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receptor-expressing cancers
David Chatenet1,2, Renzo Cescato3, Beatrice Waser3, Judit Erchegyi1, Jean E Rivier1 and Jean Claude Reubi1,3*

Abstract

Background: Several peptide hormone receptors were identified that are specifically over-expressed on the cell
surface of certain human tumors. For example, high incidence and density of the Y1 subtype of neuropeptide Y
(NPY) receptors are found in breast tumors. Recently, we demonstrated that the use of potent radiolabeled
somatostatin or bombesin receptor antagonists considerably improved the sensitivity of in vivo imaging when
compared to agonists. We report here on the first DOTA-coupled peptidic Y1 receptor affine dimer antagonists.

Methods: Based on a Y1 affine dimeric peptide scaffold previously reported to competitively antagonize NPY-
mediated processes, we have developed new dimeric DOTA-coupled Y1 receptor affine antagonists for scintigraphy
and radiotherapy. These dimeric peptides were tested for their specific binding to Y1 expressed in SK-N-MC cells
and Y2 expressed in SH-SY5Y as well as for their ability to mediate cAMP production in SK-N-MC cells.

Results: Introduction of two DOTA moieties at the N-termini of the dimeric NPY analogs as well as the double
Asn29 replacement by Dpr(DOTA) or Lys(DOTA) (6 and 10) moiety dramatically reduced binding affinity. However,
asymmetric introduction of the DOTA moiety in one segment of the peptidic heterodimer (8 and 11) resulted in
suitable antagonists for receptor targeting with high binding affinity for Y1. All compounds were devoid of Y2
binding affinity.

Conclusions: The design and the in vitro characterization of the first DOTA-coupled dimeric NPY receptor
antagonist with high affinity and selectivity for Y1 over Y2 are described. This compound may be an excellent
candidate for the imaging of Y1-positive tumors and their treatment.

Keywords: neuropeptide Y receptor, tumor imaging, oncology, peptide receptor radionuclide therapy, breast
cancer, antagonist

Background
Peptide hormone receptors play an increasing role in can-
cer medicine. This role is based primarily on the peptide
receptor over-expression on tumor cells which allows a
specific receptor-targeted scintigraphic tumor imaging and
tumor therapy with radiolabeled peptide analogs [1]. The
somatostatin receptors were the first peptide receptors
identified for these purposes, and somatostatin receptor
targeting has now become an integral part of the routine
management of patients with gastroenteropancreatic

neuroendocrine tumors. Somatostatin receptor scintigra-
phy (OctreoScan®, Covidien Ltd., St. Louis, MO, USA)
detects these tumors with extremely high sensitivity and
specificity [2]. Moreover, recent results from clinical stu-
dies involving somatostatin receptor radionuclide therapy
of these tumors are very promising [2]. The last decade
has seen the development of numerous novel somatostatin
agonists suitable for tumor targeting [3,4]. Interestingly,
however, it has recently been shown that potent somatos-
tatin receptor antagonists, known to poorly internalize
into tumor cells, can visualize tumors in vivo as well, or
even better than the corresponding agonists [5]. This
unexpected phenomenon was found both for sst2- and
sst3-selective somatostatin analogs, and may be due to the
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binding of the antagonist to a larger number of sites and
to its lower dissociation rate. A pilot clinical trial with
radiolabeled DOTA-linked sst2 antagonists recently con-
firmed the animal data [6].
Prompted by the success of somatostatin receptor tar-

geting, the over-expression of other peptide receptor
families was evaluated in tumors in vivo [1]. Promising
new candidates for in vivo peptide receptor targeting of
tumors are neuropeptide Y (NPY) receptors, based on
their high expression in specific cancers, in particular
breast carcinomas [7,8]. In humans, four NPY receptor
subtypes exist, called Y1, Y2, Y4, and Y5 [9]. The natural
ligands for these receptors are the peptides of the NPY
family, including the neurotransmitter NPY and the two
gut hormones peptide YY (PYY) and pancreatic polypep-
tide (PP). Via binding to the NPY receptors, these pep-
tides regulate a wide variety of physiologic functions such
as digestion, vasoconstriction, and reproduction. They
also play a key role in eating behavior [10]. On this basis,
Y2 and Y4 receptor agonists and Y1 and Y5 receptor
antagonists have become potential drugs against over-
weight that are currently evaluated for this application
[11]. On the other hand, since Y1 and Y2 receptors are
highly over-expressed in breast cancer, Ewing sarcomas,
neuroblastomas, and high-grade gliomas [7,12-14], the
use of radiolabeled Y1 and Y2 receptor ligands for an
NPY receptor-targeted imaging and radiotherapy of these
tumors, was suggested [1,15]. It is worth mentioning that
in those tumors, the presence of a significant amount of
Y4 or Y5 receptors was not observed [8]. A daunorubicin-
coupled cytotoxic NPY analog [16], a Y2-selective,
99 mTc-labeled radioactive NPY analog [17], and more
recently, a 99 mTc-labeled Y1 agonist were developed
[18]. Preliminary clinical data on Y1-targeted tumor ima-
ging with the latter compound in breast cancer patients
are encouraging [18].
There is no information yet on Y1 receptor antago-

