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A B S T R A C T   

Study region: Southeast Australia 
Study focus: Regional flood frequency analysis (RFFA) is a widely adopted statistical method to 
estimate design floods in ungauged catchments. Annual maximum flood (AMF) model is the most 
popular method in developing RFFA techniques. However, the AMF-based approaches are criti-
cised for its limitations in the range of very frequent to frequent flood estimation. As an alter-
native, the peaks-over-threshold (POT) based approach has shown theoretical advantages in this 
flood range. POT based RFFA is currently underemployed internationally due to its complexity in 
modelling. This study develops POT-based RFFA techniques for south-eastern Australia using data 
from 151 catchments. A comparison is made between ordinary least squares (OLS) and weighted 
least squares (WLS) methods in developing POT-based RFFA techniques. 
New hydrological insights for the region: The OLS based method is found to perform better than the 
WLS. The median relative error values of the developed prediction equations range 31–38%. The 
new POT-based RFFA technique overcomes the limitations of the current Australian Rainfall and 
Runoff, which does not have any RFFA technique for very frequent floods. It is expected that these 
new POT-based RFFA technique will be used in practice in south-east Australia.   

1. Introduction 

Flooding is one of the worst natural disasters across the globe. It leads to economic burdens due to direct and indirect consequences 
of flooding (Acosta et al., 2016). Accurate flood risk assessment is needed to reduce flood damage. Flood frequency analysis (FFA) is 
one of the most preferred methods for design flood estimation. Extreme value distributions are widely used in flood and rainfall 
frequency analyses (e.g., Yilmaz et al., 2017; Hossain et al., 2021). Traditionally, FFA adopts annual maximum flood (AMF) model, 
which extracts the single highest flow value per year from the streamflow record to construct the AMF series. Adopting AMF model in 
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FFA is straightforward and this is the most commonly applied practice in Australia and internationally. However, it has been criticised 
for its inaccurate and biased estimates in very frequent to frequent flood ranges (Metzger et al., 2020; Zaman et al., 2012). A common 
practice of applying AMF involves censoring of the potential low flow values to achieve better fitting in the higher flood ranges (Ball 
et al., 2016). 

Peaks-over-threshold (POT) approach is an alternative to AMF and has been widely employed in environmental modelling (Ber-
nardara et al., 2011; Liang et al., 2019; Northrop and Jonathan, 2011; Thompson et al., 2009). It is flexible in the data extraction 
process; and theoretically advantageous in estimating very frequent to frequent floods (Karim et al., 2017). Moreover, the additional 
flood information through retaining values above a selected threshold could be a particular interest to hydrologists (Kumar et al., 2020; 
Madsen et al., 1997a). One can adjust the threshold by altering average events per year using the POT modelling approach. Cunnane 
(1973) recommended POT1.63 (average 1.63 events over the threshold per year) to reduce sample variance compared with the AMF 
approach. Later, a practical guideline was proposed by Lang et al. (1999), which recommended an average of one to three events above 
the threshold per year for the POT modelling (i.e., between POT1 and POT3). Durocher et al. (2018) further investigated and proposed 
a hybrid method, which suggested a lower boundary of POT1 and a higher boundary of POT5. 

Regional flood frequency analysis (RFFA) is the commonly adopted technique to estimate flood quantiles in ungauged catchments. 
The rationale of RFFA is to transfer flood characteristics from gauged to ungauged sites based on hydrological similarity (Haddad and 
Rahman, 2012; Haddad et al., 2012). Generally, the RFFA involves two steps: first, forming regions and then applying a parametric 
distribution or index flood or quantile regression technique (QRT) (Rahman, 2005) for design flood estimation. Index flood approach is 
a popular RFFA technique, which depends on the assumption of homogeneity (Hosking and Wallis, 1993). In contrast, the QRT relaxes 
the homogeneity assumption. In QRT, a multiple linear regression (MLR) technique is applied to develop a relationship between a flood 
quantile (dependent variable) and selected catchment characteristics (independent variables). In MLR, ordinary least square (OLS) and 
weighted least square (WLS) approaches are generally used to estimate the coefficients of the regression equations. Stedinger and 
Tasker (1985) compared the performance of OLS and WLS in RFFA and concluded that improvement in using WLS can be significant 
over the OLS. 

Many studies in Australia and internationally focused on flood frequency analysis for both at-site and regional cases, and the 
majority of the studies were based on the AMF modelling approach (Ahammed et al., 2014; Burn et al., 2007; Haddad and Rahman, 
2011, 2012; Haddad et al., 2011; Ishak and Rahman, 2015; Ishak et al., 2013; Masan and Hewa, 2020; Rahman et al., 2018; Shu and 
Ouarda, 2007; Walpita-Gamage et al., 2020: Rahman et al., 2020). However, there is a rising interest in using the POT modelling 
approach due to its suitability for ecological and environmental studies as they need frequent flow estimation (Ammar et al., 2020; 
Jarajapu et al., 2022; Kiran and Srinivas, 2021a; Langousis et al., 2016; Pan and Rahman, 2022; Pan et al., 2022; Sccarrott and 
Macdonald, 2012). 

