
1. Introduction
The time series of hydroclimatological variables are modeled and stochastically simulated to provide alternatives 
for future water resources management (Hipel & McLeod, 1996; Lall & Sharma, 1996). In a hydroclimatological 
time series, diverse nonstationarities were included, such as trends, change points, or oscillations, especially in 
recent years due to anthropogenic effects and climate change (Du et al., 2020; Ganguli & Coulibaly, 2017; Hui 
et al., 2018; Zhou, 2020).

Different stochastic simulation models have been adopted to fit those nonstationarities. For example, a number 
of hydroclimatological variables present trend in their time series due to climatic, environmental, and anthro-
pogenic effects (Khaliq et  al.,  2009; Myronidis et  al.,  2018; Sakiur Rahman et  al.,  2018). Subsequently, the 
efforts for detecting their trends and modeling the trends have been performed (Fathian & Vaheddoost, 2021; 
Pishgah Hadiyan et al., 2022; Razavi & Vogel, 2018).

Furthermore, Salas and Boes (1980) developed the shifting mean level (SML) model for hydrological time series 
and Sveinsson et al. (2003) illustrated that SML model can be a good candidate to describe the alternating mean 
levels of hydroclimatological variables, including the Pacific Decal Oscillation index and mean annual flows of 
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Plain Language Summary The current study explores and develops three possible approaches to 
simulate nonstationarities in hydrometeorological variables for future management strategies of water-related 
disasters, such as floods. These include the simulation as trends, shifting mean models, and oscillatory 
signals. Depending on the characteristics of the series, the three stochastic simulation models are tested, and 
conclusions are formulated.
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the Niger River. The SML model was also adopted to stochastically model and simulate the Great Lakes system 
(Fagherazzi et al., 2007, 2011).

In addition, Kwon et al. (2007) employed wavelet analysis (Foufoula-Georgiou & Kumar, 1994; Labat, 2005) 
and autoregressive moving average (ARMA) models to simulate the selected signals of hydroclimatological 
variables. Even if its application was successful in simulating rainfall and temperature series, its wavelet compo-
nents were not easy to select, and the ARMA model does not have feature the ability to reproduce oscillatory 
signals extracted from wavelet analysis. Also, Lee and Ouarda  (2012) proposed a model that extracts signals 
from a time series with empirical mode decomposition (EMD) and simulates the combined significant signals 
with the nonstationary oscillation resampling technique (NSOR). The EMD results from a finite number of 
signals from the time series and the NSOR has the ability to reproduce the smoothed variability of the extracted 
signals. Further model development has been made to simulate time series with a multivariate framework (Lee 
& Ouarda, 2019).

Furthermore, deep learning models have been popularly employed in the literature, especially for the predic-
tion of hydroclimatological variables by modeling nonlinear temporal relations in hydroclimatological variables 
(Kumar et al., 2019; Le et al., 2019; Qi et al., 2019). Among others, long short-term memory (LSTM), abbre-
viated as LSTM (Hochreiter & Schmidhuber, 1997), was employed as one of the most popular temporal deep 
learning models. Lee et al. (2020) recently employed the LSTM model to simulate hydroclimatological variables 
and proved that the LSTM model can be a good alternative to reproduce the long-term dependence structure 
of a historical time series since the LSTM model was originally invented to reproduce the long-term memory 
as presented in the name itself (i.e., LSTM). Likewise, there are a number of alternative models to illustrate 
the nonlinearities and nonstationarity embedded in hydroclimatological series (Khaliq et al., 2009; Myronidis 
et al., 2018; Sakiur Rahman et al., 2018; Zirulia et al., 2021).

Nonetheless, it is often not clear which type of nonstationarity is included in the target hydroclimatological 
time series, and its impact on water management is significant according to the definition of nonstationarity. 
Meanwhile, the record-breaking floods of 2011 in Lake Champlain (LC) in Vermont and New York, U.S. and 
the Richelieu River (RR) in the province of Quebec, Canada prompted the U.S. and Canadian governments to 
work on identifying how flood forecasting, preparedness and mitigation can be improved in the Lake Champlain 
and Richelieu River (LCRR) basin (Saad et al., 2016). The International Joint Commission (IJC) submitted the 
LCRR Plan of Study (PoS) to the Governments of Canada and the United States in 2013. The 2013 PoS presented 
the work required in the LCRR basin to analyze potential floodplain management solutions, to build a new flood 
forecasting system for the LCRR basin, and to suggest structural and non-structural flood mitigation and preven-
tion measures. To perform the objectives suggested in the PoS, it is important to adequately generate synthetic 
net basin supply (NBS) series of the LCRR basin. These series are crucial to evaluate the adequacy of flood risk 
mitigation measures and management strategies under many potential hydrological scenarios that could occur in 
the future (Riboust & Brissette, 2015).

To simulate synthetic NBS series, an appropriate time series model must be selected according to the character-
istics of the observed NBS series, including the stochastically nonstationary behavior in that the series presents 
oscillatory long-term variability (note that this has been discussed later). Furthermore, it has been requested 
that the simulated series reproduce the historical levels of LC and RR flows by the LCRR IJC technical work 
group.

Therefore, the objectives of the current study are (a) to apply feasible simulation models that can produce the 
long-term nonstationary variability of the hydrological series; (b) to compare the simulation models according 
to the reproduction of the water-related risks for water management; and (c) to provide all feasible future scenar-
ios to test structural and non-structural flood mitigation and prevention measures according to the simulated 
scenarios.

The remainder of this paper is organized as follows. In Section 2, the mathematical background of the employed 
SML model and empirical mode decomposition with nonstationary oscillation resampling (EMD-NSOR) are 
reviewed. Section 3 presents study area and data description. Section 4 reports the results for the simulated data 
with the SML and EMD-NSOR models as well as the AR with trend. In Section 5, the comparison result of the 
tested three different models were discussed followed by future scenarios. Section 6 provides a summary and 
conclusions.
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2. Mathematical Backgrounds
As discussed, the major objective of the current study is to build a stochastic simulation model that reflects the 
statistical characteristics of the NBS for the LCRR system shown in Figure 1 and to simulate a long-term series 
with the model. To build a relevant time series model, the NBS time series was observed, in Figure 2. Ouarda and 
Charron (2019) performed frequency analysis for the RR flood flows and Champlain level and they found that 
abrupt change points were detected in the NBS series. The overall variation in the NBS series can be viewed in 
following three different ways: as the overall linear trend (top panel), shifting mean process (middle panel), and 
long-term oscillation (bottom panel), as seen in Figure 2.

