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Highlights  57 

 58 

• Six feature selection methods were evaluated for wind speed quantiles estimation at 59 

ungauged locations  60 

• Feature selection enabled the identification of the most important predictors for various 61 

wind speed quantiles 62 

• The most parsimonious feature selection methods led to the lowest generalization error   63 

• The location distance from the coast, and the surface roughness were the most significant 64 

wind speed quantiles predictors  65 
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Abstract  84 

 85 

Wind speed estimation at ungauged locations is one of the preliminary steps for wind resource 86 

assessment. With the availability of high-resolution Digital Elevation Models (DEM) and remote 87 

sensing data, the number of potential wind speed predictors has grown substantially. The 88 

adequate spatial scale of these predictors is unknown a priori, leading to the use of multiple 89 

spatial scales of predictors in wind speed estimation models. Implementing a feature selection 90 

method as a pre-processing step of the analysis is necessary to avoid overfitting and the resulting 91 

potential model underperformance. This paper evaluated six feature selection methods (forward 92 

stepwise regression, Least Absolute Shrinkage and Selection Operator (LASSO), Elastic Net, 93 

Maximum relevance Minimum redundancy (MRMR), Genetic algorithm, and recursive feature 94 

elimination using support vector regression) for the estimation of different wind speed quantiles 95 

across Canada. The selected features were used to fit a regression-kriging model, and the 96 

importance of the predictors was evaluated with their associated regression coefficients. The 97 

results of the study showed that LASSO and MRMR are the most efficient algorithms with the 98 

least number of parameters to tune and good generalization performance. The study found that 99 

some predictors were more important for specific exceedance probabilities. The most important 100 

predictors were the distance from the coast and surface roughness length, regardless of 101 

exceedance probability. 102 

Keywords: Exceedance probability, Feature selection, Machine learning, Topographic feature, 103 

ungauged location, Wind speed.  104 

 105 

 106 
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1. Introduction  107 

 108 

The global energy system significantly contributes to greenhouse gas emissions, with a share of 109 

approximately 34% (Lamb et al., 2021). Alternative energy sources, such as wind, can help 110 

mitigate the environmental footprint of our energy system (Jung et al., 2018; Shin et al., 2016). 111 

Wind energy production has experienced substantial growth during the last decades, accounting 112 

for 8% (594 GW) of the 7 400 GW of installed generating capacity worldwide as of 2019 113 

(International Renewable Energy Agency, 2022). Unlike conventional energy sources such as coal 114 

and nuclear energy, wind energy is intermittent and heavily reliant on wind speed (WS). A sound 115 

understanding of the WS variability at a location of interest for wind energy production is 116 

necessary to integrate the energy source effectively into the energy mix (Aries et al., 2018). A 117 

significant step in wind energy planning is identifying a good location for resource exploitation. 118 

Potential sites of interest often do not coincide with a location where extensive WS 119 

measurements are available. Therefore, it is helpful to implement approaches that estimate wind 120 

resources at ungauged locations.  121 

The challenge of WS estimation at ungauged locations has initially been tackled with spatial 122 

interpolation models. In recent studies, machine learning models have gained more popularity, 123 

and some researchers have suggested combining spatial interpolation models and machine 124 

learning (see Houndekindo and Ouarda (2023) for a detailed review of WS estimation at ungauged 125 

locations). These developments have led to the experimentation of new predictors, notably 126 

topographical features extracted from DEM. Many topographical features can be used for WS 127 

modelling (Maxwell and Shobe, 2022).  One such feature is terrain curvature, which has been 128 

identified as one of the most effective WS predictors in regions with complex terrain, according 129 
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to a study conducted in Switzerland by Robert et al. (2013). Several land surface parameters (ex.: 130 

plan curvature, gaussian curvature, minimum curvature) extracted from DEM can be used to 131 

describe the terrain curvature (Wilson, 2018), leading to several possible features to include in 132 

the model. Some of these features will undoubtedly be redundant (Maxwell and Shobe, 2022). 133 

The selection of the spatial scales of the topographical features represents another significant 134 

challenge. Two potential downsides of incorporating too many features into the model are 135 

overfitting the model's parameters to the training data and compromising the model’s 136 

interpretability. To address this issue, FS can be used as a preprocessing step to build more 137 

accurate and concise models while minimizing computation time (Guyon and Elisseeff, 2003).  138 

FS methods are often categorized as filter-based, wrapper, or embedded methods (Guyon and 139 

Elisseeff, 2003). Filter-based methods are more computationally efficient and less prone to 140 

overfitting compared to wrappers and embedded methods (Zhou et al., 2021). A drawback of 141 

most filter methods compared to wrappers and embedded methods is their inability to consider 142 

feature interactions (Urbanowicz et al., 2018).  The filter approach selects predictors based on 143 

their relevance to the dependent variable. In the case of regression, the correlation coefficient 144 

can be used to assess the relevance of features.  145 

On the other hand, wrappers and embedded methods rely on the model performance to select 146 

an optimal set of features. The wrapper methods search for the feature subset, which gives the 147 

best performance with a predefined learning algorithm. Wrapper methods can be used with any 148 

model, while embedded methods rely on models that inherently rank the features’ importance 149 

(ex.: random forest) or eliminate irrelevant features (ex.: penalization methods).  150 
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 151 

Most studies have applied a data-driven approach to solving the feature selection challenge for 152 

WS estimation. For example, Robert et al. (2013) applied a modified version of the general 153 

regression neural networks to select the best spatial scale and topographical features for monthly 154 

WS interpolation. Jung (2016) employed feature importance ranking with random forest and a 155 

forward stepwise feature selection to identify suitable predictors for WS estimation. In the second 156 

step, the author used the variance inflation factor to evaluate feature redundancy in the study. 157 

For extreme WS mapping, Etienne et al. (2010) used the linear correlation between predictors to 158 

evaluate their redundancy and backward elimination to retain the most important predictors in 159 

the model. Foresti et al. (2011) applied a multiple kernel learning model for feature selection (FS) 160 

in WS mapping. Veronesi et al. (2016) employed the Least Absolute Shrinkage and Selection 161 

Operator (LASSO) technique to select relevant features to implement a statistical model for 162 

estimating WS distribution at ungauged sites.   163 

To the best of our knowledge, no studies compared the performance of FS methods for WS 164 

estimation at ungauged locations. Nevertheless, such comparison is necessary as the number of 165 

available WS predictors increases, and so is the risk of redundancy and overfitting. Comparative 166 

studies are essential as they allow for a systematic comparison of various approaches with diverse 167 

complexity and performance levels. They serve as a basis to identify the strengths and 168 

weaknesses of each approach and better understand their performance in different conditions. 169 

