters. Then, the spatial parameters were estimated using the RFR method with the soil properties, 666 

meteorological variables, and vegetation characteristics as explanatory variables. The findings indicated that their 667 

performance accuracy (RMSE=0.06 cm3cm-3) was lower than the RFR’s performance in the current study 668 

(RMSE=0.03 cm3cm-3).  669 

The findings of this study have the potential to significantly impact decision-making in precision agriculture, 670 

especially in environments with limited resources such as water and fertilizers. The application of ML models like 671 

RFR, which demonstrated high accuracy in estimating RZSM using SSM (measured or satellite-derived), allows for 672 

precise soil moisture monitoring at various depths on a farm-scale basis. This level of precision enables farmers to 673 
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make data-driven irrigation decisions, ensuring that water is used efficiently and crops receive the optimal amount of 674 

moisture necessary for growth. Such an approach not only optimizes resource use and reduces input costs but also 675 

enhances the sustainability and accessibility of precision agriculture in resource-constrained environments. 676 

 677 

3.6. Advantages and Limitations 678 

Most soil moisture retrieval studies using Sentinel-1 SAR and Landsat-8 have focused on areas with low vegetation 679 

cover, and few have specifically addressed SMC in the root zone under dense vegetation cover. This study presents a 680 

practical approach for estimating RZSM in agricultural lands with high spatial resolution, particularly in areas with 681 

dense vegetation. The findings indicate that the implemented approaches are not only reliant on RS data but also 682 

consider the physical and hydraulic properties of the soil, enabling adaptation of these methods under similar 683 

conditions. Also, these results can serve as an effective tool for correcting gaps in long-term time-series data. In the 684 

SAR RS approach, TVDI was combined with SAR data to further enhance the accuracy of RZSM estimation. This 685 

novel approach provided valuable insights into RZSM estimation in densely vegetated areas and represents a novel 686 

step toward improving the accuracy and downscaling of microwave-based soil moisture products for operational use 687 

in agricultural areas. 688 

However, the proposed approaches have inherent limitations. One significant limitation is the need for concurrent 689 

access to SAR and optical-thermal data. While Sentinel-1 SAR data are resilient to environmental factors, the 690 

optical and thermal bands used from Landsat-8 are highly sensitive to atmospheric conditions, such as cloud cover 691 

and aerosols. This sensitivity can limit the applicability of this method in regions with frequent adverse weather 692 

conditions, affecting the accuracy and consistency of the soil moisture estimates. Future studies may address this by 693 

incorporating indices like OPTRAM, which uses red, near-infrared, and shortwave infrared bands, bypassing the 694 

need for thermal data (Sadeghi et al., 2017). This would enable Sentinel-1 to be combined with sensors like 695 

Sentinel-2, which lack thermal bands with a higher temporal resolution than Landsat-8. If the application of 696 

OPTRAM is validated, these features could extend the method’s applicability across a broader range of climatic 697 

conditions and enhance its effectiveness for operational agricultural monitoring. 698 

Another limitation is related to the study area’s specific environmental conditions, including its climate, soil type, 699 

and vegetation characteristics. This might restrict the findings’ generalizability to other geographic regions with 700 

different climates, soil compositions, and vegetation types. Although meteorological variables were found to be less 701 

influential in RZSM estimation in this study, their role may be more pronounced in regions with different climate 702 

regimes or in environments subject to significant temporal variability in weather patterns. Hence, it is essential to 703 

carry out additional validation and calibration efforts in various regions and vegetation types.  704 

 705 

4. Conclusions 706 
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This study presented a practical approach for estimating root zone soil moisture (RZSM) in cropland with dense 707 

vegetation cover at high spatial resolution. Machine learning (ML) techniques effectively identified RZSM in 708 

sugarcane fields by integrating in situ measured data (meteorological data and soil physical and hydraulic properties) 709 

with satellite information (Landsat-8 and Sentinel-1 images), leading to significant cost and time savings. The key 710 

findings of this study are summarized as follows:  711 

• The RFR algorithm outperformed other algorithms (M5P, SVR, and XGBoost) in both the optical-thermal 712 

(Scenario-1) and the combined SAR and optical-thermal (Scenario-2) remote sensing (RS) approaches. 713 

