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ABSTRACT 

It is very difficult to predict crop yield and produce quality based solely on soil physicochemical parameters, 

as the net effect these parameters is strongly affected by microbes. For instance, the form of soil nitrogen 

changes due to nitrification and denitrification activities, which will influence N mobility, availability, and 

energetic efficiency for plant growth. It is crucial to include microbial parameters to better predict crop 

yields and produce quality. However, microbial communities vary spatially and temporally, and are very 

complex, so it is uncertain if robust models could be derived from microbial data. My goal for this thesis 

was to create microbial-based models to predict wheat grain quality and yields across time and space. I used 

two sampling schemes: 1) early season sampling of 80 wheat fields across the province of Québec (Chapter 

2) and 2) repeated sampling of a single wheat field across a growing season (Chapter 3). For both these 

experiments, I measured a wide array of microbial parameters: 16S rRNA gene and ITS region amplicon 

sequencing, qPCR quantification of key N-cycle genes, and microbial community level carbon usage. Grain 

baking quality and grain yields were measured at the end of the growing season. I used linear regression 

with stepwise forward/backward (Chapter 2) or LASSO selection (Chapter 3), limiting the models in most 

cases to less than 10 microbial indicators. In Chapter 2, I was able to explain observed variation of wheat 

grain quality and yields with an accuracy of up to 90% across all fields. Many of the inputs selected in the 

models had a link with soil nitrogen availability (e.g., ammonia-oxidizers and denitrifiers abundance). My 

microbial-based models also outperformed similar models based on commonly measured soil parameters 

(pH, total C, total N, C/N ratio, water content). However, in this Chapter, I had sampled the fields early in 

the growing season, and it was not certain that this was the best to create my predictive models. In Chapter 

3, I then sampled our experimental field every two weeks across a single growing season to find the moment 

where the microbial predictive power was highest. My models highlighted a set of microbial parameters 

that were highly coherent with Chapter 2. I also found that the highest predictive power for wheat grain 

quality and yields was early in the season (May-June), which correlates with wheat growth stages that are 

critical for N nutrition. The results of my thesis show that it is possible to explain observed variation of 

wheat grain quality and yields from a few microbial parameters taken early in the season, and that these 

models are robust across a wide range of fields at the provincial scale. It also highlighted the key role of 

microorganisms involved in the nitrogen cycle for wheat quality and yields. In the longer term, these models 

could help farmers make management decisions for optimal grain quality and quantity, on our way toward 

a microbial-driven agriculture. 

Keywords: amplicon sequencing, soil microbiome, nitrogen cycle, stepwise regression, Lasso regression, 

grain quality 
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RÉSUMÉ 

Il est très difficile de prévoir le rendement des cultures et la qualité des produits en se basant uniquement 

sur les paramètres physicochimiques du sol, car l'effet net de ces paramètres est fortement influencé par les 

microbes. Par exemple, la forme de l'azote du sol change en raison des activités de nitrification et de 

dénitrification, ce qui influencera la mobilité, la disponibilité et l'efficacité énergétique de l'azote pour la 

croissance des plantes. Il est essentiel d'inclure les paramètres microbiens pour mieux prévoir les 

rendements des cultures et la qualité des produits. Cependant, les communautés microbiennes varient dans 

l'espace et dans le temps et sont très complexes, de sorte qu'il n'est pas certain que des modèles robustes 

puissent être dérivés des données microbiennes. L'objectif de cette thèse était de créer des modèles 

microbiens pour prédire la qualité des grains de blé et les rendements dans le temps et l'espace. J'ai utilisé 

deux schémas d'échantillonnage : 1) l'échantillonnage en début de saison de 80 champs de blé dans la 

province de Québec (chapitre 2) et 2) l'échantillonnage répété d'un seul champ de blé au cours d'une saison 

de croissance (chapitre 3). Pour ces deux expériences, j'ai mesuré un large éventail de paramètres 

microbiens : séquençage d’amplicons du gène de l'ARNr 16S et de la région ITS, quantification par qPCR 

des gènes clés du cycle de l'azote et mesure de l’utilisation du carbone au niveau de la communauté 

microbienne. La qualité boulangère des grains et les rendements en grains ont été mesurés à la fin de la 

saison de croissance. J'ai utilisé la régression linéaire avec une sélection « stepwise backward /forward » 

(chapitre 2) ou LASSO (chapitre 3), en limitant les modèles à moins de 10 indicateurs microbiens dans la 

plupart des cas. Dans le chapitre 2, j'ai pu prédire la qualité des grains de blé et les rendements avec une 

précision allant jusqu'à 90 % dans tous les champs. De nombreux intrants sélectionnés dans les modèles 

avaient un lien avec la disponibilité de l'azote dans le sol (par exemple, l'abondance des bactéries oxydants 

l’ammoniac et des bactéries dénitrifiantes). Mes modèles microbiens ont également surpassé des modèles 

similaires basés sur des paramètres du sol couramment mesurés (pH, C total, N total, rapport C/N et teneur 

en eau). Cependant, dans ce chapitre, j'ai échantillonné les champs au début de la saison de croissance, et 

il n'était pas certain que ce soit le meilleur moment pour créer mes modèles prédictifs. Dans le chapitre 3, 

j'ai ensuite échantillonné notre champ expérimental toutes les deux semaines pendant une seule saison de 

croissance afin de trouver le moment où le pouvoir prédictif microbien était le plus élevé. Mes modèles ont 

mis en évidence un ensemble de paramètres microbiens très cohérents avec le chapitre 2. J'ai également 

constaté que le pouvoir prédictif le plus élevé pour la qualité des grains de blé et les rendements se situait 

au début de la saison (mai-juin), pendant les stades de croissance du blé qui sont critiques pour la nutrition 

azotée. Les résultats de ma thèse montrent qu'il est possible de prédire avec précision la qualité des grains 

de blé et les rendements à partir de quelques paramètres microbiens mesurés en début de saison et que ces 

modèles sont robustes à l'échelle provinciale. L'étude a également mis en évidence le rôle clé des micro-
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organismes impliqués dans le cycle de l'azote pour la qualité et le rendement du blé. À plus long terme, ces 

modèles pourraient aider les agriculteurs à prendre des décisions pour optimiser la qualité et la quantité des 

grains, vers une agriculture microbiocentrique. 

Mots-clés : séquençage d'amplicons, microbiome du sol, cycle de l'azote, régression pas à pas, régression 

Lasso, qualité des céréales. 
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SYNOPSIS 

  

L'azote est un élément crucial pour la production végétale, en particulier pour les cultures qui 

nécessitent des niveaux d'azote plus élevés à leurs différents stades de croissance. Certaines cultures, 

notamment le blé, ont besoin de grandes quantités d'azote pour soutenir leur croissance, la synthèse des 

protéines et améliorer la qualité des grains. Toutefois, la fertilisation azotée excessive a été signalée comme 

un problème majeur dans la production de blé. Le défi actuel est de réussir à corréler précisément les taux 

de fertilisation azotée avec le rendement du blé et la qualité des grains. L'application inadéquate d'engrais 

azotés conduit à un gaspillage catastrophique d'azote dans l’environnement. Les conséquences les plus 

importantes de N non utilisé sont l'eutrophisation des eaux de surface et les émissions de gaz à effet de serre 

N2O. La plupart des processus biogéochimiques dans le sol qui produisent les nutriments et les gaz 

atmosphériques nécessaires à tous les organismes vivants au-dessus et au-dessous du sol sont 

principalement réalisés par les micro-organismes du sol. On pense en particulier que le traitement et la 

disponibilité de l'azote dans le sol sont fortement liés au recyclage de l'azote par les microorganismes. Les 

micro-organismes du sol transforment l'azote en différentes formes par des étapes séquentielles, au cours 

desquelles diverses formes d'azote ionisées sont produites par des réactions oxydatives ou réductrices. En 

général, les microbes utilisent différentes formes d'azote comme accepteurs d'électrons (par exemple, les 

dénitrifiants) ou sources d'énergie (par exemple, les nitrifiants), créant souvent un environnement compétitif 

pour l'absorption nette d'azote par les plantes en affectant la disponibilité totale de l'azote du sol. Même la 

respiration microbienne est corrélée au potentiel redox de l'environnement du sol, et souvent certaines 

communautés entretiennent une relation syntrophique avec différents groupes microbiens qui donnent des 

électrons pour accélérer une certaine réaction géochimique microbienne.  Par exemple, les communautés 

microbiennes oxydant l'hydrogène exercent des effets différentiels sur les bactéries respirant le CH4 et le 

CO2 en augmentant le métabolisme microbien du carbone, régulant ainsi la dénitrification du sol et les 

émissions de NO2. Par conséquent, le microbiome du sol associé au cycle de l'azote et des autres nutriments 

joue un rôle décisif dans l'accessibilité des nutriments pour les plantes.  

Les microbiomes sont considérés comme de puissants intégrateurs des processus passés et présents 

de l'écosystème, fournissant de multiples niveaux d'information sur la fonction du sol. Ils détiennent une 

fonction d’indicateur dans le sol et expliquent les états contemporains de l'écosystème.  La plupart des 

processus de transformation des nutriments du sol sont déterminées par les interactions multitrophiques du 

microbiome du sol et des propriétés physicochimiques du sol. Ainsi, le microbiome du sol joue directement 

ou indirectement un rôle important en influençant la croissance et la productivité des plantes par le cycle 
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des nutriments, le maintien de la fertilité du sol et la séquestration du carbone. Par conséquent, il est assez 

difficile et souvent imprécis de définir les fonctions biochimiques du sol ou les taux de processus avec 

seulement quelques taxons ou certaines espèces microbiennes ou encore quelques propriétés 

physicochimiques. Néanmoins, en général, les changements dans la diversité microbienne du sol peuvent 

modifier le statut nutritif du sol qui, à son tour, peut influencer la colonisation active du microbiome de la 

rhizosphère dans les racines des plantes en modifiant l'environnement de l'interface racine-sol. Ainsi, les 

processus d'assemblage de la communauté des microbiomes indigènes des plantes et leur fonction sont 

fortement corrélés (par exemple, la diversité alpha et bêta) avec la diversité microbienne centrale et la 

structure de la communauté dans le sol éloigné (bulk soil). La connaissance précise de la façon dont les 

facteurs biotiques et abiotiques, ainsi que la gestion agricole, influencent les processus d'assemblage des 

communautés de microbiomes pour façonner les modèles de cooccurrence microbienne et les interactions 

culture-microbiome le long de l'axe sol-plante-racine est encore limitée. En réponse aux facteurs 

environnementaux exogènes et endogènes du sol, le microbiome du sol fournit un niveau différent de 

signaux de l'état actuel de processus écosystémiques donnés par le biais de leurs changements structurels. 

Par conséquent, ces signaux de l'état d'un agroécosystème donné dérivés du microbiome du sol central sont 

très utiles pour comprendre le modèle de relations entre le sol et les différents traits et la productivité des 

plantes.  

Les indicateurs microbiens liés à la diversité et à la composition microbienne ont un fort pouvoir 

prédictif qui peut dépeindre l'état actuel des processus des agroécosystèmes. La capacité du microbiome du 

sol à prédire les propriétés biologiques et physicochimiques des sols agricoles, ainsi que le rendement et la 

qualité des cultures dans différents environnements, a déjà été démontrée dans plusieurs études. 

L'augmentation de la teneur en azote des feuilles et des grains est fortement corrélée à une absorption 

efficace de l'azote par les cultures. Ainsi, la séquestration du carbone et la décomposition de la matière 

organique du sol   peuvent contribuer à une meilleure minéralisation de l'azote. Une décomposition plus 

importante de la matière organique peut libérer de l'azote facilement utilisable pour l'absorption par les 

cultures, ce qui peut favoriser la croissance des cultures et la synthèse des protéines des grains. Par 

conséquent, le métabolisme microbienne de différentes sources de carbone organique pourrait être une 

variable intéressante. L'intensité de l'utilisation microbienne de sources de carbone spécifiques indique 

l'activité de guildes fonctionnelles microbiennes spécifiques qui peuvent être directement liées au 

métabolisme de l'azote des plantes. Par conséquent, les indicateurs liés à la décomposition du carbone 

organique du sol pourraient être des prédicteurs utiles pour modéliser le grain et la qualité du blé. Le sol 

sert de réservoir microbien aux plantes pour recruter le microbiome par le biais de processus d'assemblage 

de communautés. La plante fournit des nutriments aux microbes par l'exsudation des racines, ce qui 

influence la diversité microbienne globale du sol peut influer sur la dispersion et la succession des microbes 
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dans les différents compartiments de la plante qui suivent l'axe sol-racine. Cette caractéristique de 

l'assemblage des communautés dans un agroécosystème pourrait avoir un impact sur l'ensemble des 

processus physiologiques des plantes en modulant les interactions plante-microbiome. Les signaux dérivés 

de la diversité microbienne décrivant la structure ou la composition globale des communautés du 

microbiome du sol peuvent être des prédicteurs potentiels du rendement et de la qualité des cultures. 

L'abondance de certaines communautés microbiennes associées peut être liée directement ou indirectement 

au cycle des nutriments du sol. Les indices de richesse de la diversité microbienne spécifique peuvent être 

directement ou indirectement associés à l'utilisation de l'azote dans les grains et à la synthèse des protéines 

dans les grains. Il existe des preuves substantielles que la diversité microbienne du sol joue un rôle important 

dans la régulation du cycle de l'azote, comme on peut l'observer pendant l'utilisation et le traitement 

microbien de l'azote dans un système fermé. La composante abiotique associée au climat ou à la situation 

géographique influence également la structure et l'activité microbienne, ce qui pourrait expliquer la 

variation de la qualité des grains de blé. Le changement climatique persistant peut favoriser une pression 

sélective pour la survie microbienne par le biais de changements dans les propriétés du sol et la dynamique 

de l'azote, établissant ainsi une nouvelle structure de la communauté microbienne suivant un processus 

déterministe. D'autres facteurs environnementaux et biotiques peuvent modérer les propriétés 

physicochimiques du sol, ce qui les rend moins efficaces pour expliquer directement les processus de 

l'écosystème. En revanche, la diversité, l'abondance et la fonction microbiennes ont un plus grand pouvoir 

prédictif. Lorsqu'elles disposent d'une niche optimale, les communautés microbiennes peuvent s'intégrer 

aux propriétés et aux nutriments actuels du sol, ce qui se traduit par des réponses diverses aux processus 

écosystémiques. L'analyse de l'abondance, de la diversité et des réponses fonctionnelles des communautés 

microbiennes permet de mieux comprendre l'impact des changements environnementaux sur ces 

communautés. Ces informations sont précieuses pour comprendre les effets de divers facteurs sur les 

communautés microbiennes du sol. Les profils ou les abondances des communautés microbiennes sont 

donc mieux corrélés avec l'activité fonctionnelle au niveau de la communauté et peuvent fournir un meilleur 

potentiel prédictif global pour expliquer le rendement du blé et la qualité du grain. 

Les développements récents de la technologie omique peuvent être exploités pour explorer les 

profils taxonomiques microbiens du sol à haute résolution, permettant la capture d'une large gamme de 

diversité microbienne à la fois à l'échelle spatiale et temporelle. Il a été proposé que les approches 

multiomiques intégrées permettent d'observer l'interaction complexe entre les métabolites du sol, les 

minéraux et les propriétés microbiennes.  Cette approche intégrée de la technologie multi-omique nous a 

permis de démêler la relation entre la productivité des plantes, l'activité microbienne (par exemple, la 

décomposition de la matière organique du sol) et la diversité microbienne. Ainsi, la technologie omique est 

potentiellement utile pour prédire les interactions à plusieurs niveaux entre les plantes, les microbes et le 
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sol. Par exemple, l'utilisation de techniques métataxonomiques ou métagénomiques basées sur l'ADN peut 

considérablement améliorer les efforts de recherche et approfondir notre compréhension des relations 

complexes entre les facteurs abiotiques du sol et la diversité et la fonction microbiennes. Grâce à ces 

méthodes, il peut être possible de limiter le temps et les ressources tout en obtenant des informations 

importantes sur l'interaction complexe entre les micro-organismes et la santé des sols. . Les données 

métataxonomiques peuvent déchiffrer le modèle et les principaux acteurs des groupes microbiens impliqués 

dans la dénitrification dans des conditions de sol acide, nous permettant de comprendre leur régulation sur 

les intermédiaires dénitrifiés dans un écosystème individuel. 

Comme mentionné plus haut, le microbiome du sol joue un rôle crucial dans la transformation et 

la disponibilité des nutriments du sol et influence ainsi l'abondance des nutriments des plantes dans le sol. 

Le cycle de l'azote, piloté par de nombreuses communautés microbiennes aérobies et anaérobies, est la 

principale usine de traitement de l'azote du sol. L'incorporation de différents microbes du sol dans le cycle 

des nutriments (par exemple, le cycle de l'azote) dépend principalement de facteurs écologiques, notamment 

la diversité microbienne du sol, les propriétés physico-chimiques du sol, le climat et la séquestration du 

carbone. Il est clair que les taux de transformation de l'azote ne peuvent pas être déterminés uniquement 

par l'activité des nitrifiants et des dénitrifiants, ou d'une communauté microbienne particulière. Il existe 

sans aucun doute d'autres variables liées aux interactions biotiques qui peuvent influencer ce processus. . 

Par conséquent, les interactions biotiques entre tous les micro-organismes du sol dans un environnement 

restreint jouent un rôle décisif dans l'apport ultérieur d'azote aux plantes. Ici, nous nous sommes 

principalement concentrés sur l'étude du rôle des communautés bactériennes, archéennes et fongiques du 

sol, car elles sont considérées comme les meilleurs micro-habitants parmi les autres microorganismes du 

sol. Nous avons évalué l'incorporation d'indicateurs microbiens du sol dans les analyses de sol basées sur 

les nutriments du sol dans l’optique de mieux guider la prise de décision concernant la gestion des engrais 

dans la production végétale. Par conséquent, mon hypothèse centrale est que les microbes du sol, en raison 

de leur rôle central dans le cycle des nutriments et la santé des plantes, contiennent un signal qui peut être 

utilisé pour prédire les rendements de blé et la qualité des grains. Mon objectif principal était de mesurer 

les propriétés physicochimiques de base du sol, le potentiel fonctionnel microbien, la diversité, l'abondance 

et la composition de la communauté dans le temps et l'espace et de trouver les paramètres les plus 

significatifs expliquant les rendements de blé et la qualité boulangère des grains.  

L'analyse de la littérature sur les processus agroécosystémiques a permis de mettre en évidence 

l'existence de plusieurs facteurs importants qui influencent de manière significative les résultats finaux. Ces 

facteurs comprennent la gestion de l'exploitation, l'environnement du sol, le type de sol et la diversité des 

cultures. J'ai donc émis l'hypothèse que des signaux microbiens spécifiques peuvent être détectés au début 
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de la saison de croissance du blé et que ces signaux ont une relation directe avec le rendement et la qualité 

des grains.. Pour tester ma première hypothèse, j'ai analysé les indicateurs microbiens pour déterminer le 

potentiel fonctionnel microbien, la diversité, l'abondance et la composition des communautés, ainsi que les 

propriétés physiques de base du sol dans plus de 80 champs de blé au Québec. J'ai planifié un 

échantillonnage du sol à grande échelle dans les fermes de blé du Québec, avec l'idée que nous pourrions 

obtenir des indicateurs microbiens robustes à une échelle spatiale qui pourraient être utilisés pour prédire 

le rendement du blé et la qualité du grain. J'ai également émis l'hypothèse que la collecte d'échantillons de 

sol tôt dans la saison de croissance du blé pourrait être un bon moment pour extrapoler le pouvoir prédictif 

microbien pour le rendement et la qualité du blé à la fin de la récolte. Par conséquent, l'objectif principal 

était de collecter des échantillons de sol dans des fermes du Québec afin de surveiller la variation spatiale 

de la diversité, la composition et les fonctions microbiennes du sol sous différentes formes de gestion 

agricole. Dans des études précédentes, il a été rapporté qu'en utilisant des indicateurs microbiens, il est 

possible de prédire le statut nutritif et biologique du sol à l'échelle continentale. Dans mon cas, l'objectif 

principal de la modélisation prédictive du rendement et de la qualité du blé était d'étudier dans quelle mesure 

cette approche de modélisation pouvait démontrer le pouvoir prédictif des communautés microbiennes du 

sol à l'échelle du champ, en considérant l'hypothèse clé de ce travail de recherche. Nous savons que les 

environnements hétérogènes du sol, y compris les facteurs édaphiques tels que la disponibilité du carbone 

dans le sol, le pH du sol, la température, l'humidité du sol, la perméabilité à l'oxygène du sol et le potentiel 

redox, modulent la diversité du microbiome et abritent une écologie systématique. Les changements de tous 

ces facteurs édaphiques sont principalement soumis au climat et à la gestion agricole, notamment la 

sécheresse, les émissions de gaz à effet de serre, l'intensification de l'utilisation des terres, les pesticides, la 

résistance aux antimicrobiens, etc. Le métabolisme microbien du carbone, y compris l'utilisation des 

polysaccharides, des acides aminés, des acides carboxyliques et des acides gras, est un indicateur essentiel 

du cycle du carbone et de l'azote organique du sol et de l'activité physiologique des communautés 

microbiennes hétérotrophes. Les différentes communautés microbiennes utilisant différentes sources de 

carbone servent également d'indicateurs potentiels des émissions de gaz à l'état de traces (par exemple, CO2, 

N2O, H2 etc.) produites par la respiration microbienne. Le modèle d'utilisation du carbone microbien est 

fortement lié à la décomposition de la matière organique du sol. Le taux de décomposition de la matière 

organique du sol dépend également du ratio total de la biomasse bactérienne et fongique dans le sol. La 

biomasse fongique contribue largement au rapport total carbone/azote du sol (rapport C: N) en recyclant 

(par exemple, la nécromasse) plus de carbone organique que d'azote, tandis que les bactéries recyclent plus 

d'azote dans la biomasse bactérienne totale. Une plus grande utilisation du carbone organique à partir des 

polymères d'acides aminés peut profiter à certaines communautés microbiennes qui peuvent contribuer à 

un plus grand stockage de carbone organique dans le sol. Certaines études ont montré que les protistes 
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bactérivores construisent une biomasse dont le rapport C/N est plus élevé que celui de leurs proies 

bactériennes et qu'ils libèrent de l'ammoniac dans le sol sous forme de déchets bactériens, ce qui peut 

contribuer à la disponibilité de l'azote dans le sol.  Par conséquent, le cycle des nutriments induit par les 

microorganismes dans un écosystème agricole présentant une dynamique C: N spécifique est très sensible 

à l'exposition continue à l'azote organique ou inorganique fourni. Différentes pratiques agricoles   et 

différentes conditions climatiques à travers les champs de blé nous ont donné l'occasion d'estimer l'effet 

des paramètres microbiens liés au rendement et à la qualité du blé.  Ainsi, le plan expérimental visant à 

modéliser le rendement du blé et la qualité des grains dans les exploitations de blé situées sur un transect 

de 500 km nous permet d'identifier les indicateurs microbiens potentiels des processus agroécosystémiques 

pertinents qui prédisent avec précision la qualité des grains de blé. 

Des échantillons de sol ont été récoltés dans 80 fermes à travers le Québec. Dans chaque champ, 

des échantillons composites ont été produit en creusant à 5 points d’échantillonnage, à une profondeur de 

10 cm. Si des plants de blé étaient présents dans le champ, les échantillons ont été récoltés de 10 à 25 cm 

d’intervalle. 

Les échantillons de sol ont été divisés et utilisés pour différentes analyses biochimiques et 

biologiques. La teneur en eau et le pH du sol a été mesurés. Le carbone total et l'azote total ont été mesurés 

par un analyseur d’élément, suivant la méthode de combustion. L'ADN génomique a été extrait des sous-

échantillons de sol à l'aide d'un kit commercial en suivant le protocole du fabricant. Les librairies de 

séquençage d'amplicons de l’ARNr 16S et ITS1 ont été préparées en amplifiant des ensembles d'amorces 

spécifiques à la cible en suivant le protocole de préparation des librairies de séquençage NGS d'Illumina. 

Les amplicons d'ARNr 16S et d'ITS1 ont été envoyés pour un séquençage NGS Illumina-MiSeq en paires 

en générant des librairies d'amplicons méta-barcodés et en les regroupant dans un seul tube. . Les données 

de séquençage ont été analysées en suivant les pipelines internes d'amplicon Tagger. Le tri initial des 

séquences a été effectué sur la base du code-barres de séquençage et la qualité de la diversité a été assurée 

en scannant PhiX-Spike dans les séquences. Les lectures uniques et de faible qualité donnant lieu à des 

séquences inférieures au seuil du score Phred ont été supprimées. Les variantes de séquences d'amplicons 

ont été générées en suivant le pipeline DADA2. Les lignées taxonomiques ont été attribuées avec un 

classificateur RDP en utilisant la base de données Silva et un seuil minimum de scores de correspondance 

des taxons a été établi. Plusieurs gènes fonctionnels associés au cycle de l'azote ont été quantifiés par PCR 

quantitative.  On a examiné l'abondance fonctionnelle des gènes liés au processus de nitrification et de 

dénitrification du sol. Plus précisément, l’abondance du gène de la monooxygénase bactérienne (AOB) et 

archéennes (AOA), de la nitrite réductase (nirK) et de la réductase de l'oxyde nitreux (nosZ) a été mesurée 

parce que ces données peuvent fournir un indicateur potentiel du statut de l'azote du sol dans 
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l'agroécosystème actuel. En outre, l'abondance absolue des copies de gènes fonctionnels liés au cycle de 

l'azote peut conférer un trait microbien significatif qui peut contribuer de manière optimale à des processus 

donnés de l'agroécosystème, ce qui à son tour peut avoir une rétroaction négative ou positive sur le 

processus résultant en des différences dans le rendement des cultures. Le ratio champignon/bactérie basé 

sur l'abondance des gènes 16S et ITS région a également été mesuré par PCR quantitative  Le ratio 

champignon/bactérie a été analysé comme un indicateur potentiel des processus de l'écosystème, afin de 

vérifier si ces ratios affectent le rendement du blé et la qualité du grain. La qualité du grain de blé et la 

qualité boulangère ont été mesurées en collaboration avec notre partenaire, les Moulins de Soulange, afin 

d'obtenir les indices de qualités des grains couramment utilisés pour évaluer la qualité boulangère. Toutes 

les analyses de données exploratoires, y compris la distribution des données, les tests d'hypothèse et 

l'analyse factorielle multiple, ont été effectuées pour examiner les modèles de données et les facteurs qui 

influencent le plus le rendement du blé et la qualité boulangère des grains. L'imputation et la transformation 

des données ont été effectuées à l'aide de divers progiciels R pour les données qui n'étaient pas normalement 

distribuées ou qui présentaient des valeurs aberrantes extrêmes. Pour analyser les traits microbiens 

potentiels impliqués dans les processus de l'écosystème expliquant le rendement et la qualité du blé, nous 

avons effectué un test de corrélation de rang de Spearman. Pour sélectionner les prédicteurs microbiens 

potentiels qui ont un effet significatif sur le rendement et la qualité du blé, nous avons effectué des 

approches de sélection pas à pas couplées à une fonction linéaire (lm). Pour l'analyse comparative des 

modèles, la méthode de sélection pas à pas simplifie l'effort de sélection des 5 prédicteurs les plus 

importants avec une erreur standard résiduelle faible. Les compromis biais-variance et la performance ont 

été évalués entre les modèles avec différents paramètres statistiques. 

Il a été déterminé que le rendement et la qualité du blé varie significativement entre les différentes 

fermes échantillonnées. De plus, la variété du blé cultivé a eu un effet significatif sur le rendement et la 

qualité du blé. Il a été observé qu’il existe une relation significative entre les propriétés physicochimiques 

du sol et le rendement et la qualité des grains de blé. Ceci était attendu, puisque les propriétés 

physicochimiques du sol sont des facteurs importants dans les processus indiquant la fertilité du sol. En 

effet, ces propriétés sont fortement impliquées dans les cycles des nutriments du sol et dans la création de 

microenvironnement abritant les microorganismes. 

  L'utilisation du carbone microbien à partir des sources contenant des acides aminés a montré une 

corrélation potentielle avec la qualité du blé. Les ASVs appartenant aux taxons bactériens et archéens 

incluant Acidobacteria, Actinobacteria et Proteobacteria étaient dominants parmi les échantillons prélevés 

dans différentes régions. Les ASV liés aux Planctomycètes et aux Actinobactéries variaient selon les 

régions, parmi les phyla avec une abondance relative moyenne supérieure à 1%. La communauté fongique 
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des échantillons était dominée par des communautés saprophytes telles que les Agaricomycetes, les 

Mortierellomycotina et les Sordariomycetes. Il y avait également une corrélation significative entre les 

phyla fongiques relativement abondants (par exemple, Ascomycota, Basidiomycota et Zygomycota) et la 

qualité de la farine. La richesse et l'abondance des espèces associées à l'indice de diversité de Shannon pour 

les bactéries et les archées étaient négativement corrélées à la qualité du grain de blé, tandis que la diversité 

de Shannon pour les communautés fongiques était positivement corrélée au rendement et à la teneur en 

amidon et en protéines du grain. Enfin, les ASV microbiens les plus corrélés ont révélé une influence 

différente sur le rendement des plantes et la qualité des grains, ce qui montre un potentiel fonctionnel 

mécaniste des communautés microbiennes à des niveaux taxonomiques inférieurs. Par exemple, certaines 

ASV liées aux genres Paenibacillus et Sphingomonas, connues pour leur activité de promotion de la 

croissance, ont été fortement corrélées à la qualité de la cuisson de la farine (par exemple, le temps maximal 

de la farine). Même certains substrats de carbone provenant de sources d'acides aminés utilisés par les 

communautés microbiennes étaient significativement corrélés aux différents indicateurs de qualité de 

cuisson des céréales et des farines. Pour réduire le nombre de prédicteurs, les traits microbiens issus des 

données métataxonomiques (16S et ITS) ont été sélectionnés sur la base des corrélations les plus élevées 

entre les ASV et les paramètres de qualité du blé, les dix ASV microbiens les plus corrélés expliquant la 

relation monotone la plus élevée ayant été conservés comme caractéristiques clés. De même, les traits 

métaboliques du carbone les plus corrélés avec la qualité du grain et de la farine ont été sélectionnés sur la 

base des substrats de carbone utilisés par les communautés microbiennes. Dans un premier temps, un 

modèle prédictif basé sur les microbes du sol pour le rendement et la qualité du blé a été développé en 

incorporant tous les traits du microbiome à l'aide des variables explicatives suivantes : substrat de carbone 

utilisé par les microbes, ASV bactériens et fongiques associés au rendement du blé et à la qualité du grain, 

abondance des gènes liés au cycle de l'azote, rapports d'abondance des gènes ARNr 16S et ITS, descripteurs 

de la communauté microbienne (par exemple, diversité alpha et bêta). Le pouvoir explicatif du modèle 

linéaire augmente avec le nombre de prédicteurs inclus dans le modèle. Par conséquent, pour l'analyse 

comparative du pouvoir prédictif entre les indicateurs pédologiques et microbiens, une méthode statistique 

basée sur la sélection prospective a été appliquée pour sélectionner et réduire le nombre de prédicteurs 

significatifs. Pour remettre en question le modèle basé sur le sol et s'aligner sur la taille des prédicteurs du 

sol (pH, N total, C total, teneur en eau et rapport C: N) fortement liés aux processus de l'écosystème, seuls 

5 prédicteurs microbiens pour le rendement du blé et la qualité du grain ont été sélectionnés. Il est 

intéressant de noter que le modèle microbien a toujours été plus performant que le modèle basé sur le sol 

pour prédire le rendement du blé et la qualité des grains, et qu'il a montré l'erreur résiduelle la plus faible et 

une grande précision. En revanche, même certains paramètres basés sur le sol n'ont pas réussi à prédire les 

qualités du grain en raison d'un mauvais ajustement dans la régression linéaire. Le modèle basé sur le sol 
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comprenait des paramètres fortement corrélés aux processus d'intérêt (tels que le rendement et la qualité du 

blé), ce qui a entraîné un biais élevé dans l'analyse VIF (facteur d'inflation de la variance). Un deuxième 

défi de modélisation était de savoir si, si les prédicteurs microbiens étaient inclus avec les prédicteurs du 

sol, le modèle permettrait toujours de prédire le rendement du blé et la qualité du grain. Pour répondre à ces 

questions en suspens sur la modélisation microbienne, un modèle combiné incorporant à la fois les données 

du sol et les données microbiennes dans une méthode de régression basée sur la sélection avant par étapes 

a été réalisé. Il a été constaté que les paramètres microbiens du modèle combiné composé de 10-11 variables 

explicatives (données pédologiques et microbiennes) permettaient encore de prédire avec précision (64-

90% en précision) le rendement et la qualité du blé. Ces résultats suggèrent qu'en plus de l'analyse des 

nutriments du sol, la prise en compte des paramètres microbiens dans la gestion agricole pourrait contribuer 

à une évaluation plus précise du rendement et de la qualité du blé. Enfin, les modèles prédictifs avec les 

données du microbiome obtenues au début de la saison de croissance ont toujours été plus performants que 

les modèles basés sur le sol et les modèles combinés (sol et microbe), ce qui a pleinement répondu à notre 

premier objectif.  

  Il a été largement démontré et rapporté que le pH du sol, la teneur en eau et le rapport C : N jouent 

un rôle important dans l'établissement des communautés microbiennes du sol. C'est pourquoi il peut y avoir 

un lien potentiel entre les processus microbiens du sol et les indicateurs physicochimiques du sol. Mais les 

activités des micro-organismes du sol impliqués dans des processus particuliers ne sont pas nécessairement 

simples. Par exemple, la teneur en eau du sol peut déterminer la disponibilité des nutriments, mais l'équilibre 

des nutriments du sol et le rapport C: N sont régulés par l'activité microbienne. En outre, certains indicateurs 

du sol ont une forte corrélation avec le rendement du blé et la qualité du grain, mais ne sont pas directement 

impliqués dans les facteurs qui médient le traitement de l'azote organique ou inorganique, ce qui a un impact 

énorme sur l'efficacité de l'utilisation de l'azote par les plantes. Par conséquent, les paramètres du sol n'ont 

pas souvent prédit avec précision la qualité des grains de blé et de la farine. Même certains paramètres de 

qualité sont négativement associés à l'azote mesuré au début de la saison de croissance du blé, ce qui suggère 

un effet négatif de la fertilisation azotée sans discernement avec des apports intensifs. Après avoir analysé 

les paramètres microbiens à l'aide de diverses approches de modélisation, il a été déterminé que la teneur 

en azote n'avait pas d'effet direct sur la qualité des grains. Cela souligne l'importance de prendre en compte 

les microbiomes lors de la prise de décisions concernant les pratiques de fertilisation. En mettant en œuvre 

des pratiques agricoles qui intègrent les microbiomes du sol, il est possible de réduire l'apport excessif 

d'azote et d'augmenter ainsi la productivité des cultures. Cette approche peut fournir des résultats plus précis 

en matière de production végétale que les pratiques traditionnelles basées sur les nutriments du sol. Comme 

les paramètres du sol ont montré des signaux faibles dans le modèle prédictif, indiquant un manque de lien 

précis avec les processus du sol, l'inclusion de nombreux autres indicateurs du sol dans le modèle de 
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régression peut être plus performante que le modèle basé sur le microbiome, mais au prix d'une précision 

correcte du modèle. De nombreux prédicteurs sélectionnés dans les modèles basés sur le microbiome, tels 

que les descripteurs de la communauté, l'abondance des gènes fonctionnels et la capacité microbienne des 

substrats organiques, peuvent avoir des relations directes avec les processus du sol. Comme l'attendent les 

agriculteurs et les meuniers, les paramètres microbiens mis en évidence dans le modèle prédictif peuvent 

être rapidement testés et surveillés à l'aide d'outils plus spécifiques aux taxons ou en établissant un dosage 

biochimique pour une activité enzymatique microbienne spécifique. En outre, les données brutes des 

séquences d'amplicons de gènes spécifiques à une cible peuvent être utilisées pour évaluer la diversité bêta 

et alpha du microbiome du sol. L'abondance des ASV liés aux oxydants d'ammoniac Nitrosospira ou aux 

oxydants d'ammoniac complets (par exemple, Commamox) a été corrélée négativement avec la qualité 

boulangère t des grains. Cela signifie donc que les processus de l'écosystème du sol dirigés par le 

microbiome le plus abondant ont des effets néfastes sur la disponibilité de l'azote dans le sol et l'efficacité 

de l'absorption de l'azote par les plantes. En effet, l'ammoniac peut être absorbé passivement par les plantes 

en suivant les voies enzymatiques glutamate-glutamine synthétase-glutamine oxoglutarate 

aminotransférase. En revanche, les formes organiques d'azote telles que les acides aminés peuvent être 

directement absorbées par les plantes, car ces sources d'azote ont un meilleur rendement énergétique pour 

les plantes. Le nitrate (NO3 -) peut être absorbé activement par les plantes mais il doit d'abord être réduit et 

converti en ammoniac, ce qui est un processus plus énergivore pour les plantes. De plus, le microbiome du 

sol associé à l'oxydation de l'ammoniac par les processus de nitrification joue un rôle important dans le 

maintien de l'équilibre entre l'ammoniac et le nitrate. En accord avec nos résultats, des études de terrain 

similaires ont montré que les versions archéales ou bactériennes du microbiote oxydant l'ammoniac ont des 

effets positifs ou négatifs sur la teneur en gluten et la teneur en protéines des grains. Il est difficile d'évaluer 

cette rétroaction positive ou négative de l'oxydation de l'ammoniac par le microbiote sur la synthèse des 

grains des plantes, car leur mécanisme peut dépendre plus indirectement du contraste du rapport AOA: 

AOB ou du rapport AOB: bactéries totales. Certains des paramètres spécifiques sélectionnés dans le modèle 

prédictif concernant l'utilisation des substrats carbonés étaient les acides aminés. Ça indique que les groupes 

microbiens associés à la dégradation du carbone organique ont un meilleur accès au traitement de l'azote 

organique qui peut améliorer la disponibilité de l'azote. De même, certains substrats organiques tels que le 

glucose-1-phosphate utilisé par les microbes indiquent que la décomposition efficace de l'amidon ou du 

glycogène peut être liée à la diversité du microbiome du sol et à une rétroaction potentiellement 

différentielle sur le fonctionnement de l'écosystème. Un autre facteur important associé aux processus de 

l'écosystème du sol est l'abondance du ratio champignons/bactéries. Une réponse positive d'un ratio 

champignons/bactéries plus élevé, indiquant des taux de décomposition plus élevés entraînés par la 

communauté fongique, peut ajouter plus d'azote au sol pour l'absorption par les plantes. Ceci est dû au fait 
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que les champignons ont besoin de moins d'azote par unité de biomasse que les bactéries. Par conséquent, 

les paramètres liés à l'axe PCoA fongique indiquant les descripteurs de la communauté fongique tels que 

les différences de ASV fongique entre les échantillons et le rapport fongique-bactérien ont été sélectionnés 

dans de nombreux modèles. Enfin, il est intéressant de noter que certaines des ASV sélectionnées dans les 

modèles appartiennent à des genres tels que Paenibacillus et Sphingomonas, connus pour leur activité de 

promotion de la croissance des plantes et présentant une corrélation négative avec la qualité des grains de 

blé et de la farine. Cette relation négative peut être due à la dilution de l'azote dans les grandes plantes qui 

réduit la qualité du grain. D'autres paramètres sélectionnés dans le modèle peuvent ne pas être directement 

liés au processus de synthèse du grain de blé. Les efforts de modélisation n'étaient pas destinés à se 

concentrer spécifiquement sur l'élucidation de la nutrition azotée du blé, mais plutôt à mettre en avant des 

prédicteurs significatifs qui ont des impacts potentiels sur la qualité du grain et de la farine. Par conséquent, 

certains paramètres peuvent ne pas être directement associés aux processus de l'écosystème, mais sont 

néanmoins utiles car ils peuvent covarier avec certains paramètres non mesurés, qui peuvent être associés 

aux processus qui créent un environnement propice à la production optimale de nutriments pour le blé. En 

outre, des efforts de modélisation similaires sous-tendant différentes conditions de terrain ont permis de 

sélectionner des paramètres complètement différents qui prédisent le rendement du blé et la qualité du grain 

avec des degrés de précision différents, ce qui indique un état différent des processus de l'agroécosystème. 