Modeling the overall variation is important in the current NBS simulation because this series should be used in 
testing mitigation plans for all possible hydrological events, such as the 2011 flood event in the LCRR basin (Saad 
et al., 2016) and water level declination of Great Lakes in 2014 (Watras et al., 2014). The overall trend, in the top 
panel of Figure 2, was modeled with a linear trend model and AR model for its residual. The shifting mean process in 
the middle panel of Figure 2 was modeled with the SML by Sveinsson et al. (2003). Additionally, the long-term oscil-
lation feature in the bottom panel of Figure 2 was modeled with the EMD-NSOR model (Lee & Ouarda, 2012, 2019).

In Figure 3, the overall procedure of the current study is presented. At first, the observed data was obtained and 
transformed into the normal domain. Then, the tested models as AR with Trend, SML, and EMD-NSOR were fitted 
to the observations followed by simulating the series for the current period. The model performance and comparison 
were made with the backtransformed simulation data. Finally, the future extension was made with the tested models.

Figure 1. Map of the Lake Champlain and Richelieu River (LCRR) basin. Note that dark blue presents the whole area of the LCRR basin, light blue inside the dark 
blue presents Lake Champlain (LC), and the northward line from LC illustrates the Richelieu River. The map was provided by the International Joint Commission.
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2.1. Autoregressive Model

A number of time series models have been tested in the literature to simulate time series of hydroclimatological 
variables (Lall et al., 1996; Laux et al., 2011; Monbet & Marteau, 2004; Salas, 1993; Tao & Delleur, 1976). The 
traditional autoregressive (AR) model has been commonly used to consider random noise and time-dependent 
structures (Brockwell & Davis, 2003). For a hydroclimatological variable at time t (referring a year), Yt, the AR 
model of order p (AR(p)) can be explained as follows:

𝑌𝑌𝑡𝑡 =

𝑝𝑝
∑

𝑗𝑗=1

𝜑𝜑𝑗𝑗𝑌𝑌𝑡𝑡−𝑗𝑗 + 𝜀𝜀𝑡𝑡 (1)

where Yt is the time-dependent variable with zero mean, and εt is the time-independent component as εt ∼ N(0,σε 2), 
and 𝐴𝐴 𝐴𝐴𝑗𝑗 is the parameter of the model for the jth lagged variable (i.e., Yt-j). The target time series should have the 
condition that there is no long-term trend or cyclicity and the time series variable Yt is assumed to be normally 
distributed. For example, the AR(1) model can be simply written as follows:

𝑌𝑌𝑡𝑡 = 𝜑𝜑1𝑌𝑌𝑡𝑡−1 + 𝜀𝜀𝑡𝑡 (2)

In other words, the AR model assumes stationarity so that the marginal and joint probability distribution of the 
variable Yt is consistent as follows:

𝐹𝐹 (𝑌𝑌𝑡𝑡) = 𝐹𝐹 (𝑌𝑌𝑡𝑡+𝑘𝑘) for any 𝑡𝑡 and 𝑘𝑘 (3)

𝐹𝐹 (𝑌𝑌𝑡𝑡, 𝑌𝑌𝑡𝑡+𝑘𝑘) = 𝐹𝐹 (𝑌𝑌𝑢𝑢, 𝑌𝑌𝑢𝑢+𝑘𝑘) for any 𝑡𝑡, 𝑢𝑢, and 𝑘𝑘 (4)

Figure 2. Time series of the observed annual net basin supply (NBS) (unit: m 3/s) of Lake Champlain and Richelieu 
River (thick solid line) viewed as the overall linear trend (top panel), shifting mean process (middle panel), and long-term 
oscillation (bottom panel).
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Another feasible way to consider the time series of the annual NBS would be that the time series presents the 
overall trend, in Figure 2. It can be identified and modeled with a linear trend as follows:

𝑌𝑌𝑡𝑡 = 𝛼𝛼1𝑡𝑡 + 𝛼𝛼0 (5)

where 𝐴𝐴 𝐴𝐴0 and 𝐴𝐴 𝐴𝐴1 are parameters and “t” represents time (i.e., year). The residual can be modeled as a time series 
model such as AR(p) in Equation 1 (Hipel & McLeod, 1996). The model of AR(1) with Trend is referred to as 
ARwTr in the current study.

2.2. Shifting Mean Level Model

Salas and Boes (1980) devised the SML to model an abrupt shift process, and Sveinsson et al. (2003) further improved 
this model and applied it to hydroclimatological variables. Note that the physical background of the SML is a sudden 
systematic shift from human effects or natural phenomena such as volcanic activities rather than random processes.

The basic formula of the SML (Salas & Boes, 1980) is presented for a sequence of a random variable Yt as follows.

𝑌𝑌𝑡𝑡 = 𝑈𝑈𝑡𝑡 +𝑍𝑍𝑡𝑡 (6)

where Ut is a sequence of independent identically distributed variables with mean 𝐴𝐴 𝐴𝐴𝑈𝑈 and variance 𝐴𝐴 𝐴𝐴2

𝑈𝑈
 . Zt is a 

sequence with mean zero and variance 𝐴𝐴 𝐴𝐴2
𝑧𝑧 and is expressed as follows:

𝑍𝑍(𝑡𝑡) =

𝑡𝑡
∑

𝑖𝑖=1

𝑚𝑚𝑖𝑖𝐼𝐼(𝑠𝑠𝑖𝑖−1 ,𝑠𝑠𝑖𝑖 ](𝑡𝑡) (7)