• The RFR algorithm performed better in estimating RZSM using the optical-thermal approach than the 714 

combined SAR and optical-thermal approach. 715 

• Spectral parameters such as TVDI, Brightness, and NSMI significantly impacted RZSM estimation more 716 

than meteorological data and soil physical and hydraulic properties. 717 

• In the combined SAR and optical-thermal approach, TVDI and NDVI were more critical for estimating soil 718 

moisture than other parameters, such as incidence angle and VH polarization. 719 

• Including SSM as auxiliary input data in both Scenario-1 and Scenario-2 significantly increased the 720 

accuracy of RZSM estimation. 721 

Despite some limitations related to weather conditions and the effects of vegetation cover, this study offers a novel 722 

and operational approach for estimating RZSM at the field scale. This methodology, by leveraging freely accessible 723 

satellite imagery, has the potential to significantly contribute to agricultural water resource management and the 724 

advancement of precision agriculture practices. 725 

 726 

Funding 727 

 “Shahid Chamran University of Ahvaz” funded this study. 728 

 729 

CRediT authorship contribution statement 730 

Atefeh Nouraki: Conceptualization, Methodology, Data curation, Validation, Writing-original draft. Mona Golabi: 731 

Writing-review & editing. Mohammad Albaji: Writing-review & editing. Abd Ali Naseri: Writing-review & 732 

editing. Saeid Homayouni: Methodology, Writing-review & editing.  733 

 734 

Declaration of interests 735 

The authors declare that there are no competing interests. 736 

 737 

Data Availability Statement 738 

 Data will be made available on request. 739 

 740 

Acknowledgment 741 

Jo
urn

al 
Pre-

pro
of



The authors thank the Research Council of the Shahid Chamran University of Ahvaz for financial support (GN: 742 

SCU.WI1401.281). We would also like to acknowledge the Research Center of Iran’s Sugarcane and the HFSAIC 743 

Manager for providing the current research equipment. 744 

 745 

References 746 

Acharya, U., Daigh, A. L., Oduor, P. G., 2021. Machine Learning for Predicting Field Soil Moisture Using Soil, 747 
Crop, and Nearby Weather Station Data in the Red River Valley of the North. Soil Syst.5, 57. 748 

Adab, H., Morbidelli, R., Saltalippi, C., Moradian, M., & Ghalhari, G. A. F., 2020. Machine learning to estimate 749 
surface soil moisture from remote sensing data. Water, 12(11), 3223. 750 

Agam, N., Kustas, W. P., Anderson, M. C., Li, F., Neale, C. M., 2007. A vegetation index-based technique for spatial 751 
sharpening of thermal imagery. Remote Sens. Environ.107, 545-558. 752 

Al-Aizari, A. R., Alzahrani, H., AlThuwaynee, O. F., Al-Masnay, Y. A., Ullah, K., Park, H. J., ... & Liu, X., 2024. 753 
Uncertainty reduction in Flood susceptibility mapping using Random Forest and eXtreme Gradient Boosting 754 
algorithms in two Tropical Desert cities, Shibam and Marib, Yemen. Remote Sens., 16(2), 336. 755 

Alavi, M., Albaji, M., Golabi, M., Naseri, A. A., & Homayouni, S., 2024. Estimation of sugarcane 756 
evapotranspiration from remote sensing and limited meteorological variables using machine learning 757 
models. J. Hydrol, 629, 130605. 758 

Araya, S. N., Fryjoff-Hung, A., Anderson, A., Viers, J. H., Ghezzehei, T. A., 2021. Advances in soil moisture 759 
retrieval from multispectral remote sensing using unoccupied aircraft systems and machine learning 760 
techniques. Hydrol. Earth Syst. Sci. 25, 2739-2758. 761 

Babaeian, E., Paheding, S., Siddique, N., Devabhaktuni, V. K., & Tuller, M. 2021. Estimation of root zone soil 762 
moisture from ground and remotely sensed soil information with multisensor data fusion and automated machine 763 
learning. Remote sensing of environment, 260, 112434. 764 

Baghdadi, N., El Hajj, M., Zribi, M., 2017. Bousbih, S. Calibration of the Water Cloud Model at C-Band for Winter 765 
Crop Fields and Grasslands. Remote Sens. 9, 969.  766 

Bai, J., Cui, Q., Zhang, W., & Meng, L., 2019. An approach for downscaling SMAP soil moisture by combining 767 
Sentinel-1 SAR and MODIS data. Remote Sens., 11(23), 2736. 768 

