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AVANT-PROPOS

Structure

A useful word for the reader on the language structure of this thesis. The abstract is given in
both French and English on page ix and vii, respectively. A French summary of the entire thesis
begins on page xix, while the English thesis 1 begins on page 1. Before the beginning of the English
introduction, all titles are in French, with the exception of the main thesis title. A table of contents
is included on page xii, followed by a list of figures, list of tables, and list of acronyms. The author
has attempted to use the passive voice as much as possible throughout the text, except for certain
cases where I find the active voice appropriate.

Un mot utile pour le lecteur sur la structure du langage de cette thèse. Le résumé est donné
en français et en anglais à la page ix et vii. Un sommaire en français de l’ensemble de la thèse se
trouve à la page xix, et la partie en anglais commence à la page 1. Avant le début de l’introduction
en anglais, tous les titres sont en français, à l’exception du titre principal de la thèse. Une table des
matières est inclue à la page xii, suivie d’une liste des figures, une liste des tables et une liste des
acronyms.

Contributions

The project in its entirety was a collaborative effort Benjamin Crockett, José Azaña, and my-
self. José Azaña was the one to conceptualize the possibility of this project and introduce me to
the time lens. José also gave insightful direction and supervision throughout the entirety of the
development, and was closely involved in each stage of the project. I derived the early theoreti-
cal proof of the TLS, and began simulations with the guidance of Benjamin and José. Benjamin
trained and mentored me in the laboratory, and supervised the first experimental demonstration
for the TLS. Benjamin led the development of the TAIS using the TAI phase pattern, and together
we experimentally verified the theoretical predictions. Benjamin also led the initial testing of the
TLS for complex signals. Together we developed more tests for high bandwidth settings, wrapped
spectrograms, coherent communications signals, and frequency hopping signals. Specifically for
the results presented in the thesis, I have led the theoretical, simulation, and experimental results.

Histoire

In this section, I want to present a brief history of what I consider to be the "small" events that
lined up in my life to lead me to where I am today, because I think it is a fun story. I do wonder if
my career path could have turned out any differently had I slept in one day, or chosen a different
cereal, or if all roads lead to this same outcome. I am not going to answer this question, but keep
it in mind in the following paragraphs.

There was not an exact moment when I decided to go into the field of photonics. It was over
the course of many years that I took small unconscious steps in this direction. I can reasonably
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attribute my early interest in science to the books I was gifted by my immediate and extended family
for Christmases and birthdays (I preemptively say thank you for that). Among the lessons I learned
from these early readings was to enjoy, and not be intimidated by, things I didn’t understand (and
still don’t).

In high school, the seemingly innocent question "how does an electron move from place to
place" probably cemented my interest in physics among the sciences, and also introduced me to
the world of university libraries. The depth of knowledge of a university library seems practically
infinite to a high school student, and I eventually found myself asking professors for help naviga-
ting the piles of books. This is how I met Patrick Irwin, the former University of Calgary physics lab
supervisor. He invited me to join the demonstrations for undergraduate students, and even took
the time to set up his favourite experiments for me. He also tried to teach me about the Fourier
transform and windowing functions. Some of the highlights among the demonstrations were levita-
ting superconductors, "rattlebacks" which are simple objects that only spin in one direction, and my
personal favourite, a transmission hologram. By shining light on a small flat piece of transparent
film, a three dimensional image formed on the other side of a chess board with all its pieces. This
was not a clever trick, such as showing two slightly different images to each eye like in movie thea-
ters. This flat film actually had all the information of a three dimensional object inscribed upon it. I
could look around pieces to see what was behind, with incredible detail. The most shocking thing
however, was when I looked through a small corner of the film which was broken off from the main
part. I saw the exact same, full three dimensional chess board. Not only was the three dimensional
information put onto the two dimensional surface of the film, but it was evenly distributed around
the film so that it could be recreated using any small section (at the expense of spatial resolution).
Although I didn’t decide then and there to go into optics, it definitely made a lasting impact.

At the University of Waterloo, I met Heather Anderson through working for the Waterloo Physics
Club. Heather is the lab supervisor for the Waterloo Physics department, and also has a fun collec-
tion of demonstrations, such as a Möbius strip superconducting track which unfortunately I never
saw completely finished. Heather mentioned to me, on the down-low, that there was a seminar
happening for one of my professors who had just won the Nobel prize in physics. She happened
to know the time and room number where the presentation would be, although, technically it was
supposed to be for graduate students and faculty. I decided to show up, and to my embarrassment,
I was one of the first ones in the lecture hall. Grabbing a seat at the back, I tried to look as incons-
picuous as possible. Donna Strickland, who was my professor for Electricity and Magnetism 2, was
preparing her talk, and asked the few early members of the audience if she could get a couple of
volunteers for a live demonstration of chirped pulses. As no one was volunteering, I decided to raise
my hand. After the event, I received an email from Donna thanking me for raising my hand when
no one else would, and saying she recognized me from class. As I was in the process of looking
for a summer internship, I decided to read up on her papers and ask for a lab tour, prepared with
the least dumb questions I could manage. After the second visit, I asked if I could do a research
internship, which she accepted. It’s possible that Heather Anderson is indirectly responsible for this
thesis, or it’s possible that I would’ve asked Donna for an internship even if I hadn’t been at her
talk. I’m not sure which is true but I am certainly glad for all the people like her who have helped
me over the years.

The final set of circumstances which led to my joining the Ultrafast Optical Processing group
with José Azaña, was during the Canadian Undergraduate Physics Conference in Montreal during
the last year of my undergraduate studies. I was presenting on the work I was doing with Donna,
and one of the attendees, Benjamin MacLellan, was my former residence Don during my first
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year of university. Ben recommended I visit the INRS booth at the conference, to learn about the
possibilities for graduate studies. At the booth presenting about their work on invisibility in optical
fibers, was Benjamin Crockett. Meeting Ben and José made up my mind as to where I wanted to
be for my graduate studies. They were most enthusiastic scientists I had ever met, and great to get
along with. They also produced impactful and interesting science and published at an incredible
pace. I have been here ever since, under the direction of Ben and José, and will happily be for the
next few years of my PhD.

Throughout my journey to photonics, I have definitely learned to keep an open mind for the
opportunities that arise. I enjoy that so many seemingly small decisions made in such an impact
in hindsight on what is my career so far. There are many people who I think about who have made
their impacts on my life, and I would like to thank them in this next section.
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ABSTRACT

Microwave signals are a fundamental pillar of modern wireless communications, sensing and
ranging, and imaging. Analysing these signals in time and frequency simultaneously, produces
one of the most intuitive descriptions available in signal processing. Joint time-frequency repre-
sentations, such as the spectrogram, have been widely used from sound and speech processing
techniques, to enabling the full characterization of the fastest electromagnetic waves produced by
man or nature. For many applications this type of analysis must be done in real-time, but without
gaps in acquisition.

Digital signal processing is too slow to provide real-time and gapless analysis of microwave
signals with more than a few GHz bandwidths and variations below the scale of hundreds of nano-
seconds. Earlier photonic spectrogram processing techniques have provided either the necessary
speed (temporal resolution) or bandwidth, but not both. In this thesis, two new photonics spec-
trograms are presented which were developed in the Ultrafast Optical Processing group at the
INRS, which achieve unprecedented performance in speed and bandwidth. The first, the Time
Lens Spectrogram, can achieve both high bandwidth into the hundreds of GHz range as well as
high temporal resolution down to tens of picoseconds. The second, the Talbot Array Illuminator
Spectrogram, provides high frequency resolutions in the MHz range and hundreds of analysis
points along the frequency axis. These two spectrograms create a single complementary system
which is versatile and reconfigurable to address a wider range of applications.

Presented here are results for these two spectrograms applied to microwave signals, achieving
the real-time and gapless analysis of tens of GHz bandwidth signals with sub-nanosecond time re-
solutions or sub-GHz frequency resolutions, as desired. A theoretical connection is made between
the two spectrograms, facilitating an in-depth analysis of their trade-offs and comparisons. The
capability of these photonics spectrograms to analyse signals with significantly higher bandwidth
than the detection or digitization devices employed is demonstrated, for what will be called super-
bandwidth analysis. The application-oriented example of frequency hopping signals is utilized to
emphasize that signals easily within the bounds of the proposed spectrograms are completely
inaccessible to the state-of-the-art. Finally, this thesis demonstrates the Time Lens Spectrogram
applied to a signal with phase information, to acknowledge the wide range of demonstrated and
future work on optical signals.

Keywords Spectrogram, Time-Frequency Analysis, Microwave Photonics, Time Lens, Talbot
Array Illuminator, Cognitive Communications
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RÉSUMÉ

Les signaux micro-ondes sont un pilier fondamental des communications sans fil modernes, de
la détection et de la télémétrie, et de l’imagerie. L’analyse de ces signaux en temps et en fréquence
simultanément produit l’une des descriptions les plus intuitives disponibles pour le traitement des
signaux. Les représentations conjointes temps-fréquence, telles que le spectrogramme, ont été
largement utilisées dans les techniques de traitement du son et de la parole, jusqu’à permettre
la caractérisation complète des ondes électromagnétiques les plus rapides produites par l’homme
ou la nature. Pour de nombreuses applications, ce type d’analyse doit être effectué en temps réel,
mais sans interruption de l’acquisition.

Le traitement électronique des signaux est trop lent pour permettre une analyse en temps réel
et sans interruption des signaux micro-ondes avec des largeurs de bande de plus de quelques GHz
et des variations inférieures à l’échelle de quelques nanosecondes. Les techniques antérieures
de traitement des spectrogrammes photoniques ont fourni soit la vitesse nécessaire (résolution
temporelle), soit la largeur de bande, mais pas les deux à la fois. Cette thèse présente deux
nouveaux spectrogrammes photoniques développés par le groupe Ultrafast Optical Processing de
l’INRS, qui atteignent des performances sans précédent en termes de vitesse et de largeur de
bande. Le premier, le Time Lens Spectrogram, peut atteindre une bande passante élevée dans
la gamme des centaines de GHz, ainsi qu’une haute résolution temporelle jusqu’à des dizaines
de picosecondes. Le second, le Talbot Array Illuminator Spectrogram, offre des résolutions de
haute fréquence dans la gamme des MHz et des centaines de points d’analyse sur l’axe des
fréquences. Ces deux spectrogrammes créent un système complémentaire unique qui est versatile
et reconfigurable pour répondre à une plus large gamme d’applications.

Les résultats de ces deux spectrogrammes appliqués à des signaux micro-ondes sont présen-
tés ici. Ils permettent l’analyse en temps réel et sans lacune de signaux d’une largeur de bande
de dizaines de GHz avec des résolutions temporelles inférieures à la nanoseconde ou des réso-
lutions de fréquence inférieures au GHz, selon le souhait de l’utilisateur. Une connexion théorique
est établie entre les deux spectrogrammes, facilitant une analyse détaillée de leurs compromis et
de leurs comparaisons. La capacité de ces spectrogrammes photoniques à analyser des signaux
ayant une largeur de bande considérablement plus élevée que les appareils de détection ou de
digitalisation utilisés est démontrée, pour ce que l’on appellera l’analyse de la super largeur de
bande. L’exemple orienté vers l’application des signaux de saut de fréquence est utilisé pour souli-
gner que les signaux qui se situent facilement dans les limites des spectrogrammes proposés sont
complètement inaccessibles à la technologie de pointe. Enfin, cette thèse démontre l’application
du Time Lens Spectrogram à un signal avec information de phase, afin de reconnaître le large
éventail de travaux démontrés et futurs sur les signaux optiques.

Mots-clés Spectrogramme, analyse temps-fréquence, photonique des micro-ondes, lentille
temporelle, illuminateur de réseau Talbot, communications cognitives
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SOMMAIRE

Ce sommaire de la thèse comprend l’introduction, la méthodologie de l’expérience et certains
des résultats.

0.1 Introduction

Sur les nombreuses façons dont l’information peut être encodée dans un signal, la plus fami-
lière est sans doute celle des changements de fréquence à travers le temps. La capacité de l’oreille
humaine à distinguer l’intensité et la synchronisation des fréquences dans une onde acoustique
est ce qui nous permet de traiter et de comprendre la conversation et la musique. Sans cette capa-
cité à distinguer les fréquences, nous communiquerions probablement tous en code morse (bien
que même le code morse contienne des informations sur les fréquences), et la musique serait
sans doute moins intéressante. Réfléchir en termes de changements dans le domaine temporel
est tellement intégré dans notre compréhension du monde qu’il est encore plus difficile d’ima-
giner que nous ne disposions pas d’informations temporelles sur les sons que nous entendons.
Par conséquent, presque tout le monde a une expérience directe de la nécessité de résoudre un
signal en temps et en fréquences à la fois. Cette intuition amène naturellement au concept de
représentations conjointes temps-fréquence (JTFR), où le contenu en temps et en fréquence d’un
signal est présenté dans une image à deux dimensions. Cependant, il est bien connu que les in-
formations simultanées temps-fréquence des JTFR sont intrinsèquement ambiguës. En fonction
de la durée de la portion de signal considérée, seules certaines fréquences pourront être résolues
par l’observateur. Les signaux à bande étroite couvrent nécessairement une longue période de
temps, ce qui nécessite une haute résolution de fréquence pour observer les changements qui
se produisent pendant ces longues périodes de temps. Inversement, de nombreuses fréquences
doivent interférer dans un signal à large bande pour donner lieu à des événements très courts, ce
qui affecte la résolution temporelle. La versatilité est donc une caractéristique essentielle de tout
type d’analyseur temps-fréquence afin de s’adapter aux différents types d’ondes à analyser.

La technique mathématique principale pour obtenir des informations simultanées temps et fré-
quence, ou JTFR, est la transformée de Fourier à temps court (STFT). Elle consiste à isoler un
court segment temporel du signal testé (SUT) en le multipliant par une fonction de fenêtre. En-
suite, une transformée de Fourier est effectuée à partir de cette courte portion du signal pour
obtenir son contenu en fréquence. Le processus est répété en décalant la fonction de fenêtre à
travers le temps pour balayer l’ensemble de la forme d’onde. En raison du principe d’incertitude,
le choix de la taille de la fonction de fenêtre est essentiel. Pour un certain signal, la fenêtre doit
être suffisamment petite pour permettre l’identification temporelle d’événements courts, mais suf-
fisamment grande pour distinguer les diverses fréquences des unes des autres. Ainsi, la STFT
présente des artefacts évidents du principe d’incertitude en fonction de la durée et de la forme de
la fonction de fenêtre. Les implémentations de cette méthode exigent que la fenêtre soit facilement
reconfigurable pour détecter une large gamme de signaux différents.

Les innovations développées au cours des derniers siècles en ce qui concerne la manipula-
tion des ondes électromagnétiques ont permis de mettre au point des outils exceptionnels pour
l’analyse des spectrogrammes, jouant un rôle fondamental dans des domaines tels que le contrôle
non destructif des matériaux (1), le traitement des signaux biomédicaux (2), la classification de la
parole et de la musique (3; 4; 5), le radar (6), et les communications (7). Cependant, en raison
de contraintes matérielles, il reste difficile d’extraire le JTFR d’ondes électromagnétiques avec des
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largeurs de bande supérieures à quelques GHz avec des caractéristiques temporelles inférieures
à la seconde. Une exigence exceptionnellement difficile à satisfaire pour ces applications est que
le traitement doit être effectué aussi rapidement que le signal arrive, c’est-à-dire en temps réel.
Pour de nombreuses applications réalisées sur site, une latence de traitement de quelques micro-
secondes peut avoir des conséquences considérables. Prenons l’exemple de la classification en
temps réel des véhicules aériens sans pilote (UAV) (8), des communications à sauts de fréquence
ultrarapides avec l’objectif exprimé de subvertir les interférences malveillantes (9), ou même de la
surveillance des implosions dans les installations de fusion par confinement inertiel à l’aide de la
vélocimétrie Doppler (10). Il existe des méthodes qui éliminent des sections du signal afin de traiter
une petite partie des informations en temps réel (11), ou des méthodes qui ralentissent les courtes
sections échantillonnées du signal (12). Ces mise en œuvres ne sont pas acceptables en cas
d’événements transitoires de courte durée ou si la forme d’onde varie continuellement de manière
inconnue, comme dans les applications mentionnées ci-dessus. Par conséquent, les systèmes en
temps réel impliquant des lacunes d’analyse sont d’un usage limité.

Les exigences relatives à l’obtention de la JTFR des formes d’ondes électromagnétiques en
temps réel sont principalement satisfaites par des méthodes de traitement digital du signal (DSP).
L’acquisition est effectuée via un converteur analogique-numérique sur le SUT, puis un algorithme
de transformée de Fourier rapide met en œuvre numériquement la STFT. Les éléments électro-
niques et les algorithmes modernes peuvent facilement s’adapter à des signaux acoustiques avec
des résolutions de fréquence <kHz, et peuvent être reconfigurés pour analyser des signaux de
radiofréquence avec des largeurs de bande de quelques centaines de MHz et des résolutions
temporelles inférieures à la microseconde (13). Cela correspond à des millions de transformées
de Fourier par seconde (<10 MFT/s). Cependant, les applications mentionnées précédemment
impliquent des dizaines ou des centaines de GHz de largeur de bande et des caractéristiques se
produisant à l’échelle de la nanoseconde ou en dessous. Le traitement numérique du signal est
donc limité à cet égard et n’a pas la versatilité nécessaire pour traiter les signaux micro-ondes
à grande vitesse. C’est pour cette raison qu’une approche analogique beaucoup plus rapide du
traitement en temps réel des signaux sans espace est souhaitée.

Un certain nombre de méthodes photoniques ont été développées pour résoudre un ou plu-
sieurs des problèmes affectant le DSP. En général, ces techniques consistent à convertir le signal
électrique dans le domaine optique par modulation électro-optique afin de tirer parti de la largeur
de bande disponible dans les technologies photoniques, où des largeurs de bande de plusieurs di-
zaines de GHz sont considérées comme relativement étroites. Une méthode basée sur la diffusion
Brillouin stimulée a dépassé le DSP et atteint une largeur de bande de 12 GHz, tout en conservant
une résolution de fréquence impressionnante, mais les taux de transformation de Fourier et les
résolutions temporelles restent comparables à ceux fournis par les technologies numériques (14).
Une autre méthode photonique basée sur la modulation du SUT d’entrée sur des formes d’ondes
chirpées traitées par propagation dispersive dans des boucles de fibre a amélioré la résolution
temporelle par rapport au DSP, jusqu’à 30 ns, mais est limitée à des largeurs de bande maximales
inférieures au GHz (15). Une méthode basée sur l’effet Talbot (16) permet d’améliorer à la fois
la largeur de bande et la résolution temporelle avec le DSP. Toutefois, dans ce cas, la largeur de
bande de détection requise doit être au moins dix fois supérieure à celle du SUT, ce qui limite la
technique à moins de 5 GHz.

Récemment, deux nouvelles méthodes de spectrogrammes photoniques ont été développées,
qui dépassent largement les capacités du DSP en termes de largeur de bande et de résolution
temporelle, mais qui ont jusqu’à présent été traitées comme des stratégies différentes (17; 18).
Ces deux techniques consistent en une modulation de phase temporelle d’un signal d’intérêt suivie
d’une propagation dispersive pour reproduire le contenu spectral du signal directement dans le
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domaine temporel. La première approche est le spectrogramme à lentille temporelle (TLS), une
extension du système d’imagerie à lentille temporelle bien étudié (19; 20), adapté à l’imagerie
spectrale résolue dans le temps de formes d’ondes continuelles. Une investigation du TLS proposé
a été publiée, avec pour objectif spécifique la récupération de la phase de formes d’ondes optiques
rapides. Cette démonstration a permis d’obtenir des largeurs de bande d’analyse extrêmement
élevées (448 GHz) et des résolutions temporelles ultra-courtes (62,5 picosecondes), avec plus de
16 milliards de transformées de Fourier par seconde (17). Le second, le Talbot Array Illuminator
Spectrogram (TAIS), ajoute polyvalence et simplicité aux spectrogrammes optiques à cartographie
temporelle basés sur l’effet Talbot en supprimant les exigences strictes en matière de technologie
(21; 22).

Dans cette thèse, un cadre pour un analyseur temps-fréquence spécifiquement destiné aux
signaux micro-ondes est proposé en utilisant des composants optiques linéaires, ce qui offre à
l’utilisateur un haut degré de versatilité pour personnaliser les spécifications de performance en
fonction des exigences de l’application. La figure 1 donne un aperçu conceptuel du cadre proposé.
Un cadre mathématique général reliant le TLS et le TAIS est présenté et les caractéristiques et les
compromis de chaque spectrogramme sont examinés dans le cadre d’une étude approfondie sur
les signaux micro-ondes de diagnostic et d’application. Les principaux résultats montrent que le
TLS peut atteindre de très grandes largeurs de bande et des résolutions temporelles très étroites.
Cependant, compte tenu des contraintes des composants électro-optiques pratiques utilisés pour
la modulation de phase temporelle, le TLS ne peut jusqu’à présent atteindre qu’un nombre limité
de points d’analyse et de résolution de fréquence. Le TAIS surmonte cette limitation en utilisant
une modulation de phase temporelle intelligente à plusieurs niveaux pour obtenir facilement 40 fois
plus de points d’analyse, ce qui se traduit par une meilleure résolution de fréquence. Cependant,
le TAIS est limité dans sa largeur de bande maximale et sa résolution temporelle par d’autres
composants impliqués. Le chapitre 3.3 et le tableau 3.1 présentent une analyse complète des
compromis. Ainsi, le TLS et le TAIS présentent ensemble une gamme de conditions de conception
possibles pour traiter les signaux continus à large bande ultrarapides les plus extrêmes, réalisés
par le même équipement.
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FIGURE 1 : Aperçu conceptuel des deux spectrogrammes photoniques. (a) SUT micro-onde représenté en intensité
dans le temps. (b) Caractéristiques du SUT dans une représentation temps-fréquence consistant en un chirp linéaire,
deux événements étroitement espacés dans le temps de dt0, deux événements étroitement espacés en fréquence df0,
sur une largeur de bande micro-onde de ∆f0. Le signal est ensuite converti dans le domaine optique par modulation
d’intensité sur une chauffeur optique. (c) Le TLS consiste en une modulation de phase temporelle selon des fonctions
quadratiques consécutives, suivie d’une propagation dispersive de second ordre pour compléter les transformées de
Fourier réalisées dans le temps. (d) Le TAIS est identique, à l’exception du fait que la modulation de phase temporelle
est constituée par une configuration de phase discrète à plusieurs niveaux, enroulée à 2π avec une période de niveau
constante ∆t. La conversion électro-optique vers le bas par un photodétecteur reconvertit le signal dans le domaine
électrique. La sortie de la transformée de Fourier consécutive réalisée dans le domaine temporel à partir des spectro-
grammes est remodelée pour que chaque transformée de Fourier soit placée verticalement. Cela produit l’image du
spectrogramme en deux dimensions (fréquence vs temps) montrée en (e) pour le TLS, fournissant une plus grande
largeur de bande d’analyse Bw, et une plus grande résolution temporelle au prix de points d’analyse (moins bonne
résolution en fréquence). Le signal micro-ondes est modulé sur la porteuse optique de manière à obtenir des spectres
symétriques double face sur une largeur de bande complète Bw, soit deux fois la fréquence DC à la fréquence maxi-
male. (f) Tracé en deux dimensions pour le TAIS, avec une largeur de bande d’analyse plus faible B

′
w et une moins

bonne résolution temporelle, mais avec une meilleure résolution en fréquence et un plus grand nombre de points d’ana-
lyse.
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0.2 Méthodes

La démonstration expérimentale se compose d’une étape de génération de SUT à la figure
2(a), d’une étape de traitement de spectrogrammes optiques à la figure 2(b), et d’une étape de
détection et de récupération à la figure 2(c).