Madsen and Rosbjerg (1997) proposed an index flood method with a Bayesian approach based on Generalised Pareto (GPA) dis-
tribution using POT flood data from 48 New Zealand catchments. A simple linear estimator was found to be adequate in the adopted 
generalized least squares regression framework. Durocher et al. (2019) applied a nonstationary index-flood model for POT data from 
425 catchments in Canada, which enabled extending stationary method to both at-site and regional cases. They compared four 
different estimators, two were based on regression and L moments and two others applied likelihood-based techniques. The inde-
pendent likelihood method was found to provide most accurate estimates of regional floods for 10 and 100 years return periods. 
Mostofi Zadeh et al. (2019) proposed a general framework to undertake RFFA for both the annual maximum and POT data series using 
data from 684 Canadian stations. 

The POT-based RFFA technique is underutilised in Australia (Rahman et al., 2019). This study aims to fill this knowledge gap by 
developing a POT-based RFFA technique focusing on very frequent to frequent flood ranges using data from south-eastern Australia. In 
this context, the main purposes of this study are: (i) Development of prediction equations for selected return periods (very frequent to 
frequent flood ranges) based on POT modelling approach; (ii) Assessment of the performance of the developed prediction equations 
based on different regions in the study area; and (iii) Recommendation of the best performing prediction equations for the selected 
return periods. It is expected that the outcome of this study will promote the wider application of the POT-based modelling approach in 
flood frequency analysis. 

2. Methods 

2.1. Selection of events 

In selecting the POT series at a given gauging station, the threshold value is selected based on an automated method adopting 
Pearson normality test as described in Pan et al. (2021). The average events per year (k = 1,2,3…k) is selected to determine the size of 
the POTk series. Based on series iterative processes, the threshold is determined once the critical p-value is met. 

2.2. Multiple linear regression 

The multiple linear regression (MLR) technique develops a relationship between the dependent variable, Q and u independent 
variables X1, X2, …, Xu. Eq. 1 below is constructed for expressing the ith observation (i = 1,2,3,…,n), where b0 and bj (j = 1,2,3, …, u) are 
unknown parameters associated with the error term, Ei, based on n observations. It is assumed that the term Ei is normally distributed 
based on a mean equal to zero. The model parameters (b0, b1, …, bj) are generally estimated using an ordinary least square (OLS) 
approach. It is a common practice that the regional regression model is constructed based on log-transformed dependent and 
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independent variables (Durocher et al., 2016). 

Qi = b0 + b1Xi1 + b2Xi2 + bjXij +…+ + buXiu +Ei (1) 

OLS is the most popular method to estimate parameters of Eq. (1) based on minimising the residual sum of squares. OLS is based on 
the assumption of homoscedasticity, which is not generally satisfied with hydrological data. In other words, the standard deviation of 
error terms is not constant across all values of the independent variables. To overcome this problem, weighted least square (WLS) is 
adopted, which treats parameters differently by assigning a weight in the parameter estimation process. Based on traditional WLS, the 
weights should ideally be equal to the reciprocal of the variance of the observations. Hydrologists also apply sampling error (Eq. 2) as 
weights in the WLS approach. This study uses statistical weight (reciprocal of variance, WS) and hydrological weight (sampling error, 
WH) for comparison. 

Sampling Error =
Variance of POT flood series

Size of POT flood series
(2)  

2.3. Model construction 

A total of 1512 POT-based regression models are constructed and evaluated in this study for nine return periods between very 
frequent and frequent range of flows, which vary from 12 events per year (EY) to 10 average recurrence interval (ARI) or 10% annual 
exceedance probability (AEP) (12EY, 6EY, 4EY, 3EY, 2EY, 1EY, 0.5EY, 0.2EY and 10ARI). To specify probability of very frequent to 
frequent flows, EY is used following Australian Rainfall and Runoff (Book 2, Chapter 3) (Ball et al., 2019). Fig. 1 illustrates the adopted 
procedures for constructing models in this study. 

The model construction starts with selecting POTk flood series for each of the selected stations based on k average events per year 
(k = 1, 1.5, 2, 2.5, 3, 4, 5). Flood quantiles are estimated for the selected nine return periods for each POTk series assuming a 
Generalised Pareto distribution. The next step is forming a group/region from the selected catchments for developing the prediction 
equations. A total of three regions are formed based on the geographical factors of the selected catchments. Region 1 includes all the 
selected 151 catchments in the study area (south-eastern Australia), while Regions 2 and 3 are formed based on Drainage Division 2 
and Drainage Division 4 in Australia. Details of these regions are discussed in later sections. 

Once regions are formed, two regression techniques are applied for each POTk flood series: OLS and WLS. In the regression, flood 
quantiles are dependent variables and climatic and catchment characteristics (as shown in Table 1) are independent variables. OLS 
technique adopts stepwise elimination based on p-value (5% significance level) (OP) and AIC value (OA), while WLS adopts statistical 
(WS) and hydrological (WH) weights. Baseflow factors (volume factor (VF) and peak factor (PF)) are additional independent variables 
when constructing models (M1 includes VF and PF; M2 excludes VF and PF). Finally, each model is evaluated based on Eq. 3 to Eq. 7 

Fig. 1. Illustration of the adopted methodology for model construction process.  

Table 1 
Descriptive statistics of hydrological and physio-meteorological variables of selected 151 catchments in New South Wales and Victoria, Australia.   