Figure 3. Overall procedure of the current study with the tested models as ARwTr, SML and empirical mode decomposition 
with nonstationary oscillation resampling (EMD-NSOR).
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where mi is a random variable with a zero mean and standard deviation of 𝐴𝐴 𝐴𝐴𝑚𝑚 . This represents the various mean 
levels over the time expansion. 𝐴𝐴 𝐴𝐴𝑖𝑖 = 𝑁𝑁1 +𝑁𝑁2 +⋯ +𝑁𝑁𝑖𝑖 with 𝐴𝐴 𝐴𝐴0 = 0 and Ni is the timespan at a certain level, i, 
and a random variable with a geometric distribution and its parameter p as the following:

𝐸𝐸(𝑁𝑁) =
1

𝑝𝑝
 (8)

Note that p is the probability that a mean level changes, and its reverse is the expected length that its mean level 
stays. Additionally, 𝐴𝐴 𝐴𝐴(𝑎𝑎𝑎𝑎𝑎](𝑡𝑡) is the indicator function, which takes the value 1 if 𝐴𝐴 𝐴𝐴 ∈ (𝑎𝑎𝑎 𝑎𝑎] ; otherwise, it takes the 
value 0. The sequences mi, Ni, and Ut are assumed to be mutually independent of each other. The correlation 
structure of the sequence Yt (Salas & Boes, 1980) is expressed as follows:

𝜌𝜌𝑌𝑌 (ℎ) =
𝜎𝜎2
𝑚𝑚

𝜎𝜎2
𝑢𝑢 + 𝜎𝜎2

𝑚𝑚

(1 − 𝑝𝑝)
ℎ
, ℎ = 1, 2, . . . (9)

where 𝐴𝐴 𝐴𝐴𝑌𝑌 (ℎ) is the lagged correlation for the order h. This model has been tested, and its performance for repro-
ducing long-term variability is well studied in the literature (Lee & Ouarda, 2012; Ouarda & Charron, 2019; 
Sveinsson et al., 2003).

2.3. EMD-NSOR Model

2.3.1. EMD

EMD is invented to extract the different intrinsic modes of oscillations at separate frequencies in a time series. An 
intrinsic mode of oscillation is also called an intrinsic mode function (IMF) when it meets the following condi-
tions: the number of extrema must be the same as the number of zero crossings or differ from it by no more than 
one, and the mean value of the two envelopes of the local maxima and minima must be zero. A time sequence 
can be decomposed into a finite number of IMFs through the shifting process in EMD. The sifting process is 
performed to obtain IMFs from a time series, y(t), where t = 1,…, N as follows:

1.  Estimate all of the local extrema and link all local maxima (minima) with a smoothing technique to obtain the 
upper and lower envelopes with cubic spline (Press et al., 2002) in general (Huang & Wu, 2008).

2.  Acquire the first component, h, by finding the difference between the time series and the local mean of the 
upper and lower envelopes, m, as 𝐴𝐴 𝐴 = 𝑦𝑦 − 𝑚𝑚 .

3.  Substitute y by h and repeat steps 1 and 2 until a certain criterion is met such that component (h) surely retains 
a sufficient physical sense of both amplitude and frequency modulations (Huang & Wu, 2008).

4.  Assign the final h as the lth IMF, cl, and the residue is rl (i.e., rl = rl-1 − cl where r0 = x).
5.  Repeat steps 1–4 by handling the residue rl as the original data until the final residue (rn) is a monotonic 

function, defined as cn+1.

Finally, the original time sequence, x(t), is presented as the summation of the estimated IMFs cj, where j = 1, …, 
n + 1 (Huang & Wu, 2008) as

𝑦𝑦(𝑡𝑡) =

𝑛𝑛+1
∑

𝑗𝑗=1

𝑐𝑐𝑗𝑗(𝑡𝑡) (10)

Components with lower order have a higher frequency level and vice versa. Note that the lowest frequency level 
component is cn+1, while the highest frequency level component is c1.

Z. Wu and Huang (2004) and Z. H. Wu and Huang (2005) developed a statistical significance test for IMFs to 
examine whether an IMF obtained from EMD includes a true signal or just a noise component. This test compares 
the mean period and the spectral energy between the IMF of the original signal and that of the white noise. When 
the IMF energy of the observed data with a mean period is placed above the confidence level, it indicates that the 
corresponding IMF is considered to be statistically significant at the given level.

2.3.2. NSOR

The NSOR model (Lee & Ouarda, 2012, 2019) is based on two nonparametric techniques: K-nearest neighbor 
resampling and block bootstrapping. The stochastic simulation procedure of the NSOR model is briefly described 
in the following.
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Assume a time series of a certain IMF component c(t) where t = 1, …, N. The superscripts H and G are employed 
to illustrate the historical and generated data, respectively.

1.  Choose an initial value c G(0) from the N observations, supposing that each observation has an equal proba-
bility of being selected.

2.  Simulate a block length, LB, from a discrete distribution (here, Poisson as in Lee & Ouarda, 2010).
3.  Calculate the distances as:

𝐷𝐷𝑗𝑗 =

√

𝛼𝛼1{𝑐𝑐𝐺𝐺(𝑡𝑡 − 1) − 𝑐𝑐𝐻𝐻 (𝑗𝑗 − 1)}
2
+ 𝛼𝛼2{Δ𝑐𝑐𝐺𝐺(𝑡𝑡 − 1) − Δ𝑐𝑐𝐻𝐻 (𝑗𝑗 − 1)}

2 (11)

 where 𝐴𝐴 𝐴𝐴1 and 𝐴𝐴 𝐴𝐴2 are the inverse variances of each component c and its change rates Δc, respectively.
4.  Arrange the distances in ascending order and choose the first k values. Then, randomly choose one among the 

k values with the weighting probability of 𝐴𝐴 𝐴𝐴𝑖𝑖 = (1∕𝑖𝑖)∕

𝑘𝑘
∑

𝑗𝑗=1

1∕𝑗𝑗 , where i = 1, …, k.

5.  Calculate the generated data with length LB with the following:

𝑐𝑐𝐺𝐺(𝑙𝑙) = 𝑐𝑐𝐺𝐺(𝑙𝑙 − 1) + Δ𝑐𝑐𝐻𝐻 (�̃�𝑝 + 𝑙𝑙) for 𝑙𝑙 = 1, . . . , 𝐿𝐿𝐵𝐵 

 where 𝐴𝐴 𝐴𝐴𝐴 is the selected time index in step 4.
6.  Repeat steps 2–5 until all the required data are simulated.

