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Abbreviations 22 

a.g.l Above ground level  
CDF Cumulative distribution function  
DEM  Digital elevation model 
ECCC Environment and Climate Change Canada  
ERA5-WSQ Wind speed quantiles extracted from the ERA5 dataset (m/s) 
GWA Global wind atlas  
GWA-ERA5  Bias-corrected ERA5 using GWA (m/s) 
IAV Interannual variability  
IDW Inverse distance weighting  
LGBM  Light gradient-boosting machine 
LGBMQR Lightgbm for quantile regression 
LGBMSI  LGBM for spatial interpolation 
LGBMSI-ERA5 LGBMSI using the ERA5 wind data as covariates  
LGMBQR-ERA5 LGBMQR using ERA5-WSQ as covariates 
MAE Mean absolute error (m/s) 
ME Mean error (m/s) 
MRMR  Minimum redundancy maximum relevancy algorithm  
OP Overlap percentage (%) 
PC Pearson correlation  
PD Probability distribution  
QM Quantile mapping  
QM-ERA5 Quantile mapping bias correction of ERA5 wind data 
QR Quantile regression  
R2 Coefficient of determination  
RCov Robust coefficient of variation  
RFSI Random forest for spatial interpolation  
RMSE Root-mean-squared error (m/s) 
TS time series 
WDC Wind Duration Curve method 
WRA Wind resource assessment  
WS Wind speed 
WSD Wind speed distribution  
WSNEP Wind speed non-exceedance probabilities  
WSQ Wind speed quantiles  
WSTS Wind speed time series  

 23 
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Abstract 25 

Various models for wind speed mapping have been developed, with increasing attention on models 26 

focusing on mapping wind speed distribution. This study extends these models to predict hourly 27 

wind speed time series at unsampled locations. A model based on the quantile mapping (QM) 28 

procedure was compared to a traditional and machine-learning model to interpolate wind speed 29 

spatially. These proposed models were also used with inputs from the ERA5 reanalysis dataset, 30 

enabling them to consider local variation in orography and large-scale wind fields. A widely used 31 

procedure for mean bias correction of reanalysis based on the Global Wind Atlas (GWA) was 32 

implemented and compared to the proposed models. It was found that the QM and machine learning 33 

model, both using input from ERA5, significantly outperformed GWA bias correction in terms of 34 

time series correlation and probability distribution. Despite being more computationally intensive 35 

than GWA bias correction, both models are recommended due to their significantly (in a statistical 36 

sense) superior performance. 37 

Keywords: Bias-correction, ERA5, Light gradient-boosting machine, Quantile regression, 38 

Reanalysis, Wind resource assessment  39 

 40 

1. Introduction  41 

The past decades have witnessed a significant uptake of wind energy in various parts of the world 42 

[1]. This growth reflects a global shift toward more renewable energy sources, with wind power 43 

playing a prominent role in energy supply [2]. The intermittent nature of wind speed still poses 44 

some challenges to the development of the renewable energy source [3]. Due to the cubic 45 

relationship between wind speed and power output, inaccuracies in estimating wind speed are 46 
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amplified when estimating the energy production, leading to suboptimal design of wind energy 47 

infrastructure and jeopardizing the profitability and sustainability of the project [4].   48 

Prospective studies to evaluate the wind resource across a large region at a high spatial and 49 

temporal resolution provide valuable sources of information for the expansion of wind energy [5, 50 

6]. In-situ wind speed (WS) data are generally accepted as the most reliable data source for wind 51 

resource assessment (WRA). However, measuring stations are often sparsely available in a given 52 

region and have limited record length for WRA.  Several publicly available datasets exist that give 53 

access to wind data at the global scale with high temporal resolution and extensive record length. 54 

The European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis v5 [ERA5: 7], 55 

and the NASA’s Modern Era Retrospective Analysis for Research and Applications-2 [MERRA-2: 56 

8] have been used extensively to conduct WRA across large regions [9, 10]. Samal [11] evaluated 57 

the adequacy of MERRA-2 for WRA in India. The author compared the wind data from the 58 

reanalysis dataset with observed data collected at meteorological stations. The study found that the 59 

reanalysis dataset was more suitable for long-term than short-term planning. In another study, 60 

MERRA-2 was used to perform a preliminary evaluation of the wind resource in South Sudan [12]. 61 

The authors identified areas in the region with high wind potential. Five global reanalysis datasets 62 

including ERA5 and MERRA-2 were evaluated for WRA by comparing them with measured WS 63 

data from meteorological stations distributed worldwide [13]. The comparative study was based on 64 

estimated mean WS, variability, and trends. From the study results, the ERA5 dataset was 65 

recommended for wind energy applications.  66 

Direct application of reanalysis datasets for WRA still has some drawbacks. Notably, the coarse 67 

spatial resolution of reanalysis datasets renders them unable to resolve local variations in orography 68 

and surface roughness influencing near-surface WS [14]. A review of the uncertainties associated 69 
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with the application of reanalysis data for WRA was presented by Gualtieri [9]. Several studies 70 

endeavoured to increase the spatial resolution and bias-correct reanalysis datasets using ground 71 

measurements and other datasets with higher spatial resolution. The Global Wind Atlas (GWA) is 72 

a popular dataset used to correct the bias in reanalysis WS data [15]. In this procedure, the mean 73 