Le SUT micro-onde est généré à l’aide d’un générateur de formes d’ondes arbitraires (AWG)
avec un freqence d’échantillonnage de 92 GSa/s et amplifié par un amplificateur de radiofréquence
(RFA). Une sortie de l’AWG est envoyée à un oscilloscope en temps réel (RTO) de 28 GHz pour
lancer l’échantillonnage du RTO au même endroit du signal à chaque fois. Cela permet de visuali-
ser le signal à l’aide du RTO avant la collecte des données. Dès que les données sont collectées,
une copie du signal souhaité est récupérée et le déclenchement devient inutile. Pour analyser les
signaux micro-ondes en espace libre, il serait possible de commencer la capture par une antenne
de réception et de procéder ensuite de la même manière que pour le reste de la démonstration
présentée ici.

L’étape du spectrogramme optique consiste en un laser à ondes continues (CW) réglé sur 1550
nm avec une largeur de ligne inférieure à 0.1 kHz, connecté à un IM électro-optique de 40 GHz qui
reçoit le SUT électrique pour une conversion ascendante dans le domaine optique. Les fonctions
de modulation de phase temporelle TLS et TAIS sont générées par le même AWG de 92 GSa/s
qui a généré le SUT, ce qui permet d’utiliser le meilleur équipement possible disponible et non de
répondre à une quelconque exigence de synchronisme. Les signaux électriques de modulation
de phase temporelle sont amplifiés par un RFA avant d’alimenter un modulateur de phase (PM)
électro-optique. Pour le TLS, un RFA d’une puissance saturée de 33 dB avec une largeur de bande
de 32 GHz est utilisé, tandis que pour le TAIS, un RFA d’une largeur de bande de 50 GHz avec 23
dB de puissance saturée est utilisé. Pour maximiser l’excursion de phase possible dans le cas du
TLS, un modulateur de phase de 30 GHz avec un Vπ = 2.6 V est utilisé, et un modulateur de phase
de 40 GHz avec Vπ = 3.1 V pour le TAIS. Les modulateurs sont polarisés aux voltages demi-onde,
pour diminuer la contribution du courant continu. Le SUT optique traverse le PM et passe par un
réseau de Bragg à fibres linéairement chirpé (CFBG) introduisant une dispersion du second ordre
de ϕ̈ ≈ 2,508 ps2 pour le TLS et ϕ̈ ≈ 15,415 ps2 pour le TAIS. Le réseau à moindre dispersion
fonctionne sur l’ensemble de la bande optique C (largeur de bande >5 THz), tandis que le réseau
à plus grande dispersion a une largeur de bande plus petite d’environ 650 GHz.

Pour une récupération presque optimale des spectrogrammes, une photodiode (PD) de 50 GHz
est utilisée pour transférer le signal traité du domaine optique au domaine électrique, et un oscil-
loscope en temps réel (RTO) de 28 GHz pour passer du domaine électrique au domaine digital.
Pour analyser les effets d’une largeur de bande de détection limitée sur le spectrogramme obtenu,
deux situations sont testées avec une largeur de bande intentionnellement réduite. La première
consiste à limiter la largeur de bande de détection du RTO dans la programmation du dispositif. La
seconde consiste à utiliser une largeur de bande de 6 GHz pour la conversion optique-électronique.
Pour évaluer la performance du TLS et du TAIS à récupérer les spectres globaux appropriés des
SUT, les données du spectrogramme sont projetées sur l’axe des fréquences et normalisées, puis
comparées à la trace d’un analyseur de spectre optique (OSA). L’OSA est utilisé à la place d’un
analyseur de spectre RF ou de la transformée de Fourier rapide (FFT) du SUT électrique afin d’iso-
ler les réponses spectrales du TLS et du TAIS des aberrations attendues résultant de la conversion
ascendante électro-optique non idéale. Toutefois, la calibration de la fréquence discutée dans les
résultats est également confirmée par la FFT du SUT électrique, et l’affaiblissement de l’étage de
conversion électro-optique peut être observé en comparant les différents spectres de la figure 5.1.
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FIGURE 2 : Configuration expérimentale pour le test des deux spectrogrammes photoniques, le TLS et le TAIS. L’étape
du SUT génère le signal micro-ondes électrique. L’étape du spectrogramme optique temporel convertit le signal micro-
ondes dans le domaine optique, puis la modulation de phase du TLS ou du TAIS ainsi que la dispersion chromatique
donnent lieu à des transformées de Fourier temporelles consécutives. L’étape de détection et de récupération consiste
en une photodiode d’intensité de loi carrée, pour la conversion de la forme d’onde optique dans le domaine électrique,
et la conversion analogique-numérique par un oscilloscope en temps réel. L’ordinateur transforme le spectrogramme
temporel en une image en deux dimensions qui peut être visualisée.

0.3 Résultats

Les premiers résultats comparent l’une des méthodes photoniques proposées au DSP hors
ligne standard pour un SUT dont la fréquence augmente lentement. La première méthode est
le TAIS à largeur de bande totale de 46 GHz et la numérisation ultérieure par le DP rapide de
50 GHz et le RTO de 28 GHz. La seconde est le système traditionnel comportant une conversion
analogique-numérique (ADC) du SUT électrique de l’AWG par le PD et le RTO, puis le calcul digital
de la STFT (nécessairement hors ligne, pas en temps réel, pour se rapprocher de la performance
du TAIS). Le SUT consiste en un chirp unique dont la fréquence varie de 0.5 GHz à 21 GHz, sur une
durée de 5.35 µs. Les deux méthodes sont comparées alors que la largeur de bande de détection
est méthodiquement abaissée en dessous de celle du SUT, de 28 GHz à 6 GHz. La tentative de
récupération d’un SUT avec une largeur de bande beaucoup plus grande que celle de l’ADC (RTO)
mettra en évidence la capacité unique du TLS et du TAIS à récupérer le spectrogramme de ces
signaux de manière satisfaisante.

Le spectrogramme optique temporel du TAIS est présenté au-dessus de la STFT hors ligne du
signal électrique à la figure 3. Comme la largeur de bande de l’oscilloscope est réduite, on s’attend
à ce que le critère d’échantillonnage de Nyquist ne soit pas satisfait pour les fréquences plus
élevées de l’objet testé, et donc à ce que les spectrogrammes STFT échouent à ces fréquences.
La première rangée de spectrogrammes, affichant le TAIS, démontre de manière concluante que
l’abaissement de la largeur de bande de détection n’affecte que la résolution en fréquence, et non
la largeur de bande, comme indiqué dans la section précédente. Cette détérioration de la résolution
en fréquence se traduit par un élargissement du chirp unique dans la direction de la fréquence.
Dans la deuxième ligne, la STFT hors ligne présente une coupure nette de la largeur de bande à la
fréquence attendue. À droite des spectrogrammes se trouve le spectre du SUT après modulation
optique, pris avec un OSA, comparé à la projection de fréquence du TAIS à la limite RTO de 6
GHz. La STFT hors ligne dans le cas de la limite RTO de 6 GHz est comparée à la FFT hors
ligne de l’ensemble du SUT électronique. L’OSA présente un affaiblissement de la fréquence vers
les largeurs de bande plus élevées, comme prévu par l’effet de la conversion ascendante électro-
optique non idéale, tandis que la projection de la fréquence du TAIS avec une largeur de bande de
numérisation de 6 GHz entraîne un affaiblissement de la fréquence légèrement plus important.

Il est important de noter que le TAIS récupère toujours la totalité de la bande passante du signal
avec un léger affaiblissement qui pourrait être compensé par la caractérisation des réponses en
fréquence des étapes de conversion dans le cadre d’une étude future. La détection électronique
classique, par contre, produit une coupure immédiate et un spectre irrécupérable à partir d’une
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FIGURE 3 : TAIS comparé au STFT hors ligne (pas en temps réel) du SUT électronique. Le STFT est choisi pour avoir
la même fenêtre temporelle que le TAIS et, en raison des limitations de la vitesse de traitement, cette approche DSP
est nécessairement effectuée hors ligne après que le SUT a été numérisé et sauvegardé par le RTO. La coupure de la
largeur de bande attendue en raison de l’échantillonnage sub-Nyquist de la STFT électronique est confirmée mais n’est
pas présente dans le TAIS, qui montre une récupération de la largeur de bande complète même avec une largeur de
bande RTO limitée. Le spectre à droite du TAIS compare la trace OSA à la projection du TAIS sur l’axe des fréquences
pour le cas limité à 6 GHz, montrant une décroissance plus rapide mais identifiant toujours correctement les fréquences
présentes. Le spectre à droite du STFT hors ligne compare la transformée de Fourier rapide (FFT) du signal électrique
devant être généré par l’AWG (avant l’AWG), avec la FFT du signal électrique provenant directement de l’AWG numérisé
par le RTO lorsqu’il est limité à une largeur de bande de 6 GHz. Entre ces trois spectres, on peut voir la détérioration due
à l’étape de conversion ascendante électro-optique (FFT électrique vers OSA) et la détérioration due à la récupération
du TAIS à 6 GHz (OSA vers projection de fréquence à 6 GHz). Sous les spectrogrammes, la coupure de fréquence
peut être observée dans la trace temporelle du signal électrique lorsque la fréquence devient trop élevée pour être
correctement échantillonnée avec la largeur de bande correspondante.

certaine fréquence, sans possibilité de compensation. Comme le TAIS fournit un grand nombre de
points d’analyse par spectre, on peut se permettre d’utiliser des appareils de détection à bande
passante plus étroite, car la détérioration de la résolution en fréquence permettra toujours d’obtenir
un spectrogramme d’une résolution acceptable (environ 27 points d’analyse par spectre, après
détérioration en utilisant une limite de bande passante de 6 GHz). Il en va de même pour le
TLS. Cependant, en raison des limitations matérielles sur la force de la lentille temporelle de la
modulation de phase électro-optique, seul un nombre inférieur de points d’analyse est disponible
dès le départ. Par conséquent, il n’est pas possible de sacrifier une grande partie de la résolution
de fréquence pour réduire la largeur de bande de détection nécessaire.

Les deuxième résultats démontrent la résolution extrêmement élevée en fréquence fournie par
le TAIS. L’application suivante vise à fournir une démonstration concrète des possibilités de perfor-
mances supérieures offertes par les deux spectrogrammes photoniques par rapport au DSP, ainsi
qu’à d’autres méthodes photoniques spécialisées. En particulier, un signal de saut de fréquence
ultra-rapide et à large bande avec plusieurs canaux est analysé par un seul système TAIS. L’SUT
est composé de 20 niveaux de fréquence régulièrement espacés de 1 GHz à 21 GHz, s’allumant
et s’éteignant de manière aléatoire, ce qui entraîne des événements de diverses durées allant jus-
qu’à l’échelle de la nanoseconde, qui ne peuvent pas être identifiés à l’aide des technologies DSP
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de pointe. En fait, même les méthodes photoniques récemment signalées pour la récupération de
signaux de saut de fréquence (9; 23) sont soit très rapides en termes de méthodes de mesure
instantanée de fréquence, soit plus lents mais pouvant accueillir plusieurs canaux simultanés.

Dans les résultats présentés, la plus longue durée d’événement consiste en deux sauts suc-
cessifs, mais en principe, il n’y a pas de limite car les spectrogrammes sont tous deux en temps
réel. La durée de saut la plus courte est réglée pour être égale à dix fois la résolution temporelle de
TLS, soit 10 · 696ps = 6.96ns, ce qui est supérieur à la résolution du TAIS T = 4.48ns d’un facteur
de 1.56. Le nombre de points d’analyse disponibles du TAIS est 206 par spectre double face. Par
conséquent, ce TAIS pourrait accueillir plus de 100 canaux de fréquence simultanés et arbitraires
avec une période de saut inférieure à 5 ns. Le nombre potentiel de canaux devient encore plus
important dans le cas du TAIS à large bande passante avec une détérioration de la détection de
716 points d’analyse. Les sauts du SUT n’étaient pas synchronisés avec le système TAIS, et par
conséquent, les sauts arrivent à une position inconnue dans les fenêtres d’analyse.

Le TAIS est présenté dans la figure 4. Les spectres du SUT mesurés par l’OSA sont présentés
dans la figure 4(a), ainsi que la projection de fréquence du TAIS résultant. La figure 4(b) affiche le
TAIS pour une partie du signal de saut de fréquence. Remarquez la clarté impressionnante des
sauts individuels, et gardez en tête qu’aucune autre méthode ne serait en mesure de récupérer
ce signal en temps réel. La comparaison avec la STFT hors ligne dans la figure 4(c) montre que
le TAIS récupère correctement la fréquence et le moment des événements avec une résolution
suffisante. La partie du TAIS affichée dans ces deux figures contient plus de 80 événements, avec
plusieurs fréquences présentes simultanément. Dans la figure 4(d), le nombre maximum de sauts
présents à la fois est de 3, cependant, le nombre maximum prévu de canaux de fréquence serait de
l’ordre d’un par point d’analyse sur un spectre à simple face, dans le cas des résultats présentés,
environ 103. Dans la figure 4(d), (e), une autre partie du signal de saut de fréquence est montrée
avec des événements très rapprochés et des fréquences multiples se produisant simultanément.

La résolution en fréquence supérieure est certainement un avantage que le TAIS offre pour les
signaux de saut de fréquence, mais le TLS est avantageux pour augmenter la fréquence de saut
en raison de sa remarquable résolution temporelle. Dans la partie principale de la thèse, il sera
démontré que le TLS peut surpasser le TAIS pour la récupération de signaux de saut de fréquence
si la vitesse de saut est trop rapide pour le TAIS, mais il est important de noter que le TLS souffre
toujours d’une faible résolution en fréquence. En équilibrant le nombre de canaux de fréquence
avec la période de saut, il serait possible de maximiser la capacité d’information potentielle pour le
TLS et le TAIS en fonction des compromis de la section 3.3.
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FIGURE 4 : Le signal à saut de fréquence analysé par le TAIS, comparé avec la STFT hors ligne (analyse non temps
réel) de l’appareil électronique SUT. Le signal est composé de plus de 80 événements temps-fréquence se produisant
sur une durée d’environ 600 ns et avec 20 niveaux de fréquence régulièrement espacés de 1 à 21 GHz. Plusieurs
événements de fréquence peuvent se produire simultanément ou très rapprochés dans le temps. (a) La projection du
TAIS sur le domaine de fréquence est superposée sur le spectre provenant de l’OSA mesurant les micro-ondes sur
l’appareil SUT optique. (b) Le spectrogramme en temps réel obtenu par le TAIS. (c) La STFT hors ligne du signal
électrique provenant de l’AWG, en utilisant une fenêtre d’analyse de la même taille que le TAIS. (d), (c) Deux petites
sections zoomées d’une autre partie du signal à saut de fréquence sont montrées pour le TAIS et la STFT hors ligne
respectivement.

0.4 Conclusions

Cela conclut un bref résumé des principaux résultats présentés dans cette thèse. Un lien théo-
rique entre le spectrogramme du lentille temporel et le spectrogramme de l’illuminateur Talbot
array a été démontré. Leurs capacités pour l’analyse de signaux micro-ondes, à large bande pas-
sante, sans interruption et en temps réel ont été présentées, ainsi qu’une analyse technique et
expérimentale approfondie de leurs paramètres de conception et de leurs compromis. En utilisant
des appareils électro-optiques disponibles commercialement, un signal de 46 GHz de largeur de
bande a été récupéré en utilisant uniquement une photodiode de 6 GHz. D’un intérêt particulier et
immédiat sont les applications découlant de la récupération d’un signal de saut de fréquence ultra-
rapide avec des sauts à l’échelle de la nanoseconde et de multiples canaux simultanés sur 20 GHz
de largeur de bande réelle. Ces spectrogrammes présentent jusqu’à présent les performances les
plus impressionnantes pour les communications cognitives dans la littérature.

Une brève démonstration de la capacité à récupérer des signaux optiques avec des infor-
mations de phase est également présentée dans la partie principale du thèse. La possibilité de
récupérer des communications cohérentes à l’aide de ces spectrogrammes d’une manière qui re-
pose uniquement sur une détection basée sur l’intensité, et non interférométrique, est propre à ce
système. La simplicité par rapport aux techniques de détection cohérente impliquant des oscilla-
teurs locaux stables ou un traitement numérique intensif rend le TLS et le TAIS compétitifs pour
les télécommunications optiques dans certaines applications. De plus amples détails sur les pos-
sibilités en spectroscopie, caractérisation ultra-rapide et LIDAR se trouvent dans les publications
créditées.

xxvii





1 INTRODUCTION

1.1 Overview

Of the many ways information can be encoded in a signal, the most familiar may be through
changes in frequency over time. The ability of the human ear to pick out the intensity and timing
of frequencies in a sound wave is what allows us to process and understand speech and music.
Without the ability to tell frequencies apart, we would likely all be communicating in some sort of
morse code (although even morse code has some frequency information), and music would no
doubt be less interesting. Thinking in terms of changes over time is so ingrained in our understan-
ding of the world, it is even harder to imagine if we did not have temporal information about the
sound we hear. Therefore almost everyone has first-hand experience as to why resolving a signal
in both time and frequency is necessary. This intuition leads naturally to the concept of joint time-
frequency representations (JTFR), where the time and frequency content of a signal are laid out
in a two-dimensional image. Yet it is well known that simultaneous time-frequency information of
JTFRs is intrinsically ambiguous. Depending on the duration of the portion of a signal considered,
only certain frequencies will be resolvable to the observer. Narrow band signals necessarily extend
over a long time duration, requiring high frequency resolution to observe changes occurring over
such long time periods. Conversely, many frequencies must interfere in a broadband signal to give
rise to very short events, affecting time resolution. Thus, versatility is a key enabling feature of any
kind of time-frequency analyser to adapt to the various types of waves to be analysed.

The main mathematical technique to obtain simultaneous time-frequency information, or JT-
FRs, is the short-time Fourier transform (STFT). It consists of isolating a short time segment of the
signal under test (SUT) by multiplying it with a windowing function. Then, a Fourier transform is
taken from this short portion of the signal to obtain its frequency content. The process is repeated
by shifting the windowing function in time to scan through the entire waveform. Due to the uncer-
tainty principle, the choice of the windowing function’s size is critical. For a given signal, the window
needs to be small enough to temporally identify short events, but large enough to resolve frequen-
cies from one another. As such, the STFT exhibits clear artifacts from the uncertainty principle
depending on the duration and shape of the windowing function. Implementations of this approach
require the window to be easily reconfigurable to detect a wide range of different signals.

The innovations for manipulating electromagnetic waves developed in the past few centuries
have enabled the development of exceptional tools for spectrogram analysis, demonstrating fun-
damental roles in fields such as nondestructive material testing (1), biomedical signal processing
(2), speech and music classification (3; 4; 5), radar (6), and communications (7). However, due
to hardware constraints, it remains challenging to retrieve the JTFR of electro-magnetic waves
with bandwidths above a few GHz with sub-ns temporal features. An exceptionally challenging re-

1



quirement for such applications is that the processing must be done as quickly as the signal is
arriving, i.e., in real-time. For many in situ applications, processing latency of a few microseconds
can result in tremendous consequences. Consider for example real-time Unmanned Aerial Vehicle
(UAV) classification (8), ultrafast frequency hopping communications with the expressed purpose
of subverting nefarious interference (9), or even monitoring implosions within inertial confinement
fusion facilities using Doppler velocimetry (10). There exist methods which discard sections of the
signal in order to process a small portion of the information in real-time (11), and other methods
to slow down short sampled sections of the signal (12). These are not an acceptable implementa-
tions if short transient events are involved or if the waveform is continuously varying in an unknown
fashion, such as those involved in the aforementioned applications. Hence, real-time schemes in-
volving analysis gaps are limited in their usage.

The demands for obtaining the JTFR of electro-magnetic waveforms in real-time are primarily
met through digital signal processing (DSP) methods. Acquisition is performed via an analog-to-
digital converter on the SUT and then a fast Fourier transform algorithm digitally implements the
STFT. Electronic components and modern algorithms can easily adapt to slow acoustic signals
with <kHz frequency resolutions, and can be reconfigured to analyse radio frequency signals with
bandwidths of a few hundred MHz with sub-microsecond time resolutions (13). This corresponds to
millions of Fourier transforms per second (<10 MFT/s). However, the applications mentioned pre-
viously involve tens or hundreds of GHz of bandwidths and features occurring on the nanosecond
scale or below. DSP is thus limited in this regard and does not have the needed versatility to treat
high-speed microwave signals. It is for this reason that a much faster analog approach to real-time
gapless processing is desired.

There have been a number of photonic methods aimed at resolving one or more of the issues
affecting DSP. In general, these techniques rely on upconverting the electrical signal to the optical
domain by electro-optic modulation to leverage the bandwidth available from photonics technolo-
gies, where bandwidths of tens of GHz are considered relatively narrowband. A method based on
stimulated Brillouin scattering has surpassed DSP and achieved up to 12 GHz bandwidth, while
maintaining impressive frequency resolution, but the Fourier transform rates and time resolutions
remain on par with those provided by digital technologies (14). Another photonics method based
on modulation of the input SUT on chirped waveforms processed by dispersive propagation in fi-
ber loops has improved the time resolution in comparison to DSP, down to 30 ns, but is limited to
sub-GHz maximum bandwidths (15). An approach which improves upon both the bandwidth and
the time resolution capable with DSP is a method based on the Talbot effect (16). Still, in this case
the required detection bandwidth needed must be at least ten times higher than that of the SUT,
limiting the technique to below 5 GHz.

Recently, two new photonics spectrogram methods have been developed which have both
shown to far exceed the capabilities of DSP in both bandwidth and time resolution but have been
so far treated as different strategies (17; 18). These two techniques consist of a temporal phase
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modulation of a signal of interest followed by dispersive propagation to map the spectral content of
the signal directly onto the time domain. The first approach is the Time Lens Spectrogram (TLS), an
extension of the well-studied Time Lens imaging system (19; 20), adapted for time-resolved spec-
tral imaging of continuously varying waveforms. An investigation of the proposed TLS has been
published, with the specific focus of recovering the phase of fast optical waveforms. This demons-
tration accomplished extremely high analysis bandwidths (448 GHz) and ultrashort time resolutions
(62.5 picoseconds), achieving over 16 billion Fourier transforms per second (17). The second, the
Talbot Array Illuminator Spectrogram (TAIS), adds versatility and simplicity to optical time mapped
spectrograms based on the Talbot effect by removing stringent hardware requirements (21; 22).

