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a b s t r a c t

Full-waveform inversion (FWI) of seismic data is a technique that can be used to image the subsurface
as well as to monitor time-lapse changes in the subsurface (TL-FWI). PyFWI is a package that has been
designed to carry out FWI and TL-FWI efficiently on GPU for research purposes. Several time-lapse
strategies are implemented in PyFWI, such as parallel, double-difference, cascaded, central-difference,
cross-updating, simultaneous, and weighted-average. An important challenge of TL-FWI is the crosstalk
between parameters across different vintages. To alleviate this problem, PyFWI allows using different
parameterizations. PyFWI is written in Python and relies on OpenCL for enabling calculations on GPUs,
which leads to significant reduction of computation time compared to CPU implementation. Using
OpenCL makes PyFWI portable across systems built with GPUs from different manufacturers.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Code metadata

Current code version 0.1.9
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-22-00399
Permanent link to Reproducible Capsule None
Legal Code License GPL-3.0
Code versioning system used git
Software code languages, tools, and services used python, OpenCL
Compilation requirements, operating environments & dependencies
If available Link to developer documentation/manual https://pyfwi.readthedocs.io/en
Support email for questions mardan.amir.h@gmail.com

r
t
i
C
e

l
p

1. Motivation and significance

Seismic methods are used to image and characterize the sub-
urface. They rely on mechanical waves to probe the Earth [1].
hese waves propagate based on the (visco)elastic properties of
he Earth. Full-waveform inversion (FWI) has shown its ability to
xtract high resolution image of the (visco)elastic properties in
he subsurface directly from the recorded wavefield [2,3]. Time-
apse FWI (TL-FWI) has also shown promising results to monitor
roperty changes in the subsurface, which is important for CO2
equestration and oil and gas applications [4–6].
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FWI allows obtaining a model of the subsurface by minimizing
the residuals between data estimated from an initial model and
the observed data at the receiver’s locations [7]. The minimiza-
tion is carried out with local gradient descent algorithms. To
estimate the gradient of the misfit function, the adjoint state
method [8] is used which requires one more modeling run. As
FWI is computationally expensive, substantial work has been
done to adapt this method to GPU programming [9,10]. PyFWI
elies on OpenCL [11] in its core to accelerate the computation by
aking the advantage of GPU programming. As PyFWI is written
n Python, this integration is happening through PyOpenCL [12].
ontrary to CUDA, OpenCL is compatible with the majority of
xisting processors [10] and this makes PyFWI a portable option.
In addition to computation cost, FWI is an ill-posed prob-

em [13]. An additional challenge is the crosstalk between the
arameters [3,14]. To make the problem better posed, four com-
on regularization methods such as Tikhonov, total-variation,
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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rior-information, and parameters relationship [4,15–17] are in-
egrated into this package. The most effective methods to miti-
ate the problem of crosstalk are performing the inversion using
n optimal parameterization [14,18] and using the Hessian for
ptimization [19,20]. To model isotropic elastic Earth, three pa-
ameters are required [18]. Depending on the problem at hand,
ifferent parameterizations (all linked to the elastic properties)
an be used to perform the calculations. In the current version,
yFWI can be used to perform TL-FWI in four different param-
terizations such as DV (density, P-wave velocity, and S-wave
elocity), PCS (porosity, clay content, and water saturation), LMD
Lamé moduli and density), and KMD (bulk modulus, shear modu-
us, and density). It should be noted that users can easily augment
his list with custom-defined parameterizations. In addition to
onjugate gradient, the ℓ-BFGS method is provided to minimize
he loss by taking the approximate of Hessian into account [21].
n addition to the mentioned techniques, gradient scaling abil-
ty [22] is integrated into this package to better address the
roblem of crosstalk.
PyFWI is a versatile and flexible package to perform TL-

WI. Different methods have been proposed to provide accurate
ime-lapse estimates of the subsurface using TL-FWI. PyFWI al-
lows geophysicists to conduct a time-lapse study using seven
methods such as parallel, double-difference [23], cascaded [24],
cross-updating [25], simultaneous [25], central-difference [5], and
weighted-average inversion [6]. These methods are discussed in
more detail in [26].

2. Software description

PyFWI is a Python package first published in January 2022 on
the Python Package Index (PyPi) under the GNU General Public
License (GPLv3). The source code is hosted on GitHub and open
to contributions.