Baig, M. H. A., Zhang, L., Shuai, T., Tong, Q., 2014. Derivation of a tasselled cap transformation based on Landsat 769 
8 at-satellite reflectance. Remote Sens. Lett. 5, 423-431. 770 

Baldwin, D., Manfreda, S., Lin, H., & Smithwick, E. A., 2019. Estimating root zone soil moisture across the Eastern 771 
United States with passive microwave satellite data and a simple hydrologic model. Remote Sens., 11(17), 2013. 772 

Bazzi, H., Baghdadi, N., Najem, S., Jaafar, H., Le Page, M., Zribi, M., ... & Spiliotopoulos, M., 2022. Detecting 773 
irrigation events over semi-arid and temperate climatic areas using Sentinel-1 data: case of several summer 774 
crops. Agro, 12(11), 2725. 775 

Bhogapurapu, N., Dey, S., Homayouni, S., Bhattacharya, A., Rao, Y. S., 2022. Field-scale soil moisture estimation 776 
using sentinel-1 GRD SAR data. Adv. Space. Res. 777 

Breiman, L., 2001 Random forests. Mach Learn. 45, 5–32.  778 

Brocca, L., Hasenauer, S., Lacava, T., Melone, F., Moramarco, T., Wagner, W., Dorigo, W., Matgen, P., Martínez-779 
Fernández, J., Llorens, P., Latron, J., Martin, C., Bittelli, M., 2011. Soil moisture estimation through ASCAT and 780 
AMSR-E sensors: an intercomparison and validation study across Europe. Remote Sens. Environ. 115, 3390–3408.  781 

Jo
urn

al 
Pre-

pro
of



Carranza, C., Nolet, C., Pezij, M., van der Ploeg, M., 2021. Root zone soil moisture estimation with Random 782 
Forest. J. Hydrol. 593, 125840. 783 

Chang, T.-Y., Wang, Y.-C., Feng, C.-C., Ziegler, A.D., Giambelluca, T.W., Liou, Y.-A., 2012. Estimation of root 784 
zone soil moisture using apparent thermal inertia with MODIS imagery over a tropical catchment in Northern 785 
Thailand. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens, 5, 752–761.  786 

Chaves, M.M., Pereira, J.S., Maroco, J., Rodrigues, M.L., Ricardo, C.P.P., Osório, M.L., Carvalho, I., Faria, R., 787 
Pinheiro, C., 2002. How plants cope with water stress in the field? Photosynthesis and growth. Ann. Bot. 89, 907–788 
916. 789 

Chen, L., Xing, M., He, B., Wang, J., Shang, J., Huang, X., & Xu, M., 2021. Estimating soil moisture over winter 790 
wheat fields during growing season using machine-learning methods. IEEE J. Sel. Top. Appl. Earth Obs. Remote 791 
Sens, 14, 3706-3718. 792 

Chen, T., & Guestrin, C., 2016. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd 793 
international conference on knowledge discovery and data mining (pp. 785-794). 794 

Cortes, C., Vapnik, V., 1995. Support-Vector Networks. Mach. Learn. 20, 273–297.  795 

Davies, W.J., Zhang, J., 1991. Root signals and the regulation of growth and development of plants in drying soil. 796 
Annu. Rev. Plant Physiol 42, 299–306 797 

El Hajj, M., Baghdadi, N., Zribi, M., Rodríguez-Fernández, N., Wigneron, J. P., Al-Yaari, A., ... & Calvet, J. C. 798 
2018. Evaluation of SMOS, SMAP, ASCAT and Sentinel-1 soil moisture products at sites in Southwestern 799 
France. Remote Sens., 10(4), 569. 800 

Fathololoumi, S., Vaezi, A. R., Alavipanah, S. K., Ghorbani, A., Biswas, A., 2020. Comparison of spectral and 801 
spatial-based approaches for mapping the local variation of soil moisture in a semi-arid mountainous area. Sci. Total 802 
Environ. 724, 138319. 803 

Fatichi, S., Katul, G. G., Ivanov, V. Y., Pappas, C., Paschalis, A., Consolo, A., ... & Burlando, P., 2015. Abiotic and 804 
biotic controls of soil moisture spatiotemporal variability and the occurrence of hysteresis. Water Resour. 805 
Res., 51(5), 3505-3524. 806 

Firozjaei, M.K., Kiavarz, M., Nematollahi, O., Karimpour Reihan, M., Alavipanah, S.K., 2019. An evaluation of 807 
energy balance parameters, and the relations between topographical and biophysical characteristics using the 808 
mountainous surface energy balance algorithm for land (sebal). Int. J. Remote Sens. 1-31. 809 