In this thesis, a framework for a time-frequency analyser specifically targeted to microwave
signals is proposed using linear optics components, which provides the user with a high degree
of versatility to customize the performance specifications depending on the demands of the ap-
plication. A conceptual overview of the proposed framework is shown in Figure 1.1. A general
mathematical framework connecting the TLS and the TAIS is shown and the characteristics and
trade-offs of each spectrogram are considered through an extended study on both diagnostic and
application-oriented microwave signals. The main results show that the TLS can achieve very large
bandwidths and very narrow time resolutions. However, considering the constraints of the practical
electro-optic components used for the temporal phase modulation, the TLS can so far achieve only
a limited number of analysis points and frequency resolution. The TAIS overcomes this limitation
using a smart multilevel wrapped design of the temporal phase modulation to easily achieve 40
times more analysis points, resulting in better frequency resolution. However, the TAIS is limited
in maximal bandwidth and time resolution by other components involved. A full discussion of the
trade-offs is found in Chapter 3.3 alongside Table 3.1. Thus, the TLS and the TAIS together present
a range of possible design conditions to treat the most extreme ultrafast continuous broadband si-
gnals, implemented by the same hardware.
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FIGURE 1.1 : Conceptual overview of the two photonics spectrograms. (a) Microwave SUT shown in intensity over
time. (b) Features of the SUT in a time-frequency representation consisting of a linear chirp, two events closely spaced
in time by dt0, two events closely spaced in frequency df0, over a microwave bandwidth of ∆f0. The signal is then
upconverted to the optical domain by intensity modulation on an optical carrier. (c) The TLS consists of temporal phase
modulation according to consecutive quadratic functions, followed by second order dispersive propagation to complete
the time mapped Fourier transforms. (d) The TAIS is the same, with the exception that the temporal phase modulation
is a discrete multi-level phase pattern wrapped to 2π with constant level period ∆t. Electro-optic down conversion by a
photodetector converts the signal back into the electrical domain. The time mapped consecutive Fourier transform output
from the spectrograms is reshaped to place each Fourier transform vertically. This produces the frequency vs time 2D
spectrogram image shown in (e) for the TLS, providing a larger analysis bandwidth Bw, and higher time resolution at the
cost of analysis points (worse frequency resolution). The microwave signal is modulated onto the optical carrier in a way
that results in symmetric double-sided spectra over a full bandwidth Bw, twice the DC to maximum frequency. (f) 2D plot
for the TAIS, with a lower analysis bandwidth B

′
w and worse time resolution, but with an improved frequency resolution

and number of analysis points.
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1.2 Thesis Objectives

The thesis is divided into 6 parts. Chapter 1, "Introduction", is an extended abstract which you
just read. It includes a motivation, context, statement of the problem, and the solution which this
thesis presents.

Chapter 2, "Background", introduces some of the more important concepts which are needed
for the theory and results. This chapter includes what I consider to be the highlights of the history,
development, and mathematics for the more essential aspects of the thesis, but is by no means
exhaustive. The chapter begins with a very qualitative analogy, using music and the human ear to
introduce notions relating to time-frequency analysis. This analogy is made more rigorous in the
following section, giving an introduction to the history and mathematics of Fourier analysis. From
Fourier analysis and the frequency representation of waves, the uncertainty principle introduces
the effects of finite time windows, and restates the ideas of time and frequency resolutions. The
remaining three sections include three distinct ideas which are required for the theory and deriva-
tion chapter. The first of these briefly gives the mathematical definition of a spectrogram and its
discrete version. The next section describes the time lens, beginning from the construction of a
thin spatial lens. The final section describes the Talbot effect, and qualitatively explains the idea of
the Talbot array illuminator (TAI).

Chapter 3, "Theory and Derivation", begins with the theoretical derivation for the TLS, arri-
ving at the definition of the spectrogram previously defined in the background chapter. Then, by
discretizing the spectrogram and working backwards, a discrete phase pattern is found. The dis-
crete phase pattern, which is a discretized version of the time lens, is found to satisfy one of the
TAI phase patterns and the surrounding relations. This connects the TLS and the TAIS as time-
frequency representations. Then, the trade-offs for each spectrogram are stated considering avai-
lable hardware. The chapter ends with some notes on expected nonidealities and their expected
consequences.

Chapter 4, "Experiment", contains the experimental details for the majority of the data presen-
ted in the results chapter. The chapter begins with the general setup which is similar for both the
TLS and the TAIS. Then, the traces of the individual phase modulation patterns used are displayed.
Following this, details on how the results are displayed are discussed. Finally, some of the methods
of calibrating the system are mentioned.

Chapter 5, "Results", contains the main contributions of the thesis. Firstly, the bandwidth of
the TLS and TAIS are calibrated using a single frequency tone. Then, an increasing chirp and
decreasing chirp are used to confirm the expected frequency resolution. The next section descri-
bed the effect of limiting the detection and digitization bandwidth on the recovered spectrogram.
In particular, these results demonstrate conclusively that a 6 GHz detector is capable of recove-
ring the time-mapped spectrogram of a microwave signal occupying a range of frequencies from
DC to 46 GHz. This super-bandwidth recovery phenomenon is then compared to the results for
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a digital signal processing scheme. The digital processing of the electronic signal is done offline,
because no modern devices are sufficiently fast to analyse this signal. The difference between the
recovered spectrograms highlights the advantage of the optical processing method rather than the
digital processing orthodoxy. A signal with very short, asynchronous transients below 100 ps is
then recovered by the TLS, which is well below the system’s time resolution of 696 ps. This test
also conclusively proves these spectrograms are gapless, in the sense that there are no gaps in
acquisition and any event will be recovered, regardless of the time of arrival or synchronicity with
the time lens array. Further short events are tested, in the form of frequency hopping signals. Over
20 simultaneous frequency channels are turned on and off at nanosecond speeds as a strong
application oriented demonstration of the TLS and TAIS. Signals of this speed are only able to
be recovered in real-time with photonics methods, but it remains challenging for these methods
to realize a many-level hopping system (9; 23). Therefore, the speed of the TLS and the number
of analysis points provided by the TAIS allow for orders of magnitude improvements even beyond
other photonics methods for cognitive communications. A small final results section presents the
recovery of optical signals, including arbitrary phase patterns, as an important extension of the
TLS and TAIS array of potential applications. A significant body of results on optical signals are
demonstrated in my previous publications, but are omitted here to retain the focus on microwave
signals.

Chapter 6, "Conclusion", summarizes the main results of the thesis, and presents multiple
directions for future work. This includes extending the phase modulation to more lenses, using
different hardware, and further investigating the theoretical connections between the TLS and the
TAIS. After this is a list of contributed journal publications, conference publications, and a pending
patent.
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2 BACKGROUND

This chapter serves to introduce the concepts involved in the remaining chapters. Readers who
are familiar with the concept of time and frequency distributions, Fourier transforms, time lenses,
the Talbot effect, and the TAI, can skip to the relevant section or directly to chapter 3, but may find
the following explanations enjoyable just the same. The first section is a very general and qualitative
introduction to the ideas relating to the spectrogram through music. The following two sections on
Fourier analysis and the uncertainty principle make these qualitative ideas mathematical. This
is in preparation for the mathematical description of the spectrogram, which is what the analog
devices presented are trying to replicate. The remaining sections on the time lens and the Talbot
effect (including the TAI) are not explicitly related to one another, but are nevertheless required
background for the theory and results of the thesis.

2.1 Music: An Intuitive Example

Sheet music is the most intuitive example of a joint time-frequency representation (JTFR), and
music humanity’s earliest subject of time-frequency analysis. A musical piece loosely consists of a
choice of notes (or frequencies) being played to make some pattern in time. In this way, to properly
play a musical piece, a musician requires both frequency and time information. The oldest recorded
instructions of this type for how music should be played are found on a cuneiform tablet from the
Old Babylonian period (approximately 1900 to 1600 BCE) (24). While the cuneiform tablet is written
instructions in sentence form, sheet music is a graphical representation (25). On a staff of modern

FIGURE 2.1 : Example of a standard piece of western sheet music. Three staffs are shown, with notes placed on bars
(horizontal lines) at certain times. The symbol used for each note denotes the amount of time it should be played before
the following one.
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FIGURE 2.2 : Example of sheet music in the rough layout of a JTFR. The vertical axis is frequency increasing upwards,
and the horizontal axis is time increasing to the right. This is also the layout which is used for most of the JTFRs in the
Results 5 of this thesis. Assume that this sheet music was written with a musician of a particular skill level in mind, then
these few bars displayed are a good representation of the whole piece. Then, the lowest to highest frequency would be
known as the bandwidth Bw. Also, a tone to a semi-tone is the minimum frequency step, and an eighth note the shortest
time interval to play a note, so the frequency resolution δf and time resolution δt are exactly these values.

sheet music, frequency is represented as increasing vertically by the horizontal bars, and time
progressing to the right. The temporal duration of the notes is shown by using various symbols
to denote ratios of an integer time signature, and placed on bars to associate them with standard
tones as in Figure 2.1. This is exactly what is meant by a time-frequency representation.

Standard notes in western culture begin at 16.351 Hz (or cycles per second) which is approxi-
mately the lowest frequency that an average human ear can recognize as a frequency, and named
C0. The frequency which is double this (C1 at 32.701 Hz), is denoted with the same letter, and
the difference is called an octave, because the nomenclature cycles through 7 letters from A to
G. This continues up until 16,744 Hz, or C10, after 10 octaves which is approximately the highest
frequency that an adult ear is capable of hearing. The way the other notes are divided into each
octave can vary depending on the system used for the purpose of emphasizing the harmony bet-
ween certain tones. The most common division of this entire frequency range is into 120 discrete
frequency points, known as the chromatic scale (25). In calling sheet music a JTFR, one would be
motivated to make more associations. This is shown in Figure 2.2, where the analogy is visually
shown. The bandwidth of the JTFR would be the difference between the highest and the lowest
frequencies, or 16,744 Hz - 16.351 Hz. The frequency resolution would be the bandwidth divided
by the number of divisions. It is here the first problem is encountered, as in the chromatic scale the
frequency resolution would actually be varying, increasing with frequency (the equal temperament
scale has a logarithmically constant step size). This is the only way in which sheet music is some-
times less intuitive and more complicated than the JTFRs to come. In a simple JTFR, the minimum
discernable step size or difference between any two frequencies is known as the frequency reso-
lution, and it will be constant for the developments of this thesis. On the temporal side of things,
it is technically possible to have a never ending song, as most people who have been on a road
trip will be familiar with. Maximum temporal widths are defined for many JTFRs, but for an ideal
system it is desirable to not have this limitation. The time resolution then is the minimum time step
which one can define on the staff, which is around a 256th note for human musicians. Along with
the bandwidth, time width, frequency and time resolutions, there is one more interesting parameter
that can be specified for sheet music. With all the information above for a specific piece, a musician
may still wonder: how loud are they to play each note? In sheet music there are 8 levels of intensity
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for each note, from pianissimo to fortissimo. In JTFRs, the ratio of fortissimo to pianissimo would
be known as dynamic range, where as the number of intensity levels (in the case of discrete levels)
would be known as bit depth.

Sheet music is an easy and intuitive visual example of a JTFR which makes it clear to musicians
how to play a piece of music. Considering the amount of effort composers undergo to create this
representation, it may seem curious as to how appreciating a melody comes so naturally to so
many without formative training in musical theory. The answer is that humans each have organs
designed specifically to create JTFRs. The human ear is a remarkably complex system, and the
process by which it converts pressure waves in the air into neural stimuli, quite surprising. Inside
the human ear there is a spiral structure containing approximately 15,000 hair cells known as cilia.
These cilia are of varying lengths and arrangements, which are stimulated by varying frequencies
of pressure waves from sound. The stimulated cilia create DC and AC currents, which result in
activating nerve fibers leading to the brain. The cilia of the outer regions of the spiral are activated
by high frequencies (around 16,000 Hz for a healthy adult), while the center of the spiral is activated
by low frequencies (around 16 Hz). As a note of music enters the ear, it stimulates the cilia based
on frequency for the duration of the note, and so frequency and time information is simultaneously
sent to the brain. With these cilia the human ear can recognize more than 1,400 distinct frequencies
(25). It would be reasonable then to say that musical notation, or equivalently the musicians’ ability
to read it, has not yet caught up to the capabilities of the human ear. The minimum temporal
duration a tone is required to play so as to be recognized as a tone, rather than as a click or beep,
is approximately 13 milliseconds (the time resolution). On average, adults may be able to recognize
two frequencies spaced apart by a few Hz (the frequency resolution) depending on the frequency
range considered. The longest duration sound a human can hear is bounded by their lifetimes, but
more typically by their attention spans. Finally, the frequency bandwidth of the human ear tends to
decrease with age, beginning with the highest frequencies.

I hope with the analogies to sheet music and the functioning of the human ear that JTFRs have
become much less mysterious. Extending the notions of bandwidth, time and frequency resolutions
for signals other than audio is a small conceptual jump. It requires only forgetting about some
details of the physical nature of the wave under consideration, as well as the devices doing the
processing. In speech and music signals the frequencies discussed have been in the Hz to tens
of kHz range, time durations from milliseconds to minutes, and the processing devices the ear
and brain. For microwave signals, as is the subject of this thesis, the frequencies studied will be
in the MHz to hundreds of GHz range, time durations from picoseconds to microseconds, and the
processing devices optics and high speed electronics.
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2.2 Fourier Analysis

The ideas of JTFRs are made rigorous by Fourier analysis and the eponymous Joseph Fourier.
Born in France in 1768 (26), Jean-Baptiste Joseph Fourier is known for (among other things) his
theory of heat, developed, coincidentally, after spending roughly 3 years as governor of lower Egypt
at the request of Napoleon Bonaparte (27). The results of Fourier’s theory of heat depended on the
technique he developed of treating any function (e.g., even, odd, periodic, non-periodic, and even
discontinuous with some additional conditions), as an infinite sum of trigonometric functions like
sine or cosine. Fourier even demonstrated how an even function, cosine, could be written as a sum
of odd functions, sines. This result is unsurprisingly not the start nor the finish line, but is part of a
long line of people and cultures devoting their lives to what is known as harmonic analysis. Many
previous contributions in using trigonometric functions to solve problems set the stage for Fourier’s
development, by mathematical giants such as Joseph-Luis Lagrange (Fourier’s professor), Carl
Friedrich Gauss, Leonhard Euler, and Jean le Rond d’Alembert.

Relating this technique to the previous section, Fourier’s results imply that a piece of music,
which when played produces a function of pressure over time in the air, would be able to be
completely described by a sum of sine or cosine waves with varying weights. This is maybe not
surprising in the case of music, where it is already natural to talk about frequencies and waves. The
real power of this technique is that it was ultimately generalized to all functions, not just periodic
structures like waves. There are many conceptual angles from which to view the Fourier transform.
The simplest may be to think of the Fourier transform as an algorithm which takes a function, and
returns the weights of all the different waves of all possible frequencies required to create it. This
is done in a unique way, such that for a function f of a variable x defined on an interval of length
l, there should only be one possible representation in terms of sums of sines, for example. This
statement would be mathematically written in the following way.

f(x) = c0 + c1 sin
(2πx

l

)
+ c2 sin

(2π2x

l

)
+ c3 sin

(2π3x

l

)
+ ... (2.1)

or equivalently using summation notation,

f(x) = c0 +
∞∑

n=1
cn sin

(2πnx

l

)
. (2.2)

Here the capital sigma,
∑

, represents the summation of all terms, with n going from 1 to ∞. The c0

term is referred to as the constant or DC (Direct Current) term, and can also be thought of as the
sine wave with frequency zero. Physically this represents a vertical offset of the resulting wave. The
graphical representation of what this equation represents is shown in Figure 2.3. The "amount" of
each frequency is given by the weights cn. Constructing any function f(x) defined on an interval
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amounts to finding the correct weights of each frequency. The weights can be calculated using

cn = 2
l

∫ l

0
f(x) sin

(2πnx

l

)
dx. (2.3)

I won’t derive this relation, but it can be done by multiplying both sides of equation 2.2 by sin(2πmx/l)
and then integrating over the interval. After using a trigonometric identity, the integrals will all be
zero with the exception of where m = n, when the integral is l/2. This is known as the orthogona-
lity property of the Fourier sine series. In the language of linear algebra, sines and cosines form
a basis for the space of functions defined on an interval. That is to say, with the set of all sines
and cosines with frequencies integer multiples of the fundamental, it is possible to construct every
possible function on the interval. In the same language, one can think of the coefficients calculated
by equation 2.3 as projections of a general vector f(x) onto the basis vector sin(2πnx/l). In a usual
projection of two vectors, the binary operation known as the dot product is used, but here since the
vectors are functions, integration of their product is used instead. Returning to plain language, this
equation can be summarized as: how much of sin(2πnx/l) is in f(x)?

I will use a simple example to demonstrate these ideas further, computationally and graphically.
Consider that the function f(x) to be approximated is the function according to Figure 2.4.

This simple step function is shown in Figure 2.5. Calculate the equation for a general term cn

by using the definition of f(x) from 2.4 and equation 2.3, and separating the integral into two parts,

cn = 2
l

[∫ l/2

0
1 sin

(2πnx

l

)
dx +

∫ l

l/2
−1 sin

(2πnx

l

)
dx

]
(2.5)

= 2
l

[
− l

2πn
cos

(2πnx

l

)]l/2

0
+ 2

l

[
l

2πn
cos

(2πnx

l

)]l

l/2
(2.6)

= 1
πn

[− cos (πn) + cos (0) + cos (2πn) − cos (πn)] (2.7)

= 2
πn

[1 − (−1)n] . (2.8)

There are two things to notice about this final result. The first is that cn gets smaller as n increases
based on a multiple of the harmonic series, meaning higher frequencies become less significant.
The second is that when n is even, cn = 0. This is expected as all sines with even multiples of
the fundamental mode would contribute to constructing a function which is periodic with l/2, which
f(x) is not. One can, after finding the weights, write the first few terms of the Fourier series.

f(x) = 4
π

sin
(2πx

l

)
+ 0 sin

(2π2x

l

)
+ 4

3π
sin

(2π3x

l

)
+ 0 sin

(2π4x

l

)
+ 4

5π
sin

(2π5x

l

)
+ ... (2.9)

or equivalently in the following summation notation,

f(x) =
∞∑

n=1

4
π(2n − 1) sin

(2π(2n − 1)x
l

)
, (2.10)
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FIGURE 2.3 : Graphical representation of the Fourier sinusoid series. Any periodic function f(x) can be constructed by
an infinite sum of sine functions with weights cn for n ∈ {0, ..., ∞}. Each sine has an increasing frequency such that the
nth contains n times as many cycles as the fundamental frequency. The c0 term is the constant term which allows for
arbitrary vertical offsets, and is considered to be "zero" frequency. The fundamental frequency is defined by the interval
over which the function is defined.

f(x) =
{

1, if x < l/2
−1, if x ≥ l/2

}
(2.4)

FIGURE 2.4 : Piecewise equation and graph of a simple decreasing step function. The function is only defined on the
interval between 0 ≤ x ≤ l.
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FIGURE 2.5 : Partial sums of the Fourier sine series for a step function f(x) defined as in equation 2.4. Four approxi-
mations are shown, the first when there is only the fundamental frequency mode. The second for n = 3 is when the
fundamental and 3 times the fundamental are summed. The third n = 11 contains 6 nonzero summation terms and is
beginning to look like f(x). The fourth is when n = 100 and the step function is well approximated by the partial sum
including 49 nonzero terms.

where the odd terms are all ignored by the inclusion of 2n−1. The partial Fourier sums, calculating
up until n = 1, 3, 11, and 100, are shown in Figure 2.5. Increasing the number of terms in the sum,
it is seen how smooth sines can begin to approximate a sharp step function. As an extra detail, an
interesting artifact occurs near the edges of the step. The approximation seems to be overshooting,
with an increasingly sharp peak near the step at x = l/2. This is known as the Gibbs phenomenon
(28), named after Josiah Gibbs who was one of the mathematicians and physicists to investigate
these features in the late 1800s and early 1900s. Although it can be shown mathematically that the
approximation does converge in the limit, two qualitative observations can argue for not worrying
about the overshoot. Firstly, notice the value of every term in the approximation is exactly zero,
and thus the value of the approximation will always be zero at that point, as expected from the
function to be approximated. Secondly, even though the overshoot of the approximation near the
point x = l/2 persists for all approximations with finite terms, the measured "area" or integral
difference between the approximation and the function rapidly approaches zero.

Up until now, only the interval 0 ≤ x ≤ l has been considered. The only goal was to approximate
f(x) well on this interval alone. But the sine function is well defined for the entire real number line
(−∞, ∞), as are all of the cn defined. Therefore, it is possible to see what the discrete sum results
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FIGURE 2.6 : Fourier series shown on a larger interval than the original function f(x) was defined on. The periodicity of
the n = 100 partial sum is clearly seen for every l.

in for a larger interval, to gain a better understanding of the Fourier series. This extension onto
the interval −3 ≤ x ≤ 4 is shown in Figure 2.6. This figure reveals something very crucial to
understand about the Fourier series, and also applies to the more general Fourier transform yet
to be defined. The key is that the Fourier representation of a periodic function is discrete, and
conversely the Fourier representation of a discrete function is periodic (29; 30). This naturally
alludes to the following question: what is the Fourier representation (or transform) of a continuous,
nonperiodic function?

It is reasonable to conjecture that the Fourier transform of a nonperiodic function defined over
the whole real number line (−∞, ∞) would necessarily include a continuous range of frequencies,
rather than a discrete number by integer jumps as in the previous example. Consider the following
qualitative argument for this. Extend the interval over which the previous function f(x) is defined;
what would that do to the fundamental frequency? The frequency of the first sine was one cycle for
every l, or f1 = 1/l. The next frequency was necessarily twice this, or f2 = 2/l. Now compute the
limit as the interval of definition becomes infinite:

lim
l→∞

1
l

= 0, (2.11)

lim
l→∞

(fn+1 − fn) = 1
l

= 0. (2.12)

As a larger interval of definition is considered, the fundamental frequency becomes infinitesimal.
The step between any two consecutive frequencies also becomes infinitesimal. This is not a rigo-
rous proof but it should be sufficient to give a conceptual understanding as to why an aperiodic
signal will not have a Fourier representation which is able to be described by discrete frequencies.
This has then sufficiently motivated, although not proved, the following definition for the Fourier
transform F of a function g(x).

F{g(x)} =
∫ ∞

−∞
g(x)e−i2πfxdx, (2.13)
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where the integral is a summation, but over a continuous frequency parameter f , rather than dis-
crete steps. I have also now switched to the exponential notation for a wave, which comes from
Euler’s formula,

eiθ = cos(θ) + i sin(θ). (2.14)

Equation 2.13 gives the "coefficients" of the wave exp(−i2πfx). See section 5.7 for a very brief
note on the use of complex notation in the Fourier transform. Together these coefficients create
a continuous function in frequency space, where the image of the function is the "amount" of
that frequency contained in the function g(x). This is the standard procedure in linear algebra for
a change of basis operation, changing how the vector (function in this case) is represented. To
recreate any function g(x), one may use a sum of all the waves along with their weights, given by
a function which will be called G(f), in the following way.

g(x) =
∫ ∞

−∞
G(f)ei2πfxdf (2.15)

is aptly named the synthesis equation, because it is used to synthesize any function g(x) desired.
The interpretation and specific nomenclature for the frequency f depends on the wave or function
being considered. For example, if x is a variable of time t, then f is cycles per unit time, also known
as Hz. If x is a unit of length, then f becomes a spatial frequency, cycles per length. x could also
be units of frequency, then f would have the units of time or space, and the whole process would
be flipped on its head. In the following sections, some properties of the Fourier transform and ways
to use it for even more general analysis will be explored.

2.3 Windowing and the Uncertainty Principle

The previous section described with a simple example how the interval over which a function
is defined specifies a fundamental or minimum frequency which can contribute to the synthesis of
that function. This is known as the uncertainty principle of classical wave theory. Qualitatively, for
a function of a specified time duration, there is not enough time for slower waves to exist as full
cycles. This becomes important when only a finite window of the function is available or chosen to
be analysed by the Fourier transform. In practice, a window function is used when one is interested
in the frequencies contained within a certain time (or length) of a function, rather than the entire
function. The most basic example is a rectangular cutoff function which is unity within the region
of interest, and zero everywhere else. A good physical example of a window function is a window,
which only allows light through a rectangular hole in a wall. Both of these examples are shown in
Figure 2.7.

