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Abstract: Estimating river flow is a key parameter for effective water resource management, flood

risk prevention, and hydroelectric facilities planning. Yet, traditional gauging methods are not

reliable under very high flows or extreme events. Hydrometric network stations are often sparse,

and their spatial distribution is not optimal. Therefore, many river sections cannot be monitored

using traditional flow measurements and observations. In the last few decades, satellite sensors

have been considered as complementary observation sources to traditional water level and flow

measurements. This kind of approach has provided a way to maintain and expand the hydrometric

observation network. Remote sensing data can be used to estimate flow from rating curves that

relate instantaneous flow (Q) to channel cross-section geometry (effective width or depth of the water

surface). Yet, remote sensing has limitations, notably its dependence on rating curves. Due to their

empirical nature, rating curves are limited to specific river sections (reaches) and cannot be applied to

other watercourses. Recently, deep-learning techniques have been successfully applied to hydrology.

The primary goal of this study is to develop a deep-learning approach for estimating river flow in

the Boreal Shield ecozone of Eastern Canada using RADARSAT-1 and -2 imagery and convolutional

neural networks (CNN). Data from 39 hydrographic sites in this region were used in modeling. A

new CNN architecture was developed to provide a straightforward estimation of the instantaneous

river flow rate. Our results yielded a coefficient of determination (R2) and a Nash–Sutcliffe value of

0.91 and a root mean square error of 33 m3/s. Notably, the model performs exceptionally well for

rivers wider than 40 m, reflecting its capability to adapt to varied hydrological contexts. These results

underscore the potential of integrating advanced satellite imagery with deep learning to enhance

hydrological monitoring across vast and remote areas.

Keywords: deep learning; CNN; rating curve; flow; water level; radar images

1. Introduction

The accurate prediction and management of stream flows is critical for flood moni-
toring, providing environmental impact assessments, and watershed hydrologic model-
ing [1–4]. The traditional approach for estimating river flows is based upon continuous
measurements of river levels (stages) that are fitted to stream flow (discharge) to obtain
rating curves. Yet, this approach has its limitations. First, it is difficult to obtain representa-
tive measurements of flows in extreme situations because there is no field staff who can
go out and take measurements when an extreme event occurs [5]. Second, the stage–flow
relationship can be substantially altered when river morphology changes due to erosion or
solid inputs. Such changes require new gauging to calibrate the rating curve [1,2].

The rating curve-based method is time-consuming and costly given that it requires
the maintenance of flow measurement stations. Furthermore, the spatial distribution of
hydrometric network stations is generally sparse, and their distribution is not optimal [6].
Regularly monitored stations are generally located in populated areas, while distant sta-
tions in sparsely populated locations have few or no observations. In addition, stations at
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high latitudes, together with log jams and the dominance of braided gravel-bed rivers, can
effectively limit river gauging [4]. As a result, many river sections cannot be monitored by
flow measurements and observations. This situation is reflected in the decline of gauging
stations, the decrease in their number, and the difficulties encountered in accessing river
flow information since the 1980s [7–13]. The constraints and limitations of instantaneous
flow measurement stations affect Canada, which has 9% of the world’s renewable freshwa-
ter; thus, alternative flow monitoring approaches with greater spatial coverage and scale
are required [6].

For these reasons, during the last few decades, satellite sensors have been consid-
ered as a complementary observation source to traditional water level and flow [14–19].
These data represent a potential solution to water monitoring problems [20]. Indeed, with
the increasing availability of remotely sensed data and repeated, consistent, and global
measurements from space-based sensors, the integration of satellite data provides a way
to maintain and expand the hydrometric observation network [7]. The precision of flow
estimation using remote sensing methods still depends upon the accuracy of estimated
parameters that are obtained from satellite sensors either directly (width, slope, and height)
or indirectly (velocity and bathymetric depth) [21–24]. Early applications of satellite data
to hydrology involved radar altimeters, viz., Geosat, ERS-1, and Topex/Poseidon satel-
lites [18]. Satellite altimetry was an interesting alternative for recording periodic water level
variations. These data were used with in situ observations to derive river discharge [25,26].
Similar studies have continued to expand and refine the capabilities of radar altimetry
in flow estimation [27–30]. Nevertheless, radar satellite altimeters have been confirmed
to provide inaccurate results for rivers that are less than one kilometer wide due to sig-
nal interference from river banks [25]. In addition, their swath widths are quite narrow
(~5 km), which means that many areas are not covered, thereby limiting their applica-
tion [31]. The temporal frequency of satellite altimeters, which varies between 10 and
35 days, is also a limiting factor. This is an important limitation in water level monitoring
and flow estimation, especially since the latter requires continuous and regular data. A
recent study [32] explored the estimation of river discharge in the Mississippi River Basin
using observed water surface characteristics from satellites and satellite altimetry data.
This approach employed the optimized Manning equation for parameters such as surface
roughness and channel bathymetry, combining altimetric observations from JASON-2/3
and Sentinel-3A/B satellites with features from the SWOT River Database (SWORD). The
results demonstrated reasonable accuracy, illustrating the effectiveness of remote sensing in
estimating river flow. However, the study acknowledged several constraints, including the
dependence on the precision of remote sensing data and the spatial resolution of these data.

In another study [33], data from the SWOT satellite were used to improve the es-
timation of discharge in the Saigon-Dongnai estuary, an area complexly influenced by
tides. Their methodology, based on simulated SWOT products at a node resolution of
200 m and a Monte Carlo analysis, reduced the root mean square error (RMSE) of the
discharge estimation. However, they recognize that estimating discharge in estuarine
environments poses particular challenges due to large hydraulic variations and inherent
errors in SWOT measurements, highlighting the difficulties of generalizing remote sensing
methods without specific adaptations to local conditions.

Many researchers have focused on optical sensors to estimate water flow [9,17,34–39].
While conceptually similar to the altimeter method that is described above, measurements
that are made with optical sensors are derived by the satellites themselves. Moreover, the
variable that is selected to calibrate the rating curve is the flow width. Yet, the signal from
optical sensors cannot pass through clouds, which strongly affects the quality of a large
quantity of acquired data. Also, optical imagery does not allow the detection of water
under dense vegetation cover. Given this limitation, some information is not processed [17].