Independent Variables Minimum Max Mean Median Standard Deviation 

Catchment characteristics A (km2)  11.00  1010.00  357.85  309.00  256.69 
MAR (mm)  485.32  1953.23  997.54  926.74  326.19 
SF (fraction)  0.26  1.43  0.77  0.77  0.21 
MAE (mm)  932.70  1543.30  1110.01  1066.20  129.12 
SDEN (km− 1)  0.52  5.47  1.94  1.56  1.00 
S1085 (m/km)  0.80  69.90  12.71  9.59  10.81 
FST (fraction)  0.01  1.00  0.59  0.65  0.33 

Climatic characteristics I12 (mm/hr)  1.52  4.37  2.47  2.48  0.54 
I6(mm/hr)  1.76  5.18  2.81  2.80  0.63 
I4 (mm/hr)  2.20  6.67  3.41  3.37  0.82 
I3 (mm/hr)  2.53  7.79  3.85  3.73  0.96 
I2 (mm/hr)  2.92  9.45  4.50  4.31  1.18 
I1 (mm/hr)  3.62  12.50  5.68  5.36  1.59 
I0.5 (mm/hr)  4.62  15.90  7.09  6.66  2.06 
I0.2 (mm/hr)  5.78  21.60  8.90  8.13  2.80 
I10 (mm/hr)  6.69  26.30  10.40  9.41  3.41 

Baseflow index VF (fraction)  0.00  1.82  0.25  0.21  0.26 
PF (fraction)  0.00  0.82  0.08  0.05  0.12  
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(using both split sample (SS) and leave-one-out (LOO) validation techniques). A typical model, 12EY_POT3_R1_OP_M1 is constructed 
based on 12 event per year (EY) frequency, POT3 model, data from Region 1, baseflow factors as independent variables and regressed 
using OLS stepwise elimination based on p-value (5% significance level). 

This study first selects the best performing POTk flood series based on various statistical measures. Then the selected POTk flood 
series is adopted for further modelling and analysis. Finally, the performance of each region is compared and discussed. 

2.4. Model evaluation 

A range of statistical measures are applied to evaluate the performance of POTk RFFA models: median relative error (REm, Eq. 3), 
relative error (REr, Eq. 4), root mean square error (RMSEr, Eq.5), the coefficient of determination (R2, Eq. 6), and the ratio between 
predicted and observed flow quantiles (Ratior, Eq. 7). Qobs is the at-site flood quantiles estimated using Generalised Pareto distribution 
(Pan and Rahman, 2022) based on POTk flood series. Qpred is the estimated flood quantile based on various POT-based RFFE models. 
Here, a smaller REm value is desirable for the selected POTk RFFE model, and Ratior closer to 1 indicates a better fit between the 
predicted and observed flood quantiles. R2 is also applied for each constructed model and its values range from 0 to 1 (a value closer to 
1 is preferable). 

Each developed POTk RFFA model is evaluated based on split-sample (SS) (with 80%− 20% split) and leave-one-out (LOO) vali-
dation techniques. The SS validation is repeated 100 times randomly for each of the developed models and is evaluated using Eq. 4. 

REm(%) = median
⃒
⃒
⃒
⃒
QPred − QObs

QObs

⃒
⃒
⃒
⃒ ∗ 100% (3)  

REr(%) =
QPred − QObs

QObs
∗ 100% (4)  

RMSEr(%) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n

∑n

i=1

(
QObs − QPred

QObs

)2

∗ 100%

√

(5)  

R2 = 1 −
Sum of squares of residuals

Total sum of squares
(6)  

Ratior =
QPred

QObs
∗ 100% (7)  

3. Study area and data 

This study focuses on the coastal region of south-eastern Australia as shown in Fig. 2 since this part of Australia has high quality 
streamflow data. A total of 151 gauged catchments are selected. The area of selected catchments ranges from 11 km2 to 1010 km2, with 

Fig. 2. Geographical locations of selected 151 catchments in New South Wales and Victoria, Australia.  
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an average of 357 km2 and a median of 309 km2. Records of streamflow data range from 27 to 82 years, with an average of 42 years 
and a median of 39 years. It should be noted here that the smaller the record length the higher the sampling variability in estimated 
quantiles. The adopted WLS method considers the impacts of record length in modelling. The selected catchments have no major 
change in land use and are unregulated. Among the selected 151 catchments, 57 are from New South Wales (NSW), and 94 are from 
Victoria (VIC) states of Australia. 

This study considers three different regions: Region 1 consists of all the selected 151 catchments. Region 2 and Region 3 are formed 
based on Drainage Division 2 (coastal, 89 catchments) and Drainage Division 4 (inland, 62 catchments), respectively. Drainage Di-
vision 4 contains longer rivers than Drainage Division 2, which flow into the Murray Darling River system. The rationale behind 
forming three regions is to improve the accuracy of the developed prediction equations. Application of Hosking and Wallis (1993) test 
to these regions did not deliver any homogeneous regions since heterogeneity statistics (H) were much higher than threshold value of 
one (H1 >11). This finding is similar to previous Australian studies where homogeneous regions could not be identified (e.g., Bates 
et al., 1998; Rahman and Rahman, 2020). 