From the perspective of the Fourier transform, a window function is usually a non-periodic
function with zeros everywhere except for a short time within the window of analysis. Therefore,
it is expected from the discussion of the previous section 2.2 that the Fourier transform should
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FIGURE 2.7 : Two basic examples of signal windowing. The first case, a sine wave is windowed by a function h(t) which
is equal to one in the region of interest and zero everywhere else. In the second example, the walls block the landscape,
while area of the window permits light to pass virtually unchanged.

in general not be discrete. If the function within the window is itself a periodic structure then the
Fourier transform will also be periodic over a certain number of periods determined by the number
of periods falling within the window. The fundamental minimum frequency difference between any
two frequencies in the Fourier transform is defined by the window in a similar way as in the previous
section 2.2. Although now for a continuous spectrum, the steps between frequencies will be not
be discrete, but continuous and blurred depending specifically on what shape of analysis window
has been chosen. For this entire thesis, only the case of the rectangular window will be employed,
without including more advanced windowing functions such as triangular, cosine, or others (31). A
rectangular window of size T is defined as

R(t) =
{

0, if t > |1/2|
1, if t ≤ |1/2|

}
. (2.16)

For this rectangular window, the fundamental minimum frequency, or equivalently frequency reso-
lution, can be reasonably defined as

fT = δf = 1/T. (2.17)

One other popular choice for a windowing function is a Gaussian function (or normal distribution).
This is because a Gaussian is self similar to its image under a Fourier transform, meaning the
Fourier transform of a Gaussian is simply a scaled Gaussian over a different variable. The Fourier
transform of the window is particularly important due to the convolution theorem,

F{g(t) · h(t)} = F{g(t)} ∗ F{h(t)}, (2.18)

where g(t) is the signal of interest, multiplied by the window function h(t). The operation on the
right hand side of the equation is convolution, defined for two functions n(t) and m(t) as

(n ∗ m)(t) ≡
∫ ∞

−∞
n(τ) · m(t − τ)dτ. (2.19)
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FIGURE 2.8 : (a) A signal with fast features over 200 ns. For the long signal shown in (a), maybe there is one small
section of interest, highlighted with a thin red box in (a), or maybe there is interest in seeing what frequencies occur
within that short time. (b) The long signal from (a) is windowed by a function h(t) to isolate the region of interest. Here
h(t) is just a rectangle with height equal to one and width equal to 2 ns. (c) The Fourier transform of this windowed
region of interest is computed and displayed. Notice the spectrum is symmetric around 0 GHz, which is an expected
feature of the Fourier transform.

This theorem states that the Fourier transform of point-wise multiplication of two nicely defined
functions is equivalent to the convolution of their Fourier transforms. Put more concisely, multipli-
cation in one domain is convolution in the Fourier domain. For a fun result on rectangular windo-
wing functions, see the appendix 7.1. This theorem implies that the windowing function chosen
produces predictable features after the windowed signal is Fourier transformed. This can be seen
in Figure 2.8, where a region of interest is isolated from a long signal in 2.8(a) by multiplying with
a rectangular window function, the result of which is shown in 2.8(b). After the Fourier transform,
the spectrum in 2.8(c) contains multiple sharp peaks, indicating multiple very narrow frequency
lines. The frequency lines are not infinitely narrow, and have some width, expected from the finite
duration of the windowing function used. In fact, the shape of the peaks will closely resemble the
shape of sinc functions, as the sinc is the Fourier transform of a rectangular window.

Consider modifying the size of the window in Figure 2.8(b) by a factor of 4 to 0.5 ns as in
Figure 2.9 (a). The expectation from 2.17 is that the frequency resolution should worsen by a
factor of approximately 4, which is confirmed by Figure 2.9(b). Therefore reducing the window size
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FIGURE 2.9 : (a) A four times smaller window of 0.5 ns width is used to take only a smaller part of the SUT (red shaded
area). (b) The Fourier transform of the smaller time section produces a spectrum with four times worse frequency
resolution, shown as a red solid line, and is compared to the spectrum of the larger window shown in a blue dashed line.

worsens the frequency resolution, while increasing the window size makes it better. Notice also if
the goal is to localize certain frequency components to a short time of the signal, then reducing the
window size allows for a better estimate of timing, while taking larger sections of the signal does not
provide as good temporal resolution. This is the way in which time and frequency resolutions are
considered in classical wave theory to be inversely proportional. Explicitly, the uncertainty principle
is

δf · δt = 1. (2.20)

There are many more considerations which have not been mentioned, for example, the use of
standard deviations to improve the estimates of the resolutions, or the full-width half-maximum
points. Ultimately, whether or not certain frequencies or time events can be resolved from one
another involves an element of subjective observation. As long as the specific resolution used is
reasonable and made clear at the beginning, there should be little confusion. In this thesis, the
time resolution will be defined as the width of the rectangular window (and in this thesis, only
rectangular windows are used), while the frequency resolution will be defined as the inverse of the
time resolution as in 2.20.

2.4 Spectrogram Analysis

While the Fourier transform of the windowed signal in Figure 2.8 displays the frequency content
within that window, recall the goal of JTFRs is to describe how the frequency content of a signal
evolves over time. Therefore, repeating this process for multiple windows at different parts of the
signal will allow for the frequency content to be sampled those various parts. This idea leads
naturally to the short time Fourier transform (STFT) of a signal (defined in 2.22). Assume that no
two windows overlap with one another, and that windows are placed edge to edge so that every
part of the function falls under one of the analysis windows (gapless). Then the STFT process will
be carried out as in Figure 2.10. The consecutive rectangular windows are shown in Figure 2.10(b),
and each one must be Fourier transformed separately if all the information of the signal is to be
recovered. Explicitly, if there were some fast event happening between the two example spectra
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shown in Figure 2.10(c) and 2.10(d), and if the segments in between were discarded rather than
transformed, that fast transient event would be lost. For the example shown in Figure 2.10, the
computational intensity of the STFT process is evident. Each window is only 2 ns long. Therefore,
if the signal is to be processed in real time, each Fourier transform must be computed in that same
time. Currently, this is far beyond the capabilities of digital electronic signal processing (computers)
(13). There are some methods which allow for parallel systems to evenly distribute the workload
among multiple processing units by taking short sampled segments of the signal and slowing them
down (12). However, the real time spectrum analyser stage to do the Fourier transform in the digital
domain is still required. Assuming the fastest speeds of those digital devices, in the millions or tens
of millions of Fourier transforms per second, then 100 to 1000 devices and parallel optical systems
would be needed to compare to the results shown in this thesis (over a billion Fourier transforms
per second for a continuous and gapless signal in real time, without digital signal processing).

By visually inspecting the temporal trace of the signal in Figure 2.10(a), or by inspecting the
complete spectrum of the signal (all frequencies contained within the signal) as in Figure 2.11,
it is still not obvious what features comprise this signal. I guarantee you cannot predict how this
signal was constructed, but it will become perfectly clear after plotting the JTFR. For this signal,
the spectrogram is chosen as the JTFR rather than the STFT. There is a slight difference between
the two, but one is calculated from the other. In particular, the spectrogram SPGM(t, f) is a JTFR
with dependence on time and frequency defined as follows:

SPGM(t, f) = |STFT (t, f)|2, (2.21)

where the STFT stands for the short time Fourier transform, and is defined as

STFT (t, f) =
∫ ∞

−∞
a(τ)h(τ − t)e−i2πfτ dτ, (2.22)

where h(t) is the window function, a(t) is the full signal, and the product of the two is Fourier trans-
formed using the definition from section 2.2 in 2.13. Simply put, the spectrogram is the intensity
of the STFT, which due to the Fourier transform, returns complex values. The spectrogram of the
example SUT is shown in Figure 2.12. In a similar way to sheet music, section 2.1, all the com-
ponents of the signal can be observed upon immediate visual inspection. In particular, the signal
consists of a downwards linear frequency chirp from 20 GHz to around 2.5 GHz, increasing in
intensity, an upwards quadratic chirp from 3 GHz to around 14.5 GHz and constant intensity, a
fast transient event at 12 GHz at the time where the two chirps cross, and finally, a time-frequency
smiley face.

Very briefly, it was mentioned that the consecutive Fourier transforms are a computationally
demanding process for digital electronics (and for the example in Figure 2.10, not possible with
modern methods). In the next section, a well known analog method for computing individual Fourier
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FIGURE 2.10 : (a) A SUT with fast interfering features. (b) A blown up section of the signal to show the windowing
process by taking consecutive windows of 2 ns and performing the Fourier transform on each one. (c), (d) The results
of the Fourier transform for two windows, shown in shaded red in (b), are displayed, showing fairly similar spectra.

transforms, the Time Lens, is discussed. It would remain after this discussion to find a way to use
the analog method for gapless analysis, which is one of the major contributions of this thesis.
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FIGURE 2.11 : The Fourier transform of the entire SUT shown in 2.10(a) is displayed.

FIGURE 2.12 : (a) The temporal trace of an example signal. (b) Positive spectrum of the entire signal in logarithmic
units. (c) Spectrogram (absolute square of the STFT). All the time-frequency features that were used to construct this
example signal are shown clearly by visual inspection.
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2.5 Time Lenses

In one sentence, a time lens does exactly the same operation as a thin spatial lens, but over
the domain of time rather than space. In ray optics, a spatial lens with diffraction focuses light to a
point. In physical optics, which provides a more accurate model of electromagnetic phenomenon,
a thin spatial lens with diffraction does a Fourier transform. If the lens is large enough, the Fourier
transform begins to look more and more like it is converging to a point. In this section, the Fou-
rier transforming property of a thin spatial lens system will not be proved, since there are many
textbooks which already discuss this in great detail (32; 33). Instead, this section will elaborate on
space-time duality, temporal imaging, and frequency to time mapping.

It was observed in the late 1960s that the problems of light propagation in both space and time
are very mathematically similar (34; 35), under certain approximations. This mathematical simila-
rity is the cause for the parallelism in nomenclature, known as the space-time duality. Significant
contributions were made by Brian Kolner in developing the analogy and properly defining terms
such as focal lengths and magnification factors in the time domain (36; 19; 37). This work followed
extensive studies into chirped radar and analog electronic signal processing (38; 39). As a result of
these works, space-time duality has been heavily relied on in the field of optical signal processing
(40; 20; 41).

For both the case of time and of space, the actual observable property of the light for most
simple experiments is often the power, rather than the electromagnetic oscillations that light is
known to be. One of the reasons for this is that optical and infrared light used in both imaging
and fiber optic communications oscillates at upwards of 100 THz. Observing these oscillations
directly is not obvious, although there are successful modern techniques involving interferometry.
The "Wizard of Schenectady" Charles Steinmetz gives an impressively intuitive motivation for using
exponential wave notation, specifically due to the primary observable of light being power (42). He
notes that, for a monochromatic wave being made up of primarily a single frequency, separating
the fast oscillations into a phasor notation is extremely useful. In this notation, the amplitude of the
wave at any point is known as the phase, and the absolute square of the amplitude is the intensity,
which relates to power. This definition (phase as exactly the amplitude of a wave) is slightly confu-
sing as it does not agree with how phase is discussed in modern microwave photonics and optical
communications (43; 44). In particular, when modern texts refer to phase, they are referring to a
relative phase between two sine waves in different portions of the same or different signals, or equi-
valently the phase of a wave relative to one global origin. As a brief example, microwave photonics
may be interested in delaying one optical path by a certain amount to produce a constant phase
difference relative to another arm. Steinmetz was the first to introduce and standardize the use of
the complex polar coordinate scheme in electrical engineering. In his 1893 publication, he explains
that this treatment is well known in other fields, but does not directly reference optics. Regrettably, I
cannot find a reliable source on who was the first to use the complex exponential notation in optics

22



due to the unavailability of many old papers, but it should have happened sometime between when
the wave nature of light was being advocated by Fresnel in the early 1800s (45), and its integration
into standard electrical engineering in the late 1800s (42).

In the complex exponential notation, a fast oscillating carrier wave exp(i2πfz) with a frequency
f , moves in the normal direction z constructed by the plane (x, y). The wave can be given an initial
amplitude U(x, y) depending on the transverse coordinates x and y, to produce

u(x, y, z) = U(x, y)ei2πfz. (2.23)

Then the intensity at any transverse point, or the actually observable part of the wave, would be
written as

I(x, y) =
∣∣∣U(x, y)ei2πfz

∣∣∣2 = U(x, y)ei2πfz · U∗(x, y)e−i2πfz = |U(x, y)|2 , (2.24)

where U∗ denotes the complex conjugate. This means that the solution of the differential equa-
tion describing the evolution of the electromagnetic wave has been separated into a part which
propagates only in the z direction, and another part which is diffusive in the transverse direction.
These are essentially the approximations used in Kolner (19) to formulate the space-time duality.
This can only be done if the wave is approximately monochromatic and propagating almost enti-
rely in a single direction (paraxial rays). The effect of a thin spatial lens is shown below in Figure
2.13, where the actual lens is enlarged for conceptual clarity. In this diagram, three paraxial rays
are highlighted incident on the lens, out of the full spatial image U(x, y). The rays propagate to-
wards the positive z axis with a single frequency f . Using the thin lens approximation, the incident
angle on the glass is small, and so each light "ray" will exit at the same transverse coordinates
(x, y) as the incidence. This means that for any ray considered, the amount of glass it propagates
through is only dependent on its transversal incident point. In particular, for a lens which is radially
symmetric on the transverse plane, the amount of glass will depend on the radius to the origin ρ,
where ρ2 = x2 + y2. Therefore, it is possible to calculate the path length through air and through
an amount of glass by using the physical shape of the lens, which is assumed to be quadratic. By
the refractive index of light in glass, the speed is slower and the wavelength is shorter. Therefore
between the incident and exit planes shown with dotted lines, the path length varies. In the middle
of the lens, there is more cycles of the carrier wave in comparison to the edges. The resulting
complex wave directly on the other side of the lens can be written generally as

uout(x, y, z) = U(x, y)ei2πfzei c
2 ρ2 = U(x, y)ei2πfz+i c

2 ρ2
, (2.25)

where c contains information about the physical properties of the lens, including the index of re-
fraction of the material used. Notice however that the intensity profile remains the same under the
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FIGURE 2.13 : Conceptual diagram of a thin spatial lens. Three rays travelling in the z direction are shown entering and
exiting the lens at the same transverse point (x, y) that it entered. Due to the refractive index of glass, light travels slower
and therefore has shorter wavelengths, as shown for the centre ray. Right before and right after the lens, shown in dotted
lines, there is a difference in accumulated phase. The red dots highlight the vertical amplitude of each wave, which may
result in, for example, a phase difference of ∆θ = 5π. For a circular lens of aperture size A, one may describe the
accumulated phase difference ∆θ depending on transverse incident point ρ using the shape of the lens, which is here
quadratically convex.

approximations made

Iout(x, y) =
∣∣∣U(x, y)ei2πfz+i c

2 ρ2
∣∣∣2 = |U(x, y)|2 = Iin(x, y). (2.26)

The spatial lens coupled with diffraction in space is what produces the Fourier transform of U(x, y)
at the image plane after a certain propagation distance z. If the intensity is simply a flat function,
then the light is focused to a point. Except it is not really a point, it is an airy disk, which is the
Fourier transform of a circular aperture, and will become smaller and more point like as the lens
becomes infinitely large.

The time lens is this exact principle, but now in the temporal domain. Mirroring the statement of
the previous paragraph, a time lens coupled with dispersion is what produces the Fourier transform
of an intensity function at the input after a certain propagation distance z.

Taking inspiration from the spatial case, separate the dynamics in terms of a constant velocity
(speed of light) propagation in a single direction, and a dispersion of the overall intensity shape of
that wave. For a temporal wave there are no transverse directions to the direction of propagation,
but it is possible to refer to an intensity shape U(τ) over a moving time frame τ nonetheless.
Consider Figure 2.14, which depicts evolution of an intensity profile through the propagation of
some system. By imagining detectors at points z1, z2, and z3, the propagation of the carrier and the
diffusion of the intensity profile can be artificially separated. If the detectors all set their recording
times to zero when an agreed upon frequency (normally the carrier frequency) would propagate
through the system and reach them, then the dispersion of the intensity function can be easily
observed and compared at each point throughout the system under consideration. Conceptually
this last point means that the choice has been made to follow the intensity profile in a moving time
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FIGURE 2.14 : Conceptual diagram of a moving time frame specifically to follow the evolution of the intensity envelope
and disregard the carrier wave propagation. Detectors placed at points along the z axis of propagation would see certain
intensity profiles. Shifting all of their centre times to follow the carrier wave allows for easy analysis of how the intensity
profile changes at each point in the system. This system is a conceptual example of a dispersive Fourier transformer,
where the spectral information is mapped or copied into the time domain.

frame which is set to the speed of the carrier frequency, sometimes known as retarded time. This
is also an extremely useful method computationally, as often simulating the actual carrier wave
oscillations is ignored due to the demanding hardware requirements.

The particular situation in Figure 2.14 is that of the dispersive Fourier transformer. This sys-
tem is particularly useful as an introduction to the frequency-to-time mapping concept, which is
essential for the rest of the time lens and TLS developments. In this figure, an initial short pulse
has some initial spectrum. It can be shown mathematically that propagating this pulse through a
sufficiently long dispersive medium, such as an optical fiber, is analogous to Fresnel diffraction in
free space which results in the Fourier transform of the initial input image (with an ignored phase
factor) (46). The temporal intensity profile at the output of the system in Figure 2.14 follows the
profile of the spectrum at the input, successfully having mapped frequency-to-time. For the dis-
persive Fourier transformer, the output spectrum is unchanged, as the frequencies do not change
in intensity throughout the fiber but simply accumulate a frequency dependent delay, or spectral
phase. This is not true for the time lens system to be described. Even though the frequency-to-time
mapping still reproduces the spectrum in the time domain at the output, the initial temporal phase
modulation will alter the spectrum.

Using ideas from a spatial lens in Figure 2.13, and the moving time frame in Figure 2.14, a
scenario is constructed as in Figure 2.15. Consider a fast optical carrier wave has some intensity
shape I over time shown in purple dashed lines, and create a moving time frame τ that follows
the speed of the optical carrier shown in black. By changing the input voltage into an electro-optic
modulator, the optical path length can be varied. If the voltage is changing fast enough, then the
path length through the modulator will vary over the course of I(τ). Consider the wave propagating
along the system, three different points of the intensity pattern will have three different times of arri-
val to the modulator (compare with Figure 2.13 transverse coordinates of incidence). For each time
of arrival, there is a certain path length through the modulator which determines how many cycles
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FIGURE 2.15 : Conceptual diagram of a time lens. A fast optical carrier wave shown in black solid lines has some
intensity shape I over a moving time frame τ , and in the direction of propagation z. At various points τ1, τ2, and τ3, the
intensity pattern sees different optical path lengths (ranging from d0 to D), and therefore completes different amounts of
cycles before exiting the device. This creates a time of arrival dependent phase shift ∆θ, based on the input voltage in
the case of an electro-optic modulator. Compare this figure to 2.13. Here T is the temporal "aperture", or width, of the
time lens.

of the wave are needed to traverse the device, equivalent to phase accumulated. The path length is
also varied slow enough such that the optical path length remains approximately constant relative
to the fast oscillations of the carrier frequency. Therefore, the path length of the device depends
on the time of arrival, just as for a spatial lens the path length depends on transverse location of
incidence. In Figure 2.15 the variation depicted is quadratic. A time lens mathematically then can
be described in the same way as the thin spatial lens, after properly renaming the variables.

Uout(t) = Uin(t)ei2πftei c
2 t2 = Uin(t)ei2πft+i c

2 t2
, (2.27)

where c is some constant describing the properties of the lens, and the variations of the lens are
slow in comparison to the oscillations of the optical wave.

There are a number of ways of implementing time lenses, such as electro-optic modulation,
four-wave mixing, and cross phase modulation. In the case of electro-optics, a standard approach
is to use the sine wave from an RF oscillator to drive the modulator (47; 20). The RF oscillator
produces a sine wave as in Figure 2.16 which is matched to, for example, the repetition rate of a
pulse train. This sort of time lens can be integrated in all sorts of systems for processing optical time
limited events, such as short pulses (20). The optical and electronic waves can also switch roles
as in the case of a time lens Fourier transformer (21). In this system, pulses are sent through an
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FIGURE 2.16 : Basic diagram of how an RF sinusoid is positioned to relative to a pulse train. Each trough of the sine
wave approximates a quadratic function, and therefore can be used as a time lens.

amount of dispersion to acquire a linear chirp (quadratic phase). The optical pulses then become
the time lenses and an RF signal can be intensity modulated on top. Notice the signal originates in
the RF domain in contrast to the previous case where it originated in the optical domain.

In both cases, a time lens is be coupled with an appropriate amount of dispersion to produce a
Fourier transform of a portion of a signal. Part of the interest in adding a time lens to a dispersive
Fourier transformer is that the required dispersion can be significantly reduced. Time lens systems
and the frequency-to-time mapping concept are extremely useful as once the frequency information
of the signal is mapped into the time domain, it can be recovered using simple real-time temporal
detection techniques such as photodetectors.

2.6 The Talbot Effect

The Talbot effect is named so after the person who first encountered the phenomenon. Henry
Fox Talbot was an English scientist and member of the Royal Society who, while working on early
photography, noted an interesting occurrence relating to gratings. In one of his public letters in
1836 he mentions in a few paragraphs an experiment to observe a recurrence of coloured lines
from solar light after passing through a grating (48). This is the experiment he described. First, a
dark room is prepared with a radiant point of intense solar light. The light is directed horizontally
by a mirror for "about ten or twenty feet" towards a grating. The grating is described as "A plate of
glass covered with gold-leaf, on which several hundred parallel lines are cut...". Talbot received this
grating from none other than Joseph Ritter von Fraunhofer. Following this, a lens is used to refocus
the light onto a white sheet. The first observation Talbot made was sharp vertical lines parallel
to those of the grating and of varying colours. Originally these were red and green, however after
moving the lens away from the grating, blue and yellow, until finally back to red and green. He made
a few more interesting experiments with multiple gratings or a copper plate with periodic holes.
He routinely demonstrated these images to colleagues but seems to have never formalized his
findings. Some of these appearances he described as "...impossible to describe...", ever changing
as a kaleidoscope and varying ad infinitum.

To understand why the alternating colours seem to appear at different grating-lens lengths,
another important character must be introduced: Nobel laureate John William Strutt, 3rd Baron
Rayleigh. Lord Rayleigh was studying photographic copying for optical gratings when he acciden-
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tally came across H.F. Talbot’s accounts of observations similar to those he had noted during his
study. Lord Rayleigh changed his approach after reading these accounts and noted specifically
how it would be useful for varying the intervals in photographic copying of his gratings (49). The
following is a short account of how he came to find the "revival length" of Talbot’s images and
how his experiment differed from that of H.F. Talbot. Instead of solar light, Rayleigh used a fish-
tail gas-flame masked by a vertical slit as a source. While Talbot specified the use of "...a lens
of considerable magnifying power...", 44 years later Rayleigh needed only "...a lens of moderate
magnifying power...". Moreover Rayleigh’s account is much more precise and is likely the reason
he arrived at a quantitative relation. In comparison, Talbot maintained only a seemingly passing
interest in the images as a novel demonstration.

The grating chosen was an old coarse grating made by photographing, with a period of 0.0104
inches. The grating was placed at a distance of about 27 feet from the source. While Talbot had
predicted a mathematical source would see an infinitely repeating revival of the red/green and
blue/yellow pairs, Rayleigh correctly reasoned that this phenomenon would likely dissipate after
a certain distance due to the finite size of the grating. He also correctly reasoned that the revival
length should be wavelength dependent. He proceeded to record a table for grating-lens lengths
for the optimal points of the red and green light separately. He did so using pieces of coloured glass
held up to the eye for the purpose of monochromatizing the images. The lens would be moved until
either the red or the green were sharp and appeared with the correct period, then the distance from
the grating would be recorded. He proceeded from 1.75 inches up until 9 feet while still observing
the revivals (after which the revivals began to lose brightness and quality).