La plupart des paramètres microbiens obtenus au début de la saison de croissance ont montré un lien étroit 

avec le rendement du blé et la qualité du grain récolté à la fin, ce qui était cohérent avec d'autres études 

menées à la même période de culture du blé. Ainsi, le pouvoir prédictif microbien démontré au début de la 

saison de croissance du blé fournit un aperçu potentiel pour trouver une date d'échantillonnage optimale 

pour construire le meilleur modèle. En outre, ces résultats ouvrent de nouvelles voies pour la mise en place 

d'expériences de suivi pour une intervention précoce de l'activité microbienne du sol qui pourrait aider à 

gérer les processus microbiens d'intérêt dans un état souhaité. Mais les indicateurs microbiens robustes des 

interactions sol-culture identifiés dans cette étude peuvent guider les agriculteurs vers une meilleure gestion 

agricole pour produire des céréales de haute qualité avec peu d'intrants, pour ouvrir la voie à une production 

agricole durable. 

Le deuxième objectif aborde principalement les questions liées à la manière dont la dynamique 

temporelle des communautés microbiennes dans le cadre des processus de l'agroécosystème affecte le 

rendement et la qualité des cultures. En particulier, le pouvoir prédictif des paramètres microbiens peut 

varier dans le temps, car la sélection des hôtes et l'acquisition des nutriments peuvent être influencées par 

la fixation du carbone à différents stades de la croissance du plant de blé. Il a été démontré que la diversité 

microbienne et les interactions hôte-microbiome organisées à l'interface racinaire et dans différents 

compartiments de la plante ont un lien significatif avec le stade de croissance de la plante. Comme les 
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propriétés du sol peuvent être affectées par la saison ou le climat régional, ce changement dans l'habitat 

microbien du sol peut limiter l'accès aux nutriments pour certaines communautés microbiennes. De tels 

changements temporels dans la diversité microbienne, la composition ou l'abondance fonctionnelle pendant 

toute la saison de croissance du blé modifieront nécessairement le pouvoir de prédiction du microbiome du 

sol, ce qui peut soulever des questions sur le moment le plus optimal pour une prédiction. Par conséquent, 

les méthodes expérimentales sont conçues en tenant compte du deuxième objectif qui se concentre 

principalement sur la recherche du meilleur modèle pour prédire la qualité du grain de blé à différents stades 

de croissance tout au long de la saison.  Dans des études antérieures, il a été démontré que les indicateurs 

microbiens peuvent prédire le rendement du blé et la qualité du grain avec plus de précision que la 

fertilisation azotée. Mais pour trouver le meilleur moment pour prédire la qualité du grain de blé, un champ 

expérimental historique pluriannuel situé à l'INRS a été choisi pour l'échantillonnage du sol qui a été conçu 

avec 6 blocs aléatoires, y compris 4 traitements de manipulation des précipitations et deux génotypes de 

blé. Les génotypes de blé ont été sélectionnés sur la base de deux traits spécifiques, y compris les traits de 

tolérance à la sécheresse et de sensibilité à la sécheresse. Il a été enregistré que la teneur en eau du sol dans 

les parcelles traitées avec la manipulation des précipitations différait entre les échantillons prélevés à 

différentes dates. Le schéma d'échantillonnage a été mis en œuvre approximativement en fonction du stade 

de croissance du blé, du semis à la maturité de la culture. Des indices microbiens similaires utilisés pour la 

modélisation dans le premier objectif ont également été mesurés pour justifier leur pouvoir de prédiction à 

une échelle temporelle. Une autre étude réalisée avec la même expérience de terrain a montré que les 

épisodes d'assèchement et d'humidification du sol provoqués par des pluies soudaines à la mi-juillet ont 

modifié les communautés microbiennes et augmenté l'abondance des archées oxydant l'ammoniac. De tels 

épisodes sont assez courants dans le contexte du changement climatique récent, fait qui peut modifier le 

statut des nutriments du sol ou limiter la fonctionnalité du microbiome du sol. Un tel changement temporel 

des paramètres microbiens dû à l'influence de facteurs biotiques et abiotiques peut inverser les processus 

de l'écosystème et créer des environnements pédologiques plus complexes de l'échelle macro à l'échelle 

microscopique. Même ce changement temporaire dans la composition de la communauté microbienne peut 

perturber le flux des nutriments du sol et l'efficacité de l'absorption de l'azote par les plantes de blé.  

Pour obtenir des données permettant de trouver les dates optimales pour la modélisation, un total 

de 336 échantillons de sol ont été prélevés à 7 dates d'échantillonnage différentes et traités pour des analyses 

biochimiques et de biologie moléculaire. De même, l'ADN génomique a été extrait et des librairies de 

séquençage d'amplicons ciblant le gène de l'ARNr 16 et la région ITS1 ont été préparées, comme décrit 

précédemment dans l'objectif 1.  Des librairies qPCR ont également été préparées pour quantifier les copies 

d'amplicons de gènes cibles associés au cycle de l'azote et analysées comme décrit dans l'objectif 1 

(Chapitre détaillé 1 & Chapitre 2).  Les séquences d'amplicons ont été traitées, filtrées et contrôlées en 
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qualité selon le pipeline bioinformatique reproduit en interne. Le regroupement de novo des séquences 

d'amplicons a été effectué sur la base de séquences représentatives qui ont été annotées pour préparer le 

tableau des OTUs (unités taxonomiques opérationnelles) consensuelles. La raréfaction et l'analyse de l'arbre 

phylogénétique des OTUs ont été réalisées en suivant un pipeline Galaxy modifié en interne. Ensuite, 

diverses analyses de données en aval liées à la diversité alpha et bêta et à l'abondance relative du 

microbiome du sol ont été réalisées par sous-échantillonnage aléatoire des données OTUs, suivi de diverses 

analyses statistiques. Le profilage physiologique du microbiome du sol au niveau de la communauté, basé 

sur l'utilisation des sources de carbone au niveau de la communauté, a été réalisé à l'aide d'un test 

colorimétrique Biolog. Certains paramètres clés de la qualité du grain de blé et de la farine, notamment le 

gluten, les protéines, la durée maximale de la farine et le couple enregistré, ont été mesurés en collaboration 

avec la société de mouture du blé. Des analyses statistiques exploratoires, descriptives et multivariées ont 

été réalisées, notamment sur la distribution et la variation de la réponse aux différents traitements à 

différentes dates d'échantillonnage des données microbiennes. Des tests de corrélation non paramétriques 

ont été réalisés pour les sept dates d'échantillonnage afin d'identifier des indices microbiens robustes 

associés à la qualité du blé à une échelle temporelle. Initialement, l'objectif principal était de modéliser la 

qualité du blé à l'aide des données microbiennes recueillies à partir de sept dates d'échantillonnage 

distinctes, afin de trouver la meilleure date d'échantillonnage ayant un potentiel prédictif élevé. Comme les 

deux génotypes de blé ont montré des compositions microbiologiques différentes dans l'analyse 

multivariée, ils ont été modélisés séparément. Après le nettoyage et le traitement des données, la 

dimensionnalité des données microbiennes a été réduite par un processus d'orthogonalisation. Les 

composantes principales orthogonales expliquant la plus grande variance des OTU microbiennes et de 

l'utilisation du carbone ont été traitées comme des caractéristiques du modèle. Combinés aux cinq 

composantes principales, certains autres traits microbiens tels que l'abondance des gènes liés aux processus 

microbiens (par exemple, le cycle de l'azote, le rapport total champignons/bactéries) et les indices de 

diversité alpha ont été normalisés et utilisés comme principales entrées du modèle pour la prédiction de la 

qualité des grains. Une approche basée sur la régression pénalisée (opérateur de sélection et de 

rétrécissement le moins absolu LASSO) a été appliquée à la sélection des modèles pour résoudre les 

problèmes de surajustement et de multicollinéarité de l'ensemble de données. Les scores de pénalité 

minimum ont été estimés en établissant des seuils de validation croisée pour sélectionner les prédicteurs en 

fonction de la taille des coefficients de régression lorsque toutes les variables d'entrée convergent vers zéro 

ou presque. Les résultats prédits à partir des modèles de régression lasso ont été calculés et la linéarité des 

modèles a été évaluée à l'aide de différents paramètres de modèle, notamment l'erreur quadratique moyenne, 

le rapport de variance totale (par exemple, R2) et les critères statistiques (par exemple, AIC, BIC). 
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Principalement, en accord avec les stades de croissance du blé, les dates d'échantillonnage ont 

affecté de manière significative tous les indices microbiens, y compris l'utilisation du carbone microbien, 

la diversité microbienne alpha et bêta, le rapport C: B et l'abondance des gènes liés au cycle de l'azote. La 

résolution de la corrélation entre la qualité du grain et l'utilisation du carbone microbien a été très fluctuante 

en fonction de la date d'échantillonnage. La corrélation la plus négative entre l'indice de qualité du grain et 

l'utilisation du carbone microbien a été observée dans les génotypes tolérants à la sécheresse. De même, le 

changement dans le schéma de corrélation entre les qualités de blé et les gènes liés au cycle N2, par exemple 

AOA, AOB, a été observé à différentes dates d'échantillonnage pour les deux génotypes de blé. Des 

corrélations significatives ont été observées entre la diversité/richesse microbienne et les indices de qualité 

du grain dans les génotypes DS. 

La meilleure précision prédictive des modèles Lasso pour les génotypes tolérants à la sécheresse a 

été obtenue à une date précoce d'échantillonnage du sol, qui correspond approximativement au stade de la 

germination ou du tallage du blé. Toutefois, les prédicteurs microbiens ont eu peu de pouvoir pour expliquer 

la teneur en gluten et en protéines du blé, en particulier pour les dates tardives d'échantillonnage du sol. Les 

modèles prédictifs basés sur le lasso pour les génotypes sensibles à la sécheresse ont montré une 

performance relativement faible par rapport aux génotypes tolérants à la sécheresse. De même, pour les 

génotypes tolérants à la sécheresse, la précision de la prédiction des paramètres de qualité du grain était 

plus élevée aux premières dates d'échantillonnage, principalement en mai et juin. Il était également difficile 

de prédire les qualités des grains avec les indicateurs microbiens obtenus à certaines dates d'échantillonnage 

pour les deux génotypes de blé. 

Les meilleurs modèles obtenus en début de saison ont sélectionné certaines caractéristiques 

microbiennes, notamment les composantes principales des indicateurs microbiens (par exemple, les OTU 

et l'utilisation du carbone microbien). Certaines OTUs microbiennes abondantes dans l'ACP caractéristique 

ont été systématiquement sélectionnées dans la plupart des modèles pour toutes les dates d'échantillonnage 

du sol. Par exemple, les OTU bactériennes et archéénnes de Nitrosphaera et les OTU fongiques du 

Mortierella ont été genres indicatifs les plus abondants dans les modèles les plus optimaux. En plus de ces 

taxons, les ACP sélectionnées par le meilleur modèle pour les génotypes tolérants et sensibles à la 

sécheresse ont retenues les OTU bactériennes et archéennes de Rhodoplanes, Solirubrobacter, Gaiella, 

Bradyrhizobium, Terrimicrobium, Hyphomicrobium et les OTU fongiques de Mortierella, Ganoderma, 

Gliomastix, Pezizella, Tetracladium.  Les principales composantes de l'utilisation du carbone microbien ont 

été associées positivement ou négativement à la qualité du grain dans les meilleurs modèles Lasso pour les 

deux génotypes de blé.  Différents indices de diversité des OTUs bactériennes, archéennes et fongiques ont 

été sélectionnés dans les meilleurs modèles de prédiction de la qualité des cultures.  Les modèles prédictifs 
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en début de saison ont sélectionné les gènes de la communauté dénitrifiante qui ont été négativement 

associés au gluten et à la teneur en protéines des génotypes tolérants à la sécheresse. En revanche, le gène 

amoA a été négativement associé à la teneur en gluten des génotypes sensibles à la sécheresse. 

Les meilleurs modèles pour la qualité du grain de blé ont été obtenus à des dates d'échantillonnage 

au début de la saison de croissance du blé, soutenant pleinement notre deuxième hypothèse. Effectivement 

la plus forte robustesse a été constatées dans les modèles basés sur les échantillonnages en mai et juin. Les 

dates les plus optimales générant les meilleurs modèles ont correspondu à peu près au stade de semis ou de 

tallage du blé: une période peut être critique pour l'absorption ultérieure des nutriments par la plante. 

Certains paramètres sélectionnés et impliqués dans les processus microbiens peuvent avoir des liens 

mécanistes avec les qualités du grain de blé. Par exemple, l'abondance relative des OTU appartenant au 

taxon d'archaea oxydant l'ammoniac Nitrososphaera était également fortement corrélée avec bon nombre 

des principaux composants sélectionnés dans les modèles, et l'abondance des gènes amoA archéaux et 

bactériens était souvent négativement corrélée à la qualité paramètres. Ces résultats suggèrent en outre 

qu'une forte abondance d'oxydants et de dénitrifiants à base d'ammoniac réduit la qualité du grain de blé en 

raison d'un besoin énergétique accru pour l'absorption et l'utilisation de l'azote ou par les pertes d'azote, 

comme indiqué aux (chapitres 2 et 3). Tous les paramètres microbiens n'ont pas été associés de manière 

causale à la qualité des récoltes. En fait, ils pourraient covarier avec d'autres facteurs non mesurés.  

L’abondance des archées oxydant l'ammoniac (AOA) a été sélectionnée dans le modèle et a été 

négativement corrélée avec la qualité du grain. Même les gènes dénitrifiants nirK et nosZ sélectionnés dans 

le modèle étaient négativement corrélés avec la qualité du grain. Ces résultats suggèrent qu'une abondance 

élevée de gènes liés à la nitrification ou à la dénitrification peut réduire la qualité des cultures en raison 

d'une absorption ou d'une utilisation inefficace de l'azote par les plantes ou d'une perte accrue d'azote par 

lessivage ou eutrophisation. Tel discuté précédemment la qualité du grain est liée à sa teneur en protéines. 

L'absorption d'ammoniac par les plantes est efficace pour les plantes, car cette forme d'azote peut être 

directement transformée par les plantes en acides aminés, alors que le nitrate doit être reconverti en 

ammoniac. L'absorption de nitrate par les plantes nécessite également plus d'énergie que l'ammoniac. De 

plus, le nitrate est aussi le substrat potentiel de la dénitrification qui conduit à des émissions de gaz N2O. 

L’activité de ces guildes fonctionnelles microbiennes peut être manipulée ou inhibée à l'aide d'inhibiteurs 

de nitrification chimiques, naturels ou synthétiques pour contrôler la disponibilité de l'azote et améliorer 

ainsi la qualité du grain. Nos efforts de modélisation à base microbienne ont permis de comprendre que la 

diversité microbienne est d'une importance capitale pour l'évaluation de la qualité des grains. 

 



xxii 

 

Malgré que notre approche de modélisation était principalement axée sur le blé, elle pourrait servir 

de base à l'exploration du pouvoir prédictif de paramètres microbiens similaires dans d'autres cultures. Les 

résultats obtenus à partir de la deuxième approche de modélisation ont également montré que la complexité 

microbienne augmente et que la précision prédictive diminue avec le temps, ce qui indique que les 

déterminants de la diversité et de la fonction du microbiome du sol peuvent être influencés par d'autres 

facteurs environnementaux internes ou externes au cours de la croissance du blé. Ces résultats, en accord 

avec plusieurs travaux, suggèrent que l'impact de la gestion agricole sur les indicateurs microbiens peut être 

plus clairement observé au début de la saison de croissance des cultures. Nos efforts de modélisation 

peuvent inspirer le développement d’un outil qui peut être utilisé tôt dans la saison pour guider correctement 

les stratégies de gestion agricole. Les indicateurs microbiens initiaux mesurés tôt dans la saison et liés aux 

caractéristiques des cultures, peuvent influencer ou interférer avec une activité microbienne spécifique dans 

un agroécosystème donné. La diversité et l'abondance microbienne peuvent être influencées par les 

conditions environnementales anciennes ou actuelles. Par conséquent, dans le cas d'un environnement 

homogène, certains indicateurs microbiens caractérisant le sol   au moment du semis peuvent capturer une 

portion du destin de l’azote à l’échelle d’une saison complète.   Les microorganismes du sol agissent comme 

des prédicteurs potentiels des conditions physico-chimiques passées et présentes du sol. L’utilisation de ces 

prédicteurs est donc appropriée pour expliquer divers processus de l'écosystème. Dans nos études, les 

descripteurs généraux de la communauté, comme la diversité alpha ou la composante principale, ont 

souvent été sélectionnés dans les modèles comme étant les meilleurs prédicteurs de la qualité des grains. Il 

a également été observé que la diversité alpha et les valeurs propres des composantes principales ont été 

des prédicteurs adéquats, par conséquent, la modélisation incluant quelques paramètres microbiens tels que 

la diversité alpha, la diversité bêta et les patrons d’utilisation des sources de carbone, peut être suffisante 

pour prédire la qualité du grain de blé. En particulier, l'approche de modélisation basée sur le lasso était la 

meilleure parmi les modélisations basées sur la régression linéaire. Effectivement, cette approche a produit 

des modèles plus parcimonieux, hautement interprétables et a fourni les résultats les plus fiables pour 

prédire la qualité du grain avec une précision adéquate.  

En conclusion, notre premier objectif a clairement illustré que les modèles prédictifs significatifs 

peuvent être paramétrés en utilisant des indicateurs microbiens mesurés tôt dans la saison de croissance, 

sur un transect de plus de 500 km. Notre deuxième objectif s’appuyant sur l'approche de modélisation 

temporelle a confirmé que l’échantillonnage au début de la saison de croissance peut être plus favorable 

pour l'estimation future de la qualité des cultures. Prises ensemble, ces deux études suggèrent qu’en 

collectant des échantillons de sol uniquement pendant la saison de croissance du blé, la modélisation basée 

sur les microbes a une meilleure précision, faisabilité et efficacité. En outre, conformément aux travaux 

précédents, cette approche de modélisation basée sur les microbes a sélectionné des indicateurs microbiens 
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associés à d'importants processus d'azote dans le sol, tels que les oxydations d'ammoniac, fournissant un 

signal potentiel d'une guilde microbienne fonctionnelle qui joue un rôle décisif dans la qualité du grain de 

blé. Ainsi, cette recherche pose une base solide pour les efforts futurs visant à prédire et à optimiser le 

rendement et la qualité des cultures.  Ces travaux ouvrent donc de nouvelles voies vers des solutions micro 

biocentriques pour résoudre les problèmes critiques auxquels l'agriculture est confrontée. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xxiv 

 

TABLE DES MATIÈRES 

 

ACKNOWLEDGEMENT……………………………………………………………………………..III 

ABSTRACT…………………………………………………………………………………………… IV 

RÉSUMÉ………………………………………………………………………………………………...V 

SYNOPSIS……………………………………………………………………………………………. VII 

TABLE DES MATIÈRES………………………………………………………………………… XXIV 

LISTE DES FIGURES…………………………………………………………………………....XXVII 

LISTE DES TABLEAUX ……………………………………………………………………….XXVIII 

1. Introduction……………………………………………………………………………………...2 

1.1 Wheat yield and grain quality…………………………………………………………………2 

1.1.1 Context…….……………………………………………………………………................4 

1.2 Microbial dynamic in agroecosystem…………………………………………………………6 

1.2.1 Temporal variation………………………………………………………………………...7 

1.2.2 Spatial variation……………………………………………………………………………9 

1.2.3 Abiotic drivers……………………………………………………………………………13 

1.2.4 Biotic drivers……………………………………………………………………………..15 

1.3 Microbial processes in agroecosystem……………………………………………………….19  

1.3.1 Plant microbe interaction………………………………………………………………20 

1.3.1.1 Plant growth promotion……………………………………………………………..20 

1.3.1.2 Pathogen suppression………………………………………………………………..21 

1.3.1.3 Stress mitigation…………………………………………………………………….23 

1.3.2 Biogeochemical processes………………………………………………………………25 

1.3.2.1 Nutrient cycling……………………………………………………………………..25 

1.3.2.2 Decomposition of soil organic matter and C: N dynamics…………………………28 

1.4 Predictive modeling…………………………………………………………………………..29  

1.4.1 Modeling of microbial ecosystem processes…………………………………………….29 

1.4.2 Statistical modeling with microbiological data………………………………………….31 

1.4.3 Definition of statistical learning, model parameters, accuracy, and bias-variance ……..32 

1.4.4 Supervised learning …………………………………………………………………....35 

1.4.4.1 Modeling approaches for predictor selection (Interpretable)………………………35 



xxv 

 

1.4.4.2 Modeling methods for accurate prediction (less interpretable) ……………………..38 

1.4.5 Unsupervised learning ………………………………………………………………….39 

1.4.6 Example of statistical learning methods in agroecosystems ……………………………..40 

1.4.7 Major sources of microbiome data……………………………………………………….41 

1.4.8 Common features of microbiome data…………………………………………………...42 

1.5 Hypothesis and objectives ……………………………………………………………………43 

1.5.1 Specific hypothesis……………………………………………………………………….43 

1.5.2 Specific objectives………………………………………………………………………..43 

1.6 Experimental approach and links between the objectives and the chapters of the thesis..44 

1.6.1 Chapter 2: Determine the microbial functional potential, diversity, abundance and 

community composition, and basic soil-physical properties of more than 80 wheat fields 

across Quebec...…………………………………………………………………………..44  

1.6.2 Chapter 3: Determine the microbial functional potential, diversity, abundance, and 

community composition over one growing season……………………………………....46 

2. Chapter 2: Predictive microbial-based modelling of wheat yields and grain baking quality 

across a 500km transect in Québec…………………………………………………………….50 

2.1 Abstract ………………………………………………………………………………………..51 

2.2 Introduction…………………………………………………………………………………....52 

2.3 Material and methods………………………………………………………………………....54 

2.3.1 Soil sampling……………………………………………………………………………..54 

2.3.2 Soil physicochemical properties………………………………………………………….54 

2.3.3 DNA extraction and amplicon sequencing……………………………………………….54 

2.3.4 Bioinformatics……………………………………………………………………………55 

2.3.5 Real-time PCR……………………………………………………………………………55 

2.3.6 Community-level carbon utilization profiling……………………………………………56 

2.3.7 Yields and baking quality……………………………………………………………….. 56 

2.3.8 Statistical analyses………………………………………………………………………..57 

2.3.9 Data availability…………………………………………………………………………..58 

2.4 Results………………………………………………………………………………………….59 

2.4.1 Yields and grain quality…………………………………………………………………..59 

2.4.2 Soil properties…………………………………………………………………………….60 

2.4.3 Microbial functions……………………………………………………………………….60 

2.4.4 Soil microbial community structure, composition, and diversity………………………...60 

2.4.5 Predictive modeling of wheat grain and flour quality…………………………………....64 



xxvi 

 

2.5 Discussion………………………………………………………………………………………71 

2.6 Acknowledgments……………………………………………………………………………..75 

2.7 Funding………………………………………………………………………………………...75 

2.8 Conflict of interest…………………………………………………………………………......75 

2.9 References……………………………………………………………………………………...75 

3. Chapter 3: Early season soil microbiome best predicts wheat grain quality………………..77 

3.1 Abstract………………………………………………………………………………………...79 

3.2 Introduction……………………………………………………………………………………80 

3.3 Methods………………………………………………………………………………………...82 

3.3.1 Experimental design and sampling ………………………………………………………82 

3.3.2 Amplicon sequencing and data analysis………………………………………………….82  

3.3.3 Quantitative real-time PCR (qPCR) and community level physiological profiling 

(CLPP)……………………………………………………………………………………83 

3.3.4 Wheat grain and flour quality ……………………………………………………………84 

3.3.5 Statistical analyses………………………………………………………………………..84 

3.3.6 Predictive modeling………………………………………………………………………85 

3.4 Results………………………………………………………………………………………….87 

3.4.1 Effect of experimental treatments on microbial parameters……………………………...87 

3.4.2 Correlation between microbial and grain quality parameters ……………………………88 

3.4.3 Model performance in predicting grain quality at different dates………………………. 91  

3.4.4 Microbial features selected in the optimal models……………………………………….96  

3.5 Discussion……………………………………………………………………………………..101 

3.6 Acknowledgments……………………………………………………………………………104 

3.7 Funding……………………………………………………………………………………….105 

3.8 Conflict of interest…………………………………………………………………………...105 

3.9 References……………………………………………………………………………………105 

4. General discussion and conclusion…………………………………………………………...106 

4.1 Discussion…………………………………………………………………………………….106 

4.2 Conclusion…………………………………………………………………………………….115 

5. Bibliography…………………………………………………………………………………...118 

6. Annex 1: Supplementary materials of publication 1…………………………………………...145 

 

 



xxvii 

 

 

LISTE DES FIGURES 

 

Figure 1-1: Factors influencing the microbial community selection processes in soil and crop 

microbiomes.                                                                                                                                              12 

Figure 1-2: Potential roles of protist communities in soil ecosystem processes.                                       16 

Figure 1-3: Microbial indicators associated with agroecosystem processes.                                             19 

Figure 1-4: Illustration of the general processes of the rhizosphere microbiome in pathogen.  22                                                                                                                                                                                                                                                           

Figure 1-5: The effect of drought on microbial processes.                                                                        23 

Figure 1-6: The nitrogen cycle.                                                                                                                  28 

Figure 1-7: Illustration of model complexity and bias-variance trade-off.                                                34  

Figure 1-8: Workflow of statistical learning for microbiome analysis.                                                     37  

Figure 1-9: Field testing to find robust microbial indicators.                                                                    47 

Figure 2-1: Summary of bacterial and archaeal, and fungal community composition.                             64 

Figure 2-2: Soil and microbial-based multiple linear regression models.                                                 70 

Figure 3-1: Microbial-based optimal models on optimal soil sampling dates.                                          92 

Figure 3-2: The relative abundance of the bacterial and archaeal, and fungal genera for drought tolerant 

genotype.                                                                                                                                                    97 

Figure 3-3: The relative abundance of the bacterial and archaeal and fungal genera for drought sensitive 

genotype.                                                                                                                                                   99 

Figure 3-4: Relative abundance of bacterial and archaeal and fungal genera for drought-sensitive 

genotypes on June 21.                                                                                                                              100 

 

 

 

 

 



xxviii 

 

 

LISTE DES TABLEAUX 

 

Table 2-1. Average yield and grain quality data across Quebec wheat farms.                                             59 

Table 2-2. Summary of correlation studies between microbial ASV and grain quality parameters.           61 

Table 2-3: Evaluation of model based on different statistical parameters.                                                  67 

Table 2-4: Model evaluation for bias-variance and multicollinearity among input variables.                    68 

Table 3-1: Multivariate statistical analysis to test treatment effects on microbial indices.                         87  

Table 3-2. Parametric statistical analysis to test treatment effects on N-cycle related gene abundance.    88 

Table 3-3: Spearman correlations between microbial carbon utilization and grain quality.                       89 

Table 3-4: Spearman correlations between functional gene abundance and grain quality.                         90 

Table 3-5: Spearman correlations between microbial diversity indices and grain quality.                         91 

Table 3-6: Comparative model analysis for drought tolerant genotype.                                                     93 

Table 3-7: Comparative model analysis for drought sensitive genotype.                                                   95 

Table 3-8: Selected microbial feature in models of drought tolerant genotypes.                                        98 

Table 3-9: Selected microbial feature in models of drought-sensitive genotypes.                                    101 

Table S1: Metadata for wheat field surveys across Quebec wheat farms.                                                145 

Table S2: Number of raw read counts for each of the 80 soil samples.                                                    147 

Table S3:  Amplification protocols for qPCR quantifications of N-cycle functional genes.                    149 

 

 

 

 

 

 

 

 



1 

 



2 

 

 

1   INTRODUCTION  

 

1.1 Wheat cultivation and fertilization  

  

Wheat (Triticum spp.) is one of the most widely produced crops in the world, with an estimated 

200 million ha. of land dedicated to wheat cultivation every year. Wheat grain is among the most consumed 

cereals, supplying 19% of the calories consumed by humans (Aksoy and Beghin 2004). Forty percent of 

global wheat production is used as a dietary supplement in the poultry and livestock industries. Wheat is 

also a key ingredient for producing bread, pasta, and other baked goods. Wheat grain is highly rich in 

carbohydrates, proteins, and minerals compared to other cereals such as rice, rye, and millet (Chung, 

Pomeranz and Finney 1978). Canada is the world's sixth-largest producer and one of the largest exporters 

of wheat, producing an average of over 25 million tons and exporting around 15 million tons, annually. 

There are several classes of wheat varieties that have developed through breeding to adapt to different 

factors such as grain hardness, grain color, seeding season, and farming location and environmental 

conditions (e.g., rainfall events, drought etc.). About half of all Canadian wheat is grown in Saskatchewan, 

followed by Alberta, Manitoba, and Quebec (Newlands et al. 2014). In Canada, two types of wheat 

varieties, known as winter and spring wheat, are widely grown in the eastern region. Winter wheat is mainly 

sown in autumn and is frost resistant, while spring wheat is usually sown in spring. Spring wheat is 

associated with lower yields and quality compared to winter wheat. Modern wheat breeding aims to produce 

crops that have traits such as high yield, disease resistance, and high protein content. The effects of climate 

change present challenges for global wheat production and the selection of high-yielding cultivars that 

mitigate nitrogen loss and biotic and abiotic stress. Organized agricultural practices and microbiome-

assisted fertilizer management may offer future solutions to restore soil fertility and produce high yield and 

high-quality crops.  

 

Nitrogen is crucial for wheat production as it plays a pivotal role in grain protein synthesis. Studies 

show that grain nitrogen concentration largely depends on plant nitrogen uptake efficiency and the 

availability of soil nitrogen (Zörb, Ludewig and Hawkesford 2018). Ensuring adequate nitrogen supply 

during wheat growth is important for optimizing wheat yield and quality. Nitrogen also influences both 

protein quantity and protein quality. The gluten protein in wheat is responsible for bread elasticity and 
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texture. When baking dough, yeast-mediated fermentation produces carbon dioxide and other metabolites, 

which causes the dough to rise and give the bread a light and fluffy texture. Continued research on wheat 

helps the baking industry to produce top-quality, nutritious bread while addressing the increased demand 

for gluten-free wheat products. This presents an exciting opportunity to explore ways to lower gluten 

content and increase other proteins in wheat grain, while also improving the grain overall (Goel et al. 2021). 

According to the  guide of Canada grain council to wheat management, scientists from Saskatchewan have 

suggested that it is possible to increase the grain protein content to a maximum of 16% while maintaining 

or increasing yield (open.alberta.ca/publications/wheat-nutrition-and-fertilizer-requirements, Ames et al. 

2003; Hucl et al. 2022). However, they suggest that when the protein content exceeds 16%, the yield is 

reduced (open.alberta.ca/publications/wheat-nutrition-and-fertilizer-requirements). For instance, research 

conducted in a farm in Lethbridge, Alberta reported that nitrogen fertilization may have increased some 

grain protein content such as glutamic acid, proline, methionine, cysteine, phenylalanine, and tyrosine, but 

that would lead to a lower yield (open.alberta.ca/publications).  

 

Wheat has three main phases of growth that require high levels of nitrogen: sowing, tillering, and 

kernel formation. After sowing, wheat kernels require 6 mg of protein to maintain germination and growth 

(Zörb, Ludewig and Hawkesford 2018). Insufficient nitrogen (N) in the soil means less protein is produced 

and wheat growth is negatively affected. The second most N-intensive phase is tillering, during which N 

concentrations determine the tiller formation of the plant (Zörb, Ludewig and Hawkesford 2018). Some 

wheat genotypes have the capacity to store N and use it during the grain-filling stages when there is low N 

availability (Zörb, Ludewig and Hawkesford 2018). However, in some cases, N uptake efficiency of the 

wheat genotype remains poor in highly N-fertilized soil (Bogard et al. 2010). Kernel formation is the third 

most N-intensive stage, during which grain protein synthesis occurs (Pechanek et al. 1997; Barneix 2007).  

 

Modern wheat cultivars are expected to have high grain protein concentrations, requiring optimal 

amino acid synthesis in the plant tissue to maintain continuous transport of the protein synthesis machinery 

during grain development. Due to the high N demand during wheat cultivation, plants are fertilized with 

high concentrations of N (up to 150 kg N ha1) in the later stages of wheat growth (Zörb, Ludewig and 

Hawkesford 2018). More than half the commercially produced N is applied indiscriminately during wheat 

production without regard to soil N status, totaling to more than an estimated 180 Mt/yr (Hawkesford 2014). 

Unfortunately, contrary to what one might expect, there is a tendency to over-fertilize without considering 

the microbial factors involved in soil N cycling. Schulz et al. (2015) found that the yield and protein 

concentration obtained with a single application of N fertilizer during the tillering stage of wheat growth 
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was equal to the yield obtained with multiple N applications during other stages. This may be due to the 

gradual decomposition of a large stock of soil organic N over a long period of time, in which case, additional 

N may not be required in the soil. Over fertilization is one of the main causes of N loss during wheat 

production (Chen et al. 2019). This reduced form of available nitrogen in the soil can affect the genetic 

potential of wheat plants to process the amounts of N required during kernel development (Yu et al. 2017). 

When similar wheat genotypes are grown in the same field for decades with different level of N fertilization, 

the resulting soil microbiome composition significantly affects crop yield and quality (Nelson et al. 2011; 

Yergeau, Quiza and Tremblay 2020). 

  

1.1.1 Context   

 

It is important to understand what factors influence grain and crop quality. Crops that are of poor-

quality lead to financial losses for farmers. There are several challenges in trying to predict grain quality, 

as it is not necessarily linked to the amount of fertilizer applied (Yergeau, Quiza and Tremblay 2020). In 

my thesis, I aimed to address this issue by modeling wheat yield and grain quality using microbial 

indicators. 

 

Nitrogen fertilizers are produced through the Haber-Bosch reaction, a process that comes with high 

energetic costs. This reaction takes atmospheric N and transforms it into ammonium (NH4
+). This man-

made N results in twice as much N fixation than all of the natural biological nitrogen fixation activities in 

the soil (Fisher and Newton 2004). The production of synthetic N fertilizers using the Haber-Bosch process 

is cost-effective but is totally dependent on fossil fuels. The market price for synthetic fertilizers is quite 

low due to the huge subsidies provided by state governments (Zörb, Ludewig and Hawkesford 2018). The 

large supply and low prices of N fertilizers have encouraged farmers to overuse these fertilizers, resulting 

in the loss of soil N equilibrium and microbial diversity (Zörb, Ludewig and Hawkesford 2018). The 

majority of the applied nitrogen fertilizer is unused by the crops, with more than half of the N being lost 

through volatilization of NH3, leaching of NO3
- and emissions of NO, N2O and N2 (Butterbach-Bahl et al. 

2013). Nitrate leaching (NO3
-) or N2O gas production (N2, N2O) reduces the available nitrogen stores in the 

soil. The N2O gas is also highly efficient at capturing heat along with CO2, contributing substantially to 

global warming. Nitrogen loss through leaching significantly reduces microbial diversity and contributes 

to eutrophication. The environmental issues related to continuous N fertilization have become a concern 

throughout the world, especially in Europe and North America.   
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Nitrogen cycling is a crucial part of maintaining the soil nitrogen flux, where microbes play a vital 

role in nitrogen transformation. For instance, microbes can be ammonia-oxidizers, nitrite-oxidizers and 

comammox (complete ammonium oxidation), which convert ammonia into nitrates. The protonated form 

of ammonia, called ammonium, is positively charged, and usually binds with the generally negatively 

charged soil particles, whereas the negatively charged nitrate does not bind with the soil particles and is 

more mobile and prone to leaching. In anaerobic conditions, nitrate is also used as an electron acceptor by 

denitrifiers, leading to its transformation into NO, N2O or N2 and the release of N into the atmosphere. As 

the competition for nitrogen assimilation between the plant and microbes is significant, nitrogen availability 

in the soil could become limited. Estimating the N reduction rate through physicochemical analyses of 

NH4+-N or NO3--N is not enough to assess true nitrogen levels in the soil. Because microbes directly and 

indirectly contribute to nitrogen accumulation, processing, and distribution either through microbe–microbe 

or plant microbe–interactions, microbes should be directly considered during soil nitrogen flux assessment. 

Assessing the microbial ecosystem of the soil and its function and diversity index could give us a better 

understanding of the nitrogen transformation equilibrium in the soil. 

  

Microbial-based transformations of soil nutrients are also important for plant growth and nutrition. 

The different forms of nitrogen that are available in the soil could increase N uptake efficiency in the plants, 

which could later enhance plant protein metabolism and grain protein content. A continuous supply of plant-

usable nitrogen that is available due to the actions of microbes can help upregulate the physiological or 

mechanical functions of the plant. These microbes prime the plant to become more efficient at dealing with 

biotic stresses and might enhance overall plant productivity. Indeed, NH4
+ is energetically more 

advantageous for plant growth as it can be passively absorbed and directly used to make amino acids. 

Nitrate, on the other hand, needs to be actively taken up by the plant and transformed back to ammonium 

for amino acid production. Microbial activity, abundance, diversity, and community structure will therefore 

greatly influence the fate of the applied fertilizers and the efficiency of their use by crops. However, 

microbes are rarely considered in the decision-making processes about fertilization. The creation of 

fertilization guides and regulations based on information about microbial ecosystem functions could 

decrease excessive N input and the associated environmental costs. These measures, along with new 

breeding strategies such as developing wheat varieties with high N uptake efficiency, restoring soil 

ecosystem function or more sustainable agricultural practices, could vastly improve overall wheat 

production.  
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My goal has been to develop a microbial-based predictive model for wheat yield and grain quality, 

specifically for crops grown in Quebec. Wheat is an interesting model crop, as the yields generally respond 

very well to N fertilization. Furthermore, I chose to study Quebec wheat crops and soil because of the 

protein content in bread wheat is related to the availability of nitrogen, especially NH4
+ sources, during 

plant N metabolism at the grain-filling stage.  

 

 

1.2 Microbial dynamics in the agroecosystem   

Agroecosystems are complex and dynamic. They vary at local and regional scales and are 

influenced by regional, geographic, and global agricultural practices and environments. The causal 

relationships between microbial variables and ecosystem processes are not always linear. They rather 

appear as complex patterns caused by diverse and exogenous factors, positive and negative feedback loops, 

time periods and other non-linear dynamics (Sengupta et al. 2021). Furthermore, soil microbiome structures 

are closely tied to a hierarchical series of environmental factors that are highly susceptible to climate change 

(Yuan et al. 2021). 

 

The community assembly process within the plant holobiont is influenced by many factors, such 

as soil type (Engelbrektson et al. 2012; Bulgarelli et al. 2015), plant compartments (Bodenhausen, Horton 

and Bergelson 2013; Edwards et al. 2015), host genotypes (Engelbrektson et al. 2012; Bulgarelli et al. 