WS from the reanalysis dataset is corrected to match the GWA mean WS by applying a correction 74 

factor estimated during the overlapping period of both datasets.  75 

Alternatively, to reanalysis datasets, spatial interpolation and machine learning models have been 76 

used to map wind data at a high spatial resolution using in-situ observations. The main advantage 77 

of this approach over the use of reanalysis data is its ability to account for the rapid change in the 78 

topography and surface roughness by using covariates extracted from DEM and land use maps. A 79 

comparative analysis of several spatial interpolation methods for hourly WS mapping was 80 

performed by Collados-Lara, et al. [16]. The authors found that the regression kriging model produced 81 

the best results and was selected to generate hourly wind speed time series (WSTS) between 1996 82 

and 2016 in The Granada province, Spain.  In another study, Cellura, et al. [17] developed a machine-83 

learning model to interpolate mean WS in Sicily, Italy. The author recommended the approach for 84 

its ease of application and transferability to other regions. A similar study was conducted in 85 

Venezuela [18] to create a regional mean WS map. It should be noted that wind speed distribution 86 

(WSD) is often skewed, and the mean is not a good representative of the most typical value of the 87 

distribution. 88 

In recent studies, authors have been interested in mapping the entire WSD, allowing a better 89 

evaluation of the wind resource variability at unsampled locations of interest. For example, 90 

Veronesi, et al. [19] mapped the parameters of the Weibull distribution fitted to WS data across the 91 

United Kingdom (UK). Jung [20] mapped the parameter of the Wakeby distribution fitted to WS 92 
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data to estimate the annual wind energy yield with a high spatial resolution in Germany. In another 93 

study, Jung and Schindler [21] developed a global model that estimates the parameters of the Kappa 94 

and Wakeby distribution for WS variability assessment using estimated L-moments. Houndekindo 95 

and Ouarda [22] recently proposed a nonparametric approach for WSD mapping. The approach does 96 

not restrict the region to a single WSD distribution family. The availability of methods to map the 97 

entire WSD is a crucial step forward compared to past studies where only aggregated values of WS 98 

were estimated. However, For the evaluation of WS variability at different temporal resolutions 99 

(ex., daily, seasonal, annual), WSTS with a high temporal resolution (e.g., ten min. or one hour) 100 

are still required. 101 

This study proposes expanding upon previously developed techniques for mapping WSD to predict 102 

hourly WSTS at unsampled locations. The proposed method named the Wind Duration Curve 103 

(WDC) is inspired by an approach commonly used for environmental variables (see, for instance, 104 

Castellarin, et al. [23] and Requena, et al. [24] for application to streamflow data and Ouarda, et al. [25] 105 

for application to daily river temperature) and can be seen as an adaptation of the quantile mapping 106 

(QM) technique often used to downscale global circulation models and regional climate model 107 

outputs [26, 27]. A comprehensive evaluation of  the WDC method is performed and the approach 108 

is compared to other methods for WSTS estimation at unsampled locations.  109 

The paper is structured as follows: Section 2 describes the study area and the datasets. The 110 

methodology employed is presented in section 3. The results of the comprehensive evaluation of 111 

the different approaches are presented in section 4. The discussion follows in section 5, and section 112 

6 gives the conclusions of the study.  113 
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2. Study area and dataset  114 

Experimental data for the study were obtained from Environment and Climate Change Canada 115 

(ECCC) historical climate database (https://climate.weather.gc.ca/). Stations with less than 10% 116 

missing values between 2011 and 2021 (11 years of mean hourly WS) were selected from the 117 

database, resulting in 303 meteorological stations available for the study. WS data at the 118 

meteorological stations were typically collected at 10 m above ground level according to ECCC. 119 

The measured WS data was considered the most representative of the actual WS condition. Figure 120 

1 illustrates the study area and the location of the 303 meteorological stations. In the figure, stations 121 

represented with circles were used during the training of the models and those represented with 122 

triangles were solely used as test samples.   123 

Reanalysis WS data were obtained from ERA5 dataset. Wind speed data from ERA5 are provided 124 

in a grid format with a temporal resolution of 1 h available between 1980 and the present.  The 125 

eastward and northward WS components at 10 m were obtained from the dataset 126 

(https://doi.org/10.24381/cds.adbb2d47), and the 10 m horizontal WS was calculated and 127 

interpolated at the 303 meteorological stations using nearest neighbor interpolation.  128 

The WS covariates used in the study are presented in detail in Table S1 of the supporting material. 129 

Topographical covariates were calculated from the Advanced Land Observing Satellite (ALOS)  130 

Digital Elevation model (DEM) of 30m resolution [ALOS DEM: 28] obtained freely from the Japan 131 

Aerospace Exploration Agency. The surface roughness length was estimated from a 2015 land use 132 

map of Canada [29] obtained from Natural Resource Canada.   133 

https://climate.weather.gc.ca/
https://doi.org/10.24381/cds.adbb2d47
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 134 

 135 

Figure 1: Study area and location of the 303 meteorological stations used in the study.  136 

 137 

3. Methods 138 

3.1. Wind speed distribution mapping  139 

In recent studies, different methodologies to map WSD were introduced. Most of these approaches 140 

relied on mapping the parameters of a distribution function fitted to WS data.  More recently, a 141 

nonparametric method was developed by Houndekindo and Ouarda [22] to map hourly WSD. The 142 

approach starts by mapping hourly wind speed quantiles (WSQ) using a machine learning model 143 

and WS covariates. Then, the estimated WSQ are used as input of an asymmetric kernel function 144 
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to estimate the WS cumulative distribution function (CDF) at unsampled locations. The approach 145 

is flexible and does not restrict the region to a unique WSD family. In their study, Houndekindo and 146 