Faced with these challenges, a recent study [34] proposed an innovative method for
estimating daily continuous discharge in ungauged headwaters, using multisource re-
mote sensing data such as high-resolution images from GeoEye-1, WorldView-2 satellites,
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and Landsat archives. This approach, focused on high-mountain regions like the Tibetan
Plateau, relies solely on satellite-observed information, such as river widths derived from
images with high spatial resolution, without the need for in situ river discharge measure-
ments. Although promising, this methodology acknowledges several challenges, including
uncertainties related to the accuracy of calibration references and optimization algorithms,
which may limit the application of such technologies in diverse and complex environments.

Building on the challenges associated with optical sensors, a recent study [35] explored
an alternative approach using satellite videos for river discharge estimation. This method
utilizes large-scale particle image velocimetry (LSPIV) techniques to estimate river flow.
The authors integrated high-resolution topographic data with speed estimates derived
from satellite videos. This technique, which uses optical flow algorithms to measure water
speed from video sequences, shares similarities with traditional optical sensor approaches
but distinguishes itself by potentially overcoming some of their limitations.

The results of their study highlight the effectiveness of advanced remote sensing
techniques in complex fluvial contexts. However, despite its successes, this study ac-
knowledges several limitations, including the dependence on clear weather conditions for
video capture and uncertainties related to the selection of surface velocity-averaging coeffi-
cients. These challenges highlight the potential constraints of applying such technologies in
diverse environments.

To overcome these problems, several studies have used radar data to estimate water
flow [20,23,29,36–39]. Indeed, due to the sensitivity of the radar signal to the presence of
water and its ability to penetrate clouds and operate independently of weather conditions,
these sensors have shown interesting potential for detecting river water surfaces and for
monitoring water flow [4,40]. Despite the potential of radar data to estimate water flow,
they have a recurring problem, which is related to the level of noise that degrades image
quality and makes direct interpretation of hydrological information difficult. Indeed, they
all use a proxy for the estimation of flow, especially in terms of the width. Given the noise
in radar imagery, the estimation of this proxy is erroneous and, therefore, so is the flow.

In the last two decades, artificial intelligence (AI)-based approaches have been widely
used for river flow estimation. For more details, the authors of [41] have prepared a
complete review of the application of AI to river flow estimation. In this regard, artificial
neural networks (ANNs) are among the most frequently applied models [42,43] given their
strong nonlinear adjustment capability. However, ANNs can neither provide an effective
representation of the spatial variability of the input data nor extract their characteristics,
thereby limiting their applications in practice [44].

Recently, deep-learning techniques have been successfully applied in hydrology and
water resource analyses [45–47]. Several researchers have shown the potential of deep-
learning applications, including classical ANN, in water resource management [48,49],
water quality parameter monitoring and estimation [50,51], groundwater loading estima-
tion [52,53], and water level forecasting [54,55]. For example, the convolutional neural
network (CNN) is one of the deep-learning algorithms that has been successfully applied
to solve water management and hydrological parameter estimation problems [46].

Indeed, the CNN appears to be a promising and appropriate solution to the problems
of flow estimation with satellite sensors. The water dynamics and the mechanism that
manages the flow are complex and highly nonlinear. Flow estimation depends upon several
parameters, including longitudinal and lateral slope, water level, and landform, among
others. Given its many stacked layers, the CNN is capable of representing complex and
high-dimensional spatial data features [56], together with deducing robust and scalable
information, while minimizing the manual intervention rate [57–59]. CNNs can also
represent nonlinear features while handling raw and noisy data [60].

To overcome the complexity and difficulty of using traditional approaches and to
minimize the inconvenience of using remote sensing data and ANN approaches, a CNN
network was thus deployed to develop a river flow estimation model. The main objective
of this work is to develop a straightforward approach for river flow estimation across the
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Boreal Shield ecozone of Canada based on a CNN model and Synthetic Aperture Radar
(SAR) data.

2. Study Area

The study area where the research was performed is located in the eastern Boreal
Shield ecozone of Canada (Figure 1). The Boreal Shield is the largest terrestrial ecozone
in Canada. It covers 1.8 million km2 [61], which is 18.2% of the country’s land base [61].
Several lakes and rivers within the area represent 22% of Canada’s freshwater area. The
Boreal Shield ecozone encompasses portions of five provinces: Alberta, Saskatchewan,
Manitoba, Ontario, Quebec, and Newfoundland and Labrador [61]. About 30% of the
forested area in the eastern ecozone is covered by dense coniferous stands of black spruce
(Picea mariana) and balsam fir (Abies balsamea). Mixed coniferous and deciduous forests
cover 13%, while open forests cover 35% [62]. The precipitation in this zone is relatively
abundant, with 1000 mm falling in the eastern part [63]. The average daily temperature is
−10 ◦C to −20 ◦C in January and 15 ◦C to 18 ◦C in July [63]. The Boreal Shield ecozone
is characterized by rocky headlands and rocky lakes. Thus, the most common soil types
in the Boreal Shield are wet-climate soils, viz., Brunisols in the west and Podzols in the
east, with exposed bare rock and accumulated peats resulting in wetland organic soils, and
Gleysols in very swampy areas. The hydrological regime in the eastern part of the Boreal
Shield is driven by rainfall and snowmelt [64].

 

tt ffi

tt ffi

Figure 1. Overview of the study area.
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3. Materials and Methods

3.1. In Situ and Satellite Dataset

3.1.1. Satellite Data

RADARSAT-1 and RADARSAT-2 (RS-1 and RS-2) data that were acquired in ascending
and descending orbits were used in this study. These sensors emit C-band microwaves
(5.6 cm wavelength) at respective frequencies of 5.3 GHz (RS-1) and 5.4 GHz (RS-2). They
follow a helio-synchronous orbit and are equipped with a SAR sensor, allowing the acquisi-
tion of images with high spatial resolution. The radar backscatter coefficients, which are
denoted by sigma0 in the SAR images in this study, are calculated from the Ground-Range-
Detected products.