2.3.3. Overall Procedure of Stochastic Simulation With EMD-NSOR

The proposed EMD-NSOR model can be briefly described as follows:

1.  Decompose the target time series y(t) into a finite number of IMFs with EMD.
2.  Select the significant components from the significance test (Wu & Huang, 2004).
3.  Apply the NSOR model to the selected significant IMF components and the stochastic simulation models to 

the residuals.
4.  Simulate the selected IMFs and residuals with the NSOR model and the fitted stochastic simulation model, 

respectively.
5.  Estimate the final simulation series by summing up the simulated components.

2.4. Performance Statistics

In order to compare the performances of the tested models in the current study, a number of statistics were 
estimated including key statistics and surplus-drought statistics. The key statistics applied are mean, standard 
deviation, skewness, lag-1 correlation, maximum and minimum as well as empirical cumulative distribution 
function (CDF) and kernel density estimate (Chen & Hsu, 2004; Lall et al., 1993) for probability density function 
(PDF). The drought statistics were also estimated as drought length and amount, surplus length and amount, and 
storage capacity as well as the Hurst Coefficient (Hurst, 1951). These drought statistics can be estimated with the 
sequence peak algorithm as the following.

With the water demand 𝐴𝐴 WD𝑡𝑡 at time t, surplus and drought is defined with the deviation from the water 
demand as Rt. In general, the mean value of the observation is applied for the water demand (i.e., 𝐴𝐴 WD𝑡𝑡 = 𝜇𝜇𝑦𝑦 ) 
(Yevjevich, 1967). Therefore,

𝑅𝑅𝑡𝑡 = 𝑦𝑦𝑡𝑡 − 𝜇𝜇𝑦𝑦 (12)

The length of the continuous Rt values that are greater than zero is surplus length and its summation is the surplus 
amount. Also, the length of the continuous values Rt smaller than zero is drought length and its summation is the 
drought amount. Furthermore, the storage capacity can be estimated with the sequence peak algorithm (Loucks 
et al., 1981) as:

𝑆𝑆𝑡𝑡 =

⎧

⎪

⎨

⎪

⎩

𝑆𝑆𝑡𝑡−1 +𝑅𝑅𝑡𝑡, if 𝑆𝑆𝑡𝑡 > 0

0, otherwise

 (13)
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The storage capacity is the maximum value of St. The maximum range (Rn, unit: m 3/s) is calculated as

𝑅𝑅𝑛𝑛 = max(𝑆𝑆𝑡𝑡) − min(𝑆𝑆𝑡𝑡) (14)

Also, the Hurst Coefficient (Hurst, 1951) is estimated by

HC = log

(

𝑅𝑅𝑛𝑛

𝑆𝑆𝑛𝑛

)

∕log

(

𝑁𝑁

2

)

 (15)

where Sn is the standard deviation of the accumulated shortage for Rn and N is the record length.

A trend test was also applied in the current study to detect the trend in the NBS time series. Among others, 
the Mann-Kendall test was applied (Kendall, 1955; Mann, 1945) in the current study due to its popularity. The 
Mann-Kendall test is a rank correlation test between the rank of the values and the ordered values as

𝑆𝑆𝑘𝑘 =

𝑁𝑁−1
∑

ℎ=1

𝑁𝑁
∑

𝑡𝑡=ℎ+1

sign(𝑍𝑍𝑡𝑡 −𝑍𝑍ℎ) (16)

The standardized value of Sk as is assumed to be normally distributed and tested with two-sided significance test 
(Yue & Pilon, 2004).

3. Study Area and Data Description
3.1. Study Area

The LCRR basin spans 23,900 square kilometers, with approximately 84% of the basin in northeastern New 
York and northwestern Vermont in the US and 16% in the province of Quebec in Canada, in Figure 1. The water 
supplies to the lake or river are commonly referred to as NBS and are estimated with both component-based and 
residual-based methods (Croley & Lee, 1993). Here, the component-based NBS series is used due to its accuracy 
and popularity in the literature (Fagherazzi et al., 2011; Ouarda & Charron, 2019).

During the spring of 2011, as mentioned, the LCRR basin experienced the devastating flood recorded over the 
past 100 years, with damages estimated at more than US$82 million. Diverse simulation series for all possible 
hydrologic scenarios are requested to check feasible mitigation plans for the LCRR system. Figure 2 presents the 
observed time series of the annual NBS (thick black line). It shows that the time series does not seem to have high 
autocorrelation, but the values are relatively lower during 1925–1970 compared to the later part of the series. 
Ouarda and Charron (2019) detected a significant change point approximately 1970 for this series, and it also 
presented a significant trend based on the modified Mann-Kendall trend test (Yue & Pilon, 2004).

3.2. Data Normalization

Standardization of datasets has been commonly employed for time series modeling to meet the normality condi-
tion of traditional time series models and many other machine learning algorithms by subtracting the mean and 
dividing by the standard deviation so that the result variable (Yt) becomes standard normal with zero mean and 
unit variance.

In some cases, the standardization might not be appropriate when the original variable does not follow normally 
distributed data (e.g., skewed data). To prevent this case, the normal copula transformation can be applied (Jeong 
& Lee, 2015) as the following:

𝑌𝑌𝑡𝑡 = 𝐹𝐹 −1

Φ
[𝐹𝐹𝑍𝑍 (𝑍𝑍; θ)] (17)

where Fz is the CDF of the Z variable, such as gamma, and 𝐴𝐴 𝐴𝐴 −1

Φ
 is its inverse function of the standard normal distri-

bution. From this transformation, the output variable has a standard normal distribution. Gamma distribution was 
applied for a marginal distribution of the original variable in the current study since the distribution has been 
popularly employed for hydroclimatological variables and well fitted to positively skewed nonnegative variables 
such as precipitation, flood, and drought data (Hanson & Vogel, 2008; Nadarajah, 2007, 2009).