Ouarda [22] extracted 13 quantiles from observed WSTS and then built a regression model between 147 

the covariates and each WSQ. The present study proposes a quantile regression (QR) model to 148 

directly estimate 13 conditional WSQ. Although QR models have been used in previous studies for 149 

WS forecasting [30] and for the estimation of other hydro-climatic variables at unsampled locations 150 

[31], to the author's knowledge, it is the first time they are applied to estimate conditional WSQ at 151 

unsampled locations. As done by Houndekindo and Ouarda [22], WSQ at the following 13 percentile 152 

points were considered: 5.0% (P1), 12.5% (P2), 20.0% (P3), 27.5% (P4), 35.0% (P5), 42.5% (P6), 153 

50.0% (P7), 57.5.0% (P8), 65.0% (P9), 72.5% (P10), 80.0% (P11), 87.5% (P12), and 95.0% (P13). 154 

The Light Gradient-Boosting Machine [LGBM: 32] with the pinball loss function (Eq 1) was used 155 

as the QR model (herein referred to as LGBMQR). The LGBM was adopted based on its efficiency, 156 

scalability for large datasets, and proven high prediction accuracy [33-35]. The LGBM is a 157 

histogram-based gradient-boosting model that sequentially builds additive decision trees to 158 

minimize a loss function. By discretizing the continuous values of the covariates into a fixed 159 

number of bins, the LGBM can significantly reduce the training time and memory usage for large 160 

datasets (ex., N > 10,000) while maintaining good prediction accuracy. In addition, the LGMB 161 

adopts a leaf-wise tree expansion with a fixed maximum depth, improving the model's training 162 

performance. Table 1 shows the different model parameters that were tuned. Random search with 163 

1000 iterations was used to select the best parameters for the QR model. Random search is not an 164 

optimal algorithm for parameter tuning but can still find suitable parameters when allocated a 165 

sufficient number of iterations [36].  LGBMQR is a single-output QR model. Thus, it needs to be 166 

trained separately for each conditional WSQ of interest. Also, parameter searches can be performed 167 
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independently for each considered quantile. To reduce the computation burden associated with 168 

performing parameter tuning independently for every quantile of interest, the best parameters 169 

selected when training the model to predict the median (P7) were used for all quantiles. 170 

𝜌𝜌𝜏𝜏(𝑤𝑤 − 𝑤𝑤𝜏𝜏) =  �
(𝜏𝜏 − 1)|𝑤𝑤 − 𝑤𝑤𝜏𝜏|               (𝑤𝑤 − 𝑤𝑤𝜏𝜏) < 0
𝜏𝜏|𝑤𝑤 −𝑤𝑤𝜏𝜏|                          (𝑤𝑤 − 𝑤𝑤𝜏𝜏) ≥ 0      (1)                                                                                171 

where 𝑤𝑤𝜏𝜏 is the τ-quantile defined as follows: 172 

𝑤𝑤𝜏𝜏 = inf{𝑤𝑤 ∶ 𝐹𝐹(𝑤𝑤|𝑋𝑋 = 𝑥𝑥) ≥ 𝜏𝜏 }         (2)  173 

with 𝐹𝐹(𝑤𝑤| 𝑋𝑋 = 𝑥𝑥) the conditional cumulative distribution function of the random variable 𝑤𝑤.   174 

In addition to the covariates presented in Table S1 of the supporting material, hourly WSQ 175 

extracted from the ERA5 dataset (ERA5-WSQ) were assessed as covariates in the current study. 176 

As stated by Jung and Schindler [21], covariates from the ERA5 reanalysis dataset can represent the 177 

large-scale wind field unaffected by local surface properties. The LGBMQR that uses the ERA5-178 

WSQ will be referred to as LGMBQR-ERA5, and the benefit of using the ERA5-WSQ as 179 

covariates will be evaluated and discussed in the following sections of the paper. 180 

Furthermore, to select the optimal number of covariates to include in the model, the available 181 

covariates were ranked according to their relevance and redundancy using the minimum 182 

redundancy maximum relevancy algorithm [MRMR: 37]. Then, the number of covariates to use with 183 

LGBMQR and LGBMQR-ERA5 was treated as an additional hyperparameter during the 184 

implementation of the random search algorithm. The MRMR algorithm has already demonstrated 185 

good performance for WSQ mapping in a comparative study of covariate selection techniques [38].    186 

The estimated conditional WSQs were used as input for the Birnbaum-Saunders asymmetric kernel 187 

estimator of CDF [39] to estimate the WS CDF at unsampled locations. For more details on fitting 188 
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the Birnbaum-Saunders kernel using the WSQ as input, the readers are referred to Houndekindo and 189 

Ouarda [22].  190 

Table 1: Parameters of LGBMQR and LGBMQR-ERA5. The same set of randomly selected 191 
parameters was tested for LGBMQR and LGBMQR-ERA5 to implement the random search. 192 

Model parameter Description Range  
learning_rate Learning rate  0.02-0.1 
max_depth Maximum depth of the 

regression trees  
3-8 

feature_fraction Fraction of covariate to use to 
build each tree  

0.1-0.9 

bagging_fraction Fraction of data to sample to 
build each tree 

0.1-0.9 

extra_trees Use of extremely randomized 
trees [40]  

