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 11 
Abstract 12 
 13 
Compounding the joint impact of extreme river temperature and low flow characteristics can harm the aquatic habitat 14 
of certain organisms (e.g., ecototherm fish) and freshwater ecosystems. Considering only river temperature or low 15 
flow via univariate frequency distribution as a stress indicator would be incomplete. Maximum water temperature and 16 
low flow series are strongly negatively correlated; thus, their joint probability distribution can be helpful to assess 17 
better the risks associated with joint extreme events. This study incorporated the 2-D parametric copulas in the 18 
bivariate joint modelling of annual maximum river water temperature and corresponding low flow. This proposed 19 
bivariate framework is applied to 5 independent and identically distributed stations in Switzerland. Parametric 1-D 20 
probability density functions are employed in modelling the univariate marginal distribution of both variables 21 
separately. The efficacy of eighteen different parametric class negatively dependent 2-D copulas is tested. The best-22 
fitted copulas and selected marginals are used to estimate joint return periods for quantiles corresponding to multiple 23 
return periods. The joint return periods of annual maximum temperatures conditional to low flows or vice versa are 24 
also estimated. Investigation reveals that the occurrence of bivariate events simultaneously is less frequent in the 25 
AND-joint case than in the OR-joint event case for all stations. Also, OR-return periods are less (nearly half) the value 26 
of univariate return periods. Secondly, higher conditional return periods are observed in annual maximum temperature 27 
(or low flow) when increasing the percentile value of the conditioning variable, i.e., low flow (or maximum 28 
temperature). Also, when the low flow (or water temperature) conditioning variable is fixed, higher bivariate event 29 
return periods are observed at a higher water temperature (or low flow) value. In conclusion, these estimated bivariate 30 
statistics can help provide a more complete picture for an adequate assessment of the risks associated with cold-water 31 
species.   32 

 33 
Keywords:  34 
 35 
Switzerland, Extreme River temperature, Low flow, Copula function, Bivariate joint analysis, Joint return period, 36 
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 38 
1. Introduction 39 

 40 
A warming climate is expected to increase rivers' mean and maximum temperatures worldwide (Boyer et al., 2021; 41 

Wanders et al., 2019 and references therein). A river's temperature is considered a highly sensitive and vital variable 42 
affecting a flowing river's physical, chemical, and biological processes (Hannah et al., 2008). It significantly impacts 43 
water quality and aquatic ecosystems' health (Caissie, 2006; Petts, 2000). River temperatures increase result in 44 
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decreased dissolved oxygen concentration and a greater rate of biochemical reactions (Ficklin et al., 2013; Sand-45 
Jensen et al., 2005). Therefore, most aquatic organisms have a specific range of temperatures that they can tolerate. In 46 
addition, high water temperatures can damage fisheries' resources by limiting their habitat or even leading to fish 47 
mortality (Caissie et al., 2007; Elliott and Hurley, 2001; Lund et al., 2002; Sundt-Hansen et al., 2018 and references 48 
therein). As an example, in the case of salmonids, an ideal temperature for juvenile Atlantic salmon (Salmo salar) to 49 
grow is 16-20°C (Elliott and Elliott, 2010), and higher temperatures have been found for their fish physiology and 50 
behaviour (Breau et al., 2007; Lund et al., 2002). According to Elliott and Hurley (2001), brown trout (Salmo trutta) 51 
grow optimally at 13.1-13.9°C, whereas growth ceases below 2.9-3.6°C and above 18.7-19.5°C. Water temperature 52 
above 19℃ can also influence vitellogenin (Vtg) concentration in brown trout's plasma (Korner et al., 2008). 53 
Temperatures above 15℃ can increase the risk of proliferative kidney disease (PKD) in brown trout populations 54 
(Strepparava et al., 2018). Thus, the characterization of the hydrological regime of rivers is essential for assessing the 55 
health of aquatic habitats. 56 

Also, several studies have shown that water scarcity can negatively impact fish habitats and marine life, especially 57 
during low water periods. For example, water extraction can affect a river's ability to dilute contaminants and its 58 
thermal regime (Caissie, 2006). The decrease in river flows can be an ecologically stressful event likely to be 59 
exacerbated by potential climate change and other anthropogenic changes (Daigle et al., 2011). The reduction in flow 60 
may also contribute to habitat disconnectivity (Fullerton et al., 2010) and changes in river water temperature 61 
(Humphries and Baldwin, 2003; Sinokrot and Gulliver, 2000; Doug and Amy, 2021). Thus, their combined action can 62 
be more harmful and affect the water habitats. There have been several studies in the literature that have focused on 63 
the prediction of extreme river temperatures and low flows on a univariate basis (Souaissi et al., 2023; Ouarda et al., 64 
2022; Abidi et al., 2022; Alobaidi et al., 2021; St-Hilaire et al., 2021; Souaissi et al., 2021; Caissie et al., 2020; Charron 65 
et al., 2019; Ouarda et al., 2018; Lee et al., 2017; Joshi et al., 2016; Joshi et al., 2013; St-Hilaire et al., 2012; Daigle 66 
et al., 2011; Ouarda et al., 2008; Hamza et al., 2001; Durrans et al., 1999). In bivariate frequency analysis (FA), several 67 
studies have concluded that single-variable hydrological FA provides a limited assessment of extreme events (Lee et 68 
al., 2013; Salvadori et al., 2007; Yue et al., 2001). Generally, univariate FA and their associated return periods cannot 69 
provide a complete evaluation of the probability of occurrence if correlated random variables describe the underlying 70 
event of interest. A better understanding of the phenomenon can be gained by studying the probabilistic characteristics 71 
of such events in conjunction with their joint distribution. Univariate FA is helpful when only one random variable is 72 
significant for design purposes or if the two are not strongly (and significantly) correlated (Graler et al., 2013, Reddy 73 
and Ganguli, 201; Karmakar and Simonovic, 2009). However, a separate analysis of the random variables cannot 74 
reveal their significant relationship if the correlation is essential information in the design criteria. As a result, it has 75 
been demonstrated in recent years that extreme hydrological events can be characterized by the joint behaviour of 76 
several dependent variables (Latif and Simonovic, 2022a; Latif and Mustafa, 2020, 2021; Santhosh and Srinivas, 77 
2013; Chebana and Ouarda, 2009; Yue 2001). The multivariate FA framework is widely accepted, such as modelling 78 
flood volume, peak and duration (Fan et al., 2016; Chebana and Ouarda, 2009; Zhang and Singh, 2006); drought 79 
magnitude (De Michele et al., 2013; Kao & Govindaraju, 2010; Shiau 2006), rainfall characteristics (Salvadori and 80 
De Michele 2006), joint modelling of storm surge, rainfall, and river discharge (Latif and Simonovic 2022b, 2022c). 81 
However, only one publication estimates extremes in the thermal regime of rivers using a multivariate FA approach. 82 
Seo et al. (2022) recently focused on analyzing the effect of drought on water temperature from a probabilistic point 83 
of view using the notion of a copula distribution framework. Different correlated components can characterize extreme 84 
water temperatures.  85 

Earlier studies incorporated different conventional parametric distributions in the bivariate and a few trivariate 86 
joint frameworks. For instance, Goel (1998) (bivariate normal model), Yue (1999) (bivariate generalized extreme 87 
value model), Yue (2000) (bivariate Gumbel model), Escalante and Raynal (1998, 2008) (trivariate Gumbel 88 
distribution) and references therein. All such conventional distributions have some statistical constraints and 89 
limitations (refer to Joe, 1997 and Nelsen, 2006 for extended details). Recently, the copula functions have been 90 
recognized as a highly flexible multivariate joint distribution tool (De Michele and Salvadori, 2003; Grimaldi and 91 
Serinaldi, 2006; Zhang and Singh, 2007; Salvadori et al., 2007; Salvadori and De Michele, 2010; Latif and Simonovic 92 
2022a, 2022b, and references therein). The copula function allows the separate modelling of univariate marginal 93 

Jo
urn

al 
Pre-

pro
of



3 
 

distributions and their joint structure, which are not necessarily from the same distribution families. The copula is 94 
frequently applied in most literature for bivariate joint distribution cases. Very few pieces of literature attempted to 95 
model the trivariate joint case of extreme events. Our study is limited to developing the 2-D copula distribution 96 
framework because of input bivariate random observations. 97 

A period of high temperatures and low flows can increase stress for many aquatic species.  In order to understand 98 
the combined action of rivers' thermal and flow regimes, multivariate joint probability distribution approaches should 99 
be adopted in the evaluation of joint exceedance probabilities and associated multivariate joint and conditional return 100 
periods; otherwise, the univariate approach might result in underestimation or overestimation of risk. This can model 101 
the actual risk associated with the joint occurrence of  high river temperatures and corresponding low flow events. 102 
Previous studies used a univariate probability framework to consider only the river temperature to indicate thermal 103 
stress indicators for aquatic species at the same river stations (Souaissi et al., 2021). As far as the authors are aware, 104 
there has been no detailed analysis of the joint and conditional probability relationship between these variables for 105 
aquatic species in the Swiss River using a bivariate joint dependence framework. As a result, the novelty of this present 106 
work performed the joint distribution relationship and bivariate FA of the maximum river temperature and 107 
corresponding low flow using a parametric copula distribution framework. This study uses the joint and conditional 108 
joint probability framework and its associated exceedance probabilities for river water temperature and corresponding 109 
low flow to investigate their joint stress for aquatic habitats in Switzerland's multiple independent and identically 110 
distributed (i.i.d) stations. The objective of this present study is (1) to test the efficacy of 2-D parametric copula in the 111 
bivariate joint modelling of river water temperature and low flow characteristics; (2) to estimate bivariate primary 112 
joint return periods for both OR- and AND- joint cases and its comparison with univariate return periods; (3) to 113 
estimate conditional joint return periods of river water temperature (or corresponding low flow) given various 114 
percentile values or conditioning to low flow series (or river water temperature).  115 

The organization of this manuscript is as follows: Section 2 presents the theoretical research framework or 116 
methodology in fitting 2-D parametric class copula functions, their dependence parameter estimations and the 117 
goodness-of-fit (GOF) test in the bivariate joint analysis. This section also presented the theoretical background of 118 
risk evaluation by estimating bivariate joint and conditional joint return periods. Section 3 presents the study area 119 
details, delineation of bivariate extreme observations, and modelling of the univariate marginal distribution of the 120 
selected variable of interest. Section 4 provides the results and discussions, selecting the most parsimonious 2-D 121 
copulas in the bivariate joint simulation, their associated primary joint return periods, and the conditional joint return 122 
periods. Lastly, Section 5 presents the research conclusions and future works. 123 

