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Abstract 
Microorganisms can improve plant resistance to drought through various mechanisms, such as the production of plant hormones, 
osmolytes, antioxidants, and exopolysaccharides. It is, however, unclear how previous exposure to water stress affects the functional 
capacity of the soil microbial community to help plants resist drought. We compared two soils that had either a continuous or 
intermittent water stress history (WSH) for almost 40 years. We grew wheat in these soils and subjected it to water stress, after which 
we collected the rhizosphere soil and shotgun sequenced its metagenome. Wheat growing in soil with an intermittent WSH maintained 
a higher biomass when subjected to water stress. Genes related to indole-acetic acid and osmolyte production were more abundant in 
the metagenome of the soil with an intermittent WSH as compared to the soil with a continuous WSH. We suggest that an intermittent 
WSH selects traits beneficial for life under water stress. 
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Introduction 
Plant- and soil-associated microorganisms play a pivotal role in 
mitigating yield losses due to drought. These microorganisms 
have evolved diverse mechanisms to resist or avoid drought, 
which can also be beneficial to plants [1]. Unlike avoidance mech-
anisms like dormancy or sporulation, resistance mechanisms 
allow microorganisms to remain active and support plants during 
drought. Key resistance mechanisms include osmolyte produc-
tion to retain water within cells [2], extracellular polymeric sub-
stances (EPS) production to enhance soil water retention [3], and 
the production of various enzymes to detoxify reactive oxygen 
species (ROS) generated under stress [4]. These mechanisms not 
only help microorganisms but also have positive effects on plants 
during drought. For example, microbially produced osmolytes 
can be transferred to plant tissues [5, 6], and microbially pro-
duced EPS near plant roots can enhance water-holding capacity 
and plant drought tolerance [7, 8]. Microorganisms also modu-
late the plant’s hormonal response to stress. The microbial 1-
aminocyclopropane-1-carboxylate (ACC) deaminase degrades the 
precursor of the stress hormone ethylene [9]. Furthermore, the 
production of auxins and cytokinins by microorganisms can pro-
mote plant growth and resistance to stress [10, 11]. 

Although interfering with the regular plant stress response 
might offer short-term benefits, it could have long-term conse-
quences, especially since larger plants are more susceptible to 
drought [12]. The overall beneficial impact of microbial activi-
ties on crops during drought depends on factors, such as the 

prevalence, abundance, diversity, and expression of traits, which, 
in turn, are influenced by various biotic and abiotic factors, 
including water availability. 

Microbial communities respond to actual water availability in 
their environment, either through resistance or avoidance mech-
anisms. This selective pressure, when sustained or repeated over 
time, can lead to lasting shifts in microbial community composi-
tion and activities. The frequency of the stress event is also criti-
cal, as intermittent stress selects for generalists adapted to both 
stressful and normal conditions, whereas continuous stress favors 
microorganisms specialized for life under stressful conditions 
[13, 14]. For example, the microbial communities in two adjacent 
dryland wheat field soils subjected to intermittent or continuous 
water stress over nearly 40 years not only differed in composition 
but also responded differently to water stress [15, 16]. When wheat 
grew in soil with a continuous history of water stress, root biomass 
decreased more sharply when subjected to subsequent water 
stress compared to roots in soil with an intermittent water stress 
history (WSH) [17]. Additionally, microbial communities extracted 
from soil with an intermittent WSH reduced catalase activity in 
the leaves (an indicator of lower stress levels) when inoculated 
onto wheat growing in different soils and subjected to water stress 
[18]. Since these studies relied on amplicon sequencing, it remains 
unclear how the differences observed in microbial communities 
of soils historically subjected to different frequencies of stressful 
events translate to variations in microbial traits and their impact 
on plant stress resistance.
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In this study, we used shotgun sequencing to analyze the rhi-
zosphere metagenome of wheat plants from the soils of Azarbad 
et al. [16, 17], which had continuous or intermittent water stress 
histories. Our hypothesis was that intermittent water stress, due 
to its variable selection pressure, would favor a greater prevalence 
and diversity of functional traits related to surviving at low water 
availability, contrasting with the constant WSH. This increased 
diversity and prevalence of microbial traits is expected to enhance 
plants’ resistance to water stress events. 