Several comparative studies of features selections methods have been conducted in studies 170 

related to environmental variables. For instance, Carta et al. (2015) compared a wrapper method 171 

to a filter approach for FS for long-term WS prediction at locations with a short record. The 172 
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authors found that the filter method produced sparser feature subsets, while the wrapper 173 

method had a better predictive ability. In that study, FS increased the interpretability of the final 174 

model while improving its performance. Seven FS methods were compared for river flow quantile 175 

estimation in ungauged basins (Fouad and Loáiciga, 2020). The authors found that the FS methods 176 

performed better than dimension reduction techniques (principal component analysis) to reduce 177 

multicollinearity in the feature subsets. The same study observed similar performance between 178 

FS using experts' knowledge and data-driven FS methods. Rodriguez-Galiano et al. (2018)  179 

evaluated the performance of various FS methods to predict the probability of the occurrence of 180 

nitrates above a threshold value in groundwater. The study revealed that FS helped isolate and 181 

identify the main drivers of nitrate pollution in groundwater.  Chen et al. (2019) conducted a 182 

comparative study of statistical models with various FS methods to predict fine particles and 183 

nitrogen dioxide concentration across Europe. The study found that regularization algorithms 184 

such as LASSO and Elastic Net (ENET) efficiently selected relevant predictors despite high 185 

multicollinearity in the feature set. Also, the regularization algorithms had the additional benefit 186 

of model interpretability.  187 

This study compared six different FS methods for WS quantile estimation. These methods 188 

included forward stepwise regression (FSWR), LASSO, ENET, Maximum relevance Minimum 189 

redundancy (MRMR), Genetic algorithm (GALG), and recursive feature elimination using support 190 

vector regression (RFES). The selected algorithms are composed of filter-based (ex.: MRMR), 191 

wrappers (ex.: FSWR, GALG), and embedded methods (ex.: LASSO, ENET, RFES). The selected 192 

predictors or features were used with a regression kriging (RK) model (Hengl et al., 2007) to 193 

estimate various WS quantiles. The RK model has previously shown promising results for WS 194 
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estimation (Alsamamra et al., 2010; Lee, 2022). Reinhardt and Samimi (2018) also found that RK 195 

performed better than Artificial Neural Networks (ANN) and Support Vector Machines (SVM) for 196 

WS interpolation. RK is an attractive approach for interpolating environmental variables (Hengl 197 

et al., 2007). It allows the use of relevant predictors, and unlike universal kriging and kriging with 198 

external drift, RK can be adapted with various types of regression models (ex.: Random Forest, 199 

Generalized Additive Models).  200 

The study also evaluated the importance of various predictors for estimating WS quantiles with 201 

different exceedance probabilities. Most features used in previous studies were derived and 202 

compared within the same framework. In addition, alternative features related to conventional 203 

WS predictors used in the literature were also evaluated. These alternative features may provide 204 

additional information and insights into WS behaviour at different exceedance probabilities and 205 

could improve the accuracy of WS predictions. 206 

The paper is organized as follows. The dataset used is described in Section 2. In section 3, the six 207 

FS methods evaluated are presented. Section 4 presents the results of the analysis. The discussion 208 

and the conclusion are given in sections 5 and 6, respectively. 209 

2. Data 210 

2.1. Wind speed data 211 

 212 

The data analyzed in the study are hourly WS data at 10m above ground from measurement 213 

stations across Canada. The data were obtained from Environment and Climate Change Canada 214 

(ECCC) historical climate database. Stations with at least 20 years of record available until 2010 215 

were selected, and only those with at least ten years of record with less than two months of 216 
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missing data were used. Figure 1 shows the spatial distribution of the selected stations, which 217 

amounted to 207. 218 

 219 

Figure 1: Study region and locations of the 207 selected stations  220 

From the hourly records, empirical WS quantiles were estimated using the Weibull plotting 221 

position formula: 222 

𝑃𝑖 = 𝑃(𝑊𝑠 > 𝑊𝑠𝑖) =
𝑖

𝑛+1
                                                                                                                         (1) 223 

Where: 224 

𝑃𝑖  is the probability of exceedance associated with the observed hourly wind speed ( 𝑊𝑠𝑖). 𝑖  is 225 

the rank of the observed wind speed 𝑊𝑠𝑖 sorted in descending order. 𝑖 = 1 corresponds to the 226 
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highest observed WS and  𝑖 = 𝑛 corresponds to the lowest observed WS, with 𝑛 the number of 227 

observations.  228 

Monotonic decreasing penalized splines (P-Splines: Paul and Marx, 1996; Pya and Wood, 2015) 229 

were fitted between the exceedance probabilities and their associated observed WS quantiles 230 

to construct the empirical complementary cumulative distribution function (survival function). 231 

The fitted curve was used to estimate WS quantiles at 14 fixed percentile points at each location 232 

in the study area. The following 14 fixed percentile points were selected: p = 0.01%, 0.1%, 1%, 233 

5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% to cover an extensive range of WS 234 

quantiles. The P-Splines is a non-parametric model that allows fitting a smooth and flexible 235 

curve to data. Monotonic decreasing constraints were imposed on the P-Splines to respect the 236 

monotonic nature of complementary cumulative distribution functions. 237 

 238 

2.2. Predictors 239 

 240 

The predictors used in the study are topographical, surface roughness length, geographical 241 

coordinates, and the location distance from the coast. Table 1 provides more details on these 242 

predictors. The topographical variables were extracted from a resampled (100m spatial 243 

resolution) ALOS DEM (Tadono et al., 2014) and computed with the WhiteboxTools (Lindsay, 244 

2014) developed at the University of Guelph, Canada. Information on the land cover type 245 

obtained from a 2015 land use map of Canada (Latifovic et al., 2017) was used to estimate the 246 

surface roughness length according to Wiernga (1993). The land use map was resampled to 247 
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produce multiple spatial resolutions, with majority resampling (mode) providing information on 248 

the most common land use type for the given spatial scale. 249 

Some of the features selected for the study were previously studied because they describe 250 

physical processes that influence wind movement. This study also introduced alternative features 251 

describing similar physical processes. For instance, Jung (2016) used slope (SLPE), curvature, 252 

aspect (ASPC), roughness length (RGLH) and relative elevation for WS mapping in Germany. In the 253 

present study, relative elevation measures used were deviation and difference from mean 254 

elevation (DVME and DFME), relative topographical position (RTGP) and elevation percentile 255 

(ELVP). Also, seven surface curvature measures (gaussian, maximal, mean, minimal, plan, 256 

tangential, and total curvature) were extracted from the DEM and used as WS predictors. In 257 

Switzerland, Foresti et al. (2011) used altitude (ELVT), geographic coordinates (XGEO and YGEO), 258 

and Differences of Gaussians (DOGS) to map WS. DOGS serves as a measure of terrain convexity 259 

and approximates the Laplacian of Gaussian (LPGS: Lowe, 2004).  In the current study, DOGS and 260 

LPGS were both evaluated. Veronesi et al. (2015) employed topographical surface roughness from 261 

a DEM to interpolate the parameters of the Weibull distribution for wind resource mapping. 262 

Alternative topographical surface roughness measures employed in the present study were the 263 

ruggedness index (RUGI), the surface area ratio (SART) and the standard deviation of the slope 264 

(STDS). Etienne et al. (2010) generated landform classes (ex: canyons, ridges, valleys) from a DEM 265 

to model WS. Geomorphologic phonotypes (GMPG) and the Pennock landform class (PNCL) were 266 

two alternative landform classifications used in the present study. The distance from the coast 267 

(DSEA) was also used as a WS predictor in the current study, as done by Aniskevich et al. (2017).  268 

Table 1: Description of the predictors and their spatial scale  269 
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Predictor  Abbreviation  Description  Spatial scale  

Altitude  ELVT Altitude of the location in 
m.  