 124 

 125 

2. Theoretical Research Framework 126 

 127 

2.1. Bivariate dependence via parametric 2-D copula  128 

 129 
          Investigating the joint exceedance probabilities and their associated return period between river water 130 
temperature and low flow series can better understand their collective impact on aquatic habitats or fish life cycles. 131 
Figure 1 illustrates the methodological workflow model adopted in this study. Our present methodology introduced a 132 
parametric-based multivariate probabilistic framework that investigates the compound effect of river water 133 
temperature and corresponding low flow in the context of joint and conditional joint probability distribution and its 134 
associated return periods. 135 

 136 

Insert Figure 1  137 

 138 
Compared to the conventional multivariate models, the copula function can form the basis for estimating 139 

various quantities, which can be very useful for risk analysis, for instance, the estimation of joint and conditional joint 140 
return periods (Salvadori 2004; Shiau 2006; Salvadori and De Michele 2004). Saklar (1959) first developed the idea 141 

Jo
urn

al 
Pre-

pro
of



4 
 

of the copula function. Copula connects univariate marginal distributions of multiple individual variables into 142 
multivariate joint distribution (Nelsen 2006; Salvadori and De Michele 2004). Copulas can model a wider extent of 143 
both linear and nonlinear dependencies.  144 

If (A, B) is the bivariate random pair (historical observations), with u = FA(a) = P(a ≤ A) and v =  FB(b) =145 
P(b ≤ B) are the continuous univariate marginal distributions, then there is a copula dependence function 'C', which 146 
can be defined on the unit square is estimated by 147 

  148 

                                       HA,B(a, b) = C[FA(a), FB(b)] = C(u, v)                                    (1) 149 

 150 

where C is any copula function under consideration. FA(a) and FB(b) are the univariate marginal cumulative 151 
distribution functions (CDFs) of the fitted random variables A and B. HA,B(a, b) is the bivariate joint cumulative 152 

distribution function (JCDF) which can be defined using the bivariate copula density. Also, If the given univariate 153 
marginal distributions, FA(a) and FB(b) are continuous, then the fitted Copula must be unique (Zhang and Singh 154 
2006). Similarly, the joint probability density of the two random characteristics, with fA(a) and fB(b) are the univariate 155 
probability density function (PDF), is estimated by  156 

 157 

                            fA B(ab) = c(FA(a), FB(b)) ∗ fA(a) ∗ fB(b)                                        (2) 158 

 159 
Where c is the density function of 2-D Copula. 160 
 161 

                                                c(u, v) =
∂2c(u,v)

∂u ∂v
                                                                 (3) 162 

 163 

where u = FA(a) = P(a ≤ A) and  v =  FB(b) = P(b ≤ B) 164 

 165 
Before selecting copulas as a candidate model in testing and establishing bivariate joint dependency, we 166 

confirmed that the river water temperature and the corresponding low flow exhibit negative dependency. We already 167 
measured the dependency strength between the targeted variable in section 4.2. Taking this into consideration, our 168 
present study selected and tested the efficacy of different negative dependence copula classes (−∞ < θ ≤169 
0; θ is the copula dependence parameter ). For instance, monoparametric Archimededean copulas (i.e., Frank), bi-170 
parametric or mixed Archimedean copulas (i.e., BB1 (mixture of Clayton-Gumbel), BB6 (mixture of Joe-Gumbel), 171 
BB7 (mixture of Clayton-Joe) and BB8 (mixture of Frank and Joe)), rotated variants of Archimedean copulas (i.e., 172 
rotated Clayton, Gumbel, Clayton (each by 90 degrees)), rotated version of mixed Archimedean copulas (i.e., rotated 173 
BB1, BB6, BB7, BB8 (each by 90 degrees and 270 degrees)), one Elliptical Copula (for instance, Gaussian or Normal) 174 
(Joe 1997; Constantino et al., 2008; Manner 2010; Li et al. 2016; Tang et al. 2015; Zhang et al. 2016). 175 

The Archimedean class copulas are highly flexible, less complex and easy to fit. For instance, Frank copula 176 
can accommodate the entire range of mutual concurrency, τθ ϵ [1, −1]. However, it can fail to capture extreme tail 177 
dependence behaviour or have a symmetrical dependence structure. Besides this, the Clayton, Gumbel and Joe copulas 178 
only exhibited positive range dependency. However, by 90 degrees, their rotated version can easily model the 179 
negatively dependent pairs and thus be employed in this study. 180 

 181 
The bivariate Archimedean class copula is mathematically expressed as (Nelsen 2006) 182 

 183 

C(u. v) = ϕ−1(ϕ(u) + ϕ(v));        for u, v ∈ [0, 1]                               (4) 184 

 185 

In the above Equation (4), ϕ(⋅) and ϕ−1(⋅) are the Archimedean Copula's generator functions and their inverse. Also, 186 
the efficacy of the Gaussian (or Normal) Copula is tested in the bivariate joint analysis, and which is estimated by 187 

 188 
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Cθ(u, v) = Φθ (Φθ
−1(u), Φθ

−1(v)) =
1

2π√1−θ2
∫ ∫ e

(
−(s2−2θst+t2)

2(1−θ2)
)

dsdt
Φθ

−1(v)

−∞

Φθ
−1(u)

−∞
          (5) 189 

 190 

In Equation (5), Φθ is the bivariate normal CDF; Φ and Φ−1 are the standard normal CDF and its inverse function. 191 
The Gaussian Copula exhibits symmetric tail behaviour, unable to capture extreme tail dependence or asymptotic 192 
independence, and it is surrounded mainly by the centre or mid-range of distribution (MacNeil et al., 2005; 193 
AghaKouchak et al., 2012; Alina, 2018; Zhang et al., 2016).       194 

On the other side, two-parameter mixture Archimedean copulas, for instance, BB1, BB6, BB7 and BB8, are 195 
highly efficient in capturing joint dependence behaviour (Joe and Hu 1996; Joe 1997; Nikoloulopoulos 2012). Such 196 
as, BB1 and BB7 can accommodate both the lower and upper tail dependence, BB6 can capture upper tail behaviour 197 
while BB8 has no tail dependencies (Joe 1997). This study also tested the adequacy of the rotational variants of the 198 
mixture Archimedean Copula by 90 and 270 degrees, which can effectively capture negative correlation behaviour. 199 
Besides this, the rotational variants of extreme value class Tawn type 1 copula (by 90 degrees) are also incorporated 200 
(Tawn 1988). All the selected candidate copula models are fitted to historical bivariate random pairs in the next 201 
following section, 2.2. Table 1 lists the mathematical description and their associated statistical properties of 2-D 202 
copulas used in this study. Readers are advised to follow 'The International Association of Hydrological and Sciences 203 
(IAHS)' for extended details and a list of copula's model applicability in hydrometeorological characteristics  204 

 205 
Insert Table 1 206 

 207 

2.2. Estimation of copula dependence parameters  208 
 209 

Existing literature pointed out a different approach in the estimation of the vector of unknown statistical 210 
parameters, called copula dependence parameter(s), for instance, canonical maximum likelihood (CML), inference 211 
functions for marginal (IMF), rank-based method of moment (MOM.), exact maximum likelihood (EML) etc., (Genest 212 
and Rivest 1993; Genest et al. 1995; Joe 1997, and references therein). This study incorporated a maximum pseudo-213 
likelihood (MPL) estimator in estimating the dependence parameters of the fitted 2-D models (Klein et al., 2010; 214 
Kojadinovic and Yan, 2010; Reddy and Ganguli, 2012). The MPL estimators utilize rank-based empirical distribution 215 
in estimating copula parameters independently from their univariate marginal distributions. The MPL is working on 216 
maximizing the pseudo-log-likelihood function l(θ) in estimating dependence parameters as given below: 217 

 218 

                                   l(θ) = ∑ log[cθ{F1(Xk,1), F1(Xk,2)}]m
k=i                                      (6) 219 

 220 
In Equation (6), θ defines the copula dependence parameter; m is the random pairs size (or length) 221 
F1(Xk,1) and F1(Xk,2) are the empirical cumulative distribution functions (CDFs); l(θ) defines the pseudo-log-222 

likelihood function. 223 

 224 
2.3. Compatibility test for fitted bivariate copula model 225 

 226 
The efficacy of the fitted candidate 2-D copula models for each station is examined using the Cramer-von Mises 227 

(CvM) test statistics. The CvM test statistics evaluate the performance of hypothesized 2-D model fitted to given 228 
bivariate random observations that make the use of Cramer-von Mises functional statistics ′𝑆𝑛′ with the parametric 229 
bootstrapping procedure (Genest and Remillard, 2008; Tosunglou and Kisi 2016) is estimated by 230 

 231 

Sn = ∑ {cn(Ui,n , Vi,n) − Cθ(Ui,n , Vi,n)}
2n

i=1                                   (7) 232 
 233 
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In Equation (7), ′𝑐𝑛′ is the empirical Copula estimated using the n observational random pairs; ′𝐶𝜃′ is the parametric 234 
2-D Copula estimated under the null hypothesis. Besides this, the p-value of each candidate 2-D Copula 235 
(corresponding to above 𝑆𝑛 test) is estimated using parametric bootstrapping by 236 
 237 

     p =
1

N
1(Sn,t ≥ Sn)                                                                       (8) 238 

 239 
In Equation (8), N is the number of simulations. In conclusion, the acceptance and rejection of the candidate 2-D 240 
model are based on the fact that if the estimated p-value is larger than 0.05 (at a 5% significance level), the selected 241 
Copula must be performed satisfactorily; otherwise, liable for rejection. Also, the minimum value of the ′𝑆𝑛′ statistics 242 
(refer to Equation (7)) must indicate the most parsimonious Copula, which has minimum dispensary with the empirical 243 
Copula. This study used the free R software (R Core Team 2021) with libraries (Copula, Vine Copula and VC2copula) 244 
to compute the 𝑆𝑛 (with parametric bootstrapping) statistics and their associated p-value (along with copula 245 
dependence parameters) for each fitted 2-D Copula. 246 

 247 

2.4. Multivariate Risk Evaluation  248 
 249 

2.4.1. Derivation of primary joint return periods from the bivariate distribution of extreme pairs 250 
 251 
This study aims to investigate the joint probability occurrence of river water temperature and corresponding 252 

low flow that can adversely affect the environment and aquatic life if they occur concomitantly. Estimating design 253 
variable quantiles under different notations of return periods is essential in risk assessments of extreme events. For 254 
instance, return periods are calculated based on joint probability distribution and conditional joint probability 255 
relationship (Salvadori, 2004; Zhang and Singh, 2006; Graler et al., 2013; Serinaldi, 2015, and references therein). 256 
Different return periods estimation approaches have their importance, which cannot be interchanged and could solely 257 
depend upon the nature of the problem undertaken. This section describes the estimation of primary joint return periods 258 
for both OR- and AND-joint cases.  259 

 260 
The joint probability relationship of river water temperature and corresponding low flow series is described 261 

in two different ways: 262 
 263 
Case-1: when both variables exceed a particular threshold value simultaneously (say, A ≥ a AND B ≥ b) and 264 

thus their associated return period, called AND-joint return period, is given by 265 
 266 