Material and methods 
Soil material 
The soil utilized in our pot study was sourced from two adja-
cent experimental fields (Swift Current, Saskatchewan, 50◦17′ N; 
107◦41′ W) that had been subjected to distinct irrigation since 
1981. Both fields followed wheat-fallow 2-year rotations, but one 
field was irrigated during the wheat phase of the rotation while 
the other remained unirrigated. Since the fields are in the semi-
arid region of Saskatchewan, this difference in irrigation resulted 
in continuous and intermittent water stress conditions. Some 
of the physico-chemical properties of the soil in the two fields 
differed, but the magnitude of these differences was small (see 
Table S1 of [16]). Approximately 80 kg from the 0–30 cm layer of 
each of the fields was collected in the spring of 2016 and shipped 
to Laval, Québec, to set up a pot experiment. 

Experimental design and sampling 
We sieved the soil at 2 mm and distributed 1 kg of it in pots. 
The pots were seeded with eight seeds of Triticum aestivum cv. AC 
Nass, a drought-sensitive bread wheat cultivar, and arranged in 
five experimental blocks in a growth chamber at 23◦C with a 16:8-
h light-dark photoperiod. For the first 4 weeks, soil water content 
was kept at 50% of the soil water holding capacity (SWHC) for 
all pots, after which it was either kept at 50% SWHC or brought 
down to 5% SWHC for another 4 weeks. This resulted in a total 
of four treatments (2 soil water stress histories × 2 soil water  
contents) with five replicates each, for a total of 20 samples. It 
should be noted that this is a subset of the pot study conducted 
by Azarbad et al. [16, 17]. These treatments were chosen among the 
entire experimental design based on previous studies that showed 
large contrasts in microbial communities [15–17]. At the end of 
the experiment, plants were uprooted and vigorously shaken, 
and the rhizosphere soil that remained attached to the roots 
was harvested, flash-frozen in liquid nitrogen, and kept at −80◦C 
until DNA extraction. Plant biomass was divided into root and 
shoot portions and then weighed to obtain fresh weight and dried 
at 75◦C for 48 hr to obtain dry weight (DW). The last emerging 
leaf was sampled, weighed (W), and hydrated to full turgidity in 
water for 2 hr. The leaves were then surface dried and weighed 
to obtain their turgid weight (TW). The leaves were finally oven-
dried at 75◦C for 48 hr to determine the DW. The leaf relative water 
content (RWC) [19], moisture content, and dry matter content 
were calculated as follows: 

RWC = 
W − DW 

TW − DW 
× 100 

Leaf moisture = 
W − DW 

DW 

Leaf dry matter content = 
TW 
DW 

. 

DNA extraction and sequencing 
The DNA was extracted using a DNeasy PowerSoil kit (Qiagen) 
and sent for metagenomic sequencing at the Centre d’expertise 
et de services Génome Québec located in Montréal, Québec. The 
sequencing procedure performed using an Illumina HiSeq 4000 
(PE150) yielded a total of 699 061 058 reads, with an average of 
34 953 053 reads per sample, resulting in a total of 105 Gbp, or an 
average of 5.2 Gbp per sample. The raw data has been deposited 
under BioProject accession PRJNA1040208. 