2.1. Software functionality

The main functionality of PyFWI is providing the required
tools to perform FWI and TL-FWI with a variety of techniques,
considering seismic wave propagation in an elastic medium. FWI
is a local minimization of residuals between the observed and es-
timated wavefields at the receiver’s locations [13]. Taking the reg-
ularization term (χREG) into the consideration, the cost function of
FWI problem can be written as

χ (m) =
1
2
∥Wd (RF (m)− d) ∥22 + χREG, (1)

where R samples the seismic wavefield at the receiver’s locations.
Vectors m and d represent the model parameters and observed
ata, respectively, along with Wd which is a weighting operator
f the data misfit. The wavefield u is the solution of the partial
ifferential operator, F (m). In the time domain, this operator can
e written for the 2D elastic case as

ρ ∂vx
∂t =

∂τxx
∂x +

∂τxz
∂z + svx ,

ρ ∂vz
∂t =

∂τzz
∂z +

∂τxz
∂x + svz ,

∂τxx
∂t = (λ+ 2µ) ∂vx

∂x + λ ∂vz
∂z + sτx ,

∂τzz
∂t = λ ∂vx

∂x + (λ+ 2µ) ∂vz
∂z + sτz ,

∂τxz
∂t = µ( ∂vx

∂z +
∂vz
∂x ),

(2)

where s is the source function and where the particle velocities in
x- and z-directions (vx and vz) plus normal (τxx and τzz) and shear
tresses (τxz) build the wavefield vector, u. The initial condition
f the problem is given by
t=0
= τ t=0

= 0. (3)
i ij

2

For boundary condition, perfectly matched layer [27] (PML) is
used to reduce the reflected energy from the edges of the model.
To estimate the gradient of the cost function of a PDE-constrained
optimization problem such as FWI, the adjoint state method can
be used [8]. The adjoint of wavefield, ũ, written as,

ũ = [ṽx, ṽz, τ̃xx, τ̃zz, τ̃xz]
T , (4)

is the solution of the adjoint of Eq. (2), presented as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ṽx
∂t = −

∂(λ+2µ)τ̃xx
∂x −

∂λτ̃zz
∂x −

∂µτ̃xz
∂z − rvx ,

∂ṽz
∂t = −

∂λτ̃xx
∂z −

∂(λ+2µ)τ̃zz
∂z −

∂µτ̃xz
∂x − rvz ,

∂τ̃xx
∂t = −

∂ρ−1 ṽx
∂x − rτxx ,

∂τ̃zz
∂t = −

∂ρ−1 ṽz
∂z − rτzz ,

∂τ̃xz
∂t = −

∂ρ−1 ṽx
∂z −

∂ρ−1 ṽz
∂x − rτxz ,

(5)

where T is the transpose operator and r represents the residuals
between the components of seismic data. The gradient of the cost
function can be obtained by

∇mχ =

⟨
ũ,

∂F (m)
∂m

u
⟩
, (6)

which is the zero-lag cross-correlation between the forward
wavefield and the adjoint wavefield multiplied by the scattering
matrix, ∂F (m)

∂m . Eq. (2) is used to perform forward propagation and
it is solved forward in time (t : 0→ T ) where T is the recording
time. In contrast, Eq. (5) performs backward propagation and
is solved in reverse of time (t : 0 ← T ). Hence, the forward
wavefield, u, should be available while solving Eq. (5) to calculate
the gradient of the cost function using Eq. (6). In PyFWI, the wave
equation is solved in the time domain and u should be stored at
each time step of forward modeling to be used after obtaining the
adjoint wavefield at the corresponding time step. Although this
technique is simple, the storage and input/output requirements
of this data volume is demanding and needs a more efficient
strategy. Different strategies are discussed in [28]. In PyFWI, a
checkpointing strategy is employed where the forward wavefield
is stored at some time steps and reconstructed at other time
steps. PyFWI allows users to specify what percentage of forward
wavefield should be stored.

Due to its ease of implementation and great compatibility with
GPU programming, the finite-difference method (FDM) is used to
solve Eqs. (2) and (5). These equations are discretized in space
using a staggered grid [29] as shown in Fig. 1a. In time, derivatives
are estimated using the leapfrog method where velocities and
their adjoints are updated at integer time steps, and stresses and
their adjoints are updated at half-time steps. Fig. 1b shows the
temporal discretizing scheme for wave propagation.