Flint, A. L., Flint, L. E., 2002. 2.2 Particle Density. Methods of soil analysis: Part 4 Physical methods, 5, 229-240. 810 

Foumelis, M., Blasco, J. M. D., Desnos, Y. L., Engdahl, M., Fernández, D., Veci, L., ..., Wong, C., 2018. ESA 811 
SNAP-StaMPS integrated processing for sentinel-1 persistent scatterer interferometry. In IGARSS 2018-2018 IEEE 812 
International Geoscience and Remote Sensing Symposium. 1364-1367 813 

Gao, B.C., 1996. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from 814 
space. Remote Sens. Environ. 58, 257-266. 815 

Gibson, J. D., 2020. Mutual Information Gain and Linear/Nonlinear Redundancy for Agent Learning, Sequence 816 
Analysis, and Modeling. Entropy, 22(6), 608 817 

Gill, M.K., Asefa, T., Kemblowski, M., and McKee, M., 2006. Soil moisture prediction using support vector 818 
machines. J. Am. Water Resour. Assoc. 42, 1033-1046. 819 

Gu, H., Lin, Z., Guo, W., Deb, S., 2021. Retrieving surface soil water content using a soil texture adjusted vegetation 820 
index and unmanned aerial system images. Remote Sens. 13, 145.  821 

Guo, J., Bai, Q., Guo, W., Bu, Z., Zhang, W., 2022. Soil moisture content estimation in winter wheat planting area 822 
for multi-source sensing data using CNNR. Comput Electron Agr, 193, 106670. 823 

Guo, X., Fang, X., Zhu, Q., Jiang, S., Tian, J., Tian, Q., & Jin, J. 2023. Estimation of Root-Zone Soil Moisture in 824 
Semi-Arid Areas Based on Remotely Sensed Data. Remote Sens, 15(8), 2003. 825 

Jo
urn

al 
Pre-

pro
of



Haubrock, S.N., Chabrillat, S., Lemmnitz, C., Kaufmann, H., 2008. Surface soil moisture quantification models 826 
from reflectance data under field conditions. Int. J. Remote Sens. 29, 3-29. 827 

Holzman, M. E., Rivas, R. E., & Bayala, M. I., 2021. Relationship between TIR and NIR-SWIR as indicator of 828 
vegetation water availability. Remote Sens., 13(17), 3371. 829 

Holzman, M.E.; Rivas, R.; Bayala, M., 2014. Subsurface soil moisture estimation by VI-LST method. IEEE Geosci. 830 
Remote Sens. Lett., 11, 1951–1955.  831 

Hosseini, M., McNairn, H., 2017. Using multi-polarization C-and L-band synthetic aperture radar to estimate 832 
biomass and soil moisture of wheat fields. Int. J. Appl. Earth Obs. Geoinf. 58, 50-64. 833 

Huete, A. R., 1988. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3), 295-309. 834 

Huete, A.R., Didan, K., Miura, T., Rodriguez, E.P., Gao, X., & Ferreira, L.G., 2002. Overview of the radiometric and 835 
biophysical performance of the MODIS vegetation indices. Remote Sens. Environ, 83(1-2), 195-213 836 

Hunt, Jr.E.R., Rock, B.N., 1989. Detection of changes in leaf water content using near-and middle-infrared 837 
reflectances. Remote Sens. Environ. 30, 43-54. 838 

Jimenez-Munoz, J. C., Cristobal, J., Sobrino, J. A., Sòria, G., Ninyerola, M., & Pons, X., 2008. Revision of the 839 
single-channel algorithm for land surface temperature retrieval from Landsat thermal-infrared data. IEEE 840 
Transactions on geoscience and remote sensing, 47(1), 339-349. 841 

Jordan, C.F., 1969. Derivation of leaf‐area index from quality of light on the forest floor. Ecology, 50, 663-666. 842 

Karthikeyan, L., & Mishra, A. K., 2021. Multi-layer high-resolution soil moisture estimation using machine learning 843 
over the United States. Remote Sens. Environ. 266, 112706. 844 

Kisi, O.O., Dailr, A.H.H., Cimen, M.M., Shiri, J., 2012. Suspended sediment modeling using genetic programming 845 
and soft computing techniques. J. Hydrol.450, 48–58.  846 