 

Aspect  ASPC Slope orientation in degree.  100m, 500m, 
1000m, 1500m, 
2000m 

Deviation from mean 
elevation  

DVME Difference between the grid 
cell elevation and the mean 
of its neighbouring cells 
normalized by the standard 
deviation.  

100m, 500m, 
1000m, 1500m, 
2000m 

Difference from cell 
mean elevation  

DFME Difference between the grid 
cell elevation and the mean 
of its neighbouring cells.  

100m, 500m, 
1000m, 1500m, 
2000m 

Difference of 
Gaussian  

DOGS Difference between two 
copies of the DEM 
smoothed with two 
different gaussian kernel. 
Measure land surface 
curvature.  

(100m, 500m), 
(100m, 1000m), 
(500m, 1000m), 
(300m, 500m), 
(1000m, 2000m), 
(1000m, 1500m), 
(100m, 2000m), 
(500m, 2000m) 

Distance to coast  DSEA The location distance to the 
coast   

 

Elevation percentile  ELVP Percentile of the grid cell 
elevation relative to the 
neighbouring cells.  

100m, 500m, 
1000m, 1500m, 
2000m 

Gaussian curvature  GSCV Product between the 
maximal and the minimal 
curvature. Measure of 
surface curvature  
(Florinsky, 2017).  

100m, 500m, 
1000m, 1500m, 
2000m 

Geographical 
coordinates 

XGEO, YGEO Geographical coordinates of 
the location.  

 

geomorphologic 
phonotypes 
(geomorphons) 

GMPG Landform element 
classification with the 
geomorphons-based 
method (Jasiewicz and 
Stepinski, 2013). 

 

Laplacian of 
Gaussian  

LPGS Derivative filter used to 
highlight location of rapid 
elevation change. 

100m, 500m, 
1000m, 1500m, 
2000m 
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Maximal curvature  MXCV Measure of surface 
curvature  (Wilson, 2018).  

100m, 500m, 
1000m, 1500m, 
2000m 

Mean curvature  MNCV Measure of surface 
curvature  (Wilson, 2018).  

100m, 500m, 
1000m, 1500m, 
2000m 

minimal curvature MICV Measure of surface 
curvature (Florinsky, 2017). 

100m, 500m, 
1000m, 1500m, 
2000m 

Pennock landform 
class 

PNCL Landform classification 
based on the slope and 
curvature of the grid cell  
(Pennock et al., 1987).  

 

plan curvature PLCV Measure of surface 
curvature (Florinsky, 2017). 

100m, 500m, 
1000m, 1500m, 
2000m 

Relative 
topographical 
position  

RTGP Normalized measure of the 
grid cell elevation relative to 
its neighbouring cells. 

100m, 500m, 
1000m, 1500m, 
2000m 

Ruggedness index RUGI A measure of the local 
terrain heterogeneity 
(Jasiewicz and Stepinski, 
2013; Riley et al., 1999)  

100m, 500m, 
1000m, 1500m, 
2000m 

Slope  SLPE Slope at the grid cell. 100m, 500m, 
1000m, 1500m, 
2000m 

Standard deviation 
of slope 

STDS Measure of surface 
roughness (Grohmann et 
al., 2011). 

100m, 500m, 
1000m, 1500m, 
2000m 

Surface area ratio SART Measure of the surface 
roughness (Jenness, 2004). 

100m, 500m, 
1000m, 1500m, 
2000m 

Surface roughness 
length  

RGLH Surface roughness length 
estimated from land use 
map.  

100m, 500m, 
1000m, 1500m, 
2000m 

tangential curvature TGCV Measure of surface 
curvature (Florinsky, 2017). 

100m, 500m, 
1000m, 1500m, 
2000m 

Total curvature TLCV Measure of surface 
curvature.  

100m, 500m, 
1000m, 1500m, 
2000m 

 270 

 271 
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3. Materials and method 272 

3.1. Feature selection methods  273 

3.1.1 Forward stepwise regression  274 

 275 

The stepwise regression is a greedy FS algorithm extensively covered in the literature. Three 276 

variants of the method exist backward, forward, and bi-directional stepwise regression. Backward 277 

stepwise regression builds a model with all potential predictors and eliminates the least relevant 278 

predictors at each iteration. Forward selection begins with a “null” model containing only a 279 

constant term and adds the most relevant predictors to the regression model at each iteration. 280 

Bi-directional stepwise regression combines backward and forward stepwise regression. Various 281 

criteria have been used in the literature to measure the predictors’ relevancy (ex.: AIC, P-value, 282 

R²-adjusted).  283 

There is a thorough discussion in the literature about the shortcomings of stepwise regression 284 

(Whittingham et al., 2006), with Smith (2018) advising against its use. The author found that 285 

stepwise regression underperformed as potential predictors increased.  However, the method 286 

remains widely used in the scientific community. In this paper, a forward stepwise regression 287 

(FSWR) was applied as a benchmark. The algorithm was initiated with the null model, and 288 

potential predictors that led to the most significant increase in R²-adjusted were added at each 289 

iteration. This procedure is repeated until no candidate variables left could improve the R²-290 

adjusted. A similar forward stepwise regression approach was implemented by Chen et al. (2019) 291 

and performed better than backward stepwise regression for annual average fine particle (PM2.5) 292 

and nitrogen dioxide (NO2) concentrations prediction.  293 

 294 



16 
 

3.1.2 Least Absolute Shrinkage and Selection Operator  295 

 296 

LASSO algorithm is a penalty-based linear model developed by Tibshirani (1996), which imposes 297 

an L1-norm penalization on the regression coefficient forcing some coefficients to zero and thus 298 

producing a sparse solution. The LASSO regression coefficient estimates are given by: 299 

�̂� = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽(𝑌 − 𝑋𝛽)𝑇(𝑌 − 𝑋𝛽) + 𝛼 ∑ |𝛽𝑗|
1𝑝

𝑗=1                                                                                    (2) 300 