2015; Cardinale et al. 2015), plant immune systems (Glavina et al. 2015), plant traits, developmental stages 

(Donn et al. 2015) and the climate and season (Dombrowski et al. 2017). Plant root-associated soil 

microbiomes play an important role in limiting the growth of many pathogens (Shawy and Burns 2009; 

Pignataro et al. 2012; Qian et al. 2015), promoting plant growth, helping with nutrient acquisition 

(Berendsen, Pieterse and Bakker 2012), reducing abiotic stresses (Bodenhausen et al. 2014) and priming 

plant-induced systemic resistance (Parnell et al. 2016). The rhizosphere around the plant roots serves as a 

potential hub for plant–microbe interactions. Here, the microbial diversity, activity, and community 

composition vary due to rhizodeposition within the rhizosphere and the adjacent bulk soil (Kourtev, 

Ehrenfeld and Häggblom 2003). Rhizodeposits can fix up to 40% of the net carbon in rhizosphere soil and 

contain a variety of low- and high-weight molecules (amino acids, organic acids, secondary metabolites, 

etc.), mucilage, and sloughed cells (Parnell et al. 2016). The pattern of rhizodeposition plays a decisive role 

in the distribution of microbial communities across different plant species and cropping systems (Baudoin, 

Benizri and Guckert 2003). Significant changes in rhizosphere communities between the seedling and 
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grain-filling stages of crop growth have been shown to be host-specific and can determine the successful 

colonization of the microbiome in the wheat rhizosphere (Donn et al. 2015).  

 

Various environmental factors have been shown to influence the composition of the plant 

microbiome and plant–microbiome interactions (Blanchet et al. 2015), thereby playing a major role in 

altering plant physiological processes. For example, during the periods of drought, higher fungi: bacteria 

ratios (Azarbad et al. 2018; Meisner et al. 2018) have been shown to correlate with the plants’ ability to 

adapt to water-limited conditions (Evans and Wallenstein 2014). Fertilization also has a significant effect 

on microbial community structure, affecting many phyla either positively or negatively. Acidobacteria, 

Chloroflexi, Fibrobacteres, Nitrospirae, Planctomycetes, and Verrucomicrobia were all positively 

correlated with high pH and carbon to nitrogen (C: N) ratios, while Actinobacteria and Proteobacteria 

showed negative correlations with these parameters (Kavamura et al. 2018). It has also been reported that 

soils treated with inorganic N fertilizers were found to exhibit lower levels of bacterial taxonomic diversity 

(Kavamura et al. 2018). 

 

1.2.1 Temporal variation   

According to ecological theory, the succession of microbial communities in specific ecosystems is 

largely driven by the diversification and integration of the community structure over time. Temporal 

dynamics influence community assembly processes that determine changes in the stability of a microbial 

community and biodiversity (P. White et al. 2006). Temporal dynamics also influence the microbial 

response to ecological disturbances (Fraterrigo and Rusak 2008). The soil microbiome shows 

hypervariability in various ecosystem processes across time and space (Hannula et al. 2020). Changes in 

microbial diversity over various temporal scales could be an indicator used for monitoring soil microbial 

processes over time and microbial responses to different environmental conditions. Microbial community 

dynamics might stabilize over long time periods through homogenous selection processes. Researchers 

have found that in a microbial-driven ecosystem within a stable community structure, changes in trait-

specific characteristics and plant root exudation levels can be easily observed within a very short period of 

approximately a few days to a week (Bais et al. 2006; Broeckling et al. 2008). Plants play an important role 

in shaping the composition of the soil microbiome where there are multiple interactions between different 

microbial communities. This can influence the growth of other plant species in the same soil (Hannula et 

al. 2019; Morriën et al. 2017). Thus, temporal changes in the plant microbiome at the ecosystem level may 

affect plant species-specific co-occurrence and diversity (Putten et al. 2016). The temporal dynamics of the 
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soil microbiome can also influence bacterial and fungal community structures. Bacteria have comparatively 

shorter generation times than fungi, meaning they likely respond to environmental changes faster than 

fungal communities (Sun et al. 2017; Allison and Martiny 2008; Rousk and Bååth 2007). Recently, it has 

been reported that the composition of soil fungal communities undergoes rapid changes due to seasonal 

effects that are thought to be the major source of temporal variation. However, the other ecological drivers 

and timescales associated with this process is not fully understood (Averill et al. 2019).   

  

Seasonality can shape soil microbial community structures and diversity richness as plant-derived 

resources change (Wardle et al. 2004). The shift in microbial community structure over time is highly 

correlated with N turnover and plant species richness (Björk et al. 2007). Temporal shifts in microbial 

diversity during seasonal changes might affect the overall fungal–bacterial ratio and plant growth by 

altering soil total microbial biomass and C:N ratios (Chen and Gao 2022). Plant phenology is therefore also 

affected. A report on the effects of the soil microbiome on plant root systems in belowground environments 

describes a correlation between the changes in plant phenology and differential gene expression (Bouché 

et al. 2016). This suggests that the soil microbial assembly processes that are driven by abiotic selection 

increase niche differentiation and competition for nutrients among microbial assemblages, possibly 

reinforcing plant phenological variation(Trivedi et al. 2020). The soil microbiome not only contributes to 

plant phenological changes across environmental and geochemical gradients but also affects various 

biological factors that mediate plant–microbe interactions, such as the timing of leaf emergence and related 

ecosystem processes (Van der Putten 2012; Classen et al. 2015). Another interesting example of microbial 

temporal dynamics is referred to as legacy effects. These are the  inherited feedback of the plant-soil 

microbiome interaction, which persists even after migration of the microbial community to a new location  

and  can last from months to decades in agricultural soils and potentially longer, depending on agricultural 

practices, other environmental factors (e.g., drying-rewetting cycles), and historical dependence on the 

abundance of certain taxa (Evans and Wallenstein 2012; Averill, Waring and Hawkes 2016; Giauque and 

Hawkes 2016).  
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1.2.2 Spatial variation  

 

The distribution of microbial communities is potentially linked to the large-scale biogeography of 

soils at continental and regional scales. Several studies on soil microbes have demonstrated that 

biogeographic patterns of soil microbes depend exclusively on soil properties, environmental conditions 

(e.g., climate, topography) and land type (Chemidlin et al. 2014). The factors that influence microbial 

distribution vary over different spatial scales and ecosystems. A report by Dequiedt et al. (2009) 

demonstrated that in North and South-East France, microbial spatial distribution is more related to soil 

properties and land type than to geography and climate. Another report on the biogeography of microbes 

have noted that rainfall patterns and soil properties play essential roles in microbial community 

establishment and distribution across the Mongolian Plateau in China (Chen et al. 2015). Land use can also 

have a major impact on spatial distribution. In some cases, traits that have been conserved over 

evolutionarily time scales are disrupted by the way the land is used. Different agricultural practices also 

affect the structure and composition of overall microbial communities, which vary across agricultural fields 

and spatial scales.  

 

Agricultural management is the driving force behind changes in soil processes and function 

(Techen et al. 2020). Different types of agricultural field management result in variations in soil microbial 

community composition and function over spatial scale. Fields are usually managed by conducting various 

mechanical operations, such as tilling and sowing the land to prepare the soil for plant growth. These 

mechanical activities directly affect the soil microbiome by modifying the structure of the soil. For example, 

conventional tilling operations reduce soil fertility through wetting-drying and freeze-thaw cycles at the 

soil surface, promoting soil erosion and disrupting the soil–pore complex. This causes high levels of 

decomposition of soil organic matter that deplete the soil organic carbon pool (Six et al. 2002). Changes in 

soil structure through conventional management practices also affect the physical habitat that soil microbes 

live in. Reductions in fungal biomass can occur through the destruction of hyphal networks. Agricultural 

soil compactness affects community structure by increasing the activity of anaerobic and saprophytic 

microbial communities, resulting in reduced richness of aerobic microbial taxa and crop-associated 

microbiomes in the agroecosystem (Longepierre et al. 2021). Increased production of CH4  (Sitaula et al. 

2000) and N2O (Sitaula et al. 2000b) can promote methanogenic and denitrifier communities while limiting 

the growth of methanotrophs and ammonia oxidizers. Other agricultural practices such as bio-inorganic 

fertilizer-based farming practices, crop rotation, pesticide application and intercropping are also important 
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variables for maintaining the spatial structure of microbial communities within the agroecosystem (Xu et 

al. 2020). 

 

Another part of spatial variation of soil microbial communities through changing their composition 

is directly related to fertilization management, which greatly affects microbe-driven soil processes and 

biological activity. It has been reported that long-term intensive fertilization can greatly affect soil fungal 

communities (Hartman et al. 2018) and microbial total carbon and nitrogen biomass (Li et al. 2018). 

Decisions in using different fertilizer in agriculture, therefore, greatly influence soil microbiome function 

at regional and continental scales. For example, mineral fertilizers can increase soil nutrient accessibility 

but limit microbial respiration by reducing organic carbon sources (Janssens et al. 2010). Consequently, 

high rates of organic matter decomposition provide the necessary binding agents for the active compaction 

of soil aggregates and thus help increase soil fertility by also increasing fungal hyphal networks and the 

production of essential microbial metabolites (Řezáčová et al. 2021). Several studies have reported that 

organic fertilizers expand the potential functional guilds involved in carbon, nitrogen, and other cycles 

(Enebe and Babalola 2021). At the same time, repeated application of the same type of organic fertilizer 

can promote heterotrophic respiration and nitrogen turnover, which can increase CO2 and N2O emissions 

(Skinner et al. 2019). Further, several studies revealed that microbiomes associated with bulk soil are much 

more sensitive to fertilizer exposure than plant indigenous microbiomes (Sun et al. 2021; Xiong et al. 

2021a, 2021b). Organic farm management has also been reported to impact crop microbiome and crop 

quality to varying degrees. These practices can also increase microbial alpha diversity and dispersal of 

potential bacterial communities (e.g., Bradyrhizobium and Bacillus) (Vannette and Fukami 2017; Khoiri et 

al. 2021; Wittwer et al. 2021).  

 

Microbial spatial variations can be observed in the soil through changes in microbial habitats, 

including niche differentiation at the macro or micro scale. Microbial colonization and succession are 

facilitated through the formation mechanisms of the soil matrix, such as soil particle aggregation, leading 

to increased soil oxygen permeability and nutrient flow. The structural stability of the soil aggregate is 

essential for determining microbial diversity, activity, and niche differentiation. One study confirmed that 

most microbial habitats are strongly co-occurred with microaggregates by demonstrating that a large 

proportion of soil bacteria tended to colonize inside soil macroaggregates (Ranjard et al. 2000). In contrast, 

a small percentage of microbes usually colonize the surface of macroaggregates in large pores (Mummey 

et al. 2006). Although microbial habitats in soil aggregates are spatially distanced from one other, their 

phylogenetic network can be re-established to some extent during wet cycling, when microbes are able to 
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communicate with each other through soluble nutrients, metabolites, and genetic transformation 

(Wilpiszeski et al. 2019). The spatial separation that occurs within soil microaggregates restricts microbial 

dispersion and promotes the establishment of microbial communities, through independent functional and 

evolutionary processes (Rillig, Muller and Lehmann 2017). The strong correlation between soil aggregates 

and soil organic matter plays a decisive role in the selection process by abiotic stress for a microbial habitat. 

For example, poor soil aggregation that is mediated by labile carbon compounds could facilitate fast-

growing microbial copiotrophs in the carbon-rich environment (Trivedi et al. 2017). In contrast, consistent 

and stable soil aggregation (microaggregates) promotes the growth of oligotrophs, which have the 

metabolic machinery necessary to degrade more complex compounds (Trivedi et al. 2017). Soil porosity 

can also shape aerobic and anaerobic microbial niches over different spatial scales. The limited oxygen that 

is inherent to soil pores help anaerobic microbes to improve their functional activity, as observed among 

dentrifier communities (Kong et al. 2010). This suggests that tracking the porosity of soil macroaggregates, 

which varies between agricultural fields, can be an important way to monitor microbial-driven carbon 

sequestration or N2O emission levels over multiple spatial scales.  

 

Abiotic and biotic factors influence the structure and diversity of microbial communities, resulting 

in spatial variations in microbial functions within agroecosystems. These variations may explain differences 

in crop yield and quality. Soil nutrient abundance is related to the spatial patterns of microbial diversity, 

which are highly affected by agricultural practices. In heterogenous environmental conditions (different 

biotic and abiotic factors), taxa-specific selection and abundance based on multitrophic interactions causes 

microbial community to maintain their structure. Heterogeneity in microbial diversity is especially 

pronounced when the hierarchical series of interactions that occur between variables fluctuate at different 

spatial scales. Microbe-related ecosystem functions are composed of microbial inter- and intraspecific 

interactions and soil physicochemical properties such as pH, C:N ratio, and N availability. These variables 

help determine the microbial communities that shape soil microbiome structures at spatial scales (Asad et 

al. 2021b). It has been reported that variations in soil physical, chemical, and biological properties over 

time and space are strongly correlated with microbial diversity (Franklin and Mills 2003).  For example, 

autocorrelated spatial patterns among microbial communities at the landscape scale vary with pairwise 

distances > 700km (Bru et al. 2011). However, microbial communities in other soil ecosystems such as 

arctic soils are influenced by spatial factors on a larger scale (Shi et al. 2015). So far, there are very few 

studies on the robustness of microbial spatial parameters on N processes that directly or indirectly affect 

crop species and yield. Soil properties such as pH, soil organic C, and C:N ratios are important factors 

affecting microbial enzyme-driven geochemical processes in agricultural fields with different soil types and 
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regional climates. Wheat cultivated by different agricultural systems across a 500-km transect in Quebec 

showed a wide range of diversity in microbial community composition, resulting in variations in yield and 

quality metrics (Asad et al. 2021a). Spatial variables including biotic and abiotic factors that correlate with 

different microbial activities can be useful tools for the classification and estimation of the specific taxa 

that make up the soil microbiome. However, there is still little information on the extent to which diversity 

and function influence crop quality and quantity at large spatial scales (Figure 1-1). 

 

 

  

 

 

 

  

  

  

  

  

  

 

 

Figure 1-1: Factors influencing the microbial community selection processes in soil and crop microbiomes. 

 

There are four main mechanisms in community assembly: 1) dispersal (community movement to a new 

location), 2) selection (influenced by biotic and abiotic factors, 3) diversification (genotypic variations), 

and 4) drift (random birth and death events). The microbiome can be transmitted from seed to crop through 

vertical and horizontal transfer from the soil, atmosphere, neighboring plants, and interacting insects and 

animals. The crop microbiome assembly process is largely influenced by factors, such as plant growth stage, 

genotypes, microbial biomass, climate, soil type and nutrients, and agricultural practices. In addition to 

deterministic selection, stochastic selection process (e.g., drift) has an essential role in community 
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assembly. But the contrasting results between stochastic and deterministic processes in agroecosystems 

vary across time and space in terms of crop growth stage, microbial biomass, and microbial composition. 

(Xiong and Lu 2022).  

 

1.2.3 Abiotic drivers  

 

Currently, intensive agricultural management is one of the driving forces transforming 

agroecosystem services. Ecological processes on the soil–plant continuum is largely influenced by 

agricultural management and fertilization practices (Schmidt et al. 2019; French et al. 2021). Recent studies 

have suggested that intensive fertilization could reduce the microbial capacity for processing soil nutrients 

associated with diazotrophic activity (Fan et al. 2019). Furthermore, the structure and function of plant 

root-associated microbiomes are affected by the regional environment and the different agricultural 

practices they are subjected to (i.e., conventional, and organic management) (Hartman et al. 2018; Asad et 

al. 2021a). As agricultural management is an important abiotic driver that shapes soil microbial community 

structure, a better understanding of plant–soil microbiome interactions and their effects on crop quality and 

quantity within the agroecosystem may be key for future microbiome engineering and agricultural 

production enhancement (Figure 1-1). 

  

Temperature plays an important role in determining the growth of microorganisms in different 

environmental conditions. Physiological responses of microorganisms to high temperatures trigger various 

cellular processes that enable microbiomes to adapt to extreme environmental conditions. Advanced 

sequencing technologies and functional gene quantification experiments have revealed significant changes 

in microbial community structure and function in response to high temperatures in agricultural fields 

(Schindlbacher et al. 2011; Melillo et al. 2017; Romero-Olivares, Allison and Treseder 2017). The level of 

microbial response varies depending on the environmental factors in different ecosystems (e.g., forest 

compared with grassland). For example, warming temperatures have been shown to have significant 

impacts on soil fungal communities in different boreal forest ecosystems, resulting in either stimulation 

(Clemmensen et al. 2013) or suppression (Allison & Treseder, 2008) of fungal biomass and activity. This 

pattern was observed through differences in soil water content and vegetation history at different sampling 

sites (Allison & Treseder, 2008).  A long term-study from the Harvard Forest Ecological Research Station 

revealed that microbial respiration and mechanisms when acclimating to rising temperatures follows four 

main steps: rapid carbon loss, high tendency to disperse through community reorganization, diversity 
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richness of oligotrophic communities with high levels of respiration, and high decomposition of organic 

carbon pools with significant changes in microbial community structure (Melillo et al. 2017).   

 

Drought is one of the major indicators of climate change and its consequences have been thoroughly 

observed in grassland ecosystems. Drought is thought to become a major cause of desertification in future 

semi-arid and arid regions (Wang et al. 2022; Melillo et al. 2017; Azarbad et al. 2018; Agoussar et al. 

2021). The increasing tendency for droughts suggests a future decline in microbial functions, which are 

important for ecosystem sustainability (McHugh et al. 2017). When the soil is dry, less water passes through 

soil pores, resulting in fewer resources, slower decomposition of soil organic carbon (SOC), and higher 

rates of CO2 respiration (Schimel 2018). A multiyear field experiment revealed that bacteria are more 

sensitive to drought than fungi in grassland ecosystems (de Vries et al. 2018). This suggests that fungi 

might play a major role in the maintenance of carbon and nitrogen cycling during periods of drought 

(Treseder et al. 2018).   

 

Another type of physiological stress for arid-soil microorganisms is the sudden dry–rewetting cycle 

of the soil (Schimel 2018). Although dry soil may decrease microbial activity, exogenous enzymatic activity 

may continue, leading to the accumulation of bioavailable substrates. During soil rewetting, these functions 

may suddenly be reversed (Unger et al. 2010; Barnard, Osborne and Firestone 2013). High mortality rates 

for bacteria and fungi during soil rewetting events may be an indicator of the decomposition of dead 

bacterial cells and bacteria-mediated viral predation (Blazewicz, Schwartz and Firestone 2014). One study 

performed simulations based on an empirical dataset to determine whether there was high microbial 

diversity in dry conditions and revealed differentiated niches in the dry soil (Šťovíček et al. 2017). It was 

shown that sudden rewetting may lead to high rates of dispersal and niche-based connectivity and increased 

activity among anerobic microbes. However, other microbial communities returned to their original state 

when the soil became dry again (Šťovíček et al. 2017).  Soil moisture content increases due to flooding or 

heavy rainfall. Recent studies on climate change have shown that precipitation rates in the northern 

hemisphere in northern climates could increase while the amount of snowfall decreases, thereby reducing 

snowpack and increasing the frequency of the freeze-thaw cycle (Sorensen, Templer and Finzi 2016). As 

soil water content increases, soil pores fill with water, creating anoxic conditions. These conditions can be 

favorable for methanogenic and denitrifier communities that may in turn lead to higher CH4 and N2O 

emissions. Continuous variation in soil water content due to changes in precipitation level exhibit different 

patterns of soil ecosystem processes in contrast to crop microbiome responses.  
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Soil properties such as pH or water content are the most influential on and may limit the rate of CO2 and 

CH4 gas flux, greatly impacting soil–microbe gas exchange and nitrification processes (Ye et al. 2012; 

Levy-Booth, Prescott and Grayston 2014). Nitrate can inhibit or stimulate the methanotrophic or 

methanogenic microbial community (Liu et al. 2011; Kim et al. 2015) and NO3
- can inhibit the process of 

acetogenic methanogenesis through competition with denitrifiers (Leilei et al. 2017). Nevertheless, 

methane oxidizers (methanotrophs) that use methane as their carbon and energy source and encode methane 

monooxygenase (MMO) genes function as analogues of ammonia monooxygenase (amoA) encoded by 

ammonia-oxidizing microbial communities. Therefore, it has been found that increased activity of 

methanotrophic microorganisms can compete with ammonium oxidizers and inhibit the oxidation of 

NH4
+/NH3 (Bodelier and Steenbergh 2014). This competition for NH4

+/NH3 oxidation in the soil can have 

a significant impact on the overall N-flux, which can either increase or decrease the efficiency of crop N 

uptake. Still, the information regarding the links between inorganic nitrogen and CO2 and CH4 production 

are not clearly understood.  

 

1.2.4 Biotic drivers   

 

Microbial co-occurrences and metabolic networks are essential drivers of biotic interactions among 

microbial communities and are associated with various ecological consequences and perturbations. 

Microbial networks formed through antagonism, or syntrophic or cross-feed interactions are important 

deterministic factors for soil microbiome function. Co-occurring functional guilds that process soil nutrients 

are triggered by the selection pressures from biotic and abiotic factors. For example, arbuscular fungi (AF) 

can promote plant growth through synergistic interactions with bacteria, including optimal nutrient 

acquisition and plant pathogen resistance (Artursson, Finlay and Jansson 2006). Bacterial–fungal 

interactions are important for reducing high-input-based agricultural cropping systems by enhancing soil 

biological processes that reduce reliance on agrochemicals and help maintain soil fertility and plant health 

(Rashid et al. 2016). As discussed earlier, bacterial attachment to AF hyphae is mutually beneficial in that 

it helps both organisms successfully colonize plant root surfaces through exchange of nutrients and carbon 

(Bonfante and Genre 2010). Generally, the interaction between AF and rhizobia occurs during the pre-

colonization stage at the mycorrhizosphere site and leads to the establishment of symbiosis. AF have 

important interactive roles, promoting N2 fixation by interacting with symbiotic or free living N2-fixing 

bacteria (Gianinazzi and Schüepp 1994).  
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Consumers in the microbial food web are also an important part of the biotic factors that 

significantly shape microbial community structure and composition. For example, protists are the primary 

consumers of bacteria and fungi and some small eukaryotes, behaving as pathogens, predators, or pests. 

Some groups of protist communities can release essential nutrients into the soil that promote plant growth. 

Some are potential bioresources for improving soil fertility. Many protists have mutualistic or symbiotic 

interactions with plants, animals, and fungi (de Vargas et al. 2015). Soil protists play a key role in nutrient 

cycling by predating on bacteria and other communities. A large proportion of soil protists are 

bacteriophages (Clarholm 2002). Protists comprise a biomass with a higher C:N ratio than their bacterial 

prey and released ammonia into the soil as bacterial waste (Sherr, Sherr and Berman 1983). Protists 

therefore contribute to the agroecosystem by releasing free nitrogen for plants and other microorganisms. 

The predative nature of protists greatly impacts population dynamics and the assembly of bacterial 

communities (Hünninghaus et al. 2017). A significant correlation was observed between protist species 

richness and bacterial diversity, suggesting that protists not only act as predators but also play a role in 

maintaining bacterial diversity in soil (Saleem et al. 2012).  Protists also serve other roles in the ecosystem, 

including as stimulants of important bacterial-mediated secondary metabolite syntheses, as parts of direct 

or indirect interactions, and as inhibitors to pathogen growth by competition or predation. Negative 

interactions with plants can disrupt plant secondary metabolite production or inhibit the growth of 

mutualistic microorganisms.  
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Figure 1-2: Potential roles of protist communities in soil ecosystem processes.  Potential roles of protist communities in soil 

ecosystem processes and plant–microbiome interactions in different plant compartments (Nguyen et al. 2022; license free: 

CCBY4.0).  

 

Nguyen et al. (2022) have illustrated the functional potential of protists in soil ecosystems, with a graphical 

representation (Figure 1-2). The authors discussed the influence of protists on host–microbiome interactions 

in different plant compartments (e.g., phyllosphere, anthosphere, leaf, stem, root endosphere, rhizosphere, 

and bulk soil). Protists predate certain groups of phylosphere microbiomes and trigger them to secrete toxic 

substances to protect plants from pathogens and herbivores. Certain types of protists play a selective role 

in modulating the function of phytohormone-producing bacteria. It has been reported that bacterivorous 

amoebas promote bacterial phytohormone production in the plant rhizosphere (Bonkowski and Brandt 

2002; Krome et al. 2010). Nguyen et al. (2022) report that protists could interact with bacteria, archaea, 

and fungi (especially arbuscular mycorrhizal fungi (AMF) through predatory or symbiotic relationships, 

affecting nutrient cycling, plant uptake and availability of essential soil nutrients (e.g., nitrogen, 

phosphorous, carbon, silicon, calcium, magnesium, and iron). Nutrients translocated in the soil are 

important for the growth and survival of plants and microorganisms in the rhizosphere and bulk soil. Protists 

can contribute to soil carbon pools by releasing their digestive material after predation. It is also assumed 

that there are some potential relationships between the protists and the bacterial and archaeal communities 

that are actively involved with the nitrogen cycle. Nguyen et al (2022) posit that protist communities in 

both bulk soil and rhizosphere play an important role in nitrogen processing through various relationships 

(e.g., predation, symbiosis) with nitrifying or nitrogen-fixing bacteria or archaea. Predation by protists can 

stimulate bacterial and fungal communities to produce antimicrobial chemical agents in the rhizosphere and 

photosphere, thereby protecting plants from airborne or soil-borne pathogens and harmful pests. Protists 

induce plants to release their stress-mediating hormones by interacting directly with plants or by stimulating 

plant-beneficial microbiome interactions (Figure 1-2).   

 

There is growing interest in the impact of host signals on crop microbiome assembly. A large-scale 

field study with 27 homozygous maize lines showed that plant growth stage is one of the main determining 

factors for rhizosphere community composition (Walters et al. 2018). The composition varies across 

agricultural fields according to different plant genotypes (Walters et al., 2018). Another recent multi-year 

field study identified some plant microbiomes belonging to the taxa of Alphaproteobacteria, 

Betaproteobacteria, and Actinobacteria, which may be transmitted vertically from seeds to the plant 
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rhizosphere and are influenced by plant growth stage and plant genotype (Quiza et al. 2022). Yet another 

study on maize microbiomes from pure inbred lines revealed that Operational Taxonomic Units (OTUs) 

belonging to Proteobacteria and Actinobacteria that were identified at the vegetative and reproductive 

stages can persist throughout the host life cycle (Bourceret et al. 2022). Similar studies with wild-type 

plants at the vegetative stage showed that plant growth stage plays an important role in root metabolism 

and the composition of the rhizosphere microbiome. This is consistent with results from rice roots (Zhang 

et al. 2018) and maize rhizospheres that provide further evidence on the importance of the plant growth 

stage on microbial community assembly processes and function (Moroenyane, Tremblay and Yergeau 

2021; Xiong and Lu 2022). Other reports demonstrated that plant genotypes influence microbiome 

recruitment processes in different agroecosystem by changing their root-mediated secretory carbon profiles 

(Santoyo 2022). A recent study of comparative microbiome analyses between different inbred lines of 

maize and their F1 hybrid progeny showed a different composition of bacterial and fungal communities in 

the rhizospheres (Wagner et al. 2020). 

 

Neighboring plants and the surrounding air seem to affect the dispersal process of the soil 

microbiome. Studies show that airborne microorganisms are one of the main sources of phyllosphere 

microbiomes in maize (52%–92%) (Xiong et al. 2021). Another study on the community assembly of the 

phyllosphere microbiome of tomato, pepper and bean plants showed that the dispersal of microbial 

communities from neighboring plants greatly affected the indigenous microbiomes that colonize different 

plant compartments (Meyer et al. 2022). 

 

The fungal–bacterial ratio in soil is one of the deterministic factors for niche-based community assembly 

processes associated with soil nitrogen processing. The ratio of total bacteria to fungal biomass can 

determine the rate of nitrogen immobilization for different levels of nitrogen availability. A recent study 

that included an isotopic tracer experiment showed that both bacteria and fungi can immobilize soil 

inorganic nitrogen from the surrounding soil environment (Li et al. 2020). Another report showed a 

significant positive correlation between soil nitrate immobilization rates and fungal biomass that led to 

nitrate loss in forest soils (Zhu et al. 2013). Similarly, it was demonstrated that topsoil with high microbial 

biomass increased nitrogen volatilization in the Arabian Peninsula (Bargmann et al. 2014).  
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1.3 Microbial processes in the agroecosystem  

 

 

 

 

  

  

  

  

  

  

  

 

 

Figure 1-3: Microbial indicators associated with agroecosystem processes. The F:B ratio indicates the ratio of fungal to 

bacterial biomass. 

 

The soil microbiome supports crops by providing various functions including disease resistance, 

nutrient uptake, and abiotic stress tolerance. Another major function of the soil microbiome is to process 

plant nutrients and release free nitrogen for plant absorption through nitrogen cycling. Whenever soil and 

plant microbiome-driven ecological processes (e.g., assembly processes) are disrupted by biotic (e.g., host 

selection, plant carbon sequestration) and abiotic factors (e.g., drought, cold, applied N) it limits plant 

nutrient availability and ultimately affects plant nutrient uptake and crop protein synthesis. There are some 

microbial indicators such as diversity, the ratio of fungi to bacteria (F: B ratio), and patterns of soil carbon 

metabolism that are directly or indirectly linked to agroecosystem processes. Therefore, soil microbial 

diversity provides key signals for many soil processes (e.g., Nitrogen cycle) that are strongly dependent on 

different levels of microbiome function (e.g., soil carbon metabolism) (Figure 1-3). 
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1.3.1 Plant–microbe interaction  

 

1.3.1.1 Plant growth promotion  

Microbial communities that colonize on root surfaces provide essential mechanistic support for 

plant growth and are commonly known as plant growth-promoting rhizobacteria (PGPR). PGPR can 

promote plant growth through nitrogen fixation, phosphorus solubilization, and iron sequestration through 

siderophores. The most reported mechanism of growth promotion by PGPR is the production of the growth-

promoting hormones such as auxin. Previous studies reported that 80% of the rhizosphere microbial 

community could synthesize and release auxin as a secondary metabolite (Patten and Glick 1996). The root-

associated microbiome (rhizosphere) induces vascular tissue differentiation, apical dominance, root 

initiation (lateral and adherent), cell division, and stem and root elongation through auxin synthesis 

(Grobelak et al. 2015). Optimal production of plant auxin levels required for plant growth may be disrupted 

when the plant hormone synthesis machinery is affected by abiotic stress. During these periods, the plant 

maintains its hormone levels by absorbing excess auxin synthesized by PGPR (Patten and Glick 1996). 

Through this mechanism, indole acetic acid (IAA) molecules synthesized by PGPR stimulate plant root 

development by balancing the levels of auxin (Spaepen et al. 2007). Another plant hormone, ethylene, helps 

plants tolerate various levels of stress. Plants synthesize high levels of this hormone in response to stressful 

conditions, including the presence of metals, extreme temperatures, and various chemicals (Ali et al. 2010). 

Many reports have demonstrated that 1-aminocylopropane-1-carboxylate (ACC) is a precursor of ethylene 

and that microbes degrade ACC using the ACC deaminase enzyme. Too much ethylene results in reduced 

plant growth, so microbes with ACC deaminase help plant growth by removing this inhibitor (Olanrewaju 

et al. 2017). Cytokinin gene expression is relatively pronounced in several PGPRs, and their induction in 

plant growth may lead to changes in plant phytohormone secretion levels. It has been reported that 

inoculating lettuce with Bacillus subtilis promotes plant growth by increasing cytokinin levels (Arkhipova 

et al. 2005). Alfalfa crops inoculated with genetically modified rhizobium (Sinorhizobium meliloti) 

increased the levels of cytokinin, helping plants tolerate drought (Xu, Li and Luo 2012). Gibberellic acid is 

another growth-related hormone that has been reported to be produced by PGPR. Among other PGPRs, 

Bacillus sp. has been identified as a significant producer of gibberellic acids (GA) (Deka et al 2015). A 

wide range of nitrogen-fixing bacteria that fix atmospheric nitrogen through a symbiotic relationship with 

certain plant species have also been identified. Hydrogen is a by-product of biological nitrogen fixation and 

is often released by the nodules of leguminous plants (La Favre and Focht 1983). Hydrogen has been shown 

to have a growth-promoting effect for many crops (Maimaiti et al. 2007), probably through the stimulation 
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of groups of hydrogen oxidizing bacteria (HOBs). For example, some H2 oxidizing isolates have 1-amino-

cyclopropane-1-carboxylic acid (ACC) deaminase activity (Maimaiti et al. 2007). It has also been observed 

that some bacterial isolates adjacent to legume nodules synthesize different plant-growth-promoting signal 

peptides during hydrogen oxidation (Maimaiti et al. 2007). Even these PGPR microbiomes on the root 

surface can interact with other microbial communities in bulk soil through an extended networking zone, 

especially in densely planted crops (de la Porte et al. 2020). Some growth-promoting rhizobacteria (PGPR) 

such as Pseudomonas sp. and Bacillus sp. can convert organic matter into amino acids, then convert amino 

acids into ammonia through the process of ammonification (Geisseler et al. 2010).  

 

1.3.1.2 Pathogen suppression  

Plant growth-promoting rhizobacteria (PGPR) can limit the growth of pathogens by reducing the 

availability of nutrients required for pathogenic growth. Barahona et al. (2011) reported that potential 

PGPRs with biocontrol properties could outcompete pathogens by blocking their target sites from attaching 

to part of the plant or by limiting nutrient availability.  

Siderophore-producing microbes can protect plants by preventing or reducing pathogen 

proliferation by limiting the availability of iron for pathogens (Shen et al. 2013). Siderophores are low 

molecular-weight secondary molecules produced by microbes during iron-limited conditions. The iron-

intake process involves iron binding with organic molecules such as citrate or heme. Siderophores are then 

synthesized by the membrane-binding apparatus, which forms the iron complex (Fe-II) in soluble form. 

The iron complex then binds to a specific receptor (Kramer et al. 2020). The structural diversity of 

siderophore-producing microbial communities creates variability in the mechanisms that make hosts 

susceptible to pathogens and repels iron, and thus limits pathogen growth (Ellermann and Arthur 2017). 

The closest microbial species with matching receptors can only use the same set of siderophores that have 

higher iron-binding affinity than microbes using a different set of siderophores. Thus, the siderophore is an 

important player in mediating inter- and intra-species-specific interactions (Kramer et al. 2020). 

Sometimes, plants take up the soluble form of iron (Fe-II) through a rhizosphere community that produces 

siderophores. The rhizosphere microbiome consists of a group of siderophores that are produced as a 

hydroxamate or catecholate and interact with the ferric phase (Fe-III) (Dimkpa 2016). Soil microorganisms 

that cannot independently produce siderophores borrow siderophores from other microorganisms that have 

a common binding receptor. These types of siderophores are called xenosiderophores (Winkelmann 2007). 

In particular, fungi produce extracellular or intracellular siderophores that function either in the transport 

or storage of ferric ions (Winkelmann 2007). Siderophore-mediated intracellular or extracellular iron 

depletion depends on the type of fungal species. Iron transport has been observed in fungal communities in 
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the form of intact siderophore-iron complexes, which is a phenomenon that limits the pathogen's iron 

acquisition (Winkelmann 2007). Iron-scavenging siderophores that are synthesized by rhizosphere 

communities have been proven to have a strong growth inhibitory effect on plant pathogens by creating 

competition for iron (Gu et al. 2020).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-4: Illustration of the general processes of the rhizosphere microbiome in pathogen suppression. Rhizosphere 

microbiomes create a competitive environment for pathogens by limiting siderophore-mediated iron scavenging. 

Heterogeneous siderophores produced by microbiomes are incompatible with pathogen receptors that show the greatest 

inhibitory effect on pathogen density (Gu et al. 2020).   

 

Another way PGPR acts against invading pathogens is to synthesize various antibiotics that 

completely inhibit pathogen growth and infection in plants (Raaijmakers and Mazzola 2012). In addition 

to plant-derived cell degrading enzymes, some biocontrol PGPRs can synthesize similar cell-wall degrading 

enzymes (chitinases) to inhibit fungal pathogens (Chernin et al. 1995). It is well established that PGPR 

significantly contributes to the induced systemic resistance and primary resistance to plant pathogens by 

the activation of signaling molecules (Halfeld-Vieira et al. 2006). PGPR-mediated ISR (Induced systemic 

resistance) and (salicylic) SA-dependent SAR (Systemic acquired resistance) are regulated by different 
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signaling pathways, demonstrating that PGPR-mediated immunity has potential biocontrol mechanisms 

with varying levels of efficacy (Ton et al. 2002).  

 

1.3.1.3 Stress mitigation  

Drought is an example of abiotic stress and is the main limiting factor for global food production. 

Global national food grain production is estimated to have declined by 9-10% over the past 43 years (Lesk 

et al. 2016). Breeding for drought-tolerant plant genotypes is not a complete solution for mitigating the 

negative effects of drought, as in some cases the new plant varieties do not yield high crop quality and 

quantity. Consequently, crop microbiome-based solutions for improving crop productivity and drought 

resistance have become a field of interest (Marulanda et al. 2009). A great deal of research on plant 

microbiome-assisted drought tolerance is still needed to increase plant resistance and resilience in 

conditions with limited water resources.   

 

 

 

  

  

  

  

  

  

  

 

Figure 1-5: The effect of drought on microbial processes. Drought affects plant and microbial processes as well as plant-

microbe interactions. Upon exposure to drought, the physiological functions of plants and microorganisms are altered, 

reducing photosynthesis, and affecting the rhizosphere microbiome. To mitigate stress, plants change their root structure 

and interact with drought-tolerant PGPR (plant growth-promoting rhizobacteria). EPS = exopolysaccharides.  
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The stress of drought affects multiple metabolic processes in plants (Figure 1-5), including photosynthesis, 

respiration, ion uptake, transportation mechanisms, carbohydrate metabolism, and nutrient metabolism or 

mechanisms of systemic resistance. The result is a disruption in hormonal and nutritional homeostasis in 

plant growth (Naseem et al. 2018). Drought stress also affects rhizosphere microbiome composition and 

abundance, and in worst-case scenarios, the total microbial biomass in the rhizosphere of selected plants 

has been reported to decrease by 60%–90% (Naseem et al. 2018).  

 

Plant root architecture and topology are known to be very important during times of water stress, 

as elongated and prolific root systems allow plants to adapt to the stress and increase plant productivity 

(Castillo et al. 2013). Several studies have reported that plants treated with plant growth-promoting 

rhizobacteria (PGPR) can promote root growth by modifying root architecture (Ngumbi 2016). In addition, 

rhizospheric bacteria themselves produce hormones or exhibit induced plant hormone synthesis that 

promotes drought stress resistance. In cucumber plants subjected to drought stress, PGPR can synthesize a 

higher level of proline and provide plants an osmolyte to stabilize the osmotic pressure (Castillo et al. 2013). 

PGPR treatment typically promotes plant shoot growth. A study on PGPR-mediated shoot growth revealed 

that plants inoculated with Bacillus sp. showed relatively significant shoot growth and an increase in dry 

biomass compared to non-inoculant plants (Vardharajula et al. 2011). One common physiological 

phenomenon expressed by plants during drought stress is the production of excessive reactive oxygen 

species (ROSs) such as hydrogen peroxide (H2O2), singlet oxygen (1O2), and superoxide radical (O2), etc. 

(Cruz de Carvalho 2008). To avoid the effects of ROS, plants have different levels of antioxidative activity. 