A total of eighteen hydrological and physio-meteorological variables are adopted in this study as independent variables to develop 
the prediction equations based on the POT-based modelling approach. These variables are catchment areas (A), mean annual rainfall 
(MAR), shape factor (SF), mean annual evapotranspiration (MAE), stream density (SDEN), mainstream slope (S1085), fraction forest 
(FST), design rainfall intensity of 6-hr duration based on varied return period (Ii) (e.g., I12, design rainfall intensity of 12EY), baseflow 
volume factor (VF) and baseflow peak factor (PF). The shape factor (SF) is defined as the shortest distance between a catchment’s 
centroid and outlet divided by the square root of catchment area (A). Baseflow volume factor (VF) is defined as the ratio of baseflow 
volume and streamflow volume. Baseflow peak factor (PF) is defined as the ratio of peak of baseflow and peak of streamflow 
hydrograph. Australian Rainfall and Runoff (ARR) 2019 (Book 5, Chapter 4) has developed regional method to estimate baseflow for 
ungauged catchments for any location in Australia for catchment size of 7–7800 km2 (Ball et al., 2019). 

Table 1 summarises the adopted independent variables in this study. The dependent variables in regression analysis are QT (flood 
discharge for T-year return period) values, which are estimated by fitting a Generalised Pareto (GPA) distribution to each of the 
selected POTk series. 

4. Results and discussion 

4.1. Selection of best-performing POTk flood series 

In this study, the best performing POTk flood series is firstly selected based on the adopted statistical measures using catchments 
from Region 1 (i.e., all of the selected 151 catchments) based on SS validation (80–20% split). Three evaluation statistics REm, RMSEr 
and R2 (Eq. 3, 5 and 6) are applied for each POTk model (OP_M1, OP_M2, OA_M1, OA_M2, WS_M1, WS_M2, WH_M1, WH_M2). The 
return period of 12EY (smallest return period of very frequent flood) and 0.5EY (smallest return period of frequent flood) are selected 
and assessed and it is expected that other selected return periods will provide similar results. 

Fig. 3 plots the R2 values of very frequent (12EY) and frequent (0.5EY) POTk models. Overall, it is observed that the 0.5EY POTk 
models have a higher R2 value (0.75–0.79) than the 12EY POTk models (0.62–0.69). A similar R2 values of 0.68 for POT3, POT4 and 
POT5 models and a slightly smaller R2 value for other POTk models (where k is less than 3) are observed. For a return period of 0.5EY, 
POT2 and POT3 models provide the highest R2 value of 0.78 compared to all other POTk models. Among all the selected POTk RFFA 
models, POT3 provides the best performance in relation to R2 value, considering both return periods of 12EY and 0.5EY. It is worth 
noting that the addition of the baseflow factor (M1) provides comparable results to models without considering the baseflow factor 
(M2). 

Fig. 3. R2 plot for very frequent (12EY) and frequent (0.5EY) POTk RFFA models (Region 1).  
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REm (Fig. 4(a)(b)) and RMSEr (Fig. 4(c)(d)) are two other statistical measures applied in assessing the best performing POTk model. 
It is desirable for a model to have low REm and RMSEr values. For the return period of 12EY, POT4 and POT5 models provide the lowest 
REm and RMSEr, 33% and 6.3%, respectively. In contrast, POT1.5 and POT2 models provide the lowest REm and RMSEr (32% and 
6.5%). It is found that for very frequent floods, the smaller k of the POT flood series provides a higher REm and RMSRr. Considering all 

Fig. 4. (a) (b): Plot of median relative error (REm); (c) (d): Plot of root mean square error (RMSEr) based on various POTk models. (Region 1).  
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the statistical measures applied, the POT3 model best balances the very frequent and frequent flood categories and is selected for 
further analysis. 

4.2. Region 1 

4.2.1. Very frequent flow, 12EY 
The logarithm of predicted and observed flood quantiles (adopting POT3 flood series based on eight approaches using catchments 

in Region 1) are plotted in Fig. 5. It measures how well the very frequent flood can be estimated in ungauged catchments using MLR 
technique. Overall, it is shown a good agreement between the observed and predicted flood quantiles. Most of the catchments in Fig. 5 
are within the narrow range along the 45-degree reference line. However, a slightly higher scatter is located above the reference line 
indicating some over-estimation. 

Fig. 6 illustrates the standardised residual quantile-quantile (QQ) plot of very frequent (12EY) for all POT3 models in Region 1. 
These plots demonstrate a strong alignment to the normality assumption, although a small light-tailed behaviour is observed, high-
lighting some overestimation. OLS-based regression models have a slightly more over-estimation than WLS-based models. Overall, it is 

Fig. 5. Observed vs predicted flood quantiles (very frequent, 12EY) based on POT3 flood series in m3/s (Region 1).  
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observed that more than 90% of the residuals fall within ± 2 normal scores, which indicates that the residuals closely follow a normal 
distribution. 

The relative error (REr, Eq. 4) measures the difference between the predicted and observed flood quantile and is plotted in Fig. 7. A 
very similar boxplot between M1 and M2 models is observed using various regression techniques (i.e., OP_M1 and OP_M2). On the 
other hand, a slight difference is observed between OLS and WLS techniques (i.e., OP_M1 and WS_M1). Overall, the mean of REr ranges 
between 30% and 40%. This finding holds the preliminary finding discussed in the previous section, in which the overall fitting shows 
a slight tendency of over-estimation. Fig. 7 also illustrates a slight difference in the Inter Quantile Range (IQR) for different models. 