The Gamma CDF (Fz) can be fitted to the hydrological data (here, NBS) by estimating the parameter of the 
Gamma distribution. In principle, this Gamma-Gaussian transformation with the normal copula can be descripted 
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differently and it has been widely adopted in the hydroclimatological field. For example, quantile mapping for 
hydrological variables with the Gamma marginal distribution is equivalent to this Gamma-Gaussian copula trans-
formation (Cannon et al., 2015; Maraun, 2013) and in developing standardized precipitation index (SPI) (McKee 
et al., 1993; Serinaldi et al., 2009), this transformation can be applied even though its approximation form was 
proposed in the original study of the SPI.

Finally, the back-transformation must be performed to have its original form as:

𝑍𝑍𝑡𝑡 = 𝐹𝐹 −1

𝑍𝑍
[𝐹𝐹Φ(𝑌𝑌 ; θ)] (18)

4. Results of Simulated Data
4.1. AR Model With Trend (ARwTr)

In the panel (a) of Figure 2, the overall trend was fitted after the trend was found to be significant with the 
Mann-Kendall test (a rejection of the null hypothesis with the significance level of 0.05, p = 0.0027). The residual 
is modeled with the AR(1) model since not much significant autocorrelation remains except for the lag-2 auto-
correlation function (ACF) (data not shown). The same record length and 200 series were simulated, and one of 
the series is depicted in the top panel of Figure 4.

Normal copula standardization as in Equation 17 was not feasible for this model since its trend results in some 
infinite values are in the back-transformation. Instead, the typical standardization in Equation was applied. As 
a result, the skewness and extrema underestimate the observed values, as shown in Figure 5, while the other 
statistics as mean, standard deviation, lag-1 correlation are reproduced well. The drought and surplus statistics 
show some improvement in Figure 6 compared to the AR model presented in Figure S4 in the Supporting Infor-
mation S1. However, it still presents some underestimation.

The simple AR(1) model has also been tested, and the result is shown in Text S1 in the Supporting Information S1 
as well as Figures S1, S3, and S4 in the Supporting Information S1. The result indicates that no better perfor-
mance can be found from the original AR(1) model than the ARwTr.

4.2. SML Model

As mentioned, the shifting mean level model assumes that the mean level persisted for a period and is changing 
randomly. Following these statistical characteristics, the model can reproduce the mean level shifting in the 
annual NBS, as shown in the middle panel of Figure 4. Note that the mean levels from the observation in the 
middle panel of Figure 4 were selected from the visual inspection. In contrast, the simulated mean levels with 
the  standard normal distribution and the geometric distribution (Zt in Equation 7) were taken from the simulated 
data. The simulated data (see the red thick solid line with circles) show that its mean level is changing.

The basic statistics of the observation are reproduced fairly from the simulated data of the SML model in Figure 7, 
even though slight underestimation can be observed in the skewness and maxima. The drought and surplus statis-
tics as well as the storage capacity of the observed data are reproduced fairly well with the SML model (see 
Figure 8) compared to the ARwTr and AR(1) models. However, the results still show underestimation for these 
statistics. Note that the lagged dependence structure of the SML model is exponentially decreased as shown in 
Equation 9 and the SML model reproduces only the short-term memory of the applied time series (Brockwell & 
Davis, 2003).

4.3. EMD-NSOR Model

To apply the EMD-NSOR model, the EMD procedure must be applied to the target time series so that the 
target time series are split into a few IMFs, as shown in Figure 9. Note that (a) the standardized data with the 
normal copula approach were applied to preserve the marginal distribution of the observed data; (b) long-term 
oscillation can be seen in the IMFs of c3, c4, and c5; and (c) the last component (c6) is not an IMF but the overall 
trend. Among the IMFs, one should select the significant IMFs. The significance test was applied to the IMFs, 
and the result is shown in Figure 10. Each asterisk represents each IMF, and an IMF farther away from the lines 
indicates that its corresponding IMF is distinguishable from random noise. The result indicates that c5 and c6 are 
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the significant IMFs. However, Lee and Ouarda (2010) argued that this significance test has some drawbacks, 
such that no red noise signal (i.e., existing of the underlying time-dependent structure) is considered and thereby 
suggested a subjective judgment with inspecting several combinations visually and selecting the best combina-
tion that presents the best reproduction of the key and drought statistics as well as the best reproduction of the 
observed long-term oscillations. We tested several combinations in the present study and concluded that the 
summation of the IMFs of c4, c5, and c6 should be used since c5 and c6 must be included based on the significance 
test, and c4 must also be included since it contains relatively long-term oscillation and its modulation is close to 
the other selected IMFs. The other combinations did not lead to better performances in reproducing the long-term 
oscillation structure of the observed data.

In the bottom panel of Figure 4, the summed selected IMFs (thick black dotted line with cross markers) of the 
observed data are presented. The long-term variation in the observed time series is captured well. The selected 

Figure 4. Time series of the observed annual net basin supply (NBS) (unit: m 3/s) of Lake Champlain and Richelieu River 
(LCRR) and an example of the simulated series with (a) the AR(1) with trend referred to as ARwTr; (b) the SML model; 
(c) the empirical mode decomposition with nonstationary oscillation resampling (EMD-NSOR) model. Note that (1) the 
blue solid line presents the observed time series, while the red solid line with a circle shows the simulated data; (2) the 
black dashed line with x markers presents the trend for the observed data, and the black dashed line presents the trend of the 
simulated data; and (3) the trend indicates the overall trend at AR(1) with the overall trend, shifting mean levels at the SML 
model and the summation of the oscillatory components.
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Figure 5. Boxplots of basic statistics of simulated series (93 years 200 series) with the ARwTr for the net basin supply (unit: 
m 3/s) of Lake Champlain and Richelieu River as well as its observation (circle).

Figure 6. Boxplots of drought and surplus statistics of simulated series (93 years 200 series) with the ARwTr model for the 
annual net basin supply (unit: m 3/s) of Lake Champlain and Richelieu River as well as its observation (circle).