nists coupled to a chelator, which are suitable for in
vivo receptor targeting. The aim of the present study
was to design and develop dimeric NPY analogs coupled
to the DOTA chelator for suitable radiolabeling that
could be used for imaging and for radiotherapy of Y1-
expressing tumors. We report here on the first dimeric
DOTA-coupled peptidic NPY receptor antagonists with
high affinity for Y1.

Methods
Reagents
All Boc-Na-protected amino acids with side chain pro-
tection: Arg(Tos), Asn(Xan), Cys(Acm), Tyr(2-Br-Z)
were commercially available (Bachem Inc., Torrance, CA,
USA). All reagents were of best grade available and were
purchased from common suppliers. Silver trifluoro-
methanesulfonate was obtained from Sigma-Aldrich (St.

Louis, MO, USA). DOTA-NHS was from Macrocyclics
(Dallas, TX, USA). The adenylate cyclase activation flash-
plate assay (SMP004) was from PerkinElmer (Waltham,
MA, USA).

Peptide synthesis
Each segment of the dimeric peptides was synthesized
manually on a methylbenzhydrylamine (MBHA) resin
using the solid phase approach and the Boc- strategy.
Noteworthy, an orthogonally protected cysteine, i.e., Boc-
Cys(Acm)-OH, was used to prevent dimerization of
inadequate segment. Main chain assembly was mediated
by diisopropylcarbodiimide (DIC) and coupling comple-
tion (45 to 60 min) was assessed by Kaiser’s test. Three-
fold excess of protected amino acid and DIC was used
based on the original substitution of the MBHA resin
(0.4 mmol.g-1) and Boc removal was achieved via TFA-
mediated deprotection (50% in dichloromethane (DCM);
10 to 15 min). An isopropyl alcohol (1% m-cresol) wash
followed TFA treatment and then successive washes with
triethylamine (TEA) solution (10% in DCM), methanol,
TEA solution, methanol, and DCM completed the neu-
tralization sequence. In order to facilitate the specific
linkage of the DOTA moiety in the peptide dimers, the
N-terminal amino acid of the sequence was introduced
as an Fmoc derivative except when the DOTA moiety
was coupled to the N-terminus. Peptide resins were then
treated with anhydrous HF in the presence of anisole (5%
to 10%, v/v) at 0°C for 1.5 h to liberate the Cys(Acm)-
protected crude peptides. After elimination of HF under
vacuum, the crude peptides were washed with peroxide-
free diethyl ether and extracted with 0.1% TFA in 60%
acetonitrile/water. After lyophilization, the orthogonally
protected peptides were purified using preparative RP-
HPLC and two successive solvent systems (eluent A:
TEAP at pH 2.25 and 0.1% TFA, eluent B: 60% acetoni-
trile/A). The purified peptides were characterized by ana-
lytical RP-HPLC and MALDI-TOF-MS on a Voyager
DE-STR in the reflector mode using the a-cyano-4-
hydroxycinnamic acid as matrix. Conjugation of the
DOTA derivative was achieved prior to the disulfide
bond formation as previously reported [19]. Briefly, a
solution of DOTA-NHS ester (2 eq) in DMF and N, N’-
diisopropylethylamine (DIPEA) (3 eq) were added to the
monomer solution in dry DMF. The mixture was stirred
at room temperature and the progress of the reaction
was followed by analytical RP-HPLC. After completion of
the reaction, generally observed after 3 h, a preparative
RP-HPLC purification was performed yielding the
DOTA-conjugated analog. Homogeneity of each fraction
was assessed by analytical RP-HPLC. Removal of the
Acm group was achieved by silver trifluoromethanesulfo-
nate (100 eq/Acm) treatment of each monomer (dis-
solved in TFA/anisole; 99:1, 1 mg/mL) at 4°C for 2 h.
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The peptide silver salt was then precipitated with diethyl
ether and separated by centrifugation. Dimers were
obtained by the treatment of two identical monomers
(homodimer) or two different monomers (heterodimer)
in equimolar concentration with aqueous 1 M HCl/
DMSO (1:1) overnight at room temperature resulting in
the removal of the silver ions as AgCl and disulfide bond
formation. Following the filtration of silver chloride,
dimeric peptides were once again purified and analyzed
as described above. The structure of the dimeric NPY
scaffold as well as the structure of the incorporated sub-
stitutions is shown in Figure 1.