Where: 301 

𝑌: is the response vector  302 

𝑋: is the matrix of predictors  303 

𝛽: are the regression coefficient  304 

𝑝: is the number of predictors  305 

𝛼 : is a tuning parameter that controls the degree of penalization  306 

𝛼 ∑ |𝛽𝑗|
1𝑝

𝑗=1 : is the penalization term  307 

|. |1:  represents the L1-norm of a vector 308 

Zou and Hastie (2005) discussed some limitations of LASSO regression, which renders the 309 

algorithm inappropriate for FS in some situations. A particularly relevant limitation in this study 310 

is the inferior prediction performance of LASSO regression compared to Ridge regression when 311 

there is a high correlation between the predictors. 312 

 313 
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3.1.3 Elastic Net  314 

LASSO regression can be seen as a particular case of the Bridge regression introduced by Frank 315 

and Friedman (1993). In Bridge regression, the penalization term in equation 2 becomes  316 

𝛼 ∑ |𝛽𝑗|
𝛾𝑝

𝑗=1  𝑤𝑖𝑡ℎ 𝛾 ≥ 0. LASSO regression is equivalent to Bridge regression when  𝛾 = 1. 317 

Another well-known case of Bridge regression is Ridge regression with 𝛾 = 2. With Ridge 318 

regression, the regression coefficients are shrunk depending on the predictors’ importance, but 319 

they are not set to zero if the variables are irrelevant to the regression.   320 

The ENET model combines the Ridge and the LASSO penalty. The Elastic net algorithm minimizes 321 

the following equation: 322 

𝑚𝑖𝑛𝛽(𝑌 − 𝑋𝛽)𝑇(𝑌 − 𝑋𝛽) + 𝛼𝜆 ∑ |𝛽𝑗|
1

+ 𝛼(1 − 𝜆) ∑ |𝛽𝑗|
2𝑝

𝑗=1
𝑝
𝑗=1                                                     (3) 323 

With 0 ≤ 𝜆 ≤ 1 324 

𝛼 𝑎𝑛𝑑 𝜆 are two hyperparameters of the model that can be selected using cross-validation.  325 

 326 

3.1.4 Genetic Algorithms  327 

 328 

GAGL is an optimization algorithm that emulates natural evolution and selection to find an 329 

optimal solution. It has been implemented in several studies for FS (Amini and Hu, 2021; Eseye et 330 

al., 2019; Gokulnath and Shantharajah, 2019; Leardi et al., 1992). The algorithm starts with a 331 

population of solutions (individuals) initialized randomly. A fitness measure is defined to evaluate 332 

every solution in the population. A new population is formed by producing offspring from the 333 

best solutions of the old population (by reproduction and genetic mutation). This procedure is 334 
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repeated until a stopping criterion is reached. Several variations of the algorithm control, among 335 

others, how the offspring of the population are bred. The different steps of the genetic algorithm 336 

implemented in this study are described as follows: 337 

Step 1: A population was initialized randomly with 50 potential solutions. The solutions were 338 

encoded as a sequence of binary strings (the genes), with each gene associated with a particular 339 

feature among the candidate features. A selected gene (a feature) was represented by “1” and a 340 

none selected gene by “0”. The population is represented by a binary matrix where the rows 341 

represent the potential solutions, and an entry represents a feature or a gene.  342 

Step 2: The 50 solutions in the population were evaluated (fitness score), and the best solution 343 

was copied without modification to the next generation.  344 

Step 3: The next generation's parents were selected with the roulette wheel selection method: 345 

the solutions with the highest fitness score have more chances to be selected as parents for 346 

reproduction to produce offspring. The reproduction process was performed through two genetic 347 

operators, uniform crossover and mutation.  348 

Step 4: Step 3 was repeated until the new population size equalled the initial population size. 349 

Step 5: Steps 2 to 4 were repeated until the maximum number of iterations was reached.  350 

Table 2 presents different parameters of the algorithm used in this study. The performance of the 351 

solutions was evaluated with a 10-fold cross-validation root mean squared error (RMSE) 352 

estimated with a simple linear regression model: 353 

𝑅𝑀𝑆𝐸(𝐶𝑉) =  
1

10
∑ √

1

𝑛𝑘
∑ (𝑦𝑖 − �̂�𝑖)

𝑛𝑘
𝑖=1

2
10
𝑘=1                                                                                                     (4)  354 
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Where 𝑛𝑘 is the size of the kth fold, and 𝑦𝑖 and �̂�𝑖 are the observed and predicted WS values.                       355 

The fitness score was estimated as a weighted sum of the solution performance (RMSE) and its 356 

cardinality (Card) as follows: 357 

𝐹𝑖 = 𝑤1 𝑅𝑀𝑆𝐸𝑖⁄ + (1 −  𝑤1) 𝐶𝑎𝑟𝑑𝑖⁄                                                                                                                                     (5) 358 

Where: 359 

0 < 𝑤1 < 1   360 

The probability of selection of a solution for the reproduction process was assigned based on 361 

equation 6: 362 

𝑃𝑠𝑒𝑙𝑖 = 𝐹𝑖 ∑ 𝐹𝑖
50
𝑖=1⁄                                                                                                                                              (6) 363 

Table 2: Selected parameters of the genetic algorithm 364 

GA parameter  Value/method  

Initial population size  50 

Crossover type Uniform  

Crossover probability  0.9 

Mutation probability 0.05 

Selection process  roulette wheel selection 

Maximum number of iterations 100 

w1  0.1, 0.5, 0.7 
 365 

 366 

3.1.5 Minimum redundance — Maximum relevance  367 

 368 

Filter-based FS approaches such as maximal relevancy (ex: correlation) do not require the 369 

regression model to be evaluated multiple times (ex: in cross-validation); they are relatively 370 
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computationally efficient and less prone to overfitting. One of their drawbacks is their failure to 371 

ignore redundant predictors correlated to the response variable.  372 

The MRMR algorithm is an iterative approach developed by Ding and Hanchuan (2005) to improve 373 

conventional filter-based FS approaches. MRMR benefits from the advantages of the filter-based 374 

FS approach while ignoring redundant features in the process. At each iteration of the MRMR 375 

algorithm, a function measuring the redundancy and relevancy is computed, and the feature that 376 

maximizes this function is selected. Several measures of relevancy and redundancy have been 377 

proposed in the literature depending on the type of variables (discrete vs. continuous), the 378 

desired level of trade-off between relevancy and redundancy (Zhao et al., 2019), and the type of 379 

relationship (linear or nonlinear). In this study, the relevancy is measured with the F-statistic 380 

(𝐹(𝑦, 𝑥𝑖)). The redundancy of a non-selected feature is measured as the inverse of the sum of the 381 

correlation between the feature and the selected features (Ding and Hanchuan, 2005), and the 382 

MRMR optimization criterion function is:  383 

𝑓(𝑥𝑖) =
𝐹(𝑦,𝑥𝑖)