Bioinformatics 
The sequencing reads were processed using our established 
metagenomic pipeline (ShotgunMG v1.3.2), as previously described 
[20, 21]. Briefly, sequencing adapters were removed from each 
read, and bases at the end of reads having a quality score 
<30 were cut off (Trimmomatic v0.32) [22] and scanned for 
sequencing adapters contaminants reads using DUK (http:// 
duk.sourceforge.net/) to generate quality-controlled (QC) reads. 
QC-passed reads from each sample were co-assembled using 
Megahit v1.1.2 [23] with iterative kmer sizes of 31, 41, 51, 
61, 71, 81, and 91 bases. Gene prediction was performed by 
calling genes on each assembled contig using Prodigal v2.6.2 
[24]. Genes were annotated following the JGI’s guidelines [25], 
including the assignment of KEGG orthologs (KO). QC-passed 
reads were mapped (BWA mem v0.7.15) (unpublished, http:// 
bio-bwa.sourceforge.net) against contigs to assess the quality of 
metagenome assembly and to obtain contig abundance profiles. 
Alignment files in bam format were sorted by read coordinates 
using samtools v1.2 [26], and only properly aligned read pairs 
were kept for downstream steps. Each bam file was analyzed for 
coverage of called genes and contigs using bedtools (v2.17.0) [27] 
using a custom bed file representing gene coordinates on each 
contig. Only paired reads that overlapped their contig or gene 
were considered for gene counts. Coverage profiles of each sample 
were merged to generate an abundance matrix (rows = contig, 
columns = samples), for which we calculated corresponding CPMs 
(counts per million—normalized using the TMM method) (edgeR 
v3.10.2) [28]. Each contig was blasted (BLASTn v2.6.0+) against 
NCBI’s NT database (version downloaded from NCBI’s server 
on 9 January 2019), and the best hit’s taxonomic identifier was 
used to assign a taxonomic lineage to the contig. Taxonomic 
summaries were performed using MicrobiomeUtils v0.9 (github. 
com/microbiomeutils). Subsequently, reads were mapped onto 
the contigs to derive abundance profiles, which were used as input 
to generate metagenome-assembled genomes (MAGs) (maxbin2), 
whose quality was checked using checkM [29]. We only analyzed 
MAGs that had a completion over 50% and <10% contamination, 
corresponding to the “medium-quality” threshold for MAGs [30]. 

Functional traits 
For the functional trait analyses, we searched our gene annotation 
table for entries related to the functions of interest using their KO 
entries. For the ACC deaminase, we used the only KO available 
for this function: K01505. For IAA production, we used KOs of 
enzymes that led directly to IAA in the tryptophan metabolism 
map (map00380): K01501, K01426, K21801, K11816, K11817, and 
K00128. For osmolyte production, we used the KO list presented 
in Supplementary Table 2 of McParland et al. [31]. For EPS biosyn-
thesis, we used the 73 KOs associated with the KEGG pathway 
ko00543 (exopolysaccharide biosynthesis). For cytokinin, we used 
the 10 KOs associated with the KEGG pathway ko00908 (Zeatin
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Table 1. Anova table for plant root and shoot biomass, and leaf moisture content, relative water content, and dry matter content for 
wheat subjected to water stress and growing in two soils with contrasting soil water stress history. 

Root fresh 
biomass (g) 

Shoot fresh 
biomass (g) 

Root dry 
biomass (g) 

Shoot dry 
biomass (g) 

Leaf 
moisture 

Leaf relative 
water content 
(%) 

Leaf dry 
mater content 
(mg/g) 

Intermittent WSH HWC 0.37 a 1.36 a 0.52 a 0.20 a 8.25 a 97.1 a 0.11 a 
LWC 0.11 b 0.24 b 0.008 b 0.06 b 3.67 b 63.4 b 0.15 bc 

Continuous WSH HWC 0.73 c 1.26 a 0.54 a 0.21 a 7.95 a 97.1 a 0.12 ac 
LWC 0.07 b 0.16 c 0.05 b 0.05 b 2.86 b 59.4 b 0.18 b 

Soil type F 1.13 6.22 0.11 0.49 2.02 0.20 6.13 
P 0.31 0.028 ∗ 0.75 0.50 0.18 0.67 0.029 ∗ 

% SWHC F 229.12 397.47 40.39 228.16 153.11 62.67 34.23 
P 3.5 × 10−9 ∗∗∗ 1.45 × 10−10 ∗∗∗  3.63 × 10−5 ∗∗∗  3.59 × 10−9 ∗∗∗  3.43 × 10−8 ∗∗∗  4.19 × 10−6 ∗∗∗  7.83 × 10−5 ∗∗∗ 