            TAND =
μ 

1−F(a)−F(b)−C(F(a),F(b))
=

1

1−F(a)−F(b)−C(F(a),F(b))
         (9) 267 

 268 
In Equation (9), F(a) and F(b) are the univariate marginal CDFs; C(F(a), F(b)) is the copula-based joint CDF;  μ is 269 
the average inter-arrival time between two successive occurrences of extreme events. The value of μ equals 1 when 270 
considering the extreme events at an annual scale (i.e., one event per year or annual maxima extreme value sample 271 
group) (Yue and Rasmussen 2002). The non-exceedance probabilities in the simultaneous occurrence of both events 272 
are defined by the denominator term (F(a) + F(b) - C(F(a), F(b))). of Equation (9). 273 

Case-2: when either of the variables exceeds a particular threshold value (say, A ≥ a OR B ≥ b) and thus 274 
their associated return periods, called OR-joint return periods, are given by 275 

 276 

                                        TOR =
1

1−F(a)−F(b)−C(F(a),F(b))
                                                  (10) 277 

 278 
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In conclusion, Equations (9) and (10) are used in estimating joint return periods for the different possible combinations 279 
of bivariate random pairs.  280 
 281 

                282 
2.4.2. Derivation of return periods from the conditional joint probability distribution 283 

 284 
In examining the mutual concurrency between river water temperature and corresponding low flow 285 

characteristics, it must also be demanding to investigate the conditional joint probability relationship. In actuality, the 286 
conditional return period relies on the conditional joint probability between the variable of interest, given that some 287 
condition is fulfilled (Shiau, 2006; Zhang and Singh, 2006; Salvadori and De Michele, 2010; Sraj et al., 2014; Zhang 288 
et al., 2016 and references therein). For instance, the variation in the first variable's return periods given various 289 
percentile values of the second variable (or vice-versa).  290 

The best-fitted 2-D Copulas, selected in previous section 2.3, are now employed in deriving the conditional 291 
probability distribution and, in further the conditional return periods, are estimated for two different bivariate cases, 292 
given by 293 

 294 
Case 1:  295 

                                        TA|B>b =
1

(1−F(b)∗(1−F(a)−F(b)+C(F(a),F(b))
                                             (11) 296 

And, 297 
 298 
Case 2: 299 

                                                            TA|B≤b =
1

(1−
C(F(a),F(b))

F(b)
)
                                                     (12) 300 

 301 
Equations (11) and (12) indicate the conditional return period, say variable A (e.g., river water temperature), given 302 
various percentile values of the second variable, say B (e.g., corresponding low flow) or vice-versa. 303 
 304 
 305 
3. Application 306 
 307 
3.1. Details of the study area  308 

 309 
The network of water temperature stations in Switzerland is chosen as a case study for this work. Figure 2 illustrates 310 

the location of the gauging stations selected for this study. The catchment areas for the five stations employed vary 311 
from a minimum of 314 km2 to a maximum of 6299 km2, with an average watershed elevation varying between 502 312 
m to 1833 m. The stations selected are located at low altitudes. Relatively heavy rainfalls characterize the lower part 313 
of the country. In terms of flow, the annual cycle is moderate, with a minimum in summer, and shows a high level of 314 
interannual variability, depending on regional precipitation patterns (Michel et al., 2020). Because of Switzerland's 315 
relatively high orography, there is a fast change from liquid to solid precipitation, even on a small spatial scale. 316 

 317 

Insert Figure 2  318 
 319 

3.2. Delineation of the extreme bivariate observations 320 
 321 

     The traditional approach in frequency analysis or joint modelling is often employed either via block annual maxima 322 
(AM) or peak over the threshold (POT) on the partial series of data with a statistical assumption of independent and 323 
identical distribution (i.i.d) (Hosking et al., 1985; Bras 1990). The AM sampling procedure is widely accepted in most 324 
existing flood, drought or rainfall modelling applications where the sampling time interval is usually one year.  325 
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The Swiss Federal Office for the Environment (FOEN) provided the daily river water temperature and low flow dataset 326 
for different independently and identically distributed (i.i.d) stations. Both datasets have been recorded since the 327 
1960s. This study targeted five stations with long-term records, which usually vary from 36 to 53 years (refer to the 328 
study area map, Figure 2). Flow records are available for a significant period at most stations, whereas temperature 329 
records are relatively short at most stations. Our present study selected five out of 24 stations used in the previous 330 
study by Souaissi et al. (2021). Only this selected station exhibited a significant correlation and thus can be employed 331 
in the bivariate joint modelling. This study adopted an AM sampling procedure in the extraction of the variable of 332 
interest, using the following steps 333 

 334 
1. First, the annual maximum river water temperature data for each selected station are extracted from their 335 

maximum daily records during the summer period, from May 1 to October 31. 336 
 337 

2.  The second variable, low flow series, is defined by taking their value on the same calendar date as the annual 338 
maximum water temperature value. 339 

 340 
Supplementary Tables (ST 1a-e) list each station's descriptive statistics of the targeted extreme random pair. 341 

Supplementary Figures (ST 1a, b) illustrate the box-whisker plots for both variables. Similarly, Supplementary Figures 342 
(SF 2a-j) show the station-wise normal quantile-quantile (Q-Q) plots which indicate the deviation of the given random 343 
observations from normality. Supplementary Figures (SF 3a-e) visualize each station's time-series behaviour of the 344 
variable of interest. Besides this, the analytical-based nonparametric Mann-Kendall (M-K) test is calculated to 345 
visualize monotonic time-trend under the null hypothesis H0 against their alternative hypothesis Ha (refer to 346 
Supplementary Table (ST 2) (Mann 1945; Kendall 1975). In this test, the null hypothesis is accepted for all the selected 347 
stations, except for stations 2044 and 2084, where the annual maximum temperature series exhibits a positive trend 348 
or nonstationary because its calculated Z-statistics exceed the critical z-value = ±1.96 at a 5% significance level or 349 
95% confidence interval. In conclusion, these results confirmed and supported visual inspection results.  350 

The Ljung-Box (1978) hypothesis testing, also called Q-statistics, is estimated to investigate the existence of 351 
autocorrelation (or serial correlation) within individual time series. Under the null hypothesis Ho (zero autocorrelation) 352 
against alternative hypothesis Ha (serially correlated), Q-statistics usually follow a chi-square distribution having 'h' 353 
degrees of freedom (Daneshkhan et al., 2016). Supplementary Table (ST 3) listed the estimated Q-statistics for 354 
different lag sizes (30, 20, 10 and 5). For all the selected stations, the null hypothesis is accepted at a 5% significance 355 
level (or 95% confidence interval) for both variables, indicating no serial correlation exhibited within the historical 356 
time series. Supplementary Figures (SF 4a-e) illustrate the autocorrelation function (ACF) plots which support the 357 
analytical results.  358 

Besides this, the homogeneity test for the given time series is performed using the Pettitt test (Pettitt 1979) and the 359 
Buishand range test (Buishand 1982), refer to Supplementary Table (ST4). This test examined if there is a time when 360 
changes occurred within individual time series. Results found that only the annual maximum temperature variable for 361 
station 2044 is not homogenous; the estimated p-value is less than 0.05 (measured at a 5% significance level). In 362 
conclusion, the above-estimated results confirmed that the annual maximum temperature for stations 2044 and 2084 363 
exhibits time-varying behaviour or nonstationarity.  364 

The present study did not consider the accountability of time-varying scenarios in modelling univariate marginals 365 
or their mutual dependence. It is essential to reflect the impact of climate change, anthropogenic land use activities or 366 
any other suitable external covariates in the estimated multivariate joint exceedance probabilities or return periods. 367 
Many previous studies have already pointed out the necessity of considering dynamic univariate or multivariate 368 
frameworks in the evaluation of hydrologic risk (Milley 2008; El Adlouni et al. 2007; Villarini et al. 2010; Lopez and 369 
Frances 2013; Lima et al. 2015; Chebana and Ouarda 2021 and references therein). The impact of climate change may 370 
alter river water temperature by reducing river water flow by increasing evaporation or lesser rainfall events. Also, 371 
the river water temperature can alter when there is an increased demand for water, for instance, irrigation or in 372 
municipal supply. The present study considers a stationary-based multivariate framework. Future work within our 373 
group will consider a dynamic (i.e., nonstationary) framework. 374 
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 375 
3.3. Univariate marginal probability distribution of extreme characteristics 376 

 377 
3.3.1. Empirical univariate non-exceedance probabilities 378 
 379 

Approximating a suitable univariate marginal probability distribution is mandatory before introducing random 380 
variables into the multivariate joint probability framework. However, copula already facilitates the selection of any 381 
best-fitted univariate margins without restriction on their family or any fixed distributions. The compatibility of the 382 
candidate model fitted to historical data is examined by comparing theoretical and empirical observations. In this 383 
study, the empirical non-exceedance probabilities, or cumulative distribution function (CDF), 𝑃(𝐴 ≤ 𝑎), of each 384 
target variable, are estimated using the Gringgorten-based position-plotting approach (Gringorten 1963) is calculated 385 
by 386 
 387 

        Empirical non − exceedance probabilities = P(A ≤ a) =
(a−0.44)

(N+0.12)
                                  (13) 388 

 389 
In Equation (13), N is the observation sample size; a is the ath observations in the given dataset, which are arranged in 390 
ascending order. Finally, each variable's empirical CDF is compared with the theoretical CDF of the fitted candidate 391 
model to observe the gaps and dispensary between them and select the best-fitted marginal distribution using different 392 
goodness-of-fit (GOF) measures. 393 

 394 

3.3.2. Fitting 1-D parametric distributions and their fitness investigation in defining univariate marginal 395 
structure 396 
 397 

This study selected various parametric family-based probability functions as candidate models in defining the 398 
most justifiable univariate marginal distribution of the annual maximum temperature and corresponding low flow 399 
series for each station chosen separately. Candidate distributions include the 2-parameter Normal (Yue 1999), 2-400 
parameter with upper bounded tailed Weibull (Johnson 1994), 2-parameter Gamma (Yevjevich 1972), 2-parameters 401 
Logistic (Bobee and Ashkar 1989), 2-parameter Lognormal (Yue 2000), 2-parameter Gumbel (Khaliq et al., 2006; 402 
Graler et al., 2013) and 3-parameters Generalized extreme value distribution (GEV) (Yue and Wang 2004). No 403 
universal rules or existing literature suggests selecting any specific or fixed distribution function family. Each selected 404 
variable would follow a different distribution and need to be modelled separately without any prior distributional 405 
assumption (Adamowski 1985, 2000). Also, different fitted probability density functions (PDF) can result in different 406 
estimations of design quantiles. For instance, the Gumbel model is characterized by a light-tailed, while the Weibull 407 
model exhibited bounded upper-tail behaviour. Supplementary Table (ST5) lists the fitted univariate models' 408 
mathematical descriptions (pdf).  409 