Ratior is another measure that indicates how well a predictive model performs to the observed data. If the Ratior is close to 100%, it 
indicates a good agreement between estimated and observed flood quantiles. Fig. 7 indicates a similar tendency of over-estimation 
based on a mean of 120–135%, with an average of 100%. Combining the findings from Fig. 7 (Left and Right), it is clear that the 
OLS-based regression technique provides more accurate quantile estimates than the WLS for the return period of 12EY. 

4.2.2. Frequent flow, 0.5EY 
Fig. 8(a) plots the logarithm of the observed and predicted flood quantile for the return period of 0.5EY. It can be seen a narrower 

concentration along the 45-degree reference line, indicating a closer fit compared to 12EY. Although the scatter is smaller for the 

Fig. 6. Residual QQ-plot based on POT3 model (very frequent, 12EY, Region 1).  
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return period of 0.5EY (compared to 12EY), the over-estimation is still evident in the plot. Comparing various regression techniques, 
the difference in scatter is minor compared to the return period of 12EY. Fig. 8(b) plots the QQ plots for various regression models of 
0.5EY return period. A light-tailed behaviour in the upper part is also observed. In general, it is reassuring that majority of the QQ plots 
fall in the range of ± 2. 

Fig. 9 (Left) plots the REr of selected models for the return period of 0.5EY. The IQR is similar across all selected models, with an 

Fig. 7. Left: Boxplot of REr based on POT3 models (very frequent, 12EY); Right: Boxplot of Ratior based on POT3 models ((very frequent, 12EY) 
(Region 1). 

Fig. 8. (a): Observed vs predicted flood quantiles (frequent, 0.5EY) based on POT3 flood series in m3/s; (b): Residual QQ-plot based on POT3 model 
(frequent, 0.5EY. (Region 1). 
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average of 20–30% and a median just above 0%. The WLS-based model with the addition of baseflow factors (M1) presents a slightly 
better agreement (smaller IQR) among others. Fig. 9 (Right) plots the Ratior with a mean of 120–130% and a median of 98–102%. 

4.2.3. Cross-validation results 
Split sampling with 100 repeats is firstly applied (80% training and 20% testing) for each selected model. Fig. 10 plots REm (Eq. 3) 

for 12EY (Left) and 0.5EY (Right). For the return period of 12EY, it can be seen that the median REm values are similar for the six 
selected approaches, which range from 35% to 37%. A similar result is also observed for 0.5EY. Among different regression techniques, 
the boxplots of OLS-based techniques provide a smaller IQR for both the 12EY and 0.5 EY return periods. Comparing models M1 and 
M2, a small reduction in IQR is found for M2. 

Table 2 tabulates the median of REm using the LOO technique for all the selected return periods in this study. It can be seen that the 
variation in median REm is minor among all the selected regression models. Overall, the REm ranges from a minimum of 31.7% to a 
maximum of 38%. Table 3 presents the median of Ratior. It is observed that the Ratior between various models is within the range of 
± 4%, with a minimum of 94% and a maximum of 102%. 

Considering the results and plots from various statistical indices, OLS based regression model (based on p-value of 0.1 and exclusion 
of baseflow factor, OP_M2) is selected for construction of prediction equations. Table 4 presents prediction equations and associated 
coefficients for selected return periods. The independent variable design rainfall intensity (I), shown in Table 4, is corresponded to the 
associated return period and 6 h duration (e.g., for 12EY, I corresponds to 12EY return period and 6 h duration and for 6EY, I cor-
responds to 6EY return period and 6 h duration). For the very frequent floods, A, SDEN, and I are found to be significant independent 
variables. For frequent floods, mean annual rainfall (MAR) is added with A, SDEN and I as significant independent variables. 

Fig. 11 illustrate the spatial distribution of the absolute REr values of the individual catchments for return period of 12EY (Left) and 
0.5EY (Right). A certain degree of spatial coherence can be seen in the lower region of the coastline of south-eastern Australia. With the 
increased distance from the coastline, the number of catchments showing larger absolute REr (>50%) increases. Overall, a good 
predictive performance based on absolute REr is found for 12EY and 0.5EY models (POT3_R1_OP_M2). 

It is found that 38.4% of catchments (out of 151 in Region 1) have absolute REr values less than 25% for the return period of 12EY 
(this is 37.1% for the return period of 0.5EY). Table 5 provides the individual and cumulative percentages of catchments with a range 
of absolute REr values. Overall, the selected model (POT3_R1_OP_M2) provides a relatively accurate estimate for very frequent to 
frequent floods, with over 70.9% and 72.8% of catchments for 12 EY and 0.5EY models respectively have absolute REr values less than 
or equal to 50%. 

Fig. 9. Left: Boxplot of REr based on POT3 models (frequent, 0.5EY); Right: Boxplot of Ratior based on POT3 models (frequent, 0.5EY) (Region 1).  
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4.3. Region 2 

R2 values for Region 2 are plotted in Fig. S1 (supplementary section), which illustrates similar values of R2 for return periods of 
12EY and 0.5EY. Overall, R2 (0.7–0.8) values for Region 2 are higher than for Region 1. Considering REm and RMSEr, the POT3 model 
is the best performing POT time series based on balancing the score between very frequent (12EY) and frequent (0.5EY) return periods 
as can be seen in Fig. S2. 