True, False 

lambda_l2 L2 regularization 0-1000 
lambda_l1 L1 regularization 0-1000 
num_leaves maximum number of leaves 

per regression tree 
2-50 

max_bin max number of bins for the 
discretization of the 
covariates   

50-400 

min_data_in_leaf minimal amount of data in 
one leaf   

100-20000 

num_boost_round Number of trees to build 
(boosting iteration)  

90-400 

n_features Number of features to include 
in the model  

5-30 

 193 

 194 

3.2. Prediction of wind speed time series at unsampled locations  195 

It is proposed to adapt the QM [41] procedure to predict WSTS at unsampled locations using the 196 

following general formula [26]:  197 

𝑤𝑤�𝑡𝑡(𝑠𝑠0) = 𝐹𝐹�𝑆𝑆0
−1�𝐹𝐹�(𝑤𝑤𝑡𝑡)�         (3) 198 
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where: 𝑤𝑤�𝑡𝑡(𝑠𝑠0) is the estimated WS at time 𝑡𝑡 and unsampled location 𝑠𝑠0. 𝐹𝐹�𝑆𝑆0 is the estimated WS 199 

CDF at the unsampled location 𝑠𝑠0, and  𝐹𝐹�𝑆𝑆0
−1 is its inverse. 𝐹𝐹�(𝑤𝑤𝑡𝑡) is the estimated wind speed non-200 

exceedance probabilities (WSNEP) at time 𝑡𝑡. The methodology to estimate 𝐹𝐹�𝑆𝑆0at any unsampled 201 

location in the region was described in section 3.1.  For the estimation of 𝐹𝐹�(𝑤𝑤𝑡𝑡) two approaches 202 

have been put forward in previous studies:   203 

1. Some authors [25, 42] proposed using information from nearby locations to estimate 𝐹𝐹�(𝑤𝑤𝑡𝑡) 204 

at any unsampled location. This technique assumes that observed non-exceedance 205 

probabilities (or exceedance probabilities) between nearby locations are correlated. Thus, a 206 

spatial interpolation method could be applied to estimate the WSNEP at unsampled 207 

locations. The Inverse Distance Weighting (IDW) was used to interpolate the WSNEP. The 208 

method was named the flow duration curve and the temperature duration curve for 209 

streamflow and temperature modelling. Following this nomenclature, the technique was 210 

referred to as the Wind Duration Curve (WDC) in the context of WS modelling.   211 

2.  Jung and Schindler [43] derived the non-exceedance probabilities 𝐹𝐹�(𝑤𝑤𝑡𝑡) directly from a 212 

reanalysis dataset, thereby performing bias correction. This approach will be applied with 213 

ERA5 and named quantile mapping bias correction of ERA5 (QM-ERA5) in the following 214 

sections.  215 

 216 

The Weibull plotting position was used to estimate the WSNEP from the WSTS as follows: 217 

𝐹𝐹𝑛𝑛(𝑤𝑤𝑡𝑡) =  𝑖𝑖𝑡𝑡 𝑛𝑛 + 1�                                                                                                        (4) 218 

where: 𝑖𝑖𝑡𝑡 = 1, 2, 3, … ,𝑛𝑛 is the rank of the WS value observed at time t (𝑤𝑤𝑡𝑡) after sorting the time 219 

series in ascending order.  220 
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3.3. Spatial interpolation methods 221 

Two spatial interpolation methods were selected and evaluated to interpolate the WSTS directly. 222 

The IDW technique was selected for its ease of application and set as the baseline method in the 223 

study. The general formula of the IDW methods is: 224 

 𝑤𝑤�𝑡𝑡(𝑠𝑠0) =  ∑ 𝜆𝜆𝑖𝑖𝑤𝑤𝑡𝑡(𝑠𝑠𝑖𝑖)𝑘𝑘
𝑖𝑖=1          (5) 225 

where:  226 

𝜆𝜆𝑖𝑖 =  𝑑𝑑𝑖𝑖
−𝑝𝑝

∑ 𝑑𝑑𝑗𝑗
−𝑝𝑝𝑘𝑘

𝑗𝑗=1
�            (6) 227 

where: 𝑤𝑤𝑡𝑡(𝑠𝑠𝑖𝑖=1: 𝑘𝑘) is the observed WS value at time t and the nearest location 𝑠𝑠𝑖𝑖, located at a 228 

distance 𝑑𝑑𝑖𝑖 from the target location 𝑠𝑠0. The parameters p and 𝑘𝑘 are the exponents and the number 229 

of nearest neighbours to consider. It should be noted that the IDW was used in the study to 230 

interpolate observed WSTS and WSNEP (during the implementation of the WDC method). In both 231 

cases, the optimal number of nearest locations and the exponent were selected based on 1) the time 232 

series (TS) evaluation using the Pearson correlation coefficient between observed and estimated 233 

WSTS and 2) the probability distribution (PD) evaluation by calculating the coefficient of 234 

determination (R2) between observed and estimated WSQ derived from the WSTS. The R2 is 235 

presented in equation S4 of the supporting material. The results of the models were presented for 236 

each evaluation metric (TS and PD) separately. 237 

The second spatial interpolation method implemented in the study was the Random Forest for 238 