It is well established that the level of antioxidant enzyme production correlates with the degree of drought 

tolerance (Cruz de Carvalho 2008). Several experiments have shown that PGPR induces plants to synthesize 

higher levels of antioxidative enzymes during drought conditions. For example, drought conditions led to 

the highest observed level of specific activity of the iron-scavenging enzyme CAT (Catalase peroxidase), 

which was 0.8 times higher in PGPR-treated plants compared to non-treated plants (Gururani et al. 2013). 

A higher rate of ethylene synthesis has been recorded as a signaling molecule induced by drought stress. 

Some PGPR reduce plant drought-related stress by hydrolyzing ACC (1-Aminocyclopropane-1- 

carboxylate) deaminase into ammonia without converting it directly into ethylene (Shaharoona et al. 2006). 

Bacteria such as Rhizobium sp., Bacillus sp., and Pseudomonas sp. and other species of rhizosphere 

communities can produce exopolysaccharides (EPS), an important class of polymeric compound that 

significantly enhances the microbiome and allows it to establish ecological niches under drought stress 

(Fitriani wangsa Putrie et al. 2013). Furthermore, it has been demonstrated that EPS-producing Rhizobium 

sp. can significantly promote soil aggregation and water retention in the rhizospheric zone (Kaushal and 
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Wani 2016). Kour et al. (2020) identified drought-adapted and P-solubilizing microbes (Streptomyces 

laurentii and Penicillium sp.) that could efficiently accumulate different osmolytes and increase chlorophyll 

content in millet during drought. Studies have shown that most drought-tolerant rhizosphere microbiomes 

exhibit a variety of characteristics including dense peptidoglycan cell walls, osmolyte production, 

dormancy, and sporulation (Xu and Coleman-Derr 2019; Schimel et al. 2007).  

 

The response of PGPR-mediated drought tolerance may vary depending on the plant's 

development, age, level of stress and duration of drought. A better understanding of plant microbiome 

responses to drought stress in different agroecosystems, overall nutrient cycling, and other changes in soil 

microbiome diversity can help us better predict the effects of stress on plant productivity and lead to better 

agricultural management guidelines.  

 

 

1.3.2 Biogeochemical processes 

  

Soil provides many ecosystem services, including setting the stage for major geochemical cycles, 

carbon storage and turnover, water maintenance, soil structure arrangement, regulation of biodiversity and 

the transformation of various chemical compounds. Soil microbes play an important role in maintaining 

primary productivity aboveground, including within the agroecosystem. Microbes cycle the nutrients from 

the soil, making them available to plants. The well-studied rhizospheric effect, where microorganisms are 

stimulated by root exudates, results in hotspots for carbon and nutrient cycling and other ecological 

processes (Berg 2009). Microbial community structure, diversity and other ecological processes are also 

partly determined by soil pH, soil organic matter content, and climate, among others (Blanchet et al. 2015).  

 

 

1.3.2.1 Nitrogen cycling 

  

The most readily available forms of nitrogen such as organic nitrogen, ammonium (NH4 +), nitrite 

(NO2
 -), nitrate (NO3 -), nitrous oxide (N2O), nitric oxide (NO), and dinitrogen (N2) are found in the 

environment (Figure 1-6). Ammonia oxidation is a rate-limiting step in the nitrogen cycle that is carried out 
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by a major part of the microbial community, affecting nitrogen availability in autotrophic or heterotrophic 

conditions (Kowalchuk and Stephen 2001). Ammonia is a highly volatile compound that readily evaporates 

under different environmental conditions. The process during which ammonia transforms into nitrate is 

known as nitrification and the rate-limiting step is ammonia oxidation. Nitrification is carried out by a very 

narrow group of chemoautotrophic microorganisms in aerobic conditions. Only certain ammonia-oxidizing 

microbial communities facilitate nitrification in soil ecosystems by oxidizing ammonia into nitrate. Nitrate, 

being a negatively charged ion, cannot bind properly to the soil and thereby increases nitrate leaching 

(Kowalchuk & Stephen 2001). Organic forms of nitrogen enter agricultural ecosystems through the 

degradation of plants, microbial or animal material, where organic nitrogen is further mineralized into 

ammonium (ammonification). Inorganic nitrogen enters the soil through the application of fertilizers or 

through the biological fixation of atmospheric nitrogen. Ammonia can then be oxidized and transformed 

into hydroxylamine by ammonium-oxidizing bacteria (AOB) or by archaea (AOA) through ammonia 

monooxygenase. Hydroxylamine is then converted to nitrite (NO2) through hydroxylamine oxidase. Nitrite-

oxidizing bacteria then transforms the nitrite into nitrate through nitrite oxidase. Recently, some bacteria 

were shown to have the enzymatic machinery that enables them to oxidize ammonia directly to nitrate 

(comammox). In anaerobic conditions, nitrate can be transformed by denitrifiers through a process called 

denitrification. Denitrification can be carried out by a wide range of bacteria, archaea, or fungi, and occurs 

by reducing nitrates (NO3
-) to nitrogen (N2) through first transforming into their intermediate forms NO 

and N2O. Incomplete denitrification therefore results in the emission of NO and N2O instead of N2. Nitrate 

reductase, nitrite reductase, nitric oxide reductase and nitrous oxide reductase catalyze the various steps of 

denitrification (Figure 1-6). During dissimilatory nitrate reduction to ammonium (DNRA), organic matter 

is oxidized, and nitrate is used as an electron acceptor by reducing nitrite (NO) into nitrate (NO3 -) and then 

to ammonium (NH4). DNRA results in the production of a soluble form of nitrogen rather than dinitrogen 

(Sparacino et al 2014; Simon et al 2013). Anaerobic ammonium oxidation (annamox) is an important 

component in the biogeochemical nitrogen cycle and has the unique metabolic activity of directly 

converting the ammonium, nitrate, nitrite, and nitrogen. Anammox is the most efficient process for 

complete ammonium oxidation and requires less energy to reduce greenhouse gases (Kuenen et al. 2008). 

The abundance of nitrogen fixers, nitrifiers, and nitrifiers in agricultural fields depends on land type and 

crop management. Additionally, C and N dynamics, pH, and soil texture can influence N fluxes (Kooijman, 

Mourik and Schilder 2009). The intensity of nitrogen mineralization can also influence the relative 

abundance of bacteria and fungi. A high soil C:N ratio generally favors fungi over bacteria, as fungi have 

a cellular C:N ratio that is ten times higher than that of bacteria (Kooijman, Mourik and Schilder 2009). 

Previous studies show that agricultural fields with low C:N ratios had higher levels of carbon degradation 

and carbon fixation genes, whereas fields with high C:N ratios exhibited elevated levels of gene expression 
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related to nitrogen fixation and nitrification (Kuramae et al. 2014). The transformation of nitrogen and its 

various oxidative states is the main reaction in the nitrogen cycle. It is highly dependent on the activities of 

a diverse group of microorganisms, such as bacteria, archaea, and fungi (Grzyb, Wolna-Maruwka and 

Niewiadomska 2021). Soil type, crop rotation and agricultural (e.g., fertilization, tillage) practices 

associated with the physicochemical properties of the soil  and the environmental conditions influence the 

biological processes of microbial populations involved in nitrogen fixation, mineralization, and availability 

(Kracmarova et al. 2022). Studies on soil N transformation in tropical forest ecosystems reveal that the 

unique soil properties (e.g., low pH, rapidly fluctuating redox conditions and large amounts of Fe oxides, 

plant litter material, available N content) and the environmental conditions (e.g., high humidity and low 

annual fluctuation in temperature) determine N transformation processes (Xu, Xu and Cai 2013). For 

example, the rates of microbe-driven N processes showed significant variations across different tropical 

forest soils both spatially and through time. Soil organic matter (SOM) is one of the main precursors for 

maintaining soil organic nitrogen levels, as well as the presence of large microbial communities that are 

able to transform SOM into ammonia  through ammonification (Matocha, Dhakal and Pyzola 2012). Some 

direct links may exist between the process of N fertilization and soil organic nitrogen, affecting the overall 

C:N ratio (Rasche and Cadisch 2013). Managing soil microbial communities would therefore help to 

optimize the efficiency of both organic and fertilizer N (Pajares and Bohannan 2016). Because there is 

generally more NO3
- than NH4

+ in agricultural solubilized soil, there is greater risk of NO3
- leaching in soils 

with low water-holding capacity, such as sandy soils (Grimvall 2016).  
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Figure 1-6: The nitrogen cycle (Nelson et al. 2015, license: CC BY-SA 4.0). This diagram shows the complete nitrogen cycle, 

which is carried out through the involvement of different microbial communities using different enzymes for nitrogen 

conversion, depending on the aerobic or anaerobic conditions of the soil. Nitrogen fixation is the process of converting N2 

gas into ammonia, nitrite, or nitrate by atmospheric, industrial, or biological processes. Ammonia is converted to nitrate 

through the process of nitrification, which is carried out by microbial communities and uses the enzyme ammonia 

monooxygenase (AMOA) for ammonia oxidation. Other specialists in ammonia-respiring microorganisms use hydroxyl 

amine oxidoreductases to convert oxidized ammonia intermediates (such as hydroxyl amine) to nitrate. Nitrite ions are 

converted to nitrate by other microbial groups using nitrite oxidoreductase. Some microbial communities can convert 

ammonia to nitrate through complete ammonia oxidation. Microbial communities use nitrite, nitrate, and nitrous oxide 

reductases to reduce nitrate to nitrite, then to N2 gas through various reductive reactions involving nitrate-reducing 

microbial communities. Nitrite is usually reduced from nitrate and then transformed into nitrous oxide or dinitrogen 

through nitric oxide. Anaerobic microbial communities can directly oxidize nitrite or ammonia to N2 gas by involving in a 

process known as anaerobic ammonia oxidation. Microbial communities use various nitrate or nitrite reductase enzymes 

to reduce nitrate or nitrite to ammonium, returning it to the nitrogen cycle through a process called dissimilatory nitrate 

reduction to ammonium (DNRA). Microbial communities that use the DNRA pathway primarily oxidize organic matter 

and use nitrate as an electron acceptor. Ammonification or mineralization is an important microbial process of converting 

organic nitrogen into ammonium through the decomposition of soil organic matter (SOM), which plays an important role 

in the nitrogen cycle. Nitrogen immobilization occurs when soil microbes take up ammonia/ammonium or nitrate, which is 

the opposite of mineralization. As a result, crops may not have access to the N nutrients. 

 

1.3.2.2 Decomposition of soil organic matter and C: N dynamics  

 

Nitrogen mineralization from soil organic matter is known to determine the intrinsic N supply of 

the soil for plant productivity in natural and agroecosystems (Tiessen, Cuevas, and Chacon 1994). Microbes 

are the main drivers of nitrogen mineralization from soil organic matter, the rate of which depends largely 

on the source of organic carbon, temperature, moisture, and aeration. Mineralization of organic carbon 

usually occurs in moist soil conditions when microbes decompose organic matter, making it easier for other 

microorganisms to convert organic nitrogen into mineralized forms. The carbon to nitrogen ratio in soil is 

one potential indicator of N mineralization (Flavel and Murphy 2006). For example, young legume crop 

residue and cattle manure, which are highly rich in N, result in a low C:N ratio in the soil due to the rapid 

mineralization process of the organic N that occurs when the organic matter is decomposed (St. Luce et al. 

2011a).  

 

Soil organic matter (SOM) is composed of soil organic carbon and nitrogen deposited by the 

degradation of plant and animal residuals. Soil carbon and nitrogen cycles are linked to each other because 

the elements of these processes (Lindsay et al. 2010) are heavily mediated by the SOM that is deposited. 

https://creativecommons.org/licenses/by-sa/4.0
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SOM improves soil fertility, which has a large influence on soil structure, water-holding capacity, and plant 

nutrient content (St. Luce et al. 2011b). During carbon sequestration, carbon dioxide is photosynthesized 

and converted into carbohydrates and stored as plant biomass. Atmospheric N is sometimes fixed by 

cyanobacteria or plant symbiotic bacterial communities, but most plants depend on N in the soil. The 

biomass (necro-mass) is decomposed in the soil and returned into the atmosphere in the form of CO2. A 

similar process occurs for the N-mineralization form of the organic substances, where the plant inorganic 

N uptake is triggered by nitrification and returned into the atmosphere in the form of N through de-

nitrification. The rate of organic matter degradation might be linked to N mineralization (Haynes 1986). 

SOM decomposition in the soil could be a significant parameter for studying N dynamics and associated 

factors. Ammonium ions (NH4 +) are produced during SOM decomposition and can be converted into nitrate 

(NO3
-) through nitrification, where the amount of carbon used by microbial communities indicates changes 

in total C:N as well as the total N transformation rate in the soil (St. Luce et al. 2011; Robertson and 

Groffman 2015). Different carbon sources that are used by the microbes as a substrate provide information 

on the functional diversity of the soil and indicate changes in soil carbon dynamics. Spatial and temporal 

variabilities in soil properties could therefore provide a profile for the accumulation rate of soil organic 

carbon and the nitrogen linked to the processing of inorganic N. This information could in turn indicate the 

robustness of microbial functions across time and space for different agricultural practices and climates.  

 

1.4  Predictive modeling   

1.4.1 Modeling of microbial ecosystem processes  

Soil microbes are key to ecosystem process and management. Knowledge about soil food webs and 

interactions between the soil, microbes and plant traits is essential to improving the predictive power of 

current biochemistry-based models on soil processes (Allison and Martiny 2008; Wieder, Bonan and 

Allison 2013; Faucon, Houben and Lambers 2017; Funk et al. 2017; Fry et al. 2019; Li et al. 2022). Some 

plant traits such as the leaf nitrogen content and plant growth rate are linked with C storage and 

decomposition, which can be a useful predictor for understanding temporal and spatial patterns in soil 

microbes (Carrillo et al. 2017). There is abundant literature suggesting that ecological processes can be 

predicted by microbial activities (Aguilar-Trigueros et al. 2015). For example, characterizing microbial 

methane oxidation and phosphate solubilization activities can effectively indicate dormancy and plant 

species-specific trait dominance (Caro-Quintero and Konstantinidis 2012). Parameters related to plant 

microbes and soil interactions have been shown to be helpful for modeling carbon and nitrogen fluxes in 

soils (Kanters, Anderson and Johnson 2015). Soil microbe and plant interactions as well as nitrogen and 

carbon use efficiency were shown to be able to predict fruit quality (Pausch et al. 2016). Synthetic microbial 
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communities were used to show that the level of phosphate accumulation and the hormone-mediated 

systemic immune responses of individual strains of microbes can be used to predict the phosphate uptake 

of the plant (Herrera Paredes et al. 2018). Similarly, the susceptibility of the gut microbiome to Vibrio 

cholerae invasion could be predicted from the relative abundance of about 100 taxa (Midani et al. 2018). A 

simple bacteria-based decision-making tool was recently developed for soil bioremediation (Horemans et 

al. 2017). Yet another example involves the degradation rate of diesel in arctic soils, which could be 

predicted through the initial bacterial diversity and the abundance of specific microbial groups like 

Betaproteobacteria that are also influenced by soil organic matter content (Bell et al. 2014). Another study 

demonstrated that the relative abundance of several taxa in contaminated soils before the experiment started 

was a good predictor of willow growth in contaminated soils 100 days later (Yergeau et al. 2015). Similarly, 

Zn accumulation in willows growing in a former landfill for 16 months could be predicted by the relative 

abundance of specific fungal taxa (Bell et al. 2015). Finally, soil carbon content and the relative abundance 

of high-affinity H2-oxidizing bacteria were able to predict H2 oxidation rates with more than 80% precision 

(Khdhiri et al. 2015). Although soil and microbial parameters demonstrated the greatest explanatory power 

in that study, 20% of the variation was unexplained. However, the authors thought that the variation may 

have been due to fungal communities and unmeasured physical characteristics of the soil. In a different 

study on the pathogenic fungi Fusarium in asparagus fields, multiple regression showed that the high 

abundance of Fusarium was linked to high soil organic matter, clay content, and NH4 (Yergeau et al. 

2010b). The model results from that study suggested parameters that could be manipulated to reduce the 

abundance of the pathogen Fusarium in asparagus fields. More recently, scientists in Europe have discussed 

the scope and potential of statistical learning-based modeling approaches for microbiome-based monitoring 

of agroecosystem processes (Chable et al. 2021). Different classical statistical predictive modeling tools 

such as equation modeling (SEM), redundancy analysis (RDA), variation partitioning, and multiple 

regression have been used to generate and test specific models based on soil microbial communities. For 

instance, variation partitioning, and SEM were used to identify the influences of spatial, soil and plant 

parameters on the structure of bacterial communities in chalk grasslands (Yergeau et al. 2010a).   

 

Machine learning-based modeling has attracted recent widespread attention among 

microbiologists, particularly with the increased use of ML-based modeling in soil health metrics and human 

health and disease classification. ML-based predictive modeling has produced accurate predictions of soil 

health ratings (Wilhelm, Van S and Buckley 2021) and has shown promising results in predicting crop 

productivity, soil organic matter, and physicochemical properties (Wen et al. 2021). The degree of 

complexity of agroecosystem processes, including multitrophic interactions mediated by different abiotic 
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and biotic components, varies based on the spatiotemporal dynamics of microbial diversity and community-

level physiological processes. It is difficult to characterize the complexity of microbe-driven soil ecosystem 

processes using only the physicochemical and geochemical parameters of the soil. As discussed by Correa 

Garcia et al. (2022), the abundance and degree of microbial function of each microorganism is triggered by 

the combined effects of biotic and abiotic factors, creating a multivariate niche. The presence of thousands 

of microbes within their own multivariate niche clearly demonstrates the integrated nature of the biotic and 

abiotic processes in a given ecosystem (Correa-Garcia, Constant and Yergeau 2022). However, there is a 

wide range of microbiome data that describe the many microbial functions driving the heterogeneous 

environment in agroecosystems. Most microbiome data are derived primarily from DNA, RNA, and 

proteins, which are analyzed using modern omics-based methods. Genomic characterization of 

microbiomes through metagenomics, transcriptomics, and others can provide large numbers of variables 

with high taxonomic resolutions, creating an abundant resource for predicting microbial functions or 

processes within limited microbial parameters. To understand the impact of complex agroecosystem 

processes on crop traits, including yield and grain quality, modeling approaches using microbiome data 

may be helpful in identifying important microbial parameters.  

 

 

1.4.2 Statistical modeling with microbiological data 

 

Microbiome data-based modeling approaches continue to be updated with the aim of creating the 

most reliable and accurate models to characterize ecological processes. Microbial data are used to predict 

ecosystem processes and often rely on interpretability rather than accuracy. Some non-parametric 

supervised learning methods are currently being applied in microbiome science to build accurate models 

such as neural networks. However, these methods cannot explain the underlying relationships between 

microbial variables because the method predicts the variable of interest based on an intrinsic layer of data, 

which is difficult for humans to interpret. In contrast, regression models coupled with a dimension 

reductionist approach is easier to interpret, but this method sacrifices model accuracy (Correa-Garcia, 

Constant and Yergeau 2022). Other supervised models such as random forest or support vector machines 

used 16SrRNA sequencing data to identify microbiome composition and accurately predict the soil health 

metrics in a continental scale (Wilhelm, van Es and Buckley 2021). However, an analysis of the model 

through the elimination of  a thousand sets of taxa failed to highlight the true predictors (taxa) that 

contributed the most predictive power, further requiring a posteriori analysis (Correa-Garcia, Constant and 

Yergeau 2022). Meanwhile in another study, a multiple linear regression model with forward selection of 
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microbial indicators predicted wheat grain quality and was able to capture the most important microbial 

predictors by describing different degrees of relationships between predictors and response variables 

(Yergeau, Quiza and Tremblay 2020). Both approaches, in terms of model interpretability and non-

interpretability, have tracked some common microbial predictors that greatly influence the agroecosystem. 

Correa-Garcia, Constant and Yergeau (2022) suggested that robust microbial predictors that exist in certain 

important ecosystems could be tracked using statistical modeling with different levels of interpretability. 

Choosing the right modeling method in soil microbiome research is highly context dependent. 

 

 

 

1.4.3 Definition of statistical learning, model parameters, accuracy, and bias-variance 

 

According to James et al. (2013), statistical learning (SL) refers to a set of tools used for modeling 

and understanding complex datasets. Below are some of the key terms commonly used in statistical 

learning:  

 

Explanatory variable, independent variable, predictor, or input: The variables that originate from external 

sources of data and are called predictors or parameters in regression models, denoted by the symbol X. The 

predictors influence the magnitude of variation in response variables. An example of this type of variable 

is the indicator of microbial communities associated with agroecosystem processes.  

 

Response variable, dependent variable, predicted variable or output: The response variable is a function of 

the qualitative or quantitative variables that depend on the value of the independent or explanatory 

variables. These are denoted as Y and is also called a dependent variable. Examples of the response variable 

are crop yield, grain quality, and soil health. 

 

Prediction or classification through quantitative or qualitative data can be categorized into two different 

types of statistical learning: supervised and unsupervised. Supervised learning is mainly used to predict 

output variables (e.g., agroecosystem processes) by estimating the effects of predictors (e.g., microbial 

diversity index) based on input variables. In multiple linear regression, the unknown regression coefficient 

of each predictor or input is calculated based on the magnitude of change in the response variable. 
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Unsupervised learning explains only the pattern of internal relationships among the input variables or 

predictors without involving the response variables. Unsupervised modeling is quite commonly used in 

microbe-based modeling to organize data when the internal patterns of the input variables are not well 

understood (James et al. 2013).  

 

The main limitation of statistical learning models is adjusting the true relationships of the predicted 

processes to the estimated explanatory variables. There are two main criteria for determining the true 

relationship of a model: bias and variance. A biased model is complex and fails to illustrate the true 

relationship between the response and explanatory variables. This is often defined as model underfitting 

(Correa-Garcia, Constant and Yergeau 2022). Modeling methods applied to noisy training data can result 

in significant variance, but they are not very effective at predicting new data. This situation is called 

overfitting (Correa-garcia, Constant and Yergeau 2022). For example, not all predictors are strongly 

associated with response variables in microbe-based predictive modeling, and sometimes some small 

subsets of predictors may have high predictive power. The methods used to determine robust predictors 

(e.g., microbial indices) that are strongly associated with predicted responses (e.g., ecosystem processes) 

and that fit the models that result in accurate predictions are called variable or predictor selection 

procedures. Regression models with poor variable selection procedures, particularly in models with trained 

data, may have high bias that results in low variance or low bias that may result in high variance. Therefore, 

reducing variables from a large dataset by selecting only the relevant variables can reduce model complexity 

and increase model accuracy and interpretability. Proper predictor selection enables predictors to accurately 

learn the structure of the data while avoiding excessive noise (James et al. 2013).    
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Figure 1-7: Illustration of model complexity and bias-variance trade-off. The figure also shows the inherent trend towards 

model complexity when building models with training and testing datasets (https://online.stat.psu.edu/ CCBY-NC 4.0 free).  

  

To check the performance of the model with the selected microbial predictors, it is necessary to 

evaluate the residual error of the model. Depending on the sample size, different adjustment techniques are 

used to minimize model error. Model error adjustment is an effective method for selecting the best model 

with the optimal number of predictors. The most well-known cross-validation-based techniques used in 

multiple linear regression are the Akaike Information Criterion (AIC), Bayesian Information Criterion 

(BIC), and adjusted R2. The AIC criterion evaluates a large class of different models generated during 

model selection, based on which one has the highest likelihood of certifying goodness of fit. The AIC values 

are adjusted together with the model error and adding fewer predictors decreases the AIC index. The BIC 

is derived from Bayesian statistics but follows a similar process to AIC. Adjusted R2 is another model 

parameter used to evaluate the best model among a set of models with different predictors. Statistically, the 

adjusted R2 square value is calculated as the ratio between the residual sum of squares and the total sum of 

squares (1-RSS/TSS). The R2 values in linear regression models indicate the proportion of total variance 

and give a value between 0 and 1 that is completely independent of the behavior of the response variable 

(James et al. 2013). The residual standard error (RSE) is calculated from the standard deviation of the error 

term of each observation as derived from the input variables (James et al. 2013). The residual standard error 

can be used to determine the model's lack of fitness with the given data. In some statistical learning 
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approaches, the mean square error (MSE) is estimated by squaring the residuals from the regression model 

and summing them. The values typically represent the residual error that underlies the difference between 

the observed and predicted values. Cross-validation-based methods are also applied to obtain penalty scores 

for the regression models generated from regularization processes (e.g., Lasso). A consistent threshold (e.g., 

k-fold) for the model parameter is adjusted to the optimal λ value, contributing to model accuracy by 

reducing model complexity using sparse regression coefficient estimations following the least squares 

method (James et al. 2013). 

 

1.4.4 Supervised learning  

 

Supervised statistical learning techniques, when applied to microbiological data sets, require the 

right quality and quantity of data, as low-quality data may affect the overall predictive accuracy. Imprecise 

input data, including incorrect hypothesis testing, can result in error predictions that may require further 

processing. Using data types with similar characteristics has resulted in good model performance in 

training, indicating that the model will likely perform well when tested with unknown data from the same 

distribution (Goodswen et al. 2021). It is therefore best to choose modeling tools that have already 

performed well with data from the same types of microbial ecosystems. For example, two similar modeling 

methods, multiple stepwise regression models for the prediction of similar microbial ecosystem processes, 

produced models with high prediction accuracies (Yergeau, Quiza and Tremblay 2020; Asad et al. 2021).  

 

1.4.4.1 Modeling approaches for predictor selection (interpretable) 

 

Due to the high dimensionality of large datasets (microbial taxonomic data), some computational 

statistical methods are used for model selection by creating a subset of explanatory variables (microbial 

indicators). For example, the stepwise variable selection method provides a subset of microbial variables 

that allows for a more restricted set of models with a limited number of variables. This method involves 

simultaneously adding small sets of variables to the regression model to test how much they improve the 

linear fit. There is also a computational method that is the basis for a hybrid, forward-backward selection 

method. This hybrid version of the forward-backward stepwise selection incrementally adds variables and 

eventually eliminates less important variables that do not contribute significantly to the model fit. This 

approach provides the best option for subset selection, at low computational cost. This type of subset 

selection is called forward selection. It starts with a null model with no predictors, then variables are 
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included in steps until all predictors are selected. Each variable selection step identifies the best models 

with the lowest residual standard error (RSE) and the highest R2. For example, using the hybrid version of 

the stepwise multiple regression model, researchers were able to select the best variables to predict wheat 

grain quality with high accuracies of 64–90% (Yergeau, Quiza and Tremblay 2020; Asad et al. 

2021a). Stepwise multiple regression was also reported to be the best method for predicting Fusarium wilt 

in lentils (Ali et al. 2022). 

 

Another popular method for model fitting with selected predictors (e.g., microbial features) is to 

constrain or regularize the regression coefficients or shrink the regression coefficients to zero. This 

compression-based method reduces problems associated with high dimensionality and model bias and is 

considered the best one for model selection. This method is a useful simulation tool for clustering 

microbiome composition from OTUs based on phylogenetic relationships and is called a phylogeny-

regularized sparse regression model (Xiao et al. 2018). Ridge regression and lasso are two techniques 

commonly used for shrinking regression coefficients towards zero. Ridge regression specifically estimates 

the weights of the total regression coefficients following the least squares method. Unlike stepwise 

regression, the ridge includes all predictors with regression coefficient estimates close to zero, but the mean 

of the coefficients does not equal zero. Therefore, ridge regression can produce good model accuracy, but 

can be more challenging for model interpretation, particularly for data with large sets of predictors. Lasso 

(Least Squares Shrinkage Operator), a modern alternative to ridge regression, performs both regularization 

and predictor selection. In comparison, the statistical formula for lasso is quite similar to ridge regression. 

The only difference is in the penalty method, where lasso follows the L1 norm and provides a more 

restrictive penalty score. The L1 penalty for lasso regression forces the regression coefficient to become 

exactly equal to zero when the tuning parameter λ value is quite large. Therefore, lasso performs better than 

ridge regression in terms of variable selection and provides an easier interpretation for predictive models. 

Lasso regression can be computed with input and output variables that sparse the best models with large 

regression coefficients. Lasso is useful for selecting microbial variables in high-dimensional data where 

selected variables (predictors) with large coefficients can be used in predictions with linear regression 

models (Dong et al. 2020). Lasso regression can also select microbial variables in a small number of 

samples, where selected predictors with large coefficients can be used to test the model for prediction 

accuracy (Asad et al. 2023). While human phenotypes (e.g., age, gender, etc.) have been accurately modeled 

with large microbiome data sets (34,000) from two continents using a penalized regression model (e.g., 

ridge regularization), modeling with smaller subsamples yields models with less bias and higher variance 

(Rothschild et al. 2022). Sample size is therefore an important factor in microbial-based modeling. This 
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suggests that modeling microbial ecosystem processes from highly variable environments may require 

larger samples to produce predictive models with low variance. Another regularization method that 

combines L1 and L2 norms called Elastic Net is very useful for selecting subsets of variables from large 

datasets (James et al. 2013).  

 

  

Figure 1-8: Workflow of statistical learning for microbiome analysis (Medina and Kutuzova 2022). 

Most of the raw microbiome data from DNA sequencing is formulated using operational taxonomic units 

of the sequence variants obtained by counting sequence reads according to proximity. Before modeling, 

microbiome data are pre-processed following the method of transformation, imputation, relevant feature 

selection, or extraction. Then either processed microbiome data or feature data are used as the model input 

in various statistical learning algorithms in order to select the best models. The best model is then tuned 

and highly trained to select the one that generates the best predictive performance. Finally, using the 

selected model or calculated observed values, it is possible to predict or classify the specific variables (e.g., 

quantitative, or qualitative variable) of interest.  
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1.4.4.2 Modeling approaches for accurate predictions (less interpretable) 

 

The support vector machine is a classic machine learning-based approach used for microbiome-

based classification of soil health and other health metrics. A support vector machine is also called a 

maximal margin classifier. This approach defines the n-dimensional subspace through linear boundaries 

with an extension of support vectors that accommodate a nonlinear class of boundaries. These non-

parametric supervised learning techniques are reported to be very effective at classifying soil metrics with 

16S rRNA data based on regression or binary classification (Wilhelm, van Es and Buckley 2021). One 

study reported the use of support vector machines with the relative abundance of 100 taxa to predict human 

susceptibility to intestinal infection from Vibrio cholerae (Midani et al. 2018).  

 

Random forest is a machine learning algorithm that combines decision trees to create flowchart-

like structures. These flowcharts help determine how to split data sets by voting for trees in the same group. 

This approach builds multiple trees by bootstrapping the sample to select subsets and binning these subsets 

as a random forest to increase performance over a single tree (Tin Kam Ho 1995). Random forest algorithms 

have been reported to work well to predict symbiont density in sponges (Moitinho-Silva et al. 2017), maize 

and wheat yields, and can classify individual patients with various diseases (Chang et al. 2017; Yergeau, 

Quiza and Tremblay 2020). Random forests are able to increase model accuracy but there is increased 

complexity and training time associated with it. (Wilhelm, van Es and Buckley 2021). A random forest 

model was used to classify multidrug-resistant bacterial strains on tuberculosis from geographically diverse 

data and showed high model accuracy (Farhat et al. 2016). Random forest was also able to classify the 

origin of 8287 soil samples based on the bacterial taxonomic abundance of soil samples collected from 21 

countries (Ramirez et al. 2017). 

 

The gradient boosting decision (GB Boost) tree is a common method, often used to solve regression 

and classification tasks. This method is carried out through a sampling process with boosting, where a set 

of decision trees is used to predict only the labeled data. This method has high computational costs but is 

reported to be a potential tool to study ecosystem functions, particularly human microbiome-based gender 

classification, or patient countries of origin (Rothschild et al. 2022). Stochastic gradient-boosting ML 

(GBM) techniques are effective predictive tools for microbiome- (structure and dynamics) based 

classification of cancer cell types between cancerous and noncancerous tissues and for monitoring the 

progression of tumor cells (Poore et al. 2020). K-nearest neighbor (kNN) is an algorithm derived from 
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machine learning that is a non-parametric method applied for classification or prediction by grouping the 

nearest data points. For classification, the algorithm labels datapoints based on the k values of the nearest 

neighboring points. For regression, the average value of neighboring points (clusters) is calculated as the 

predictive value. These methods have also been reported to be useful for selecting microbial strains from 

enrichment cultures in different cultivation conditions (Oyetunde et al. 2019).  

 

Deep learning (DL) is a class of ML algorithm that builds data architecture based on artificial neural 

networks. DL models develop artificial nodes (also called neurons or units) by transforming inputs and 

connecting other nodes along the edges to form a network. The network has multiple layers that represent 

different layouts or structures. For example, convulsion neural networks (CNN) can be used to picturize 

microbiome-driven host phenotypes (Reiman et al. 2020; Sharma, Paterson and Xu 2020). Using CNN, the 

OTU table is first converted into an image by transforming each sample into a structural form within shape 

of a square. The newly formed square-shaped sample images are then organized according to color intensity 

based on the presence or absence of microbial taxa. Figures are generated from microbial features including 

species abundance (e.g., OTUs abundance), presence, and absence of taxa. For a single sample, the 

phylogenetic tree is constructed and grouped by species abundance and then arranged in a data matrix 

(Nguyen et al. 2017). Artificial neural networks have also been reported to accurately predict the parasitic 

load from clinical samples (e.g., physical signs, serological test, and biochemical markers) without having 

any prior biological knowledge about  the phenomenon (Torrecilha et al. 2016). 

 

1.4.5 Unsupervised learning  

 

Unsupervised learning for microbiological data is mainly used to cluster microbial taxonomic (e.g., 

OTUs) and functional genomic data (e.g., transcript). The clusters are subsequently represented as key data 

in predictive models. Clustering methods can be hierarchical or divisive. Divisive clustering typically 

identifies clustered variables that do not overlap with each other, while hierarchical clustering groups 

together subsets of larger clusters that are always nested. Hierarchical clustering generally does not require 

the user to input a value for k, whereas divisive clustering requires a value for the k mean. There are many 

clustering methods. Among them, k-means clustering and agglomerative nested clustering are most often 

used for hierarchical and divisive clustering in microbiology (Goodswen et al. 2021). K-means clustering 

was found to be effective for assessing antimicrobial resistance from different environmental samples using 

metagenomics data (Oh et al. 2018). 
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Unsupervised learning techniques are mainly used to look at intrinsic patterns in datasets, or when 

a response variable is absent. Dimensionality reduction is another method of unsupervised learning that is 

used for variable selection or extraction by transforming the predictor into an M-dimensional subspace (M 

< p). Dimensionality reduction-based methods essentially create a compressed representation of the data 

by computing linear and non-linear combinations of existing features. Linear methods such as principal 

component analysis (PCA) generate a new set (n-1) of orthogonalized variables (eigenvector) by 

decomposing eigenvalues. PCA captures variations in the original dataset and ranks them according to the 

percentage of variation explained. The first few PCA dimensional axes capture most of the variation in the 

original dataset that can be visualized to explore the variation pattern among the samples. For example, 

principal components of 16S rRNA gene amplicon data can be used as input variables to predict wheat 

grain quality and reduce model complexity (Asad et al. 2021a, 2023). High co-linearity can sometimes lead 

to problems of multicollinearity or heteroscedasticity in linear regression models, or model overfitting due 

to overlapping variables in stepwise regression. Therefore, feature selection using PCA orthogonalization 

(e.g., decomposition of eigenvalues) can be useful to optimize multicollinearity and bias-variance trade-

offs in linear regression-based models (Asad et al. 2023). Alternatively, the generalized linear model 

(GLM)-based ordination technique was applied to distinguish the representative 16SrRNA sequences that 

originated from different bacterial and archaeal microbial communities with optimal niches. This technique 

was able to minimize the effects of negative dispersion and statistical sparsity (B. Sohn and Li 2018). T-

distributed stochastic neighbor embedding (t-SNE) is a statistical technique used to visualize high 

dimensional data by locating the data point in sub-dimensional space (2 or 3). By embedding each high-

dimensional object into two- or three-dimensional object, this nonlinear method models similar objects by 

nearest point and dissimilar objects by distant point based on a high probability distance matrix. This 

approach has been reported to reliably identify and visualize local and non-linear relationships in complex 

microbiome datasets (Kostic et al. 2015).  

 

1.4.6 Example of statistical learning methods in agroecosystems  

  

Microbiomes play an important informative and indicative role in trait-based ecology by providing 

clues about past and present ecosystem processes (Correa-Garcia, Constant and Yergeau 2022). Microbe-

driven agroecosystems can be researched using genomics tools. Current trends in microbial ecological 

research are mostly focused on the characterization of microbial community structure and function at the 

genomics level. Exploratory studies on microbiomes currently focus more on compositional changes in 
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microbiomes as they are exposed to various environmental factors and treatments. However, statistical 

learning (SL) tools have recently revolutionized microbiome research, allowing observational 

microbiologists to build model-based frameworks on microbe-driven ecosystem functions from genomic to 

phenomic scales. One particular model-based microbiome study used genomic data and statistical learning 

tools to accurately predict and classify various disease patterns for biomarker identification (Marcos-

Zambrano et al. 2021). The authors were able to predict the quality of water and its resources by tracking 

the prevalence of 30 bacterial OTUs (Proteobacteria and Bacteroidetes) using a random forest algorithm 

(Wang et al. 2021a). Linear regression was shown to estimate soil biodiversity in a boreal ecosystem using 

data on fungal richness, community composition, and relative abundance as input variables (Li et al. 2019). 

Another study by Wang et al. (2021b) demonstrated that soil biodiversity could be predicted through a 

linear regression-based model using only information on the bacterial species richness and abundance of 

39 bacterial genera. In yet another study, an index of differential species abundance (log-ratio) of 140 taxa 

predicted potato yield with 77% accuracy (Jeanne, Parent and Hogue 2019). Logistic regression was able 

to accurately predict litter decomposition using data associated with microbial descriptors by grading high 

and low process rates (e.g., fungal, and bacterial richness) (Albright et al. 2020). Using different 

microbiome datasets from multi-scale studies, patients could successfully be categorized as healthy or 

disease-susceptible by applying machine learning tools (Marcos-Zambrano et al. 2021).  

 

1.4.7 Major sources of microbiome data  

 

Prior to modeling, it is important to consider the sample sources used as input variables to study 

the microbial traits associated with indicators of ecosystem processes. Based on the type of data used, the 

right statistical modeling tools must be selected to accurately model the ecosystem processes. Microbial 

indicators obtained from genomic data can be used to determine microbial function. Microbial genomic 

DNA, for example, is quite stable in soil and is not very sensitive to environmental changes over short 

periods of time. This is because changes in the microbial genetic material respond to the environment and 

usually occur over a season or year (Correa-Garcia, Constant and Yergeau 2022). Therefore, data derived 

from genomic DNA is a very useful for monitoring microbiome patterns that characterize soil processes, 

such as gas exchange, across seasons or years (Graham et al. 2014). DNA-based investigations of microbial 

communities could also be a potential indicator for studying the impact of legacy effect in agriculture. The 

availability of extracellular DNA in the soil can be affected by environmental perturbations, birth, and death 

events. In contrast, transcriptomic microbial data can capture the profile of contemporary microbial activity, 

but due to the short lifespan of mRNA, monitoring legacy effects or predicting future microbe-driven 
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agroecosystem processes might be difficult. For example, RNA-based meta-transcriptomic approaches are 

useful for identifying microbial communities associated with microbial enzymatic processes that mediate 

the phytoremediation of environmental pollutants (Yergeau et al. 2014, 2018). In addition to amplicon 

sequencing, a single sequence of shotgun meta-omics data provides vast information on microbial 

community structure, function, and taxa abundance. This information can be used to indicate microbial 

process rates and functions, including nitrogen fixation, biotransformation of toxic compounds, and 

decomposition of organic matter. However, data derived from omics approaches always have high 

dimensionality.  