1

𝑠
∑ 𝜌(𝑥𝑠,𝑥𝑖)𝑠

𝑗=1

                                                                                                                                     (7)                                                                                                                              384 

Where: 385 

𝐹(𝑦, 𝑥𝑖) =  
𝜌(𝑦,𝑥𝑖)2

[1−𝜌(𝑦,𝑥𝑖)2]
× (𝑛 − 2)                                                                                                                (8) 386 

𝜌(𝑥1, 𝑥2) is the Pearson correlation coefficient between features 𝑥1 and 𝑥2 387 

𝑛 − 2 is the degree of freedom of a simple linear regression model fitted with 𝑛 samples, one 388 

predictor and a constant term. 389 
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At each iteration, the algorithm seeks to find the feature (𝑥𝑖) which maximizes 𝑓(𝑥𝑖). The stopping 390 

criterion of the algorithm (number of selected features to include in the model) is a 391 

hyperparameter that can be determined using cross-validation. 392 

 393 

3.1.6 Recursive Feature Elimination Support Vector Regression  394 

 395 

The RFES algorithm (Guyon et al., 2002) is a backward elimination algorithm. The model is fitted 396 

to the data at each iteration, and the least important predictor is removed from the feature set. 397 

This process is repeated until a stopping criterion (ex.: minimum size of feature set) is reached. 398 

The stopping criterion can be determined through cross-validation. In the RFES algorithm, the 399 

importance of a predictor is measured by the square of its associated coefficient in the weight 400 

vector (𝑤 : equation 17) using the epsilon-insensitive SVR formulation (Vapnik, 2000), with epsilon 401 

the maximum tolerable deviation between the predictions and the observed values.  402 

Let 𝑓(𝑥) be the linear function used to approximate the relationship between the predictors (𝑥) 403 

and the response variables y: 404 

𝑓(𝑥) = 〈𝑤. 𝑥〉 +  𝑏                                                                                                                                          (9) 405 

In the epsilon-insensitive SVR formulation (Vapnik, 2000), the loss function is defined as follows: 406 

𝐿𝑜𝑠𝑠 =  {
0                  𝑖𝑓 |𝑦 − 𝑓(𝑥)| ≤ 𝜀

 |𝑦 − 𝑓(𝑥)| −  𝜀       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                                                                (10) 407 

It is desirable to find a solution to equation 9 having 𝑤 with minimum norm to reduce the model 408 

complexity. The optimization problem can be re-written as follows: 409 
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𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐽(𝑤) =  
1

2
‖𝑤‖2                                                                                                                          (11) 410 

Subject to: 411 

|𝑦𝑖  −  〈𝑤, 𝑥𝑖〉 +  𝑏| ≤  𝜀                                                                                                                             (12) 412 

With noisy data, 𝑓(𝑥) may not satisfy the epsilon-insensitive constraint. Therefore, slack variables 413 

(𝜉𝑖𝜉𝑖
∗) are introduced for each point to allow less restrictive constraints leading to the following 414 

formulation (Vapnik, 2000) : 415 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐽(𝑤) =  
1

2
‖𝑤‖2 + 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖

∗)𝑛
𝑖=1                                                                                         (13) 416 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: {

𝑦𝑖  −  〈𝑤. 𝑥𝑖〉 −  𝑏 ≤ 𝜀 + 𝜉𝑖 
〈𝑤, 𝑥𝑖〉 +  𝑏 − 𝑦𝑖  ≤ 𝜀 + 𝜉𝑖

∗

𝜉𝑖𝜉𝑖
∗                                  ≥ 0 

                                                                                                (14) 417 

C: is a regularization parameter  418 

From the objective function and the constraints (Equations 13 and 14), a Lagrange function 𝐿 is 419 

defined by introducing non-negative Lagrange multipliers 𝛼𝑖𝛼𝑖
∗, 𝜂𝑖𝜂𝑖

∗:  420 

𝐿 =  
1

2
‖𝑤‖2 + 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖

∗)𝑛
𝑖=1 − ∑ (𝜂𝑖𝜉𝑖 + 𝜂𝑖

∗𝜉𝑖
∗)𝑛

𝑖=1 −  ∑ 𝛼𝑖(𝜀 + 𝜉𝑖 − 𝑦𝑖 + 〈𝑤, 𝑥𝑖〉 +  𝑏𝑛
𝑖=1 ) −421 

 ∑ 𝛼𝑖
∗(𝜀 + 𝜉𝑖

∗ + 𝑦𝑖  −  〈𝑤, 𝑥𝑖〉 −  𝑏)𝑛
𝑖=1                                                                                                  (15)                     422 

At the saddle point, the partial derivatives of 𝐿 in all directions are null, giving the following 423 

equation in 𝑤 direction: 424 

𝜕𝐿 𝜕𝑤⁄ = 𝑤 − ∑ (𝛼𝑖 + 𝛼𝑖
∗)𝑥𝑖 = 0𝑛

𝑖=1                                                                                                             (16) 425 

And  426 
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𝑤 = ∑ (𝛼𝑖 + 𝛼𝑖
∗)𝑥𝑖

𝑛
𝑖=1                                                                                                                                    (17) 427 

 428 

3.2. Performance evaluation  429 

 430 

The RK model was implemented to estimate the WS quantiles using the selected predictors. The 431 

RK model can be expressed as follows (Hengl et al., 2007): 432 

�̂�(𝑠0) =  ∑ 𝛽𝑘 × 𝑥𝑘(𝑠0)
𝑝
𝑘=0 +  ∑ 𝜆𝑖 ×  𝜀 (𝑠𝑖)

𝑛
𝑖=1                                                                                      (18) 433 

 434 

Where �̂�(𝑠0) is the estimated WS quantile at the target location (𝑠0), 𝑥𝑘(𝑠0) are the values of the 435 

predictors at the target location, and  𝛽𝑘 are the regression coefficients. 𝜆𝑖 are the ordinary kriging 436 

weights, and  𝜀(𝑠𝑖) are the regression residuals at the sampled locations.  437 

From the available data (207 samples), 155 samples (training set) were randomly selected for FS 438 

and fitting the RK model. The remaining 57 samples (test set) were used for the model evaluation. 439 

This procedure is a common practice in statistical modelling for the validation of the results (for 440 

instance, Qiu et al. (2022); Sun et al. (2023)). It helps ensure unbiased assessment and 441 

generalization of the model's predictive capability. In addition, 10-fold cross-validation was 442 

performed on the training set, and the results were presented. Veronesi et al. (2016) used a 443 

similar validation procedure to validate their models for predicting WS distribution parameters at 444 

unsampled locations in the UK.  445 

The coefficient of determination (R²), the RMSE, the Relative Root Mean Squared Error (RRMSE), 446 

and the Mean Absolute error (MAE) were computed separately for each percent point considered 447 
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in the study to evaluate the performance of the RK models during the cross-validation and with 448 

the test set: 449 

𝑅2 = 1 − 
∑ (𝑦𝑖−�̂�𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−�̅�)2𝑛
𝑖=1