Spatial Interpolation model [RFSI: 44]. The model uses nearby observations and their distance from 239 

the target location as covariates with a random forest regression model to interpolate at unsampled 240 

locations. The general formula of the model is [44]:  241 
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𝑤𝑤�𝑡𝑡(𝑠𝑠0) = 𝑓𝑓(𝑥𝑥1(𝑠𝑠0), … , 𝑥𝑥𝑚𝑚(𝑠𝑠0),𝑤𝑤𝑡𝑡(𝑠𝑠1),𝑑𝑑1, … ,𝑤𝑤𝑡𝑡(𝑠𝑠𝑘𝑘),𝑑𝑑𝑘𝑘)      (7) 242 

where:  𝑥𝑥𝑖𝑖=1:𝑚𝑚(𝑠𝑠0) are covariates available at the target location 𝑠𝑠0, 𝑓𝑓(. ) is a regression function 243 

linking the covariates and the WS values at the unsampled location. A comparative analysis carried 244 

out by Sekulić, et al. [44] revealed that in real-world conditions, the RFSI model outperformed Space-245 

time regression kriging, and the approach can scale and perform better than another spatial 246 

interpolation method based on the random forest model [45]. Furthermore, as RFSI does not require 247 

semi-variogram modelling, it is easier to implement than kriging methods with less restrictive 248 

assumptions (e.g., stationarity and linearity). In the original RFSI model, the authors used the 249 

random forest model to learn the regression function. Due to its efficiency and scalability for large 250 

datasets, the LGBM implementation of the gradient boosting algorithm was used in place of the 251 

random forest model, and the approach was renamed LGBMSI for this study. The tuned LGBMSI 252 

parameters were the same parameters presented in Table 1 of the present paper. These parameters 253 

were also tuned using a random search with 1000 iterations. As done for the QR model, the 254 

available covariates were ranked using the MRMR algorithm. The number of covariates to include 255 

in the model was treated as a parameter to be tuned during random search. Two versions of 256 

LGBMSI were tested: The version presented in equation 7 (it will be referred to as simply LGBMSI 257 

in the following sections) and a version which uses as additional covariate the WS values from the 258 

nearest ERA5 grid point to the unsampled location (𝑤𝑤𝑡𝑡�𝐸𝐸𝐸𝐸𝐸𝐸5𝑆𝑆0�). The LGBMSI model with the 259 

ERA5 covariates will be referred to as LGBMSI-ERA5 in the following sections of the paper and 260 

is presented in equation 8: 261 

𝑤𝑤�𝑡𝑡(𝑠𝑠0) = 𝑓𝑓 �𝑥𝑥1(𝑠𝑠0), … , 𝑥𝑥𝑚𝑚(𝑠𝑠0),𝑤𝑤𝑡𝑡(𝑠𝑠1),𝑑𝑑1, … ,𝑤𝑤𝑡𝑡(𝑠𝑠𝑘𝑘),𝑑𝑑𝑘𝑘,𝑤𝑤𝑡𝑡�𝐸𝐸𝐸𝐸𝐸𝐸5𝑆𝑆0��   (8) 262 
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3.4. Global Wind Atlas mean bias correction  263 

The GWA version 3 (https://globalwindatlas.info/ ) feeds the output from a mesoscale atmospheric 264 

model into a microscale model to downscale the ERA5 wind data. The resulting wind data has a 265 

spatial resolution of 250m and accounts for the effect of the local topography and surface 266 

roughness. Several studies used the GWA to bias-correct reanalysis WS data [46-48]. The 267 

procedure involves applying a scaling factor to the reanalysis WS data to ensure that their mean 268 

matches the mean WS from GWA. The scaling factor is computed as the ratio between the mean 269 

WS from GWA and the reanalysis during the overlapping period of both datasets. The mean WS 270 

from GWA and ERA5 at 10 m estimated for the period between 2008 and 2017 were used to 271 

calculate the scaling factor. Nearest neighbour interpolation was used to interpolate the GWA data 272 

at locations of interest. The bias-corrected ERA5 using GWA will be referred to as GWA-ERA5 273 

in the remainder of the paper. 274 

3.5. Validation  275 

The model validation strategy adopted in this study is aligned with the modelling procedure's 276 

primary task, which consisted of predicting WSTS at unsampled locations. During the models 277 

tuning, random k-fold cross-validation across the training locations was implemented to estimate 278 

the model's performance for prediction at (pseudo) unsampled locations. In 5-fold cross-validation, 279 

the training locations are randomly split into five groups. Training is carried out with the data of 4 280 

groups, and the model is evaluated on the remaining group. This procedure was repeated five times, 281 

using each group once as the validation set. The final evaluation of the selected model was 282 

performed on a group of locations (test samples) held back and comprising approximately 30% (97 283 

locations) of the available locations (303) for the entire study.  284 

https://globalwindatlas.info/en/about/method
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The estimated WSTS at locations of the test samples were evaluated according to the following 285 

criteria:  286 

1. Time series evaluation: The Pearson correlation (PC), mean absolute error (MAE) and root-287 

mean-squared error (RMSE) were calculated between observed and estimated WSTS. The PC, 288 

MAE and RMSE are presented in equations S1, S2, and S3 of the supporting material, 289 

respectively.  290 

2. Probability distribution evaluation:  Two approaches were used to evaluate the probability 291 

distribution of the estimate WSTS. First, quantiles with non-exceedance probabilities between 292 