The vector of unknown statistical parameters of the fitted models is estimated using the maximum likelihood 410 
estimation (MLE) (Owen 2008). The MLE algorithm can provide minimum sampling variance of the estimated 411 
distribution parameters (or estimated quantiles) (Can and Tosunglou 2013).  412 

Selecting a suitable model to describe marginal behaviour is often challenging and demands higher accuracy 413 
through quantitative and qualitative model compatibility investigation. This study adopted different GOF test 414 
statistics, based on distance criteria statistics, called the Kolmogorov-Smirnov (or K-S) test (i.e., Xu et al., 2015) and 415 
Anderson-Darling (or A-D) test (i.e., Anderson and Darling 1954). For instance, K-S statistics is an empirical 416 
distribution function (EDF) that can investigate the largest vertices. However, the K-S statistics are characterized by 417 
relatively flat-tail distributions for both the theoretical and empirical probabilities. Thus, a quadratic class EDF is also 418 
adopted to deal with this issue, the A-D statistics. The A-D statistics can put extra weight on the tail portion and have 419 
better sensitivity near the distribution tail relative to the distribution's centre portion (Farrel and Stewart, 2006; Alam 420 
et al., 2018). Besides this, the Cramer-von Mises (CvM) statistics are also estimated with K-S and A-D tests to reveal 421 
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a justifiable selection procedure (Cramer 1928; von Mises 1928). The CvM statistics is the generalization of the A-D 422 
test, an assessment of the minimum distance between the theoretical and empirical probability distribution. Hence, the 423 
minimum value of estimated K-S, A-D and CvM test statistics can result in a better fit, or the fitted model is closer to 424 
generating the original historical observations. 425 

 426 

4. Results and Discussions 427 
 428 

4.1. Modelling marginal distributions of annual maximum river temperature and corresponding low flow  429 
 430 

Supplementary Tables (ST 6a-j) list the fitted 1-D candidate models using the MLE approach (refer to section 431 
3.3.2). The fitness level of the candidate model for each variable of interest is investigated using the K-S, A-D and 432 
CvM test statistics by comparing the empirical and theoretical (or fitted model) probabilities. These quantitative GOF 433 
test measures are listed in the same tables (ST 6a-j). The results are summarized below 434 
 435 

1. The 2-parameter Logistic distribution is identified as best-fitted in describing marginal distributions of the 436 
annual maximum temperature and their corresponding low flow series for station 2044 (minimum K-S, A-437 
D and CvM test value compared with other peer models). 438 

2. The 2-parameter Normal and 2-parameter Lognormal distribution performed satisfactorily in describing the 439 
marginal distribution of the annual maximum temperature and the corresponding low flow for station 2084. 440 

3. The 2-parameter Logistic and 2-parameter Gumbel model best describe the marginal distribution of an 441 
annual maximum temperature and the corresponding low flow characteristics for station 2106. 442 

4. The 2-parameter Logistic and 3-parameter GEV are identified as most justifiable in describing the marginal 443 
behaviour of the annual maximum temperature and the corresponding low flow series for station 2415. 444 

5. Finally, at station 2473, 2-parameter Logistic and 2-parameter Lognormal distribution best describe the 445 
univariate marginal distribution of annual maximum temperature and the corresponding low flow 446 
characteristics. 447 

 448 
From the above results, it is found that the 2-parameter Logistic model performed better for most of the stations. 449 

The validity of the above-selected 1-D models is examined further by performing some qualitative-based graphical 450 
visual inspection. For instance, comparative PDF plots, CDF plots, P-P (probability-probability) plots and Q-Q 451 
(quantiles-quantiles) plots of each fitted candidate model at each station (refer to Supplementary Figures (SF (4a-d), 452 
SF (5a-d), SF (6a-d), SF (8a-d), SF (9-a-d) SF (10a-d) SF (11a-d)). The visual inspection entirely agrees with the 453 
quantitative measuring approach. In conclusion, the above-selected best-fitted marginal distributions are introduced 454 
in the joint dependency modelling using the most parsimonious 2-D copula function selected for each station.  455 

 456 
 457 

4.2. Strength of dependency measures 458 
 459 

Before selecting an appropriate 2-D copula function, investigating the degree of mutual concurrency between 460 
selected historical extrema pairs is often a mandatory prerequisite. This study calculated both the parametric Pearson 461 
correlation coefficient (r) and the nonparametric rank-based Kendall's tau (τ) and Spearman's rho (ρ). The Pearson 462 
dependence measure is not invariant to monotonic transformation, which cannot capture nonlinear dependencies and 463 
is incompatible with heavy-tailed distribution (Tosunglou and Kisi 2016). Both the nonparametric dependence 464 
statistics have high resistance to an outlier. They are also invariant under the monotonic nonlinear transformation 465 
(Klein et al., 2011) and thus can result in much more effective dependence measures in a nonlinear framework. Table 466 
2 lists the estimated dependence (or correlation coefficient) measures for each station where all the statistics are 467 
measured at the 5% significance level (95% confidence interval). It is found that a significant negative correlation is 468 
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found at each station, and thus only the negative dependence copula model was selected in the bivariate joint 469 
simulation. 470 

 471 
Insert Table 2 472 

 473 
Some visual inspection is also carried out, for instance, via Chi plot (Fisher and Switzer 2001), Kendall plot (K-474 

plot) (Genest and Boies 2003) and 2-D scatterplot (refer to Supplementary Figures (SF 12a-b to 16 a-b)). The Chi-475 
plot is a scatterplot of the pairs (𝜆𝑖𝜒𝑖), uses the data ranks, and where ′𝜆𝑖′ values measure the distance of bivariate 476 
observations from the centre of the data sets within a range of [-1, 1]. If a stronger dependency is exhibited, the random 477 
pairs must be outside control limit range of the Chi-plot. It is found that most of the random pairs are outside this 478 
control limit range for all the selected stations.  479 

On the other hand, the deviation of random pairs from the main diagonal of the 2-D K-plot must indicate high 480 
(with significant) dependency; otherwise, when the plot is near to linear (or closer to 45° Angle), it must indicate 481 
independence (Reddy and Ganguli 2013). Most of the dataset, for all stations, is away on the right side of this linear 482 
line. Similarly, the 2-D scatterplots for each station indicate a higher dependency level (or negatively correlated 483 
variables). In conclusion, all three 2-D plots collectively show a significant negative correlation between random pairs 484 
for each station and support the quantitative approach of dependence measures. Each station's dependence measures 485 
statistics confirmed the possibility of a 2-D copula structure in modelling the joint correlation structure between 486 
maximum river temperature and corresponding low flow. 487 

 488 
4.3. Joint dependence modelling between maximum temperature and low flow 489 

 490 
The efficacy of eighteen different negatively dependent 2-D copula classes, were tested. The copula dependence 491 

parameters are estimated using MPL estimators, followed by Equation 6 (refer to section 2.2). The estimated copulas 492 
parameters are listed in Tables 3 (a-e).  493 

 494 
Insert Tables 3 (a-e) 495 

 496 
The Cramer-von Mises (CvM) distance statistics with a parametric bootstrapping procedure are adopted to 497 

analyze the performance of the most justifiable 2-D copulas from different candidate models in describing bivariate 498 
joint dependencies, followed by Equations 7 and 8 (refer to section 2.3). In this approach, the CvM functional statistics 499 
′𝑆𝑛′ and its associated p-value are estimated using simulated random pairs (bootstrapping samples, N=1000) via a 500 
parametric bootstrapping approach. The best-fitted 2-D copula must have the minimum value of 𝑆𝑛 statistics with an 501 
estimated (p-value > 0.05). It is found that the rotated Clayton copula (90 degrees) (fit best for station 2044), the 502 
rotated BB8 Copula (for station 2084), the rotated Joe Copula (90 degrees) (fit best for station 2106), the rotated Tawn 503 
type-1 Copula (90 degrees) (fit best for station 2415), and rotated Clayton Copula (90 degrees) (fit best for station 504 
2473). Tables 3 (a-e) list the estimated GOF test statistics of each station's candidate copulas. 505 

The performance of the selected bivariate copulas for each station is examined graphically using an overlapped 506 
scatterplot between historical bivariate random pairs with a set of generated pairs (sample size, N=1000) estimated 507 
from the best-fitted copulas (refer to Supplementary Figures (SF 17 a-h)). The selected 2-D copulas perform 508 
adequately since the generated random pairs (in light blue) overlapped with the natural mutual dependence of the 509 
historical samples (in red) for all selected stations. 510 

Besides this, the suitability and reliability of the selected copulas selected for each station are investigated further 511 
by comparing Kendall's tau (𝜏) correlation statistics, estimated from the generated random samples (N = 1000) using 512 
the best-fitted 2-D Copula and compared with the empirical Kendall's tau (𝜏)  coefficient estimated from the historical 513 
observations (refer to Supplementary Table ST7). All the selected 2-D copulas exhibit minimum gaps or differences 514 
between empirical and theoretical Kendall's tau (𝜏); in other words, these selected models can regenerate the mutual 515 
dependence of historical random pairs more effectively.  516 
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 517 
4.4. Joint and conditional probability distribution and their associated return periods  518 

 519 
4.4.1. Estimation of primary joint return periods for river temperature and corresponding low flow 520 
 521 

The best-fitted 2-D copulas are employed with best-fitted univariate marginal distributions (section 4.1) in 522 
bivariate joint cumulative distribution functions (JCDFs) and joint probability density functions (JPDFs) (refer to 523 
Supplementary Figures SF 19(a-d)-23(a-d)). The estimated JCDFs is employed further in estimating primary joint 524 
return periods for both OR- and AND-joint cases for the different scenario of bivariate annual maximum temperature 525 
and corresponding low flow, followed by Equations 9 and 10 (see section 2.4.2). Supplementary Figure 19 (a-d) (right 526 
side figure) illustrates the bivariate joint cumulative density contours. 527 

The bivariate versus univariate return periods for a different combination of annual maximum water temperature 528 
and corresponding low flow series are listed in Tables 4 (a-e). The design variables quantiles of various return periods, 529 
for instance, 2, 5, 10, 20, 30, 50, 79, and 100 years for each station, are estimated in these tables' 4th and 5th columns 530 
using the inverse of the best-fitted univariate marginal CDFs (or quantiles function). Both the bivariate OR- and AND-531 
joint returns are estimated for different designed or synthetic pairs of annual maximum river temperature and 532 
corresponding low flow (estimated at different annual exceedance probabilities (AEP)) in the 8th and 9th columns of 533 
Tables 4 (a-e). This table shows that the value of AND-joint return periods for any bivariate design events is higher 534 
than OR-joint return periods. In other words, the occurrence of bivariate events (i.e., annual maximum river 535 
temperature and corresponding low flow) simultaneously is less frequent in the AND-joint case as compared to the 536 