2.2. Software architecture

Algorithm 1 describes the process of computing the gradient of
the cost function (Eq. (1)) with respect to model parameters using
the adjoint state method. This algorithm is implemented as the
core of PyFWI in a module named wave_propagation (Fig. 2).
This module allows users to perform the wave propagation (for-
ward and backward) using the class WavePropagator. Wave-
Propagator consists of two main methods, forward_modeling
for performing the forward propagation (step 3–13) and gradi-
ent for performing the backward propagation and computing the
gradient (step 15–28).

To estimate the gradient using PyFWI, it is first required to
input the acquisition geometry and define parameters such as
location of sources and receivers and the source function. This

step is performed with the aid of the module acquisition.
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Fig. 1. Geometry of a grid used for discretizing Eqs. (2) and (5). (a) The staggered grid is used for spatial discretizing. Temporal discretizing for (b) forward and (c)
adjoint modeling where k is a time step.
Fig. 2. (a) Structure of PyFWI. PyFWI has wave_propagation at its core to perform wave propagation and compute the gradient. This module is used in fwi and
l_fwi to perform FWI and TL-FWI. (b) Applications of each module where acquisition and processing are used to define the acquisition and perform gain
n in the current version.
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hese parameters, in addition to the observed data and an initial
odel are the inputs for computing the gradient. PyFWI pre-
ares the buffers for forward and backward wave propagation.
n the next step, the software calls OpenCL kernels that apply
inite-difference stencils to offload the computation to the GPUs.
orward wave propagation is performed on GPU. In the next step,
he waveform is sampled at the receiver’s locations (dest ). To
ompute the gradient of the cost function, the OpenCL kernels
re called for performing the back propagation and the gradient
s computed using the adjoint-state method. At the end, the
radients are transferred to CPU and the minimization step is
erformed in Python. After estimating the gradient at step 28
f algorithm 1, the module grad_switcher can be used to
rovide the gradient of the cost function in terms of different
arameterizations. The computation cost for such an operation
s negligible. Hence, changing the parameterization is performed
n CPU.
 s

3

On top of wave_propagation, PyFWI consists of modules
wi and tl_fwi to perform full-waveform inversion and time-
apse full-waveform inversion, respectively. Forward and back-
ard propagations are the essence of performing these inver-
ions. The class TimeLapse in module tl_fwi is derived from
lass WavePropagator, and thus benefits from the latter to
imulate wave propagation. The class TimeLapse, also uses the
lass FWI from module fwi in its computation. The minimization
f the cost function occurs mostly in class FWI. The optimization
rocedure can be regularized using Regularization, defined in
he module fwi_tools.

. Illustrative examples

In this section, we present a simple synthetic example that
hows the main functionalities of PyFWI. In this example, we

imulate two common scenarios, and make use of the Marmousi
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Fig. 3. Marmousi model used as an example for this study. True (a–c) baseline, (d–f) monitor models, and (g–i) time-lapse changes. From left to right, the columns
show VP , VS , and ρ, respectively.
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Algorithm 1 Pseudo-code for computation of the gradient using
the adjoint state method where Ns,Nt , dest , and checkpoints are
number of sources, number of time samples, estimated data, and
a list of time steps at which the forward wavefield should be
stored.
1: Input: Observed data (dobs), initial model (m0), and acquisition

parameters
2: Initialize OpenCL
3: s← 1
4: while s ≤ Ns do
5: t ← 1
6: while t ≤ Nt do
7: Call kernel_updatev for vi
8: Call kernel_updatet for τij
9: if t in checkpoints then
0: store vi and τij

1: Increment t
2: Increment s
3: Record dest
4: Compute residuals dest − dobs
5: while 1 ≤ s ≤ Ns do
6: t ← Nt
7: while 1 ≤ t ≤ Nt do
8: if t in checkpoints then
9: read vi and τij
0: else
1: Call kernel_updatet for τij
2: Call kernel_updatev for vi

3: Call kernel_updatet for τ̃ij
4: Call kernel_updatev for ṽi
5: Call kernel_updateg for gradients
6: Decrement t
7: Decrement s
8: Compute gradients
9: Switch gradients

model [30], which is a well-known model for analyzing the effi-
ciency of FWI algorithms [4,6,25]. Fig. 3a–c show the properties
of the true baseline model and Fig. 3d–f show the properties
of the true monitor model. The Marmousi model contains two
sandstone reservoirs. To create the baseline model, we changed
4

the VP and VS in the reservoirs for their respective background
velocity. This means the velocity decreases in time in one reser-
voir (mimicking CO2 injection in the reservoir) and increases in
nother reservoir (simulating petroleum production). The true
ime-lapse changes are presented in Fig. 3g–i, in which the reser-
oirs can be easily detected. The seismic data modeled with the
aseline and monitor models and their difference are presented
n Fig. 4. The time-lapse data (Fig. 4c) are amplified by a factor of
for better visualization. This figure illustrates a shot gather for

he middle source, in an acquisition where 7 isotropic explosive
ources are deployed. For these sources, the Ricker wavelet with
peak frequency of 30 Hz is employed. We also use PML around
he model to avoid reflections from the edges of the model.