10% and 90% and a spacing of 10% were calculated from the WSTS using equation S8 in the 293 

supporting material. The R2, MAE and RMSE were used to compare the observed and 294 

estimated WSQ. Lastly, the Overlap percentage [OP: 49] was used to assess the overlap between 295 

estimated and observed empirical probability distribution function (PDF). The OP is presented 296 

in equation S6 of the supporting material. For a review of criteria used for the selection of PD 297 

for WS data the reader is referred to [50]. 298 

3. Interannual variability (IAV) evaluation: The robust coefficient of variation [RCov: 51] of 299 

annual median WS was calculated to assess IAV. RCov serves as a robust and resistant measure 300 

of variability analogue to the coefficient of variation, which lacks robustness and resistance to 301 

outliers. The MAE and mean error (ME) between observed and estimated RCov were used to 302 

evaluate the performance of the models in reproducing the observed IAV. The RCov and the 303 

ME are presented in equations S7 and S5 of the supporting material, respectively.  304 
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4. Results  305 

4.1. Quantile regression models 306 

A thousand random combinations of the LGBM hyperparameters (Table 1) were tested with 307 

LGBMQR and LGBMQR-ERA5 models. Table S2 in the supporting material shows the best 308 

parameters found using a random search, including the number of selected covariates. Figure 2 309 

illustrates the R2, MAE, and RMSE between estimated and observed WSQ from the test samples. 310 

For reference, the same metrics between ERA5-WSQ and observed WSQ are also presented in 311 

Figure 2. Figure 3 shows boxplots of the metrics calculated over the different percentile points (P1 312 

– P13) at each test sample. The Wilcoxon signed-rank test was used to test the statistical 313 

significance of these metrics between pairs of models (the test P-values are shown in Table S3 of 314 

the supporting material). The P-values associated with LGBMQR-ERA5 are all less than 0.05, and 315 

the P-values between LGBMQR and ERA5-WSQ are more significant than 0.05. LGBMQR and 316 

ERA5-WSQ had significantly lower median R2 and higher median MAE and RMSE than 317 

LGBMQR-ERA5. LGBMQR underperformed compared to ERA5-WSQ, but the difference 318 

between the methods was not significant according to the Wilcoxon signed-rank test. LGBMQR 319 

outperformed ERA5-WSQ for WSQ with low exceedance probabilities (P1, P2, P3) while ERA5-320 

WSQ were more accurate in the middle and upper tail of the distributions. It is evident from these 321 

results that the inclusion of the ERA5-WSQ improves the QR model performance; thus, WSQs 322 

from LGBMQR-ERA5 were used in subsequent analyses of the study.  323 

 324 
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325 

Figure 2: Results of the R2, RMSE and MAE between estimated and predicted WSQ at various 326 

percentile points (P1-P13). The metrics were calculated across the test samples for each 327 
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percentile point. 328 

 329 

Figure 3: Result of the R2, MAE and RMSE between observed and estimated WSQ. The metrics 330 

were calculated across the percentile points (P1-P13) at each location in the test samples.  331 

4.2. Inverse distance weighting parameters  332 

Table 2 shows the optimal parameters (p and k) for IDW based on the TS and PD evaluation. The 333 

selection of the best parameters was performed with the training set. The optimal k and p was 334 

contingent upon the evaluation criteria. For the interpolation of WSNEP, the optimal number of 335 

nearest neighbours (optimal k = 1) based on the PD evaluation is equated to the nearest neighbour 336 

interpolation. Generally, it was observed smaller values of k were optimal for the PD criteria. The 337 

results of the different evaluation criteria will be presented and discussed separately in the 338 

following section.  339 

 340 



20 
 

Table 2: Optimal parameters of the IDW for WSTS and WSNEP interpolation  341 

Interpolated 
variable  

Evaluation 
criteria  

Optimal k Optimal p Abbreviation 
used for the 
model herein  

WSTS PD 6 0.3 IDW-PD 
TS 11 1.7 IDW-TS 

WSNEP  PD 1 - WDC-PD 
TS 9 1 WDC-TS 

 342 

4.3. Time series evaluation  343 

Figure 4 shows a boxplot of the PC, MAE and RMSE between observed and estimated WSTS from 344 

the test samples, while the median values of the metrics are given in Table 3. LGBMSI-ERA5 had 345 

the highest median PC alongside the lowest median MAE and RMSE. In contrast, WDC-PD had 346 

the lowest median PC and the highest median MAE and RMSE. WDC-TS performed better than 347 

WDC-PD, with performances comparable to the IDW model. The ERA5 WSTS showed a 348 

relatively high median PC and methods directly exploiting this dataset (GWA-ERA5, LGMBSI-349 

ERA5, QM-ERA5) maintained a higher median PC with less variability in the distribution of the 350 

metric in comparison to methods solely using observations from nearby locations (WDC-PD, 351 

WDC-TS, LGBMSI, IDW-PD and IDW-TS). Despite QM-ERA5 showing a relatively high median 352 

PC, it also had a high median MAE and RMSE. Table S4 in the supporting material gives the P-353 

value of the Wilcoxon signed-rank test between pairs of models for the different evaluation metrics. 354 

From the results of the Wilcoxon test, it was found that LGBMSI-ERA5 was the only method with 355 

an MAE and RMSE statistically inferior to IDW-TS. For the time series evaluation criteria, 356 