The selected images are in fine acquisition mode, with a spatial resolution of 8 m
and HH polarization. A total of 600 images (between 1997 and 2013) were collected and
pre-processed to calibrate and validate the river flow estimation CNN model. These images
cover all hydrometric stations within the study area (Figure 2).

 

tt

tt

Figure 2. Radar image coverage across the study area.

The data were acquired during summer periods (May to August), with conditions
of open water flow without ice or snow. Prior to data analysis, an initial pre-processing
of the SAR data was necessary. Indeed, all RS-1 and RS-2 images are orthorectified using
orbital parameters and a digital terrain model (PCI Geomatica, PCI Geomatics, Richmond
Hill, ON). Radiometric calibration was also applied. This last step allowed an image to be
obtained, the pixel value of which really corresponds to the radar backscatter coefficient
of the scene. A 3 × 3 Lee SAR Speckle Filter (FLE) was then applied to the correctly
orthorectified images to reduce speckles. This filter is available in PCI Geomatica. The final
sigma0 image values were subsequently logarithmically transformed to decibels (dB).

3.1.2. In Situ Gauge Dataset

Thirty-nine hydrometric stations (Table A1, Appendix A) that cover the study area
were used, including instantaneous flow measurements for the period of 1997 to 2013.
These data correspond to the same dates and times of RS-1 and RS-2 images (with an
interval of ±1.5 h). They are available for all the selected hydrometric stations. At these
stations, river widths vary between 16 and 431 m and instantaneous water flows vary
between 0.1 m3/s and 750 m3/s (Table 1).
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Table 1. Descriptive statistics of hydrometric stations that were used for river flow estimation.

Range of Values
at the Stations

Width of River at
Station (in m)

Catchment Area
(km2)

Instantaneous
River Flow

m3/s

Minimum 16.0 99.0 0.1
Mean 112.0 7456.0 80.0

Maximum 431.0 92,500.0 750.0
Standard deviation (SD) 105.0 15,497.0 120.0

For the Province of Quebec, data were acquired from the Direction de l’Expertise
Hydrique (DEH; ministère de l’Environnement et de la Lutte contre les changements clima-
tiques). The stations that were located in Labrador were obtained from the Environment
Canada website.

To provide a comprehensive understanding of the hydrological variability and to
contextualize the instantaneous measurements, a historical analysis of flow data from 1983
to 2013 was conducted across the 39 hydrometric stations. This analysis involved examining
the average minimum, maximum, and mean annual flow rates based on monthly data. The
historical data revealed that minimum average annual flows across the stations ranged
from as low as 0.186 m3/s, indicative of small or intermittently flowing streams, to over
912.114 m3/s in larger rivers with substantial catchment areas. Conversely, maximum
average annual flows demonstrated even greater variability, with some stations recording
flows as high as 4509.83 m3/s, reflecting the capacity of these river systems to experience
significant flood events.

These long-term flow data help to identify the range of hydrological conditions en-
countered across different geographic settings within the study area. A detailed summary
of these historical flow rates is provided in Appendix A (Table A1). These supplementary
data underscore the variability and complexity of the hydrological regimes within the study
area, offering essential insights for the comprehensive analysis of flow dynamics.

3.1.3. Topographic Dataset

Topographic data that were extracted from SRTM digital terrain models (DEMs) at
30 m × 30 m spatial resolution were also used in this study. The data covering the study
area were downloaded from the NASA server (https://earthexplorer.usgs.gov, accessed
on 1 June 2021) and processed to compute the Height Above Nearest Drainage (HAND).

In the HAND model, each point in the watershed is calculated as a function of the
elevation above the nearest stream. HAND normalizes the topography to local relative
heights that are found in the drainage network [65,66]. The unit of the HAND value is the
meter, and it is calculated from the DEM using two steps (Figure 3):

• Modeling the water flow: to do so, the DEM is first adapted to this objective. Indeed,
the DEM contains pits that pose a problem when determining the direction of flow
(pits are generally cells surrounded by higher cells). Therefore, the objective is to fill
these pits. A hydrologically coherent DEM is thus obtained, which allows the direction
of the flow to be defined and to generate an accumulated surface grid. The latter is
used to define the drainage network.

• Generating the nearest drainage map: the data from the local flow direction and the
drainage network are combined. Each pixel in the map corresponds to a DEM pixel
draining to that pixel. DEM pixels are calculated by calculating their elevational
difference from the nearest drainage pixel.

For this work, the HAND product was resampled from 30 m to achieve the same
spatial resolution as the radar images (8 m). To perform these steps, the pc raster tool (a
library in QGIS) and Jupyter notebook were used to automate the processing.

https://earthexplorer.usgs.gov
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Figure 3. HAND computation workflow (inspired from [65]).

3.2. CNN Approach to River Flow Estimation

The methodological approach involves two main components (Figure 4). The first part
consists of presenting the database that served as input data for the CNN model, while the
second part focuses on the training and evaluation of the deep-learning model.

ff

ff

ff

𝑧 𝑥 𝑥𝑥 𝑥𝑧 𝑥𝑥  𝑎𝑛𝑑 𝑥

Figure 4. General flowchart of the river flow estimation approach.

3.2.1. Input Data Pre-Processing

In order to train a CNN algorithm, it is necessary to separate the data into different
sets: a training dataset that is used for calibration and adjusting weights; validation datasets
that are used to evaluate the model at each calibration iteration; and a test dataset that
is completely independent, which is used to measure the model’s accuracy and evaluate
its performance. The optimal ratio that was used to split the data is as follows: 80% for
training; 10% for validation; and 10% for testing. The choice of ratio was based on several
trials. Different ratios were tested to find the best balance between the optimal use of data
for model training and the reliable evaluation of model performance. The aforementioned
ratio showed the best performance in the tests.