Soil:SWHC F 21.72 3.98 1.10 2.12 0.42 0.19 0.81 
P 0.00055 ∗∗∗ 0.069 . 0.32 0.17 0.53 0.67 0.39 

∗∗∗: P < .001; ∗∗: .001 < P < 0.01; ∗: .01  < P < .05; .: .05 < P < .10. Different letters indicate significant differences at P < .05 in Tukey HSD tests. 

biosynthesis). For antioxidants, we searched for KOs with the 
terms “superoxide dismutase” (5 entries), “glutathione peroxidase” 
(4 entries), “catalase” (4 entries), or “cytochrome oxidase” (58 
entries). The complete list of KO entries used is available in the 
“05-Traits.R” script in our GitHub repository (see below). 

Statistics 
All R code used for data manipulation, statistical analyses, 
and figure generation can be found on our GitHub repository 
(https://github.com/le-labo-yergeau/MG_Growth_Room). The 
data employed in the R scripts have been deposited on the Zen-
odo platform (https://zenodo.org/doi/10.5281/zenodo.10140592). 
Briefly, we used ANOVA and post-hoc Tukey HSD to test the effect 
of soil water content and WSH on root and shoot fresh and DWs 
and shoot water content. We used principal coordinate analyses 
(PCoA) based on Bray–Curtis dissimilarity calculated from the 
entire gene abundance table to visualize the differences between 
the treatments and tested these differences using permutational 
multivariate ANOVA (permANOVA). For the different functional 
traits listed above, we compared their total abundance (sum 
of all genes related to a trait) across treatments using ANOVA 
and post-hoc Tukey HSD tests, whereas we compared their 
“community composition” using permANOVA on a subset of the 
gene abundance table. Finally, ANOVAs with Bonferroni correction 
for multiple testing (P < .05/68) were used to identify MAGs that 
were affected by the treatments. 

Results 
Plant traits 
In comparison to the high soil water content (50% SWHC) treat-
ment (HWC), the low soil water content (5% SWHC) treatment 
(LWC) reduced plant fresh biomass by 83.8% (roots) to 84.6% 
(shoots), on average (P < .001, Table 1, Fig. 1A). For shoots, this 
reduction in fresh biomass can be attributed, at least in part, to 
a 59.7% reduction in leaf moisture and a 36.8% decrease in leaf 
RWC (P < .001, Table 1), but also to a 71.6% decrease in shoot dry 
biomass (P < .001, Table 1). Soil WSH also had an impact on shoot 
fresh biomass, with fresh biomass being reduced by 10.8% in the 
continuous WSH soil as compared to the intermittent WSH soil, 
which is most evident under LWC (P = .028, Table 1, Fig. 1A). Addi-
tionally, the fresh root biomass of HWC plants was 49.3% higher 
for plants growing in the soil with a continuous WSH compared 
to the plant growing in the soil with an intermittent WSH, but 

this was not significant under LWC (interaction term: P < .001, 
Table 1, Fig. 1A). Neither WSH nor the interaction term affected 
the leaf moisture or RWC (P > .05, Table 1), suggesting that their 
effect on leaf fresh biomass was not due to changes in water 
content. The leaf dry matter content was 31.5% higher in the LWC 
treatment as compared to the HWC treatment (P < .001, Table 1), 
and 14.7% higher in the continuous WSH soil as compared to the 
intermittent WSH soil (P < .05, Table 1). 

Microbial community composition 
The gene community structure (based on all genes) showed 
that rhizosphere samples from wheat growing in the same 
soil were more similar to each other than to the other soil 
(PCoA of Bray–Curtis dissimilarity: Fig. 1B and Permanova: 
Table 2, F = 6.98, P = .0001). The current soil water content also 
resulted in a separation of the wheat rhizosphere samples on 
the second axis of the ordination (Fig. 1B), but this trend was 
not significant in Permanova tests (F = 1.45, P = 0.16, Table 2). 
The community composition at the phylum level did not differ 
(Fig. 1C), suggesting that the two soils were taxonomically similar 
at that level. The annotated reads were mainly affiliated with 
the Actinobacteria and, to a lesser extent, the Proteobacteria 
(Fig. 1C). 