 23284277, 2023, 7, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022E

F003049 by Institut N
ational D

e L
a R

echerche, W
iley O

nline L
ibrary on [25/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Earth’s Future

LEE AND OUARDA

10.1029/2022EF003049

12 of 23

Figure 7. Boxplots of standard statistics of the simulated series (93 years 200 series) with the SML model for the net basin 
supply (unit: m 3/s) of Lake Champlain and Richelieu River as well as its observation (circle).

Figure 8. Boxplots of drought and surplus statistics of simulated series (93 years and 200 series) with the SML model for the 
net basin supply (unit: m 3/s) of Lake Champlain and Richelieu River as well as its observation (circle).
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IMF was modeled with the NSOR model, while the summed residual IMF 
series was modeled with the AR(1) model to avoid losing any underlying 
time-dependent structure. The simulated series of the selected IMFs with the 
NSOR model is presented in the bottom panel of Figure 4, shown with  the 
thin black dotted line. The plot shows that the NSOR model reproduces 
the  long-term variability of the observed time series well.

Figure 11 shows that the basic statistics are reproduced well, similar to the 
other models, since the normal copula approach was also applied in this 
model. As shown in Figure 12, the drought and surplus statistics are preserved 
best among all the tested models even if a slight underestimation can still be 
observed. The best reproduction of these statistics is from the reproducibility 
of the long-term oscillatory behavior in the observed data.

5. Model Comparison and Future Strategies
5.1. Comparison of Nonstationary Models

In the current study, a number of stochastic simulation models were applied to 
simulate the annual NBS for the LCRR system. To be a comparable stochas-
tic simulation model, it must preserve the basic statistics and reproduce the 
long-term persistency.

The long-term variability of the observed time series cannot be reproduced 
with the traditional time series model (AR(1)) as well as with the trend (i.e., 
AR(1) with trend). The LSTM model was also not able to reproduce it and 
resulted in only minimal improvement. The SML model treats the long-term 

Figure 9. Time series of the extracted components from empirical mode 
decomposition (c1–c6) from the standardized net basin supply data. Note that (1) 
the long-term oscillation pattern can be observed in c4 and c5 and (2) each y-axis 
has a different scale to present the variability of each component appropriately.

Figure 10. Significance test of the annual net basin supply data with the 95th (solid line) and 99th (dotted line) percentiles. 
The asterisks (*) farther away from the lines indicate that the corresponding intrinsic mode function (IMF) of the observed 
series is different from the corresponding IMF of random noise. Note that (1) c5 and c6 are significant, while c1, c2, c3, and c4 
can be considered insignificant signals random component (Wu & Huang, 2004) and (2) this significance test still does not 
consider a red noise signal as underlying short-term correlations, and further visual inspection and subjective selection must 
be included to find the proper selection of components (Lee & Ouarda, 2010, 2011).
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variability as shifts of the mean level and leads to substantial improvement. The EMD-NSOR model mimics the 
long-term variability with long-term oscillations and preserves the long-term variability best even though a slight 
underestimation can still be observed.

Since the SML and EMD-NSOR models are comparable and it is worthwhile to investigate the availability of the 
SML because the model was applied once to the NBS of the current system and to propose a comparable model, 
these two models were further tested. To do this work, further comparisons were made by focusing on these two 
models with the statistics of kernel density, CDF, spectral analysis, and Hurst coefficient.

In Figure 13, the CDF and kernel density for the simulated series and observed series are presented. Note that 
a kernel density is the PDF that is nonparametrically driven (Lall et al., 1993; Salas & Lee, 2010). The result 
indicates that both models reproduce the observed CDF and density well. In particular, the tail behavior of the 
observed CDF is well reproduced.

In the panel (d) of Figure 13, it seems that the simulated series with the EMD-NSOR model presents two types of 
distributions, with one having a median of 300 m 3/s and the other having a median of approximately 400 m 3/s, as 
shown in the two representative examples (see the thick black lines). This might result from the long-term persis-
tent characteristics of the simulated series from the EMD-NSOR model. The simulated series can be either high 
or low for an extended period of time. As shown in Figure 4, the simulated series is higher during the 1960–1990 
period and lower for the  rest of the series and can hence be either high or low for a long time. The distribution of 
this series seems to be similar to the one in the left one among two representative distributions shown with the 
thick black lines in the panel (d) of Figure 13. Meanwhile, the series from the SML does not present this behavior. 
This lack of presentation might be because the estimated probability parameter “p” in Equation 8 for the annual 
NBS is 0.184. Therefore, the average number of sequences with the same mean is 5.438 (1/0.184) for the shifting 
mean process. The relatively high value of the probability parameter (i.e., p = 0.184) is due to the lower values 
of ACFs shown in Figure S2 in the Supporting Information S1. The parameters of the SML model are estimated 
with the first four or five ACFs and Equation 9. This indicates that the average length of a sequence with the same 

Figure 11. Boxplots of basic statistics of simulated series (93 years 200 series) with the empirical mode decomposition with 
nonstationary oscillation resampling model for the net basin supply (unit: m 3/s) of Lake Champlain and Richelieu River as 
well as its observation (circle).
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mean simulated from the SML model is not more than 6 years. It illustrates that the simulated series from the 
SML does not have as much as of a long-term persistency as the ones from the EMD-NSOR model.

In Figure 14, the estimated spectral density is presented along with the frequency (f = 1/T, where T represents 
time [here, years]). Note that a spectral density with lower frequency (f) indicates long-term persistency (i.e., 
larger T years). In detail, the EMD-NSOR model better preserves the spectral density for the lower frequency (f), 
representing long-term persistence even though the difference is not substantial.

We further estimated the Hurst coefficient and the maximum range (Rn) of the difference of a current NBS 
from the mean, as shown in Figure 15 (see its caption for details). The Hurst coefficient is the measure that 
Hurst (1951) suggested, for which a random and autocorrelation process has a value of 0.5, while most geophys-
ical time series present a value of approximately 0.73. Here, the observed annual NBS has a Hurst coefficient 
value slightly larger than 0.8. It has been a challenging task to reproduce the observed Hurst coefficient because 
a number of stochastic simulation models with long-term dependence structures cannot reproduce the observed 
value. The median of the Hurst coefficient for the 200 simulated series from the SML model reaches up to 0.75, 
which indicates that the model can reproduce this statistic for most geophysical time series (approximately 0.73 as 
mentioned above). However, the observed annual NBS presents a higher Hurst coefficient value than the average, 
even if its ACFs are not very high. This high Hurst coefficient might result from the long-term persistency, as 
shown in the historical time series, and it is observed in the ACFs for the large lags between 40 and 44 (see Figure 
S2 in the Supporting Information S1).