Considering the scatter plot between the logarithm of Qobs and Qpred, POT3 models show a slightly larger range of variation along 
the 45-degree line in Fig. S3 Left. QQ plot (Fig. S3 Right) shows that more than 90% of the scatter falls between the range of ± 2. REr 
and Ratior for the return period of 12EY are plotted in Fig. S4 Left and S4 Right, respectively. There is some notable overestimation in 
Region 2 similar to Region 1. It is also observed that the median of each box plot in Fig. S4 is close to 0% and 100%, respectively, which 
indicates an unbiased estimate based on the POT3 model. Similar results for frequent flood estimates are found based on Fig. S5 and 

Table 2 
Median of REm based on LOO cross-validation (Region 1).  

Median of REm (%)  

12EY 6EY 4EY 3EY 2EY 1EY 0.5EY 0.2EY 10ARI 
OP_M1 35.1 35.6 34.4 33.9 34.6 33.8 35.8 32.6 34.8 
OP _M2 35.1 35.6 34.4 33.9 34.6 33.8 35.8 32.6 34.8 
WS_M1 35.5 35.9 37.3 38.0 36.4 35.9 36.2 32.8 34.3 
WS_M2 35.5 35.8 37.2 37.9 36.4 36.4 36.4 31.7 35.4 
WH_M1 33.0 32.9 35.3 35.7 33.6 34.8 34.7 33.0 34.5 
WH_M2 33.4 33.3 35.3 35.1 33.7 36.1 35.8 32.5 34.7  

Table 3 
Median of Ratior based on LOO cross-validation (Region 1).  

Median of Ratior (%)  

12EY 6EY 4EY 3EY 2EY 1EY 0.5EY 0.2EY 10ARI 
OP_M1 98 96 97 96 95 96 97 99 100 
OP _M2 98 96 97 96 95 96 97 99 100 
WS_M1 96 96 96 94 95 97 96 99 100 
WS_M2 96 97 98 97 96 97 97 98 101 
WH_M1 101 100 101 100 100 100 99 101 99 
WH_M2 98 100 101 100 100 100 98 100 102  

Fig. 10. Left: Boxplot of REm for POT3 models (very frequent, 12EY); Right: Boxplot of REm for POT3 models (frequent, 0.5EY). (Region 1).  
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Fig. S6. It is found that OLS-based models excluding the baseflow factor provide the smallest IQR and smallest mean for both REr and 
Ratior. 

The POT3 models are cross validated using split sample validation technique, and the results are illustrated in Fig. 12. Smallest IQR 
is observed for the OLS based model (OP_M2) for both return periods of 12EY and 0.5EY. The median of REm is 45% for the return 
period of 12EY and 48% for 0.5EY. Overall, OLS-based models outperform the WLS-based models, which have a wider IQR and a 
higher median of REm. LOO is also conducted for Region 2 and results are tabulated in Table S1 (median of REm) and Table S2 (median 
of Ratior). 

The developed OLS based (POT3_R2_OP_M2) prediction equations for Region 2 are provided in Table 6. It is observed that the group 
of independent variables (based on 5% significance level) are similar to Region 1, except that MAR is not selected for Region 2. 

The spatial distribution of the absolute REr values of the selected model, POT3_R2_OP_M2, is shown in Fig. 13 Left (12EY) and 
Fig. 13 Right (0.5EY). It is noted that few catchments have larger absolute REr values (>75%), which are located along the upper part 
of the south-eastern coastline for the return period of 12EY. In contrast, the total number of catchments having larger absolute REr 
values (>75%) is smaller for the return period of 0.5EY. The distribution of absolute REr values in Fig. 13 (for Region 2) and in Fig. 11 
(Region 1) shows a broad agreement. 

Table 4 
Prediction equations for Region 1 (POT3_R1_OP_M2): log10 Qi = b0 + b1 * log10 A + b2 * log10 SDEN+ b3 * log10 I+ b4 * log10 MAR.  

Flood Categories Qi b0 b1 b2 b3 b4 

Very Frequent 12EY  -0.6  0.65  0.73  1.36 - 
6EY  -0.68  0.65  0.69  1.42 - 
4EY  -0.79  0.64  0.63  1.48 - 
3EY  -0.87  0.64  0.6  1.52 - 
2EY  -0.95  0.64  0.57  1.58 - 
1EY  -1.09  0.63  0.53  1.73 - Frequent 
0.5EY  -0.34  0.62  0.5  2.11 -0.36 
0.2EY  -0.29  0.61  0.48  2.17 -0.41 
10ARI  -0.28  0.61  0.48  2.13 -0.4  

Fig. 11. Left: Spatial distribution of absolute REr values for 12EY model. Right: Spatial distribution of REr values for 0.5EY model (POT3_R1_OP_M2) 
(Region 1). 

Table 5 
Percentage of catchments having a range of absolute REr values (Region 1).   