Cell lines
The neuroepithelioma cell line SK-N-MC endogenously
expressing the NPY Y1 receptor was obtained from
ATCC (HTB-10; LGC Standards, Teddington, Middlesex,
UK) and cultured at 37°C and 5% CO2 in MEM with Glu-
taMax I and supplemented with 10% FBS, 100 U/ml

penicillin and 100 μg/ml streptomycin, 1 mM MEM
sodium pyruvate, and MEM non-essential amino acids
(× 1). The neuroblastoma cell line SH-SY5Y endogen-
ously expressing the NPY Y2 receptor, kindly provided by
Dr. Paolo Paganetti (Novartis, Basel, Switzerland), was
cultured at 37°C and 5% CO2 in MEM/Ham’s F12 with
GlutaMax I and supplemented with 10% FBS, 100 U/ml
penicillin and 100 μg/ml streptomycin, 1 mM MEM
sodium pyruvate, and MEM non-essential amino acids
(× 1). All culture reagents were from Gibco BRL, Life
Technologies, (Grand Island, NY, USA).

Receptor autoradiography
Binding affinities of the compounds were assessed using
sections of cell membrane pellets of SK-N-MC for Y1 or
SH-SY5Y for Y2, as described before [7,13,20]. Briefly,
membrane pellets were prepared and stored at -80°C,
and receptor autoradiography was performed on 20-μm-
thick cryostat (Microm HM 500, Walldorf, Germany)
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Figure 1 Structure of the dimeric NPY scaffold and of the incorporated substitutions. (A) Amino acid scaffold upon which NPY dimers are
built; (B) structures of the substitutions incorporated at R1 to R3.
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sections of the membrane pellets, mounted on micro-
scope slides and stored at -20°C as previously described
for other cell lines and receptors [21]. The slides were
preincubated in Krebs-Ringer solution (NaCl 119 mM,
KCl 3.2 mM, KH2PO4 1.19 mM, MgSO4 1.19 mM,
NaHCO3 25 mM, CaCl2 2.53 mM, D-glucose 10 mM;
pH 7.4) for 60 min at room temperature. Then, they
were incubated for 120 min in the incubation solution
containing the Krebs-Ringer solution, 0.1% BSA, 0.05%
bacitracin, and 10,000 cpm/100 μl of the 125I-labeled
human PYY (hPYY; 2,000 Ci/mmol; Anawa, Wangen,
Switzerland). Membrane pellet sections were incubated
with 125I-hPYY in increasing concentrations ranging
from 0.1 nM up to 1,000 nM of non-labeled hPYY, as
control, or with the compounds to be tested. After the
incubation, the slides were washed two times for 5 min
and then rinsed four times in ice-cold preincubation
solution. After drying, the slides were exposed to Kodak
films Biomax MR® for 7 days. IC50 values were calcu-
lated after quantification of the data using a computer-
assisted image processing system (Analysis Imaging
System, Interfocus, Mering, Germany). Tissue standards
(autoradiographic [125I] and/or [14C] microscales, GE
Healthcare, Little Chalfont, UK) containing a known
amount of isotope, cross-calibrated to tissue-equivalent
ligand concentrations were used for quantification [22].

Adenylate cyclase activity
Adenylate cyclase activity was determined in SK-N-MC
cells using the adenylate cyclase activation flashplate assay
(SMP004) from PerkinElmer (Waltham, MA, USA). SK-
N-MC cells were seeded in 96-well culture plates at
25,000 cells/well and cultured for 48 h at 37°C and 5%
CO2. Culture medium was then removed from the wells
and fresh medium (100 μL) containing 0.5 mM 3-isobutyl-
1-methylxanthine (IBMX) was added to each well. Cells
were incubated for 30 min at 37°C. Medium was then
removed and replaced with fresh medium containing
0.5 mM IBMX, with or without 10 μM forskolin and var-
ious concentrations of the peptides to be analyzed. Cells
were incubated for 30 min at 37°C. After removal of the
medium, cells were lysed and cAMP accumulation was
determined using the SMP004 kit from PerkinElmer
according to the instructions of the manufacturers.