 

1.4.8 Common features of microbiome data 

 

The microbial data derived from DNA and RNA amplicon sequencing or shot gun metagenomic 

sequencing are highly dimensional, meaning the number of variables is larger than the number of samples. 

For example, the number of ASVs (Amplicon Sequence Variants) and OTUs (Operational Taxonomic 

Units) calculated from 16S amplicon sequencing to generate taxa abundance or rarify tables (presence and 

absence) showed high dimensionality, represented as count data (Medina and Kutuzova 2022). In predictive 

modeling, this high-dimensional data can be modeled with a perfect fit, in which case the features are not 

always related to the response variable. Adding more features may increase model complexity and bias. In 

particular, data sparsity for microbial descriptors affects non-parametric approaches such as k-nearest 

neighbour. There are some solutions that can reduce highly featured data to obtain improved model 

accuracy or interpretability. Feature selection is one of those solutions in microbiome-based predictive 

modeling. An example of feature selection is the Spearman correlation-based approach, which results in 

most correlated ASVs or OTUs with the response variable. Selecting the top 10 correlated ASVs or OTUs 

improved model accuracy in the linear regression model by setting up the Spearman correlation 

conditioning p value with a minimum threshold (Yergeau, Quiza and Tremblay 2020; Asad et al. 2021a). 

In contrast, microbial community descriptors can be directly used to predict soil microbial processes with 

multiple linear regression. An example is beta diversity, which estimate microbial community differences 

based on the Bray Curtis dissimilarity index and then breaks them down with eigenvalues to produce 

principal coordinates (Asad et al. 2021a). Measures of microbial alpha diversity, including species richness, 

absolute abundance of functional genes linked to soil processes, or total ratio of the abundance of microbial 

marker genes (e.g., 16S, ITS), might also be used as potential microbial features in multiple linear 

regression or penalized regression models to accurately predict crop yield and grain quality (Yergeau, Quiza 

and Tremblay 2020; Asad et al. 2021a, 2023).  
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1.5 Hypotheses and objectives 

   

General hypothesis:   

As discussed above, the soil microbiome is directly associated with agroecosystem processes and 

crop production. Therefore, upscaling the monitoring process of soil properties from soil geochemical 

processes to microbial processes can reveal information for improved decision-making for sustainable 

agricultural practices and management. My main hypothesis is that soil microbes, because of their central 

role in nutrient cycling and plant health, provide a signal that can be used to forecast wheat yields and 

baking quality. 

 

General objective:   

My objective is to measure basic soil physicochemical properties, microbial functional potential, 

diversity, abundance and community composition across time and space to find the most significant 

parameters for explaining wheat yields and grain baking quality.   

  

1.5.1 Specific hypotheses   

  

1. Certain microbial indicators will be strongly linked to wheat yield and grain baking quality across 

different agricultural fields subjected to a wide variety of management strategies (spatial 

robustness).   

2. Certain microbial indicators that are measured early in the wheat growing season will be strongly 

linked to wheat yields and grain baking quality at the end of the season (temporal robustness).   

 

1.5.2 Specific objectives  

 

A. To determine the microbial functional potential, diversity, abundance and community composition, 

and basic soil-physical properties of more than 80 wheat fields across Quebec.   

B. To determine the microbial functional potential, diversity, abundance, and community composition 

over one growing season (sampling every 2 weeks).  
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1.6 Experimental approach and links between the objectives and the chapters of the thesis  

 

1.6.1 Chapter 2: Determine the microbial functional potential, diversity, abundance and 

community composition, and basic soil-physical properties of more than 80 wheat fields 

across Quebec.   

 

  

The experimental approaches consistent with the first objective described in chapter one focus on 

the following questions:  

 

1) Can soil microbiomes predict wheat yield and grain quality on a spatial scale? 2) Are microbial indicators 

better for monitoring soil processes than soil basic physicochemical indicators? 3) How strong is the 

predictive power of microbial indicators for predicting wheat grain qualities? 4) Is it possible to build a 

model with microbial parameters for wheat yield and grain baking qualities using simple linear regression? 

5) What is the magnitude of the relationship between microbial parameters and the grain quality of wheat? 

6) Which microbial parameters in regression models have potential causal links with individual soil 

processes that can be used in future soil microbiome manipulations?   

 

Farmers used to make fertilizer application decisions for wheat cultivation based on soil tests during 

the growing season. Could microbe-based information better guide farmers with agricultural management 

decisions? In this chapter, our study focuses on how microbial traits can be best used to evaluate future 

wheat yield and grain baking quality. As discussed in the literature, soil microorganisms are key players in 

soil nutrient cycling and availability, as they are intrinsically involved in decomposition and nitrogen 

fixation. Therefore, soil microorganisms can be key indicators for measuring soil fertility at the beginning 

of the crop season to predict the wheat yield and grain quality at the end of harvest. Soil microbes are highly 

complex, and their functional dynamics are driven by soil ecosystem processes. Regulatory network 

formation within co-occurring microbial groups is often niche optimum for functional activation. It is not 

possible to fully describe soil processes using a few isolated microbes and their functions because soil 

microbial community distribution is highly mediated by the biotic and abiotic factors associated with the 

agroecosystem. Thus, our modeling approaches using microbial parameters derived from community-level 

analysis can be used to closely monitor the heterogeneity of soil microbial characteristics that affect crop 
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phenology. Furthermore, microbial descriptors such as beta diversity, which describes microbial 

community differences at spatial scales, and alpha diversity, which describes changes in community 

richness or composition within samples, may be important indicators for monitoring contemporary 

microbial ecosystems and their compatibility with crops yield and grain quality. These descriptors may 

provide another avenue for investigating the way anthropogenic impacts on the environment or noise in 

microbial communities affect crop production.  

 

Our research on the soil microbiome mainly focuses on indicators that are potentially associated 

with ecosystem functions of soil microbiota, such as the diversity of microbial taxa, in vitro carbon 

utilization patterns, and abundance of microbial N-cycle genes. To test our first hypothesis about the 

potential for microbes to predict the basic physicochemical properties of soil, we analyzed soil samples 

from 80 bread wheat fields in the province of Québec, Canada. The samples were collected early in the 

growing season. To identify the potential microbial parameters, we analyzed soil microorganisms at the 

community level using molecular biological and biochemical methods. We performed a comparative 

analysis to determine the predictive potential between commonly used soil and microbial parameters and 

analyzed basic soil properties. Both microbial and soil physicochemical data were analyzed and compared 

with yield and grain quality data to uncover the microbial traits that have significant predictive potential. 

Using these microbial traits, statistical learning methods were applied to model wheat yield and grain 

baking quality.  We aimed to include a few select indicators in the model that only have high predictive 

power. We also aimed to assess microbial robustness over a 500 km transect in Quebec and determine 

whether soil microbiome studies can be a potential resource for future wheat quality assessment within an 

agroecosystem affected by agricultural practices and climate change.  

 

In my first chapter, I also discussed some of the interesting results on microbial predictive 

performance in all the different types of modeling schemes. Those results highlight how microbial 

parameters excel at predicting soil physicochemical properties, which fulfills our first hypothesis about the 

predictive potential of the soil microbiome. Some of the microbial variables that were selected for the 

models even demonstrated causal relationships with the response variables (yield and quality data). For 

example, wheat plants require substantial amounts of nitrogen sources such as ammonia to synthesize 

higher levels of protein and gluten in the wheat kernel. Some models found that the abundance of ammonia-

oxidizing bacteria in the soil had a negative correlation with the protein content in wheat grain. These 

microbial groups are actively involved in ammonia oxidation and convert ammonia into nitrate. Since 

nitrate is unstable in soil, excess ammonia oxidation can lead to nitrate leaching and increased production 
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of greenhouse gases. A high abundance of ammonia-oxidizing bacteria leads to more nitrate in the soil than 

ammonia. This is problematic for plants, which absorb ammonia more actively than nitrate. Thus, a high 

abundance of ammonia-oxidizing bacteria produces fewer effective sources of nitrogen for plant uptake, 

reducing grain quality. These results can provide a framework for customized experiments that aim to 

contribute to the future mechanistic understanding of plant–microbiome interactions. 

  

1.6.2 Chapter 3: Determine the microbial functional potential, diversity, abundance, and 

community composition over one growing season.  

 

In the second chapter, we described how we sampled early in the growing season, but was that the 

optimal timing to determine predictive power? My second objective is to answer questions about the 

temporal dynamics of microbial communities, such as how microbial diversity changes over time in 

agroecosystem processes that affect crop yield and quality. The predictive power of microbial parameters 

may vary over time, as host selection and nutrient acquisition may be influenced by carbon fixation at 

different stages of wheat plant growth. As soil properties may be affected by season or regional climate, 

nutrient access may become limited at times for some microbial communities. Temporal changes 

throughout the wheat growing season in microbial diversity, composition, or functional abundance could 

alter the predictive power of the soil microbiome, raising questions about the optimal time for prediction. 

Our experimental method aimed to find the best model for predicting wheat grain quality at different growth 

stages throughout the season.  Experimental approaches consistent with those for objective one and 

described in chapter two focus on the following questions:  

 

1) How can we ensure that measurements of microbial indicators at the early stages of wheat cultivation 

can be highly predictive for wheat quality? 2) How accurate would the prediction be if soil samples were 

collected after seeding or at a later stage of wheat growth? 3) Do temporal variations in microbial 

community composition, diversity, and function affect microbial parameters that predict wheat grain quality 

as a result of changes in seasonal climate, soil water availability, and growth stage? 4) Is there a relationship 

between wheat genotypes and soil microbial parameters? Do wheat genotypes affect soil microbial diversity 

and function, and consequently, do genotypes have significant influence on the predictive potential of the 

soil microbiome? 5) If there is a difference in predictive potential among wheat genotypes, which genotype 

shows higher predictive accuracy? 6) On which specific dates what times of the year should soil be sampled 

for accurate predictive modeling? 7) Are there any alternative statistical approaches in the least squares 
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method that can be used to construct interpretable, simple, and accurate models with high dimensional data? 

8) How can the best models be validated to demonstrate high predictive accuracy?  

 

We previously observed that microbial indicators can accurately predict wheat yield and grain 

quality. However, we must determine the best moment for predicting wheat grain quality to prove our 

second hypothesis. We chose the experimental field located at INRS for soil sampling. This field was 

contained 6 random blocks, with 4 rainfall exclusion treatments and two wheat genotypes. Our sampling 

scheme was roughly implemented according to the wheat growth stage, starting from seedling to crop 

maturation. We measured the same microbial indices to investigate how they function on temporal scales. 

Another experiment by a researcher of our team found that soil drying and rewetting episodes triggered by 

sudden rainfall in mid-July shifted microbial communities and increased the abundance of ammonia-

oxidizing archaea (Wang et al. 2022). Such episodes have become quite common in the context of climate 

change. Because of these events, the nutrient status of the soil may change, or the functions of the soil 

microbiome may be limited. We know that these temporal variations in microbial parameters caused by 

external factors can disrupt microbiome assembly processes and create complex microscale environments 

in the soil. Even a temporary change in microbial community composition can disrupt the nutrient uptake 

of the wheat plant. Therefore, a randomized experimental field may be a good site to more closely study 

the temporal dynamics of soil microbial communities and their predictive ability.  
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Figure 1-9: Field testing to find robust microbial indicators. The figure depicts a multi-year historical experimental field 

(INRS) arranged with a randomized block design. The experimental field was separated into 6 random blocks with four 

precipitation exclusion (0%, 25%, 50%, 75%) treatments and two wheat genotypes: drought-sensitive (DS) wheat and 

drought-tolerant (DT) wheat.  

  

We determined that the best models for wheat grain quality used data from samples collected early 

in the wheat growing season. This fully supports our second hypothesis and emphasizes that the most robust 

microbial parameters are from samples collected in May and June. The best models were from dates that 

occurred roughly during the seedling stage of wheat growth. This stage of growth is crucial for the nutrient 

uptake necessary for plant physiological processes. Another important feature of the microbial parameters 

in the models is discussed in the chapter 3: section 3.5 on legacy effects on the soil microbiome. Our results 

also illustrate that predictive accuracy decreases over time as microbial complexity increases. This indicates 

that the determinants of the soil microbiome and their function may be affected by intrinsic or extrinsic 

environmental effects during wheat growth. These patterns are clearly demonstrated in our correlation study 

between microbial parameters and grain quality. In this chapter, we also discuss the role of ammonia-

oxidizing microbial communities and show that AOB (ammonia-oxidizing bacteria) or AOA (ammonia-

oxidizing archaea) are strong microbial parameters in many models, contributing positively or negatively 

to wheat grain quality. Finally, we discuss host-specific (e.g., wheat genotypes) microbial predictive power 

and how the model showed different degrees of predictive power for the two selected wheat genotypes.  
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2.1 Abstract 

 

Crops yield and quality are difficult to predict using soil physico-chemical parameters. Because of 

their key roles in nutrient cycles, we hypothesized that there is an untapped predictive potential in the soil 

microbial communities. To test our hypothesis, we sampled soils across 80 wheat fields of the province of 

Quebec at the beginning of the growing season in May-June. We used a wide array of methods to 

characterize the microbial communities, their functions, and activities, including: 1) amplicon sequencing, 

2) real-time PCR quantification, and 3) community-level substrate utilization. We also measured grain yield 

and quality at the end of the growing season, and key soil parameters at sampling. The diversity of fungi, 

the abundance of nitrification genes, and the use of specific organic carbon sources were often the best 

predictors for wheat yield and grain quality. Using 11 or less parameters, we were able to explain 64 to 90% 

of the variation in wheat yield and grain and flour quality across the province of Quebec. Microbial-based 

regression models outperformed basic soil-based models for predicting wheat quality indicators. Our results 

suggest that the measurement of microbial parameters early in the season could help predict accurately 

grain quality and quantity.  
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2.2 Introduction 

 

Nitrogen fertilization is one of the most crucial factors to produce high-quality cereals and, in the 

province of Québec, it is recommended to indiscriminately fertilize bread wheat with 90-120 kg/ha of N 

(Vanasse et al. 2012). However, N fertilization levels are not necessarily related to wheat yields or grain 

baking quality (Yergeau et al. 2020, Ayoub et al.1994, Guarda et al. 2004, López-Bellido et al. 2001) 

suggesting that the applied N is not efficiently used. This inefficient use of N is at the core of the 

sustainability issues facing the agricultural sector, with the unused N either leaching to cause eutrophication 

of surface water or leading to the emission of the potent greenhouse gas nitrous oxide. Most of these issues 

are related to soil microorganisms involved in the N-cycle. Indeed, soil microorganisms are responsible for 

1) nitrification, the transformation of ammonia in nitrate, 2) denitrification, the transformation of nitrate in 

the gaseous compounds nitric oxide, nitrous oxide, and dinitrogen, and 3) mineralization, the release of 

nitrogen from the soil organic matter (Tiessen et al. 1994). Not only some of these processes have the 

potential to severely impact the environment, but in the case of wheat, it changes the amount of energy 

needed to produce high baking quality grains with high levels of protein and gluten. For instance, nitrate 

needs to be taken up actively by the plant and then reduced to ammonia before being assimilated into an 

amino acid through glutamate or glutamine, whereas ammonia is mostly taken up passively and directly 

assimilated (Moreau et al. 2019). The uptake of amino acids or peptides would be even more energetically 

favorable to the plant. In view of the importance of N nutrition for cereals, most especially for bread wheat, 

to produce high quality grains, optimizing the usage efficiency of the applied N, or at least being able to 

better predict its effect on crop quality, is of outmost importance.  

 

There is evidence that various ecosystem processes can be predicted from microbiological data. 

For instance, it has been reported that biodegradation of diesel in Arctic soils could be predicted with an 

accuracy of 60% by the relative abundance of three specific Betaproteobacteria taxa (Bell et al. 2013). 

Willow plants growth after 100 days in highly contaminated soil can be partially predicted by the microbial 

community composition (bacteria and fungi) and their relative abundance (Yergeau et al. 2015). Similarly, 

zinc assimilation by willow trees after 16 months of growth could be predicted with an accuracy of up to 

63% by the relative abundance of a single fungal species at 4 months of growth (Bell et al. 2015). Other 

reports provided a bacteria-based predictive tool for soil bioremediation (Horemans et al. 2017) or predicted 

the susceptibility of the human gut to infection by Vibrio cholerae from the relative abundance of about 

100 taxa (Midani et al. 2018). Finally, the phosphate content of Arabidopsis when in interaction with a 

synthetic community could be inferred from the results of the interaction between the plant and the 

individual members of the synthetic community (Herrera Paredes et al. 2018). More recently, with an 
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accuracy up to 81%, a multiple regression model was able to predict wheat yield and grain quality based 

on the abundance of five specific microbial taxa and N-cycle functional genes (Yergeau et al. 2020). In 

contrast, N fertilization treatments could not be related to yield and grain quality. Thus, it appears that the 

composition, diversity and relative abundance of microorganisms and functional genes in different 

environments are good predictors of future processes. However, as soil parameters such as pH, total carbon 

and nitrogen, and water content can also partly determine the microbial diversity and function, and thereby 

ecological processes (Blanchet et al. 2015), it is not known if microbial parameters will provide any 

additional predictive power. As most of these previous examples are based on samples from relatively 

restrained geographical areas, it is not known if these models would hold at larger scales. One recent 

example showed that soil health measures at the continental scale could be predicted with an accuracy of 

80% from 16S rRNA gene data (Wilhelm et al. 2022).  

  

Here, we hypothesized that microbial parameters would be able to better predict the yields and 

grain quality at a large geographical scale than selected soil parameters. Early in the growing season, we 

sampled soils from 80 fields across a transect of almost 500 km, without limiting our efforts to a certain 

type of soil, agricultural management, or variety of wheat. The regions visited and wheat varieties sowed 

were representative of the wheat farms of the province of Québec, Canada. We measured the following 

parameters from the soil samples: 1) bacterial, archaeal and fungal diversity using PCR amplicon 

sequencing, 2) community-level substrate utilization patterns using Biolog EcoPlates, 3) abundance of 

functional genes involved in the N-cycle using qPCR, 4) total bacterial and fungal abundance using qPCR, 

and 5) soil pH, total C, total N, soil water content and C: N ratio. We also measured yields and grain baking 

quality at the end of the growing season.   



54 

 

2.3 Material and methods 

 

2.3.1 Soil sampling 

In May-June 2018, 80 wheat fields in the province of Québec were sampled. These fields were 

distributed across Québec, from the Montérégie (45.1489° N, 73.3054°W) all the way to Saguenay-Lac St-

Jean (48.2511° N, 71.4758° W) and were planted with the following fall or spring wheat (Triticum aestivum) 

varieties: Walton, Warthog, Harvard, Scotia, Touran, Dakosta, Helios (Supplementary Table S1). The 

rotation and management regime of the farms and the size of the fields varied across all farms, with some 

being under organic management or not. From each field, 5 soil samples of approximately 200 g each were 

taken from the upper 10 cm of soil from each corner and the centre of the field. If wheat plants were present 

(fall wheat), soil samples were taken between rows, 10-25 cm away from the plants. The five samples were 

then mixed creating one 1 kg composite sample per field. The samples were kept on ice packs in a cooler 

and brought back to the lab where a part was frozen at -20°C for molecular analyses, a part was transferred 

at 4°C for Biolog EcoPlates analysis, and a last part was air dried for soil physico-chemical analyses. 

Between each field, all soil was brushed off the hand shovel and the container used to mix the soil, which 

were then rinsed with 70% ethanol. 

 

2.3.2 Soil physico-chemical properties 

For soil pH measurements, dried composite soil samples were homogenized (2 mm sieve) and 

pulverized with mortar and pestle. One gram of the homogenized soil was mixed with 9 ml of 0.01M 

CaCl2.2H2O. After 30 minutes, pH was measured with a pH meter. Soil water content was measured as the 

difference between the weight of soil before and after overnight drying at 75o C. Total soil carbon and 

nitrogen was measured by automated combustion techniques using an elemental analyzer 

(AgroEnvironnement Lab, La Pocatière, QC).  

 

2.3.3 DNA extraction and amplicon sequencing 

DNA was extracted from 500 mg sub-samples of each soil using the DNA PowerSoil Kit (Qiagen, 

Montreal, Canada) according to the manufacturer's protocol, with the exception that the bead-beating step 

was performed for 45s at speed 4 on a FastPrep homogenizer (MP Biomedicals, Southern California, USA). 

Amplicon libraries were generated using primers 515F and 806R (Caporaso et al. 2012) targeting the 

bacterial and archaeal 16S rRNA gene V4 region and using primers ITS1F and 58A2R (Martin & 

Rygiewicz, 2005) targeting the fungal ITS1 region following the Illumina "16S Metagenomic Sequencing 

Library Preparation Guideline" (Part #15 044 223 Rev. B). For each primer set, all samples were mixed 

equimolarly and the two resulting pools (one for the 16S rRNA gene and one for the ITS region) were sent 
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to the Centre d’expertise et de services Génome Québec (Montreal, Canada) for Illumina MiSeq 2 × 250 

bp pair-end sequencing. A total of 19,262,942 16S rRNA gene reads and 23,107,396 ITS region reads were 

produced (Supplementary Table S2).  

 

 

 

2.3.4 Bioinformatics 

Sequencing data was analysed using AmpliconTagger (Tremblay & Yergeau, 2019). Briefly, raw 

reads were scanned for sequencing adapters and PhiX spike-in sequences. We removed single end reads 

that met one of the following conditions: having average quality Phred score lower than 25; having 30 bases 

of quality lower than Phred score 15; having 1 or more undefined bases (N). The remaining sequences were 

processed for generating Amplicon Sequence Variants (ASVs) in DADA2 (v1.12.1; Callahan et al., 2016). 

Since the quality filtering step was performed in a separate upstream step, we used more lenient parameters 

for the DADA2 workflow: filterAndTrim (maxEE = 2, truncQ = 0, maxN = 0, minQ = 0). Errors were 

learned using the learnErrors (nbases = 1e8) function for both forward and reverse filtered reads. Reads 

were then merged using the mergePairs (minOverlap = 12, max Mismatch = 0) function. Chimeras were 

removed with DADA2’s internal removeBimeraDeNovo (method = ’consensus’) method followed by 

UCHIME reference (Edgar et al., 2011). ASVs were assigned a taxonomic lineage with the RDP classifier 

(Wang et al., 2007) using the Silva release 128 database (Quast et al. 2013) supplemented with eukaryotic 

sequences from the Silva database and a customized set of mitochondria, plasmid, archaeal and bacterial 

16S rRNA gene sequences (see the AmpliconTagger databases, doi:10.5281/zenodo.3560150). The RDP 

classifier gave a score (0 to 1) to each taxonomic depth of each ASV. For each ASV, the taxonomic lineage 

was reconstructed by keeping only the taxa that had a score ≥ 0.5. Taxonomic lineages were combined with 

the cluster abundance matrix obtained above to generate raw ASV tables. From these raw ASV tables, ASV 

tables only containing bacterial and archaeal ASVs or fungal ASVs were generated. In total, 34,373 

bacterial and archaeal ASVs and 9,224 fungal ASVs were identified. To normalize these ASV tables, 1000-

reads rarefactions were performed 500 times and the average number of reads for each ASV of each sample 

was then computed to obtain consensus normalized ASV tables.  

 

2.3.5 Real-time PCR 

The abundance of genes involved in key steps of the nitrogen cycle was quantified using 

quantitative real-time PCR (qPCR) with SyBr green. The genes targeted were: the bacterial ammonia 

monooxygenase subunit A gene (amoA), using primers amoA1-f* (5’- GGGGHTTYTACTGGTGGT-3’) 

and amoA2-r (5’-CCCCTCKGSAAAGCCTTCTTC-3’ (Levy-Booth et al. 2014), the archaeal amoA, using 
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primers crenamoA23-f (5’-ATGGTCTGGCTWAGACG-3’) and crenamoA616-r (5’- 

GCCATCCATCTGTA-3’) (Tourna et al. 2008), the nitrous oxide reductase gene (nosZ) using primers 

nosZ1-f (5’-WCSYTGTTCMTCGACAGCCAG3’) and nosZ1-r (5’ATGTCGATCARCTGVKCRTTYTC-

3’) (Henry et al. 2006), the copper-containing nitrite reductase gene (nirK), using primers 876f (5’ 

ATYGGCGGVCAYGGCGA3 3’) and 1040r (5’- GCCTCGATCAGRTTRTGGTT-3 (Henry et al. 2006). 

The abundance of the bacterial and archaeal 16S rRNA gene and of the fungal ITS region was quantified 

using the same primer sets used for sequencing. Standard curves for N-cycle genes were created by 

linearizing (SacII restriction enzyme digestion) P-Gem T plasmid (Promega Corporation, USA) into which 

a target gene of interest amplified from DNA extracted from an agricultural soil was cloned. The linearized 

plasmids were then serially diluted (108-101 copies µl-1). For the 16S rRNA gene, full-length 16S rRNA 

gene amplicons of Escherichia coli 25922 made using primers PA-27F-YM and PH-R (Edwards et al. 

1989) , were serially diluted. For the fungal ITS region, the standard curve was prepared from serial 

dilutions of ITS region amplicons from the yeast Pichia scolyti using the primers NSA3 and NLC2 (Martin 

& Rygiewicz 2005). qPCR assays were performed using the iTaq universal SYBRGreen kit (Bio-Rad 

Laboratories Inc, Hercules, CA) on a Stratagene Mx3005P qPCR system running the MxPro Mx3005P 

software (v4.10; Agilent Technologies, Santa Clara, CA). Each 25-µL master mix reaction contained 1X 

Master Mix (HotStar iTaq DNA Polymerase, dNTPs, MgCl2, SYBR Green I dye), 300 nM of primers and 

5 µL of DNA template at a concentration of 1ng/µL. Amplification conditions are given in Supplementary 

Table S3. Melting curve analyses were performed at the end of each run to confirm the absence of non-

specific amplification. All the standard curves had R2 of 0.98 or higher, whereas amplification efficiencies 

were of 94.0%, 86.9%, 108.9%, 96.8%, 54.0% and 57.3% for the bacterial amoA, archaeal amoA, nirK, 

nosZ, 16S rRNA gene and ITS region, respectively. 

 

2.3.6 Community-level carbon utilization profiling 

EcoPlates colorimetric assays (Biolog, Hayward, CA), comprising of 31 different carbon sources 

were inoculated with a 1/10 soil dilution (in water). Carbon utilization was observed using a 

spectrophotometer following an incubation of 168 hours in the dark at room temperature. The pink-purple 

color intensity that results from the reduction of tetrazolium dye following substrate utilization was used as 

an indicator of substrate utilization by the microbial community. 

 

2.3.7 Yields and baking quality 

Yields and a sample of grain for quality assessment were provided by participating growers on a 

voluntary basis. From the 80 fields sampled, we were able to retrieve yield data and a sample of grain from 

33 fields. The grain and flour baking quality were analyzed in the quality control laboratory of Les Moulins 
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de Soulanges (St-Polycarpe, QC) for the following parameters: grain humidity, grain protein content, grain 

test weight, grain gluten content, grain starch content, flour ash content, flour peak maximum time (PMT, 

time for the dough to reach its maximum consistency following hydration), flour maximum recorded torque 

(BEM, maximal consistency as measured as resistance to mechanical mixing), flour coarse wheat germ 

(CWG), flour falling number (amount of sprout damage), flour Zeleny number (sedimentation value) 

(Freund and Kim 2006). A good quality grain for bread is expected to have a high-test weight, a high coarse 

wheat germ, and a high protein and gluten content and a low starch content. The resulting good quality flour 

will have a low ash content, a high Zeleny number (low sedimentation), a high falling number (low sprout 

damage), a high maximum torque (high consistency) and a short peak maximum time (rapid to reach 

maximal consistency). 

 

 

2.3.8 Statistical analyses 

 

All statistical analyses and figure generation were performed in R (v.4.0.3). The effects of wheat 

variety and regions on wheat yields and baking quality, soil physico-chemical characteristics and microbial 

taxa relative abundance was tested by ANOVA. Prior to ANOVA, the normality of the data was tested by 

the Shapiro-Wilk test (shapiro.test), and if the data was not normally distributed, log or square root 

transformation was performed. If the transformation failed, the Kruskal-Wallis tests were performed using 

the kruskal.test function instead of ANOVA. Before correlation and regression analyses, outlier samples 

were removed from the dataset using the rstatix package. The Spearman correlation tests were performed 

using the cor.test function with Benjamini-Hochberg p-value correction for multiple tests using the p.adjust 

function. Multiple stepwise regression analysis was performed using the lm function with the step function 

for stepwise forward and backward selection of variables. In some cases, to generate models that could be 

compared between soil and microbial parameters, the procedure was limited to select the five variables 

showing the highest reduction of the mean square error. The Residual Standard Error (RSE) and Akaike 

Information Criterion (AIC) were calculated for each model using the stepAIC function of the mass 

package. Multicollinearity in regression models was examined by calculating the Variation Inflation Factor 

(VIF) for each variable using the vif function of the car package. 
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2.3.9 Data availability 

The raw datasets and associated metadata are available through NCBI BioProject accession PRJNA749034.
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2.4 Results 

2.4.1 Yields and grain quality 

From the 80 fields sampled, we were able to retrieve yield data and a sample of grain from 33 

fields. As expected, grain quality and yields significantly varied across the regions and the varieties (Table 

2-1). The highest yields were measured in Montérégie, most specially for the Warthog variety, whereas the 

lowest yields were measured for the Touran variety in Lac St-Jean and for the Scotia variety in Mauricie. 

The Walton and Scotia varieties had grains with the highest protein and gluten content when grown in 

Mauricie, and similarly, the Scotia variety grown in Mauricie had the lowest PMT and the highest BEM. 

The regional differences were not related to geographical distances between the fields, as Mantel tests 

between similarity in quality parameters and geographical distance (km) did not result in significant 

correlations. 

 

 

 

Table 2-1. Average yield and grain quality data across Quebec wheat farms. Average yields and grain and flour quality 

parameters averaged across regions and wheat varieties together with ANOVA or Kruskal Wallis tests results (N=33) 

Region Variety Humi

dity 

% 

Protein

% 

Starch

% 

Zeleny 

% 

Gluten

% 

Ash % Falling 

Number 

(Sec) 

PMT 

(Sec) 

BEM 

(Brabe

nder 

Units) 

CWG 

% 

CN Yield 

(T/ha) 

Centre-du-Qc Scotia 14.9 15.5 67.2 70.2 31.3 1.8 311.3 71.0 58.0 34.1 11.0 2.9 

 Walton 14.3 14.6 67.2 64.1 29.6 2.5 422.0 64.0 58.0 33.2 10.6 3.1 

Estrie Warthog 14.6 14.0 67.1 60.2 28.1 1.5 359.0 64.5 50.5 31.3 9.9 2.9 

Mauricie Scotia 14.1 18.0 65.0 89.8 37.3 1.2 355.6 58.9 61.0 34.9 11.3 1.8 

 Walton 15.2 17.5 66.1 83.2 35.2 0.8 343.0 68.0 57.0 33.6 10.8 2.7 

Montérégie Walton 13.6 13.0 67.6 52.5 25.8 1.0 370.0 101.3 43.8 31.2 9.8 4.7 

 Warthog 14.0 14.0 69.2 57.2 27.1 0.8 432.3 59.7 47.3 30.6 16.0 5.8 

Lac St-Jean Touran 14.9 15.9 67.5 72.1 31.6 1.2 416.0 61.0 57.0 33.7 10.8 1.5 

Lanaudière Harvard 13.7 13.6 68.2 55.1 27.1 1.7 397.8 91.5 47.5 31.6 10.0 3.1 

 Helios 13.4 16.8 66.5 77.9 34.5 3.3 412.8 69.5 61.0 35.5 11.6 2.7 

              

 Region n.s ** ** ** ** n.s * ** ** ** n.s *** 

 Variety n.s * * ** ** n.s n.s *** * * n.s ** 

*P<0.05, **P<0.01, ***P<0.001, ns P>0.05 
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2.4.2 Soil properties 

We measured five key soil parameters: pH, total N, total C, water content and C:N ratio for the 33 

fields we had retrieved yield and grain quality data. Soil water content (P=0.002) and pH (P=0.00064) 

varied significantly across the regions sampled, with higher soil water contents in Estrie and lower soil 

water contents in Mauricie and higher pH in Centre-du-Québec and lower pH in Mauricie (Supplementary 

Table S1). Significant correlations were found between soil pH and grain protein content (rs=-0.448, 

P=0.009), Zeleny (rs=-0.466, P=0.007), gluten (rs=-0.457, P=0.008), flour BEM (rs=-0.453, P=0.009) and 

yield (rs=0.679, P=0.00001). Similarly, protein (rs=-0.633, P = 0.00009), starch (rs=0.597, P = 0.0003), and 

gluten content (rs=-0.634, P=0.00009), BEM (rs=-0.513, P=0.002), CWG (rs=-0.495, P=0.003) and yield 

(rs=0.610, P =0.0002), were significantly correlated with soil water content. We also found significant 

correlations between yield (rs=-0.576, P=0.0004) and flour falling number (rs= 0.515, P=0.002) with soil 

C:N ratio. 

 

2.4.3 Microbial functions  

For community-level carbon utilization pattern (Biolog Eco Plates), we found significant 

correlations between wheat yield and the utilization N-acetyl glucosamine (rs=-0.456, P=0.00058), L-

threonine (rs=0.418, P=0.00181), alpha keto-butyric acid (rs=0.352, P=0.00967), D-glucosaminic acid (rs=-

0.523, P=0.00005) and putrescine (rs=-0.490, P=0.0019). There was no significant correlation between 

carbon use and other grain and flour qualities, except for flour ash content which was positively correlated 

to the utilization of glucose-1-phosphate (rs=0.443, P=0.00972). For the abundance of N-cycle functional 

genes measured by qPCR, the only significant correlations were found between the AOB (rs=0.447, 

P=0.0591), nirK (rs=0.479, P=0.0072), and nosZ (rs=0.410, P=0.0218) genes and wheat grain moisture 

content. 

 

2.4.4 Soil microbial community structure, composition, and diversity 

The bacterial and archaeal communities were dominated by the Acidobacteria, the Actinobacteria, 

and the Proteobacteria, which made up about 75% of the whole bacterial and archaeal community (Fig. 2-

1). Among the phyla having a mean relative abundance above 1%, the Planctomycetes (P= 0.0469) and 

Actinobacteria (P=0.009) varied significantly across the regions. The fungal communities were dominated 

by the Agaricomycetes, the Mortierellomycotina, and the Sordariomycetes (Fig. 1). The following fungal 

classes showed significant variation across the regions: Trellomycetes (P=0.0027), Agaricomycetes (P=1.34 

x 10-5), Pezizomycotina (P=0.000751), Mortierellomycotina (P=0.0313). We also correlated the relative 
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abundance of all individual archaeal, bacterial, and fungal ASVs (with a mean relative abundance above 

1%) with yield and grain quality data. After Benjamini-Hochberg correction for multiple testing, several 

grain quality parameters such as, falling number, grain moisture content, C:N ratio, flour maximum 

recorded torque (BEM), flour coarse wheat germ (CWG) showed significant (adjusted P<0.01) negative 

correlations with Ascomycota, Basidiomycota and Zygomycota ASVs, whereas flour peak maximum time 

(PMT) and ash content had significant (adjusted P<0.01) positive correlations to fungal ASVs (Table 2-2). 

On the other hand, the relative abundances of many bacterial ASVs belonging to the Actinobacteria, the 

Proteobacteria, and the Verrucomicrobia were significantly (adjusted P<0.001) correlated with protein, 

starch, gluten content and other quality parameter (Table 2-2). Bacterial and archaeal Shannon diversity 

was significantly and negatively correlated with grain moisture content (rs= -0.411, P=0.0191). The fungal 

Shannon diversity was significantly and positively correlated with yield (rs=0.379, P= 0.0388) and grain 

starch content (rs= 0.397, P= 0.0268) and negatively correlated with protein content (rs= -0.431, P= 0.0154), 

Zeleny (rs= -0.431,  P=0.0129), gluten content (rs= -0.455, P=0.0101), CN (rs= -0.429, P=0.0153), flour 

maximum recorded torque (BEM) (rs= -0.388, P= 0.0309), flour coarse wheat germ (CWG) (rs= -0.454, P= 

0.0102).  

 

 

Table 2-2. Summary of correlation studies between microbial ASV and grain quality parameters. Significant (adjusted P-

value <0.001 for bacteria-archaea and <0.01 for fungi) Spearman correlations between abundant bacterial and fungal ASVs 

(mean relative abundance above 1%) and grain baking quality (N=33). 

ASVs Quality 

parameter 

rs adj. P-value ASV taxonomy (phylum; genus) 

Bacteria     

14 Protein 0.544 0.0009 Actinobacteria; Pseudarthrobacter 

14 Starch -0.630 0.00006 Actinobacteria; Pseudarthrobacter 

14 Zeleny 0.584 0.0003 Actinobacteria; Pseudarthrobacter 

14 Gluten 0.581 0.0004 Actinobacteria; Pseudarthrobacter 

2413 PMT 0.572 0.0003 Gemmatimonadetes; Uncult Gemmatimonadaceae 

2413 BEM -0.594 0.0002 Gemmatimonadetes; Uncult Gemmatimonadaceae 

3294 PMT 0.572 0.0003 Firmicutes; Paenibacillus 

3294 BEM -0.595 0.0002 Firmicutes; Paenibacillus 

3294 CWG -0.675 0.000009 Firmicutes; Paenibacillus 

2190 PMT 0.572 0.0003 Nitrospirae; Nitrospira 

2190 BEM -0.594 0.0002 Nitrospirae; Nitrospira 

2190 CWG -0.673 0.000009 Nitrospirae; Nitrospira 

1397 CN -0.610 0.000099 Proteobacteria; Nitrosospira 
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1397 Falling number -0.695 0.000004 Proteobacteria; Nitrosospira 

1397 PMT 0.550 0.0006 Proteobacteria; Nitrosospira 

1397 BEM -0.547 0.0007 Proteobacteria; Nitrosospira 

1397 CWG -0.614 0.000088 Proteobacteria; Nitrosospira 

2029 CN -0.672 0.000010 Proteobacteria; Sphingomonas 

2029 PMT 0.572 0.0003 Proteobacteria; Sphingomonas 

2029 BEM -0.594 0.0002 Proteobacteria; Sphingomonas 

2029 CWG -0.674 0.000009 Proteobacteria; Sphingomonas 

4604 Test Weight -0.728 0.00000068 Planctomycetes; Pir4 lineage 

4604 PMT 0.571 0.00033195 Planctomycetes; Pir4 lineage 

6319 CN -0.673 0.000010 Verrucomicrobia; Verrucomicrobium 

6319 PMT 0.572 0.0003 Verrucomicrobia; Verrucomicrobium 

6319 BEM -0.595 0.0002 Verrucomicrobia; Verrucomicrobium 

6319 CWG -0.674 0.000009 Verrucomicrobia; Verrucomicrobium 

Fungi     

454 CN -0.562 0.0005 Ascomycota; Lecythophora 

454 Falling number -0.539 0.0010 Ascomycota; Lecythophora 

454 PMT 0.578 0.0003 Ascomycota; Lecythophora 

454 BEM -0.533 0.0012 Ascomycota; Lecythophora 

454 CWG -0.563 0.0005 Ascomycota; Lecythophora 

1412 PMT 0.571 0.0004 Ascomycota; Archaeorhizomyces 

1412 BEM -0.593 0.0002 Ascomycota; Archaeorhizomyces 

1412 CWG -0.673 0.00001 Ascomycota; Archaeorhizomyces 

1412 CN -0.671 0.00001 Ascomycota; Archaeorhizomyces 

3671 CN -0.667 0.00002 Ascomycota; Peziza 

3671 PMT 0.562 0.0005 Ascomycota; Peziza 

3671 BEM -0.587 0.0003 Ascomycota; Peziza 

3671 CWG -0.669 0.00002 Ascomycota; Peziza 

80 CN -0.535 0.0011 Basidiomycota; Ganoderma 

80 PMT 0.447 0.0080 Basidiomycota; Ganoderma 

80 BEM -0.496 0.0029 Basidiomycota; Ganoderma 

80 CWG -0.538 0.0010 Basidiomycota; Ganoderma 

663 Ash 0.592 0.0003 Basidiomycota; Ceratobasidium 

757 CN -0.694 0.000005 Basidiomycota; Psathyrella 

757 PMT 0.696 0.000005 Basidiomycota; Psathyrella 

757 BEM -0.673 0.000013 Basidiomycota; Psathyrella 

757 CWG -0.696 0.000005 Basidiomycota; Psathyrella 
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566 Humidity -0.442 0.0099 Zygomycota; Mortierella 

PMT=Flour Peak Maximum Time, BEM=Flour Maximum Torque, CWG= Coarse Wheat Germ, CN= 

Carbon/Nitrogen ratio. 
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Figure 2-1: Summary of bacterial and archaeal, and fungal community composition. Bacterial and archaeal (A) and fungal 

(B) community composition for the phyla (A) or classes (B) having a mean relative abundance above 1%, based on Illumina 

amplicon sequencing of the 16S rRNA gene (A) or the ITS region (B). Values are averaged across the regions. For a clearer 

understanding of how fungal community composition is affected across provinces, fungal ASVs are displayed at the class 

level rather than the phylum level. 