During Rayleigh’s experiment, he observed that as the distance increased, the proper period
was lost and shorter periods could be seen but fluctuations in brightness prevented consistent re-
cording of these. Coincidentally there are positions where the revival length for red and for green
are so similar as to be indistinguishable without the aid of the coloured glass. One especially impor-
tant observation which relied on the use of the coloured glass was that of the "sign" of the image.
Rayleigh considered one particular distance of 33.25 inches, an optimal point for green (correspon-
ding to the 7th revival). Near to this distance occurs a good revival for red at 34.5 (corresponding to
the 8th revival). When using the green coloured glass a needle point was used to mark the center
of a bright band. Switching to the red coloured glass the same needle point instead marked the
center of a dark band. His conclusion was that the effect was "...not a mere shadow in any ordinary
sense of the term." The revivals alternate light and dark bands at a distance which depends on
wavelength. This self imaging effect is shown in Figure 2.17 along a single transverse dimension.
In Figure 2.17 (a), the alternating self images are seen by the dark spots changing position slightly
every Talbot period. Figure 2.17 (b) shows multiple colours combined in an RGB image, to highlight
the frequency dependent nature of the self images. In this figure, the Talbot carpet for only three
discrete frequencies are computed. This would apply to any electronic device combining RGB co-
lours to form an image. Natural light, comprised of a broad and continuous spectrum, would have
a very different looking carpet.
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FIGURE 2.17 : (a) Talbot carpet for red light, where the image is initially a set of finite width apertures, and the light
propagates to the right in the z direction. The deterioration of the self images comes from the finite number of apertures
simulated, along with a finite resolution in both axes. d is the period of the thin slit apertures. (b) A red-green-blue image
formed by combining the Talbot carpets for red, green, and blue light. The self images of the transverse axis can be
seen to occur at different distances of propagation for each colour, corresponding to different Talbot lengths zT for each
colour.

Lord Rayleigh’s theoretical approach to the problem, although more complete than Talbot, is
presented somewhat less rigorously than modern treatments (50), and involves quite a few ap-
proximations. For a more in depth mathematical discussion on self imaging following Montgomery
(51), see the Appendix 7.3. The derivation begins with a general result from vibrations on mem-
branes (52) which he applies then to the field just after the grating to find that the intensity has a
term periodic in the z direction given by

z2T = λ

1 −
√

1 − λ2

d2

, (2.28)

where d is the period of the aperture as in Figure 2.17, λ is the wavelength, and z2T is the Talbot
length. Using the binomial approximation, as well as a grating with a period much larger than the
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wavelength, he finds the following relation,

z2T ≈ λ

1 − (1 − 1
2

λ2

d2 )
= 2d2

λ
. (2.29)

Notice however there is a 2 in the numerator. That is there because in fact the revivals are periodic
in twice the grating period squared over the wavelength. As was mentioned before, this accounts
for the alternating "sign" of the revival. The Talbot length is defined here as zT , ignoring the sign
of revivals. Using the mean interval between revivals and a corrected grating period, Rayleigh
experimentally confirmed his result by calculating wavelengths from equation (2.29). This equation
predicted that the red and green light he was using to have had a wavelength of λR = 6.4×10−5cm

and λG = 5.59 × 10−5cm, respectively. The true wavelengths transmitted by the red and green
glasses were found by other means to be λR = 6.64×10−5cm and λG = 5.76×10−5cm, respectively.
At this point Lord Rayleigh’s well documented reports and the accessible technology garnered real
interest in the effect as more than simply an interesting way to make pretty lines in a Cambridge
dark room.

Many more developments have been made with the Talbot effect since its discovery in the 18th
century. A.W. Lohmann was a German physicist who worked on holography and time-frequency
representations, but also published results relating to the Talbot effect. Lohmann along with J.
Jahns published a paper in 1978 proposing a reciprocal experiment to that of Ernst Lau which
they called a Talbot interferometer (53), for the usual purposes of an interferometer. In another
paper with James A. Thomas, Lohmann described an array illuminator based on the Talbot effect
(54). Array illuminators are devices with the goal of splitting incoming light into an array of smaller
images or beams (55). This can be done using an array of pinholes, an array of lenses, or phase
gratings constructed by a periodic pattern of varying glass thicknesses. This last example inspired
the the utilization of the Talbot effect in the design of the phase grating (56; 54).

The design of phase gratings based on the Talbot effect comes from the phase of light at
fractional distances to the Talbot length zT in the Talbot carpet shown in Figure 2.17. In Figure
2.18, the temporal Talbot effect is shown for an initial signal comprised of square shaped pulses.
The self images at Talbot lengths are all identical, up to a shift, with the original pulses which are
assumed to have zero phase. At a fractional propagation distance to the Talbot length, there is
a fractional image formed (57; 58; 59; 60). Propagation in an optical fiber is energy preserving,
as energy into a fiber must come out somehow, and for an ideal fiber the only way out is at the
other end. This means that the signal energy is conserved, and however the input frequencies have
interfered at the output the power must adjust to compensate. In the case shown in Figure 2.18, the
fractional image at half the Talbot length is twice the periodicity, and therefore each pulse has half
the power to conserve signal energy. Assuming the signal does not have sufficient power to induce
any frequency mixing phenomenon, the energy in each frequency at the output is the same as
the input. Modifying the temporal shape of the waveform without modifying the energy distribution
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FIGURE 2.18 : An initial signal comprised of square shaped pulses is shown at an initial propagation distance z0
of a system. After complete propagation through the system to the Talbot length, zT , the pulses will self image and
reconstruct. At an intermediate point zT/2, a fractional distance to the Talbot length zT , there will be a fractional self
image. In the example shown, the fractional image reproduced is at half the Talbot length. Therefore, the frequency of
the pulses 1/T is twice that of the original signal 2/T , the power is half, while the pulse width ∆t and shape remains the
same. The phases of the pulses are shown underneath each pulse, assuming zero relative phase between the pulses
at the input.

of the frequencies implies that there must be a temporal phase attached to any fractional image.
These fractional images have been used as Rayleigh predicted: to easily modify the periodicity
during the manufacturing of gratings. They have also been used extensively as a simple way to
control the periodicity of optical pulse trains from mode locked lasers(61; 62; 63).

From these fractional images, an array illuminator can be constructed when the width of the
square pulses approaches the periodicity of the fractional image. If ∆t = T/2 from the previous
example in Figure 2.18, then a situation depicted in Figure 2.19 occurs. Taking the zT /2 propa-
gation point as the input, a phase pattern according to a fractional Talbot image can be put onto
a continuous source to produce pulses at the output. The amount of dispersion required as well
as the amplification of power are dependent on the specific fractional self image phase used. The
particular phase pattern of the fractional image is found by computing Gauss sums (64; 65; 66).
For a image at a fractional distance pzT /q with p and q co-prime, the period of the fractional image
will be T/q. The phases of the nth pulse of the fractional image at this distance will be

φn,p,q = π
s

q
n2 mod 2π, (2.30)

where s is an integer solving
sp = 1 + qϵq mod 2q, (2.31)

and ϵq is the parity of q (equal to zero when q is even and one otherwise). A binary phase grating is
simplest (q = 2, p = 1, and s = 1, φ = 0, π/2), but higher numbers of levels are of course possible
(67). Higher order phase patterns produce sharper and higher intensity peaks, which can be used
to make gratings from white light (54), or amplify arbitrary signals lost under noise (68; 69). For
general fractional distances, the propagation in an optical fiber must satisfy

2π|β2|z = p

q
T 2, (2.32)
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FIGURE 2.19 : An initial signal comprised of square shaped pulses of widths ∆t = T/2 is shown at an initial propagation
distance z0 of a system. At an intermediate point zT/2, a fractional distance to the Talbot length zT , there will be a
fractional self image. At the fractional self image, the rectangular pulses meet to form a near continuous signal. Changing
perspectives to think of this continuous signal as the input, it is possible to put a phase pattern on a DC signal an produce
pulses at the output. This must occur after a propagation distance corresponding to the fractional length of the phase
pattern used, in this case zT /2.

where β2 is the second order dispersion parameter for the fiber, z is the length of the fiber, and T

is the periodicity of the integer self image (61).
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3 THEORY AND DERIVATION

3.1 The Time Lens Spectrogram

The essential difference between previous Fourier transformers based on the time lens and
the TLS is that in the TLS the lenses are placed edge to edge. Note, in this thesis a time lens is
defined as the temporal phase modulation, independent from the dispersion required afterward to
perform the Fourier transform (see section 2.5). This difference is one of the foundational concepts
of this thesis, differentiating it from previous work on the time lens for time limited waveforms or
interstitched time lens systems. It requires additional constraints in the derivation of the imaging
conditions for the system, which will be outlined in this section.

To perform a gapless spectrogram completely in the analog domain, two phase transforma-
tions are implemented on the signal. The first is a consecutive set of time lenses, described in
section 2.5, followed by chromatic dispersion. To reiterate certain key points, the concept of a time
lens comes from the mathematical duality between spatial paraxial light propagation and narrow-
band temporal light propagation (19). Secondly, a time lens coupled with dispersion results in a
frequency-to-time mapping of the spectral information into the temporal domain, to be detected
by a photodetector. A time lens is any device able to impart a time dependent phase φ(t) on a
temporal waveform, following a quadratic function over time to mimic the thin lens results of spatial
optics. In the following derivation, only the baseband frequency components of the optically modu-
lated signal are considered. All of the waveforms will be multiplied with a fast varying optical carrier
wave

acarrier(t) = ei2πfct, (3.1)

where fc is in the hundreds of THz range. Ignoring the optical carrier, the operation of the time lens
on the baseband waveform is

aLens(t) = a(t) · eiφ(t) = a(t) · ei
CL

2 t2
, (3.2)

where CL contains information on the strength of the time lens, and aLens denotes the waveform
after being transformed by the lens. The parameters of the time lens are visualized in Figure 3.1.
The time lens has a maximum phase excursion

φmax = φ

(
T

2

)
= CL

8 T 2, (3.3)

where T is the temporal width, or aperture, of the time lens. Each time lens provides a bandwidth

∆ω = CLT, (3.4)
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FIGURE 3.1 : Visualisation of edge to edge consecutive time lenses. (a) The phase φ(t) of each lens follows a quadratic
function over time, with strength CL. Each time lens has a width T , equivalent to its aperture. (b) Plot of instantaneous
frequency φ′(t) of the phase. The bandwidth ∆ωT L defines the maximum bandwidth of the JTFR to follow.

where ω = 2πf is the angular frequency. This bandwidth will also be confirmed later in this sec-
tion to be the bandwidth of the JTFR, ∆ω = 2πBw. The time lenses are shown in Figure 3.2(b),
integrated into the TLS system.

The remaining component required to complete the FT in time is an analog to spatial dispersion.
For a temporal SUT, chromatic dispersion will produce a quadratic frequency dependent phase
modulation

AF T (ω) = ALens(ω) · ei ϕ̈
2 ω2

, (3.5)

where AF T is the spectrum of the wave after dispersion, and ALens is the spectrum before dis-
persion. The symbol ϕ̈ stands for the strength of the second order dispersion parameter. In fiber
optics it is common to see this multiplied by a length in kms, but for the results in this thesis, only
reflection mode chirped fiber Bragg gratings are employed, so ϕ̈ is the complete parameter. This
transformation is represented in the TLS overview of Figure 3.2 as component (c), coming after the
time lens. As discussed in section 2.5, these two transformations have previously been confirmed
to produce a Fourier transform in the time domain (47; 21; 20). The previous work involving time
lenses has only focused on time limited or periodic waveforms. This is because, as for a spatial
FT imaging system, the temporal FT imaging system results in a frequency-to-time mapped spec-
trum which is much longer in the time domain than the original waveform (21). This means that if
lenses (quadratic functions) are placed too closely together, the resulting images will be corrupted
by complex interference patterns that are not analyzable without prior knowledge of the SUT. As Fi-
gure 3.2 qualitatively shows, if the lenses are indeed to be placed edge to edge, then each Fourier
transform must be mapped to a time of equal size (T ). The lenses must be placed edge to edge for
analysis of continuous signals, otherwise portions falling in between lenses, and potentially crucial
pieces of information, are necessarily discarded.

The consecutive placement of the time lenses in the TLS contrasts the usual method by which
troughs of a sinusoid are used to approximate quadratic functions (47). The proper conditions to
allow this placement are presented in (17). Assuming a rectangular aperture as defined in 2.16 for
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FIGURE 3.2 : Conceptual overview of the TLS. (a) An input temporal signal, already prepared in the optical domain.
(b) The time lens stage consisting of edge to edge quadratic phase functions (lenses). (c) Chromatic dispersion, or
equivalently, a frequency dependent delay. (d) Output consecutive Fourier transforms mapped into the time domain. The
output spectra should not overlap and therefore must be contained within a time T ; the width of the lens aperture/window.

each time lens of width T , the complete lens array is written as,

L(t) =
∞∑

n=−∞
R

(
t − nT

T

)
ei

CL
2 (t−nT )2

. (3.6)

It is useful to introduce a shifted time t′ = t − nT . Multiplying this lens array by the input signal a(t)
results in the following equation:

aLens[n, t′) = a[n, t′)ei
CL

2 (t′)2
, (3.7)

where a[n, t′) denotes the nth segment of a(t) windowed by a rectangular function of width T and
shifted to the zero time. Since each of these are non-overlapping, each windowed segment can
be treated individually. Imposing a chromatic dispersion is equivalent to applying a phase in the
spectral domain over angular frequency and so

F
{

ei ϕ̈
2 ω2

}
= 1√

i2πϕ̈
e

i 1
2ϕ̈

(t′)2
. (3.8)

Therefore, the output wave in the temporal domain after both transform can be found by the defini-
tion of the convolution

aout[n, t′) = aLens[n, t′) ∗ 1√
i2πϕ̈

e
i 1

2ϕ̈
(t′)2

. (3.9)

aout[n, t′) = 1√
i2πϕ̈

∫ ∞

−∞
aLens[n, τ) · e

i 1
2ϕ̈

(t′−τ)2
dτ, (3.10)
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where τ is a dummy variable which will be integrated out to produce a function over t′. After
rearranging the exponential phases,

aout[n, t′) = e
i

(t′)2

2ϕ̈√
i2πϕ̈

∫ ∞

−∞
a[n, τ) · e

i

(
CL

2 − 1
2ϕ̈

)
τ2

· e
i t′τ

ϕ̈ dτ. (3.11)

The next step is to set the time mapped frequency to be ω = 2πf = −t′/ϕ̈. The negative sign
is included to arrive at a standard form in the following step, and it simply means the frequency
axes are reversed in comparison to increasing time. In analogy with the spatial system, define a
mapping or magnification factor M = 2π|ϕ̈|, as well as the imaging condition CLϕ̈ ≈ 1 in order to
neglect the second phase term,

aout[n, −fM) = eiπMf2

√
iM

∫ ∞

−∞
a[n, τ) · ei2πfτ dτ. (3.12)

This output waveform is easily recognizable as the Fourier transform 2.13 of the input segment
a[n, t), multiplied by some frequency dependent phase. The rewritten equation

aout[n, −fM) = eiπMf2

√
iM

F{a[n, τ)} (3.13)

can be recognized as the nth component of the STFT from section 2.4 (see also Appendix 7.2). By
taking the square magnitude, retrieve the nth spectrogram component of the signal, multiplied by a
constant (magnification factor),

|aout[n, −fM)|2 =
∣∣∣∣∣eiπMf2

√
iM

STFT [n, f)
∣∣∣∣∣
2

= 1
M

SPGM [n, f). (3.14)

Then it has been shown that the spectrogram is mapped directly into the time domain according
to the frequency-to-time mapping factor f = t′/(ϕ̈2π). It remains to position each of the segments
as the vertical slices of a two dimensional image over time to produce a spectrogram image as in
Figure 3.3.

Finally, to ensure that there is not interference between the nth transformed spectra and the
n ± 1 segments, impose the following condition.

|aout[n, −fM)|2 = 0, for all |fM | ≥ T/2, (3.15)

where the above condition on the frequency of the SUT implies the system has a maximum analysis
bandwidth of Bw = T/|M |, and that the SUT must have a bandwidth equal to or less than this. Here
the notation for analysis bandwidth is defined as twice the maximum frequency Bw = 2fmax from
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FIGURE 3.3 : Conceptual process of taking consecutively frequency-to-time mapped spectra and reshaping them to
produce a spectrogram image. (a) Output time-mapped spectra from the TLS. (b) Place each spectra vertically alongside
one another, over their time of arrival. Define the frequency axis using the frequency-to-time mapping factor. (c) Set the
intensity as colour and plot all together. The red line on the spectrogram plot indicates the final location of the spectral
slices shown in (a) and (b).

the inequality in 3.15. Notice also that

Bw = T

|M |
= T

2πϕ̈
= CLT

2π
= ∆ωT L, (3.16)

the bandwidth of the time lens. Using this result, define the number of analysis points per spectrum
as the analysis bandwidth divided by the frequency resolution,

ηT LS = Bw

δf
= T 2

2π|ϕ̈|
. (3.17)

This can be rearranged further to depend on what has been experimentally one of the most chal-
lenging hardware requirements. For the TLS, this is the maximum phase excursion φmax of each
time lens, defined as the phase at the edge of each quadratic function of width T ,

φmax = CL

8 T 2. (3.18)

Therefore, the maximum number of analysis points is dependent solely on this design parameter,

ηT LS = 4
π

φmax. (3.19)

Equations 3.18 and 3.19, along with the imaging condition CLϕ̈ = 1, will be used in the derivation
of the following section.
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FIGURE 3.4 : The STFT is partially discrete due to the windowing of the time lenses. Each time lens has no overlap and
so the frequencies occurring during one time window are independent of the ones outside that window. While the TLS
is mapped into the analog time domain, the consecutive spectra remain continuous functions. A sampling or digitization
of the output spectra will induce a discrete frequency axis. The derivation in this section uses this process to motivate
the TAI phase pattern in the original phase modulation.

3.2 Talbot Array Illuminator Spectrogram

In this section, a theoretical connection between the TLS and the TAIS will be made. The
program proposed is to discretize the spectrogram resulting from the TLS, and work backwards
to find the required phase modulation at the input. The concept of this discretization is shown in
Figure 3.4. As a brief motivation, the TAIS will solve a key issue of the TLS that arises in practice;
that is, the maximum phase excursion. It does this by wrapping the phase to 2π, similar to a Fresnel
lens. A key difference however is that a Fresnel lens requires high bandwidth near the edges of
the lens, while the TAIS uses relatively constant bandwidth over the entirety of the lens. Further
discussions on the motivation and trade-offs of the TAIS in comparison to the TLS are left to section
3.3, while Fresnel lenses are discussed in section 6.2 as future work.

On the output time mapped spectrogram from the TLS 3.14, take η samples of each segment.
This divides the bandwidth into even frequency steps ∆f = Bw/η, and the frequency at the kth

sample of the spectrum is fk = k∆f . Recalling the definition of the analysis bandwidth, Bw =
T/|M |, the temporal period at which the time-mapped waveform is sampled is tk = −fkM =
−k∆fM = −kT/η. By the sifting property of the Dirac delta, this kth sample can be recovered in
the following way

aout[n, −fkM ] =
∫ ∞

−∞
aout[n, −fM)δ(f − fk)df. (3.20)

The first term is related to 7.23, the discretized STFT for time index n and frequency index k by

aout[n, −fkM ] = eiπMf2
k

√
iM

STFT [n, k]. (3.21)
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Now after having linked the discrete time-mapped spectrogram to the discrete STFT, it is time to
explore the effects of this discretization. Substitute 3.9 into 3.20 to get

aout[n, tk) = aout[n, k] = 1
M

∫ ∞

−∞

(
aLens[n, t′) ∗ 1√

iM
e−i π

M
(t′)2

)
δ(t′ − tk)dt′. (3.22)

The following step is motivated in this way: since the Dirac delta is symmetric, and since the
convolution is well defined even for generalized functions, sampling the result of a convolution
can be shown to be identical to sampling one of them before convolution,

aout[n, k] = 1
M

(∫ ∞

−∞
aLens[n, t′)δ(t′ − tk)dt′

)
∗

( 1√
iM

e−i π
M

(t′)2
)

. (3.23)

This is an approximation, which leads to the rest of the results below. For a complete understan-
ding of when this procedure is valid, a more rigorous definition of the convolution for generalized
functions must be called upon (70; 71; 72). I expect that this step is also likely the reason for the
restriction of the results to even number of levels in the multilevel phase pattern. Focusing now just
on the first term before dispersion results in the lens function sampled at discrete points,

aLens[n, k] = 1
M

∫ ∞

−∞
aLens[n, t′)δ(t′ − tk)dt′. (3.24)

Using 3.7, the definition of the waveform after the lens results in

aLens[n, k] = 1
M

a[n, tk) · ei
CL

2 (tk)2
, (3.25)

with a resulting phase,

φ[k] = CL

2

(
kBw

Mη

)2
. (3.26)

First, substitute for the analysis bandwidth Bw = T/M . Then, use 3.18, the definition of the maxi-
mum phase excursion from the previous section on the TLS to get

φ[k] = 4φmax

η2 k2. (3.27)

Recall the number of analysis points of the TLS system is given by 3.19. Choose η = ηT LS to give
the same number of analysis points as the TLS, then the final discretized phase is

φ[k] = π
1
η

k2. (3.28)

This temporal phase modulation follows a discrete quadratic phase in the same form as the TAI
(18; 61; 65; 73). An example of the discretization process is shown in Figure 3.5. This phase
function may be wrapped to 2π as in 3.5(b) and still give an equivalent modulation. In practice
these phase steps are generated as a multi-level phase pattern, with each phase constant over
a temporal width ∆t. To complete the analogy, it remains to present the required dispersion in a

39



FIGURE 3.5 : (a) Quadratic time lens functions shown in a blue solid line. The phase function is discretized at even
segments of time ∆t = T/η shown by vertical lines, where η is the pattern length. The sampled phase at each discretized
point is shown with red dots. (b) The discretized phase can be wrapped to 2π, and the multilevel phase pattern with this
wrapping is shown with a solid red line.

familiar form. From the TLS imaging condition, the maximum phase relation, and the resolution of
the TLS,

ϕ̈ = 1
CL

= T 2

2πη
. (3.29)

Using the sampling period of the discretization ∆t = T/η,

ϕ̈ = ∆t2η

2π
, (3.30)

which is the dispersion condition for the TAIS (18). Continue to find the maximum analysis band-
width in terms of the new variable ∆t. Consider Bw/η, and use the preceding definitions to find

Bw

η
= T

|M |η
= T

2πϕ̈

π

4φmax
= T

2πϕ̈

2π

CLT 2 = 1
T

. (3.31)

Multiply both sides by η to get

Bw = η

T
= 1

∆t
. (3.32)

Equation 3.32 describes the maximum bandwidth of the TAIS, which is dependent just on the
temporal sampling period ∆t. A simple rearrangement will show the TAIS retains the same number
of analysis points, frequency resolution, and time resolution as the TLS. Furthermore, all of these
agree with what was derived by Azaña (18) for even pattern length. The TLS and TAIS are not,
however, redundant. The physical realisability of each the TLS and TAIS are not the same. The
difference between the limiting considerations for implementing each will result in complementary,
overlapping, but not identical use cases and target applications. This discussion will be the topic of
the next section.
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3.3 Comparison and Trade-offs

The TLS and the TAIS are theoretically equivalent up to discretization, but their complemen-
tary implementation using the same setup enables a particularly interesting degree of flexibility.
Comparison of the design equations for the TLS and the TAIS is shown in Table 3.1, and these
parameters are illustrated in Figure 1.1. Since electro-optics is commercially available, packaged,
and easy to implement, electro-optics is employed to perform the temporal phase modulation and
use an arbitrary waveform generator (AWG) to generate the modulation function. The commer-
cially available devices which Prof. Azaña’s group has can accommodate a modulation function of
up to around 7π phase excursion over 40 GHz bandwidth. Alternatives in nonlinear optics could
be considered which provide significantly higher phase excursions above 100π (74), but this would
significantly increase the complexity of the system. Chirped fiber Bragg gratings are used for the
dispersive propagation, which have the advantage of providing hundreds of kilometers of equiva-
lent single mode fiber dispersive propagation in a small footprint over the entire optical C-band. For
the following discussion, comparing the TLS to the TAIS, it will be assumed that the experiment is
done using modern available technologies with the approximate performances above.