Meanwhile, the EMD-NSOR model reproduces this statistic well, in the top panel of Figure 15. The median of 
the Hurst coefficient of the simulated series from the EMD-NSOR model is approximately 0.8 and is very close 
to the observed value. This indicates that the modeling of the long-term variability as long-term oscillation (i.e., 
EMD-NSOR) might be appropriate for the annual NBS of the LCRR basin.

Figure 12. Boxplots of drought and surplus statistics of simulated series (93 years and 200 series) with the empirical mode 
decomposition with nonstationary oscillation resampling model for the net basin supply of Lake Champlain and Richelieu 
River as well as its observation (circle).
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Note that we also tested the LSTM deep learning model further. The description of the model and its result can 
be found in Text S2 in the Supporting Information S1. Not much critical improvement is seen from the result of 
the LSTM model, in Figures S6 and S7 in the Supporting Information S1.

The annual NBS for the LCRR shows a relatively lower correlation, especially in small lags, but it presents 
long-term persistency. The results conclude that the EMD-NSOR model can be a comparable alternative to 
stochastically simulate the series of the annual NBS for the LCRR even if the series has a very unusual dependent 
structure to reproduce. Note that all the additional statistics shown in this section were also estimated for the other 
models, such as AR(1), AR(1) with Trend, and LSTM. No model can outperform the EMD-NSOR model for 
these additional statistics (results not shown).

5.2. Future Strategies for Water-Related Risks

The provided results showed that the EMD-NSOR model provides reasonable simulation scenarios for handling 
water-related risks compared to the trend and SML models. In addition, a future extension with three tested 
simulation models was performed, and their implications for the management of water-related risks were stud-
ied. In Figure 16, each example of the extended time series up to 2,100 is illustrated for the ARwTr, SML, and 
EMD-NSOR at the top, middle, and bottom panels, respectively. Note that the initial condition was set as the 

Figure 13. Spaghetti plots of the cumulative distribution function (CDF, left panels) and kernel density (right panels) for 
the 200 simulated net basin supply (NBS) series (gray lines) with SML (top panels) and empirical mode decomposition with 
nonstationary oscillation resampling (bottom panels). Note that (1) the median distribution of the simulated 200 NBS is 
presented with the solid blue line to compare itself with the observed one (the red dotted line with cross marker); and (2) in 
Panel (d), two examples of the simulated NBS among 200 are emphasized with thick black lines.
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NBS value of 2017 for the ARwTr and EMD-NSOR models, while no initial 
condition was employed for the SML due to its model characteristic.

The time series for the ARwTr at the top panel of Figure  16 illustrated 
the constant increase in the mean and resulted in an approximate mean of 
450  m 3/s for the future simulation, while it was approximately 400  m 3/s 
during the observed period. This time series trend might lead to the over-
estimation of the flood risk and the underestimation of the drought risk. 
Significant physical evidence is requested to follow this simulation result. 
Key statistics and drought and surplus statistics for the simulated future series 
are presented in Figures 17 and 18, respectively. As expected, the mean (see 
the first box plot of the left top panel in Figure 17) is very high compared to 
the observed (see the circle) as well as the maximum and minimum shown in 
Figure 5 for the key statistics of the observed period. The drought length and 
amount are much lower than the observations shown in the first boxplots of 
the panels in Figure 18, while the surplus length and amount are much higher 
than the observations. The storage capacity is much higher than the observa-
tion. Note that the storage capacity is estimated by accumulating the differ-
ence between the current NBS (𝐴𝐴 𝐴𝐴𝑡𝑡 ) and its demand (here, the observed mean 

𝐴𝐴 𝐴𝐴𝑦𝑦 ), as 𝐴𝐴 𝐴𝐴𝑡𝑡 = 𝐴𝐴𝑡𝑡−1 + (𝑦𝑦𝑡𝑡 − 𝜇𝜇𝑦𝑦) ). Therefore, the accumulated surplus should be 
relatively large in the increasing trend, especially for the future extension 
period. This scenario might lead to too high a risk for a surplus event (i.e., 
flood) and too low risk for drought.

The future scenario of the SML is randomly simulated without considering 
the initial condition of the last stage. Even if the mean level stays for a few 
sequences and varies afterward, the overall structure of the SML is station-
ary since the parameters of the SML are not varied. Therefore, the key and 
drought statistics are not much varied in the future extension, in Figures 17 
and 18, compared to the observation period in Figures 7 and 8.

Meanwhile, the initial condition of the annual NBS for the EMD-NSOR 
model is relatively higher in the last 20 years, in the bottom panel of Figure 16. 
Therefore, the high phase continues up to 2,040, followed by the 30-year 
low phase, and then the 20-year high phase is followed again. This oscilla-
tion results in the future extension up to 2,100 with the EMD-NSOR model 
containing longer high phases than low phases. Subsequently, the mean of the 
annual NBS for the future extension (see Figure 17) might be larger than the 
observed period shown in Figure 11, and the minimum of the future period 
is larger than that of the observed period. As a result, the drought character-
istics for the future extension with the EMD-NSOR model illustrate that the 
drought length and amount are biased to the lower values, in the last boxplots 
of the top panels of Figure 18, and the surplus length and amount are biased 
to the higher values. For the same reason, the storage capacity is higher than 
that observed. The magnitude of the bias difference from the observation for 
the EMD-NSOR model is smaller than that for the ARwTr model since the 
future extension with the EMD-NSOR model oscillates high and low phases 
rather than one direction increase such as the ARwTr.