12EY_ POT3_R1_OP_M2 0.5EY_ POT3_R1_OP_M2 

Range of 
REm 
(%) 

Count of 
catchments 

Individual percentage 
of catchments 

Cumulative percentage 
of catchments 

Count of 
catchments 

Individual percentage 
of catchments 

Cumulative percentage 
of catchments 

< 25% 58 38.4% 38.4% 56 37.1% 37.1% 
25–50% 49 32.5% 70.9% 54 35.8% 72.8% 
50–75% 15 9.9% 80.8% 14 9.3% 82.1% 
> 75% 29 19.2% NA 27 17.9% NA  
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4.4. Region 3 

Fig. S7 plots R2 values of POTk models for Region 3. Overall, R2 values of very frequent flood (0.45–0.65) is significantly lower than 
frequent flood (0.6–0.68) among selected POTk models. Selected POTk models are also evaluated based on REm and RMSEr, as 
illustrated in Fig. S8 Left and Right. Considering all the statistics from various POTk models in Region 3, the POT3 model performs the 
best while balancing the categories of the very frequent and frequent floods. 

POT3 models for very frequent floods are further assessed through the scatter plot (Fig. S9 Left) and the QQ plot (Fig. S9 Right). A 
narrower concentration along the reference line can be seen for OA_M1 and OA_M2 models as compared to OP_M1 and OP_M2 models. 
Statistics of REm and Ratior are evaluated and plotted in Fig. S10 Left and Right, respectively. It is observed that the smallest IQR is 
found for OA_M2, which is different to the findings of Region 1 and Region 2. Similar approaches are applied to frequent floods (0.5EY) 
as illustrated in Fig. S11 and Fig. S12. OA_M2 are the second-best performing models for the frequent flood. Considering both cate-
gories of very frequent and frequent floods, OA-based models are selected for further investigation while OP models are disregarded. 

The split sample validation method is applied for Region 3 and results are presented in Fig. S12. It is observed that the OA_M2 
model provides the smallest IQR for both very frequent and frequent floods (22%− 35% and 28%− 38%, respectively). It is also 

Fig. 12. Left: Boxplot of REm for POT3 models (very frequent, 12EY); Right: Boxplot of REm for POT3 models (frequent, 0.5EY) (Region 2).  

Table 6 
Prediction equations for Region 2 (POT3_R2_OP_M2): log10 Qi = b0 + b1 * log10 A + b2 * log10 SDEN+ b3 * log10 I.  

Flood Categories Qi b0 b1 b2 b3 

Very Frequent 12EY  -0.90  0.65  0.73 1.36 
6EY  -0.98  0.65  0.69 1.42 
4EY  -1.09  0.64  0.63 1.48 
3EY  -1.15  0.64  0.6 1.52 
2EY  -1.23  0.64  0.57 1.58 
1EY  -1.35  0.64  0.29 2.20 Frequent 
0.5EY  -1.47  0.63  0.29 2.26 
0.2EY  -1.38  0.62  0.35 2.09 
10ARI  -1.24  0.62  0.41 1.92  
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observed that the median of REm based on OA_M2 is the smallest among all the selected models for very frequent floods. LOO cross- 
validation is also applied, and the results are shown in Table S3 and Table S4. Considering the evaluation statistics, POT3_R3_OA_M2 
model performs the best. Table 7 presents the developed prediction equations (Fig. 14). 

Spatial distribution of the absolute REr values for POT3_R3_OA_M2 model are plotted in Fig. 15 Left (12EY) and Fig. 15 Right 
(0.5EY). It can be seen that the majority of the catchments in the lower part of Region 3 are performing quite well (absolute REr <50%) 
for 12EY, and catchments showing significant variation (absolute REr >75%) are located far away from the coastline. Fig. 15 Right 
illustrates a similar result. 

4.5. Comparison of three regional models (Region 1, Region 2 and Region 3) 

In this section, a comparison is made to evaluate the performance of POT3-based RFFA models across three regions. The count of 
catchments falling in different ranges of absolute REr values are shown in Table 8. It can be seen that Region 3 performs the best 
(having the highest percentage of catchments having a smaller absolute REr values) followed by Region 1 and Region 2. Region 3 has 
smaller degree of heterogeneity compared to Region 1 and Region 2, which could be the reason for smaller prediction error for Region 
3. Further study is needed to understand the differences in the performances of the prediction models across the three regions. 

Table 9 shows the significant (at 5% level) independent variables for the RFFA models for three different regions. The variables A 
and SDEN are found to be significant for all the three regions for both very frequent and frequent floods. It is found to be significant for 
Region 1 and Region 2 and for frequent floods in Region 3. SF is significant for only Region 3. MAR is significant for Region 1 (for 
frequent floods) and S1085 is significant for Region 3 (for very frequent floods). 

4.6. Recommended regional prediction equations for application 

Considering different regional models (Region 1, 2 and 3), it is clear that Region 2 model has the lowest prediction accuracy and 
hence these models are not recommended for practical application. For simplicity, Region 1 models (shown in Table 4) should be 
applied to the whole study area since these provide quite accurate flood predictions (with absolute median relative error (REm) in the 

Fig. 13. Left: Spatial distribution of absolute REr values for the return period of 12EY. Right: Spatial distribution of absolute REr values for the 
return period of 0.5EY. (Region 2). 