Klute, A., 1988. Methods of soil analysis 2d ed., pt. 1; physical and mineralogical methods. Soil Science, 146(2), 847 
138 848 

Krishnan, S., & Indu, J., 2023. Assessing the potential of temperature/vegetation index space to infer soil moisture 849 
over Ganga Basin. J. Hydrol, 621, 129611. 850 

Kumari, N., Srivastava, A., & Dumka, U. C., 2021. A long-term spatiotemporal analysis of vegetation greenness 851 
over the Himalayan Region using Google Earth Engine. Clim., 9(7), 109. 852 

Laclau, B. P., and Laclau, J.-P., 2009. Growth of the whole root system for a plant crop of sugarcane under rainfed 853 
and irrigated environments in Brazil. Field Crops Res. 114, 351–360. doi: 10.1016/j.fcr.2009.09.004. 854 

Liang, S., 2001. Narrowband to broadband conversions of land surface albedo I: Algorithms. Remote Sens. Environ. 855 
76, 213-238. 856 

Liu, Q., Gu, X., Chen, X., Mumtaz, F., Liu, Y., Wang, C., Yu, T., Zhang, Y., Wang, D., Zhan, Y., 2022. Soil Moisture 857 
Content Retrieval from Remote Sensing Data by Artificial Neural Network Based on Sample Optimization. Sens. 858 
22, 1611. 859 

Liu, S., Roberts, D. A., Chadwick, O. A., & Still, C. J., 2012. Spectral responses to plant available soil moisture in a 860 
Californian grassland. Int. J. Appl. Earth Obs. Geoinf., 19, 31-44. 861 

Manfreda, S., Brocca, L., Moramarco, T., Melone, F., & Sheffield, J., 2014. A physically based approach for the 862 
estimation of root-zone soil moisture from surface measurements. Hydrol Earth Syst Sci, 18(3), 1199-1212. 863 

Melesse, A. M., Khosravi, K., Tiefenbacher, J. P., Heddam, S., Kim, S., Mosavi, A., & Pham, B. T., 2020. River 864 
water salinity prediction using hybrid machine learning models. Water, 12(10), 2951. 865 

Min, X., Shangguan, Y., Li, D., & Shi, Z., 2022. Improving the fusion of global soil moisture datasets from SMAP, 866 
SMOS, ASCAT, and MERRA2 by considering the non-zero error covariance. Int. J. Appl. Earth Obs. Geoinf., 113, 867 
103016. 868 

Jo
urn

al 
Pre-

pro
of



Moazenzadeh, R., Mohammadi, B., Safari, M. J. S., & Chau, K. W., 2022. Soil moisture estimation using novel bio-869 
inspired soft computing approaches. Eng. Appl. Comput. Fluid Mech., 16(1), 826-840. 870 

Moran, M.S., Clarke, T.R., Inoue, Y., Vidal, A., 1994. Estimating crop water deficit using the relation between 871 
surface-air temperature and spectral vegetation index. Remote Sens. Environ. 49 (3), 246–263 872 

Nguyen, T. T., Ngo, H. H., Guo, W., Chang, S. W., Nguyen, D. D., Nguyen, C. T., ... & Hoang, N. B., 2022. A low-873 
cost approach for soil moisture prediction using multi-sensor data and machine learning algorithm. Sci. Total 874 
Environ, 833, 155066.  875 

Quinlan, J.R., 1992. Learning with continuous classes. In Proceedings of the Australian joint conference on artificial 876 
Intelligence. 343–348. 877 

Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W., 1974. Monitoring vegetation systems in the Great Plains 878 
with ERTS. NASA Spec. Publ, 351(1), 309. 879 

Ryu, S., Kwon, Y.J., Kim, G., Hong, S., 2021. Temperature Vegetation Dryness Index-Based Soil Moisture Retrieval 880 
Algorithm Developed for Geo-KOMPSAT-2A. Remote Sens. 13, 2990. 881 

Sadeghi, M., Babaeian, E., Tuller, M., Jones, S., 2017. The optical Trapezoid model: a novel approach to remote 882 
sensing of soil moisture applied to Sentinel-2 and Landsat- 8 observations. Remote Sens. Environ. 198, 52–68. 883 

Sadeghi, M., Jones, B.S., Philpot, W.D., 2015. A linear physically-based model for remote sensing of soil moisture 884 
using shortwave infrared bands. Remote Sens. Environ. 164, 66–76. 885 