According to the model structures, the simulated series of the future exten-
sion have distinct characteristics. Unfortunately, it is very difficult to select 
a singular best model for a water manager as long as substantial physical 
evidence exists for a target water management system. Therefore, a water 
manager should prepare the system following the simulated future series and 
the economic budget allowed. Similar to the flood risk management system 
in the LCRR basin, surplus statistics are critical to apply. Even if the increas-

Figure 14. Spectral density (gf) versus frequency (1/T, here T is year) of the 
95% bound for the 200 simulated net basin supply (NBS) series with SML 
(top panel) and empirical mode decomposition with nonstationary oscillation 
resampling (bottom panel) as well as the observed (red dashed line with x 
marker, -x-) and the median of the simulated ones (black dashed line) for the 
annual NBS of the Lake Champlain and Richelieu River basin.

Figure 15. Boxplots of the Hurst coefficient and the maximum range (Rn, 
unit: m 3/s) of the difference from the mean for the 200 simulated series with 
the SML and empirical mode decomposition with nonstationary oscillation 
resampling (EMD-NSOR) models as well as its observation (circle).
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ing trend might result in the worst scenario from the point view of floods, it is often difficult for a water manager 
to accept the trend scenarios. Instead, the EMD-NSOR scenario can be a reasonable alternative that provides 
oscillatory scenarios and a substantial increase in flood risk.

6. Summary and Conclusions
The nonstationarities in hydroclimatological time series, such as trends, shifts, and oscillations from human 
development and climatic long-term variations, are critical to consider for water-related risk management. In the 
current study, how stochastics models can take nonstationarities into account by simulating different scenarios 
with different nonstationarities, such as trends, shifts, and oscillations, is illustrated. Furthermore, nonstationary 

Figure 16. Time series of the net basin supply (NBS) series (unit: m 3/s) for the observed (solid black line) and the simulated 
series for the future extension (2018–2100 year) from three tested models as the trend, shifting mean, and summed selected 
IMFs. Note that the simulated example of the future extension is presented with the red thick solid line with a circle, while the 
trend, shifting mean, and oscillation are depicted with the black thick dotted line.
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stochastic simulation models were applied to the annual NBS of the LRCC basin to test feasible alternatives for 
flood mitigation plans and other actions for the LCRR basin.

Since the SML has already been applied in the Great Lakes study for stochastic simulation (Fagherazzi et al., 2011), 
the feasibility of the SML model and the suggestion of a comparable model for the NBS of the LCRR system 

Figure 17. Boxplots of basic statistics for the observed (blue circle) and the simulated series from three tested models with 
the ARwTr, SML, and empirical mode decomposition with nonstationary oscillation resampling (EMD-NSOR) for the future 
extension (2018–2100 yr) of the annual net basin supply.
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were requested from the water managers of the LRCC. The annual NBS series for the LCRR system was inves-
tigated, and we noticed that the series seems to have long-term variability. The long-term variability was treated 
as an overall trend, shifting mean, and long-term oscillation, and appropriate models were selected to mimic the 
variability accordingly through the ARwTr, SML, and EMD-NSOR. Two additional models were also tested: the 

Figure 18. Boxplots of drought and surplus statistics for the future simulated series (2018–2100 yr) with three tested models 
(ARwTr, SML, and empirical mode decomposition with nonstationary oscillation resampling [EMD-NSOR]) for the net 
basin supply of Lake Champlain and Richelieu River as well as its observation (circle).
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AR model for traditional time series modeling and LSTM for a recent deep learning model with the capability of 
long-term memory.

The results show that the AR, ARwTr, and LSTM models do not adequately reproduce the observed drought and 
surplus statistics as well as storage capacity, while the SML and EMD-NSOR models reproduce these statistics. 
Meticulous comparisons were made with the statistics of CDF, density, spectral density, and Hurst coefficient for 
these two models. The detailed comparison results indicate that the EMD-NSOR model better preserves the SML 
model, especially for the long-term variability of the observed NBS. The poor performance of the SML model 
might be due to the weak ACF of the observed NBS, especially for short lags. In contrast, the EMD-NSOR model 
reproduces the long-term variability well, as illustrated with the Hurst coefficient.

In addition, the future extension of the annual NBS up to 2,100 was performed with the tested stochastic simu-
lation models. The results showed that the ARwTr presents too much risk for floods and is difficult to adopt 
for flood risk management due to its limited budget. The SML scenarios of the future extension are not much 
different from the observed period. Instead, the EMD-NSOR model produces higher flood risk by providing 
reasonable and acceptable scenarios to apply.

Overall, the provided results indicate that the EMD-NSOR model can be a good alternative for stochastic simu-
lation of the annual NBS for the LCRR system by treating the long-term variability as long-term oscillations. 
The synthetic series simulated from the EMD-NSOR model can be used to check the appropriateness for feasible 
mitigation action plans and preparedness for future floods in the LCRR basin. Further stochastic simulation models 
can be adopted by incorporating climate variables for future timeframes such as sea surface temperature or climate 
indices. The behavior of the simulated series is highly dependent on the incorporated climate variables not on the 
model itself.

Abbreviations
ACF Autocorrelation function
AR Autoregressive
ARMA Autoregressive moving average
ARwTr AR(1) with trend
CCF Cross-correlation function
CDF Cumulative distribution function
EMD Empirical mode decomposition
IJC International Joint Commission
IMF Intrinsic mode function
KLR KNN-based local linear regression model
KNNR K-nearest neighbor resampling
LCRR Lake Champlain-Richelieu River
LSTM Long short-term memory
NBS Net basin supply
NSOR Nonstationary oscillation resampling
PDO Pacific decal oscillation
PoS Plan of study
SML Shifting mean level

Data Availability Statement
The simulation data were published in the Mendeley Data as Simulated NBS for LCRR and downloadable from 
https://data.mendeley.com/datasets/5n4vr53hbp. The net basin supply (NBS) observed data are available from 
the International Joint Commission (IJC, https://www.ijc.org/en) upon request. Software: MATLAB software 
of EMD was used in the link https://kr.mathworks.com/discovery/empirical-mode-decomposition.html. The 
shifting mean level model was performed with SAM2007, which is downloadable from http://www.sams.colos-
tate.edu/. The MATLAB code (Gen_NSOR_sim) for the NSOR model is downloadable from the same website 
for the simulation data as https://data.mendeley.com/datasets/5n4vr53hbp.
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