From 3.19, it has already been seen how a higher number of analysis points η for the TLS is
limited by the maximum phase excursion φmax. For electro-optics, this value is around 7π, which
results in around a maximum of 28 analysis points using 3.19. The maximum phase excursion of
electro-optic modulation could be circumvented by wrapping the TLS phase to 2π to implement a
Fresnel lens, but the edges would demand more and more bandwidth to be generated properly
(32), and consequently a faster AWG.

The TAIS is the discretization of the TLS but sampled at regular intervals ∆t and so the band-
width requirement is distributed more evenly throughout the entire phase modulation function. This
means overall the TAIS can provide a manipulation equivalent to a time lens, but with the potential
for a significantly larger maximum phase excursion, as well as longer temporal analysis window
width T . In turn, this results in a spectrogram with significantly more analysis points per spectra
and therefore higher frequency resolutions (see the third row, third column of Table 3.1). What limits
this temporal analysis window width, however, is the dispersion ϕ̈ required to satisfy the imaging
conditions as shown in Table 3.1. To reduce the required dispersion, one can decrease the width of
the phase steps ∆t, but only to the maximum allowable by the bandwidth of the phase modulator
and AWG. Thus, based on the chosen devices and using Table 3.1, the TAIS allows for analysis
bandwidths of around 100 GHz, with frequency resolutions near 100 MHz, and approaching 1000
analysis points per spectra.

On the other hand, parabolic phases can be generated with just a few samples from the AWG.
This contrasts the high number of phase levels required by the TAIS multilevel phase function.
Thus, from a generation perspective, the TLS allows for much smaller time resolution and analysis
window T down to around 60 ps, in comparison to the TAIS, due to the smaller minimum number of
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TABLE 3.1 : Comparison of design equations for the TLS and the TAIS for relevant parameters named in the first column.
The symbol used for the parameter throughout the paper is shown in the second column. The equations chosen in the
second and third column relate to the most difficult hardware consideration for the TLS and the TAIS, respectively. In the
final column, the optimal spectrogram is chosen to implement the best value for each parameter considered.

points required to adequately generate the phase modulation function. Increasing the sample rate
of the AWG would always be useful, as both smaller time and TAI lenses could be generated with
better precision. Furthermore, the strength of the lens CL scales linearly with the maximum phase
but quadratically with the size of the analysis window, thus allowing the TLS to reach higher analysis
bandwidths since this is not limited by the speed of the modulation generation scheme. Of course
the bandwidth of the modulation scheme still comes into play with the number of samples per
second achievable to make such a small analysis window, but that bandwidth does not correspond
to the resulting analysis bandwidth. Therefore, if only small amounts of dispersion are available, or
maximal bandwidth is desired, it is more appropriate to use the TLS. Thus, the TLS can achieve
over 400 GHz analysis bandwidths, with over 25 analysis points per spectra. A list of the optimal
choices for each desired system performance is summarized in the last column of Table 3.1.

3.4 Predicted Nonidealities

There is an additional assumption which has been implicit in all the previous discussions. Once
the spectra are mapped into the time domain by the frequency-to-time mapping of either the TLS
or the TAIS, the detector and ADC must have sufficient bandwidth to properly recover and digtize
the output waveform. For real-time applications, this typically implies the use of a high-speed radio-
frequency oscilloscope, which has ≈ 100 GHz of acquisition bandwidth when considering state-of-
the-art performance (75). Each of these spectrograms have spectra with η analysis points over an
output temporal duration of T . Therefore, recovering the waveform with more samples than η per
spectrum will result in no new information about the spectrogram. Accordingly, for ideal detection,
it is required to employ a scheme providing a sample period equal to

T

η
= 1

Bw
. (3.33)
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In other words, the detection bandwidth must be equal to the analysis bandwidth of the spectro-
gram, and by extension the SUT bandwidth, for ideal recovery of the spectrograms. What about
when this condition is not satisfied? As shown by the experimental results of sections 5.2 and 5.3,
employing a detector with lower bandwidth than required will result in a degraded number of analy-
sis points per spectrum. This is caused by a broader response time of the detector, smudging the
frequency resolution by an amount

δfdet =
(

Bw

Bdet

)
δf, (3.34)

where δfdet is the degraded frequency resolution, Bdet is the bandwidth of the detection scheme,
and δf = 1/T is the ideal frequency resolution. However, the total analysis bandwidth of the
spectrogram will be unaffected. This super-bandwidth detection (when Bdet < Bw) is allowed and
does not violate any Nyquist sampling rules since it is not in fact the original SUT that is being
detected, but the SUT’s local frequency spectrum mapped along the time domain. The information
along the time axis is now (time varying) frequency information. Under-sampling this time mapped
frequency information affects the frequency resolution, not the time resolution. In fact, the time
resolution of the JTFR is still a large multiple of the detection sample period. This result means
that since the processing is done optically, it is possible to analyse signals whose bandwidths far
exceed the detection and digitization bandwidths. While this super-bandwidth recovery is a feature
of both spectrograms, the TAIS will easily outperform the TLS, until hardware or clever techniques
allow for much higher phase modulations. Recall the TAIS can provide an extremely high number
of analysis points, meaning more analysis points can be sacrificed while still recovering the JTFR
with reasonable clarity.

Finally, it should be noted that as with all optical signal process strategies, the electro-optic
conversion of the SUT assuredly leads to partial deterioration of the signal. Optimizing the modula-
tion conditions to ensure best performance is not trivial (76) and is affected by multiple components
including the RF amplifier, the chosen intensity modulator, and the optical carrier. For the results
presented here, a MZM style IM is used with a voltage bias to produce an optical signal with as
little a DC component as possible. This implies that arms of the MZM are out of phase from one
another by π radians, and the MZM is operated in the linear regime. A full study on the impact of
nonidealities in the electro-optic conversion stage to the TLS and TAIS is important but is left as
future work.
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4 EXPERIMENT

4.1 Set-up

The experimental demonstration consists of an SUT generation stage in Fig 4.1(a), an optical
time-mapped spectrogram processing stage in Figure 4.1(b), and a detection and recovery stage
shown in Figure 4.1(c).

The microwave SUT is generated using an arbitrary waveform generator (AWG) with a sam-
pling rate of 92 GSa/s and amplified by a radio frequency amplifier (RFA). An output from the AWG
is sent to a 28 GHz real-time oscilloscope (RTO) to trigger the sampling of the RTO at the same
place in the signal every time. This is convenient for visualizing the signal using the RTO before
data collection. As soon as data is collected, one copy of the desired signal is recovered and trigge-
ring becomes unnecessary. To analyse free space microwave signals, it would be possible to first
capture by a receiving antenna and then proceed in the same way as the rest of the demonstration
shown here.

The optical spectrogram stage consists of a continuous wave (CW) laser set to 1550 nm with a
linewidth below 0.1 kHz connected to a 40 GHz electro-optic IM which receives the electrical SUT
for up-conversion to the optical domain. The TLS and TAIS temporal phase modulation functions
are generated by the same 92 GSa/s AWG that generated the SUT, making use of the best possible
equipment available rather than for any requirement of synchronicity. The electrical temporal phase
modulation signals are amplified by an RFA before driving an electro-optic phase modulator (PM).
For the TLS, an RFA with a saturated power of 33 dB with 32 GHz bandwidth is used, while for the
TAIS, a 50 GHz bandwidth RFA with 23 dB of saturated power. To maximize the possible phase
excursion in the TLS case, a 30 GHz phase modulator with a Vπ =2.6 V is used, and a 40 GHz
phase modulator with Vπ =3.1 V for the TAIS. The modulators are biased at the half wave voltages,
to diminish the DC contribution. The optical SUT passes through the PM and proceeds to a linearly
chirped fiber Bragg grating (CFBG) introducing a second-order dispersion of ϕ̈ ≈ 2,508 ps2 for the
TLS and ϕ̈ ≈ 15,415 ps2 for the TAIS. The lower dispersion grating operates over the full optical
C-band (>5 THz bandwidth), while the larger dispersion grating has a smaller bandwidth of around
650 GHz.

For near-optimal recovery of the time-mapped spectrograms, a 50 GHz photodiode (PD) is
used to transfer the processed signal from the optical back to the electrical domain, and a 28 GHz
real-time oscilloscope (RTO) to go from the electrical to the digital domain. To analyse the effects
of limited detection bandwidth on the resulting spectrogram, two situations are tested with inten-
tionally reduced bandwidth. The first is limiting the detection bandwidth of the RTO in the device
programming. The second is using a 6 GHz bandwidth PD for the optical to electronic conversion.
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FIGURE 4.1 : Experimental setup for the test of the two photonics spectrograms, both the TLS and the TAIS. The SUT
stage generates the electrical microwave signal. The optical time-mapped spectrogram stage up-converts the microwave
signal into the optical domain, and then either the TLS or the TAIS phase modulation along with chromatic dispersion
results in consecutively time-mapped Fourier transforms. The detection and recovery stage consists of a square-law
intensity photodiode, for conversion of the optical waveform to the electrical domain, and analog to digital conversion by
a real-time oscilloscope. The computer reshapes the time-mapped spectrogram into a 2D image to be visualized.

To evaluate the performance of the TLS and TAIS to recover the proper global spectra of the SUTs,
the spectrogram data is projected onto the frequency axis and normalized, and then compared with
an optical spectrum analyser (OSA) trace. An OSA is used instead of an RF spectrum analyser or
the fast Fourier transform (FFT) of the electrical SUT to isolate the spectral responses of the TLS
and TAIS from the expected aberrations resulting from the nonideal electro-optic up conversion.
Nevertheless, the frequency calibration discussed in the results section is also confirmed with the
FFT of the electrical SUT, and the roll-off of the electro-optic conversion stage can be seen by
comparing the various spectra in Figure 5.1.

4.2 Temporal Phase Modulations

Three different spectrogram systems will be tested with three different design settings. These
design settings are summarized in Table 4.1, and Table 4.2 computes the expected parameters
using the equations from Table 3.1. A reminder of the interpretation of some of these parameters
is shown in the modulation plots of Figure 4.2. The first is the TLS with time lens aperture T =
696 ps, dispersion parameter of ϕ̈ ≈ 2,508 ps2, and phase excursion of φmax =7.68π, allowing for
a theoretical analysis bandwidth of Bw = 44.1 GHz with η ≈ 31 number of analysis points. The
second is the TAIS with η = 206 phase levels, ∆t = 1/(46 GHz) = 21.7 ps level period, dispersion
parameter of ϕ̈ ≈ 15,415 ps2, and aperture size of T = 4.48 ns, allowing for Bw = 46 GHz. The
final spectrogram setting is a higher bandwidth TAIS with η = 824 phase levels, ∆t = 1/(92 GHz)
= 11.0 ps level period, dispersion parameter of ϕ̈ ≈ 15,415 ps2, and aperture size of T = 8.96 ns,
giving Bw = 92 GHz. The theoretical phase modulation inputs into the AWG are shown in black
dotted lines in Figure 4.2(a) and 4.2(b) for the TLS and the TAIS with η = 206, respectively. In the
case of the TLS, there is a large pre-compensation for distortions caused by amplification, resulting
in an asymmetric lens. Shown in red solid lines are the phase functions generated by the AWG and
recovered directly from the RTO. Comparing the shapes of the two phase functions does not reveal
any significant distortions by the AWG.
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FIGURE 4.2 : (a) The theoretical time lens phase sent to the AWG shown in black dotted lines is compared to the
generated signal from the AWG shown in red. Each quadratic function is skewed to compensate for distortion by the RF
amplifier. (b) Theoretical and experimental TAI phases, where over the 4.5 ns only one pattern can be seen, representing
one T . The function is wrapped to 2π and each discrete phase level has a width of ∆t.

TABLE 4.1 : Comparison of experimental design parameters for three experimental cases: the TLS, the TAIS, and the
high-bandwidth (HB) TAIS. The parameter name is in the first column, while the symbol used to represent it is in the
second column.

TABLE 4.2 : Resulting experimental characteristics based on the experimental design parameters found in table 4.1.
The values are calculated based on the formulas found in table 3.1 (note ∆t = T/η). The three columns TLS, TAIS, and
HB TAIS are the three design specifications tested in the main part of the results.
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4.3 Presentation Details

Some important details about how the results are presented are discussed in this section,
particularly the reshaping of the time mapped spectrograms into a 2D image as well as the specific
normalization used.

In general, the lens apertures (in the case of the TLS), or the pattern lengths (in the case of
the TAIS) are not integer multiples of the sampling period of whatever digitization method is used
(in this case a RTO). Therefore, each output spectrum of the time mapped spectrogram may have
variable number of samples. This is a slight problem for visualization, as in the case that the number
analysis or sample points per spectrum is low, then the centre frequency will be seen to visually
shift up and down on the frequency axis based on the fraction of the sample point remaining in
each spectrum. This is not an issue if the sample rate is chosen to be a multiple of the Fourier
transform rate, but for this experiment that was not the case. To solve this an array was created
with column length equal to the maximum of the discrete samples per spectrum. Data is then filled
into this array, starting at the first sample point falling within the theoretical time extent of the lens.
In this way artifacts on the very remaining row of the spectrogram are created, which may or may
not be duplicates of the proceeding column, first row. I chose this method as it does the best job
at centering every spectrum as well as possible over any amount of time, rather than reshaping
the array with fixed dimensions and having the resulting spectrogram necessarily "tilt upwards or
downwards" after a certain amount of time, ruining the frequency axis.

The resulting spectrogram image is then normalized in the following way. The mean and stan-
dard deviation of a sufficiently large section of the time mapped signal are taken. The mean of this
noise is subtracted and the result is divided by the standard deviation, so that the final spectrogram
is in intensity units of the standard deviation of the noise. Any signal below 1 in this vertical scale is
within the standard deviation of noise, and so not likely to be properly recovered. All signals shown
have good clarity in this scale, because the effect of noise was not a primary target of investigation
in these results. However, it is expected that since phase manipulations are in theory energy pre-
serving, that each of the methods described (TLS and TAIS) would amplify the peak intensity of
a continuous signal in direct relation with the analysis points of each spectrum, minus the system
losses.

4.4 Phase Strength and Pattern Length

For the TLS, a first essential calibration involves the strength of the lens. Theoretically, the
maximum phase excursion should be φmax = 7.68π for the first experimental test. The electro-
optic phase modulator provides an optical phase shift based on the input electrical voltage. This
electrical voltage is directly from an amplifier with frequency dependent gain on the signal from
the arbitrary waveform generator. Therefore it is necessary to adjust the amplifier or AWG signal
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strengths to obtain the proper phase modulation strength at the phase modulator. A continuous
wave optical signal with no microwave intensity modulation (i.e., DC signal) is input into the TLS
system and the output is observed with an RTO while the strength of the AWG is varied.
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5 RESULTS

5.1 Frequency Calibration

A frequency calibration is done using a single constant tone at 15 GHz to confirm the expected
frequency-to-time mapping law. This will in effect ensure the actual or experimental bandwidth is
near to the theoretical, or to correct it if there is meaningful error. The same 5.35 µs SUT is given
to both the TLS and the TAIS, while a slightly shorter 4.49 µs signal is given to the high bandwidth
TAIS due to granularity requirements of the AWG. The spectrograms are shown in Figure 5.1(a),
5.1(b), and 5.1(c) for the TLS, TAIS, and high bandwidth TAIS, respectively. The spectra of the op-
tically modulated SUTs recovered from the OSA and the FFT of the electrical SUTs are compared
to the projections of the spectrograms onto the frequency axis (frequency marginals). Before cali-
bration, each of the frequency axes are off by a certain amount, due to ignorance of the effective
pattern strength within the phase modulator, as well as the effective dispersion of the chirped fiber
Bragg gratings, resulting in an incorrect Bw. From the theory and design conditions, we expect
bandwidths of Bw = 44.1 GHz, 46.0 GHz, and 92.0 GHz, for the TLS, TAIS, and high bandwidth
TAIS, respectively. Since the lens functions and SUTs are generated using different outputs of the
same AWG (not a necessary condition), doubts about the true frequency of the 15 GHz tone would
lead to doubts about the time lens apertures (i.e. time resolutions) as well. However, since the
spectrum of the optically modulated SUTs and the FFT of the electrical SUTs indicate tones of 15
GHz down to their respective resolutions, we have confidence in the size of the time lenses for the
TLS and TAIS and thus, the temporal resolutions. The recovered spectrograms clearly display the
expected two straight lines (in this case, vertical lines) of a double-sided spectrogram for a single
frequency tone. By scaling the frequency axis of the spectrograms to set these lines at the 15
GHz they are known to be, the experimentally measured bandwidth for each of the spectrograms
is found. For the TLS, the experimental bandwidth is EBw = 42.3 GHz, which is 4.2% off from
the theoretical value. The first TAIS setting measurement results in EBw = 46.0 GHz and 0.22%
difference, and the high bandwidth TAIS setting measurement results in EBw = 92.1 GHz and
0.21% difference. The mismatch of the theoretical and experimental characteristics of the TLS are
due to the initial estimation of the dispersion and phase modulation strength, which are difficult to
directly measure without approximations. In contrast, the bandwidth of the TAIS is determined by
the sample rate of the phase levels, which is set with high precision by the AWG. The peaks of the
vertical line features for the two TAIS settings is a discrete estimation due to the sampling of the
RTO, with the 15 GHz point happening to fall somewhere between two analysis points of the pro-
jection. Therefore, it is reasonable to keep the theoretical bandwidth, which is backed by the AWG
timing. This analysis shows that calibration is an important step to compensate for experimental
unknowns, but also that the devices and theoretical relations function reasonably well. The most
striking variation among the spectrograms displayed is the width in the frequency dimension of the

51



FIGURE 5.1 : Spectrograms of a single 15 GHz tone SUT for the TLS, the TAIS, and the higher bandwidth TAIS. Each
optical SUT spectra from an OSA (black dotted line) is compared to the frequency projection of each spectrogram (red)
and the FFT of the electrical SUT (blue solid line). Before frequency axis correction, the red spectral traces are slightly
different from the more accurate OSA and electrical FFT traces. The frequency axis is corrected so that the frequency
projection of the spectrograms give spectra which line up with the OSA and FFT traces of the signal.

vertical lines. This difference in frequency resolution is caused by the various temporal window
sizes, according to the uncertainty principle.

5.2 Frequency Resolution

The proceeding SUT is designed to confirm the expected frequency resolution of the TLS and
the TAIS. The high bandwidth TAIS will be treated in section 5.3. Considering a signal containing
two frequencies at all times, the natural question arises of when would those two frequencies be-
come too close to be discriminated in the spectrogram representation. To answer this question, a
SUT is generated consisting of two linear chirps, sufficiently slow (5.35 µs) such that the frequency
changes happen over long periods of time relative to the time resolution of the spectrograms. This
gives more data points near the frequency resolution limit as the two chirps cross one another. The
chirps’ lowest frequency is 0.5 GHz and their highest is 21 GHz. The positive side of the spectro-
grams are shown in Figure 5.2 as well as a zoomed in section of the crossing point in the middle of
the SUT. Each zoomed inset includes purple lines around the two chirps, which represent the theo-
retical frequency resolution of the specific method given by the uncertainty principle. The purple
lines are created by first using the same equations as those to generate the SUT, then by splitting
each chirp into two lines separated from one another by the expected theoretical frequency reso-
lution. The zoomed sections of each figure thus confirm both the theoretical frequency resolutions
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FIGURE 5.2 : Evaluation of the frequency resolution using the same double crossing chirp signal from 0.5 GHz to 21
GHz over 5.35 µs. (a) The TLS is chosen to have a time resolution of 696 ps and a dispersion of ϕ̈ ≈ 2,508 ps2. These
settings result in an experimental bandwidth of 21.2 GHz, a frequency resolution of 1.44 GHz, and 30 analysis points.
(b) The TAIS is chosen to have a phase level period of 21.7 ps and with η = 206 analysis points, resulting in a time
window duration of 4.48 ns. These settings result in an experimental bandwidth of 23.0 GHz, and a theoretical frequency
resolution of 223 MHz. For both spectrograms, the theoretical frequency resolutions are shown as purple lines in the
insets around the frequency chirps.

as well as the frequency calibrations from the previous section. For the TLS with a 6.96 ns time
lens aperture, the frequency resolution is 1.44 GHz. For the TAIS with a pattern period of 4.48 ns
the frequency resolution is 223 MHz. The zoomed section shown for the TAIS is one fifth the size
of the TLS since the TAIS provides a much higher frequency resolution. The experimental pulse
widths of the spectrograms show good agreement with the theoretical frequency resolution lines
in purple, confirming that the simple inverse of the time resolution is a reasonable definition of the
frequency resolution.

5.3 Degradation of Frequency Resolution

For the high bandwidth TAIS, it will be shown in this section that the available RTO is not fast
enough to reach the theoretical frequency resolution. A similar signal is prepared as in section 5.2,
two crossing linear chirps from 0.5 GHz to 46 GHz over a time duration of 4.49 µs. The inverse
of the pattern length for this version of the TAIS (8.96 ns) gives a theoretical frequency resolu-
tion of 112 MHz. Recalling the discussion on analysis points in section 3.3, the total calibrated
bandwidth along with this frequency resolution give an expected number of 824 analysis points per
spectrum of the spectrogram. The detection method is most constrained by the RTO, which has an
impulse response given by an ≈ 12.5 ps full-width at half maximum Gaussian pulse, which implies
a sampling rate of 80 GSa/s. Therefore, the RTO can provide only 716 samples per spectrum (i.e.,
analysis points within a 8.96 ns long time window), rather than the full theoretical 824. Using the full
bandwidth of the spectrogram, this number of analysis points corresponds to a degraded frequency
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resolution of 129 MHz. The 15% difference is likely not so visually noticeable in the spectrogram of
Figure 5.3(a), nor in the zoomed inset of the crossing point.

This degradation of frequency resolution can be further evaluated by limiting the two devices
involved in the detection of the time-mapped spectrogram. The high bandwidth TAIS for the same
signal, while digitally limiting the RTO acquisition bandwidth to a 6-GHz acquisition bandwidth is
shown in Figure 5.3(b). This is also compared with a physical detection limitation by using a 6 GHz
bandwidth photodiode in Figure 5.3(c). Following eq. 3.34, the theoretically expected degraded
frequency resolution for a limited detection frequency of 6 GHz is about 856 MHz. Figure 5.3(d),
5.3(e), and 5.3(f) show zoomed-in plots around the crossing point for the best possible detec-
tion, oscilloscope bandwidth limited, and using a slow photodetector, respectively. The purple lines
show the theoretically expected degraded frequency resolution, showing good agreement with the
experimental widths. Finally, Figure 5.3(g) compares a single output spectrum near the frequency
resolution limit for detection limited to 6 GHz. The vertical slice chosen is when the two frequency
chirps are spaced apart by approximately twice the degraded frequency resolution of 856 GHz.
Included in this subplot are the purple lines with the same widths and frequency locations as in
the zoomed spectrogram plots. The asymmetrical frequency artifacts seen are hypothesized to be
caused by the temporal response of the slow photodetector. In summary, the results presented in
Figure 5.3 support the derivations for the degradation of frequency resolution. Additionally, these
figures demonstrate that lowering the detection bandwidth decreases the frequency resolution wi-
thout affecting the total analysis bandwidth. I have shown recovery of a SUT with a 92 GHz full
analysis bandwidth, using only a 6 GHz photodiode with up to ≈ 27 analysis points per spectrum.
Therefore, the optically time-mapped spectrogram methods are able to recover the spectrograms
of signals with much higher bandwidths than the devices used for detection.
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FIGURE 5.3 : Spectrograms from the high bandwidth TAIS for a crossing chirp signal. The results for the best possible
detection are compared to two means of limiting the bandwidth of the detection devices. The purple lines of plots (e),
(f), and (g) show the expected frequency degradation from a 6 GHz detection limit.