                                                                                                                                 (19) 450 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1                                                                                                                           (20) 451 

𝑅𝑅𝑀𝑆𝐸 =   √1

𝑛
∑ (

𝑦𝑖−𝑦�̂�

�̅�
)

2
𝑛
𝑖=1                                                                                                                                   (21) 452 

𝑀𝐴𝐸 =  
∑ |𝑦𝑖−�̂�𝑖|𝑛

𝑖=1

𝑛
                                                                                                                                       (22) 453 

 454 

4. Results  455 

 456 

4.1. Wind speed quantiles  457 

 458 

WS quantiles corresponding to 14 fixed percentile points for each location were estimated using 459 

shape-constrained P-Splines and the Weibull plotting position formula. Table 3 illustrates some 460 

statistics of the estimated WS quantiles in the training set.   461 

Table 3: WS quantile statistics (P-Splines) 462 

Percentile Abbreviation mean std min 25% 50% 75% max 

%  m/s m/s m/s m/s m/s m/s m/s 

0.01 P1 19.68 5.72 7.92 15.49 19.54 23.29 45.58 

0.1 P2 18.42 5.16 7.67 14.81 18.24 21.55 40.75 

1 P3 12.72 3.92 5.75 9.90 12.17 15.07 29.75 

5 P4 10.05 3.16 3.79 7.83 9.80 12.14 20.65 

10 P5 8.63 2.65 3.15 6.84 8.43 10.48 17.51 

20 P6 6.96 2.15 2.39 5.43 6.85 8.44 14.11 

30 P7 5.85 1.84 2.00 4.61 5.73 7.08 11.88 

40 P8 4.98 1.59 1.75 3.92 4.91 5.93 10.11 

50 P9 4.24 1.39 1.56 3.33 4.17 5.12 8.61 

60 P10 3.57 1.21 1.34 2.79 3.46 4.35 7.30 
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70 P11 2.92 1.02 1.07 2.28 2.77 3.53 6.08 

80 P12 2.28 0.82 0.80 1.74 2.15 2.73 4.94 

90 P13 1.55 0.58 0.51 1.19 1.45 1.87 3.41 

95 P14 1.08 0.42 0.35 0.79 1.03 1.30 2.34 

 463 

 464 

4.2. Model performances  465 

 466 

The average R², RMSE, RRMSE, and MAE of the cross-validation with the training and the test 467 

set are listed in table 4 and table 5, respectively. When evaluated by cross-validation, the 468 

average R² ranges between 0.18 and 0.50, and the average RRMSE ranges between 22.4% and 469 

33.1%. On the test set, the average R² ranges between 0.14 and 0.60, and the average RRMSE 470 

ranges between 20.7% and 35.5%. Model performance measured by cross-validation showed 471 

that GAGL was the best-performing FS algorithm, followed by MRMR, ENET and LASSO. On the 472 

test set, ENET, LASSO, and MRMR were the best-performing FS methods, and GALG and RFES 473 

had relatively medium performances. FSWR was the worst-performing FS method during cross-474 

validation and with the test set.  475 

A two-sample t-test ( 𝐻0: 𝜇Δ𝑅𝑅𝑀𝑆𝐸 ≥  𝜇0, 𝐻1: 𝜇Δ𝑅𝑅𝑀𝑆𝐸 <  𝜇0) was conducted to assess the 476 

difference between the expected RRMSE (𝜇Δ𝑅𝑅𝑀𝑆𝐸 =  𝜇1𝑅𝑅𝑀𝑆𝐸 −  𝜇2𝑅𝑅𝑀𝑆𝐸) of pairs of FS 477 

methods on the test set. The results are presented in table 6. The expected RRMSE of FSWR is 478 

significantly superior to the expected RRMSE of all the other FS methods. Also, ENET, LASSO, 479 

and MRMR performances were not significantly different when considering the RRMSE. 480 

However, ENET, LASSO, and MRMR performances were significantly superior (lower RRMSE) to 481 

GALG and RFES at the significance level of α = 0.05. There was no statistically significant 482 

difference between the expected RRMSE of GAGL and RFES. 483 
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Table 4: Performance of FS methods with cross-validation on the training set  484 

FS method R² RMSE RRMSE MAE 

 -  m/s -  m/s 

ENET 0.410 1.668 0.246 1.238 

FSWR 0.125 2.978 0.347 1.699 

GALG 0.510 1.432 0.222 1.120 

LASSO 0.408 1.659 0.246 1.239 

MRMR 0.417 1.645 0.244 1.230 

RFES 0.317 1.702 0.272 1.238 

 485 

Table 5: Performance of FS methods on the test set 486 

FS method R² RMSE RRMSE MAE 

 -  m/s -  m/s 

ENET 0.559 1.312 0.21 0.911 

FSWR 0.137 2.307 0.353 1.555 

GALG 0.491 1.438 0.233 1.002 

LASSO 0.596 1.231 0.207 0.869 

MRMR 0.602 1.226 0.211 0.847 

RFES 0.459 1.506 0.24 1.053 

 487 

 488 

Table 6: Results of the t-test between the expected RRMSE of pairs of FS methods  489 

𝝁𝟐𝑹𝑹𝑴𝑺𝑬 
 

 FS 
method 

ENET FSWR GALG LASSO MRMR RFES 

𝝁
𝟏

𝑹
𝑹

𝑴
𝑺

𝑬
 

ENET 
 

-4.69 -2.03 0.59 -0.18 -1.88 

FSWR 4.69* 
 

3.46* 4.77* 4.51* 3.14* 

GALG 2.03* -3.46 
 

2.26* 2.21* -0.78 

LASSO -0.59 -4.77 -2.26 
 

-0.91 -2.09 

MRMR 0.18 -4.51 -2.21 0.91 
 

-1.99 

RFES 1.88* -3.14 0.78 2.09* 1.99 
 

*: 𝝁𝟏𝑹𝑹𝑴𝑺𝑬 − 𝝁𝟐𝑹𝑹𝑴𝑺𝑬 is significantly less than 0 at α = 0.05  

 490 

 491 

The RRMSE of the FS methods is presented in figure 2 for the standalone multilinear regression 492 

model (REG) and the regression-kriging model (ROK). The kriging of the regression model 493 
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residuals led to a slight improvement in the performance metric. On average, the residual 494 

kriging decreased the RRMSE by 4%.  495 

Figure 3 presents the RRMSE of the different WS quantiles. The model performance 496 

deteriorated as the probability of exceedance increased. For example, the mean RRMSE for the 497 

estimation of P1 is 17.0% (excluding FSWR), 21.4% for P9 (excluding FSWR), and 29.3% for P14 498 