The input data that were considered for this approach are the SAR data and HAND.
A series of pre-processing steps were performed on these data. First, a clipping step was
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applied to the data (Figure 5). In a 5-km buffer zone around the hydrometric stations, the
radar images were clipped into small thumbnails along the one-kilometer-wide rivers. The
same flow value was assigned to all patches. This increased the number of thumbnails
for the model training step. The size of the database was increased from 600 images to
10,000 images.

 

tt tt

ffi
ff

tt

ff

ff

Figure 5. Clipping data.

Once the clipping of the images was completed, normalization of the patches (Equation (1))
was performed. This second step is important because it allows the input data to be
standardized to the model as well as obtaining unit variance (1). Therefore, variability
within the data is reduced, thereby ensuring a more stable training phase.

Normalization is calculated as follows:

z =

x − xmin

xmax − xmin
(1)

where z represents normalized pixel values, x is the pixel value before normalization, and
xmax and xmin are the maximum and minimum pixel values.

To handle the problems of over-fitting, data augmentation was applied. Over-fitting
occurs when the model fits perfectly with the training data, but it estimates poorly with
new data. This means that the model trains well on the training data but is not sufficiently
generic with other data. Data augmentation is a simple but effective method that reduces
over-fitting and contributes to improving the performance of the model [67]. This step
allows the quantity of data to be increased by modifying the data that are already available.
In this work, each thumbnail received a series of geometric and pixel transformations
(Figure 6). For the geometric transformations, different kinds of rotations {25◦, 90◦, and
180◦} were applied. This helped the model to learn the invariant orientation of a channel.
Vertical and horizontal flips were also applied. For the pixel transformations, a noise layer
was added. Gaussian noise was generated using a separate layer called GaussianNoise.
Two adaptive filters, i.e., contrast-limited adaptive histogram equalization (CLAHE) and
equalization, were also applied to each thumbnail to increase the contrast and improve
the visibility of the edges. They allow the grey level of the image to be changed while
preserving its details. These different transformations were performed with the Keras
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library. Following these transformations, the total number of patches in the database
increased from 10,000 to 82,000.

 

ff

ff ff

ff

ff

ffi

𝑀𝑆𝐸  1n Q Q
n Q  and Q

Figure 6. Data augmentation.

3.2.2. Training and Evaluation of the Deep-Learning Model

In this second section of the methodological approach, the CNN model and the loss
function will be explained. For CNN model development and through its different layers,
the data will be transformed and will have a new presentation. The last CNN layer will
be used to estimate the water flow value. Due to a loss function or cost function, which,
in this work, is the mean square error (MSE) (which measures the performance of the
algorithm, as shown in Equation (2)), this estimated value will then be challenged with the
validation data (the real data value). This will allow a loss score to be computed, which
indicates the error difference between estimated and true values. If the error difference is
large, an optimization function will be used to adjust the weights and minimize the error
difference. Backpropagation is the most commonly used technique [68] for calculating
the gradient of the error function relative to one weight at a time. For updating weights
and minimizing error variance, stochastic gradient descent algorithms or their variants
are commonly used, such as AdaGrad, RMSprop, and Adam. The Adam algorithm was
chosen for this work [69].

The input data will then be exposed again to the CNN with adjusted weights. The
above steps will be repeated until a minimum error difference between the predicted and
true values is obtained (Figure 4). It may be that the best accuracy reached after training is
not considered to be sufficient. In this case, modifications of the developed architecture are
necessary. This means modifying, especially the parameters, or adding/removing layers in
order to find an architecture that correctly models the dataset in question.

MSE =

1
n

n

∑
i=1

(

Qi
obs

− Qi
estim

)

2

(2)
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where n is the sample size and Qi
obs and Qi

estim are the observed and estimated
flows, respectively.

3.2.3. Proposed CNN Architecture

The typical structure of a CNN consists mainly of an input layer, hidden layers, and
an output layer [70]. Hidden layers of a CNN are composed of convolutional layers, a
nonlinear layer (also called the activation function [56]), pooling layers [71], and fully
connected layers [72].

The input layer allows input data of the entire CNN to be easily manipulated without
destroying the internal structure of the latter. Generally, it represents the pixel matrix of
the image.

The hidden layers are composed of convolutional layers that extract features from the
input images of the previous layer. The results are transmitted to the next layer. This is
achieved by using a filter that scans the entire input image and calculates the convolution
product between the weights of the convolutional neuron (filter) and each portion of the
scanned image. The convolution step is usually followed by a nonlinear transfer operation.
The nonlinear layer is also called the activation function. This is an essential element
in the neural network given that it introduces nonlinearity into the model. The ReLU
(Rectified Linear Activation) function, the sigmoid function, and the hyperbolic tangent
function are some of the most commonly used activation functions in deep learning. In this
work, the ReLU function was used. The latter allows negative values to be avoided at the
output of the neuron. It sets all negative values to zero, while the positive values remain
unchanged. ReLU layers have been shown to work much better than other functions [73].
The advantage of ReLU over the others is that it allows for better generalization. It also
allows the network to train much faster. Furthermore, it helps to avoid the problem of
gradient vanishing. Through the use of the pooling layer, the calculation is reduced and
simplified by retaining only the most important features that are present in the input images.
In the fully connected layer, the output of the convolution and pooling layers represents the
input. This layer connects to all the features of the previous layer to obtain the final output
(river flow estimation). In this work, the Global Average Pooling (GAP) layer approach
was used instead of fully connected layers. GAP layers are a pooling operation designed to
replace fully connected layers [74]. The idea here is to reduce the dimensionality of a tensor
that will have a dimension of 1 × 1 × d instead of a size of h × w × d (h: height; w: width;
and d: depth). Therefore, GAP layers allow each hw feature map to be reduced to a single
number while taking the average of all hw values. Among the advantages of using GAP
layers is that there are no parameters to optimize during this step, which helps avoid the
over-fitting problem. For more information on the design of CNN structures, see [75,76].

In the output layer, a model’s ability to make predictions depends upon the type of
activation function that is being used. Indeed, the linear function has often been used in
regression models. Since this work is aimed at estimating river flow, the activation function
at the last output layer of this CNN model was defined as a linear function.