To perform TL-FWI, we used a lowpass Butterworth filter with
ut-off frequencies of [10, 20, 25, 35, 40, 55] Hz in a multi-
cale strategy with 10 iterations at each frequency (listing 1). The
ulti-scale strategy is provided to mitigate the problem of cycle-
kipping and consists in performing the inversion from lower
requencies toward higher ones. The simultaneous time-lapse
lgorithm is used for this study, which minimizes the difference
etween the observed and estimated data from different vintages
y considering a penalty term for the difference between the
aseline and monitor models, such that

(mb,mm) =λb∥RF (mb,ub)− db∥
2
2 + λm∥RF (mm,um)− dm∥

2
2

+ λ∆∥mm −mb∥
2
2,

(7)

here λ and the subscripts b and m represent the regularization
eight for each term, baseline, and monitor models.

from PyFWI.tl_fwi import TimeLapse

inv_freqs = [10, 20, 25, 35, 40, 55]
iterations =[10 for freq in inv_freqs]

# Creating a TL-FWI object
tl = TimeLapse(db_obs, dm_obs, inpa, src, rec_loc,

model_shape)

# Call the object for estimating the time-lapse
changes by updating m0 as the initial model

dm, rms = tl(m0, iterations , inv_freqs , tl_method= " sim
" ,

n_params=1, k_0=3, k_end=4)

Listing 1: Performing TL-FWI by creating the object TL and
calling this object by providing the initial model, number of
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Fig. 4. Seismic data from (a) baseline, (b) monitor models, and (c) time-lapse difference. The amplitude of the time-lapse data is amplified by a factor of 5 for better
visualization.
Fig. 5. The estimated time-lapse image using (a–c) DV parameterization and (d–f) PCS parameterization. From left to right, the columns show the changes in VP , VS ,
and ρ, respectively. The PCS parameterization leads to 11.7% higher accuracy in this study.
iteration for each frequency, and list of frequencies for performing
multi-scale inversion.

TL-FWI results are presented in Fig. 5 using two different
parameterizations. Fig. 5a–c are obtained using the DV param-
eterization while Fig. 5d–f are estimated using the PCS parame-
terization. Comparing the estimated time-lapse changes (Fig. 5)
with the true changes (Fig. 3g–i) shows how changing the pa-
rameterization can lead to a more accurate estimate of changes
in the elastic properties of the subsurface (11.7% higher accuracy).
Although the estimates still have artifacts, PyFWI gives the user
the possibility to choose a parameterization and a strategy that is
appropriate for the project at hand.

4. Impact

PyFWI can be employed to perform full-waveform inversion
and time-lapse full-waveform inversion. Using OpenCL allows
this package to reduce the computation time by leveraging the
compute power from GPU of most vendors. Although the authors
are dedicated to further development of the package, the current
version can be used only for 2D problems.

This package was first released in January 2022 and based
on statistics from PePy website, it has been downloaded 13000
times. The authors used this package in a variety of studies and
they published different papers [6,31–33], in addition to the pa-
pers under revision or in preparation where PyFWI is presented.
This should increase the visibility of this package outside of the
research group of the authors.

5. Conclusion

In this paper, PyFWI is presented which is a Python pack-
age for performing full-waveform inversion and time-lapse full-

waveform inversion. To mitigate some challenges inherent to

5

these problems, PyFWI provides different options such as differ-
ent types of regularization, multi-scale strategy, gradient scaling,
and different parameterizations. The most important aspect of
this package is the ability to perform the inversion with different
parameterizations which has significant effects on the results.
Using OpenCL makes this package compatible with majority of
GPU manufacturers. The source code is hosted on GitHub and
is open to contribution and further development. PyFWI is also
provided on the Python Package Index (PyPi) website which leads
to easy installation using the package installer for Python (pip).
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