5.4 Digital vs Photonics Spectrograms

The next results compare two methods of recovering the spectrogram of an SUT with slowly in-
creasing frequency. The first method is the 46 GHz full bandwidth TAIS and subsequent digitization
by the fast 50 GHz PD and 28 GHz RTO. The second is the usual scheme involving an analog to
digital conversion (ADC) of the electrical SUT from the AWG by the PD and RTO, and then digitally
computing the STFT (necessarily offline to match the performance of the TAIS). The SUT consists
of a single chirp with a frequency varying from 0.5 GHz to 21 GHz, over a duration of 5.35 µs. The
two methods are compared while the bandwidth of detection is methodically lowered below that of
the SUT, from 28 GHz, down to 6 GHz. Attempting to recover a SUT with a much larger bandwidth
than the ADC (RTO) will highlight the unique ability of the TLS and TAIS to still faithfully recover
the spectrogram of these signals.

The optical time-mapped spectrogram of the TAIS is shown above the offline STFT of the elec-
trical signal in Figure 5.4. As the bandwidth of the oscilloscope is lowered, it is expected that the
Nyquist sampling criterion will not be satisfied for the higher frequencies of the SUT, and therefore,
that the STFT spectrograms will fail at these frequencies. The first row of spectrograms, displaying
the TAIS, conclusively demonstrates that lowering the detection bandwidth only affects the fre-
quency resolution, not the bandwidth, as shown in the previous section. This deterioration of the
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frequency resolution is seen as a broadening of the single chirp in the frequency direction. In the
second row, the offline STFT displays a clear bandwidth cutoff at the expected frequency. To the
right of the spectrograms is the spectrum of the SUT after optical modulation, taken with an OSA,
compared to the frequency projection of the TAIS at the 6 GHz RTO limit. The offline STFT in the
case of the 6 GHz RTO limit is compared to the offline FFT of the entire electronic SUT. The OSA
displays a frequency roll off towards the higher bandwidths as expected by the effect of nonideal
electro-optic up conversion, while the frequency projection of the TAIS with a 6-GHz digitization
bandwidth results in slightly more roll off.

It is important to note that the TAIS still recovers the full bandwidth of the signal with a slight roll
off and could be compensated for by characterization of the frequency responses of the conversion
stages in a later investigation. Regular electronic detection however, results in an immediate cutoff
and an unrecoverable spectra beyond a certain frequency, with no potential for compensation.
To reiterate, since the TAIS provides such a large number of analysis points per spectrum, using
lower bandwidth detection devices can be afforded, as the deteriorated frequency resolution will still
result in an acceptably resolved spectrogram (≈ 27 analysis points per spectrum, after deterioration
using a 6 GHz bandwidth limit). The same is true in principle for the TLS. However, due to the
hardware limitations on the strength of the time lens from electro-optic phase modulation, only a
lower number of analysis points are available from the beginning. Therefore, not much frequency
resolution can be sacrificed to lower the needed detection bandwidth.

56



FIGURE 5.4 : TAIS compared to the offline STFT (not real time) of the electronic SUT. The STFT is chosen to have
the same temporal window as the TAIS, and due to processing speed limitations, this DSP approach is necessarily
done offline after the SUT is digitized and saved by the RTO. The expected bandwidth cutoff from sub-Nyquist sampling
of the electronic STFT is confirmed but is not present in the TAIS, which shows recovery of the complete bandwidth
even with a limited RTO bandwidth. The spectrum on the right of the TAIS compares the OSA trace to the projection
of the TAIS onto the frequency axis for the 6 GHz limited case, showing a quicker roll-off but otherwise still correctly
identifying the frequencies present. The spectrum to the right of the offline STFT compares the fast Fourier transform
(FFT) of the electrical signal to be generated by the AWG (before the AWG), with the FFT of the electrical signal directly
from the AWG digitized by the RTO when it is limited to 6 GHz bandwidth. Between these three spectra can be seen
the deterioration from the electro-optic up-conversion stage (electrical FFT to OSA) and the deterioration from the 6-
GHz TAIS recovery (OSA to 6-GHz frequency projection). Below the spectrograms, the frequency cutoff can be seen
in the temporal trace of the electrical signal when the frequency becomes too high to be properly sampled with the
corresponding bandwidth.

5.5 Ultrashort Transient Recovery

Where the TLS excels, is in providing extremely high temporal resolution, as well as high ana-
lysis bandwidth (77). The following experiment demonstrates sub-nanosecond time resolution wi-
thout gaps in acquisition. A signal is prepared consisting of ultrashort transient events at 15 GHz.
Each event is repeated 32 times, being shifted slightly by 1/32 the time of T = 696 ps, with suffi-
cient spacing in between to treat each event individually. From this time resolution there should be
approximately 10 cycles of the 15 GHz signal per time lens. The series of 32 events is repeated 9
times corresponding to different durations of the event, with the shortest event lasting 0.125·T , and
the others from 0.25·T to 2.25·T in steps of 0.25·T . The electronic SUT is shown for the event dura-
tion of 1·T in Figure 5.5(a). The synchronicity of two different events with their time lenses is shown
in Figure 5.5(b), 5.5(c). In Figure 5.5(b), the event falls within a single analysis window and thus is
imaged by a single lens, producing a single Fourier transform in the "earlier” time lens, see Figure
5.5(d). In Figure 5.5(c), the event is divided among two different time lenses, falling on the edge

57



between the two. In this case the energy of the event will be mapped to two spectra, corresponding
to the “earlier” and “later” time lens, as shown in Figure 5.5(e), and so it is expected that the peaks
of each spectra will be roughly half that of the case in Figure 5.5(d). Figure 5.5(f) displays the time
mapped spectrogram of the TLS during the section with the event duration of 1·T , depicting the ali-
gned and misaligned case shown above. Figure 5.5(h) shows the spectrogram recovered from the
TLS of the SUT, with the temporal projection above it in Figure 5.5(g) in the dark blue trace, right
vertical axis. Here, the peak value of the intensity of the pulses found in the earlier time lens are
depicted in green, and that of the later time lens in red. Evidently, it can be seen that the energy of
the event is transferred from the early lens to the later one as the event is scanned. In Figure 5.5(i)
the electrical signal is taken from the AWG and an offline STFT with the same characteristics as
the TLS confirms the expected spectrogram features. Summing the values of the spectrogram in a
time-frequency area of size 3·δf×3·T around the expected location of each event, then dividing by
the summation of an empty region of noise, returns a measure of how much energy was captured
by the TLS in the expected region. If the analysis is truly gapless, it is expected that there is a weak
dependence of temporal shift on this measure. Figure 5.5(j) displays this measure for all durations
and all shifts, showing low dependence on synchronicity. In Figure 5.5(k), the energy is divided by
the duration of the event in units of T , to give a measure that does not depend on input synchroni-
city. In the ideal case, it is expected that this matrix be of a single color, meaning all input energy
is mapped into the expected time-frequency region. The results indicate that as the event duration
goes below the time resolution of the system, the effect of the imperfect time lens edges becomes
non-negligible. This effect is more important if the majority of the event falls on this distorted edge.
These results show that transient events of duration down to the time resolution of the spectrogram
are accurately recovered, regardless of their synchronicity, without gaps in acquisition.
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FIGURE 5.5 : TLS for a finite collection of a series of transient events with a microwave carrier of 15 GHz. Each short
transient is repeated 32 times, and there are 9 of these series of transients for a variety of durations. One of these
series is shown in (a), whose events are the same duration as the time resolution of the TLS (696 ps). Each event in
a series is shifted by 1/32 of a time resolution, so that over the whole series the events take every position possible
in terms of alignment with the time lenses. (b), (c) Short transient events aligned with the center of the first lens and
the edge between the first and second lens, respectively. (d), (e) Time mapped spectra of the events from each lens,
with the output lens over which the energy is distributed is shown in grey. (f) Time mapped spectra for all events in
the series, highlighting the aligned and edge cases in red. (g) Temporal projection of the TLS shown in blue, summing
the full energy of each output spectra, and dividing by the number of analysis points. The green dashed line displays
the detected intensity of the transient tone frequency within the first lens (i.e., the lens when the event is aligned with
the center, shown in (b)), while the red dashed/dotted line displays the value for the lens directly after, as the event is
shifted from one to the next. (h) TLS output showing the double-sided spectra for the entire series. (i) An offline STFT
is performed with the same analysis window as the TLS and shifted to match the alignment with the series. (j) Using
a small area of 3 frequency points by 3 time points around each event, the values of the spectrogram are summed
and divided by the noise found in the same time-frequency area, for all series of all durations. (k) The values for each
duration and temporal shift are divided by the duration of the event in units of the time resolution. For a perfect system
capturing all the energy incident on the TLS, this plot should be near to a single color.

5.6 Frequency Hopping Signals

In contrast to the high temporal resolution of the TLS, the TAIS excels in providing extremely
high frequency resolution as shown in previous sections. In this respect, the TAIS and the TLS are
complementary systems able to address a wider range of applications using the same devices. The
following application-oriented signal is meant to provide a concrete demonstration of the superior
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performance possibilities enabled by the two photonics spectrograms in comparison to DSP, as
well as other specialized photonics methods. In particular, an ultrafast, broadband frequency hop-
ping signal with multiple channels is analysed by a single TAIS or TLS system. The SUT consists
of 20 evenly spaced frequency levels from 1 GHz to 21 GHz, turning on and off randomly, resulting
in events of various durations down to the nanosecond scale and below, which cannot be identified
using state-of-the-art DSP technologies. In fact, even the recently reported photonics methods for
recovering frequency hopping signals (9; 23) are either very fast instantaneous frequency measu-
rement devices, or are slower but can accommodate multiple simultaneous channels. Combining
multiple photonics methods to achieve both fast hopping speeds for multiple channels may be
possible but would dramatically increase cost, complexity, and footprint.

In the results presented, the largest event duration consists of two hops together, but there is in
principle no limit as the spectrograms are both real-time. Two different conditions are tested for both
the TLS and the TAIS. The first is when the smallest hop duration is set to be equal to ten times
the TLS time resolution 10 · 696ps = 6.96ns, which is larger than the TAIS resolution T = 4.48ns by
a factor of 1.56. The second is when the minimum hop duration is 1.39ns (twice the TLS resolution)
and 0.31 times the TAIS resolution. The number of available analysis points from the TAIS is 206
per double sided spectrum. Therefore, this TAIS could accommodate over 100 simultaneous and
arbitrary frequency channels with a hopping period below 5 ns. The potential number of channels
becomes even larger in the case of the higher bandwidth TAIS with a detection deteriorated 716
analysis points. In the second case of 1.39 ns hop durations, it is expected that the TAIS will not
be able to properly resolve each hop in time, while the TLS will struggle to resolve hops which are
close in frequency. In neither case were the hops of the SUT synchronized with the TLS or TAIS
systems, and as a result the hops arrive at an unknown position on the analysis windows.

The electrical SUT of the frequency hops, recovered directly from the oscilloscope, is shown
in figure 5.6 along with the full digital Fourier transform. 43 peaks in total can be seen in Fou-
rier transform figure, representing 20 evenly spaced frequency levels on each side of a central
frequency peak, as well as two unintended side lobe frequencies outside of the TLS and TAIS
analysis bandwidth.

The TAIS for the long hop duration case is shown in Figure 5.7. The spectra of the SUT measu-
red by the OSA is shown in Figure 5.7(a), along with the frequency projection of the resulting TAIS.
Figure 5.7(b) displays the TAIS for a portion of the frequency hopping signal. Notice the impressive
clarity of the individual hops, and keep in mind that no other method would be able to recover
this signal in real time. Comparison with the offline STFT in Figure 5.7(c) shows that the TAIS is
properly recovering the frequency and time of the events with sufficient resolution. The portion of
the TAIS displayed in these two figures contains over 80 events, with multiple frequencies being
present simultaneously. In Figure 5.7(d) the most hops present at once is 3 as a proof of concept
demonstration, however the predicted maximum number of frequency channels would be on the
order of one per analysis point on a single sided spectrum, in the case of the results presented,
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FIGURE 5.6 : Electrical SUT from the AWG for a small section of the signal with minimum hop duration equal to 10
TL. Below, the Fourier transform of the signal, displaying the expected frequency channels. Additionally in the Fourier
transform is a central frequency or DC peak, and two side lobe frequencies outside of the analysis bandwidth.

roughly 103. In Figure 5.7(d), (e) another area of the frequency hopping signal is shown with very
closely spaced events and multiple frequencies occurring simultaneously.

The same portion of the signal is analysed by the TLS and shown in Figure 5.8. In Figure
5.8(a) it is clear to see that the TLS has insufficient frequency resolution to resolve the frequency
channels by simply using a frequency projection. Figure 5.8(b) and 5.8(c) show the TLS and the
offline STFT for the same time-frequency resolutions. Figure 5.8(a) is displayed with the minimum
colour set to 4 times the standard deviation of the noise as the TLS does not provide the same
clarity as the TAIS due to the number of analysis points. It is still possible to distinguish hops if there
are no others close in frequency, as shown in the zoomed sections of Figure 5.8(d) and 5.8(e). In
these subfigures it is also possible to see just how many more temporal analysis points the TLS
provides in comparison to the TAIS for the exact same hop duration widths.

The superior frequency resolution is certainly an advantage the TAIS has for frequency hopping
signals, but the TLS is advantageous for increasing the hopping rate due to it’s impressive temporal
resolution. The TLS and the TAIS for the same frequency hopping signal as before, but now with
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FIGURE 5.7 : Frequency hopping signal analysed by the TAIS, compared with the offline STFT (not real time analysis) of
the electronic SUT. The signal consists of more than 80 time-frequency events occurring over a duration of around 600
ns and with 20 evenly spaced frequency levels from 1 to 21 GHz. Many frequency events can occur simultaneously or in
very close temporal proximity. (a) The projection of the TAIS onto the frequency domain is overlayed onto the spectrum
from the OSA measuring the microwave on optical SUT. (b) The real-time spectrogram obtained by the TAIS. (c) The
offline STFT of the electrical signal from the AWG, using an analysis window the same size as the TAIS. (d), (c) Two
small, zoomed sections from another part of the frequency hopping signal are shown for the TAIS and the offline STFT
respectively.

FIGURE 5.8 : Frequency hopping analysed by the TLS, compared with the offline STFT (not real time analysis) of the
electronic SUT. The signal consists of more than 80 time-frequency events occurring over a duration of around 600 ns
and with 20 evenly spaced frequency levels from 1 to 21 GHz. Many frequency events can occur simultaneously or in
very close temporal proximity. (a) The projection of the TLS onto the frequency domain is overlayed onto the spectrum
from the OSA measuring the microwave on optical SUT. (b) The real-time spectrogram obtained by the TLS. (c) The
offline STFT of the electrical SUT from the AWG, using an analysis window the same size as the TLS. (d), (c) Two
small, zoomed sections from another part of the frequency hopping signal are shown for the TLS and the offline STFT
respectively.

a shorter hopping time of 1.39 ns are shown in Figure 5.9(a) and 5.9(b), respectively. As the
frequency hops are significantly shorter (1.39 ns) than the TAIS temporal resolution (4.48 ns), it
is expected that hops closely spaced in time will interfere and destroy the possibility of recovery.
Even though these figures display the analysis of the exact same signal, they look almost like
different sequences entirely due to the time resolution of the TAIS. This figure shows that the TLS
can outperform the TAIS for the recovery of frequency hopping signals if the hopping speed is too
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FIGURE 5.9 : Fast frequency hopping signal with 1.39 ns hop periods, 20 frequency levels from 1 to 21 GHz. (a) The
TLS, with time resolution 696 ps, recovers the hops successfully if the frequency spacing is sufficient (i.e., beyond the
1.44 GHz frequency resolution). (b) The TAIS, which has a time resolution of 4.48 ns, cannot recover the frequency hops
with any reasonable amount of clarity, and is corrupted by many noise artifacts.

fast for the TAIS, but importantly the TLS still suffers from poor frequency resolution. By balancing
the number of frequency channels with the hopping period, it would be possible to maximize the
potential information capacity for the TLS and the TAIS based on the trade offs from section 3.3.

Further analysis of the time and frequency resolutions can be done by taking the marginals, or
projections from the 2D representations into the 1D time or frequency functions. These are com-
pared to the optical SUT intensity recovered with the photodetector and oscilloscope. In particular,
the lower resolution projections should follow the true 1D functions in either domain. The frequency
resolutions have already been displayed in Figure 5.7 and Figure 5.8 for the TAIS and the TLS, res-
pectively. Figure 5.10 shows the projections onto the time domain for the long hop duration case.
There is a striking difference between the resolutions, as the TLS easily follows the intensity of the
SUT with 10 points per hop. The TAIS on the other hand only has approximately 1.56 time points
per hop, and is nearing the temporal limit to what it can recover.
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FIGURE 5.10 : Comparison between the optically detected SUT and the TLS and TAIS time projections. The TLS time
projection follows closer to the expected or true temporal profile, as the TLS allows for 10 temporal analysis points per
hopping period. The TAIS projection still follows the outline of the temporal profile, but only with an average of 1.56
temporal analysis points per hopping period.

In figure 5.11 the time projections for the shorter hop durations are shown. As the hop duration
is only twice the time resolution of the TLS, the system is nearing the limits of resolvability. This
figure confirms that TAIS on the other hand is well past the resolution limits, and the time projection
becomes only vaguely similar to the actual optical SUT intensity.

The frequency hopping signal demonstrates that the TLS and the TAIS can be seen as com-
plementary systems. As discussed in the theory section, device limitations mainly impact the fre-
quency resolution of the TLS, while the impact for the TAIS is limited time resolution and bandwidth.
Attempting to recover a spectrogram of the frequency hopping signals presented in this section
using a state of the art real-time spectrum analyser would result in all of these events being pro-
cessed in only a few analysis windows at best. Thus, with the available DSP the frequency hops
would be completely unidentifiable. Furthermore, the recently reported photonics methods for re-
covering frequency hopping signals are either limited in hopping speed or number of channels
and bandwidth capable of being analysed. The performance advantages of the TLS and especially
the TAIS over the state-of-the-art for frequency hopping signals enables treatment of an increa-
sed number of simultaneous channels and a dramatic increase in hopping speed. Both of these
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FIGURE 5.11 : Comparison between the optically detected SUT and the TLS and TAIS time projections for the shorter
frequency hops of 1.39 ns. The TLS with temporal resolution 696 ps is still sufficient to resolve the intensity features
shown in the actual optical SUT trace from the RTO. The TAIS, with temporal resolution of 4.48 ns is not capable of
meaningfully resolving most of the temporal features, and as a result the TAIS cannot recover the frequency hops.

increases directly correspond to dramatic increases in potential data rate, alongside an increase in
security.
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5.7 Optical Signals

5.7.1 Introduction to Optical Signals

All the previous spectrograms displayed in this thesis have been symmetric, that is, the positive
and negative frequencies (relative to the carrier) are mirror images of one another. This is due
to the way in which the electo-optic modulation was performed, producing a double-sided spec-
trum of width in the 10s of GHz range, centred around the carrier frequency of 193.5 THz. From
a physical perspective, the use of complex notation in the Fourier transform is for convenience
only (78; 79; 80). Complex notation is an (extremely) useful mathematical tool for describing waves
which are, in reality, real and not imaginary displacements of observable fields. The aim of this
section is not to delve into the ontology of optical waves however, but it is worth at least mentioning
that the mathematical descriptions used should not corrupt how one thinks about optical commu-
nications. If we were to detect the electric field oscillations of an optical communications signal,
and perform a Fourier transform, we would recover a double sided spectrum centred around the
zero frequency (i.e., DC) with symmetric features at ± 193.5 THz. From an electro-optics perspec-
tive however, the carrier frequency of 193.5 THz is indistinguishable from DC current (if you don’t
believe me, take a look at any optical continuous wave source with any available photodetector
and real-time oscilloscope). This indistinguishability is due to the sample rate of the oscilloscope
being nowhere near fast enough to properly sample the waveform, even if the photodetector could
properly down-convert into the electrical domain. Therefore, it is possible to artificially create a
"complex valued signal" using physically real waves. The result would be an asymmetric micro-
wave bandwidth spectrum implicitly centred around the central frequency of an optical carrier. The
essential difference between a symmetric and asymmetric spectrum is phase information (recall
sec 2.2), which have been ignored until now. Therefore, the following final results will be dedicated
to complex modulated optical signals.

Recall the essential characteristics of the TLS and the TAIS is that they are capable of conti-
nuous analysis of signals not periodic nor limited in time, they are gapless in that they have no
breaks in acquisition, and they are ultrafast in time and ultrabroad in frequency. Pose the following
question then: what type of signals test simultaneously all of these properties, and furthermore
include nontrivial, ultrafast phase variations which would result in the asymmetric spectra discus-
sed? One possible answer is coherent communications in the field of optical telecommunications.
Quadrature amplitude modulation (QAM) formats have phase variations on the scale of nanose-
conds or below, and are potentially continuous over time scales which may be considered infinite
(milliseconds or greater) for all practical purposes.

Recovering QAM signals, or any other signals with phase information, is not as simple as using
a photodetector and digitizing. Instead, complex systems involving interference either with the SUT
or a phase stable local oscillator, as well as multiple photodetectors and extensive DSP is employed
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FIGURE 5.12 : Conceptual diagram of in-phase (I) and quadrature (Q) components of a wave with phase information.
Either the amplitudes in the I and Q direction can be specified (denoted here by AI and AQ), or the relative phase θ
and the intensity r2 of the carrier wave. For a modulation format with four possible "symbols", or unique points on the
IQ diagram, there are four possible waves to send. Notice that two degrees of freedom gives a 2 dimensional space in
which information can be encoded, rather than an intensity only modulation format.

(81). These considerations result in a more complex, expensive system, with a larger footprint and
high energy consumption. The innovative approach that will be described in this section almost
entirely avoids the requirements for typical complex communication signal recovery. Specifically,
the TLS is shown to recover these signals using no interferometry, only a single optical path, a
single photodiode, and a very simple digital algorithm for the final data stream reconstruction. To
my knowledge, this is the first time that time-frequency analysis has been used for the actual data
decoding and recovery of complex communications.

5.7.2 Theory of Phase Recovery for Coherent Communications

In this section I will describe why it is expected that the TLS should be able to successfully
recover coherent communications signals. QAM signals are generated by controlling both the in-
tensity and relative phase of an optical wave (82; 44). This relates directly to the polar coordinate
representation of a point in two dimensional space, which can also be given in rectilinear coordi-
nates. Using the rectilinear coordinates, two intensity only modulation formats are combined, with
a relative phase of π/2. This is what leads to the (I)n-phase and (Q)uadrature notation of an IQM.
The concept of an IQ diagram and using the phase of the wave to encode information is shown in
Figure 5.12.