Results
Rational design of dimeric Y1 receptor affine peptide
antagonists
In order to generate and identify competitive and Y1

receptor affine antagonists suitable for breast cancer tar-
geting, we took advantage of previously reported struc-
ture-activity relationship studies. Using a known dimeric
Y1-selective antagonist (analog 1, Table 1) as our tem-
plate [23], we first looked at modifications supposedly

increasing the antagonistic property and/or selectivity of
NPY analogs. As a matter of fact, the replacement of
Tyr32 (NPY numbering) by a Trp and introduction of a
hydrophobic and bulky residue such as norleucine (Nle)
in position 34 were shown to increase Y1 receptor-bind-
ing affinity [24]. The DOTA-conjugated counterparts of
peptides 1 and 3 (Table 1) were then obtained through
the addition of the chelator moiety at the N-termini of
the peptide dimers (analogs 2 and 4, Table 1). Other sites
for the introduction of the chelating derivative were also
considered. Based on previously reported structure-activ-
ity relationship studies, only the residue at position 29,
i.e., Asn, was tolerant to amino acid replacement [25,26].
The C-terminal part of NPY, i.e., regions 32 to 36, is
known to be directly involved in Y1-receptor binding
[26,27] and was therefore not considered in our study.
Similarly, the proline residue at position 30 is essential
for the antagonistic behavior of such analogs and was
consequently not replaced [28]. Nevertheless, we investi-
gated the possibility to replace the proline residue by a
cis or trans amino-proline moiety to which DOTA could
be coupled. However, this substitution resulted in a sig-
nificant reduction of binding affinity (data not shown).
Thus, we replaced Asn29 with a diaminopropionic (Dpr)
(5) or a lysine (Lys) residue (9), and attached the DOTA
moiety to the b or ε amino group of these residues,
respectively. Analogs 6 and 10, with two chelators, exhib-
ited lower binding affinities than their parent peptides
(Table 2). These two amino acids, varying only by the
number of carbon in their side chain, will also help us
investigate the impact of the spatial proximity between
the DOTA moiety and the peptide backbone on the bio-
logical activity. Addition of DOTA derivative was often
followed by a concomitant reduction of binding affinity,
most probably due to the steric hindrance of such resi-
due, as exemplified with somatostatin analogs [29]. With
no understanding on how the conjugation of the chelator
on each segment of the peptide dimer will impact the
binding affinity, selectivity, and biological activity, we
investigated the possibility to generate heterodimer bear-
ing only one DOTA derivative (analogs 8 and 11, Table 1)
thus keeping the other peptide segment intact to ensure
high binding affinity. Each purified monomer was usually
obtained in a 15% to 25% yield calculated on the base of
the substitution of the starting resin. After completion of
the DOTA-conjugation and the removal of the Fmoc pro-
tecting group (if necessary), the purified monomeric
DOTA-conjugated derivatives were generally obtained in a
25% to 30% yield based on the starting material. Finally,
following the dimerization and the subsequent purification
steps, the final products were isolated in a 10% to 15%
yield based on the equimolar concentration of the starting
materials. In total, 11 peptides were synthesized, purified
and analyzed by RP-HPLC, CZE and MALDI-TOF
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Table 1 Physicochemical properties of free and DOTA-coupled dimeric peptide NPY analogs