OR-joint event case for all stations, TOR < TAND. 537 
 When considering ecologically relevant temperature thresholds (e.g., 15℃ or between 13.1℃ to 13.9℃), from 538 

Tables 4 (a-e), it is confirmed that river water temperature quantiles with low return periods (e.g., 2 years or 10 years) 539 
are above this critical value for all selected stations. Supplementary Figures (SF 24 a-b) show the box plots of annual 540 
maximum river temperature and corresponding low flow measured at different return periods. For instance, at station 541 
2044, the annual maximum river temperature is 25.05 ℃, and station 2106 is 21.70 ℃ when considering the return of 542 
2 years. Similarly, at 10-year return periods, the river temperature quantile is 26.67 ℃ (at station 2044), 23.22 ℃ (at 543 
station 2106) etc. The growth of brown trout (Salmo trutta) can cease when the temperature rises above 18.7-19.5 ℃; 544 
also, it can influence vitellogenin (Vtg) concentration in brown trout's plasma when the temperature rises above 19℃. 545 
Table 4 (a-e) shows that all stations, except 2473, have river temperature quantiles above this threshold at low return 546 
periods (2 years or above). Station 2473 attained river temperature quantiles above this threshold at return periods 30 547 
years or above, while station 2084 temperature quantiles exceeded this threshold when its return period is 5 years or 548 
above.  549 

Besides this, corresponding low-flow quantiles are compared for different stations using the values of estimated 550 
absolute discharge and their specific discharge values at different return periods (refer to Table 4 a-e and SF24b, SF25 551 
and SF26). For instance, at a 2-year return period, the low flow discharge value is 14.73 m3/sec (at station 2044), 8.24 552 
m3/sec (at station 2084), 4.34 m3/sec (at station 2106) etc. For the same stations, at the same return periods, the specific 553 

discharge values are 0.00862 
m3

sec
/km2, 0.02618 

m3

sec
/km2, 0.00460 

m3

sec
/km2 etc. From the SF26 (box plot) and SF27 554 

(line graph), it is illustrated that station 2084 has a higher specific discharge value than other stations observed at 555 
different return periods; it has a smaller drainage basin surface area (314.76 km2). For instance, at a return period of 556 
10 years, the estimated corresponding low flow is 21.75 m3/sec at station 2084, which is lower than station 2473, 557 
which has an estimated low flow value of 252.16 m3/sec. However, because of the larger basin surface area of station 558 
2473 (6299.198 km2), it exhibited a lower specific discharge value than station 2084. Conversely, the ratio of estimated 559 
low flow with its drainage surface area for station 2106 is minimum compared to other stations for different return 560 
periods.  561 

When the joint return periods for both OR- and AND- cases are examined, the AND-joint case has higher return 562 
periods than univariate return periods for both water temperature and corresponding low flow. Supplementary Figures 563 
(SF28 (a-e)) illustrate the simulated or synthetic (N=10,00000) bivariate random pairs using the best-fitted copula 564 
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joint distribution for each station. Most generated bivariate random pairs lie within the yellow square box. For instance, 565 
for station 2044, most simulated annual bivariate samples have maximum river temperature values lying between 566 
20℃ to 30℃, and corresponding low flow values are below 40 m3/s (and their absolute discharge values are below 567 

0.02340 
m3

sec
/km2). However, for station 2473, the corresponding streamflow of most simulated sample values is above 568 

80 m3/s. Its specific discharge value is above 0.01270 
m3

sec
/km2, but most of its simulated river temperature sample 569 

values are between 15℃ to 23℃. For other stations, e.g., 2106 (absolute discharge is below 15 m3/sec, and specific 570 

discharge is below 0.01591 
m3

sec
/km2 together with most river temperature samples ranging between 18℃ to 29℃), 571 

2415 (discharge is below 15 m3/sec, and specific discharge of most simulated samples are below 0.03589 
m3

sec
/km2 572 

with river temperature samples are ranging between 20℃ to 30℃ ). For station 2084, most of its river temperature 573 
samples lie between 13℃ to 24℃, but its flow value is below 60 m3/sec (and the specific discharge value is below 574 

0.19062 
m3

sec
/km2). This bivariate estimated quantile reveals that river flow characteristics at station 2473 are relatively 575 

better than other selected stations. From Table 4 (a-e), it is already confirmed that station 2473 has a higher low flow 576 
value estimated at different return periods together with the largest drainage basin area compared to other stations. 577 
Also, for stations 2044, 2106, and 2415, some samples' upper river temperature reaches about 30℃. For station 2415, 578 
some samples' lower river temperature value is about 20℃. 579 

Also, we are presenting a brief discussion of obtained bivariate return periods only for stations 2044 and 2415 580 
because of limited space. Let us consider, at station 2044, a 10-year return period of extreme events having the 581 
following characteristics (refer to Table 4a), annual maximum water temperature = 26.67℃, and corresponding low 582 

series = 21.17 m3/s, the bivariate return period for OR- and AND- joint case is, TOR = 5.01 years and  TAND = 3234.15 583 
years. Conversely, their univariate return period for this univariate design value is 10 years. Similarly, at 2-year return 584 
periods, the design variables, for instance, annual maximum temperature = 25.08℃, and corresponding low flow = 585 
14.73 m3/s, the bivariate joint return periods for OR-event is 1.16 years, and AND-event is 7.22 years. It is found that, 586 
for every station, OR-joint returns are less than the univariate return periods and AND-joint event case for any 587 
combination of the design variables. These estimated statistics reveal that considering only a univariate return period 588 
(for instance, via extreme water temperature) would be problematic; it can mislead the risk assessments when 589 
compounding the joint occurrence of both variables. It is also found that the OR-joint return period is nearly half the 590 
value of the univariate return periods. 591 

By analyzing the co-occurrence probabilities or mutual risk of river water temperature and low flow using the 592 
AND-joint return case for all stations and applying Equations 9 & 10, it was discovered that station 2415 has the 593 
lowest AND return period values compared to other stations with the same AEP..E.For instance, for 10-year return 594 
periods (AEP = 0.10 or NEP=0.9), the bivariate AND-joint return is 130 years, which is less than other stations, e.g., 595 
TAND = 6830.60 years (station 2106) > 3234.15 years (station 2044) > 1332.98 years (station 2473) > 1041.78 years 596 
(station 2084) (refer to Tables 4 (a-e)). Supplementary Figures (SF 29 (a-b)) illustrate the box plots of the estimated 597 
bivariate joint return periods for OR and AND-joint cases using observed historical events for each station. Likewise, 598 
the other station follows the same: bivariate AND-returns > Univariate returns > OR-returns. 599 

In conclusion, all the above-estimated results and their detailed comparison confirmed that the compound effect 600 
of annual maximum temperature and corresponding low flow results in additional information for water resources and 601 
fish habitat management compared with univariate analyses.  602 

 603 

Insert Table 4 (a-e) 604 
 605 

4.4.2. Estimation of conditional joint return periods 606 
 607 

Two different conditional joint relationships are considered in this study, 𝑇𝐴|𝐵>𝑏 (Equation 11) and 𝑇𝐴|𝐵≤𝑏 608 

(Equation 12) (refer to Figures 3 (a-d) to Figures 7 (a-d)). 609 
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Because of the word limit, we are presenting a brief discussion only for Station 2044 (Figure 3). For both 610 
conditional joint cases, the return period of bivariate events increases with an increase in the percentile values of the 611 
conditional variable, corresponding low flow (Figures 3a, b) or annual maximum temperature (Figures 3c, d). The 612 
conditional relationship estimated for the case, 𝑇𝐴|𝐵>𝑏 attained higher return periods than the case 𝑇𝐴|𝐵≤𝑏, for all the 613 

selected stations. For instance, on July 18, 1976, have annual maximum temperature was 26.55℃, the conditional 614 
return period was 21.66 years (when corresponding low flow > 8.046 m3/s (5th percentile)), 63.87 years (when low 615 
flow > 11.03 m3/s (25th percentile)), and 451.25 years (when low flow > 14.91 m3/s (50th percentile)), 2495.86 years 616 
(when corresponding low flow > 17.82 m3/s (75th percentile)) and so on. On the other side, for conditional case 𝑇𝐴|𝐵≤𝑏, 617 

for the same station and calendar date, the return period was 1.38 years (when low flow ≤ 8.046 m3/s (5th percentile)), 618 
2.25 (when low flow ≤ 11.03 m3/s (25th percentile)), 4.55 (when low flow ≤ 14.91 m3/s (50th percentile)), 6.37 (when 619 
low flow ≤ 17.82 m3/s (75th percentile)) and so on. 620 

Similarly, when considering the annual maximum water temperature as a conditioning variable, the conditional 621 
JRPs of low flow increase with an increase in the percentile value of the annual maximum temperature. For instance, 622 
on the same calendar date, July 18, 1976, having a corresponding low flow value is 8.06 m3/s, the conditional joint 623 
return is 1.27 years and 1.002 years when the annual maximum temperature > 23.13℃ and ≤  23.13℃ respectively 624 
(both at the 5th percentile), 1.86 years and 1.003 years when the annual maximum temperature > 24.15℃ and ≤ 625 
24.15℃ respectively (both at the 25th percentile), and 187.84 years and 1.03 years respectively when the annual 626 
maximum temperature > 26.584℃ and ≤ 26.584℃ (both at the 90th percentile). 627 

Besides this, for the same station 2044, by fixing the percentile values at, say, the 5th percentile (i.e., 628 
corresponding low flow > 8.046 m3/s), the return period is 6.21 years (when the water temperature is 25.84℃, on July 629 
25, 1969), 21.66 years (when the water temperature is 26.55℃, on July 18, 1976), 262.81 years (when the water 630 
temperature is 27.49℃, on July 31, 1983). Similarly, by fixing the percentile value at 5% percentile (i.e., annual 631 
maximum temperature > 23.15℃), the return period is 4.17 years (when the corresponding low flow is 17.30 m3/s, on 632 
July 25, 1969), 1.27 years (when the corresponding low flow is 8.06 m3/s, on July 18, 1976), the return period is 1.27 633 
years (when the low flow is 8.02 m3/s, on July 31, 1983) and so on.  634 

In conclusion, the above discussion reveals the importance of considering the conditional joint distribution 635 
relationship between variable interest and a joint return period in the risk assessment of aquatic habitats and fish 636 
management.  637 
  638 
 639 