To improve training generalization and to avoid over-fitting, the dropout layers tech-
nique [77] was used. The idea behind this technique amounts to disabling several nodes at
each iteration of the learning process. This alteration forces the network to be redundant
and to have alternative paths to correctly predict the output. This helps to reduce the
over-fitting problem. This method seemed to be the most suitable for this work, especially
since it is extremely light in terms of computational requirements.

The learning rate is a very important parameter that influences the performance of the
model. If the learning rate is very low, over-fitting can occur [78]. A high learning rate can
lead to oscillations around global minima without reaching it. Therefore, different learning
rates were tried in the context of this work. It was found that the CNN model worked best
at a learning rate of 10−4.

The most difficult, but also the most important, step is to identify the best-performing
architecture that achieves the best flow estimates. Indeed, hyper-parameters need to be
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adjusted, and there is no single rule that can be applied to the dataset. Several adjust-
ments should be made in order to find the appropriate set of hyper-parameters, thereby
maximizing the performance of the model.

Figure 7, together with Tables A2 and A3 (Appendix A), shows the best design in
terms of the number of layers that are used and the values of the hyper-parameters, which
are appropriate for the input data. This architecture is the result of many trials and tests. In
total, 3,536,617 parameters were trained by the final version of this model.

 

ffi
ff ffi

ff

𝑅 ⎝⎛ ∑ Q 𝜇 Q  𝜇∑ Q 𝜇 ∑ Q  𝜇 ⎠⎞
𝑅𝑀𝑆𝐸 1𝑛 Q Q
𝑁𝑆𝐸 1 ∑ Q Q∑ Q 𝜇

Figure 7. An overview of the convolutional neural network (CNN) architecture.

3.2.4. Model Libraries

The criterion for choosing a deep-learning library is based on its ease of handling,
its flexibility (i.e., the type of architecture supported and the possible operations), and
also its free and open-source status. The Keras library [79] satisfied all three criteria and
was thus selected for this work. It is well suited for developing one’s own models due to
its simplified coding. Other libraries that are used for data importation, pre-processing,
and visualization are Pandas, NumPy, Scikit-Learn, and PyLab. The Spyder package from
Anaconda is used as an interface.

The model training platform that was used is a Deep Learning EC2 instance of Amazon
Web Services (AWS), featuring up to eight Gaudi accelerators, 256 GB of high-bandwidth
memory, and 768 GB of system memory.

3.2.5. Evaluation of Model Performance

The statistical performance indices that were chosen are coefficient of determination
(R2), root mean square error (RMSE), and Nash–Sutcliffe efficiency (NSE). The R2 is a
statistical measure that assesses the degree to which a model explains variances in measured
flows. RMSE reflects the standard deviation of the residuals (prediction errors). A model’s
predictive power is evaluated using the NSE. It allows comparisons between situations
with different orders of magnitude of flows [80].
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where n is the sample size, Qi
obs and Qi

estim are the observed and estimated flows, respec-
tively, µobs is the average of observed flows, and µestim is the average of estimated flows.
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4. Results

4.1. Analysis Based on Input Data

First, the CNN model was trained using only the SAR images. The HAND data were
added to the SAR images to train another CNN model for the purposes of comparison.
Figure 8 summarizes the CNN training results that were obtained using the SAR data alone
and the SAR data with the HAND data. This figure illustrates the relationship between the
in situ flow measurements and predicted flow measurements.

 n Q and Q μ  𝜇

tt

ff

ff

Figure 8. An illustration of the effect of adding HAND on the accuracy of river flow estimation.
(a) Flow estimation using only SAR data and (b) flow estimation using SAR data plus HAND.

SAR images with HAND as input data led to better training of the CNN for flow
estimation with R2 = NSE = 0.91 and RMSE = 33.51 m3/s. Flow estimation using SAR data
only as input data was less successful, with R2 = NSE = 0.85 and RMSE = 42.99 m3/s.

It should be noted that the rest of the analyses focus only on the results obtained using
the CNN model that was trained using the SAR images with HAND data.

Figure 9 illustrates some examples of flow estimates that are over- or underestimated.
Their corresponding images were selected and visually inspected. For three selected
examples, the distance between the image and the hydrometric station is large (about 3 km).
For image (1), HAND was calculated on a different tributary from the one in which the
station is located.

 

ff

Figure 9. Illustration of some examples of overestimated or underestimated flow predictions.
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4.2. Analysis According to the Morphometric Characteristics of the Estimation Site

For this analysis, the amount of test data was reduced. Only images taken within
a 2-km buffer around the hydrometric station were considered. The goal is to highlight
the effects of changing distance from the hydrometric station on flow estimates. Figure 10
shows the relationship between observed and estimated flows following the reduction in
distance to the hydrometric station. Compared to previous results, it should be noted that
the use of images that are within the 2-km buffer zone around the hydrometric station
attained better estimates of river flow. Values of R2, RMSE, and NSE increased to 0.95,
22.55 m3/s, and 0.95, respectively. The scatter plot became increasingly less dispersed with
respect to the 1:1 line.

 

ffFigure 10. Flow prediction using data that are obtained within a two-km buffer around the hydro-
metric station.

The same test was repeated, except that this time, only the images that passed through
the station were considered. Flow estimation results likewise improved, as shown in
Figure 11. R2 and NSE values increased from 0.91 with all test data to 0.98. RMSE was
reduced from 33.51 to 17.28 m3/s. Thus, it is clear that proximity is a key factor in accurate
flow estimation. The closer to the hydrometric station, the better the flow prediction becomes.

 

−

ff

Figure 11. Flow estimation using data passing through the hydrometric station.
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4.3. Analysis by Individual Stations of the Flow Estimate

This part aims to analyze how the model estimates flow on different dates with
different flow conditions within the same hydrometric station. Among the test data that
pass through the hydrometric station, those that have flow observations on different dates
were taken. A station-by-station analysis was performed. In total, 15 hydrometric stations
were analyzed.