 

 

2.4.5 Predictive modeling of wheat grain and flour quality 

We have limited our modeling efforts to yield, grain protein and gluten content and flour PMT and 

BEM, which are arguably the best indicators for grain and flour that produces high quality bread. Microbes-

only multiple regression analysis was performed using the following explanatory variables: fungi: bacteria 

(F:B) ratio (calculated from the ratio of the qPCR quantifications of the ITS region and the 16S rRNA gene), 

fungal and bacterial-archaeal diversity indices (Shannon, Chao1, Simpson and observed ASVs), the color 

development for the top ten Biolog substrates (highest correlations with quality and yield data, irrespective 

of significance, calculated separately for each of the dependent variables), the abundance of the four N-

cycle functional genes, the relative abundances of the top 10 fungal and top 10 bacterial-archaeal ASVs 

(highest correlations with quality and yield data, irrespective of significance, calculated separately for each 

of the dependent variables), and bacterial-archaeal and fungal PCoA axes 1 and 2. The soil-only multiple 

regression analysis used pH, total N, total C, water content and C: N ratio as explanatory variables. First, 

we wanted to compare the performance of soil vs. microbial variables to explain yield and grain quality. As 

the explanatory power of multiple regression models generally increases with the number of explanatory 

variables included in the model, we limited the number of variables to be selected for the microbes-only 
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model to 5 to match the number of variables available for the soil-only model. The following regression 

equations were generated for the microbes-only analyses: 

 

 

Yield = 5.07+10210·Fun757 -2.35· γ-amino butyric acid + 0. 013.fungal Sobs-3.24. 

bacterial PCoA axis1 -2.97×10- 5. AOB……………(1)  

 

Protein = 13.11+7.62·fungal PCoA axis2– 2244·Bact3294 +4.12·γ-amino butyric acid + 5.04×10-5  

·AOB – 0.031·fungal Sobs ………………………….(2) 

 

Gluten = 33.98+ 18.56·fungal PCoA axis2 -2428·Fun454 -5719·Bact3294 -2.48·fungal Shannon + 

8.04·γ-amino butyric acid…………………………(3) 

 

PMT = 89.2-30.19·bacterial PCoA axis1+ 26.99· α-keto butyric acid -39.20· L-Threonine -

0.00077·AOB -12470·Bact2029…………………. (4) 

 

BEM = 47.29+9023·Bact6319+ 14.54·glucose-1-phosphate +0.00054·AOB -59030·Fun757 -

0.065·fungal Sobs………………………………… (5) 

 

For the soil-only model, we obtained the following regression equations: 

 

 

Yield = -4.98+18.24. total N -1.27. total C-0.0075. C:N ratio +0.77. water content +  

1.13·pH………………………………………….(1) 

 

Protein= 35.74-45.31· total N +3.63· total C -0.70·C:N ratio -2.42· water content - 

1.54·pH………………………………………..  (2) 

 

Gluten= 82.82-119.02·total N +9.43·total C -1.88·C:N ratio -5.44· water content - 

3.76·pH……………………………………….. (3) 

 

PMT= 24.33-6.10·total N -2.28·total C +0.91·C:N ratio +5.37· water content +6.64· 

pH…………………………………………….(4) 
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BEM= 132.99-203.62·total N +15.82·total C -3.39·C:N ratio -6.53· water content -4.97· 

pH…………………………………………….(5) 

In all cases, with the same number of explanatory variables, the microbes-only models outperformed the 

soil-only models, with higher R2 values and lower Akaike Information Criterion (AIC) and Residual 

Standard Error (RSE) (Table 3). In the soil-only models, total N, total C and C:N ratio were highly collinear 

with Variation Inflation Factors (VIF) well above 5 (Table 2-4), which could partly explain their lower 

performance as compared to the microbes-only models. The variables selected in the microbes-only models 

did not show any evidence of collinearity, with VIF well below 5 in all cases (Table 2-4). Since we had 

much more than 5 potential microbial explanatory variables, we re-ran the analyses, including all the 

microbial and soil variables listed above, and let the stepwise procedure proceed until all significant 

variables were included in the model. Between 9 and 11 variables were included. This resulted in the 

following regression equations:  

 

 

Yield = -0.916+1.04. pH +6526. Fun757 +0.73. water content -0.25.C:N ratio + 215.6. Bact2413 

+87180.Fun3671 -1.75. L-threonine -315.7. Bact2029 -2.08. fungal PCoA axis2+1.45. fungal PCoA 

axis1………………………………………..(1) 

 

Protein =22.14+6.80. fungal PCoA axis2-2540.Bact3294-2.15. pH -422.9. Fun80 + 11.56.L-threonine - 

4.20. α-keto butyric acid +0.83. F:B ratio +0.000071. AOB +1.78. L-asparagine +1114. 

Bact4604…………………………………..(2) 

 

Gluten=64.59+17.61. fungal PCoA axis2 -6450.Bact3294 -5.56. pH-89.42. Fun80 +21.84. L-Threonine 

-10.51. α- keto butyric acid +2.11. F:B ratio-18.74. total N+0.0001193. 

AOB………………………………………(3) 

 

PMT= -93. 32+26770.Bact3294 +21.59. pH – 199500.Fun757 -8377.Bact1397 + 0.0001323.AOA -46.31. 

bacterial PCoA axis1 -650500.Fun1412 + 64.05. fungal PCoA axis1 -73.31. fungal PCoA axis2 + 9.52. 

water content + 9.41.L-arginine………..(4) 

 

BEM = 86.7-11.23. pH -11125.Bact3294 -8.01. water content -3471.Bact14 + 2.94.C: N ratio -29.15. 

fungal PCoA axis1 + 22.62. L-threonine -796.Fun80 + 9.41. D-glucosaminic acid + 2.43.F: B 

ratio…………………………………...(5) 
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Table 2-3: Evaluation of model based on different statistical parameters. Akaike information criterion (AIC), Residual 

standard error (RSE), adjusted R2 and P-value for the soil, microbial and soil + microbial models. 

 Soil Microbial Soil+Microbial 

Yield    

Nb. variables 5 5 10 

AIC -5.45 -19.24 -46.63 

RSE 0.84 0.65 0.38 

Adjusted R2 0.59 0.72 0.90 

P-value 2.36×10-5 9.01×10-7 7.98×10-9 

    

Protein    

Nb. variables 5 5 10 

AIC 53.35 35.83 3.71 

RSE 2.11 1.69 0.92 

Adjusted R2 0.32 0.55 0.87 

P-value 0.00915 1.96×10-4 1.40×10-7 

    

Gluten    

Nb. variables 5 5 9 

AIC 106.48 83.95 60.51 

RSE 4.85 3.88 2.48 

Adjusted R2 0.33 0.56 0.82 

P-value 0.00716 1.72×10-4 7.34×10-7 

    

PMT    

Nb. variables 5 5 11 

AIC 193.95 168.95 140.43 

RSE 20.2 16.81 9.72 

Adjusted R2 -0.063 0.23 0.74 

P-value 0.677 0.0481 7.21×10-5 

    

BEM    

Nb. variables 5 5 10 

AIC 140.27 123.90 107.73 

RSE 8.23 7.73 5.56 

Adjusted R2 0.19 0.31 0.64 

P-value 0.0617 0.0163 5.02×10-4 

PMT=Flour Peak Maximum Time, BEM=Flour Maximum Torque, AIC: Akaike Information Criterion, RSE: 

Residual Standard Error. 
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Table 2-4: Model evaluation for bias-variance and multicollinearity among input variables. Variation inflation factor 

(VIF) for the variables included in the soil, microbial and soil + microbial models. 

Yield Protein Gluten PMT BEM 

Variable VIF Variable VIF Variable VIF Variable VIF Variable VIF 

Soil          

tot. N 74.05 tot. N 74.05 tot. N 74.05 tot. N 74.05 tot. N 74.05 

tot. C 105.45 tot. C 105.45 tot. C 105.45 tot. C 105.45 tot. C 105.45 

C/N 13.87 C/N 13.87 C/N 13.87 C/N 13.87 C/N 13.87 

water 1.09 water 1.09 water 1.09 water 1.09 water 1.09 

pH 1.20 pH 1.20 pH 1.20 pH 1.20 pH 1.20 

          

Microbial          

Fun757 1.17 fun axis2 1.34 fun axis2 1.38 bact axis1 1.08 Bact6319 1.11 

bacterial 

axis1 

1.05 Bact3294 1.30 Fun454 1.15 AKBA 1.76 G1P 1.64 

GABA 1.13 GABA 1.51 Bact3294 1.47 L-

threonine 

1.81 AOB 1.47 

AOB 1.10 AOB 1.13 fun Shannon 1.70 AOB 1.17 Fun757 1.21 

fun Sobs 1.18 fun Sobs 1.37 GABA 1.35 Bact2029 1.15 fun Sobs 1.27 

          

Microbial + soil         

ph 2.12 fun axis2 1.69 fun axis2 1.55 Bact3294 1.58 pH 1.93 

Fun757 1.61 Bact3294 1.25 Bact3294 1.27 pH 2.55 Bact3294 1.24 

water 1.15 pH 1.87 pH 1.89 Fun757 2.19 water 1.37 

C.N.ratio 2.27 Fun80 1.47 Fun80 1.41 Bact1397 1.15 Bact14 1.52 

Bact2413 1.18 L-threonine 3.67 L-threonine 2.73 AOA 1.20 C:N.ratio 2.23 

Fun3671 2.24 AKBA 2.17 AKBA 2.38 Bact 

axis1 

1.42 fun axis1 2.12 

L-

Threonine 

2.50 F:B.ratio 1.33 F:B.ratio 1.35 Fun1412 1.91 L-

threonine 

2.15 

Bact2029 1.20 AOB 1.56 total.N 1.35 fun axis1 2.63 Fun80 1.35 

fun axis2 1.73 L-

asparagine 

2.01 AOB 1.40 fun axis2 1.86 DGA 1.99 

fun axis1 2.48 Bact4604 1.10   water 1.23 F:B.ratio 1.23 

      L-

arginine 

1.34   

Values are identical for the soil models because the exact same variables were used in the five models.  

GABA: Gamma-Aminobutyric Acid 

AKBA: Alpha-ketobutyric acid 

DGA: D-Glucosaminic Acid 

G1P: Glucose-1-Phosphate 

AOB: bacterial ammonia monooxygenase subunit A 

AOA: archaeal ammonia monooxygenase subunit A 
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The predictive power of the models is depicted in Figure 2-2, where the predicted values for wheat yield 

and grain baking quality are plotted against the observed values. All the models were highly significant and 

had lower AIC and RSE and higher R2 than the soil-only and the microbes-only models (Table 2-3). R2 

varied from 64% (BEM) to 90% (Yield), with P-values well below 0.001. The variables selected in the 

models did not show any evidence of collinearity, with VIF well below 5 in all cases (Table 4). The 

taxonomic affiliations of the ASVs selected in the models are as follows:  Fun80: Ganoderma 

(Basidiomycota), Fun454: Lecytophora (Ascomycota), Fun757: Psathyrella (Basidiomycota), Fun1412: 

Archaeorhizomyces (Ascomycota), Fun3671: Pezizomycetes (Ascomycota), Bact14: Pseudarthrobacter  

(Actinobacteria), Bact1397: Nitrosospira (Proteobacteria), Bact2029: Sphingomonas (Proteobacteria), 

Bact2413: uncultured Gemmatimonadaceae (Gemmatimonadetes), Bact3294: Paenibacillus (Firmicutes), 

Bact4604: Pir4 lineage (Planctomycetes), Bact6319: Verrucomicrobium (Verrucomicrobia). 
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Figure 2-2: Soil and microbial-based multiple linear regression models. Observed vs. predicted yields, grain protein and 

gluten content, flour maximum peak time (PMT), flour recorded maximum torque (BEM) based on the soil + microbial 

models presented in the result section (N=33). Red lines go through the origin and have a slope of 1. 
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2.5 Discussion 

 

We had hypothesized that microbial parameters measured early in the growing season would be 

able to better predict wheat yield and grain and flour baking quality than soil parameters measured at the 

same time. When using the exact same number of explanatory variables, microbes-only regression models 

were better able to predict wheat yield and key baking quality indicators such as grain protein and gluten 

content and flour peak maximum time (PMT) and maximum torque (BEM) than soil-only models. In fact, 

the soil parameters failed to produce a significant model to predict PMT and BEM. When combining 

microbial and soil parameters, we were able to generate models with R2 of 64 to 90%. Additionally, our 

study confirmed the predictive power of microbial indicators for soil processes at a scale of ~500 km. 

Similarly, a recent continental-scale study showed that it was possible to use machine-learning to predict 

soil health based on 16S rRNA gene dataset with a R2 around 80% (Wilhelm et al. 2022). Previous studies 

that had tried to predict processes based on microbial indicators had focused on a few neighbouring fields 

(Yergeau et al. 2020), lab-incubated soils (Bell et al. 2015), or greenhouse grown plants (Yergeau et al. 

2015). Here, we sampled fields across the wheat growing regions of the province of Québec without limiting 

our efforts to a certain type of soil, agricultural management, or variety of wheat, and we were still able to 

produce highly significant regression models that predicted very accurately yields and grain and flour 

quality.  

 

Although some of the soil parameters measured here, such as pH, water content and C:N ratio were 

previously reported to have a determining effect on soil microbial communities (Wan et al. 2015, Zhalnina 

et al. 2015), their linkages with soil processes, i.e., the activities carried out by the soil microbial 

communities, are not necessarily straightforward (Sánchez et al. 2021). For instance, nutrient availability 

and its depletion depend on the soil moisture content (Marschner & Rengel 2012), but the equilibrium of 

soil nutrients and soil C and N status is regulated by microbial activity (Paz-Ferreiro & Fu 2016). We found 

significant correlations between soil pH and water content and some grain quality indicators, but since these 

parameters cannot consider directly the microbial factors involved in the transformation of soil inorganic 

and organic N, which impacts plant N use efficiency, grain and flour baking quality could not be accurately 

predicted. Although this might vary through time, we showed here that quality parameters were negatively 

linked to soil total N measured at the beginning of the season. This put in question the practice of 

indiscriminately fertilizing at high N levels (Vanasse 2012), as, depending on the soil microbiology, good 

quality grain could be obtained without adding fertilizer, as previously reported (Yergeau et al. 2020). A 

recent study showed that current year cranberry yields could be predicted with an accuracy of 83% from 

location, cultivars, climatic indices, fertilization, and plant tissue nutrient content and soil chemical 
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characteristics (Parent et al. 2021). Similarly, by extending the number of soil parameters measured, we 

could probably have increased the accuracy of the soil models, but it would have become rapidly cost- 

and/or labor-prohibitive. Additionally, in view of the lack of strong linkages between many soil parameters 

and soil processes, it is doubtful if this increase in the number of parameters would have led to soil-based 

models that would have outperformed microbial-based models.  

 

Microbial parameters such as the abundance of functional genes, the capacity to degrade substrates, 

or general community descriptors (i.e., diversity indices or PCoA axes) can be more directly related to soil 

processes. This is probably why we showed here, in agreement with our hypothesis, that regression models 

based on microbial indicators were able to predict more accurately wheat yield and grain and flour quality 

than models based on soil indicators. In fact, soil physico-chemical parameters were at best able to predict 

the grain quality with an accuracy of 33% and failed to yield a significant model for flour quality, whereas 

using the same number of variables, microbial models were able to predict wheat grain quality with an 

accuracy of up to 56%, and flour quality with an accuracy of up to 31%. Another strength of the microbial 

approach is that once the analyses are completed, several hundreds of parameters are available and can be 

added to the models to improve accuracy. In our case, using still parsimonious models of less than 11 

parameters, we were able to increase accuracy up to 87% for grain quality and up to 74% for flour quality. 

Of course, to have practical applications for farmers and millers, the microbial parameters highlighted 

would have to be measured using more rapid and inexpensive methods such as qPCR for the selected ASVs 

and specific substrate degradation assays for the Biolog indicators. Shallow amplicon sequencing could 

also be useful to determine general community parameters, such as alpha and beta diversity, rapidly and 

inexpensively.  

 

Many of the microbial parameters selected in our regression models can be linked to important soil 

processes that could have impacted wheat N nutrition, and consequently grain and flour baking quality. For 

instance, there were negative relationships between the abundance of the archaeal amoA, the relative 

abundances of an ammonia oxidizer ASV (Nitrosospira) and of a nitrite-oxidizer or comammox ASV 

(Nitrospira) with flour and grain quality. Ammonia can be taken up passively by plants and directly 

assimilated into amino acids, whereas nitrate needs to be taken up actively and reduced to ammonia before 

being assimilated into amino acids. This makes ammonia more energy-efficient for plants (Moreau 2019), 

especially for high N demanding crops such as bread wheat. In that case, ammonia-oxidizers that perform 

the first rate-limiting step of nitrification are generally thought to have negative effects on plant N nutrition. 

Similarly, our previous study that focused on two fields in the southern part of the province of Quebec had 

reported that the abundance of the archaeal amoA gene was negatively linked to grain and flour quality 
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(Yergeau et al. 2020). In contrast to the archaeal version of the amoA gene, we found that the abundance of 

the bacterial amoA was positively linked to grain protein and gluten content. These contrasting results could 

be due to a disconnection between AOB abundance and process rates (Hu et al. 2015) or to the dominance 

of AOA in nitrification processes of terrestrial ecosystems (Adair & Schwartz 2011, Gubry-Rangin et al. 

2010, Leininger et al. 2006). The total abundance of the AOB could also not be directly relevant for soil 

processes, with AOA: AOB or AOB:total bacteria ratios being more important.  

 

Some other selected parameters, such as the utilization of specific substrates, could potentially have 

a functional significance. For instance, some of the selected substrates such as L-Threonine and L-

Asparagine are amino acids, and the capacity to degrade them efficiently could indicate a community that 

is better able to access to the N stored in soil organic matter, which could also improve soil N availability 

(Jones & Kielland 2002, Ukalska-Jaruga et al. 2020) and consequently plant N nutrition. Similarly, the 

capacity to degrade efficiently glucose-1-phosphate could be linked to the efficient degradation of glycogen 

or starch and potentially a heightened capacity to degrade soil organic matter. It has also been reported that 

the activity of microbes using glucose-1 phosphate as a carbon source impacted the diversity of the 

rhizosphere and bulk soil microbial communities (Hills et al. 2020). Another interesting parameter that was 

often selected and had positive relationships with quality is the fungal:bacterial ratio. A higher F:B ratio 

could mean that more soil organic matter is degraded by fungi, resulting in more N being released for plant 

uptake since fungi generally have a lower requirement for N per unit of biomass. This could also be the 

reason behind the selection of fungal PCoA axes, diversity indices and ASVs in many of the models. Some 

of the bacterial ASVs singled out by regression and correlation analyses belonged to genera, such as 

Paenibacillus and Sphingomonas, that contain known plant-growth promoting rhizobacteria (PGPR) 

(Castanhera et al. 2017; Liu et al. 2019). However, these relationships were mostly negative for grain and 

flour quality, which could indicate that, at constant N inputs, N is diluted in larger plants, which lowers 

grain quality. Other parameters could not be directly linked to processes related to wheat N nutrition. Our 

goal was not to produce a model that would explain wheat N nutrition, but to highlight microbial predictors 

for high quality grain and flour, and as such, some of the indicators selected could be co-varying with other 

unmeasured factors or simply have a niche optimum that is also conducive for optimal wheat nutrition. 

Even though they might have no functional significance, these indicators are still useful for increasing the 

accuracy of the predictive models and could be used as indicators to inform management practices.  

 

Several differences were found between our previous effort to model grain quality in two wheat 

fields (Yergeau et al. 2020) and the current study. For instance, Yergeau et al. (2020) reported that the 

abundance of the copper-containing nitrite reductase (nirK) was a significant variable explaining wheat 
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grain quality, which was not the case here. The ASVs selected by the models were also different. These 

discrepancies could be explained by the fact that the Yergeau et al. (2020) study sampled two wheat varieties 

in two fields that were under various inorganic nitrogen fertilization regimes, whereas we sampled 80 fields 

across the province of Quebec growing seven varieties of wheat in various soil types, and under a range of 

fertilization, management, and environmental conditions, which have reduced the microbial indicators to 

the ones that are significant across these conditions. Alternatively, year to year differences in environmental 

conditions might have resulted in different microbial indicators being identified as significant in the two 

studies. It would therefore be crucial to test the stability in time of the indicators found here through a multi-

year study. A robust indicator would be significant year after year across the whole province. 

 

Interestingly, microbial parameters obtained early in the growing season showed strong linkages 

with grain quality at the end of the growing season, confirming previous results for wheat yield and grain 

quality (Yergeau et al. 2020) and for willows rhizo-remediation capacity (Yergeau et al. 2015, Bell et al. 

2015). In fact, our best models were able to explain 64 to 90% of the variability in yields and quality from 

microbial and soil indicators derived from bulk soil sampled months earlier. It would be interesting to find 

the best sampling period to optimize the predictive power of our approach. However, the window of 

intervention to steer the soil communities will be smaller if the indicators are measured later in the season. 

Thus, it appears that the initial measurement of microbial diversity, functional genes and potential to use 

various carbon substrates could help farmers make the best management decisions. The key question is 

now: how can we use this information to modulate the microbial indicators identified to improve wheat 

baking quality? Many studies have suggested approaches to engineer or manipulate complex microbial 

communities (Agoussar & Yergeau 2021, Calderón et al. 2017, Sheth et al. 2016, Quiza et al. 2015) but the 

field is still in its infancy. Agricultural management practices do modify the soil and plant microbial 

communities (Babin et al. 2019) and could be used to steer the communities toward the desired state. 

However, more controlled studies would be needed to confirm if this is something feasible at a large scale. 

Identifying robust and highly accurate microbial indicators is the first step toward a better management of 

crop production system, to increase produce quality while reducing inputs, on the road to a more sustainable 

agriculture.  
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3.1 Abstract 

Previous studies have shown that it is possible to accurately predict wheat grain quality and yields 

using microbial indicators. However, it is uncertain what the best timing for sampling is. For optimal 

usefulness of this modeling approach, microbial indicators from samples taken early in the season should 

have the best predictive power. Here, we sampled a field every two weeks across a single growing season 

and measured a wide array of microbial parameters (amplicon sequencing, abundance of N-cycle related 

functional genes, and microbial carbon usage) to find the moment when the microbial predictive power for 

wheat grain baking quality is highest. We found that the highest predictive power for wheat grain quality 

was for microbial data derived from samples taken early in the season (May–June) which coincides roughly 

with the seedling and tillering growth stages, that are important for wheat N nutrition. Our models based 

on LASSO regression also highlighted a set of microbial parameters highly coherent with our previous 

surveys, including alpha- and beta-diversity indices and N-cycle genes. Taken together, our results suggest 

that measuring microbial parameters early in the wheat growing season could help farmers better predict 

wheat grain quality. 

 

Keywords: wheat microbiome; LASSO regression; grain quality; amplicon sequencing; nitrogen cycle; 

community level physiological profiling 

  



80 

 

3.2 Introduction 

Integrated microbiocentric approaches to optimize plant production are promising and have often 

been proposed to solve some of the many problems agricultural production faces (Figuerola et al. 2012; 

Schloter et al.2018). Soil microorganisms play a key role in many ecosystem processes that are central to 

agricultural production. For instance, soil microorganisms recycle organic matter, cycle nutrients, abate 

abiotic stresses, change soil structure and porosity, and promote plant growth (Ortiz & Sansinenea 2022). 

However, although it is theoretically known how to modify microbial communities (Agoussar & Yergeau 

2021), it is in practice still a very daunting task because of the complexity of the communities and their 

interactions. A first step towards this goal would be to create microbial-based models predicting agricultural 

processes, to identify clear targets and key functions or taxa to manipulate.  

However, soil microbial communities are very dynamic, which makes it difficult to predict process 

rates and to identify key players that would be amenable to manipulation. Soil microbial communities are 

strongly influenced by biotic and abiotic factors, such as temperature, precipitations, and plant growth stage, 

which all vary in time, often in an unpredictable manner. We recently showed that dry-rewetting cycles 

lead to a complete overhaul of the soil microbial communities, much more than small decreases in soil 

water content (Wang et al. 2022.). Soybean and wheat growth stages were shown to profoundly influence 

the microbial diversity associated with the plant, often in interaction with plant compartment, plant 

genotype, soil water content and soil history (Moroenyane et al. 2021; Azarbad et al. 2022; Azarbad et al. 

2020). Similarly, the effect of the genotype on root and rhizosphere microbial communities varied over 

time (years) and with wheat growth stages (Quiza et al. 2022). These microbial shifts related to plant growth 

stages were previously linked to changes in the composition and concentration of plant root exudates during 

development (Chaparro et al. 2013). The timing of sampling is thus expected to influence the predictive 

power microbial parameters, but it is still uncertain what the best sampling time would be and whether 

robust time-independent indicators could be identified. 

Recent microbial-based modeling from our group showed that early sampling of wheat field soil 

microbial communities, around seeding or emergence could accurately predict wheat yield and grain baking 

quality obtained at the end of the growing season (Asad et al. 2021; Yergeau et al. 2020) . For instance, 

with as little as 5 predictors, such as the abundance of archaeal ammonia-oxidizers, measured shortly after 

seeding in May, we were able to predict wheat grain quality with an accuracy of up to 81% (Yergeau et al. 

2020). In contrast, different ammonium nitrate fertilization regimes did not significantly influence yields 

or grain baking quality. In another study encompassing 80 fields across a transect of 500km, microbial 

indicators from samples taken in May-June could robustly predict the wheat grain quality and yields at the 

end of the growing season (Asad et al. 2021). In line with this, earlier work showed that the growth of 
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willows after 100 days in highly contaminated soil could be predicted by the initial soil microbial diversity 

(Yergeau et al., 2015), whereas willows Zn accumulation after 16 months of growth could be predicted by 

the relative abundance of specific fungal taxa present at 4 months (Bell et al. 2015). Therefore, it seems 

that the early soil microbial data can accurately predict ecosystem processes, such as plant productivity and 

produce quality. However, these studies did not compare microbial data taken at different timepoints, so it 

is unclear if early sampling has the highest predictive power in microbial-based models.  

Here, we sampled the same experimental field every two weeks over the course of a single growing 

season. We sequenced the bacterial and archaeal 16S rRNA gene and the fungal ITS 1 region, quantified 

the abundance of key N-cycle genes and measured the community level physiological profiles as microbial 

indicators and linked them to grain baking quality using LASSO regression. Our goals were to 1) identify 

the most appropriate sampling date for modelling, and 2) identify robust microbial indicators linked to grain 

baking quality.   
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3.3 Methods 

3.3.1 Experimental design and sampling 

We aimed at collecting samples from a single site for which we knew that the microbial 

communities varied through time and across treatments. For that purpose, we sampled an ongoing multi-

year field experiment on our campus that looked at the effect of rainfall manipulation and wheat genotype 

on the transmission of the microbiota. We had previously determined that the microbial communities varied 

through time and across the treatments (Wang et al. 2022). The experiment comprised four rainfall 

manipulation treatments that were set-up in 2016 at the Armand-Frappier Sante Biotechnologie Centre 

(Laval, Québec, Canada) using 2m x 2m rain-out shelters that excluded passively 0%, 25%, 50%, and 75% 

of the natural precipitation. The rainfall exclusion treatments were performed using rain-out shelters, which 

were covered with various amount of transparent plastic sheeting. The rain was intercepted by the plastic 

sheeting and guided in a gutter and downspout and collected in 20L buckets that were manually emptied 

following significant rainfall events. Two wheat genotypes were seeded under these shelters (drought 

sensitive, Triticum aestivum cv. AC Nass and drought tolerant, Triticum aestivum cv. AC Barrie), and the 

experiment was replicated over 6 fully randomized blocks, resulting in 48 plots (4 treatments x 2 genotypes 

x 6 blocks). Seeds harvested from each of the plots were re-seeded in the exact same plot the following 

year. Soil was sampled every 2 weeks on May 10th (seeding time, T = 0), May 24th, June 7th, June 21st, July 

5th, July 19th, and August 1st   2018. A composite soil sample was prepared by collecting 10-cm deep soil 

cores from the 4 corners and the centre of each plot (4 treatments x 6 blocks x 2 cultivars x 7 sampling dates 

= total 336 samples). From 2016 to 2018, the average daily rainfall recorded on this site was 2.2 mm-3.5 

mm. Soil water content within rainfall exclusion treatments showed significant differences among soil 

sampling dates  (Wang et al. 2022). 

3.3.2 Amplicon sequencing and data analysis 

Total genomic DNA was extracted from the 336 soil samples with the DNeasy PowerLyzer Power 

Soil Kit (Qiagen) following the manufacturer’s instructions. The concentration and the quality of the DNA 

was checked using a Nano Drop ND-1000 Spectrophotometer (Nano Drop Technologies Inc., Thermo 

Scientific, U.S.A.). The amplicon sequencing libraries for the bacteria and archaeal 16S rRNA gene and 

ITS regions were prepared according to the previously described protocols (Asad et al. 2021). The primers 

pairs used for the amplification were 515F (5'-GTGCCAGCMGCCGCGGTAA-3') and 806R (5'-

GGACTACHVGGGTWTCTAAT-3’) (Caporaso et al. 2012) and ITS1F (5'- 

CTTGGTCATTTAGAGGAAGTAA-3’) and 58A2R (5'-TACGGYTACCTTGTTACGACTTT-3') 

(Martin & Rygiewicz, 2005), for the bacterial and archaeal 16S rRNA gene and the fungal ITS 1 region, 

respectively. PCR amplifications were conducted in a T100™ Thermal Cycler (Bio-Rad, U.S.A.) as 
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previously described (Wang et al. 2022). PCR products were confirmed through visualization in 1% agarose 

gel and purified using AMPure XP beads (Beckman Coulter, Indianapolis, U.S.A.). PCR libraries were 

pooled together and sent to the Centre d’expertise et de services Genome Québec (Montréal, Canada) for 

Illumina MiSeq 2 x 250 bp amplicon sequencing as detailed previously (Wang et al. 2022). A total of 

17,084,986 16S rRNA gene reads and 22,411,001 ITS 1 region reads were produced. The raw sequencing 

data and its meta data were deposited in the NCBI BioProject under accession PRJNA686206.  

Sequence pre-processing, including filtering and quality testing, was performed using UCHIME 

(Edgar et al. 2011), following previously published bioinformatic pipelines (Wang et al. 2022). The 

classification of Operational Taxonomic Units (OTUs) was performed using the RDP 16S rRNA Reference 

Database (Wang et al. 2007) and the UNITE ITS Reference Database (Nilsson et al. 2019). The uniformity 

of the amplicon sequences belonging to the same operational taxonomic units (OTUs) was tested using 

UPARSE (Edgar et al. 2013). Sample rarefaction was performed using an in-house galaxy pipeline as 

previously discussed (Wang et al. 2022.). Alpha (e.g., Shannon, Simpson, Chao1, Abundance-based 

Coverage Estimators), beta (Bray-Curtis dissimilarity) and phylogenetic diversity were calculated as 

detailed in Wang et al (2022). 

3.3.3 Quantitative real-time PCR (qPCR) and community level physiological profiling (CLPP) 

We measured the abundance of the 16S rRNA gene, the ITS 1 region, and N-cycle related genes 

(bacterial and archaeal amoA, nirK,and nosZ) for the 336 samples using real-time PCR SYBR Green assays, 

as previously described (Asad et al. 2021). The abundance of N-cycle related gene copies was measured 

using primers amoA1-f* (5’-GGGGHTTYTACTGGTGGT-3’) and amoA2-r (5’-

CCCCTCKGSAAAGCCTTCTTC-3’) (Levy-Booth, Prescott and Grayston 2014), the archaeal  amoA, 

using primers crenamoA23-f (5’-ATGGTCTGGCTWAGACG-3’) and crenamoA616-r (5’-

GCCATCCATCTGTA-3’) (Tourna et al. 2008), the copper-containing nitrite reductase gene (nirK), using 

primers 876f (5’- ATYGGCGGVCAYGGCGA-3’) and 1040r (5’-GCCTCGATCAGRTTRTGGTT-3’) 

(Henry et al. 2006), the nitrous oxide reductase gene (nosZ) using primers nosZ1f (5’-

WCSYTGTTCMTCGACAGCCAG-3’) and nosZ1r (5’-ATGTCGATCARCTGVKCRTTYTC-3’) (Henry 

et al. 2006). The abundance of the 16S rRNA gene and of the ITS 1 region was measured using the same 

primers as for the amplicon sequencing (described above). The Fungal: Bacterial (F:B) ratio was then 

calculated by dividing the ITS 1 region abundance by the 16S rRNA gene abundance. Community level 

physiological profiling (CLPP) was performed using Eco Plates colorimetric assays (Biolog, Hayward, CA) 

with diluted soil (1/10 in water) and a 168-hour incubation, as previously described (Asad et al. 2021). 
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3.3.4 Wheat grain and flour quality 

Wheat grain was harvested from the 48 plots at the end of the growing season (August 8th, 2018) 

and the grain and flour baking quality were analyzed in the quality control laboratory of Les Moulins de 

Soulanges (St-Polycarpe, QC). Four main quality indicators were used in our modeling efforts: grain protein 

content, grain gluten content, flour peak maximum time (PMT), and flour maximum recorded torque (BEM) 

(Freund and Kim 2006). PMT and BEM were measured with a GlutoPeak instrument (Brabender, Duisburg, 

Germany). To do so, the flour sample is mixed with water and stirred at constant speed while the instrument 

records the torque used to move the mixing paddle. As the gluten network forms, the torque increases until 

a maximum value, after which it decreases as the gluten network is destroyed by excessive mixing. The 

time it takes to reach the peak is the PMT (in seconds) and the height of the peak is the BEM (in Brabender 

Units, an arbitrary unit of viscosity). A good quality grain for bread is expected to have a high protein and 

gluten content. A good quality flour with strong gluten will have a high peak (high consistency) and a short 

peak time (rapid to reach maximal consistency) when hydrated. 

3.3.5 Statistical analysis 

All the statistical analyses were performed in R (v.4.1.2). To visualise the differences in the 

microbial community (amplicon dataset and CLPP derived from EcoPlates assays) across sampling dates, 

treatments, and cultivars, we used the function cmdscale of the vegan package (v.2.6-2) (Oksanen et al. 

2013) to produce principal coordinate analysis (PCoA) based on the Bray-Curtis dissimilarity index. The 

effect of sampling date, treatments, block, genotypes on the microbial community structure and carbon 

utilisation patterns was tested using permutational multivariate analysis of variance (PERMANOVA) based 

on the Bray-Curtis dissimilarity index (adonis2 function of the vegan package, v.2.6-2). Three-way repeated 

measures analysis of variance (rmANOVA) using the aov function was used to test for significant 

differences in alpha diversity, N-cycle related genes and ITS 1 region and 16S rRNA gene abundance. The 

normality of the residuals was examined graphically using ggqplot (ggpubr package v.0.4.0) (Kassambara 

and Kassambara 2020) and was tested by the Shapiro-Wilk test using the shapiro.test function.  If the data 

did not meet the requirements of the tests, it was log or square root transformed. The homoscedasticity of 

the data was evaluated using the Mauchly's sphericity test of the rstatix package (v.0.7.0) (Kassambara 

2020). Correlation analyses between microbial parameters and wheat grain quality were performed with 

the cor.test (stats package v.4.2.1) (Worldwide 2020) function together with the p.adjust function to adjust 

the p-value with the Benjamin-Hochberg correction for multiple tests. 
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3.3.6 Predictive modeling 

Our goal was to model grain quality (protein, gluten, BEM and PMT) using the microbial indicators 

measured (bacterial and fungal alpha diversity, bacterial and fungal beta-diversity, carbon utilization 

patterns, F:B ratio, and N-cycle gene abundance), for each sampling date separately to find the optimal 

sampling date for modeling. Since our PERMANOVAs revealed that the two wheat genotypes harbored 

significantly different microbial communities, we modeled them separately. This resulted in 14 different 

microbial datasets containing each 24 samples. We excluded outlier data points using the rstatix package 

(v.0.7.0).   

To reduce the dimensionality of the 16S rRNA gene and ITS 1 region amplicon OTU tables and of 

the microbial carbon usage, we performed a procedure called orthogonalization. In brief, we performed a 

principal component analysis (PCA function of the FactomineR package v.2.6) (Husson et al. 2016) on 

Hellinger-transformed (decostand function of vegan package v. 2.6-2) OTU tables or carbon usage patterns 

and used the 5 first principal components in the models. Individual OTUs and carbon substrates were then 

correlated to these 5 components to have an idea of the taxonomic composition of the OTUs or carbon 

substrates influencing each of the components. We kept OTUs and carbon substrates with correlation 

having a P<0.05. For the OTUs correlated with the principal components, a taxonomic summary at the 

genus level was generated using the Phyloseq package (v.1.40.0) (McMurdie and Holmes 2013). 

We chose least absolute shrinkage and selection operator (LASSO) regression as a modeling 

method to predict wheat quality for the following reasons: (i) to avoid overfitting, which may be 

problematic with other regression methods (least square regression or general linear model), especially 

when there are many explanatory variables and a few samples, (ii) to be  able to select only the most 

important predictive variables (i.e., feature), to reduce the mean square error of the model, and (iii) to have 

an interpretable model. Indeed, LASSO regression shrinks the coefficient of the non-significant predictors 

to zero, keeping only the predictors with the highest explanatory power. 