LGBMSI-ERA5 was the best-performing method, WDC-PD was the least effective method and 357 

most other models had performances comparable (in a statistical sense) to IDW-TS.  358 

Table 3: Median PC, MAE and RMSE between observed and estimated WSTS 359 
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Model PC MAE 
(m/s) 

RMSE 
(m/s) 

WDC-TS 0.73 1.26 1.59 
WDC-PD 0.64 1.62 2.19 
ERA5 0.75 1.22 1.60 
QM-ERA5 0.76 1.34 1.80 
GWA-ERA5 0.75 1.32 1.68 
IDW-TS 0.74 1.29 1.68 
IDW-PD 0.72 1.31 1.66 
LGBMSI 0.72 1.28 1.59 
LGBMSI-ERA5 0.78 1.13 1.47 

 360 
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  361 
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Figure 4: Result of the PC, MAE and RMSE between observed and estimated WSTS. 362 

4.4. Probability distribution evaluation  363 

Figure 5 shows matrices detailing the R2, MAE and RMSE calculated between the estimated and 364 

observed WSQ across various percentile points. The last row of these matrices (labelled M) 365 

presents the median value (calculated over the different percentile points). QM-ERA5 and WDC-366 

PD were the top-performing methods overall, mainly due to their relatively strong performance in 367 

estimating WSQ in the lower and middle tail of the distribution. Both LGBMSI-ERA5 and 368 

LGBMSI performed relatively well in the middle of the distribution but were less effective in 369 

estimating WSQ in the lower tail. GWA-ERA5 was the best method for estimating WSQ in the 370 

upper tail of the distribution, yet it performed poorly for low exceedance probabilities WSQ. The 371 

IDW methods demonstrated an overall lack of effectiveness in estimating WSQ across the 372 

distribution. 373 

The OP metric measured the overlap between the empirical PDF computed from the estimated and 374 

observed WSTS. Figure 6 presents boxplots illustrating the distribution of the OP metric. QM-375 

ERA5 had the highest median OP at 80%, followed by ERA5 at 77%, GWA-ERA5 at 77% and 376 

WDC-PD at 76%. Also, QM-ERA5 and WDC-PD displayed less spread in the distribution of the 377 

metric compared to ERA5 and GWA-ERA5. LGBMSI and LGBMSI-ERA5 had the lowest median 378 

OP values at 65% and 72% respectively. The statistical significance of the results was tested with 379 

the Wilcoxon signed-ranked test between pairs of models (Table S5 of the supporting material). 380 

The P-values associated with QM-ERA5, LGBMSI, LGBMSI-ERA5 and WDC-TS were always 381 

small (ex.: less than 0.05). The differences between IDW, ERA5, GWA-ERA5 and WDC-PD were 382 

not statistically significant (P-values greater than 0.05) for the OP metric. Overall, QM-ERA5 was 383 

the top performer for the OP metric, followed by (listed in no particular order) IDW, ERA5, GWA-384 
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ERA5 and WDC-PD. WDC-TS performed slightly better than LGBMSI-ERA5, while LGBMSI 385 

was the least effective method.386 
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 387 
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Figure 5: Result of the R2, MAE and RMSE between observed and estimated WSQ. The last row 388 

of the matrices gives the median of the metric calculated across the different percentile points. 389 

Values of R2 less than 0 were omitted from the matrices.  390 

 391 

 392 

Figure 6: Boxplots of OP metrics calculated between observed and estimated empirical PDF. 393 

 394 

4.5. Interannual variability evaluation 395 

The IAV assesses the fluctuation of wind speed across multiple years. Studies have indicated that 396 

wind speed exhibits IAV in many parts of the world [52-54]. The IAV has been linked to 397 

atmospheric teleconnections [54-56] such as the El Niño-Southern Oscillation and the North 398 

Atlantic Oscillation. Accurately assessing the IAV of wind resources is essential for providing 399 

adequate information for the long term planning of wind energy projects [57]. Some attempts have 400 
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been made to develop teleconnection-based long term forecasting models for wind speed that use 401 

low frequency atmospheric circulation patterns as covariates [58]. 402 

Figure 7 presents a bar plot representing the MAE and ME between observed and estimated RCov 403 

of median annual WS.  404 

WDC-PD gave the smaller MAE at 2%, while the other methods gave a slightly higher MAE at 405 

3%. Notably, WDC-PD was the only method that overestimated, on average, the IAV (positive 406 

ME). The other methods showed, on average, an underestimation of the IAV (negative ME). There 407 

was no substantial difference in the performance among the various methods based on the IAV. 408 

 409 

Figure 7: Result of MAE and ME between observed and estimated RCov of median annual WS.  410 

 411 
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5. Discussion 412 

The study results indicate that no single method excelled according to all evaluation criteria, 413 

suggesting potential for improvement through combining specific methods. For instance, it was 414 

found that WSQ derived from the GWA-ERA5 time series was the most accurate in the upper tail 415 

of the distribution. Conversely, in the lower tail, WSQs from GWA-ERA5 were inaccurate 416 

compared to QM-ERA5 and WDC-PD. Based on these outcomes, future studies are recommended 417 

to explore using the mean WS from the GWA dataset as covariates of the QR model to potentially 418 

improve the estimation of the conditional WSQ in the upper tail of the distribution, thus enhancing 419 

the performance of QM-ERA5 and WDC-PD. 420 

LGBMSI-ERA5 was the top performer based on the time series evaluation. In the case of the 421 

evaluation based on the PD, QM-ERA5 was the top performer. Generally, more complex methods 422 

yielded superior performances compared to the baseline model (IDW), suggesting some benefits 423 

in implementing complex methods in part due to their ability to integrate various WS covariates. 424 