Microbial drought-related traits 
We compared the total abundance and composition of six genes/ 
pathways that could be involved in microbial beneficial services 
to the plants under water stress: indoleacetic acid (IAA) synthesis, 
ACC deaminase synthesis, cytokinin metabolism, EPS synthesis, 
osmolyte production, and antioxidant synthesis. Like the patterns 
observed for all genes, the gene composition of the subgroups was 
only influenced by the WSH (P < .0001 for all, Table 2). However, 
when looking at the summed abundance of the genes in a sub-
group, different patterns emerged (Fig. 2, Table 3). For instance, 
the relative abundance of IAA and EPS-related genes and of the 
ACC deaminase were influenced by both the WSH and the current 
soil water content; the relative abundance of osmolyte-related 
genes was only influenced by the WSH; the relative abundance of 
antioxidants was only influenced by the actual soil water content; 
and the relative abundance of cytokinins was not influenced 
by any of the experimental factors (Table 3). Even if there were 
similarities in the factors affecting these groups of genes, the 
patterns were not the same. The ACC-deaminase gene was 7% 
more abundant in the rhizosphere of wheat growing in soil with a
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Figure 1. Plant and general microbial responses. (A) Root and shoot fresh biomass, (B) metagenomic community structure using a principal coordinate 
analysis of Bray–Curtis dissimilarities, and (C) metagenomic community composition for rhizosphere samples taken from wheat growing in soil with 
an intermittent or continuous water stress history and subjected to low (5% SWHC) or high (50% SWHC) water availability. Different letters in 
(A) indicate significant differences at P < .05. The whiskers extend from the hinge to the largest (top) or smallest (bottom) value no further than 
1.5 × the IQR (inter-quartile range) from the hinge. 

Table 2. Permanova results for the composition of functional genes in the rhizosphere of wheat subjected to water stress and growing 
in two soils with contrasting soil water stress history. 

Soil type %SWHC Soil: %SWHC 

All genes F 6.98 1.45 1.14 
P 0.0001∗∗∗ 0.16 0.26 

IAA F 7.17 1.54 1.17 
P 0.0001∗∗∗ 0.13 0.26 

ACC F 8.11 1.57 1.30 
P 0.0001∗∗∗ 0.14 0.22 

Osmolytes F 7.76 1.44 1.14 
P 0.0001∗∗∗ 0.17 0.28 

EPS F 7.20 1.41 1.11 
P 0.0001∗∗∗ 0.17 0.28 

Cytokinines F 7.05 1.44 1.06 
P 0.0002∗∗∗ 0.16 0.33 

ROS F 7.76 1.44 1.14 
P 0.0001∗∗∗ 0.17 0.28 

∗∗∗: P < .001; ∗∗: .001 < P < .01; ∗: .01  < P < .05; .: .05 < P < .10. 
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Figure 2. Relative abundance of genes encoding for drought-related functional traits. ACC deaminase, indole acetic acid, osmolytes, EPS, cytokinins, 
and antioxidants relative abundance for rhizosphere samples taken from wheat growing in soil with an intermittent or continuous water stress 
history and subjected to low (5% SWHC) or high (50% SWHC) water availability. Different letters indicate significant differences at P < .05. The 
whiskers extend from the hinge to the largest (top) or smallest (bottom) value no further than 1.5 × the IQR (inter-quartile range) from the hinge. 

continuous WSH, and it was also 5% more abundant in the LWC 
rhizospheres ( Fig. 2). IAA-related genes were 3% more abundant 
in the soil with an intermittent WSH as compared to the soil 
with a continuous WSH (Fig. 2). Similarly, IAA genes were 1.6% 
more abundant in the LWC treatment as compared to the HWC 
treatment (Fig. 2). Osmolyte genes were 2% more abundant in the 
rhizosphere of plants growing in the soil with an intermittent 
WSH (Fig. 2). EPS production genes were 1.7% more abundant 
in the soil with continuous WSH and 1.6% more abundant in 
the HWC pots (Fig. 2). There was no significant difference for 
the cytokinins (Fig. 2). Antioxidant-related genes were 1.3% more 
abundant in the soils with continuous WSH and 2.7% more abun-
dant in HWC soils (Fig. 2). 