At first inspection, the two performance groups are quite distinct. The first group
of flow estimates is characterized by very good performance, while the second group
shows less or mediocre performance (Figure 12). Following analysis, it emerged that rivers
with widths of 40 m and more belong to the first group, and vice versa. For the stations
belonging to the first group of rivers, R2 and NSE vary between 0.79 to 1.00 and 0.76
to 0.97, respectively, and RMSE varies between 2.49 and 42.65 m3/s (Figures 13 and 14).
For stations in the second group, R2 and NSE range from 0.06 to 0.85 and −4.85 to 0.37,
respectively, while RMSE ranges from 1.22 to 8.39 m3/s. This shows that the model is
capable of estimating the flow at the station itself, with different flow conditions, when the
width of the river is greater than 40 m.

−

ff

 

Figure 12. Occurrence of NSE in the 15 hydrometric stations.
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ff ffFigure 13. Analysis of station-by-station flow estimation on different dates and under different flow
conditions. River flow varies from 33 to 650 m3/s.
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ff ff
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Figure 14. Analysis of station-by-station flow estimation on different dates and under different flow
conditions. River flow varies from 12 to 22 m3/s.

5. Discussion

Based on the improvements observed in Section 4.1, where the CNN model in-
corporating the HAND data demonstrated enhanced performance (R2 = NSE = 0.91 and
RMSE = 33.51 m3/s) compared to using SAR data alone (R2 = NSE = 0.85, RMSE = 42.99 m3/s),
it is clear that adding the topographic aspect significantly augments the model’s ability
to estimate in-river flow. This improvement is especially notable for flow values below
300 m3/s, where the results show less dispersion of predicted values around the 1:1 line as
visualized in Figure 8.

On one hand, SAR data have been shown to be very useful for mapping the water
surface of rivers and tracking change in its width in several studies [7,40,81]. On the other
hand, these data exhibit several inconvenient features. Among these is the land effect, which
makes it difficult to map water because of shadow regions in the land that have similar
values to those over water bodies. The use of the elevation data that are acquired directly
by the DEM does not always improve the mapping of the water surface. Yet, because all
DEMs contain errors, the simple thresholding in elevation to delimit shadows and water
bodies becomes unreliable when the shadows occur in low areas. For this reason, it is
necessary to use another land variable that has a strong link with the presence of water and
that can overcome the drawbacks of the DEM, such as the HAND. One of the key features
of HAND is its ability to determine local drainage potentials and to calculate the elevation
of each point in the watershed above the stream closest to its drainage direction [66]. With
the HAND data, we are interested in relative spatial changes in elevation rather than height
in terms of the absolute value, making the elevation error on the DTM less important. The
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use of HAND allowed for better delineation of water bodies and, therefore, improved
flow estimation.

Indeed, several studies have shown a strong correlation between river width and
flow [82,83]. River width information can include the hydraulic geometry of the channel in
which an increase or decrease in water extent results in a significantly higher or lower flow.
Thus, the proper delineation of water body boundaries is a key step in estimating river
flow. The enhanced delineation achieved by combining SAR and HAND data facilitates
more reliable flow estimations, enabling the CNN model to better train and predict river
flow dynamics, as seen in the improvements documented in Section 4.1.

In sum, the use of SAR images, in conjunction with HAND data, not only addresses
the drawbacks of using SAR alone but also significantly enhances the model’s training
effectiveness and predictive accuracy for river flow estimation.

In the discussion of the results depicted in Figure 9, the estimation of river flow can be
significantly influenced by spatial discrepancies and data application. This figure showcases
examples where flow estimates are either over- or underestimated, which can be attributed
to the large distances (about 3 km) between the imagery used and the hydrometric stations.
Particularly for image (1), where the HAND data were calculated for a different tributary
from the one monitored, it highlights the critical impact of accurate data alignment with
the physical location of measurements.

These observations underscore that changes in the physical characteristics of the river,
such as the shape of the channel, can induce substantial variations in flow rates. The finding
that the shape of the channel has evolved suggests that such morphological changes are
crucial to consider in flow estimations. Therefore, the distance from the hydrometric station
and the ongoing changes in channel morphology can drastically affect the accuracy of the
flow estimations made using the model.

Moreover, the broader implications of these findings relate to the inherent uncertainties
in river flow measurements. The sources of uncertainty in river flow measurements have
been highlighted in a number of studies [84–88]. These uncertainties include physical
factors that are used in flow calculations (current velocity, instrument exposure time, and
location of the gauged section). A low level of uncertainty can also be observed in the
extraction of remote sensing input parameters for use in the model. In this study, errors
may be related to physical factors rather than physical parameters.

The results from Section 4.2 demonstrate the significant influence of morphometric
characteristics on the accuracy of flow estimates. Specifically, the proximity of data col-
lection to the hydrometric stations notably improves the reliability of flow predictions
(as seen in Figures 10 and 11). This finding supports the hypothesis that reducing the
distance between the data collection points and the hydrometric stations enhances the
model’s accuracy due to the reduction in spatial discrepancies that could otherwise distort
the flow estimation.

Moreover, the variance in flow estimates due to proximity highlights the critical nature
of physical geography in hydrological modeling. It is evident that closer geographical
alignment between the data points and measurement locations significantly reduces errors,
likely due to a more accurate representation of river conditions.

Additionally, this analysis aligns with broader research suggesting that the quality of
input data profoundly affects the performance of deep-learning algorithms in hydrological
models. Studies have shown a positive correlation between the number of relevant features
in the model and the accuracy of results, emphasizing the necessity to utilize appropriate
and precise data [89]. In contrast, the use of redundant and inappropriate features can lead
to confusion in the trained model [90]. Removing these redundant features would help
improve the learning performance of the model and, ultimately, avoid its degradation [90].