(excluding FSWR). FSWR performed relatively poorly for the estimation of P1 to P8 and 499 

improved for the estimation of P9 to P14.  500 

 501 

 502 

Figure 2: RRMSE of the standalone multilinear regression model (REG) and the regression-503 

kriging model (ROK)  504 
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 505 

 506 

Figure 3: RRMSE of the FS methods for the estimation of different WS quantiles  507 

 508 

 509 

4.3. Parsimony and multicollinearity  510 

 511 

Figure 4 presents the mean number of selected features for each FS method. On average, the 512 

FSWR (44) method was the least sparse of the algorithm, followed by RFES (18) and GAGL (17). 513 

LASSO selected, on average, five features and was the sparsest FS method, followed by ENET (9) 514 

and MRMR (11). Figure 5 illustrates the mean number of selected features against the mean 515 

RRMSE. In general, the performance of the FS methods decreased (the RRMSE increased) as the 516 

number of selected features increased.  Although FSWR selected many features, the model’s 517 

performance remained relatively poor. As seen previously, the performance of ENET, LASSO and 518 
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MRMR were not statistically different (two-sample t-test of the expected RRMSE), but LASSO 519 

was, on average, slightly more parsimonious.  520 

 521 

 522 

 523 

Figure 4: Mean number of selected features of each FS method  524 
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 525 

Figure 5: Mean number of selected features vs. mean RRMSE 526 

 527 

The condition number (C) is a measure used to evaluate the presence of multicollinearity in a 528 

set of predictors. It is defined as the square root of the ratio between the maximum and the 529 

minimum eigenvalue of the predictor’s correlation matrix. It is a single value summarising the 530 

likelihood of multicollinearity. Figure 6 shows the condition number estimated from the 531 

correlation matrix of the selected feature sets. From empirical observations, Chatterjee and 532 

Hadi (2013) suggested a cut-off of 15 to detect multicollinearity and recommended corrective 533 

action if C exceeds 30. All the feature sets estimated with LASSO had a condition number below 534 

15. In the case of MRMR, the condition numbers were less than 15 in 13 cases out of 14 (92.8%) 535 

and were consistently below 30. For ENET and GAGL, the condition number was less than 15 in 536 

11 cases out of 14 (78.6%). RFES condition numbers were inferior to 15 in 8 cases out of 14 537 

(57.1%), and FSWR condition numbers consistently exceeded 15. 538 
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 539 

 540 

 541 

Figure 6: Condition number (C) of the selected feature sets  542 

 543 

4.4. Residual analysis and visual inspection 544 

 545 

Model residual analyses compare observed data with predicted values to evaluate a model's 546 

precision and reliability. Examining residuals can reveal patterns, outliers, and areas for 547 

improvement in the model's assumptions. Figure 7 compares the observed and predicted WS 548 

quantiles for the top-performing FS methods (MRMR and LASSO), indicating a strong agreement 549 

between the observed and estimated quantile for both methods with an R² of approximately 550 

0.92. LASSO performed slightly better than MRMR, as indicated by the RRMSE. Two outliers 551 

were identified in the bottom-right section of the plots, with an underestimation of the WS 552 

quantiles for both outliers. The residual plot in Figure 8 confirmed that the models did not 553 
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perform as well for high exceedance probabilities as they did for the lower ones. 554 

 555 

Figure 7: Plot of observed vs. estimated WS quantiles for MRMR and LASSO. The R² was 556 

calculated without averaging across the percent points.  557 

 558 

Figure 8: Plot of observed WS quantiles vs. the residuals for MRMR and LASSO.  559 

 560 

4.5. Predictor importance  561 

 562 
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Figure 9 shows the ten most selected features for each WS quantile and the number of times 563 

they were selected. Overall, the most selected features were RGLH and DSEA. DSEA was 564 

consistently selected by every FS method. For the surface roughness length (RGLH), 2000m and 565 

1000m (RGLH_2000m and RGLH_1000m) were the most selected spatial scales. RGLH at 100m 566 

spatial scale (RGLH_100m) was mostly selected for medium to high exceedance probabilities. 567 

DVME at a spatial scale of 2000m (DVME_2000m) was often selected for high exceedance 568 

probabilities (P10 – P14) and less often selected for lower exceedance probabilities (P1 to P9). 569 

Predictors describing the land surface curvature (MXCV, MNCV, TLCV, TGCV, GSCV) seemed 570 

important for predicting WS quantiles corresponding to very low exceedance probabilities (P1 571 

to P5) and less important for medium and high exceedance probabilities. PNCL was also among 572 

the most selected predictors, especially class 7 of PNCL (PNLC_7), which indicates a level terrain 573 

at the grid cell with a low slope gradient. The location coordinates (XGEO and YGEO) were also 574 

often selected for different WS quantiles in the region.   575 

 576 
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 577 

 578 

Figure 9: Selected predictors for each WS quantile  579 

 580 

The predictors selected by the FS methods were used to fit a simple linear regression model. An 581 

advantage of the simple linear regression model is the interpretability of the model. Without 582 

multicollinearity, the regression coefficient magnitude and direction provide useful information 583 
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to assess the relationship between the predictors and the dependent variable. Figure 10 shows 584 

the regression coefficient of the predictors selected with LASSO. The predictors were 585 

standardized to a zero mean and a unit variance prior to fitting the regression model. LASSO 586 

was the most parsimonious FS method with good predictive ability. In addition, the estimated 587 

condition numbers of all the feature sets selected by LASSO were below 15, indicating the 588 

absence of multicollinearity. It is observed that DSEA regression coefficients were often the 589 

strongest and were always negative. DSEA represents the location distance from the coast; the 590 

direction of the regression coefficient showed that WS quantiles, irrespective of their 591 

exceedance probabilities, were higher near the coast than inland. The surface roughness length 592 

(RGLH) showed relatively high regression coefficients with every WS quantile. The negative 593 

direction of the regression coefficient of RGLH is intuitive. An increase in surface roughness 594 

results in more friction between the land surface and the wind, decreasing WS near the ground. 595 

For P1 and P2, the maximum curvature (MXCV) had the second-highest regression coefficient 596 

with a positive direction. Note that higher values of MXCV correspond to elongated convex 597 

landforms such as ridges, and negative values are associated with concave landforms (Florinsky, 598 

2017). The positive magnitude of the MXCV regression coefficient showed that the WS quantiles 599 

P1 and P2 were higher at locations where the landforms are convex and decreased as the 600 

landform concavity increased.  601 



36 
 

 602 

Figure 10: Regression coefficients of the WS quantile predictors 603 
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5. Discussion 604 