Analog number Amino acid residues N-term Purity (%) MSc

Xa29 Xa29’ Xb Xc DOTA HPLCa CZEb calc obs

1 Asn Asn Tyr Leu No 98 98 2,389.2 2,390.3

2 Asn Asn Tyr Leu Yes 97 96 3,161.6 3,162.6

3 Asn Asn Trp Nle No 94 90 2,435.2 2,436.5

4 Asn Asn Trp Nle Yes 95 92 3,207.6 3,208.8

5 Dpr Dpr Trp Nle No 99 96 2,379.3 2,380.1

6 Dpr(DOTA) Dpr(DOTA) Trp Nle No 94 93 3,151.6 3,152.4

7 Dpr Asn Trp Nle No 99 99 2,407.3 2,408.5

8 Dpr(DOTA) Asn Trp Nle No 98 97 2,793.5 2,794.9

9 Lys Lys Trp Nle No 88 84 2,463.4 2,464.5

10 Lys(DOTA) Lys(DOTA) Trp Nle No 92 96 3,236.3 3,236.8

11 Lys (DOTA) Asn Trp Nle No 83d 83 2,834.5 2,835.3
aPercentage purity determined by HPLC using buffer system: A = TEAP (pH 2.5) and B = 60% CH3CN/40% A with a gradient slope of 1% B/min, at flow rate of 0.2 mL/min on a Vydac C18 column (0.21 cm × 5 cm, 5-
μm particle size, 300-Å pore size). Detection at 214 nm. bPercentage purity determined by capillary zone electrophoresis (CZE) using a Beckman P/ACE System 2050; field strength of 15 kV at 30°C. Buffer, 100 mM
sodium phosphate (85:15, H2O:CH3CN), pH 2.50, on a Agilent μSil bare fused-silica capillary (75 μm i.d. × 40 cm length). Detection at 214 nm. cMALDI mass spectral analysis (m/z). The observed [M + H]+ of the
monoisotopic mass (obs) compared with the calculated m/z of the monoisotope (calc). dThe detectable contaminant, produced during the dimerization process of this heterodimer, was identified as analog 3.
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spectrometry. Data are listed in Table 1. The structure of a
DOTA-free homodimeric (3), a DOTA-conjugated homo-
dimeric (10) and a DOTA-conjugated heterodimeric (11)
Y1 receptor affine antagonist are shown in Figure 2.

Binding affinity profile
The DOTA-free and DOTA-coupled analogs listed in
Table 1 were analyzed in receptor autoradiography
experiments for NPY Y1 and Y2 receptor-binding affi-
nities on SK-N-MC cells endogenously expressing Y1

and SH-SY5Y cells endogenously expressing Y2, respec-
tively (Table 2). Pharmacological displacement experi-
ment using SK-N-MC cell membrane pellet sections
for compounds 9, 10, and 11 are shown in Figure 3.
The IC50 values for all tested compounds are listed in
Table 2. The addition of two DOTA moieties to the
homodimeric analogs does decrease the Y1 binding affi-
nity up to 2- to 30-fold. However, the addition of only
one DOTA to heterodimer 7 did markedly improve the
binding affinity to an IC50 of 29 nM (8), as compared to
the symmetric, bi-DOTA-linked parent scaffold (6)
showing an IC50 over 1,000 nM. Finally, increasing the
distance between the chelator and the peptide backbone,
i.e., analog 11 (Figure 2), enhanced the binding affinity
(IC50 = 13 ± 3 nM; Table 2) of this heterodimer for the
Y1 receptor. None of the tested compounds showed Y2

binding affinity.

In vitro forskolin-stimulated adenylate cyclase activity
Since the addition of a DOTA moiety can change the
functional characteristics of a compound as recently
shown in the somatostatin receptor field for sst3 [19],
where a sst3 antagonist switched to an agonist upon the
addition of a DOTA, compounds having a high or

moderate Y1 affinity were analyzed in an adenylate cyclase
activity assay for their agonistic or antagonistic properties.
The results are shown in Figure 4. While the Y1-selective
agonist [Leu31, Pro34]-hPYY, used as positive control, effi-
ciently inhibited forskolin-stimulated cAMP accumulation
when applied at concentrations of 20 μM and 100 nM, all
tested compounds, DOTA-free and DOTA-coupled ana-
logs behaved like full antagonists (Figure 4; Table 2).
Given alone at a high concentration of 20 μM the analogs
were not able to inhibit forskolin-stimulated cAMP accu-
mulation but they efficiently antagonized the agonistic
effect of 100 nM [Leu31, Pro34]-hPYY. Moreover, Figure 5
shows that 20 μM of 11, the best compound of this series,
given together with an increasing concentration of [Leu31,
Pro34]-hPYY in the range from 10 nM up to 20 μM is able
to shift by at least three orders of magnitude the dose
response curve of [Leu31, Pro34]-hPYY to the right, indi-
cating that 11 efficiently antagonizes the agonist effect of
[Leu31, Pro34]-hPYY. Thus, these DOTA-conjugated het-
erodimers, i.e., analogs 8 and 11, with their high binding
affinity and antagonist property represent potential candi-
dates for in vivo tumor targeting.