Table 7 
Prediction equations for Region 3 (POT3_R3_OA_M2): log10 Qi = b0 + b1 * log10 A+ b2 * log10 SF + b3 * log10 SDEN+ b4 * log10 S1085 +b5 * log10 I.  

Flood Categories Qi b0 b1 b2 b3 b4 b5 

Very Frequent 12EY  -0.73  0.84  0.29  0.64 0.16 - 
6EY  -0.73  0.84  0.29  0.64 0.16 - 
4EY  -0.72  0.84  0.29  0.64 0.16 - 
3EY  -0.70  0.84  0.30  0.65 0.15 - 
2EY  -0.65  0.84  0.30  0.67 0.13 - 
1EY  -0.37  0.81  0.26  0.72 - - Frequent 
0.5EY  -0.27  0.81  0.26  0.73 - - 
0.2EY  0.64  0.80  -0.26  0.74 - - 
10ARI  0.40  0.73  -0.41  0.59 - 1.05  
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range of 33–36%). These results are comparable to Ali and Rahman (2022) who reported a REm value of 31–34% in south-east 
Australia for 2 and 5 years return periods based on kriging based RFFA techniques using annual maximum flood model. In another 
study for south-east Australia, Zalnezhad et al. (2022) reported REm values of 42% and 33% for 2 and 5 years return periods, 
respectively using artificial neural networks (ANN) based RFFA technique. We developed prediction equations for 100-year ARI for 
both the AM and POT cases and we found that the POT-based models provided more accurate results than AM based models. This 

Fig. 14. Left: Boxplot of REm values for POT3 models (very frequent, 12EY); Right: Boxplot of REm values for POT3 models (frequent, 0.5EY) 
(Region 3). 

Fig. 15. Left: Spatial distribution of absolute REr values for the return period of 12EY. Right: Spatial distribution of absolute REr values for the 
return period of 0.5EY. (POT3_R3_OA_M2) (Region 3). 
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indicates that in future POT data can be used to develop regional prediction equations for very frequent to 100-year ARI ranges for 
Australia. 

5. Conclusion 

The method adopted and developed in this study focuses on the flood quantile estimation in ungauged catchments in south-east 
Australia in the range of very frequent to frequent floods (12, 6, 4, 3, 2, 1, 0.5, 0.2EY and 10-year ARI). Considering the advan-
tages of POT-based approach, various POTk at-site estimates (average events per year, k = 1, 1.5, 2, 2.5, 3, 4, 5) are modelled and 
evaluated. Based on 151 selected catchments from south-east Australia, it has been found that POT3 based model provides the best 
performance while balancing the categories of very frequent to frequent floods. This study also compares the performance of OLS and 
WLS-based regression analyses. It has been found that the OLS-based regression technique provides the least relative error than the 
WLS method. Three different regions are considered in this study. In this regard, no significant improvement is found if the coastal 
region alone (Region 2) is considered. However, a considerable improvement in prediction performance is found by adopting the 
inland region alone (Region 3). For simplicity, the prediction equations developed for the whole NSW (Region 1) are recommended for 
practical application. These prediction equations require four predictor variables (catchment area, design rainfall intensity, mean 
annual rainfall and stream density), which are readily available. Based on independent testing, these predictions show a median 
relative error values in the range of 32–36%, which are smaller than Australian Rainfall and Runoff recommended RFFA models 
(49–59%) (Rahman et al., 2019). This study bridges the gap in the current edition of Australian Rainfall and Runoff, which does not 
have RFFA method in the range of very frequent floods. The findings of this study will promote adopting the POT-based RFFA approach 
in practice in south-east Australia. Further study should focus on the impacts of climate change on POT-based RFFA approach and 
uncertainty analysis similar to Durocher, Burn and Ashkar (2019). Also, to reduce parameter uncertainty in regression equations, 
generalised least squares regression approach should be adopted similar to Madsen and Rosbjerg (1997) and Haddad and Rahman 
(2012). Further study should consider developing RFFA models from very frequent to 100-year flood quantiles based on POT 
modelling for whole Australia. 

Interactive map 

Boxplot of relative error (RE) of the peaks over threshold based regional flood frequency analysis model for south-east Australia: 
very frequent 12 events per year floods (left) and frequent 0.5 events per year floods (right). 
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Table 8 
Count of catchments based of range of absolute REr values.   

12EY_POT3 0.5EY_POT3 

Range of 
Absolute 
REr 

Region 1, count of 
catchments 

Region 2, count of 
catchments 

Region 3, count of 
catchments 

Region 1, count of 
catchments 

Region 2, count of 
catchments 

Region 3, count of 
catchments 

Up to 25% 38% 35% 58% 37% 34% 37% 
Up to 50% 71% 69% 85% 73% 72% 77% 
Up to 75% 81% 84% 88% 82% 85% 90%  

Table 9 
Comparison of significant independent variables.  

Flood categories Regions Significant independent variables 

Very Frequent Region 1 A SDEN Ii  
Region 2 (Coastal) A SDEN Ii  
Region 3 (Inland) A SDEN SF S1085 

Frequent Region 1 A SDEN Ii MAR 
Region 2 (Coastal) A SDEN Ii  
Region 3 (Inland) A SDEN SF Ii  
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