 605 

This study compared six FS methods for WS quantile estimation in Canada. The results showed 606 

that LASSO, MRMR, and ENET had comparable performances on the test set and were the most 607 

effective FS methods. GAGL and RFES performed slightly worse than LASSO, MRMR, and ENET 608 

but outperformed FSWR. The FSWR method does not seem to ignore redundant features, 609 

leading to an unstable estimation of regression coefficients and poor performance during 610 

testing. This situation seems more pronounced for low than high exceedance probabilities (P10 611 

to P14). There was less collinearity among the relevant predictors associated with high 612 

exceedance probabilities than for lower ones. Kriging of the regression residual slightly 613 

improved the model performances (4%), indicating that the selected predictors and the linear 614 

regression model could account for a significant portion of the spatial variability of WS quantiles 615 

in the region. 616 

The models’ performances were higher for low to medium exceedance probabilities and 617 

declined for high exceedance probabilities. This decline in performance could be attributed to 618 

several factors. One possible explanation is that there is a significant non-linear relationship 619 

between high exceedance probabilities WS and the predictors, requiring the implementation of 620 

non-linear models for improved performance. Another possible explanation is the exclusion of 621 

significant predictors of high exceedance probabilities from the models. For example, the 622 

models did not include climate-related predictors such as mean temperature or pressure. 623 

Climatic variables are often collected at meteorological stations where WS is also measured; 624 

thus, they should also be missing at locations with unavailable WS data. The results highlight the 625 
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need for further research to enhance the performance of models in predicting high exceedance 626 

probability WS. 627 

LASSO was found to produced, on average, the sparsest feature sets, followed by ENET and 628 

MRMR. In addition, LASSO could select relevant predictors without multicollinearity as 629 

evaluated by the feature set correlation matrix condition number. MRMR also eliminated 630 

multicollinearity in most cases (13 out of 14 cases), while ENET, RFES, GAGL, and FSWR were 631 

less effective at solving the issue of multicollinearity in their selected feature sets. These 632 

findings are consistent with existing literature on RFES: Xie et al. (2006) showed that this 633 

implementation does not consider feature redundancy. Overall, LASSO and MRMR were the 634 

most effective FS methods due of the following reasons:  635 

- LASSO and MRMR exhibited high predictive ability, with no significant difference in 636 

performance between the two methods based on t-test results and residual analysis.  637 

- Both FS methods could select relevant predictors while also reducing multi-collinearity 638 

within the feature subset.  639 

- LASSO and MRMR are attractive because they are efficient to implement with a single 640 

parameter to tune, unlike ENET, which produced comparable performance. In the case 641 

of LASSO, the degree of penalization (𝛼) is the only parameter that needs to be tuned. 642 

With MRMR, the number of features to select is the single tuning parameter of the 643 

algorithm. ENET requires the tuning of two parameters.  644 

LASSO and MRMR have different approaches to feature selection. However, their good 645 

performance in the study could be explained by their inbuilt capability to select relevant 646 



39 
 

features while ignoring redundant ones. LASSO is a penalization algorithm based on linear 647 

regression that promotes sparsity by imposing a penalty on the sum of the absolute values of 648 

the feature coefficients. In a group of redundant predictors, LASSO chooses one predictor 649 

among the group and shrinks towards zero the coefficients of the other predictors (Hammami et 650 

al., 2012; Zou and Hastie, 2005) , making it effective in dealing with collinear features.   651 

On the other hand, MRMR ranks features from the most relevant and least redundant to the 652 

least relevant and most redundant, allowing for efficient selection of the smallest subset of the 653 

most relevant and least redundant features that provides the best cross-validation score. In 654 

addition, MRMR is a filter-based approach that is agnostic to any specific regression model, as it 655 

is based on the correlation coefficient. This coefficient is well suited for the linear regression 656 

model used in this study. However, other correlation metrics, such as mutual information, can 657 

be used for nonlinear models. 658 

It is worth noting that GAGL showed superior performance during cross-validation on the 659 

training sets, and there was no significant decline in its performance on the test set. However, in 660 

some feature subsets selected by GAGL, the issue of multicollinearity remained unresolved. In 661 

addition, compared to LASSO and MRMR, GAGL has more parameters that require tuning, 662 

making it less efficient to implement.  663 

In the present study, the location distance from the coast (DSEA) and the surface roughness 664 

length (RGHL) were the two most significant predictors of WS quantiles. The regression model 665 

coefficients for both DSEA and RGHL were physically consistent. In the case of DSEA, the 666 

regression coefficients were negative, indicating a decrease in the WS quantiles from coastal to 667 
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inland areas. Few studies have used the distance from the coast to estimate WS, but it could be 668 

a valuable addition to models, particularly in larger study areas. For low exceedance 669 

probabilities (ex: 1%), surface convexity (concavity) was a significant predictor of WS, but it was 670 

less relevant for higher exceedance probabilities.  671 

There are some limitations to this study. The dataset contained only 207 samples (155 training 672 

and 52 testing samples), and some regions of Canada were naturally less densely represented 673 

(see figure 1). Consequently, some results could be particular to the studied region or the 674 

analyzed dataset and may only be generalized after extensive analysis.   675 

Among the various feature selection (FS) methods examined, the FSWR approach was the least 676 

effective. It is possible to improve the FSWR method performance by adding the variance 677 

inflation factor as a post-processing step. It should be noted that, the FSWR method in this 678 

study was mainly used as a benchmark for assessing the performance of other proposed FS 679 

methods as it remains one of the most common FS methods.  680 

In the present study, the time series were considered stationary when estimating WS quantiles. 681 

Nevertheless, increased evidence points to non-stationarities in WS series and the importance 682 

of incorporating them in the analysis (see, for instance, Ouarda and Charron (2021)). For 683 

instance, several authors observed significant correlations between low-frequency climate 684 

oscillation indices and annual mean WS in different regions of the world (see, for instance, 685 

Naizghi and Ouarda (2017); Woldesellasse et al. (2020)); Including these climate oscillation 686 

indices in quantile estimation or regional transfer models could significantly improve their 687 

performances. Indeed, in a given region, WS stations are impacted by the same climate 688 
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oscillation indices, and their incorporation in the models used to estimate WS at ungauged 689 

locations should lead to performance improvements. The issue of incorporation of 690 

teleconnections in WS estimation models is an important one but remains mainly unexplored in 691 

the literature. Future efforts should focus on incorporating non-stationarities in regional WS 692 

estimation models.  693 

 694 

6.  Conclusions  695 

 696 

This paper evaluated six FS methods for WS quantile estimation. LASSO and MRMR were the most 697 

efficient algorithms in the study. It was found that the importance of some WS quantile predictors 698 

depends on their exceedance probability. The location distance from the coast and the surface 699 

roughness length were significant WS quantile predictors irrespective of the exceedance 700 

probability.  701 

Future research should focus on the extrapolation of this study to other geographic regions, 702 

databases with different characteristics, and other FS methods.  The diversity in the 703 

characteristics needs to be ensured to obtain guidelines for the relative performance and the 704 

applicability of different techniques based on such considerations as the number of sites, the 705 

length of the series, the number of features, the types of wind, the data variability and quality, 706 

etc. 707 

 708 

 709 
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