The microbial features included: principal components 1-5 derived from the microbial OTU and 

carbon usage tables, the abundance of N-cycle related gene, the F:B ratio, and the bacterial and fungal 

alpha-diversity. First, we standardized the data (other than the PCs) using the scale (scales package v.1.2.1) 

function and then selected the optimal lambda values with 10-fold cross validation using c.v glmnet function 

of the glmnet package (v.4.1-4) (Friedman et al. 2017).  We generated the models with penalty scores based 

on the lowest lambda value, which indicates non-collinear effects and low levels of inflated variance in the 

selected variables. The predicted outputs values from these LASSO models were calculated using the 

predict function of the stats package (v. 4.2.1). The predictive accuracy of the models was then evaluated 

by calculating R2 and mean squared error values (MSE) between the observed and the predicted values. 
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The Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC) were also calculated 

to evaluate the quality of the models, while taking into account the trade-off between goodness-of-fit and 

simplicity. Due to the lack of sufficient samples (n=24) in each model, we could not split the datasets in 

training and test datasets to further test the models' performance. Finally, we compared the accuracy and 

performance across the different sampling dates. The R code used for data manipulation, statistical analyses, 

and predictive modeling is available on GitHub (https://github.com/numanibneasad/Soil_Microbiome) 

whereas the data used for the analyses is available on Zenodo (https://doi.org/10.5281/zenodo.7293949)

https://github.com/numanibneasad/Soil_Microbiome
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3.4 Results 

3.4.1 Effect of experimental treatments on microbial parameters 

The sampling date significantly affected all microbial parameters, including microbial carbon 

utilization, microbial alpha and beta diversity, the F:B ratio, and the abundance of N-cycle-related genes 

(Tables 3-1 and 3-2).  Furthermore, the structure of the fungal community was influenced by wheat 

genotypes (Table 3-1). There was a significant interactive effect (P < 0.05) of the precipitation treatment 

and wheat genotype on the abundance of the archaeal amoA, nirK and nosZ genes (Table 3-2).  

 

Table 3-1: Multivariate statistical analysis to test treatment effects on microbial indices. Permanova based on Bray Curtis 

dissimilarities for microbial carbon utilization profiling (Biolog EcoPlate) and community structure based on 16S rRNA 

gene and ITS 1 region amplicon for the effect of precipitation exclusion treatments, sampling dates and genotype. 

  
Biolog 

  
16S 

  
ITS 

 

 
R2 F  Pr(>F) R2 F Pr(>F) R2 F Pr(>F) 

treatment 0.013 4.95 0.002** 0.003 0.95 0.419 0.004 1.45 0.086 

date 0.105 39.71 0.001*** 0.01 5.06 0.001*** 0.01 2.90 0.001*** 

genotype 0.002 0.58 0.754 0.00 1.04 0.29 0.01 2.61 0.003** 

block 0.005 1.83 0.108 0.01 4.36 0.001*** 0.03 11.72 0.001*** 

genotype× treatment 0.002 0.81 0.506 0.00 1.51 0.061 0.00 1.71 0.039* 

Treatment: precipitation exclusion (0%, 25%, 50%, 75%). Date: sampling dates. Genotypes: drought-sensitive wheat 

and drought-tolerant wheat. “.” 0.1 < P < 0.05; “*” P < 0.05; “**” P < 0.01; “***” P < 0.001 
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Table 3-2. Parametric statistical analysis to test treatment effects on N-cycle related gene abundance. Three-way repeated 

measure ANOVA for bacterial and archaeal ammonia monooxygenase, nitrite reductase, nitrous oxide reductase gene 

abundance and the Fungi: Bacteria ratio for the effect of precipitation exclusion treatments, sampling dates and genotype.  

 
AOA AOB nirK nosZ F:B ratio 

treatment 1.449 0.241 0.940 1.027 0.467 

date 46.382*** 40.379*** 40.176*** 79.707*** 86.755*** 

genotype 0.205 0.006 0.388 0.689 0.043 

block 2.180* 3.175** 2.682* 0.995 0.918 

treatment × genotype 4.782** 0.993 4.356** 3.188** 0.854 

F-values are shown in the table. 

Treatment: treatments with precipitation exclusion (0%, 25%, 50%, 75%). Date: sampling dates. Genotype: drought-

sensitive wheat and drought-tolerant wheat. ANOVA significance, “.” 0.1 < P < 0.05; “*” P < 0.05; “**” P < 0.01; 

“***” P < 0.001 

 

3.4.2 Correlation between microbial and grain quality parameters 

We performed Spearman correlations to test if some microbial parameters covaried with wheat 

quality data (grain gluten and protein content and flour peak maximum time (PMT) and maximum recorded 

torque (BEM)). We did not find a significant effect of rainfall exclusion treatment on grain qualities but 

found a significant effect of wheat genotype on protein content (P<0.001) and PMT (P<0.001), so we 

decided to treat the two genotypes separately and all the precipitation treatments together. Correlations 

between grain quality and microbial carbon use fluctuated over time (Table 3-3). The correlations between 

carbon sources and grain quality indicators were all negative for the DT genotype whereas both positive 

and negative correlations were found for the DS genotype (Table 3-3). The abundance of microbial N-

cycling genes was found to be correlated to grain quality measurements mostly for soil collected on the 

early (May and June) sampling dates (Table 3-4). The amoA (archaeal and bacterial), nirK and nosZ genes 

quantified in the DT genotype samples on May 10 and May 24 were negatively correlated to protein and 

gluten content (Table 3-4). Only the F:B ratio was positively correlated to protein content (Table 3-4). For 

the DS genotype, the amoA (archaeal and bacterial) and the nosZ genes were negatively correlated to the 

grain quality parameters and the F:B ratio was positively correlated to PMT for soil samples collected on 

May 24 (Table 3-4). The F:B ratio was positively correlated with BEM for both genotypes on July 5 and 
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June 21. For the DT genotype, we found some positive and negative correlations between nosZ and PMT, 

AOA and protein (July 19 and August 1), while for the DS genotype nirK was positively correlated with 

gluten on July 5. Many significant correlations between microbial richness/diversity indices and grain 

baking quality were found, mostly for the DS genotype (Table 3-5). Significant correlations between 

microbial community descriptors (PCA axes for OTUs and microbial carbon use) and grain quality 

indicators for sampling dates in May and June were also identified. 

 

Table 3-3: Spearman correlations between microbial carbon utilization and grain quality. Significant (P<0.05) Spearman 

correlations between microbial carbon utilization and grain baking quality for each sampling date (N=24). 

Drought tolerant Drought Sensitive 

Carbon source Quality Rs P-value Carbon source Quality Rs 

P-

value 

10-May    10-May    
Beta methyl D-

glucoside   

Protein -0.609 0.002 N-acetyl D-

glucosamine   

Gluten 0.537 0.008 

Phenylethylamine   BEM -0.587 0.003 07-Jun    

24-May 

 

  

4-hydroxy benzoic 

acid  

Gluten 0.522 0.009 

α-keto butyric acid   Gluten -0.628 0.001 21-Jun    
21-Jun    Tween.40  Protein -0.601 0.002 

N-acetyl D-

glucosamine  

PMT -0.562 0.005 05-Jul 

   
05-Jul    L-Serine  Protein -0.547 0.007 

Glycogen   PMT  -0.552 0.006 D-L alpha glycerol 

phosphate 

Protein -0.550 0.007 

01-Aug    19-Jul    
Pyruvic acid methyl 

ester  

Gluten -0.599 0.002 L-phenylalanine  

PMT 

0.576 0.004 

    01-Aug    

    L-asparagine  PMT -0.575 0.006 
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Table 3-4: Spearman correlations between functional gene abundance and grain quality. Significant (P<0.05) Spearman 

correlations between functional gene abundance and grain baking quality for each sampling dates (N=24). 

 Drought tolerant   Drought sensitive  
Gene Quality Rs P-value Gene Quality Rs P-value 

10-May    24-May    

 nosZ  Gluten -0.406 0.054  AOB  Gluten  -0.504 0.012 

24-May     AOA  Protein -0.406 0.055 

AOB Gluten -0.450 0.031  nosZ  BEM  -0.400 0.059 

 nirK Protein -0.441 0.035  F:B ratio PMT  0.425 0.043 

 AOA  Protein -0.578 0.004 07-Jun    

 F: B Ratio  Protein  0.547 0.007  nirK Gluten  -0.441 0.035 

07-Jun    21-Jun    

 F: B Ratio  Protein  0.426 0.048  F: B Ratio  Protein 0.406 0.054 

21-Jun     F: B Ratio  PMT  -0.406 0.055 

 AOA  Protein -0.563 0.005  F: B Ratio  BEM  0.492 0.017 

 AOA  PMT  0.404 0.056 19-Jul    

05-Jul     nirK Gluten  0.558 0.009 

 nirK Gluten  -0.443 0.034     

 nosZ  PMT  0.401 0.058     

 F: B Ratio  BEM  0.479 0.021     

19-Jul   

 

   

 

 AOA  Protein -0.426 0.042     

01-Aug        
 nosZ  PMT  0.392 0.058     
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Table 3-5: Spearman correlations between microbial diversity indices and grain quality. Significant (P<0.05) Spearman 

correlations between bacterial and archaeal and fungal richness and diversity and grain baking quality for each sampling 

dates (N=24). 

 
Drought 

tolerant 

  
Drought sensitive 

 

Diversity Quality Rs P-value Diversity Quality Rs P-

value 

16S 

 

  
16S 

   

07-Jun 
   

10-May 
   

ACE    Protein  -0.409 0.058 Chao1    Protein  -0.454 0.029 

05-Jul 
   

24-May 
 

  
Chao1    BEM  0.472 0.023 Shannon    BEM  0.468 0.024 

ACE    PMT  -0.467 0.025 

 

Chao1    Protein  -0.414 0.050 

ITS 

 

   
21-Jun 

 

  
10-May 

   
PD    Protein  -0.472 0.023 

Shannon    Gluten  -0.444 0.034 Chao1    Protein  -0.482 0.020 

Simpson    Gluten  -0.416 0.048 Chao1    Gluten  -0.520 0.011     
ACE    Protein  -0.418 0.047     
ACE    Gluten  -0.446 0.033     
19-Jul 

 

      
Chao1    Gluten  0.549 0.007     
ACE    Gluten  0.549 0.007     
01-Aug 

   

    
Simpson    PMT  0.434 0.044 

     
ITS 

       
21-Jun 

  

    
ACE    BEM  -0.465 0.025     
PD    Gluten  0.439 0.036     
01-Aug 

   

    
Chao1    PMT  0.512 0.015     
Chao1    BEM  -0.483 0.023     
ACE    PMT  0.493 0.020     
PD    PMT  0.491 0.020 

 

3.4.3 Model performance in predicting grain quality at different dates 

We applied least absolute shrinkage and selection operator (LASSO) regressions for each sampling 

date separately, to identify the date where model accuracy would be maximal to predict grain quality. In 

the case of the DT genotype, the best models for grain quality indicators had mean square errors ranging 

from 0.08 to 0.51 and AIC ranging from -17.00 to -8.35 (Table 3-6 and Fig. 3-1). The best models identified 

were based on microbial indicators from May 10, May 24, and June 7. For gluten and protein content, the 

LASSO regression had the highest accuracy for microbial indicators measured from samples collected on 

May 10. These models selected 11 and 8 variables, resulting in R2 of 0.95 and 0.76, for gluten and protein 
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respectively (Table 6 and Figure 1). The model’s accuracy for gluten and protein content prediction 

decreased over time, (Table 6). For BEM and PMT, the best sampling dates for model generation were June 

7 (R2=0.92) and May 24 (R2=0.57), respectively (Table 6 and Fig. 1). The most parsimonious model across 

all quality indicators was the one predicting PMT which only included 2 predictors (Table 3-6). For some 

sampling dates, no microbial predictor was selected by the LASSO procedure, resulting in null models 

(Table 3-6).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-1: Microbial-based optimal models on optimal soil sampling dates. Observed values vs. predicted values from 

LASSO regression models for wheat grain gluten and protein content and flour maximum torque (BEM) and peak 

maximum time (PMT) for the drought-tolerant (A) and drought-sensitive genotypes (B). 
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Table 3-6: Comparative model analysis for drought-tolerant genotype. Comparative analysis of the LASSO model 

performance for the wheat grain quality of the drought-tolerant genotype (DT). 

 T1 T2 T3 T4 T5 T6 T7 

Date 10-May 24-May 07-Jun 21-Jun 05-Jul 19-Jul 01-Aug 

Gluten (DT) 
       

C.V (best Lambda) 0.04 0.38 
 

0.56 0.72 
  

AIC -16.14 2.00 
 

1.33 2.00 
  

BIC -15.09 3.04 
 

2.42 3.09 
  

Nb of variables: 11 1 
 

1 1 
  

MSE (Mean Square Error) 0.08 0.95 
 

0.92 0.95 
  

 R2 0.95 0.15 
 

0.54 0.54 
  

Protein (DT) 
       

C.V (best Lambda) 0.15 0.24 0.19 0.28 0.46 0.36 0.18 

AIC -11.64 -9.21 -9.56 -3.40 2.00 2.00 -8.24 

BIC -10.51 -8.07 -8.47 -2.26 3.14 3.14 -7.15 

Nb of variables: 8 5 7 2 1 1 2 

MSE (Mean Square Error) 0.36 0.47 0.43 0.73 0.96 0.96 0.53 

R2 0.76 0.69 0.72 0.33 0.22 0.14 0.57 

PMT (DT) 
       

C.V (best Lambda) 
 

0.21 
    

0.42 

AIC 
 

-8.35 
    

2.00 

BIC 
 

-7.21 
    

3.18 

Nb of variables: 
 

2 
    

1 

MSE (Mean Square Error) 
 

0.51 
    

0.96 

R2 
 

0.57 
    

0.19 

BEM (DT) 
       

C.V (best Lambda) 0.38 0.25 0.03 
  

0.14 0.20 

AIC -2.34 -7.31 -17.00 
  

-8.92 -5.32 

BIC -1.21 -6.17 -15.91 
  

-7.78 -4.14 

Nb of variables: 1 2 10 
  

7 4 

MSE (Mean Square Error) 0.77 0.55 0.09 
  

0.48 0.65 

R2 0.35 0.50 0.92 
  

0.58 0.47 

Missing values indicate failure to build models on specific sampling dates using LASSO regression. A 

total of 40 variables were used as inputs. 

PMT=Peak Maximum Time, BEM= flour maximum recorded torque, Nb=Number, AIC= Akaike 

Information Criterion, BIC=Bayesian Information Criterion, C. V= Cross validation 
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The overall model performance (based on R2 values) in predicting grain quality for the DS genotype was 

lower than the DT genotype (Table 3-7). Maximum accuracy of LASSO regression model was observed 

on June 7 for gluten and PMT, on May 10 for protein, and June 21 for BEM (Table 3-7). The best PMT 

and BEM predictive models used about half the number of the total predictors used in the best gluten and 

protein predictive models (PMT: 4, BEM: 6, gluten: 14 and protein: 11) (Table 3-7). Predictive modeling 

of protein content between May 24 and July 5, and on August 1 was unsuccessful and the level of accuracy 

of the model weas low on July 19 (Table 3-7). A similar trend was observed for PMT: sampling dates after 

June 7 resulted in less accurate or no model at all (Table 3-7). BEM prediction was also unsuccessful for 

samples collected on June 7. Overall, like for the DT genotype, the predictive models for the DS genotype 

dataset showed the best accuracy for quality prediction with microbial data from the May and June 

samplings.  
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Table 3-7: Comparative model analysis for drought-sensitive genotype. Comparative analysis of the model performance of 

LASSO for the wheat grain quality of drought-sensitive genotype (DS).  

 T1 T2 T3 T4 T5 T6 T7 

Date 10-May 24-May 07-Jun 21-Jun 05-Jul 19-Jul 01-Aug 

Gluten (DS)        

AIC -8.28 2.00 -16.01 -14.60 -1.97 -14.66 0.67 

BIC -7.14 3.14 -14.84 -13.46 -0.83 -13.52 1.76 

C.V (best Lambda) 0.18 0.45 0.08 0.09 0.34 0.10 0.32 

Nb of variables: 6 1 14 11 1 10 1 

MSE (Mean Square Error) 0.51 0.96 0.21 0.23 0.78 0.23 0.89 

R2 0.61 0.22 0.83 0.81 0.30 0.81 0.17 

Protein (DS)        

C.V (best Lambda) 0.06    
 0.17  

AIC -15.15     -7.69  
BIC -14.02     -6.55  
Nb of variables: 11    

 6  

MSE (Mean Square Error) 0.21    
 0.54  

 R2 0.81    
 0.53  

PMT (DS)        
C.V (best Lambda) 0.19 0.41 0.33  0.38  0.24 

AIC -5.76 -3.94 -3.56  2.00  -1.55 

BIC -4.63 -2.80 -2.38  3.14  -0.46 

Nb of variables: 4 1 4  1  1 

MSE (Mean Square Error) 0.62 0.70 0.73  0.96  0.79 

 R2 0.35 0.45 0.50  0.15 
 0.24 

BEM (DS)        

C.V (best Lambda) 0.13 0.36  0.19 0.18 0.13 0.17 

AIC -10.11 -0.70  -10.37 -8.21 -8.67 2.00 

BIC -9.02 0.39  -9.28 -7.11 -7.58 3.04 

Nb of variables: 11 2  6 5 4 1 

MSE (Mean Square Error) 0.40 0.83  0.39 0.49 0.47 0.95 

 R2 0.65 0.32  0.71 0.61 0.56 0.03 

Missing values indicate failure to build models on specific sampling dates using LASSO regression. A 

total of 40 variables were used as inputs. 

PMT=Peak Maximum Time, BEM= flour maximum recorded torque, AIC= Akaike Information 

Criterion, BIC=Bayesian Information Criterion, C. V= Cross validation, Nb=Number 
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3.4.4 Microbial features selected in the optimal models  

The best LASSO models for the DT genotype contained microbial features that varied but were 

often the principal components derived from OTU tables or carbon utilization patterns, or the alpha 

diversity indices. Bacterial and archaeal OTUs from the Nitrosphaera (an ammonia oxidizing archaeal 

genus), Rhodoplanes, Solirubrobacter, and Terrimicrobium were the main contributors to the principal 

component 2 (explained variance: 5.1%) calculated from the May 10 dataset that was selected in the models 

for gluten and protein content (Fig. 2 and Table 8). In contrast, the main contributors to the bacterial and 

archaeal principal component 1 (explained variance: 6.0%), 2 (5.2%) and 3 (5.1%) selected for the model 

predicting BEM on June 7 were from the Conexibacter, Gaiella, Nitrososphaera, Hyphomicrobium and 

Gp16 (an uncultured genus of Acidobacteria) genera (Fig. 3-2A). The fungal OTUs that contributed to the 

principal components selected in the May and June models belonged to the Mortierella, Ganoderma, and 

Gliomastix genera (Fig. 3-2B). We found a negative relationship between the bacterial phylogenetic 

diversity index and gluten content and a positive relationship between bacterial Simpson diversity and 

gluten content and BEM in the May 10 and June 7 models (Table 3-8).  
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Figure 3-2: The relative abundance of the bacterial and archaeal, and fungal genera for drought tolerant genotype. The 

relative abundance of the bacterial and archaeal (A, C) and fungal (B, D) genera significantly correlated with the first five 

principal components for the drought tolerant genotype for the May 10 (A, B) and June 7 (C, D) sampling dates. Others: 

various genera with relative abundances below 0.1%.  

Principal components derived from carbon utilization patterns were also included in all our most accurate 

models for the DT genotype (Table 3-8). The models predicting protein and gluten content (May 10) 

selected 3 to 4 of the top 5 principal components included, for which the most important contributing carbon 

substrates were Putrescine (rs=-0.91; P<0.001), L-Arginine (rs=0.74; P <0.001), Pyruvic Acid methyl ester 

(rs=-0.62; P<0.001), Glycogen (rs=0.59; P<0.001) and L-Threonine (rs= -0.56; P<0.001). The model 

predicting BEM (June 7) selected principal component 2 (explained variance: 9.3%), 3 (7.4%), and 4 (4.7%) 

and the most important contributing carbon substrates of the principle components  were alpha-cyclodextrin 

(rs=0.69; P=0.002), alpha-keto butyric Acid (rs=0.68; P=0.003), γ-amino butyric acid (rs= -0.66; P =0.006), 
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Glucose 1-phosphate (rs=-0.71; P=0.001). Finally, the principal component 2 (explained variance: 7.5%) 

selected in the model predicting PMT (May 24) was correlated to glycogen (rs=0.59; P=0.002), alpha-

cyclodextrin (rs=0.68; P<0.001) and γ-amino butyric acid (rs=-0.65; P=0.004). We also observed a negative 

relationship between protein content and nirK (regression coef. = -0.183) and gluten content and nosZ 

(regression coef. = -0.235) in the models obtained on May 10 (Table 3-7).  

 

Table 3-8: Selected microbial feature in models of drought-tolerant genotypes. Microbial parameters included in the 

LASSO models for wheat grain quality of the drought-tolerant genotype (DT).  

 

Gluten-May10 Protein-May10 PMT-May21 BEM-June07 
 

Variables Coefficients Variables Coefficients Variables Coefficient Variables Coefficient 

Intercept -1.60×10-14 Intercept -2.50×10-15 Intercept -2.00×10-16 Intercept 3.63×10-14 

Bacteria.PC2 0.492 Bacteria.PC2 -0.141 Biolog.PC2  -0.433 Bacteria.PC1 -0.184 

Fungi.PC3 -0.011 Fungi.PC1 -0.184 ACE fungi 0.225 Bacteria.PC2 0.254 

Biolog.PC2 0.354 Fungi.PC3 -0.188 
  

Bacteria.PC3 -0.051 

Biolog.PC3 0.016 Fungi.PC5 -0.072 
  

Fungi.PC2 -0.102 

Biolog.PC4 -0.153 Biolog.PC1 0.111 
  

Fungi.PC4 -0.099 

Biolog.PC5 -0.086 Biolog.PC4 -0.185 
  

Fungi.PC5 0.643 

Simpson 

bacteria  

0.628 Biolog.PC5 -0.122 
  

Biolog.PC2 0.365 

PD bacteria -0.997 nirK -0.183 
  

Biolog.PC3 -0.249 

ACE bacteria 0.270 
    

Biolog.PC4 0.381 

Chao1 fungi -0.202 
    

Simpson 

bacteria 

0.498 

nosZ -0.235 
    

Chao1 bacteria -0.080 

PD: Phylogenetic diversity, ACE: Abundance-based Coverage Estimators, PC: principal component. 

 

As for the DT genotype models, the models for the DS genotype were mainly composed of principal 

components calculated from the OTU tables and from the carbon utilization patterns, and from alpha-

diversity indices (Table 9). The LASSO model predicting protein content selected the bacterial principal 

component 4 (explained variance: 4.9%) for the May 10 sampling date (Table 3-9). This principal 

component was correlated with OTUs belonging to the Nitrososphaera, Rhodoplanes, Solirubrobacter, and 

Terricomicrobium (Fig. 3-3A). On the same date, the fungal OTUs contributing the most to the principal 

component 1 (explained variance: 7.3%), 3 (5.6%), 4 (5.5%), and 5 (5.2%) belonged to the Acremonium, 

Mortierella, Pezizella, and Tetracladium (Fig. 3-3B). On June 7, the models predicting gluten content and 

PMT selected the bacterial principal components 2, 4, and 5 (Table 3-9). These axes explained 4.7-4.5% of 

the variation and were correlated to OTUs related to Gaiella, Gp6, Hyphomicrobium, Nitrososphaera, 
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Rhodoplanes, and Solirubrobacter (Fig.3-3C). On June 21, the model predicting BEM selected the bacterial 

principal components 2 and 4 (Table 3-9), which explained 4.8% and 4.7% of the variation and were 

correlated to OTUs related to Arthobacter, Nitrososphaera, Gaiella, Gp6, Hyphomicrobium, 

Bradyrhizobium, Terrimicrobium and Rhodoplanes (Fig 3-4A). The fungal PC 1 (7%), 2 (6.2%), 4 (5.0%), 

and 5 (4.9%) selected for the June 7 were correlated to OTUs related to Acremonium, Mortierella, and 

Tetracladium (Fig. 3-3D). The fungal PC2 (5.8%) selected in the model for BEM in June 21 was linked to 

OTUs related to Acromonium and Mortierella (Fig. 3-4B). Fungal richness and diversity were selected in 

the LASSO models for Gluten, Protein and BEM, with either positive (Protein and BEM) or negative 

(Gluten) coefficients (Table 3-9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-3: The relative abundance of the bacterial and archaeal and fungal genera for drought sensitive genotype. The 

relative abundance of the bacterial and archaeal (A, C) and fungal (B, D) genera significantly correlated with the first five 

principal components for the drought tolerant genotype for the May 10 (A, B) and June 7 (C, D) sampling dates. Others: 

various genera with relative abundances below 0.1%.  
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Figure 3-4: Relative abundance of bacterial and archaeal and fungal genera for drought-sensitive genotypes on June 21. 

The relative abundance of the bacterial and archaeal (A) and fungal (B) genera significantly correlated with the first five 

principal components for the drought sensitive genotype for the June 21 sampling dates. Others: various genera with 

relative abundances below 0.1%.  

For the May 10 model (protein), the carbon substrates contributing the most to the selected principal 

components were beta-methyl D-glucoside (rs=0.61; P=0.001), D-glucosamine acid (rs= -0.58; P=0.003), 

D-galactonic acid y- lactone (rs =-0.53; P=0.008). For the June 7 models (gluten and PMT), the carbon 

substrates contributing the most to the selected PC were Glucose 1-phosphate (rs=0.81; P<0.001), D- 

galactonic acid y-lactone (rs=0.64; P=0.0005), 4-hydroxy benzoic acid (rs= -0.66; P=0.0005), 2-hydroxy 

benzoic acid (rs=0.56, P=0.003). Finally, for the June 21 model (BEM), the carbon substrates contributing 

the most to the selected PC were L-phenylalanine (rs= 0.55; P= 0.003) and alpha-cyclodextrin (rs=-0.49; 
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P=0.011). We also observed that the models selected the fungal: bacterial ratio, which negatively influenced 

the gluten content on June 7 and positively influenced BEM on June 21. There was a negative relationship 

between the abundance of the bacterial amoA gene and gluten content, and a positive relationship between 

nosZ and gluten content on June 7 (Table 3-9). 

 

 

Table 3-9: Selected microbial feature in models of drought-sensitive genotypes. Microbial parameters included in the 

LASSO models for the wheat grain quality of the drought-sensitive genotype (DS).  

Gluten-June 07 
 

Protein-

May10 

  PMT-June 

07  

BEM-

June21  
Variables Coefficients Variables Coefficients Variables Coefficients Variables Coefficients 

Intercept 7.96×10-15 Intercept -1.80×10-17 Intercept 3.57×10-16 Intercept    -8×10-17 

Bacteria.PC2 -0.018 Bacteria.PC4 -0.541 Bacteria.PC4 -0.009 Bacteria.PC2 -0.010 

Bacteria.PC5 0.216 Fungi.PC1 -0.219 Fungi.PC4 0.146 Bacteria.PC4 -0.263 

Fungi.PC1 0.012 Fungi.PC3 -0.093 Fungi.PC5 0.120 Fungi.PC2 -0.086 

Fungi.PC2 -0.361 Fungi.PC4 -0.262 Biolog.PC5 0.026 Biolog.PC4 -0.151 

Fungi.PC4 -0.026 Fungi.PC5 0.141 
  

Chao1 fungi 0.182 

Fungi.PC5 -0.072 Biolog.PC3 0.027 
  

F:B ratio 0.213 

Biolog.PC1 0.317 Biolog.PC4 -0.099 
    

Biolog.PC3 -0.078 Biolog.PC5 -0.009 
    

Biolog.PC5 0.024 Chao1 

bacteria 

-0.284 
    

Simpson 

bacteria 

0.089 Chao1 fungi 0.154 
    

PD fungi -0.150 PD fungi 0.012 
    

AOB -0.460 
      

nosZ 0.115 
      

F:B ratio -0.031 
      

PD: Phylogenetic diversity, F: B: Fungal: Bacterial ratio, PC: principal component. 

 

 

3.5 Discussion 

Plant- and soil-associated microbial communities vary throughout the seasons/plant growth stages 

(Chaparro et al. 2013, 2014; Moroenyane et al. 2021; Azarbad et al. 2022; Azarbad et al. 2021; Wang et 

al. 2022) and it was unsure what was the best timing to create models to predict wheat grain quality. By 

sampling the same field every 2 weeks and measuring a wide range of microbial parameters, we were able 

to show with LASSO regression that the predictive value of microbial parameters is optimal during the 

earlier stages of wheat growth, at the seedling (May) or tillering stages (June). Many classes of microbial 
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parameters (e.g., alpha diversity indices, principal components, N-cycle genes) were consistently singled 

out by the regression models, which could allude to a mechanistic link between grain quality and the 

parameter identified, or simply to covariation between the microbial parameter and grain quality due to a 

third unmeasured parameter. Our work focused on wheat, and although it would be interesting to see if 

similar patterns apply to other crops, it is the first and necessary step to start building microbial-based 

predictive models for crop yields and quality.   

All the best models were made with data collected before the end of June, which is at the early 

stages of wheat growth in Quebec. This is coherent with our previous results that showed that good 

predictive models could be made with soil samples taken in May or June (Yergeau et al. 2020; Asad et al. 

2021) even though different sampling point were not compared. Similarly, in another system where 

microbial communities play a key role in the process of interest, phytoremediation, it was shown that early 

microbial community composition could predict the potential of the plants to decontaminate soil or to 

survive (Bell et al. 2014; Yergeau et al. 2015). Navarro-Noya et al. (2022) showed that the complexity of 

microbial structure and diversity increases with maize development, and that the effect of agricultural 

practices on the soil microbiome was more evident at the early stages, which could explain why we found 

here that early microbial indicators performed better. This is encouraging for future work, as the ultimate 

goal of this type of predictive modeling is to have a tool that could be used to guide management strategies 

for farmers. Maximum usefulness will happen if indicators of yields or quality can be measured early, when 

it is still possible to intervene. It could be that the sampling dates highlighted are the ones that are the most 

critical for wheat grain quality, but for wheat, it is generally thought that the grain filling stage (around mid 

July in Quebec) is the most critical stage in term of N nutrition for high quality grain (Zörb et al. 2018). 

However, unless there is an unlikely massive microbial immigration, the microorganisms that can modulate 

or are indicative of soil N availability are already present in the soil early at seeding, and it is likely that 

their abundance and diversity at this stage could predict wheat grain quality. In fact, it was recently 

suggested that, because of their potential to be influenced by legacy and current environmental conditions, 

microbial communities act as multivariate integrators of the current and past physico-chemical conditions 

of their immediate environment, making them highly suitable predictors for ecosystem processes (Correa-

Garcia et al. 2022).  

Microbiome data have characteristics (sparsity, high dimensionality, zero-inflated) that often make 

them challenging to use in models. Here, we transformed the OTU and carbon utilization patterns tables 

using eigenvalue decomposition, namely principal component analysis, which reduces the dimension of the 

datasets to (number of samples)-1 principal components that are orthogonal (not collinear) and ordered in 

decreasing order of variance explanation, moving from several thousands of descriptors to 23, in the case 
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of the OTU tables. We further reduced the dimensionality by only utilizing the first 5 principal components 

in our LASSO regression, with the idea that these components contained a large part of the variation in the 

original dataset. One downside of this approach is that it makes the models less directly interpretable, with 

principal components being composite variable for many OTUs or carbon sources. However, using 

correlation analyses of individual OTUs with the principal components we were able to identify taxonomic 

groups and carbon sources that were linked with the principal components. We also used LASSO regression 

that selects of the most significant variables and shrinks the regression coefficient of the other variable to 

zero, generally producing parsimonious, highly interpretable models containing a few variables. Although 

non-parametric methods (neural network, random forest, support vector machine, etc.) could produce more 

accurate models, they are often less interpretable, meaning that the predictors influencing the output cannot 

be easily identifiable. Still, our models had high accuracy of 50-95%. The predictive performance of 

LASSO regression to predict biological characteristics from microbiome data was shown to be excellent 

for zero-inflated data such as microbial OTU count tables (Xiao et al. 2018; Dong et al. 2020). We also had 

good results using linear regression coupled with forward/backward selection with a preselection of 

individual OTUs that showed the strongest correlations with the predictors (Yergeau et al. 2020; Asad et 

al. 2021).  

General community descriptors, like alpha-diversity indices or principal components, were often 

selected as the best explanatory variables in the models and/or significantly correlated to quality parameters. 

Alpha diversity indices and eigenvectors (such as principal components) derived from microbial 

community structures are integrators of many parameters. Interestingly, it suggests that shallow sequencing 

to recover alpha and beta diversity patterns together with community level carbon utilization profiling 

would be sufficient to model wheat grain quality. Additionally, some specific microbial parameters, such 

as the abundance of N-cycle functional genes or the utilization of specific carbon substrates, were 

consistently singled out by the LASSO regression and the Spearman correlation analyses. For example, the 

negative relationships between wheat quality and the abundance of the nirK, nosZ and bacterial amoA genes 

were well aligned with previous work (Yergeau et al. 2020; Asad et al.2021). The relative abundance of 

OTUs belonging to the ammonia-oxidizing archaea taxon Nitrososphaera were also highly correlated with 

many of the principal components selected in the models, and the abundance of both the archaeal and the 

bacterial amoA genes was often negatively correlated to quality parameters. These results further suggests 

that a high abundance of ammonia oxidizers and denitrifiers reduces wheat grain quality through an 

increased energy requirement for nitrogen uptake and utilization or through nitrogen losses, as discussed 

before (Yergeau et al. 2020; Asad et al. 2021; Wang et al.2022). Indeed, since grain quality is linked to its 

protein content, it is energetically more efficient for the plant to uptake ammonia, which can directly be 

incorporated into amino acids, whereas nitrate will need to be transformed back to ammonia (Beeckman et 
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al., 2018). Nitrate uptake also requires more energy than ammonia uptake (Beeckman et al., 2018). Finally, 

nitrate is prone to leach and is a substrate for denitrification, which will lead to loss of nitrogen to the 

atmosphere. Manipulating or inhibiting the activity of these microbial guilds using, for instance, natural or 

artificial nitrification inhibitors may increase wheat grain quality.  However, this strategy will need to be 

further studied to understand potential unwanted effects, as a common nitrification inhibitor, nitrapyrin, 

was shown to have off-target effects on the soil microbial community (Schmidt et al. 2022) and that nitrate 

stimulates lateral root elongation and affects various signaling pathways in the plant (Beeckman et al. 2018).  

It was recently shown that biological nitrification inhibition (BNI) genes could be introduced into wheat 

cultivars from  a wild grass species (Leymus recimosus) (Subbarao et al. 2021). The root exudates of some 

Australian wheat genotypes were also shown to be able to inhibit a strain of bacterial ammonia-oxidizer 

(O’Sullivan et al. 2019).  Microbiome manipulation is still in its infancy and, because of ecological 

processes underlying community assembly, it will be a challenge (Agoussar & Yergeau, 2021). It is also 

unclear if microorganisms involved in nitrification and denitrification are sufficient indicators for accurate 

modeling of the grain quality, and, consequently, if solely targeting these groups will result in the expected 

increase in grain quality. As our model showed, general community structure and diversity seem to also 

have a prime importance in determining wheat grain quality.  

Our previous work showed that significant predictive models could be parametrized using 

microbial data measured early in the growing season, across a transect of more than 500 km (Asad et al. 

2021). Here, we sought to confirm that early microbial measurements were optimal for such predictive 

models by focussing on a single field and sampling it every two weeks for a complete growing season. 

Taken together, the two studies confirm that our microbial-based models are effective at a large spatial 

scale and that they are optimally build using samples taken early in the season. Although we used a different 

modeling approach than previously, the selection of ammonia-oxidizers by the models was shared with our 

previous studies (Yergeau et al. 2020; Asad et al. 2021), suggesting a potential key role of this functional 

guild for wheat grain quality. Our manuscript lay the foundation for future attempts to predict and optimize 

crop yields and quality, on our way toward microbiocentric solutions to the pressing issues facing 

agriculture. 
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4.  GENERAL DISCUSSION AND CONCLUSION 

4.1 Discussion  

A sustainable and modified agrifood system is required to address the existing and future challenges 

in food production due to climate change. Microbiome-based research is a newly established field that is 

creating new opportunities to improve human nutrition and health management while addressing 

environmental issues. Applied microbiome research in agriculture is revolutionizing the comparative study 

of soil, plant and farm animal health monitoring systems and the ability to predict aspects of agricultural 

production and productivity (Callens et al. 2022). After conducting a thorough literature review, I 

discovered that microbial indicators related to soil structure and function are expected to have great 

potential for future applications in soil and plant phenotype assessment. One of the main findings in my 

thesis highlights the ability of the soil microbiome to explain agroecosystem conditions and the soil nutrient 

status affecting plant physiology and overall crop yield and quality. My thesis introduces a conceptual 

framework for a soil–microbiome–crop quality axis that underlies the various mechanisms of plant–

microbiome interactions at both spatial and temporal scales. Banerjee et al. (2022) showed that the 

particular soil microbiome shared between different health cohorts interconnects soil, plant, and human 

microbes more than previously imagined. Other reports have described soil as a microbial seed bank that 

creates microhabitats for pathogens and beneficial microorganisms, providing a diverse niche for various 

important species (Xiong and Lu 2022). A sustainable soil ecosystem provides the nutrients needed to grow 

plants with high levels of productivity, resistance, and resilience (Carrillo et al. 2017).  This is further 

supported by the indicative and predictive characteristics of soil microbial communities for wheat 

production, described in Chapters 2 and 3. In my thesis, I applied integrated statistical learning tools using 

genomics data for predictive modeling. The model used extensive functional and genomics data of the soil 

microbiome. I chose genomic approaches because they provide large amounts of data associated with 

microbial community structure and composition, which are needed for the predictive modeling of wheat 

grain quality. Other classical microbiological methods do not allow for the estimation of large spatial and 

temporal variations in microbial parameters. 

Basically, chapter 2 describes how I measured the basic properties of soil that are commonly tested 

prior to crop-growing season and the microbial parameters that capture the largest variation in soil microbial 

processes at multiple wheat farms across Quebec. First, I explored the indicative features of soil microbes 
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that explain wheat yield and grain quality at the community level, derived from high throughput16S and 

ITS1 amplicon sequencing data. Then, I focused on the comparative model analysis for predicting wheat 

yield and grain quality, with two separate and combined parameters for soil physicochemical and microbial 

indices. The aim was to test whether significant microbial or biochemical indicators in the soil accurately 

predict wheat yield and quality when these indices are modeled individually or interactively with soil 

physicochemical indicators in a multiple linear regression, as this relationship has not been well-studied. 

My second objective (Obj-B), described in Chapter 3, was to identify the ideal dates for soil sampling 

during the wheat growing season. The distinct microbial traits measured from these samples would lead to 

the most accurate predictions of wheat-grain quality.  

Soils sampled early in wheat growth showed the greatest accuracy for making predictions (Chapter 

3), providing evidence of the high predictive performance of early-season microbial-based modeling. I 

tested my hypothesis (H-2) through the second specific objective (Obj-B). I followed a soil sampling 

scheme that was conducted during the wheat growing season and divided the scheme into 7 time points, 

according to different wheat growth stages. This allowed me to test the predictive performance of the same 

microbial indicators that were used in previous models of wheat quality at the regional scale. Based on the 

two main results from Chapters 2 and 3, it is clear that microbial communities are the best indicators for 

crop quality assessment and are useful parameters for future wheat production.  

As discussed, microbiome assembly processes are driven by endogenous factors (e.g., species, 

genotype, developmental stage), biotic stress (e.g., herbivore, pathogen), anthropogenic factors (e.g., 

agricultural practices, urbanization, agrochemicals, nanomaterials), and environmental perturbations 

(related to geographic location, temperature, season, moisture, rainfall, local dispersal, etc.) (Zhan et al. 