To date and to the best of our knowledge, no work has successfully created a direct
link between radar image signals and river flow estimation. The work that has been done
in this direction often relates the flow to a derivative of the SAR images (river width and
water surface, among others). As an example, the authors of [14] proposed an approach
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to streamflow estimation in the Han River Basin (Korea) using Sentinel-1 SAR images.
The working method was based on the use of the rating curve that relates the extracted
water surface with SAR data versus in situ flow measurements. Their results showed
that the flow rate can be estimated accurately (mean r = 0.80) when the river width is
greater than 40 m and when the channel cross-section is characterized by gentle side
slopes. The authors of [91] also used Sentinel-1 SAR data to estimate river discharge. To
do so, the authors used the satellite-estimated river width and in situ measured flow;
through a thresholding method, they were able to develop a model that estimated flow
for a given river section. This thresholding method of flow estimation showed a good
potential for flow rate estimation, with relative root mean square errors (RMSEs) of 38.5%
and 34.5%, respectively.

Despite the potential displayed in the aforementioned research, these studies have
several limitations. First, because of their empirical nature, rating curves are limited to
specific sections and cannot be applied to other rivers [7]. Second, the quality of the results
given by the rating curve is highly dependent upon the quality of the calibration data,
which in turn depends upon the availability and representativeness of the satellite-derived
observation data that are used to calibrate the model. The satellite-derived measurements
are not always available or of good quality. Thus, the uncertainty that is associated with
satellite-derived variables, physical parameters, and rating curve equations results in many
errors in the river flow estimate.

The present study demonstrated that a direct causal relationship between the SAR data
signal and river discharge could be established. This relationship has several advantages
over previous studies, including its potential for large-scale application (gauged and
ungauged sites) without the need for recalibration. In addition to the local aspect of the
models that are presented in the literature, flow has always been modeled according to
proxies that are derived from SAR images. These derived variables emerge from an error-
ridden modeling process. The least error that is incurred in the estimation of this derived
variable, through an error propagation process, can easily lead to a distorted final result
of the flow modeling. Finding a direct relationship between the SAR signal and flow
avoided a significant source of error, which likely led to the development of a robust model
(R2 = Nash = 0.98) through a CNN.

Concurrently, a recent study [45] using RivQNet provided a complementary perspec-
tive on the application of deep learning to river flow estimation. Unlike our method, which
directly utilizes SAR radar images, RivQNet employs close-range optical images of water
surfaces to estimate river surface velocities, validated against in situ measurements using
ADCP. The results have demonstrated the accuracy of RivQNet, with surface velocity errors
showing a MAPE of 7.21% under high flow conditions and an RMSE of 0.14 m/s. However,
the performance of RivQNet is contingent on environmental factors such as weather clarity
and the presence of obstacles, which can alter the quality of the images. These challenges
reflect the inherent limitations of optical remote sensing techniques, in contrast to SAR
radar images, which are less affected by factors such as cloud cover.

The results from Section 4.3 highlight the significant impact of river width on the
model’s accuracy in flow estimation. As demonstrated in Figures 13 and 14, rivers wider
than 40 m allow the model to perform optimally, achieving high accuracy in flow predictions
across various flow conditions and dates. This suggests that the model is well suited for
larger rivers where the spatial extent of the river can be accurately delineated using the
HAND data integrated into the CNN model. Conversely, when the width is less than this
40-m threshold, the quality of modeling is significantly reduced, and the model tends to
overestimate the flow of these rivers. This inaccuracy in modeling can largely be attributed
to the spatial resolution of the HAND data used, which is 30 m.

Indeed, it was shown during this study that flow estimation was significantly im-
proved by integrating the HAND data into the CNN model (Figure 8). This improvement
is explained by the integration of the topographic aspect at the time of modeling. HAND
allows for better delineation of the spatial extent of the river water surface. However, the
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accuracy of river delineation deteriorates with coarser spatial resolution data [91], which
is the case in this study (30 m for HAND data vs. 8 m for SAR data). With this disparity
in resolution, radar signals that are returned from water bodies, within the 30-m HAND
pixel (even when resampled to 8-m spatial resolution), are more likely to be contaminated
by non-water surfaces, which can degrade the quality of the measurement. The work
of [7] reinforces this idea. The authors showed that even if it is possible to distinguish the
river from the surrounding landscape, there would be greater uncertainty in estimating
the widths of smaller channels due to the size of the satellite footprint, which limits rea-
sonable estimation of the relative width. In turn, this response explains the less accurate
performance of the CNN model for flow estimation for narrower rivers (<40 m).

Our analysis illustrates that the developed model is mostly able to offer good flow
estimates under different flow conditions and on different dates, especially for rivers
with widths exceeding 40 m. This model can be potentially transferred to other locations
with appropriate engineering and optimization of the characteristics to make an accurate
estimation of the flow of rivers, especially ungauged ones. Yet, caution should be exercised
when estimating the flows of smaller rivers due to the associated uncertainty. Nevertheless,
it is important to note that this source of uncertainty can be controlled by re-training the
model with HAND from LiDAR at 1 m. With this improved spatial resolution, it would be
possible to produce a high-precision delineation of water surfaces and, consequently, better
estimation of flows, especially for smaller watercourses.

6. Conclusions

River flow estimation is an essential aspect of water resource management, flood
risk management, and hydrological modeling. This work has developed an innovative
approach using a convolutional neural network (CNN) combined with SAR imagery and
HAND data, to estimate river discharge effectively. Conducted across 39 hydrometric
stations in the eastern boreal zone of Canada, this study enhances our understanding of
the application of deep learning in hydrological sciences.

The integration of HAND and SAR data has proven particularly effective, demon-
strating the potential of advanced remote sensing technologies to improve hydrological
models. Our findings underline the importance of data proximity and image resolution on
model accuracy, revealing that closer-proximity and higher-resolution data can significantly
enhance model performance. In particular, this study has shown an excellent correlation
between in situ and estimated flows, with significant improvements in modeling accuracy
when satellite images are acquired near the hydrometric stations.

Additionally, while the model showed robust performance across rivers of various
sizes, it indicated a need for higher-resolution data to improve accuracy in narrower river
channels. This need was particularly evident as the model tended to overestimate flow in
smaller rivers due to the coarser spatial resolution of the HAND data used. This suggests a
path forward for enhancing model precision: integrating finer-scale HAND data, possibly
sourced from LiDAR, to address the challenges posed by smaller river systems. Such
improvements could significantly refine the predictive capabilities of our model, making it
more reliable across different river morphologies.