Discussion
The recent demonstration that radiolabeled antagonists
considerably improved the sensitivity of in vivo diagnos-
tic procedures and might improve the efficacy of recep-
tor-mediated radiotherapy suggested the generalized use
of peptide antagonists rather than agonists for in vivo
tumor detection [5,30]. However, selective peptide
antagonists suitable for radiolabeling are not available
for each receptor candidate and therefore they need to
be developed. The high density and incidence of Y1

receptors in invasive and metastatic breast cancers, also
expressing Y2 but not Y4 and Y5 receptors, make these
neoplasms important targets for diagnosis and therapy
with NPY-related drugs [8]. Thus, the aim of the present
study was to design Y1 receptor affine antagonists suita-
ble for molecular imaging.
As demonstrated, NPY exists in equilibrium between

monomer and dimers in aqueous solution [31]. These
dimeric structures were found to be not mandatory for
the binding of NPY to Y2 receptors but were responsible
for the increased Y1-affinity and selectivity. Proof of this
concept was supported by the synthesis and the charac-
terization of several dimeric NPY analogs retaining high
Y1-affinity and selectivity over Y2 [23,25]. We thus
derived a conceptual and experimental approach to the
design of new dimeric Y1 receptor antagonists using the
previously described dimeric scaffold, i.e., Bis(31/31’)
[Pro30, Cys31, Tyr32, Leu34]NPY(28-36)-NH2 (analog 1),
formed by the covalent linkage of two identical entities
mimicking the C-terminal region of the full length NPY
through a disulfide bridge between Cys moiety at

Table 2 Binding affinities at NPY Y1- and Y2-receptors
and Y1-related functional characteristics

Analog number Binding affinitya Functional assay

Y1 Y2 cAMP for Y1

DOTA-free analogs

1 11 ± 7 > 1,000 Antagonist

3 9.0 ± 3 > 1,000 Antagonist

5 143 ± 20 > 1,000 ND

7 19 ± 5 > 1,000 Antagonist

9 127 ± 50 > 1,000 Antagonist

DOTA-coupled analogs

2 143 ± 37 > 1,000 Antagonist

4 294 ± 33 > 1,000 Antagonist

6 > 1000 > 1,000 ND

8 29 ± 7 > 1,000 Antagonist

10 283 ± 52 > 1,000 Antagonist

11 13 ± 3 > 1,000 Antagonist

Functional characteristics for free and DOTA-coupled dimeric peptide NPY
analogs. aIC50 values in nanomolars; mean ± SEM; n ≥ 3. ND, not determined.
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position 31 [32]. As supported by a previous report,
replacement of Tyr32 by Trp and Leu34 by Nle (3) did
not produce a significant change in binding affinity or
selectivity. However, adjunction of DOTA moieties to

the N-termini of these dimeric peptides resulted in a
dramatic loss of binding affinity (2 and 4) suggesting the
importance of the N-terminus for receptor recognition.
In accordance, evidence demonstrating that N-terminal