Santos, W. J. R., Silva, B. M., Oliveira, G. C., Volpato, M. M. L., Lima, J. M., Curi, N., & Marques, J. J., 2014. Soil 886 
moisture in the root zone and its relation to plant vigor assessed by remote sensing at management 887 
scale. Geoderma, 221, 91-95. 888 

Schaap, M.G., Leij, F.J., van Genuchten, M.Th., 2001. ROSETTA: a computer program for estimating soil hydraulic 889 
parameters with hierarchical pedotransfer functions. J. Hydrol. 251, 163–176 890 

Srivastava, A., Saco, P. M., Rodriguez, J. F., Kumari, N., Chun, K. P., & Yetemen, O., 2021. The role of landscape 891 
morphology on soil moisture variability in semi‐arid ecosystems. Hydrol. Process. 35(1), e13990. 892 

Tao, S., Zhang, X., Feng, R., Qi, W., Wang, Y., & Shrestha, B., 2023. Retrieving soil moisture from grape growing 893 
areas using multi-feature and stacking-based ensemble learning modeling. Comput Electron Agr, 204, 107537. 894 

Toth, B., Szatmari, G., Takacs, K., Laborczi, A., Mako, A., Rajkai, K., Pasztor, L., 2019. Mapping soil hydraulic 895 
properties using random forest based pedotransfer functions and geostatistics. Hydrol. Earth Syst. Sci. 23, 2615–896 
2635. 897 

Tunçay, T., Alaboz, P., Dengiz, O., & Başkan, O., 2023. Application of regression kriging and machine learning 898 
methods to estimate soil moisture constants in a semi-arid terrestrial area.  Comput Electron Agr, 212, 108118. 899 

van Genuchten, M.T.h., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. 900 
Soil Sci. Soc. Am. J. 44, 892–898 901 

Wakigari, S. A., Leconte, R., 2022. Enhancing Spatial Resolution of SMAP Soil Moisture Products through Spatial 902 
Downscaling over a Large Watershed: A Case Study for the Susquehanna River Basin in the Northeastern United 903 
States. Remote Sens. 14, 776. 904 

Wang, L., Fang, S., Pei, Z., Wu, D., Zhu, Y., & Zhuo, W., 2022. Developing machine learning models with 905 
multisource inputs for improved land surface soil moisture in China. Comput Electron Agr, 192, 106623. 906 

Wang, L., Qu, J.J., 2007. NMDI: A normalized multi‐band drought index for monitoring soil and vegetation 907 
moisture with satellite remote sensing. Geophys Res. Lett. 34. 908 

Wang, Y., Witten, I. H., 1996. Induction of model trees for predicting continuous classes.  909 

Xu, H., 2006. Modification of normalised difference water index (NDWI) to enhance open water features in 910 
remotely sensed imagery. Int. J. Remote Sens. 27, 3025-3033. 911 

Jo
urn

al 
Pre-

pro
of



Yeh, I.C., Lien, C.H., 2009. The comparisons of data mining techniques for the predictive accuracy of probability of 912 
default of credit card clients. Expert Syst. Appl. 36, 2473-2480. 913 

Yukseler, U., Toprak, A., Gul, E., & Dursun, O. F., 2023. Flood hazard mapping using M5 tree algorithms and 914 
logistic regression: a case study in East Black Sea Region. Earth Sci. Inform., 16(3), 2033-2047. 915 

Zhang, L.J., Zeng, Y.J., Zhuang, R.D., Szabo, B., Manfreda, S., Han, Q.Q., Su, Z.B., 2021. In Situ Observation-916 
Constrained Global Surface Soil Moisture Using Random Forest Model. Remote Sens. (Basel) 13. 917 

Zhang, N., Hong, Y., Qin, Q., Liu, L., 2013. VSDI: a visible and shortwave infrared drought index for monitoring 918 
soil and vegetation moisture based on optical remote sensing. Int. J. Remote Sens. 34, 4585-4609. 919 

Zhu, S., & Zhu, F., 2019. Cycling comfort evaluation with instrumented probe bicycle. Transp. Res. A Policy Pract, 920 
129, 217–231.  921 

Jo
urn

al 
Pre-

pro
of



Table 3. Vegetation, soil, and moisture indices from optical and thermal RS observations. 