2022). In any given situation, the specific factor associated with the microbial assembly process determines 

the potential outcome for the whole microbe-driven agroecosystem. Moreover, the soil microbiome directly 

influences the nutrient uptake and cycling through nitrate fixation, nitrification and denitrification, 

phosphate solubilization and siderophore formation (Fierer 2017). The soil microbiome also provides an 

environment that is resistant to some soil-borne pathogens, promoting disease-suppressing soil. 

Furthermore, the root-associated soil microbiome contributes to a wide range of services including plant 

productivity and nutrition. Based on these recent data, agricultural and soil management decision 

approaches that do not incorporate these findings about soil microbial status will likely be ineffective.  

The main focus of my thesis is on current sustainability issues in agriculture and the potential for 

microbes to inform agricultural management decisions for wheat production. I also discuss the importance 

of spatial and local climatic variations in soil microbiome performance. This is evidenced by the different 

qualities of grains from the same genotype grown in different regions and implies that soil microbiome 



108 

 

distribution and composition vary at the regional scale because of different agricultural management 

practices (e.g., fertilizer, pesticides, varieties). It is interesting to note that crop rotation is a regular part of 

agricultural practice in some wheat fields in Quebec. This practice can affect the composition of the soil 

microbiome. Among these, in Canadian canola production, the effects of crop rotation on soil and plant 

root-associated microbiomes are particularly significant (Town et al. 2023). Another study showed how 

different levels of nitrogen fertilization can greatly affect the recruitment process of the crop microbiome, 

particularly during the development of Canadian canola cultivars (Li et al. 2023b). It's important to 

recognize the significant impact of soil microbiome signatures on crop health and productivity, as they 

integrate with abiotic conditions that are influenced by agricultural practices. Regardless of the role of the 

soil microbiome in nutrient processing, excessive fertilizer applied to the soil results in high nitrogen loss 

through leaching, volatilization, eutrophication, and denitrification. Unfortunately, this is the case 

throughout Quebec, as many wheat farmers apply fertilizer indiscriminately (Vanasse 2012). As a result, 

overall bread wheat quality across the province may decline, especially if guidelines for proper fertilizer 

management are not established. Furthermore, there is no direct link between intensive fertilization and 

higher wheat yield and grain quality (Yergeau, Quiza and Tremblay 2020). Low-quality grain may be 

rejected by millers and can only be used for fodder, which is a loss for the farmer. Fortunately, my work 

shows that with the inclusion of soil microbial indicators associated with microbiome composition, 

structure, and function along with soil physicochemical parameters in soil testing, wheat yield and grain 

quality can be more accurately assessed.  

My study was the first to reveal the potential role of the soil microbiome in agroecosystem 

processes in multiple wheat farms across a 500-km transect in the province of Quebec. I observed that 

model parameters aligned with some of our empirical findings, which was consistent with what we would 

expect given what we know about soil biochemical processes. For example, several model parameters 

related to fungal richness and higher microbial uptake of organic amino acids were positively associated 

with grain quality, suggesting that microbial processes associated with higher decomposition may make 

more nitrogen available to wheat by storing organic sources of nitrogen in the soil. (Chapter 2; Asad et al. 

2021). Another indirect effect of the root-associated microbiome was observed in the regression model, 

through a negative relationship with grain quality. This effect suggested that bacterial activity might 

promote the growth of some wheat plants that continuously uptake high levels of subsidized inorganic 

nitrogen. Other smaller wheat plants might then be restricted to lower levels of nitrogen uptake, thereby 

reducing overall wheat quality (Chapter 2; Asad et al. 2021). We found that ammonia oxidizing bacteria 

(AOB) played an important role in predicting wheat yield through a univariate relationship between AOB 

and wheat grain quality, illustrating the importance of nitrifiers in soil nitrogen processing and plant 

nitrogen use. By tracking a potential indicator involved in nitrification at specific spatial scales, our model 



109 

 

may  open a new method for co-occurrence mapping (Bru et al. 2011) of AOB or AOA across Canadian 

wheat farms. This can be useful for understanding the functional roles of AOB and AOA, developing 

landscape-level regulations, and estimating abundance. While this technique may not be useful for site-

specific estimations of ammonia oxidation at the microbial community level due to differing microhabitats, 

there are several other contexts in which it can be used. Predictive modeling at specific spatial scales can 

provide a context-dependent, exploratory framework for the soil–microbiome–crop quality axis and 

contribute to future work on easily-accessible tools for farmers. 

The specific time points associated with optimal soil microbiome composition and function, 

influencing the regulation of plant nitrogen, carbon, and protein metabolism. These changes in the soil 

microbiome may result in different predicted values for wheat grain quality. The soils microbiome is an 

important indicator of plant–microbe interaction, especially when plants rely on soil microbes to process 

nitrogen during times of starvation. This is usually expressed by the plant phenotype (Sessitsch, 

Pfaffenbichler and Mitter 2019). In fact, the composition of the soil microbiome can often be predicted 

based on the aboveground plant species (Mazza Rodrigues and Melotto 2023). Different plant species in 

specific soils (rhizosphere and bulk) harbor unique microbial communities. These microbial communities 

may have a distinct, taxa-specific relationship associated with the distinct traits of the plants. Examples of 

these microbes include mycorrhizal fungi, some fungal pathogens and nitrogen fixing bacteria (e.g., 

rhizobium) (Bright and Bulgheresi 2010; Wassermann et al. 2021). Microbial structure and function can 

also influence aboveground plant communities. However, the coexistence of specific microbes and 

particular plant species are sometimes context dependent.  It takes years to demonstrate the effect of 

different vegetative phenotypes of plant species on microbial community composition (Kusstatscher et al. 

2021). In our microbial-based predictive modeling of wheat grain quality relative to time, we demonstrate 

that there are different predictive accuracies for two wheat genotypes. Furthermore, these two genotypes 

have different associated microbiome compositions. Another interesting feature of the plant microbiome is 

it can interact with hosts through gene regulation and influence phenotypic traits. The plant microbiome 

can be inherited by the next generation of plants and dispersed to new plants from seed. Thus, the host-

microbiome coevolutionary patterns are conserved and circulated throughout the host life cycle. 

(Abdelfattah et al. 2022) described that the inheritance process includes three main stages: 1) microbiome 

transfer from plant to seed, 2) seed to dormancy, and 3) seed to seeding. This endophytic microbiome 

assembly process is also highly influenced by the soil microorganisms and environment, determining 

microbiome structure and composition. The seed microbiome makeup is not directly dependent on 

horizontal gene transfer but by interactions with soil microbes that expand microbiome to other plant’s 

compartment, shaping the plant microbiome at the seedling stage. This means that seeds from specific wheat 

genotypes may have microbiome compositions that each interact differently with the soil microbiome at 
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the seedling stage. This might subsequently affect the overall nitrogen acquisition and thus the grain nutrient 

content of the plant. It has been found that the yield metrics of some Canadian crop genotypes belonging 

to the Brassica family are closely related to the root and rhizosphere fungal microbiome (Li et al. 2023a). 

It appears that the root-associated microbiome can greatly influence crop productivity due to distinct 

patterns of interactions between plants and microbes under particular environmental conditions. Therefore, 

depending on the strength of the plant-soil microbiome interaction, farmers might be able to use grain 

quality information from predictive models to make decisions about which wheat varieties to seed in 

specific soil types. My work can help plant breeders focus more on microbiome-assisted breeding strategies 

that address future climate change issues. 

Microbial dynamics were shown to change over time throughout the plant growth stage (Chapter 

3). Some of the microbial patterns observed through predictive accuracy were shown to fluctuate during 

plant growth for the two wheat genotypes (GENOTYPE 1: Drought tolerant and GENOTYPE 2: Drought 

sensitive). This indicates that plant carbon sequestration through root exudation alters the root-associated 

microbiome on a small scale as well as the soil microbial guilds  (Zhou et al. 2022).  Other studies have 

shown that there is less microbial complexity and diversity at the beginning of crop growth compared to 

later stages of the plant life cycle, resulting in a lower rate of dispersal for particular microbial communities 

or functional guilds in the soil. Understanding this relationship, this pattern of microbiome at early crop 

growth stage can be used as microbial predictors or biomarkers for monitoring specific plant traits in wheat 

genotypes (Navarro-Noya et al. 2022). The potential mechanistic link between patterns of soil microbiome 

distribution and grain synthesis may depend on the pattern of plant–microbe interactions. These patterns of 

plant-microbe interactions are reflected in the fluctuations in soil microbiome composition with seasonal 

changes in plant growth, microbial functional abundance, and soil properties. The presence of ammonia-

oxidizing archaea (AOA) in soil represents an indication of such interactions. One study observed an 

abundance of ammonia oxidizing archaea (AOA) (Nitrososphaera) along with other microbial genera at 

the beginning of the wheat-growing season, and the activity level of AOA (e.g., ammonia monooxygenase 

gene copy) remained quite stable throughout wheat growth (Chapter 3; Asad et al. 2023).  The abundance 

of AOA was higher during the late wheat season after intermittent rainfall (Wang et al. 2022), as these 

communities are more dependent on the soil ammonium content to nitrate ratio and the condition of soil 

micro-habitats. Since the ammonia: nitrate ratio is environmentally related, the active functions of 

ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) vary with environmental 

changes (Prosser and Nicol 2012). However, their distributions within the soil are quite different, and it 

was estimated that the abundance of AOA is 700 times higher than AOB in deep, anoxic soil (Leininger et 

al. 2006). This difference could potentially be a useful indicator of soil nitrification. Another interesting 

feature of ammonia-oxidizing microbial communities is that their efficiency increases with soil depth and 
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temperature, especially at the end of the growing season (Ouyang, Norton and Stark 2017). This 

phenomenon is consistent with findings obtained using our model parameters that identified large groups 

of microbiomes with more prominent of AOA. In this work, we observed an intensified organic carbon use 

pattern by soil microbiome in the late growing season, especially as the soil water content increased (Wang 

et al. 2022) which was more correlated with drought sensitive genotypes. These observations suggest that 

there is a unique microecology associated with the rhizosphere microbiome for the drought sensitive wheat 

genotype. This microecology might be influenced by specific plant genotypes with different nutrient uptake 

capacities.  

We have found some important correlation between shallow sequencing reads, microbial 

community descriptors, abundance, wheat yield, and grain quality in the samples obtained from different 

locations and cultivation time periods. It's possible that the microbial indicators associated with crop yield 

quality are connected to the current processes of the agroecosystem, whether directly or indirectly. In 

Chapter 2 of our soil microbiome study, we discovered that particular ASVs or OTUs are associated with 

taxa that play a significant role in determining crop yield and quality. For example, we found a significant 

correlation between Sphingomonas sp., Paenibacillus sp., and various grain quality parameters (Chapter 2, 

Table 2.2) . It is known that such species have the ability to promote plant growth (Castanheira et al. 2017; 

Luo et al. 2019; Khan et al. 2020) and interact with crops to increase productivity. We have also found 

several ASVs that are closely linked to the taxa that can oxidize ammonia (i.e., Nitrosospira) and nitrite 

(i.e., Nitrospira) which have a detrimental effect on crop quality. It has been observed that the crop quality 

has a negative correlation with the dominant archaeal ammonia oxidizer AOA, as explained in Chapter 2, 

Section 2.5. Furthermore, Chapter 2, Table 3-4 highlights a significant inverse relationship between the 

abundance of ammonia oxidizer (AOA and AOB), nitrite reducer (nirK), and the quality of grain in the two 

specific wheat varieties.  

Regardless of time and space, our study revealed a significant correlation between the abundance 

of microbial taxonomic and functional properties and crop quality during the early growth stages of wheat 

crops. We observed that excessive ammonia oxidation or nitrite reduction earlier may inhibit the availability 

of reactive nitrogen species to plants, resulting in lower crop quality in the future. Elucidating the complex 

relationship between soil microbial indices and crop yield and quality can be challenging, especially when 

considering positive or negative feedback from soil microbes. However, understanding the links between 

microbial indicators is important in developing precise and interpretable models, especially when selecting 

important variables for predicting crop yield and quality. Our models identified several microbial 

parameters that may influence ecosystem processes and revealed causal links. Nevertheless, some variables 

cannot fully explain their relationship with the process predicted in a linear model. It is plausible that these 
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variables may be linked to other soil microbiological factors that are associated with optimal agroecosystem 

processes for plant nutrient uptake and grain synthesis. While we have several hypotheses for how soil 

microbial ecological functions are linked with soil processes and plant traits, based on the results of 

modelling, a causal relationship for crop production requires more experimental proof. Therefore, the goal 

of my thesis was not to validate the causal link underlying the process of agroecosystem function, but to 

illustrate the predictive power of the core soil microbiome. 

I applied metagenomic approaches to investigate soil microbiome diversity and function. I used 

specifically high throughput ‘16S and ITS amplicon sequencing’ approaches, which are now widely 

considered to be the most reliable tools to explore microbiome features. These approaches enable close 

examination of the microbial taxonomic orientation with a resolution of just a few micrometers. We used 

some basic soil properties to analyse the soil physicochemical indicators that explain soil geochemical 

processes, as these properties are well-linked to the dispersion of soil microbial communities. For example, 

one can measure pH from soils collected at regional scales and observe a strong correlation with microbial 

community composition, making pH a good predictor for explaining microbial community composition 

(Lauber et al. 2009; Griffiths et al. 2011). However, this relationship is not as clear when soil samples are 

collected over smaller areas. As such, spatial scales and associated factors can also influence soil microbial 

community structure. This was considered when designing the second part of my study. The focus was to 

characterize microbial indices based on genomic methods rather than further quantifying soil properties 

within field samples from a small geographic area. Another advantage of using genomic-based methods is 

the ability to identify specific functional taxa that may affect specific agroecosystem processes, at a higher 

resolution. These functional taxa provide more information on the biotic and abiotic factors that mediate 

these processes. For example, identifying the specific taxa involved in ammonia oxidation (nitrification) 

can help us predict the rates of ammonia oxidation. Because taxa specifically involved in nitrification may 

exhibit different enzyme kinetics subject to different environmental constraints (Webster et al. 2005).  

Information at the taxonomic level is not sufficient to predict the rates of geochemical processes in 

each ecosystem or the microbial processes that may change in response to environmental disturbances (e.g., 

climate change or land use) (Fierer 2017). Therefore, it is often suggested that other omics-based 

approaches such as transcriptomics or metabolomics be applied to examine microbial function at the gene 

level. However, microbially-driven soil geochemical processes are not the result of a single metabolic 

pathway, but rather the product of an integrated metabolic network that is governed by a wide range of 

microbial taxa (Fierer 2017). For example, heterotrophic microbial communities may contribute to the 

metabolism of organic matter or nitrogen mineralization. Microbial catabolism of organic carbon may 

require multiple metabolic processes that are carried out by a wide range of microbial taxa (Pepe-Ranney 
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et al. 2016).   Analyzing the abundance of individual genes using DNA- or RNA-based methods from 

dormant or relatively inactive microorganisms (Blagodatskaya and Kuzyakov 2013) can link functional 

processes to specific microbial communities. However, there are a few obstacles that must be overcome, 

including inaccuracies associated with gene annotation (Schnoes et al. 2009), low taxonomic resolution, 

and rapid changes in transcriptomes, proteins, and metabolites in response to environmental changes 

(Moran et al. 2013). It is also important to note that this approach provides relative abundance of microbial 

taxa rather than absolute abundance. This is relevant because it has been suggested that soil processes are 

more influenced by the absolute number of taxa, genes, or gene products rather than to the relative 

composition of microbial taxa (Fierer 2017). Another limitation of taxa-specific functional predictions is 

the microbial use of different enzymatic cascades resulting in different substrate affinities, even in closed 

systems. For example, when cultivated in a laboratory, isolated strains of methane oxidizers have affinities 

for different substrates (Knief and Dunfield 2005). With these limitations in mind, our main objective was 

to use metagenomic approaches to identify microbial signals based on taxonomic abundance for wheat 

grain quality prediction. 

Research on microbial communities has rapidly evolved with the advent of DNA sequencing 

technologies. DNA-based sequencing allows us to perform in-depth analyses of microbial structure, 

function, and interaction within specific ecosystems by generating billions of data points. However, new 

models that integrate microbiome data with omics data obtained from genomics, transcriptomics, 

metabolomics, and proteomics need to be further developed.  

There is growing interest in multi-omics technologies for studying microbiomes, particularly in the 

context of soil metataxonomics, proteomics and metabolomics. Experts suggest that multi-omics 

technology requires a proper context-specific experimental design such as one that uses two integrated 

methods for monitoring specific soil processes together. For example, microbial taxonomic abundance and 

its relevant functional profile can be combined to provide comprehensive information. One study showed 

that three different soils might have the same taxonomic profile but different microbial processes involved 

in soil nutrient cycling (Ferrocino et al. 2023). In addition, Yao and colleagues (2018) (Yao et al. 2018) 

investigated microbial adaptation to P-deficient soil through an integrated metagenomics and proteomics 

approach and found that the genes and proteins of soil microbial communities exhibited adaptive responses 

to changes in nutrient limitations. Another comprehensive study using a multi-omics approach on microbial 

interactions in agroecosystems showed the complex relationship between soil metabolic, mineral, and 

microbial components (Ichihashi et al. 2020). In our study, we applied omics data integrated with statistical 

learning tools to interpret the relationship between the soil microbiome and its associated functional 

abundance and the effect on that affects the yield size and quality for wheat crops. Generally, 
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metataxonomic data are used to study microbiome composition or abundance in the laboratory or field, 

with or without specific treatments (Correa-garcia, Constant and Yergeau 2022).  This information can 

provide researchers with a better understanding of the potential and value of meta-taxonomic data in 

microbiome-based predictive research.  

It has been suggested that model interpretability helps users create a customized experimental setup 

to validate model-driven hypotheses (Correa-Garcia, Constant and Yergeau 2022). It has also been 

suggested that microbial predictors selected in microbial-based models can lead us to other questions related 

to microbial processes (Widder et al. 2016). For example, they hypothesized that some of the microbial 

predictors selected may not be directly related to microbial processes, but rather environmental factors that 

might mask the microbial processes. Other questions to be explored are whether some microbial predictors 

have causal relationships with the abundance of specific functional guilds (Asad et al. 2021). Lastly, some 

microbial predictors might shed light on the state of past ecosystem processes and how they contribute to 

certain current ecosystems. An interpretable model can identify powerful microbial parameters, which can 

then be manipulated through microbiome engineering (Agoussar and Yergeau 2021). For example, two 

separate studies showed that ammonia oxidizer was the main predictor in multiple linear regressions and 

random forest models, as these exhibited a negative relationship with grain quality at the end of the season 

(Yergeau, Quiza and Tremblay 2020; Asad et al. 2021). The negative effect of these microbial predictors 

supported an experimental design that inhibits nitrification by applying inhibitors that target ammonia 

oxidizers, with the hope of improving grain quality (Schmidt et al. 2022). In another experiment, authors 

used unsupervised learning to identify certain key rhizosphere microbial taxa early in tomato growth. These 

were shown to predict the future susceptibility of tomato plants to Ralstonia solanacearum wilt (Gu et al. 

2022). Inoculation of healthy tomato plants with five bacterial isolates of those bacterial taxa reduced 

infection by 30–100%. These examples highlight some of the potential real-life applications of microbiome-

based predictive modeling. These modelling approaches using omics-integrated statistical learning tools 

could allow for experiments to be customized for mechanistic understanding and suggest new directions in 

microbiome-based forecasting.  

Soil samples were collected from 80 wheat farms that were registered with various local wheat-

producing companies and utilized different farming techniques, both conventional and organic. However, 

the soil sampling was not evenly distributed based on the two agricultural practices. Conducting extensive 

soil sampling across the province is crucial to gain a better understanding of the spatial diversity and 

heterogeneity of soil microorganisms in agroecosystems. Furthermore, to ensure accurate monitoring of 

soil microbial processes that affect crop quality, it may be necessary to create separate predictive models 

for farms that use different agricultural practices. The study conducted did not measure all microbial genes 
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associated with nitrification and denitrification. To gain a better understanding of the impact of microbial 

diversity on the nitrogen cycle in Quebec soils, metagenomic or metatranscriptomic studies can be 

conducted to observe the variation of all potential genes related to the nitrogen cycle. In our research, we 

focused on analyzing the abundance of ammonia monooxygenase (AOA and AOB), nitrite reductase (nirK) 

and nitrous oxide reductase (nosZ), as they are directly linked to nitrogen loss (e.g., Nitrate leaching, N20 

and N2 gas emission). This is important because the potential microbial activity linked to nitrogen loss may 

indirectly affect grain quality. Therefore, we initially measured a select few genes to determine if they have 

any relationship with grain quality. Using quantitative molecular biological assay (e.g., qPCR), we 

estimated the abundance of gene copies and assessed whether their inclusion in the models improved overall 

predictive performance. In the future, monitoring agricultural soil processes could benefit from utilizing 

these types of marker genes. Quantitative measurement of such functional genes can provide valuable 

insights in this regard. Furthermore, in case of our predictive modelling using microbiome data, we 

prioritized using representative sequencing reads, such as ASVs or OTUs, rather than relying solely on low 

taxonomic abundance data. This approach enabled us to better understand the changes of specific microbial 

communities and their association with specific ecosystem processes or differences in crop quality. 

Nevertheless, despite advances in current soil microbiome research, it remains a challenge to fully 

understand the unique functional properties of different taxa selected in statistical models that influence 

specific processes in complex agroecosystems. In order to confirm the efficacy of microbial parameters like 

ASVs, OTUs, or functional genes for future soil microbiome engineering or agricultural forecasting, it is 

crucial to carry out further field and laboratory experiments or large-scale surveys in diverse agricultural 

settings. 

4.2 Conclusions 

We need to explore new technologies to address existing and future sustainability issues related to 

the agrifood system. Research in soil microbiology is creating new avenues for addressing ongoing 

agricultural challenges such as productivity, fertilizer management and agricultural economics. From the 

laboratory to the field, it has been demonstrated that microbiome composition and function can be improved 

through manipulation. Soil microbiome-based solutions offer opportunities for creating more sustainable 

and resilient agricultural production systems (Wassermann, Müller and Berg 2019) and can be used to 

monitor crop quality by identifying the key functions that support agroecosystems. As such, the work 

presented in this thesis could contribute by helping to monitor soil microbiological parameters in specific 

regions at the beginning of the wheat growing season and improving soil fertility management through 

optimal fertilizer use. The conceptual framework based on microbiome modeling that I have introduced 

here can also help to validate experiments and lead to potential applications that can solve real-life 
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agricultural problems. For example, if we can measure a single microbial parameter such as the abundance 

of ammonia oxidizers (nitrification) early in the season, we may be able to intervene and reduce nitrification 

rates. This would help retain more nitrogen in the soil for plants and improve crop yields. My work could 

also be used to inform guidelines for the early application of soil nutrients (e.g., NPK) to promote wheat 

growth or increase wheat nutrient uptake. Microbiome-informed data derived from these predictive 

modeling tools can be used to support the sustainability of agricultural practices. Native microbiomes could 

be modified to improve the resilience of wheat to abiotic stress and high grain quality can be achieved by 

creating environments in which plants process soil nutrient more efficiently. Furthermore, integrated wheat 

breeding systems that consider microbiome modification by selecting specific wheat genotypes can 

generate high-quality, high-yield wheat production (Hohmann, Schlaeppi and Sessitsch 2020).  

In conclusion, my thesis demonstrates, for the first time, the potential and maximum utility of 

microbial indicators through spatial and temporal studies at a regional scale in an agroecosystem. My 

research explains the role of microbial indicators as the third unmeasured parameter in the relationship 

between intensive N fertilization and wheat yield through microbe dependent predictive modeling. It also 

shows that the inclusion of microbial parameters in soil nutrient testing leads to better fertilization 

management, which can improve wheat yield and quality. Microbe-related parameters measured at the 

beginning of the wheat-growing season can inform decision-making about agronomic practices or fertilizer 

application and help improve microbiome function, increasing soil fertility. Furthermore, I have shown that 

microbial indicators derived from the core soil microbiome structure, function and composition across time 

and space may provide better signals to predict future agroecosystem processes and wheat yield and grain 

quality. I have developed microbial predictive models based on two different wheat genotypes that clearly 

show that breeding or seeding decisions based on soil microbial parameters could result in better wheat 

qualities. I found it fascinating that the interaction between wheat genotype and soil microbes can vary over 

time and greatly impact the quality of wheat grain. By utilizing genotype-specific models to gather 

microbial predictors, we can gain a deeper understanding of the complex relationships between plant and 

soil microbiomes in the early stages of crop growth. This insight can be highly beneficial in predicting the 

crop yield at harvest and managing the future conditions of agricultural ecosystem processes. When 

choosing genotypes for wheat breeding, it's crucial to take into account the host-microbiome composition 

and the wide range of interactions between various wheat genotypes, soil, and other microorganisms within 

a particular environment. Making informed decisions based on soil microbiome can greatly improve wheat 

genotype selection and breeding. This approach can lead to higher yields and better-quality crops by 

selectively cultivating varieties that can fight plant pathogens and inhibit microbes that compete with plants 

for nutrients. Furthermore, we have discovered specific microbial parameters that can serve as catalysts to 

augment the assimilation of nitrogen by crops. For example, nitrogen loss for excessive nitrification caused 
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by the increased activity of ammonia oxidizers (e.g., AOA and AOB) can be controlled by using chemical 

inhibitors or planting selective crops and plants with biological nitrification-inhibiting properties. I also 

found in several models that the soil fungal-to-bacterial ratio appeared as a potential biological parameter 

because the balance of soil fungal and bacterial biomass has a conserved role in maintaining soil carbon-

nitrogen dynamics. This finding indicates that the relative abundance of fungi plays a significant role in 

releasing more nitrogen, even when the amount of organic matter and microbial abundance remains 

constant. Taken together, these findings open the door to new possibilities in sustainable agriculture, 

particularly in fertilization management, and in harnessing microbial functions by modulating soil 

microorganisms to enhance soil productivity. I hope that my research on microbial-based predictive 

modeling contributes to soil microbiome-based solutions for improving soil health and fertilizer 

management for optimal wheat production.  
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6. ANNEX 1: PUBLICATION SUPPLEMENTARY MATERIALS FOR 

CHAPTER 2 

 

Table S1: Metadata for wheat field surveys across Quebec wheat farms. Region, wheat variety sowed, geographical 

coordinates and soil analyses (if available) for the 80 fields sampled. 

Sample Region Variety Latitude 

(°N) 

Longitude 

(°W) 

pH Water 

content (%) 

Total 

C 

(%) 

Total N 

(%) 

C:N 

ratio 

10 Lac.St-Jean Variety 

trial 

47.59 67.01 
     

2 Lac.St-Jean Variety 

trial 

47.59 67.01 
     

24A Monteregie Warthog 45.14 73.30 6.92 0.232 2.12 0.18 11.80 

24B Monteregie Warthog 45.15 73.31 6.97 0.189 3.82 0.36 10.60 

24D Monteregie Warthog 45.14 73.31 5.77 0.198 4.07 0.38 10.70 

3 Lac.St-Jean Variety 

trial 

47.59 67.01 
     

4 Lac.St-Jean Variety 

trial 

47.59 67.01 
     

5 Lac.St-Jean Variety 

trial 

47.59 67.01 
     

6 Lac.St-Jean Variety 

trial 

47.59 67.01 
     

7 Lac.St-Jean Variety 

trial 

47.59 67.01 
     

8 Lac.St-Jean Variety 

trial 

47.59 67.01 
     

9 Lac.St-Jean Variety 

trial 

47.59 67.01 
     

BON225 Mauricie Walton 46.01 73.24 6.53 0.143 
   

BOU48 Monteregie Walton 45.12 73.82 5.01 0.138 
   

CEROM11 Mauricie Walton 45.35 73.15 7.13 0.156 
   

EBRER33 Monteregie Walton 45.17 73.12 6.31 0.401 2.65 0.21 12.60 

EBRER5 Monteregie Walton 45.16 73.13 6.47 0.224 2.32 0.19 12.20 

EBRER6 Monteregie Walton 45.17 73.13 6.65 0.202 2.50 0.21 11.90 

EBRER7 Monteregie Walton 45.16 73.13 6.81 0.204 1.07 0.10 10.70 

Fongiminus1 Monteregie Walton 45.12 73.82 
     

Fongiminus2 Monteregie Walton 45.12 73.82 
     

Fongiminus3 Monteregie Walton 45.12 73.82 
     

Fongiplus1 Monteregie Walton 45.12 73.82 
     

Fongiplus2 Monteregie Walton 45.12 73.82 
     

Fongiplus3 Monteregie Walton 45.12 73.82 
     

GDF1 Lanaudiere Dakosta 46.83 73.17 
 

0.145 
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GDF2 Lanaudiere Dakosta 46.84 73.17 
 

0.161 
   

GDF3 Lanaudiere Dakosta 46.85 73.16 
 

0.141 
   

IJ Monteregie Walton 45.11 73.56 6.14 0.133 1.82 0.17 10.70 

JAM1 Lanaudiere Harvard 46.06 73.30 6.06 0.151 2.39 0.21 11.40 

JAM2 Lanaudiere Harvard 46.18 73.29 5.95 0.153 2.42 0.22 11.00 

JAM3 Lanaudiere Harvard 46.12 73.29 
 

0.147 2.62 0.20 12.00 

JAM4 Lanaudiere Harvard 46.22 73.31 5.29 0.139 3.05 0.24 13.10 

JAM5 Lanaudiere Harvard 46.23 73.32 
 

0.156 3.05 0.24 12.70 

MAS1 Lac.St-Jean Walton 48.50 72.28 5.64 0.204 
   

MASBEL1 Estrie Warthog 45.63 71.55 5.46 0.172 
   

MASBEL2 Estrie Warthog 45.62 71.55 5.99 0.244 
   

MASBEL3 Estrie Warthog 45.62 71.55 5.99 0.214 
   

MASLAP1 Estrie Warthog 45.23 71.42 
 

0.186 
   

MJ18 Lac.St-Jean Walton 48.25 71.47 6.64 0.165 
   

MJ2 Lac.St-Jean Walton 48.51 72.27 5.81 0.173 
   

MJ20B Lac.St-Jean Walton 48.24 71.46 5.45 0.212 
   

MJ23 Lac.St-Jean Walton 48.34 72.18 5.59 0.214 
   

NIC32 Centre.du.Qc Orge 46.16 72.33 6.68 0.159 
   

NIC33 Centre.du.Qc Walton 46.16 72.33 6.90 0.133 4.08 0.30 13.60 

NJP1 Lanaudiere Helios 46.53 73.19 5.85 0.168 1.18 0.11 10.70 

NJP2 Lanaudiere Helios 46.53 73.19 5.67 0.370 1.55 0.14 11.10 

NJP3 Lanaudiere Helios 46.53 73.19 6.05 0.159 1.46 0.13 11.20 

NJP4 Lanaudiere Helios 46.53 73.19 6.13 0.147 1.36 0.12 11.30 

NOR2818 Mauricie Scotia 46.52 72.25 5.44 0.148 4.06 0.28 14.50 

NOR2823A Mauricie Scotia 46.51 72.23 5.79 0.113 2.33 0.17 13.70 

NOR2829 Mauricie Scotia 46.52 72.25 5.36 0.168 2.61 0.18 14.50 

NUT10 Lac.St-Jean Touran 48.29 71.37 5.97 0.171 
   

NUT16 Lac.St-Jean Touran 48.28 71.37 5.96 0.205 
   

NUT21 Lac.St-Jean Touran 48.25 71.48 6.52 0.186 
   

NUT22 Lac.St-Jean Touran 48.25 71.48 6.99 0.174 
   

NUT23 Lac.St-Jean Touran 48.25 71.48 6.49 0.146 
   

NUTAG18 Lac.St-Jean Touran 48.29 71.48 5.84 
    

NUTCR10 Lac.St-Jean Touran 48.35 72.20 6.38 0.164 3.04 0.23 13.20 

NUTNN Lac.St-Jean Touran 48.24 71.48 6.23 0.182 
   

PRI2 Centre.du.Qc Scotia 46.92 71.50 6.24 0.167 2.54 0.21 12.10 

PRI3 Centre.du.Qc Scotia 46.10 71.51 6.88 0.260 5.25 0.32 16.40 

PRI4 Centre.du.Qc Scotia 47.10 72.51 
 

0.201 2.58 0.23 
 

PRI42 Centre.du.Qc Scotia 46.20 72.17 6.94 0.117 3.22 0.26 11.20 

PRO1 Estrie Warthog 45.10 71.45 5.96 0.399 3.54 0.34 12.40 

PRO2 Estrie Warthog 45.10 71.46 5.97 0.217 
  

10.40 

QUI 2825B Mauricie Scotia 46.51 72.23 5.20 0.102 4.53 0.31 14.60 

QUI2812 Mauricie Scotia 46.50 72.24 5.67 0.126 4.09 0.28 14.60 

QUI2807 Mauricie Scotia 46.49 72.24 5.62 0.107 
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QUI2809 Mauricie Scotia 46.49 72.23 5.44 0.126 3.04 0.22 13.80 

QUI2808 Mauricie Scotia 46.50 72.23 5.11 0.130 3.92 0.29 13.50 

QUI2823 Mauricie Scotia 46.50 72.24 4.82 0.126 
   

QUI2833A Mauricie Scotia 46.49 72.23 5.38 0.109 5.89 0.43 13.70 

QUI2833B Mauricie Scotia 46.49 72.23 5.61 0.152 4.70 0.37 12.70 

RAY2E Monteregie Warthog 45.14 73.31 7.24 0.214 
   

T1B Lac.St-Jean Touran 48.35 72.20 5.96 0.397 
   

TI Lac.St-Jean Touran 48.35 72.20 6.48 0.191 
   

TI.SR92 Lac.St-Jean Touran 48.19 68.60 4.96 0.409 
   

TI1 Lac.St-Jean Touran 48.06 69.03 5.70 0.141 
   

TI22 Lac.St-Jean Touran 47.59 69.02 5.75 0.355 
   

Samples highlighted in grey: samples from fields for which we received yield data and a grain 

sample. 

 

Table S2: Number of raw read counts for each of the 80 soil samples. Number of raw read counts for each of the 80 soil 

samples following 16S rRNA gene and ITS region amplicon sequencing. 

 

 16S rRNA gene ITS region 

Sample count % total count % total 

10 141,273 1.57% 88,470 1.08% 

2 73,875 0.82% 130,942 1.59% 

24A 27,958 0.31% 73,963 0.90% 

24B 180,248 2.00% 140,677 1.71% 

24D 171,708 1.91% 117,533 1.43% 

3 164,404 1.83% 133,260 1.62% 

4 124,151 1.38% 161,047 1.96% 

5 116,660 1.30% 146,851 1.79% 

6 101,196 1.13% 117,010 1.42% 

7 124,068 1.38% 120,774 1.47% 

8 46,012 0.51% 129,695 1.58% 

9 123,114 1.37% 160,998 1.96% 

BON225 112,857 1.26% 114,345 1.39% 

BOU48 114,610 1.27% 40,636 0.49% 

CEROM11 77,318 0.86% 90,937 1.11% 

EBRER33 94,522 1.05% 33,685 0.41% 

EBRER5 92,357 1.03% 114,284 1.39% 

EBRER6 142,217 1.58% 70,102 0.85% 

EBRER7 113,146 1.26% 78,638 0.96% 

Fongiminus1 125,446 1.40% 83,978 1.02% 
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Fongiminus2 141,278 1.57% 67,717 0.82% 

Fongiminus3 81,185 0.90% 90,760 1.10% 

Fongiplus1 88,416 0.98% 41,833 0.51% 

Fongiplus2 80,556 0.90% 84,463 1.03% 

Fongiplus3 117,942 1.31% 84,313 1.03% 

GDF1 111,759 1.24% 633 0.01% 

GDF2 106,566 1.19% 99,204 1.21% 

GDF3 146,648 1.63% 163,094 1.98% 

IJ 90,228 1.00% 126,331 1.54% 

JAM1 122,233 1.36% 99,891 1.21% 

JAM2 85,031 0.95% 101,610 1.24% 

JAM3 122,263 1.36% 150,829 1.83% 

JAM4 163,830 1.82% 79,360 0.96% 

JAM5 122,248 1.36% 1,007 0.01% 

MAS1 87,301 0.97% 52,053 0.63% 

MASBEL1 130,836 1.46% 102,891 1.25% 

MASBEL2 125,176 1.39% 85,740 1.04% 

MASBEL3 140,849 1.57% 97,324 1.18% 

MASLAP1 86,089 0.96% 105,795 1.29% 

MJ18 114,610 1.27% 92,307 1.12% 

MJ2 90,726 1.01% 106,843 1.30% 

MJ20B 128,806 1.43% 108,314 1.32% 

MJ23 138,845 1.54% 190,772 2.32% 

NIC32 84,666 0.94% 115,783 1.41% 

NIC33 116,268 1.29% 165,221 2.01% 

NJP1 152,815 1.70% 88,459 1.08% 

NJP2 117,476 1.31% 76,790 0.93% 

NJP3 149,234 1.66% 108,184 1.32% 

NJP4 133,777 1.49% 86,052 1.05% 

NOR2818 114,215 1.27% 143,849 1.75% 

NOR2823A 136,670 1.52% 105,979 1.29% 

NOR2829 117,650 1.31% 109,961 1.34% 

NUT10 98,229 1.09% 71,645 0.87% 

NUT16 117,410 1.31% 102,037 1.24% 

NUT21 144,081 1.60% 120,217 1.46% 

NUT22 97,011 1.08% 112,985 1.37% 

NUT23 41,625 0.46% 123,661 1.50% 

NUTAG18 116,666 1.30% 85,995 1.05% 

NUTCR10 128,674 1.43% 100,100 1.22% 

NUTNN 122,806 1.37% 52,633 0.64% 

PRI2 67,243 0.75% 135,248 1.64% 

PRI3 84,891 0.94% 99,164 1.21% 

PRI4 101,840 1.13% 92,463 1.12% 
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PRI42 83,493 0.93% 123,270 1.50% 

PRO1 117,938 1.31% 102,964 1.25% 

PRO2 98,121 1.09% 127,850 1.55% 

QUI.2825B 99,052 1.10% 112,093 1.36% 

QUI2812 102,488 1.14% 114,570 1.39% 

QUI2807 172,633 1.92% 78,893 0.96% 

QUI2809 93,521 1.04% 151,444 1.84% 

QUI2808 106,961 1.19% 2,920 0.04% 

QUI2823 173,131 1.93% 98,498 1.20% 

QUI2833A 108,806 1.21% 88,170 1.07% 

QUI2833B 101,668 1.13% 97,974 1.19% 

RAY2E 113,622 1.26% 105,233 1.28% 

T1B 76,026 0.85% 238,404 2.90% 

TI 89,821 1.00% 142,331 1.73% 

TI.SR92 108,433 1.21% 105,003 1.28% 

TI1 97,936 1.09% 61,124 0.74% 

TI22 114,257 1.27% 96,736 1.18% 

 

 

 

 

Tables S3:  Amplification protocols for qPCR quantifications of N-cycle functional genes. Amplification protocols for 

qPCR quantifications of N-cycle functional genes, 16S rRNA gene and ITS region.  

 amoA (bact) amoA (arch), nirK, nosZ 16S rRNA gene, ITS region 

Enzyme activation 95°C for 3 min 95°C for 3min 95°C for 5min 

Number of cycles 40 40 30 

Denaturation 95°C for 15s 95°C for 20s 95°C for 30s 

Annealing 51.7°C for 45s 62°C for 30s 57 °C for 30s 

Elongation 72°C for 60s 72°C for 20s 72 °C for 30s 

Fluorescence acquisition 72°C, after elongation 72°C, after elongation 72°C, after elongation 

 

 

 