A

HN

NH

NH

NH

H
N

N
H

H2N O
O

O
O

O

O

O

N
H

HN

NH2

N
H

HN

NH2

HO

S

N
O

NH

H
N

NH

H
N

N
H

H
N

NH2

O

O

O
O

O
O

O

NH

HN NH2

HN

NH

NH2

OH

S

N

O

N
H

O

H2N
HN

O

H2N

NH

NH

NH2

O O
H2N

B

HN

NH

NH

NH

H
N

N
H

H2N O
O

O
O

O

O

O

N
H

HN

NH2

N
H

HN

NH2

HO

S

N
O NH

H
N

NH

H
N

N
H

H
N

NH2

O

O

O
O

O
O

O

NH

HN NH2

HN

NH

NH2

OH

S

N

O

N
H

O

NH2 HN
O

H2N

NH

HN

HN

N
H

O
N

N

N

N OH

O

HO
O

O

OH

O
NN

N N

OH

O

O
OH

O

OH

C

HN

NH

NH

NH

H
N

N
H

H2N O
O

O
O

O

O

O

N
H

HN

NH2

N
H

HN

NH2

HO

S

N
O NH

H
N

NH

H
N

N
H

H
N

NH2

O

O

O
O

O
O

O

NH

HN NH2

HN

NH

NH2

OH

S

N

O

N
H

O

NH2 HN
O

H2N

NH

HN

N
H

O
NN

N N

OH

O

O
OH

O

OH
O

H2N

3

10

11

Figure 2 Structure of the DOTA-free dimeric Y1 receptor affine antagonist (3) and its DOTA-conjugated dimeric counterparts. Structure
of (A) the DOTA-free dimeric Y1 receptor affine antagonist (3) and its DOTA-conjugated dimeric counterparts (B) 10 and (C) 11.
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acylation might compromise receptor affinity and selec-
tivity were already reported in the literature [33,34].
Such observation prompted us to evaluate different sites
for the introduction of the DOTA. Thus, introduction
of the DOTA moiety was achieved through its selective
addition to the b or ε side chain amino group of a Dpr
or Lys residue, respectively, introduced at position 29
which was found to be tolerant to amino acid replace-
ment [25,26]. However, such substitution in each seg-
ment of the peptide dimers (6 and 10) resulted in a loss
of Y1 receptor-binding affinity compared to their
DOTA-free counterparts (5 and 9). Most likely, this
reduction of affinity is probably due to the size and the
negatively charged character of the DOTA moiety. As
observed by NMR in BVD15, a monomer segment ana-
logous to our peptide dimer, the Arg33, which was
found to be particularly involved in the Y1 receptor
recognition [27], and Asn29 side chains seem to be spa-
tially closed [35]. It is thus probable that coupling the
DOTA moiety to the Dpr residue might disrupt the
orientation or the character of the positively charged

-10 -9 -8 -7 -6
0

25

50

75

100

log[compound] (M)

12
5 I-

hP
YY

 s
pe

c.
 b

in
di

ng
 (%

)

0

Figure 3 Competition binding experiments using the NPY Y1
receptor-expressing SK-N-MC cell line. All four tested compounds
exhibit Y1 selectivity. While hPYY (solid circle) and 11 (solid
diamond) show high-affinity displacements of 125I-hPYY the analogs
9 (solid square) and 10 (solid triangle) show lower affinity
displacements of 125I-hPYY. Dose response curves of at least three
independent experiments ± SEM are shown.
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Figure 4 Effect of various Y1 affine analogs on forskolin-stimulated intracellular cAMP accumulation in SK-N-MC cells. Cells were
incubated for 30 min with 10 μM forskolin either alone, or with 10 μM forskolin in the presence of 20 μM or 100 nM of the reference
compound [Leu31, Pro34]-PYY (LP-PYY), or with 10 μM forskolin in the presence of the various Y1 affine analogs either alone at a concentration of
20 μM or at a concentration of 20 μM in the presence of 100 nM LP-PYY. Intracellular cAMP accumulation was then determined as described in
Methods. Results are shown as percentage of the 10 μM forskolin effect on intracellular cAMP accumulation. While the 10 μM forskolin effect is
efficiently inhibited by the agonist LP-PYY at 20 μM and 100 nM, all tested analogs behave as antagonist since given alone they are not able to
inhibit the forskolin effect while they completely and efficiently antagonize the 100 nM effect of LP-PYY.
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Arg residue and thus alter the overall binding affinity.
Supporting this hypothesis, increasing the distance
between the DOTA moiety and the peptide backbone, i.
e., analogs 6 and 10, resulted in a less dramatic loss of
binding affinity probably by reducing the electrostatic
effect of the carboxyl groups of the DOTA moiety on the
guanidinium derivative. The higher binding affinity of
homodimeric NPY peptides was often related to the pro-
pensity of NPY receptors to form homodimers as
recently demonstrated [36]. As such, by keeping intact
one segment, original interaction between heterodimers
(8 and 11) and their receptor was restored; these two
compounds being almost equipotent compared to the
lead precursor (1). Although preliminary in nature, our
results, and more particularly those of analog 11, repre-
sent the first step towards the development of dimeric
DOTA-coupled Y1 receptor antagonist for nuclear medi-
cine application. Even if the stability of these analogs has
not been evaluated in the present study, these com-
pounds should prove to be sufficiently stable for tumor
targeting purpose. Indeed, Bis(31/31’)[Cys31, Nva34]NPY
(27-36)-NH2, presenting a high sequence and scaffold
homology with our compounds was able to stimulate in
vivo the food intake in rats in a similar manner than that
observed by other non-dimeric Y5 selective agonists [37].
In analogy to somatostatin receptor targeting of

tumors, it has been proposed to use NPY analogs to tar-
get NPY receptors for tumor therapy. NPY analogs

suitable for this purpose have indeed already been devel-
oped, such as a daunorubicin-coupled cytotoxic NPY
analogs [16] and a Y2-selective