Metagenome-assembled genomes (MAGs) 
Among the 300 MAGs created, only 68 were medium- and high-
quality MAGs (>50% completeness and <10% contamination), 
containing on average 8.05% of the total number of reads. Among 
these 68 MAGS, the relative abundances of 48 were affected 
by the soil WSH and only 5 by the actual soil water content 
(Bonferroni corrected P < .05/68). Among the 48 MAGs affected 
by soil history, 20 were enriched in the soil with intermittent 
WSH, and 28 were enriched in the soil with continuous WSH. 
The average completeness of the MAGs in the different categories 
differed, with 73.4%, 81.1%, and 71.8% for the intermittent WSH, 
the continuous WSH, and the unaffected MAGs, respectively. 
Although this makes it difficult to interpret the patterns observed
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Table 3. Anova results for the relative abundance of functional genes in the rhizosphere of wheat subjected to water stress and 
growing in two soils with contrasting soil water stress history. 

Soil type %SWHC Soil: %SWHC 

IAA F 49.07 11.44 3.58 
P 1.42 × 10−5∗∗∗ 0.0055∗∗ 0.083. 

ACC F 14.06 5.00 0.95 
P 0.0028∗∗ 0.045∗ 0.35 

Osmolytes F 35.71 0.76 0.001 
P 6.45 × 10−5∗∗∗ 0.40 0.98 

EPS F 19.66 17.02 2.22 
P 0.00082∗∗∗ 0.0014∗∗ 0.16 

Cytokinins F 0.025 0.084 3.02 
P 0.88 0.78 0.11 

ROS F 3.48 14.71 3.54 
P 0.087. 0.0024∗∗∗ 0.084. 

∗∗∗: P < .001; ∗∗: .001 < P < .01; ∗: .01  < P < .05; .: .05 < P < .10. 

between the MAG categories, some general trends emerged. For 
instance, except for the ACC deaminase, the drought-relevant 
functional traits were present in 75% or more of the MAGs 
( Fig. 3A), which resulted in 50% or more of the MAGs harboring 
five or more functional traits (Fig. 3C). Most of the functional 
traits were represented by an average number of genes a little 
over one, except for osmolytes, antioxidants, and IAA genes that 
were present on average 95, 11, and 3 times per MAG (Fig. 3B). 

Discussion 
We compared the response of wheat and its microbiota to water 
stress when growing in soil with almost a 40-year history of 
contrasting water stress frequencies. In line with our hypothesis, 
we showed that the soil subjected to intermittent water stress 
better mitigated wheat fresh biomass loss in response to reduced 
soil water content because it was enriched with microorganisms 
with traits beneficial for plants under water stress. 

Previous exposure to stress was shown to generate a microbiota 
that is better adapted when facing this stress again [32, 33], 
and this extends to beneficial services to plants. For instance, 
trees grown with a microbiota with a history of stress do better 
when facing the same stress [34], and Brassica rapa better resists 
water stress when grown in soil that was pre-exposed to water 
stress [35]. Here, we showed that the frequency of stress is also 
important. The soil microbiota with intermittent exposure to 
water stress better mitigated wheat biomass loss under low 
water content than the microbiota constantly exposed to water 
stress. Models showed that constant stressful conditions select 
for a microbial community dominated by a few specialists, 
increasing its sensitivity to environmental change and reducing 
its functional performance [13]. Intermittent water stress, in 
contrast, selected for microbial taxa that could grow at low 
and high water availability, i.e. generalists [13]. Experimentally 
subjecting a sulfidic stream microbiome to oxic and anoxic 
changes similarly selected for generalists active under both con-
ditions [14]. Although this was difficult to assess with the varying 
completeness level and the relatively small number of MAGs 
created, the intermittent WSH treatment could have selected 
for generalists that harbored a wider diversity of drought-
related functional traits. Harboring multiple traits is crucial for 
microorganisms to help plants during water stress. For instance, 
if a microorganism can mitigate plant response to stress, e.g. 
through interference with plant hormones, but cannot itself adapt 
to low soil water content, e.g. through the proficient production of 