Once a QAM signal is generated, the TLS temporal phase modulation pattern is aligned such
that the TLS images the transition from one symbol to the next. This is not a very strict synchronicity
requirement, as the transitions between symbols usually happen quite fast, so the only alignment
which would cause issues would be perfect alignment of the transitions on the edges of the time
lenses. The working condition implements an entirely self-referenced differential intensity detection
of the phase information without the need for interferometric or optical phase locking schemes and
in an entirely colorless fashion (independent of carrier wavelength). The change of phase from one
symbol to the next results in an instantaneous frequency shift, which also depends on the inten-
sity and transition function. Therefore, each intensity and phase transition corresponds to a unique
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FIGURE 5.13 : Concept of the recovery of phase of an optical wave (a) using the spectrum of the transition from one
relative phase θi to the next θf . The phase difference ∆θ, potentially in conjunction with an intensity change, creates
a shift in the instantaneous frequency and a spectral pattern unique to the transition (b). (c) The unknown transition
is compared with a decision method (cross correlation in this case) to a library of all possible transitions constructed
beforehand. (d) The next symbol in the pattern can then be determined by the closest fit from the decision method.

spectral fingerprint. Because of this, recovering the time mapped Fourier transform of the symbol
transition gives all the required information on the specific changes. By comparing an unknown
transition with a complete set or library of spectra from a calibration sequence containing all pos-
sible transitions, the phase and intensity change sequence can be reconstructed. The calibration
spectrum that maximizes the decision function with the spectrum under test is chosen as its match
to determine the encoded phase and intensity changes. This decision method and analysis of the
measured spectrogram were performed offline, but they could be implemented in real-time and
conceivably using photonic approaches. This process is shown for QAM4 in Figure 5.13.

5.7.3 Coherent Communications Results

For the experimental demonstration of the TLS applied to QAM signals, the intensity modulator
in the signal generation step is replaced with an in-phase and quadrature modulator (IQM). The
time aperture of the TLS is chosen to be 1 ns, and the dispersion 15,713 ps2. The (I)n-phase and
(Q)uadrature channels of the signal are generated separately by the AWG and combined in the
IQM to make a coherent pseudo-random bit sequence (PRBS). The QAM signals are all chosen
with a baud rate of 1 Gbaud to match the Fourier transform rate of the TLS, and aligned with the
transition between symbols as in Figure 5.13. The time-mapped spectrogram is recovered in real-
time using a 50 GHz detector and 28 GHz RTO. The decision method was the cross correlation
function implemented offline, and defined as

ρ(T, L) = 1
N − 1

N∑
i

(
Ti − µT

σT

) (
Li − µL

σL

)
. (5.1)

The TLS for the QAM4 modulation format is shown Figure 5.14, where each vertical slice
represents the Fourier transform of a transition from one symbol to the next. The ability of the
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FIGURE 5.14 : TLS for a QAM4 PRBS. The two dimensional spectrogram image shown displays the spectrogram of the
complete calibration sequence for QAM4. This includes all possible transitions from one symbol to any other symbol.
Redundancy is included to ensure that all symbols can be treated equally, and only the phase change matters. A zoomed
section of the spectrogram is shown to the right, where transitions resulting from similar phase changes have all been
averaged. Further right is the input constellation using the I and Q channels from the AWG. To construct the similarity
map, two different calibration sequences were taken. For QAM4, each of these sequences was 31 transitions long.
Then, the cross correlation coefficient was calculated for every transition of the first sequence to every transition of the
second sequence. All coefficients from transitions resulting in the same pair of phase changes were averaged, and the
value plotted as shown.

spectrogram to discriminate the different unique transitions can be shown by superimposing their
spectra, creating an analogous “frequency-domain eye diagram” for the TLS, shown to the right
of the spectrogram in Figure 5.14. The right side of Figure 5.14 shows the constellation diagram
of input symbols from the electrical AWG I and Q signals. Comparing all unique transitions of
one calibration sequence to another via cross correlation results in the similarity map shown. The
greater the difference between diagonal values and off-diagonal values, the greater the efficacy
of using this particular decision method (cross correlation). Since for QAM4, there is only a single
intensity level, the only differentiating feature is the phase change ∆θ, which can have four values.
The clarity of this similarity map accounts for the low error rate for QAM4. Among the 223−1 symbols
tested, no errors were found, resulting in a pre-forward error correction bit error rate (pre-FEC BER)
of < 5.96 × 10−8.

Figure 5.15(a) shows the constellation diagram and similarity map for QAM8. In this case, there
are two intensity levels (indicated by the colors and dotted circles). The lower level of QAM8 (red
circles) by itself is analogous to QAM4, so it is expected that for changes within these points a
very similar pattern to the similarity map of QAM4 should be observed. For the 219−1 symbols tes-
ted in the PRBS, 98 errors were found resulting in a pre-FEC BER of 6.23 × 10−5, still well within
acceptable ranges for error correcting codes (ECCs) (83). Figure 5.15(b) shows the constellation
diagram and similarity map for QAM16, which contains three intensity levels. The density of spectra
dramatically increases, so it is expected that there arise issues, as confirmed by the darker regions
not on the diagonal. For 217−1 PRBS symbols tested, 3930 errors were counted, resulting in a
pre-FEC BER of 7.50 × 10−3. It is expected that it will become increasingly difficult to differentiate
between the various transitions as the modulation order increases. Since the TLS analysis rate is
set to the baud rate of the data signal, the bandwidth of a transition will be within a fraction of the
total analysis bandwidth of the TLS. This is because the π phase transition defines the maximum
possible frequency shift. For higher order modulations, the number of unique spectral signatures
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FIGURE 5.15 : (a) TLS applied to a QAM8 PRBS. The input constellation of the QAM8 sequence is shown, which
includes two phase levels. During the analysis, it was found that for this particular decision method, an intensity level
increase was discernable to an intensity level decrease, even if there was the same phase change between the symbols.
Therefore, separating further the averaging in the similarity map to include information of the starting and ending intensity
level improves the BER. (b) The constellation diagram for a QAM16 PRBS is shown, with three intensity levels. QAM16
includes some transitions which are comprised of intensity changes only, and a zero change in phase. In this case, the
transition still produces an identifiable change. In the sequence tested, no one particular transition or symbol was found
to be particularly troublesome above the others.

increases without any increase in the bandwidth that they cover, making them increasingly difficult
to recover due to the limited number of analysis points relevant to the transition spectra (i.e., limi-
ted by the spectral resolution). However, it is possible that a more sophisticated lens system, as
well as other methods to tailored the system to recovering complex communications data signals,
could be considered. To reiterate, this is the first reported demonstration of the use of real-time
joint TF signal analysis for the recovery of complex-modulation optical data signals, and uses self
referenced intensity-only measurements. This is extremely promising, as the removal of the local
oscillator as well as the intense DSP dramatically simplifies the system and has the potential to be
competitive with certain short range telecommunication systems.
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6 CONCLUSION

6.1 Summary

In this thesis, a theoretical link between the time lens spectrogram and the Talbot array illumina-
tor spectrogram has been demonstrated. Their capabilities for ultrafast, broadband, gapless, and
real-time microwave signal analysis were shown, as well as a thorough technical and experimental
analysis of their design parameters and trade-offs. Using commercially available electro-optics, a
46 GHz bandwidth signal was recovered using only a cost-effective 6 GHz photodiode. Of particular
and immediate interest are the applications stemming from the recovery of an ultrafast frequency
hopping signal with nanosecond scale hops and multiple simultaneous channels over 20 GHz of
real bandwidth. These spectrograms present easily the most impressive performance for cognitive
communications in literature so far.

A brief demonstration of the capability to recover optical signals with phase information was
also shown. The ability of coherent communications to be recovered by these spectrograms in a
manner which relies on non-interferometric, intensity only detection is unique to this system. The
simplicity over coherent detection techniques involving stable local oscillators or extensive digital
signal processing makes the TLS and TAIS competitive for optical telecommunications in certain
applications. Further details on the possibilities for spectroscopy, ultrafast characterization, and
LIDAR are found in the credited publications.

6.2 Future Work

The possible directions enabled by the development of the TLS and the TAIS are extensive. So
far, only two ranges of the electromagnetic spectrum have been investigated, for a small sample
size of the possible applications from ultrafast characterization to medicine.

6.2.1 Fresnel Lens

The Fresnel lens is meant to solve the issue of large phase accumulation in phase modulation
(84). This is done by wrapping the phase modulation function to 2π, and thereby reducing the
requirements of the devices to only require this strength of modulation. For a quadratic function,
the edges of the lens begin to wrap faster and faster, and thus require more bandwidth for wider
lenses. The quadratic phase modulation of the TLS, the lens does not require high bandwidth, but
does utilize the full strength of the phase modulator. The TAI lens on the other hand also wraps to
2π, but is a discrete pattern with a constant step width, and therefore maintains the same required
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bandwidth over the entire lens. This contributed to the choice of a TAI lens over a Fresnel lens
for the spectrogram. Both the Fresnel and the TAI lens however do not use the full modulation
strength of the phase modulator. By wrapping the modulation function at the limit of the maximum
phase modulation strength instead of 2π, the modified Fresnel lens would use the full bandwidth
and full modulation strength of the impressive devices available. This could potentially increase
the maximum bandwidth beyond the capabilities of the TLS (into a natural THz bandwidth range),
while improving the frequency resolution and number of analysis points to utilize slower detection
devices like the TAIS.

6.2.2 On Chip Implementation

To use the TLS or TAIS system in a practical application, it is very likely that using a very expen-
sive and delicate arbitrary waveform generator to construct the lens functions is not acceptable.
Since the TLS and TAIS are known periodic functions, it would not be necessary to use an arbitrary
generator. The much simpler TLS could be implemented by an RF oscillator and full wave rectifier
circuit based on Schottky diodes (85). Both of these devices have been implemented on chip and
in very small form factors at the required speeds. As I am not a photonics on chip expert, I cannot
comment on the feasibility that every piece of the TLS could be implemented on the same chip.
Certainly, specifically designing chips to generate the phase patterns for the TLS would significantly
reduce the cost and footprint, rather than employing devices suitable for arbitrary control.

6.2.3 Nonlinear Phase Modulation

The electro-optic phase modulation used is simple and easy implementation. Using nonlinear
optics however, such as cross phase modulation (XPM) or four wave mixing (FWM), allows for a
significantly improved phase modulation strength and speed. Time lenses with nonlinear optics
have already been demonstrated (86; 87), and constructing infinite periodic functions with near ar-
bitrary control is a well studied technique using spectral shaping (88). Maximum phase excursions
of above 100π have been shown to be possible (74), and would allow for TLS to achieve astonishing
bandwidths at unprecedented Fourier transform rates and frequency resolutions comparable to the
TAIS. The requirement for chromatic dispersion also is reduced with a shorter time lens, making
this aspect of the TLS easier to implement as the Fourier transform rate is increased. The diffi-
culty with using nonlinear optics, and dramatically increasing the speed of the spectrogram, is that
the detection required would likely not be possible to implement in real-time without a significant
amount of parallelization and multiplexing.
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6.2.4 Time-Frequency Filtering and Synthesis

The frequency-to-time mapping process allows for complete control of the JTFR features of a
signal. Using an intensity modulator, it has already been demonstrated that unwanted spectral fea-
tures can be removed by a user-defined, ultrafast programmable filter (22). This aspect is exciting
due to the many applications relying on real-time signal filtering. The TLS and TAIS could also be
used for waveform synthesis, where the entire process is reversed and the JTFR is defined at the
input. This has the potential to easily create ultrafast frequency hopping signals, or even signals
with phase information.

6.2.5 TLS and TAIS Connection

As mentioned in the 3 section, the Talbot phase found to be the discretization was only related
to one possible case of the Talbot phase patterns. Specifically, the phase pattern which made
the connection was the one in which the Talbot phase has an even number of phase levels or
divisions in each lens. There is another phase equation which is similar, for odd values (65). In this
thesis only even values were chosen, but odd ones have also been confirmed experimentally to
work with the TAIS. A more general and rigorous derivation, including the proper definitions for the
convolution of distributions, is left as future work.

6.2.6 Coherent Communications

One of the most exciting demonstrations, the recovery of coherent communications, is worth
investigating further. Specifically, an in depth study could be performed on the effects of low signal
to noise ratio, propagation distortions, and carrier phase drift (44; 89; 83). Furthermore, the use of
reinforcement learning and neural networks to implement the decision method could significantly
improve BER, without much additional demand to computation requirements. Lastly, the objective
of the experiment was to recover rapid phase changes on a long continuous signal. This motivates
the idea to design a phase modulation pattern with coherent communications in mind rather than
necessitating spectrogram analysis specifically. All these factors position time-frequency analysis
as a potentially competitive option for short range coherent data and telecommunications.
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APPENDIX

A.1 Rectangular Window Functions and the Convolution Theorem

The following has no doubt been observed many times before, but I have not read about it
anywhere, so it is included for your enjoyment. The convolution of two functions is a process by
where one function f(t) is multiplied by another function g(t), delayed by a certain amount τ . The
integral of this multiplication is computed to calculate the amount of overlapping area between the
two, for every possible value of the delay τ . This is the convolution, defined as

(f ∗ g)(t) ≡
∫ ∞

−∞
f(τ) · g(t − τ)dτ, (7.1)

where the integration occurs over the delay variable τ . Ask the following question: is there a function
h(t) such that

(h ∗ h)(t) ≡
∫ ∞

−∞
h(τ) · h(t − τ)dτ = h(t)? (7.2)

In this section of the appendix, that question will be answered. The main tool to use is the convo-
lution theorem, which states for two functions

F{f(t) · g(t)} = F{f(t)} ∗ F{g(t)}, (7.3)

where F denotes the Fourier transform. Define a rectangular window function R(t) in the following
way,

R(t) =
{

0, if t > |1/2|
1, if t ≤ |1/2|

}
, (7.4)

whose Fourier transform is a sinc function,

F{R(t)} = sinc(ω), (7.5)

for the Fourier dual variable ω. Notice

R(t) · R(t) = R(t), (7.6)

and in general
Rn(t) = R(t), ∀n ∈ N. (7.7)

This is so far unsurprising and obvious. Consider F{g(t) · R(t)} which by the convolution theorem
is

F{g(t) · Rn(t)} = F{g(t)} ∗ F{Rn(t)} (7.8)
= F{g(t)} ∗ F{R(t)} (7.9)
= F{g(t)} ∗ sinc(ω). (7.10)
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But also,

F{g(t) · Rn(t)} = F{g(t)} ∗ F{Rn(t)} (7.11)
= F{g(t)} ∗ (F{R(t) · R(t) · ... · R(t)}) (7.12)
= F{g(t)} ∗ sinc(ω) ∗ sinc(ω) ∗ ... ∗ sinc(ω) (7.13)
= F{g(t)} ∗ sinc(ω). (7.14)

Therefore, since g(t) could have been any function, and even another rectangular function, we
have that sinc(ω) convolved with itself is exactly sinc(ω). This result in the Fourier domain maybe
slightly disturbing upon first glance, as the existence of a function that can be convolved infinitely
many times with itself to produce the same result is quite surprising, and only makes intuitive sense
by going back in to the rectangular function in the other domain. A further result can be proved for
convolving differently scaled sinc functions by simply noting what happens in the Fourier domain
with two rectangular window functions multiplied together. For two integers a and b, assume without
loss of generality that a < b, then

1
a

sinc
(

ω

a

)
∗ 1

b
sinc

(
ω

b

)
= F{R(at) · R(bt)} (7.15)

= F{R(at)} (7.16)

= 1
a

sinc
(

ω

a

)
(7.17)

I hope this was a fun little detour which sparked some curiosity and appreciation for the convo-
lution theorem. It would be interesting to explore other transformations to see if they permit a similar
phenomenon.

A.2 Discretizing the Short Time Fourier Transform

This section is dedicated to fully discretizing the STFT. This is particularly relevant for the deri-
vations in chapter 3.

A rectangular analysis window function is defined as

R(t) =
{

0, if t > |1/2|
1, if t ≤ |1/2|

}
. (7.18)

With rectangular windows of width T , the STFT for an input waveform of a(t) is defined as

STFT (t, f) =
∫ ∞

−∞
a(τ)R

(
τ − t

T

)
e−i2πfτ dτ. (7.19)

This definition is the continuous STFT valid where the window is centered around any time t. If the
analysis windows are non-overlapping, as previously assumed, then the STFT at the nth window is

STFT [n, f) =
∫ ∞

−∞
a(τ)R

(
τ − nT

T

)
e−i2πfτ dτ. (7.20)
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Where the window has been centred around time t = nT , for some integer n, and the square bra-
ckets explicitly refer to the argument as a discrete variable. In more mathematical rigor, STFT (t, f)
and STFT [n, f) are two different mappings defined on different domains but whose images coin-
cide when t = nT , and thus, using the same name (STFT) for both is justified. It is commonly
desired to heavily overlap input analysis windows in practice, however, how that process may be
carried out in the optical domain is not entirely straightforward (although it has been suggested
that the pulsed Talbot spectrogram operates in this way (16)). The nth segment of the input SUT
function is defined as

a[n, t) = a(t)R
(

t − nT

T

)
. (7.21)

Then for the spectrogram, the following comes from the standard definition of the Fourier transform,
denoted with F ,

SPGM [n, f) =
∣∣∣F{a[n, t)}2

∣∣∣ . (7.22)

So far, this definition includes a discrete index running over steps of the time resolution, and a
continuous frequency domain. Using the uncertainty principle, it is also possible to discretize over
steps of the frequency resolution δf = 1/T , equivalently the smallest possible frequency step. At
a frequency fk = kδf , for an integer k not yet bounded,

STFT [n, k] =
∫ ∞

−∞
a(τ)R

(
t − nT

T

)
e−i2π k

T
τ dτ. (7.23)

Which is the STFT discretized in both domains for a continuous input signal a(t). The definitions
for partially and fully discrete STFTs will be useful for the two spectrograms in sections 3.1 and
3.2.

A.3 Talbot Self Imaging

For a more involved derivation of the self imaging effect, I will closely follow a paper by W. Duane
Montgomery. In 1967 and 1968 he published two very interesting papers on Rayleigh’s diffraction
integrals as applied to self imaging. His mathematical derivation showed quite surprisingly (to me
at least) that gratings and other periodic structures are not the only objects that can have Talbot
self images (51) (90).

The interest is in determining the structure of an object in space at z = 0 which will modify an
incident wave to reconstruct a faithful representation of the object at a distance z > 0. Consider a
field of the form

φ(x, z)eiωt (7.24)

Where x is the possibly multidimensional vector perpendicular to z. Assume that the function space
has a Fourier dual, so that there exists a Fourier transform Φ(ξ, z) at least for all of z > 0 of the
function. The next assumption is that φ(x, z)exp(iωt) is a solution of the wave equation. Then for
k = 2π/λ,

(∇2 + k2)φ = 0 (7.25)

The third assumption is that the function, its Fourier transform, and the relevant derivatives are all
square normalizable. Then, act the differential operator on the definition of the Fourier transform.

(∇2 + k2)φ = (∇2 + k2)
∫
R2

Φ(ξ, z)ei2πx·ξdξ (7.26)
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Using equation (7.25) and passing the operator into the integral,

0 =
∫
R2

∇2
(
Φ(ξ, z)ei2πx·ξ

)
+ k2Φ(ξ, z)ei2πx·ξdξ (7.27)

The Fourier transform of the function has no explicit dependency on the spatial derivatives except
z, and the partial derivative of an exponential is easy to calculate after the product rule. Define the
useful quantity

K2 = (k2 − 2πξ2) = 2π(λ−2 − ξ2) (7.28)

0 =
∫
R2

(
[2]Φ(ξ, z)z + K2Φ(ξ, z)

)
ei2πx·ξdξ (7.29)

Through a standard argument it can be shown the quantity in the brackets must be zero. Therefore,

[2]Φ(ξ, z)z = −K2Φ(ξ, z) (7.30)

If K2 is positive then equation (9) is simple to solve using the Fourier basis.

Φ(ξ, z) = A(ξ)cos(Kz) + B(ξ)sin(Kz) (7.31)

If K2 is negative then equation (9) is the usual 1 dimensional wave equation with solutions

Φ(ξ, z) = C(ξ)eiKz + D(ξ)e−iKz (7.32)

With the definition of K in hand, it is readily seen that for K2 < 0, KϵI (the imaginary numbers).
Thus exp(−iKz) tends to infinity exponentially with z. This is nonphysical, so set D = 0. The other
term tends to zero exponentially with distance which, recall from the introduction, produces the
effect that Rayleigh observed. Now z = 0 is the object plane, let it be described by a function
f(x) = φ(x, 0). With foresight, f(x) is the function to image. Taking the Fourier transform at z = 0
there is a restriction on possible solutions,

F (ξ) =
{

A(ξ), |ξ| ≤ 1/λ

C(ξ), |ξ| > 1/λ
(7.33)

The following is an important step. According to Paul Latimer and Randy F. Crouse (57), the Talbot
effect has a valid reinterpretation as a simple wave-optics phenomenon which is demonstrated
using simple interference patterns. While this paper came after Montgomery (51), it gives credit to
the claim that in the limit λ → ∞, this should agree with the standard geometrical optics. So far
there are two regions separated by the line |ξ| = 1/λ, giving two solutions,

φ(x, z) =
∫

|ξ|≤1/λ
[F (ξ)cos(Kz) + B(ξ)sin(Kz)]ei2πx·ξdξ +

∫
|ξ|>1/λ

F (ξ)eiKzei2πx·ξdξ (7.34)

To agree with geometrical optics, demand φ(x, z) → exp(iKz)f(x). In other terms,

F (ξ)cos(Kz) + B(ξ)sin(Kz) → eiKzF (ξ) (7.35)

This leads to to B(ξ) = iF (ξ) within the circular region. Positive values of z results in the solution

φ(x, z) =
∫
R2

F (ξ)eiKzei2πx·ξdξ (7.36)
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To find the imaging condition, first use an approximation on K to confirm Rayleigh’s theoretical
result. This is known to Montgomery as the weak imaging case. Assume that at the image plane,
the frequencies are not attenuated. This means the exponential multiplying F (ξ) must still be ima-
ginary. Therefore, |ξ| ≤ 1/λ. Using the binomial approximation again,

K(ξ) = 2π

λ

√
1 − ξ2λ2 ≈ k(1 − 1

2ξ2λ2) (7.37)

Recall f(x) was chosen to be the object plane. The field at a plane z = d should be a multiple of
the object. φ(x, d) = αf(x) for αϵC. Taking the Fourier transform of both sides results in

F (ξ)eiKz = αF (ξ) ∀|ξ| ≪ 1/λ (7.38)

A complex number can be written as an exponential, and assuming the spectra is nonzero,

eik(1− 1
2 ξ2λ2)zI = ei2πα′

(7.39)

k(1 − 1
2ξ2λ2)zI = 2πα′ + θ(ξ) (7.40)

In this case θ(ξ) is a multiple of 2π which could be an extra phase depending on the frequency. At
the zero frequency 2πα′ = kzI − θ(0). Substitute this into the equation to get

−1
2kzIξ2λ2 = −θ(0) + θ(ξ) (7.41)

Knowing that the right hand two terms are integer multiples of 2π and dividing by that amount,

zI

2λ
ξ2λ2 = p(ξ) where pϵZ (7.42)

Granted equation 7.42 doesn’t immediately look like the result Rayleigh obtained, but that’s mainly
because the same notation has not been maintained. Consider a periodic grating like Rayleigh did,
with period 1/ξ = d. Now also consider a monochromatic wave as Rayleigh did with wavelength λ.
Finally, rename the imaging distance zI to the Talbot distance zT in the case of p = 1. Substituting
these into the equation will arrive at

zI

2
1
d2 λ = p(ξ) ⇒ zT = 2d2

λ
(7.43)

It is important to remember the approximations made, but also that ξ could have been a multidimen-
sional vector. In this treatment, an infinite aperture is required with a near point source positioned
at a long distance away. It is also assumed the grating frequency ξ was much smaller than the
frequency of light. These are all the same conditions both Talbot and Rayleigh used for the grating
and aperture when observing this effect, so it’s expected that Montgomery arrived at the same
result.
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