The methodology developed through this study offers a significant contribution to this
field, particularly for estimating flow in ungauged rivers. Moving forward, the application
of this method across different ecozones and river types appears promising. As satellite
data with high spatial resolution become more accessible, their use could extend the
applicability of our approach to smaller rivers, improving automatic flow monitoring
across diverse hydrological contexts. This systematic application could pave the way for
significant advancements in hydrological modeling, offering a robust tool for environmental
management and planning.
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Appendix A

Table A1. Detailed measurements of the hydrometric station and satellite images used in the period
of analysis for river flow estimates.

Station
Name

ID
Latitude
Degree

Longitude
Degree

Width of the
River at the

Station (in m)

Catchment
Area (km2)

No. of RS-1
and RS-2
Images

Avg. Min.
Flow

(30-Yr)

Avg. Max.
Flow

(30-Yr)

Avg. Mean
Flow

(30-Yr)

02JB009 1 47.843861 −77.5487 93.282 10,300 1 53.446 337.42 186.78
02KJ004 2 46.346389 −77.8157 60.122 3760 19 15.206 203.915 51.359
02LC021 3 46.046419 −74.2525 15.851 311 22 1.196 16.472 6.920
02LD005 4 45.791283 −75.0911 18.761 1330 19 4.521 91.312 22.215
02LE024 5 46.785028 −75.3116 82.244 4530 37 28.370 324.296 83.119
02LE025 6 46.650306 −75.247 96.787 883 37 4.511 31.968 16.565
02LG005 7 47.08325 −75.7535 127.824 6840 24 25.125 839.742 124.105
02ND003 8 47.676972 −73.0408 82.060 2640 10 9.703 225.541 39.844
02NE011 9 47.7685 −72.7349 76.265 1570 9 6.566 233.452 29.872
02NF003 10 46.683578 −73.9136 70 1390 32 5.294 143.558 24.436
02OB017 11 46.030694 −73.7049 42.482 1270 29 3.384 216.597 26.226
02OC021 12 46.441667 −73.4619 33.683 186 22 0.231 41.433 4.007
02PC002 13 46.8925 −71.5261 62.304 2010 19 13.765 480.543 61.348
02PC010 14 46.8675 −71.6372 20.460 213 21 1.384 49.294 6.693
02PD004 15 47.260028 −71.1372 22.443 269 19 1.776 94.666 8.661
02RB004 16 49.881426 −70.9261 69.459 1955 10 16.579 547.727 81.990
02RH027 17 47.941861 −71.3822 36.566 495 26 2.533 94.962 12.973
02RH035 18 48.182694 −71.6448 84.877 1110 14 5.535 184.317 27.927
02RH045 19 48.487944 −70.9722 37.855 746 21 3.794 169.656 23.437
02RH066 20 48.235944 −71.2885 31.757 355 21 1.479 63.107 7.901
02UC002 21 50.3525 −66.1867 117.467 19,000 4 77.748 2216.428 413.309
02VB004 22 50.685556 −64.5786 346.920 7230 4 33.559 871.608 165.695
02VC001 23 50.307778 −63.6186 125 13,000 4 60.672 1545.730 293.547
02WB003 24 50.4275 −61.7122 431.483 15,600 7 74.358 1670.100 343.225
02XA003 25 52.22981 −61.31694 122.143 4540 5 15.997 653.1842 93.968
02XA008 26 50.680833 −59.6019 139.106 19,200 7 86.792 2301.538 450.500
02YC001 27 50.60747 −57.15161 21.290 624 3 3.776 177.732 24.808
02YD002 28 50.92442 −56.11169 34.109 200 21 0.385 39.335 5.5110
02YO011 29 48.84439 −56.26967 200 6300 9 88.733 748.090 190.090
02YQ001 30 49.01628 −54.85067 109.013 4450 20 21.445 595.441 121.282
02YS005 31 48.66275 −54.01525 77.379 2000 41 16.424 233.442 50.240
02ZE004 32 48.16875 −55.48281 31.642 99.5 8 0.186 38.983 3.352
03AB002 33 49.8575 −77.1872 85 31,291 14 157.117 1491.910 588.600
03BD002 34 50.745806 −76.3872 387.963 9684 3 52.984 482.730 175.230
03BF001 35 51.533583 −78.0966 194.305 6020 5 13.898 57.428 99.153
03OE001 36 53.24831 −60.78511 318.658 92,500 5 912.114 4509.83 1750.327
03QC001 37 53.53428 −57.49386 287.417 10,900 5 29.908 1790.551 255.693
03QC002 38 52.64861 −56.87122 82.297 2310 3 5.516 501.658 52.482
04NA001 39 48.59775 −78.1102 94 3680 20 184.347 14.488 59.174

Note: ID—Station Identifier, Avg. Min. Flow (30-Yr)—Average of the annual minimum flow values (m3/s) over
30 years, Avg. Max. Flow (30-Yr)—Average of the annual maximum flow values (m3/s) over 30 years, and Avg.
Mean Flow (30-Yr)—Average of the annual mean flow values (m3/s) over 30 years.



Remote Sens. 2024, 16, 1808 21 of 25

Table A2. Details of the CNN model architecture.

Layers Output Shape

conv2d_input (140,140,2)
conv2d (138,138,128)

conv2d_1 (136,136,128)
average_pooling2d (67,67,128)

conv2d_2 (65,65,128)
conv2d_3 (63,63,128)

average_pooling2d_1 (31,31,128)
conv2d_4 (29,29,256)
conv2d_5 (27,27,256)
Dropout (27,27,256)

average_pooling2d_2 (13,13,256)
conv2d_6 (11,11,512)

global_average_pooling2d (512)
dropout_1 (512)

Dense (512)
dropout_2 (512)
Dense_1 (1)

Table A3. Hyper-parameters that were used to train the CNN model.

Hyper-Parameter Name Hyper-Parameter Value

Learning rate 1 × 10−4

Optimizer Adam
Loss function MSE

Batch size 16
Epoch 50

Size of filter 3
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