osmolytes, then it will not be able to help plants during drought. 
Microbes combining many traits could resist low water content 
and, at the same time, promote plant growth. For instance, IAA 
and osmolyte production genes were relatively more abundant in 
the soil with an intermittent WSH, and 15 out of 20 (75%) of the 
intermittent WSH MAGs harbored both traits. 

Osmolyte production was the most widely distributed trait in 
the microbial community, with all the MAGs harboring this trait 
and around 3% of all the reads being identified as osmolyte-
related genes. Osmolyte production is one of the major mecha-
nisms that microorganisms use to resist drought; it was estimated 
that 3%–6% of the total annual net primary production of a 
grassland ecosystem is used for that purpose by microbes during 
a drought event [36]. We previously identified bacterial and fungal 
osmolyte-related genes among the most differentially expressed 
genes in the wheat rhizosphere under reduced soil water content 
[21]. Here, osmolyte production was the trait that showed the 
largest response to WSH, being more abundant in the intermittent 
WSH soils. As bacteria can transfer osmolytes to plants [5, 6], 
it is possible that the intermittent WSH soil will result in better 
water retention in plant tissues, which could explain the patterns 
observed in aboveground and belowground plant fresh biomass. 
As mentioned above, osmolyte production alone might not be 
sufficient to mitigate water stress in plants, and a combination 
with other traits could be required. 

Although soil water content dictated the plant’s biomass and 
leaf water content, it did not affect the microbial community 
structure. In contrast to the large influence of WSH, actual soil 
water content only influenced the relative abundance of five 
MAGs. Water stress normally decreases soil respiration [17] and  
microbial richness [37], increases the fungal–bacterial ratio [38], 
and shifts the microbial transcriptome [21]. We had reported 
for these soils that WSH constrained the response of microbial 
communities to actual water stress [15–17]. Alternatively, the 
timeframe of our experiment might have been too short for 
these changes to translate to shifts in functional and taxonomical 
composition of the microbial community. In all cases, this could 
lead to an uncoupling of the plant-microbe interactions as the 
two partners do not share the same environmental cues for their 
response to short-term stress. Eukaryotes—including plants— 
also use the microbiota as a cue for their development [39], 
which could abate this potential uncoupling. For example, inde-
pendently of the actual drought conditions, a drought-adapted 
microbiota accelerated the flowering time of Brasssica napa as 
compared to a microbiota that was not adapted to drought [35].
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Figure 3. Functional traits in metagenome assembled genomes (MAGs). (A) Percentage of the significantly affected MAGs harboring at least one copy 
of the genes encoding for drought-related functional traits, (B) number of genes encoding for a drought-related functional trait per significantly 
affected MAG, for MAGs harboring at least one of such gene, (C) number of different traits harbored by the significantly affected MAGs. MAGs were 
assembled from shotgun metagenomic sequencing of rhizosphere samples taken from wheat growing in soil with an intermittent or continuous water 
stress history and subjected to low (5% SWHC) or high (50% SWHC) water availability. Since the values here are a list of MAGs that resulted from an 
ANOVA, statistical significance cannot be tested for. The third bar represents the unaffected MAGs. Continuous: n = 28, intermittent: n = 20, and 
unaffected: n = 20. 

Overall, we showed that a 40-year history of intermittent soil 
water stress selects a microbial community enriched in important 
traits for plant and microbial adaptation to low soil water avail-
ability. This community better mitigated the effects of water stress 
on wheat, with plants growing in their presence having higher 
fresh biomass under low soil water content. Microorganisms har-
boring many of these traits—generalists—could be a key group 
for microbially-mediated plant stress resistance. We now have a 
clearer target for our microbial community manipulation efforts, 
toward improving crops’ resistance to environmental stresses. 
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