5. Research Conclusions 640 

Understanding the joint probability distribution of extreme river temperature and low flow is crucial for 641 
assessing risk in water resources and fish habitat management. Considering only one variable as a stress indicator may 642 
result in incomplete or underestimated risk assessments because both events are negatively correlated, and their joint 643 
impact could be harmful. To properly study the joint impact, multivariate joint probability analysis and the concept of 644 
multivariate exceedance probability are necessary. This study used a copula-based methodology to analyze the 645 
bivariate joint distribution of annual maximum river water temperature and corresponding low flow for five stations 646 
in Switzerland. The efficacy of seven parametric class 1-D probability distributions and eighteen negatively dependent 647 
parametric class 2-D copulas was tested and fitted via MLE and MPL estimation procedures. The most justifiable 648 
copula for each station and selected marginal distributions were used to estimate joint exceedance probabilities and 649 
their associated joint and conditional joint return periods. The results showed a significant negative correlation 650 
between water temperature and low flow at all stations. The bivariate return was higher in the AND-joint case than in 651 
the OR-joint case or univariate return periods, meaning that both events are less likely to co-occur than for just one of 652 
them to occur. It is essential to consider both joint return periods, as focusing solely on either the OR or AND joint 653 
case would be problematic.  654 

According to the information gathered from SF (24a-e), most of the simulated bivariate random observation 655 
values for river temperature are above 18℃, while the corresponding low flow values for selected stations are below 656 
50 m3/s. This could potentially increase the risk of PKD disease in brown trout populations or affect the plasma 657 
concentration of vitellogenin (Vtg). Furthermore, the conditional joint return periods of river temperature given 658 
various percentile values of corresponding low flow and their vice-versa are also examined for two different 659 
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conditional joint cases. It is found that the joint return periods of bivariate events with extreme river temperatures 660 
increase as the percentile value of low flow (conditioning variable) increases. Also, higher maximum river 661 
temperatures result in higher bivariate return periods than lower river temperatures at the same conditioning variable 662 
(low flow series). As the river water temperature increases (as a conditioning variable), the return periods of low flow 663 
for the bivariate event also increase. In conclusion, the above-discussed bivariate return periods and estimated 664 
quantiles help us gain valuable insights into the relative joint river thermal-low flow risk for water species in Swiss 665 
rivers.The present study has some limitations that will require further considerations in future studies: 666 

1. Parametric class distribution often has limitations in the context of prior distributional assumptions. 667 
Incorporating the multivariate copula in the parametric settings requires distributional assumptions for their 668 
univariate marginals PDFs and copula joint density (e.g., Archimedean, Elliptical, etc.). It could be a risk of 669 
misspecification if the underlying statistical assumptions of the selected predefined marginals PDF and/or copula 670 
density are violated and can lack flexibility which is already pointed out in some previous studies such as 671 
Charpentier et al. (2006) and Rauf and Zeephongsekul (2014). On the other hand, many of the existing studies 672 
already pointed out that if data exhibited asymmetrical (or skewed) behaviour, the performance of the 673 
distribution-free-based nonparametric kernel density function would be better than a parametric formulation 674 
(Adamowski 2000; Kim et al., 2006). Kernel density is a data-driven nonparametric density function 675 
approximation approach, often revealing bonafide density functions (Dooge 1986; Santhosh and Srinivas 2014). 676 
 677 

2. The present study found that variable annual maximum river temperatures for stations 2044 and 2084 are 678 
nonstationary. This study is not considering the impact of time-varying consequences due to dynamic 679 
environmental arising or climate change in modelling univariate marginal or multivariate copula dependence 680 
structure. The impact of climate change may alter river water temperature through a different mechanism, for 681 
instance, by reducing river water flow by increasing evaporation or fewer rainfall events. On the other side, there 682 
will directly impact the behaviour of streamflow (or low flow) due to changes in catchment characteristics due 683 
to large-scale human intervention. Also, the river water temperature can alter when there is an increased demand 684 
for water, for instance, irrigation. Milley et al. (2008) stated that considering stationary assumptions in the 685 
hydrological data series in multivariate frequency analysis may no longer be valid. It is crucial to consider 686 
eventual nonstationarities in the data to reflect their impacts on the estimated univariate or multivariate 687 
exceedance probabilities or return periods.  688 
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Table 1. Mathematical description and associated statistical properties of the 2-D copula model 

 

Copula function Bivariate Copula Cθ(u, v) Parameter range 

(θ) 

Generating function (or 

generator) ϕ(t) 

Clayton 
[max{u−θ + v−θ − 1; 0}]

−1
θ⁄
 

0 ≤ θ < ∞ 1

θ
(t−θ − 1) 

Frank −1

θ
ln (1 +

(e−θu − 1)(e−θv − 1)

(e−θ − 1)
) 

−∞ < θ < ∞ 
− ln (

e−θt − 1

e−θ − 1
) 

Gumbel-

Hougaard (GH) exp {−[(− ln(u))θ + (− ln(v))θ]
1
θ} 

1 ≤ θ < ∞ (− ln t)θ 

Joe 
1 − [(1 − u)θ + (1 − v)θ − (1 − u)θ(1 − v)θ]

1
θ⁄
 

1 ≤ θ < ∞ − ln(1 − (1 − t)θ) 

BB1 

(1 + [(u−θ − 1)
δ

+ (v−θ − 1)
δ

]
1

δ⁄

)

−1
θ⁄

 

0 < θ < ∞; 
1 ≤ δ < ∞  

 

BB6 
1 − (1 − exp − [((− ln(1 − u)θ))

δ

+ ((− ln(1 − (1 − v)θ))
δ

)]

1
δ⁄

)

1
θ⁄

 

1 ≤ θ < ∞; 
1 ≤ δ < ∞  

 

BB7 

1 − [1 − ((1 − uθ)
−δ

+ (1 − vθ)
−δ

− 1)
−1

δ⁄

]

1
θ⁄

 

1 ≤ θ < ∞; 

0 ≤ δ < ∞  
(1 − (1 − t)θ)

−δ
− 1 

BB8 
1

θ
(1 − [1 −

1

1 − (1 − δ)θ
(1

− (1 − δu)θ(1 − δv)θ)]

1
δ

) 

1 ≤ θ < ∞; 
 

0 ≤ δ ≤ 1  

− ln [
1 − (1 − δt)θ

1 − (1 − δ)θ
] 

Note: θ is the copula dependence parameter of monoparametric copulas; θ and δ are the copula dependence parameters for bi-

parametric (or 2-parameter) Archimedean copulas such as BB1, BB6, BB7 & BB8. This study employs the rotated version of the 

above copulas by 90 and 270 degrees, for instance, the rotated version of Clayton Joe, Gumbel by 90 degrees, the rotated version of 

BB1, BB6, BB7, and BB8 by 90 and 270 degrees. 

 

Table 2. Station-wise dependence measures (or correlation coefficient) between annual maximum 

temperature and corresponding low flow 

Station no Pearson (r) Kendall's tau (𝜏) Spearman rho (𝜌) Overall correlation 

summary (measured at 

a 5% significance level) 

2044 -0.7488514 (p-value = 

1.132e-10) 

-0.4758448 (p-value = 

5.041e-07) 

-0.6378389 (p-value = 

2.792e-07) 

Significant correlation 

exhibited 
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2084 0.3169008 ( p-value = 

0.03189 ) 

-0.3588009 (p-value = 

0.0004431) 

-0.4746515 (p-value = 

0.0008597) 

Significant correlation 

exhibited 

2106 -0.7400646 (p-value = 

p-value = 1.848e-09) 

-0.5565913  (p-value = 

2.497e-08) 

-0.7193106 (p-value = 

8.425e-09) 

Significant correlation 

exhibited 

2415 -0.2339408  (p-value = 

0.1264) 

-0.2330514 (p-value = 

0.02604) 

-0.3500969  (p-value = 

0.01982) 

Significant correlation 

exhibited 

2473 -0.6197587  (p-value = 

5.557e-05) 

-0.4063492  (p-value = 

0.0003698) 

-0.5634492  (p-value = 

0.0004336) 

Significant correlation 

exhibited 

 

Table 3. Estimation of copula dependence parameters via MPL estimator and their fitness test 

statistics in the bivariate joint dependence for (a) station 2044 (b) station 2084 (c) station 2106 

(d) station 2415 (e) 2473 

 

Copula function (station 2044) 

(a)  

Estimated dependence parameter via 

Maximum pseudo likelihood (MPL) 

estimation 

Cramer von Mises functional test 

statistics 𝑺𝒏 (estimated p-value≥0.05) 

with parametric bootstrap procedure, 

(No. of Bootstrapping samples, N=1000) 

𝑆𝑛 p-value 

Normal copula rho.1 

-0.7181 

0.035244 0.2792 

Frank copula alpha 

-5.456 

0.035917 0.1543 

BB1 copula theta     delta 

8.781e-08 1.000e+00 

0.18702 0.002498 

BB6 copula theta delta 

1     1 

0.18702 0.001499 

BB7 copula theta     delta 

1.001e+00 1.265e-08 

0.18754 0.001499 

BB8 copula theta delta 

1     1 

0.18702 0.0004995 

rotated Clayton copula (90 degrees) * theta 

-1.567 

0.020302 0.7238 

rotated Gumbel Copula (90 degrees) theta 

-1.956 

0.0341 0.3891 
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rotated Joe Copula (90 degrees) theta 

-2.231 

0.033872 0.4101 

rotated BB1 Copula (90 degrees) theta   delta 

-0.7007 -1.5242 

0.032562 -1.5242 

rotated BB6 Copula (90 degrees) theta delta 

-1    -1 

0.18702 0.0004995 

rotated BB7 Copula (90 degrees) theta delta 

-1.808 -1.313 

0.029089 0.478 

rotated BB8 Copula (90 degrees) theta      delta 

-1 -1 

0.18702 0.0004995 

rotated Tawn type 1 Copula (90 

degrees) 

param1 param2 

-1.956  1.000 

0.0341 0.3561 

rotated BB1 Copula (270 degrees) theta   delta 

-0.3902 -1.7228 

0.033697 0.3821 

rotated BB6 Copula (270 degrees) theta delta 

-1    -1 

0.18702 0.0004995 

rotated BB7 Copula (270 degrees) theta delta 

-2.062 -1.017 

0.029559 0.482 

rotated BB8 Copula (270 degrees) theta   delta 

-3.1385 -0.9258 

0.027021 0.518 

Note: rotated Clayton copula (90 degrees) (indicated by bold letter with an asterisk) exhibits minimum value 

of 𝑆𝑛 fitness test statistics with p-value is greater than 0.05. Thus, it is recognized as the most parsimonious 

copula in defining bivariate joint dependence structure of the annual maximum temperature and 

corresponding low flow series for station 2044. 