Variable Acronym Equation Reference 

Normalized Difference Vegetation Index  NDVI 
ρNIR − ρRed

ρNIR +  ρRed
 Rouse et al. (1974) 

Fraction Normalized Difference Vegetation Index fNDVI (1 − NDVI)0.625 Agam et al. (2007) 

Normalized Multi-Band Drought Index NMDI  
ρNIR − (ρSWIR1− ρSWIR2)

ρNIR+ (ρSWIR1− ρSWIR2)
 Wang & Qu (2007) 

Normalized Difference Water Index  NDWI 
ρNIR −  ρSWIR1

ρNIR+ ρSWIR1
 Gao (1996) 

Modified Normalized Difference Water Index 

 
MNDWI 

ρGreen −  ρSWIR1

ρGreen+ ρSWIR1
 Xu (2006) 

Normalized Soil Moisture Index 

 
NSMI 

ρSWIR1 −  ρSWIR2

ρSWIR1 +  ρSWIR2
 

Haubrock et al. 

(2008) 

Visible and Shortwave Infrared Drought Index VSDI 1 − [(ρSWIR1 −  ρBlue) +  (ρRed −  ρBlue)] Zhang et al. (2013) 

Global Vegetation Moisture Index GVMI 
(ρNIR + 0.1) − (ρSWIR1 + 0.02)

(ρNIR + 0.1) + (ρSWIR1 + 0.02)
 Ceccato et al. (2002) 

Moisture Stress Index 

 
MSI 

ρSWIR1 

ρNIR  
 

Hunt. & Rock 

(1989) 

Enhanced Vegetation Index EVI 
2.5(ρNIR − ρRed)

ρNIR + 6 ρRed − 7.5ρBlue + 1
 Huete et al. (2002) 

Soil Adjusted Vegetation Index SAVI 1.25
(ρNIR − ρRed)

(ρNIR +  ρRed + 0.25)
 Huete (1988) 

Ratio Vegetation Index RVI 
ρNIR 

ρRed  
 Jordan (1969) 

NIR Transformed Reflectance NTR 
(1 − ρNIR  )

2

2 ρNIR 
 

Kubelka & Munk 

(1931) and Babaeian 

et al. (2021) 

Temperature Vegetation Dryness Index TVDI 

 
LST−LSTMin 

LSTMax −LSTMin 
,  LST = γ × [

1

ε
× (ψ1 × Lsensor + ψ2) + ψ3] + δ 

 

Moran et al. (1994), 

Jiménez-Muñoz et 

al. (2008) 

Albedo - 
0.356 ρBlue + 0.130 ρGreen + 0.373ρRed + 0.085ρNIR + 0.072ρSWIR1 + 0.072ρSWIR2 - 0.0018 

 
Liang (2001) 

Brightness - 
0.3029ρBlue + 0.2786ρGreen + 0.4733ρRed + 0.5599ρNIR + 0.508ρSWIR1 +0.1872ρSWIR2 

 

Baig et al. (2014) 

 
Greenness 

 - 
-0.2941ρBlue - 0.243ρGreen - 0.5424ρRed + 0.7276ρNIR + 0.0713ρSWIR1 - 0.1608ρSWIR2 

 

Wetness 

 - 
0.1511ρBlue + 0.1973ρGreen + 0.3283ρRed + 0.3407ρNIR - 0.7117ρSWIR1 - 0.4559ρSWIR2 
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Table 4. Combination of different models using the IGR technique in Scenario-1. 

Depths (cm) Model 1  Model 2  Model 3  Model 4 

 Input features 

0-10 

 

NTR, NIR, Wetness, RVI, MSI, GVMI, 

NDWI, NDVI, fNDVI, Greenness, SAVI, 

NMDI, TVDI, Brightness, LST, B, NSMI, 

SWIR2, Albedo, G, R, SWIR1, EVI, MNDWI, 

Ks, θFC, θPWP, VSDI, Sand, Silt, Clay, BD, ϕ, 
θr, θs, α, n, T, W, RH, Rn, Sh, E 

 

 

NTR, NIR, Wetness, RVI, MSI, 

GVMI, NDWI, NDVI, fNDVI, 

Greenness, SAVI, NMDI, TVDI, 

Brightness, LST, B, NSMI, SWIR2, 

Albedo, G, R, SWIR1, EVI, MNDWI, 

Ks, θFC, θPWP 

 

 

 