The ERA5 dataset was a valuable covariate. For instance, ERA5 WSTSs are well correlated with 425 

ground measurements, and this correlation could be improved significantly (in a statistical sense) 426 

by using the dataset as a covariate with LGBMSI. Also, ERA-WSQ significantly improved (in a 427 

statistical sense) the performance of the QR model. It should be noted that other covariates used as 428 

input of the QR models demonstrated a higher ability to predict WSQ in the distribution's lower 429 

tail than ERA5-WSQ, which seemed less accurate in the lower tail. 430 

QM-ERA5 improved the performance of ERA5 in most cases. The approach is relatively easy to 431 

implement and relies on a reasonable estimation of the WSD at unsampled locations. One reason 432 

that could explain the improved performance of QM-ERA5 is its higher accuracy in the lower tail 433 

of the distribution compared to ERA5 wind data. It was also revealed that the WDC method was 434 
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competitive. However, the approach is sensitive to the evaluation criteria used to select the optimal 435 

parameters of the IDW for interpolating the WSNEP. Different evaluation criteria lead to different 436 

optimal parameters, which leads, in turn, to different performances during evaluation. For instance, 437 

WDC-PD performed relatively well based on the evaluation of PD, while it performed poorly based 438 

on the TS evaluation. In contrast, WDC-TS performed relatively well based on the TS evaluation 439 

and was less effective than WDC-PD based on the evaluation of the PD. In future studies, it is 440 

recommended that different methods to interpolate the WSNEP are explored to improve the 441 

performance of the WDC method. For instance, a more complex interpolation method, such as 442 

RFSI, could be applied to interpolate the WSNEP.  443 

In this study, LGBM with the pinball lost function was used as the QR model (LGBMQR). Other 444 

quantile regression models could be viable alternatives, such as quantile regression forests [59] and 445 

quantile regression neural networks [60]. LGBMQR was adopted because it is efficient during 446 

training, and in general, gradient-boosting models have demonstrated superior performance on 447 

tabular data [61]. In upcoming research, a comparative analysis can be performed to evaluate the 448 

performance of different QR models for conditional WSQ mapping.  449 

For practical reasons, the analysis in the present study was carried out at the World Meteorological 450 

Organization (WMO) recommended wind speed measurement height of 10 m. Modern wind 451 

turbines operate at hub heights of 100 m and beyond. It would be ideal to assess the wind resource 452 

directly at these hub heights. However, there is lack of extensive wind speed time series data at 453 

these heights and even when available, accessing such data from private wind farm operators can 454 

pose challenges. To account for this disparity, vertical wind profile equations such as the 455 

logarithmic and power law are employed to extrapolate the estimated wind speed from 10 m to the 456 

hub height [15, 21]. This procedure inevitably introduces additional uncertainty to the estimated 457 
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wind resource. Future research should be conducted to evaluate and quantify this layer of 458 

uncertainty more comprehensively.   459 

6. Conclusions and future research 460 

This study conducted a comprehensive evaluation of various approaches for the prediction of wind 461 

speed time series at unsampled locations. It was found that no single method consistently 462 

outperformed the other methods according to all evaluation criteria. However, complex methods 463 

that include various covariates were more effective than the baseline method. Mainly, two 464 

approaches (QM-ERA5 and LGBMSI-ERA5) applied to bias-correct ERA5 wind speed data 465 

seemed promising and showed improved results compared to the most common ERA5 bias 466 

correction method (GWA-ERA5). It should be noted that both methods are more complex and 467 

computationally demanding than GWA-ERA5. However, LGBMSI-ERA5 significantly improved 468 

the accuracy of the ERA5 data when evaluating the time series correlations, while QM-ERA5 469 

significantly improved the overlap percentage between the observed and estimated empirical PDF. 470 

In future studies, it is recommended that the performance of LGBMSI-ERA5 and QM-ERA5 be 471 

explored further in different regions with different wind regimes. Another promising research route 472 

is the potential to combine different approaches to produce a more accurate model across multiple 473 

evaluation criteria.  474 

Also, with the QR model, there is a potential to account for the non-stationarity of the WSD by 475 

using related covariates. For instance, Ouarda and Charron [54] found that the North-Atlantic 476 

Oscillation and the Pacific North American indices of atmospheric circulation were good predictors 477 

of the IAV of WS in the province of Québec, Canada. In future studies, these climate indices can 478 

be used as covariates with a QR model in the region to map conditional WSQ that accounts for the 479 
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resource's IAV. This analysis could lead to a better evaluation of the wind resources at unsampled 480 

locations, thus reducing the risk associated with future projects.  481 

The comprehensive evaluation provided in the present study aims to assist practitioners in choosing 482 

the most suitable methodologies for their specific projects. Furthermore, it is anticipated that this 483 

research will inspire future studies to systematically evaluate various approaches for predicting 484 

wind speed time series at unsampled locations. This will foster in the long run a better 485 

understanding of the strengths and limitations of these approaches and encourage their refinement 486 

and the development of more robust techniques for the prediction of wind speed time series at 487 

unsampled locations.  488 
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