 

Copula function (station 2084) 

                        (b) 
 

Estimated dependence parameter 

via Maximum pseudo likelihood 

(MPL) estimation 

Cramer von Mises functional test 

statistics 𝑆𝑛 (estimated p-

value≥0.05) with parametric 

bootstrap procedure, (No. of 

Bootstrapping samples, N=1000) 

𝑆𝑛 p-value 
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Normal copula rho.1 

-0.5488 
0.023322 0.9436 

Frank copula alpha 

-3.646 
0.02445 0.8057 

BB1 copula theta    delta 

1.03e-08 1.00e+00 
0.084469 0.05844 

BB6 copula theta delta 

1     1 
0.084469 0.08442 

BB7 copula theta     delta 

1.001e+00 8.281e-10 
0.084792 0.06044 

BB8 copula theta delta 

1     1 
0.084469 0.07642 

rotated Clayton copula (90 

degrees) 

theta 

-1.227 
0.025779 0.6189 

rotated Gumbel Copula (90 

degrees) 

theta 

-1.552 
0.026197 0.6259 

rotated Joe Copula (90 degrees) theta 

-1.664 
0.026679 0.5939 

rotated BB1 Copula (90 degrees) theta   delta 

-0.9827 -1.1224 
0.029269 0.526 

rotated BB6 Copula (90 degrees) theta delta 

-1    -1 
0.084469 0.07343 

rotated BB7 Copula (90 degrees) theta delta 

-1.259 -1.133 
0.030273 0.508 

rotated BB8 Copula (90 degrees) theta      delta 0.084469 0.08941 
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-1 -1 

rotated Tawn type 1 Copula (90 

degrees) 

param1 param2 

-1.552 1.000 
0.026197 0.6229 

rotated BB1 Copula (270 degrees) theta      delta 

-4.927e-08 -1.669e+00 
0.028352 0.526 

rotated BB6 Copula (270 degrees) theta delta 

-1    -1 
0.084469 0.06543 

rotated BB7 Copula (270 degrees) theta   delta 

-1.9375 -0.2999 
0.026942 0.6159 

rotated BB8 Copula (270 degrees) 

* 

theta delta 

-2.042 -1.000 
0.022745 0.6948 

Note: rotated BB8 (270 degrees) (indicated by bold letter with an asterisk) exhibits minimum value of 𝑆𝑛 goodness-

of-fit test statistics with p-value is greater than 0.05. Thus, is recognized as the most parsimonious copula in defining 

bivariate joint dependence structure of the annual maximum temperature and corresponding low flow series for 

station 2084. 

 

Copula function (station 2106) 

(c) 
 

Estimated dependence parameter 

via Maximum pseudo likelihood 

(MPL) estimation 

Cramer von Mises functional test 

statistics 𝑆𝑛 (estimated p-

value≥0.05) with parametric 

bootstrap procedure, (No. of 

Bootstrapping samples, N=1000) 

𝑆𝑛 P-value 

Normal copula rho.1 

-0.7881 

0.033906 0.3402 

Frank copula alpha 

-6.713 

0.033206 0.2622 

BB1 copula theta     delta 

6.603e-05 1.000e+00 

0.26123 0.0004995 
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BB6 copula theta delta 

1     1 

0.26119 0.0004995 

BB7 copula theta     delta 

1.001e+00 2.396e-09 

0.26175 0.0004995 

BB8 copula theta delta 

1     1 

0.26119 0.0004995 

rotated Clayton copula (90 

degrees) 

theta 

-1.837 

0.048143 0.2273 

rotated Gumbel Copula (90 

degrees) 

theta 

-2.335 

0.026637 0.543 

rotated Joe Copula (90 degrees) * theta 

-2.879 

0.014513 0.8986 

rotated BB1 Copula (90 degrees) theta   delta 

-0.4211 -1.9909 

0.033118 0.3981 

rotated BB6 Copula (90 degrees) theta delta 

-1    -1 

0.26119 0.0004995 

rotated BB7 Copula (90 degrees) theta delta 

-2.499 -1.36 

0.030011 0.4441 

rotated BB8 Copula (90 degrees) theta   delta 

-3.6917 -0.9434 

0.021281 0.6748 

rotated Tawn type 1 Copula (90 

degrees) 

param1 param2 

-2.4798 0.9345 

0.025309 0.5699 

rotated BB1 Copula (270 degrees) theta   delta 

-0.8344 -1.6955 

0.030701 0.4451 

rotated BB6 Copula (270 degrees) theta delta 0.26119 0.0004995 
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-1    -1 

rotated BB7 Copula (270 degrees) theta delta 

-2.059 -1.813 

0.027627 0.501 

rotated BB8 Copula (270 degrees) theta      delta 

-1   -1 

0.26119 0.0004995 

Note: rotated Joe Copula (90 degrees) (indicated by bold letter with an asterisk) exhibits minimum value of 𝑆𝑛 

test statistics with p-value is greater than 0.05. Thus, it is recognized as the most parsimonious copula in defining 

bivariate joint dependence structure of the Annual maximum of temperature and corresponding low flow series 

for station 2106. 

 

Copula function (station 2415) 

(d) 
 

Estimated dependence 

parameter via Maximum 

pseudo likelihood (MPL) 

estimation 

Cramer von Mises functional test 

statistics 𝑆𝑛 (estimated p-value≥0.05) 

with parametric bootstrap 

procedure, (No. of Bootstrapping 

samples, N=1000) 

𝑆𝑛 P-value 

Normal copula rho.1 

-0.3787 

0.032375 0.6758 

Frank copula alpha 

-2.109 

0.027595 0.6818 

BB1 copula theta     delta 

2.088e-08 1.000e+00 

0.034998 0.452 

BB6 copula theta delta 

1     1 

0.034998 0.472 

BB7 copula theta     delta 

1.001e+00 1.265e-08 

0.035096 0.452 

BB8 copula theta delta 

1     1 

0.034998 0.503 
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rotated Clayton copula (90 

degrees) 

theta 

-0.4456 

0.026018 0.6528 

rotated Gumbel Copula (90 

degrees) 

theta 

-1.252 

0.025662 0.6528 

rotated Joe Copula (90 degrees) theta 

-1.34 

0.024057 0.7158 

rotated BB1 Copula (90 

degrees) 

theta   delta 

-0.2004 -1.1569 

0.027384 0.6449 

rotated BB6 Copula (90 

degrees) 

theta delta 

-1    -1 

0.034998 0.469 

rotated BB7 Copula (90 

degrees) 

theta   delta 

-1.1264 -0.3663 

0.026699 0.6249 

rotated BB8 Copula (90 

degrees) 

theta     delta 

-1,   -1 

0.034998 0.479 

rotated Tawn type 1 Copula 

(90 degrees) * 

param1 param2 

-3.2865 0.2403 

0.02097 0.7717 

rotated BB1 Copula (270 

degrees) 

theta   delta 

-0.3254 -1.0935 

0.027111 0.6259 

rotated BB6 Copula (270 

degrees) 

theta delta 

-1    -1 

0.034998 0.486 

rotated BB7 Copula (270 

degrees) 

theta   delta 

-1.0558 -0.4402 

0.026 0.6409 

rotated BB8 Copula (270 

degrees) 

theta      delta 

-1.445e+03 -1.458e-03 

0.034998 0.474 
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Note: rotated Tawn type 1 Copula (90 degrees) (indicated by bold letter with an asterisk) exhibits minimum 

value of 𝑆𝑛 test statistics with p-value is greater than 0.05. Thus, is recognized as the most parsimonious copula 

in defining bivariate joint dependence structure for station 2415 

 

Copula function (station 2473) 

(e) 
 

Estimated dependence parameter via 

Maximum pseudo likelihood (MPL) 

estimation 

Cramer von Mises functional test statistics 

𝑺𝒏 (estimated p-value≥0.05) with 

parametric bootstrap procedure, (No. of 

Bootstrapping samples, N=1000) 

𝑆𝑛 P-value 

Normal copula rho.1 

-0.6338 

0.036379 0.5989 

Frank copula alpha 

-4.406 

0.034964 0.458 

BB1 copula theta     delta 

1.907e-09 1.000e+00 

0.073043 0.1384 

BB6 copula theta delta 

1     1 

0.073043 0.1284 

BB7 copula theta     delta 

1.001e+00 9.660e-10 

0.073298 0.1244 

BB8 copula theta delta 

1     1 

0.073043 0.1324 

rotated Clayton copula (90 degrees) 

* 

theta 

-1.171 

0.022113 0.7677 

rotated Gumbel Copula (90 degrees) theta 

-1.698 

0.033831 0.488 

rotated Joe Copula (90 degrees) theta 

-1.913 

0.029917 0.5719 
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rotated BB1 Copula (90 degrees) theta   delta 

-0.5274 -1.4049 

0.034121 0.472 

rotated BB6 Copula (90 degrees) theta delta 

-1    -1 

0.073043 0.1424 

rotated BB7 Copula (90 degrees) theta   delta 

-1.5749 -0.9248 

0.031777 0.542 

rotated BB8 Copula (90 degrees) theta      delta 

-1.557e+03 -2.826e-03 

0.073043 0.1414 

rotated Tawn type 1 Copula (90 

degrees) 

param1 param2 

-1.7    1.0 

0.03399 0.499 

rotated BB1 Copula (270 degrees) theta   delta 

-0.3084 -1.5394 

0.034728 0.505 

rotated BB6 Copula (270 degrees) theta delta 

-1    -1 

0.073043 0.1484 

rotated BB7 Copula (270 degrees) theta   delta 

-1.7369 -0.7381 

0.032103 0.53 

rotated BB8 Copula (270 degrees) theta   delta 

-4.5752 -0.6822 

0.032048 0.541 

Note: rotated Clayton copula (90 degrees) (indicated by bold letter with an asterisk) exhibits minimum value of 𝑆𝑛 goodness-of-

fit test statistics with p-value is greater than 0.05. Thus, is recognized as the most parsimonious copula in defining bivariate joint 

dependence structure for station 2473 

 

Table 4. Comparison of univariate and bivariate return periods (RPs) for compound events for 

the various possible combination for extreme characteristic for (a) station 2044 (b) station 2084 

(c) station 2106 (d) station 2415 (e) station 2473 
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(a)       Station 2044 

RPs 

(years) 

AEP 

(Annual 

Exceedance 

probability) 

NEP (Non-

Exceedance 

Probability) 

Annual 

maximum 

temperature 

(℃) 

Corresponding 

low flow (m3/

sec ) (Specific 

discharge (
m3

sec
/

km2)) 

Univariate RP 

(Annual 

Maximum of 

Temperature) 

(YEARS) 

Univariate RP 

(Corresponding 

Low Flow) 

(YEARS) 

OR-JRP, 

TXY
OR 

(YEARS) 

AND-JRP, 

TXY
AND(YEARS) 

2 0.5 0.5 25.08 14.73 

(0.00862) 

2.00 2.00 1.16 7.22 

5 0.2 0.8 26.09 18.80 

(0.01100) 

5.00 5.00 2.53 239.50 

10 0.1 0.9 26.67 21.17 

(0.01238) 

10.00 10.00 5.01 3234.15 

20 0.05 0.95 27.23 23.35 

(0.01366) 

20.00 20.00 10.00 40983.61 

30 0.033333 0.966667 27.53 24.60 

(0.01439) 

30.00 30.00 15.00 178571.43 

50 0.02 0.98 27.92 26.13 

(0.01529) 

50.00 50.00 25.00 1111111.11 

79 0.012658 0.987342 28.26 27.50 

(0.01609) 