NTR, Wetness, Greenness, NMDI, 

TVDI, Brightness, LST, B, NSMI, 

SWIR2, Albedo, G, R, SWIR1, EVI, 

MNDWI, Ks, θFC, θPWP 

 

 

 

NTR, Wetness, Greenness, NMDI, 

TVDI, Brightness, LST, B, NSMI, 

SWIR2, Albedo, G, R, SWIR1, EVI, 

MNDWI 

 

 

10-30 

 

R, Wetness, Greenness, SAVI, RVI, MSI, 

GVMI, NDWI, NMDI, NDVI, fNDVI, 

SWIR1, NIR, G, NTR, NSMI, TVDI, B, 

SWIR2, Albedo, Brightness, LST, EVI, 

MNDWI, VSDI, Ks, θFC, θPWP, Sand, Silt, 

Clay, BD, ϕ, θr, θs, α, n, T, W, RH, Rn, Sh, E 

 

 

R, Wetness, Greenness, SAVI, RVI, 

MSI, GVMI, NDWI, NMDI, NDVI, 

fNDVI, SWIR1, NIR, G, NTR, NSMI, 

TVDI, B, SWIR2, Albedo, Brightness, 

LST, EVI, MNDWI, Ks 

 

 

R, Wetness, NTR, NSMI, TVDI, B, 

SWIR2, Albedo, Brightness, LST, 

EVI, MNDWI, Ks 

 

 

R, Wetness, NTR, NSMI, TVDI, B, 

SWIR2, Albedo, Brightness, LST, EVI 

30-50 

 

R, B, Albedo, Wetness, Greenness, SAVI, 

RVI, MSI, GVMI, NDWI, NMDI, NDVI, 

fNDVI, SWIR1, G, NTR, NIR, TVDI, 

Brightness, NSMI, SWIR2, LST, Ks, EVI, 

MNDWI, VSDI, θFC, θPWP, Sand, Silt, Clay, 

BD, ϕ, θr, θs, α, n, T, W, RH, Rn, Sh, E 

 

 

R, B, Albedo, Wetness, Greenness, 

SAVI, RVI, MSI, GVMI, NDWI, 

NMDI, NDVI, fNDVI, SWIR1, G, 

NTR, NIR, TVDI, Brightness, NSMI, 

SWIR2, LST, Ks 

 

 

R, NTR, TVDI, Brightness, NSMI, 

SWIR2, LST, Ks 

 

 

R, NTR, TVDI, Brightness, NSMI, 

SWIR2, LST 

50-70 

 

Wetness, Albedo, Greenness, SAVI, RVI, 

MSI, GVMI, NDWI, NMDI, NDVI, fNDVI, 

SWIR1, R, G, B, NTR, NIR, TVDI, SWIR2, 

NSMI, Brightness, LST, n, α, Ks, MNDWI, 

EVI, VSDI, Sand, Silt, Clay, BD, θFC, θPWP, ϕ, 

θs, θr, T, W, RH, Rn, Sh, E 

 

 

Wetness, Albedo, Greenness, SAVI, 

RVI, MSI, GVMI, NDWI, NMDI, 

NDVI, fNDVI, SWIR1, R, G, B, NTR, 

NIR, TVDI, SWIR2, NSMI, 

Brightness, LST, n, α, Ks 

 

 

Wetness, NTR, TVDI, SWIR2, 

NSMI, Brightness, LST, Ks 

 

 

Wetness, NTR, TVDI, SWIR2, NSMI, 

Brightness, LST 

70-90 

 

Wetness, Albedo, Greenness, SAVI, RVI, 

MSI, GVMI, NDWI, NMDI, NDVI, fNDVI, 

SWIR1, R, G, NTR, NIR, B, TVDI, SWIR2, 

NSMI, Brightness, LST, Ks, MNDWI, EVI, 

VSDI, Sand, Silt, Clay, BD, θFC, θPWP, ϕ, θs, 

θr, n, α, T, W, RH, Rn, Sh, E 

 

 

Wetness, Albedo, Greenness, SAVI, 

RVI, MSI, GVMI, NDWI, NMDI, 

NDVI, fNDVI, SWIR1, R, G, NTR, 

NIR, B, TVDI, SWIR2, NSMI, 

Brightness, LST, Ks 

 

 

Wetness, G, NTR, B, TVDI, SWIR2, 

NSMI, Brightness, LST, Ks 

 

 

Wetness, G, NTR, B, TVDI, SWIR2, 

NSMI, Brightness, LST 
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