99 mTc-labeled radioactive
NPY analog [17], all being agonists. Assuming that the
observation of the superiority of somatostatin receptor
antagonists, but also of bombesin receptor antagonists
[30] for tumor targeting can be generalized, the present
DOTA-coupled high-affinity Y1 receptor antagonist may
be a useful tool for the diagnostic and radiotherapeutic
targeting of Y1-expressing tumors. Breast tumors with
their high Y1-receptor density would represent first
choice candidate tumors. Other tumor types, such as
renal cell carcinomas, ovarian cancers, adrenal tumors
and embryonic tumors, may also be targets of interest.
The same general principles as for somatostatin receptor
targeting could be applied. Advantages that should be
put forward are a more favorable benefit-toxicity profile
compared with conventional radio- or chemotherapy and
the rarity of side effects. The radiotargeting of NPY
receptor-expressing tumor blood vessels alone or
together with NPY receptor-expressing tumor cells may
also represent an attractive strategy for therapy. Finally,
since many of the NPY receptor-expressing tumors can
express multiple peptide receptors concomitantly, NPY
receptors may be suitable for a multireceptor targeting
with a cocktail containing NPY and other therapeutic
peptide analogs directed against various peptide hormone
receptors. For such a multireceptor approach, good can-
didate tumors seem to be breast tumors targeted with
NPY and bombesin analogs.

Conclusions
In the course of designing and synthesizing DOTA-
coupled dimeric NPY Y1 receptor antagonists, we found
that the addition of a DOTA moiety to both peptide seg-
ments negatively influenced the binding affinity of all
dimeric compounds synthesized and that the asymmetric
introduction of a DOTA to one of the segments of the
peptide heterodimer yields compounds exhibiting high
binding affinity and Y1-selectivity over Y2. Analogs 8 and
11 are the first dimeric high-affinity DOTA-coupled Y1

receptor antagonists. They may, when linked to an ade-
quate radiometal, become useful tools for in vivo tumor
targeting of Y1-positive tumors, particularly breast
tumors.

Abbreviations
The abbreviations for the common amino acids are in accordance with the
recommendations of [38]. Additional abbreviations: Acm: acetamidomethyl;
Boc: tert-butoxycarbonyl; BSA: bovine serum albumin; cAMP: 3’,5’-cyclic
adenosine monophosphate; 14C: 14Carbon; CZE: capillary zone
electrophoresis; DCM: dichloromethane; DIC: N, N’-diisopropylcarbodiimide;
DIPEA: N, N’-diisopropylethylamine; DMF: dimethylformamide; DMSO:
dimethylsulfoxide; DOTA: 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic
acid; Dpr: 2,3-diaminopropionic acid; FBS: fetal bovine serum; Fmoc: 9-
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Figure 5 Antagonistic effect of 11 on the inhibition of
forskolin-stimulated intracellular cAMP accumulation in SK-N-
MC cells. Cells were incubated for 30 min with 10 μM forskolin in
the presence of [Leu31, Pro34]-PYY (LP-PYY) at concentrations
ranging between 0.01 nM and 20 μM alone (solid circle) or with 10
μM forskolin in the presence of LP-PYY at concentrations ranging
between 0.01 nM and 20 μM supplemented with a fixed
concentration of 20 μM of the analog 11 (solid square). Compound
11 behaves like an antagonist since it shifts the dose response
curve of LP-PYY to the right. Compound 11 given alone at a
concentration of 20 μM has no effect on the accumulation of
forskolin-stimulated cAMP (solid triangle).
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fluorenylmethoxycarbonyl; IBMX: 3-isobutyl-1-methylxanthine; 125I: 125Iodine;
MALDI-TOF-MS: matrix assisted laser desorption/ionization-time off light
mass spectrometry; MBHA: 4-methylbenzhydrylamine; MEM: minimum
essential medium; NHS: N-hydroxysuccinimide; NMR: nuclear magnetic
resonance; Nle: norleucine; NPY: neuropeptide Y; Nva: norvaline; PP:
pancreatic polypeptide; PYY: peptide YY; RP-HPLC: reversed-phase high-
performance liquid chromatography; TEA: triethylamine; TEAP:
triethylammonium phosphate; TFA: trifluoroacetic acid.
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