79.00 79.00 39.50 10000000.01 

100 0.01 0.99 28.43 28.20 

(0.01650) 

100.00 100.00 50.00 9999999.99 

 

 (b) STATION_2084 

  
RPs 

(years) 

AEP (Annual 

Exceedance 

probabilities) 

NEP (Non-

Exceedance 

Probability) 

Annual 

maximum 

temperature 

(℃) 

Corresponding 

low flow (m3/

sec ) (Specific 

discharge 

(
m3

sec
/km2)) 

Univariate RP 

(Annual 

Maximum of 

Temperature) 

(YEARS) 

Univariate RP 

(Corresponding 

Low Flow) 

(YEARS) 

OR-JRP, 

TXY
OR 

(YEARS) 

AND-JRP, 

TXY
AND(YEARS) 

2 0.5 0.5 18.50 8.24 (0.02618) 2.00 2.00 1.19 6.29 

5 0.2 0.8 19.96 15.59 

(0.04953) 

5.00 5.00 2.55 118.93 

10 0.1 0.9 20.72 21.75 

(0.06910) 

10.00 10.00 5.02 1041.78 
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20 0.05 0.95 21.34 28.63 

(0.09096) 

20.00 20.00 10.01 8826.13 

30 0.033333 0.966667 21.67 33.04 

(0.10497) 

30.00 30.00 15.01 30581.04 

50 0.02 0.98 22.05 39.02 

(0.12397) 

50.00 50.00 25.00 147058.82 

79 0.012658 0.987342 22.36 44.82 

(0.14239) 

79.00 79.00 39.50 588235.29 

100 0.01 0.99 22.52 47.97 

(0.15240) 

100.00 100.00 50.00 1111111.11 

 

 (c) STATION_2106 

RPs 

(years

) 

AEP (Annual 

Exceedance 

probabilities) 

NEP (Non-

Exceedanc

e 

Probability) 

Annual 

maximum 

temperature 

(℃) 

Corresponding 

low flow (m3/

sec ) (Specific 

discharge (
m3

sec
/

km2)) 

Univariate RP 

(Annual 

Maximum of 

Temperature) 

(YEARS) 

Univariate RP 

(Corresponding 

Low Flow) 

(YEARS) 

OR-

JRP, 

TXY
OR 

(YEARS

) 

AND-JRP, 

TXY
AND(YEARS) 

2 0.5 0.5 21.70 4.34 (0.00460) 2.00 2.00 1.14 8.28 

5 0.2 0.8 22.66 5.76 (0.00611) 5.00 5.00 2.52 412.05 

10 0.1 0.9 23.22 6.70 (0.00711) 10.00 10.00 5.00 6830.60 

20 0.05 0.95 23.74 7.60 (0.00806) 20.00 20.00 10.00 106382.98 

30 0.033333 0.966667 24.03 8.11 (0.00860) 30.00 30.00 15.00 526315.79 

50 0.02 0.98 24.39 8.76 (0.00929) 50.00 50.00 25.00 5000000.00 

79 0.012658 0.987342 24.72 9.34 (0.00991) 79.00 79.00 39.50 Inf 

100 0.01 0.99 24.88 9.63 (0.01021) 100.00 100.00 50.00 Inf 

 

 (d) STATION_2415 

RPs 

(years) 

AEP (Annual 

Exceedance 

probabilities) 

NEP (Non-

Exceedance 

Probability) 

Annual 

maximum 

temperature 

(℃) 

Corresponding 

low flow (m3/

sec ) (Specific 

discharge (
m3

sec
/

𝑘𝑚2)) 

Univariate RP 

(Annual 

Maximum of 

Temperature) 

(YEARS) 

Univariate RP 

(Corresponding 

Low Flow) 

(YEARS) 

OR-JRP, 

TXY
OR 

(YEARS) 

AND-JRP, 

TXY
AND(YEARS) 

2.00 0.50 0.50 24.60 4.76 (0.01139) 2.00 2.00 1.26 4.87 

5.00 0.20 0.80 25.28 6.18 (0.01479) 5.00 5.00 2.71 32.06 
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10.00 0.10 0.90 25.67 7.07 (0.01692) 10.00 10.00 5.20 130.00 

20.00 0.05 0.95 26.02 7.88 (0.01886) 20.00 20.00 10.19 523.31 

30.00 0.03 0.97 26.23 8.33 (0.01993) 30.00 30.00 15.19 1179.80 

50.00 0.02 0.98 26.48 8.87 (0.02122) 50.00 50.00 25.19 3282.99 

79.00 0.01 0.99 26.70 9.35 (0.02237) 79.00 79.00 39.69 8203.45 

100.00 0.01 0.99 26.82 9.58 (0.02292) 100.00 100.00 50.19 13140.60 

 

 (e) STATION_2473 

RPs 

(years) 

AEP (Annual 

Exceedance 

probabilities) 

NEP (Non-

Exceedance 

Probability) 

Annual 

maximum 

temperature 

(℃) 

Corresponding 

low flow (m3/

sec ) (Specific 

discharge 

(
m3

sec
/km2)) 

Univariate RP 

(Annual 

Maximum of 

Temperature) 

(YEARS) 

Univariate RP 

(Corresponding 

Low Flow) 

(YEARS) 

OR-JRP, 

TXY
OR 

(YEARS) 

AND-JRP, 

TXY
AND(YEARS) 

2 0.5 0.5 16.54 178.26 

(0.02830) 

2.00 2.00 1.19 6.36 

5 0.2 0.8 17.45 223.86 

(0.03554) 

5.00 5.00 2.55 134.52 

10 0.1 0.9 17.98 252.16 

(0.04003) 

10.00 10.00 5.02 1332.98 

20 0.05 0.95 18.47 278.21 

(0.04417) 

20.00 20.00 10.01 12642.23 

30 0.033333 0.966667 18.75 292.82 

(0.04649) 

30.00 30.00 15.00 46728.97 

50 0.02 0.98 19.09 310.77 

(0.04933) 

50.00 50.00 25.00 238095.24 

79 0.012658 0.987342 19.40 326.52 

(0.05184) 

79.00 79.00 39.50 1111111.11 

100 0.01 0.99 19.55 334.56 

(0.05311) 

100.00 100.00 50.00 2000000.00 
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Figure 1. Methodological workflow in the bivariate joint modelling of annual maximum water 

temperature and corresponding low flow series 
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Figure 2. The geographical location of the study area 
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(d) 

Figure 3. (a) Estimating the conditional joint return periods for station 2044 (a) for case Annual 

Maximum Temperature | Corresponding Low Flow > threshold (percentile value) (b) for case 

Annual Maximum Temperature | Corresponding Low Flow ≤ threshold (percentile value) (c) for 

case Corresponding Low Flow | Annual Maximum Temperature > threshold (percentile value) (d) 

for case, Corresponding Low Flow | Annual Maximum Temperature ≤ threshold (percentile 

value)). 
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(d) 

Figure 4. (a) Estimating the conditional joint return periods for station 2084 (a) for case, Annual 

Maximum Temperature | Corresponding Low Flow > threshold (percentile value) (b) for case, 

Annual Maximum Temperature | Corresponding Low Flow ≤ threshold (percentile value) (c) for 
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case, Corresponding Low Flow | Annual Maximum Temperature > threshold (percentile value) 

(d) for case, Corresponding Low Flow | Annual Maximum Temperature ≤ threshold (percentile 

value)). 
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(d) 

Figure 5. (a) Estimating the conditional joint return periods for station 2106 (a) for case, Annual 

Maximum Temperature | Corresponding Low Flow > threshold (percentile value) (b) for case, 

Annual Maximum Temperature | Corresponding Low Flow ≤ threshold (percentile value) (c) for 

0.00

10.00

20.00

30.00

40.00

50.00

60.00

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

R
et

u
rn

 P
er

io
d

 (
C

o
rr

es
p

o
n

d
in

g 
Lo

w
 F

lo
w

 |
 A

n
n

u
al

 M
ax

im
u

m
 T

em
p

e
ra

tu
re

 ≤
 t

h
re

sh
o

ld
 

(p
e

rc
e

n
ti

le
 v

al
u

e)
) 

(i
n

 Y
EA

R
S)

Corresponding Low Flow 

Annual Maximum of Temperature   ≤ 19.889 (5th percentile)

Annual Maximum of Temperature   ≤ 21.13  (25th percentile)

Annual Maximum of Temperature   ≤ 21.59  (50th percentile)

Annual Maximum of Temperature   ≤ 22.3925  (75th percentile)

Annual Maximum of Temperature   ≤ 23.478  (90th percentile)

Annual Maximum of Temperature   ≤ 23.945  (95th percentile)

Annual Maximum of Temperature   ≤ 24.4648  (98th percentile)

Annual Maximum of Temperature   ≤ 24.9724 (99th percentile)

Jo
urn

al 
Pre-

pro
of



case, Corresponding Low Flow | Annual Maximum Temperature > threshold (percentile value) 

(d) for case, Corresponding Low Flow | Annual Maximum Temperature ≤ threshold (percentile 

value)). 
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(d) 

Figure 6. (a) Estimating the conditional joint return periods for station 2415 (a) for case, Annual 

Maximum Temperature | Corresponding Low Flow > threshold (percentile value) (b) for case, 

Annual Maximum Temperature | Corresponding Low Flow ≤ threshold (percentile value) (c) for 

case, Corresponding Low Flow | Annual Maximum Temperature > threshold (percentile value) 
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(d) for case, Corresponding Low Flow | Annual Maximum Temperature ≤ threshold (percentile 

value)) 
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(d) 

Figure 7. (a) Estimating the conditional joint return periods for station 2473 (a) for case, Annual 

Maximum Temperature | Corresponding Low Flow > threshold (percentile value) (b) for case, 
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Annual Maximum Temperature | Corresponding Low Flow ≤ threshold (percentile value) (c) for 

case, Corresponding Low Flow | Annual Maximum Temperature > threshold (percentile value) 

(d) for case, Corresponding Low Flow | Annual Maximum Temperature ≤ threshold (percentile 

value)). 
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Research Highlights 

 

1. In Swiss Rivers, a parametric copula model was used to estimate the joint density of 

negatively dependent extreme river temperature and low flow.  

 

2. Most justifiable copula densities are employed in estimating joint exceedance probability. 

 

3. Primary for OR and AND joint cases and conditional joint return periods are estimated. 

 

 

4. Simultaneous occurrences of bivariate events are less frequent in the AND-joint case than 

in the OR-joint event. 

 

 

5. Higher return periods are observed in river temperature (or low flow) when increasing the 

percentile value of the conditioning variable, low flow (or river temperature). 

 

6. Also, higher bivariate event return periods occur at higher river temperatures (or low flow) 

values when fixing conditioning variables (river temperature or low flow). 

 

7. These bivariate statistics can better describe the cold-water species real risk during extreme 

events and help in their management. 
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