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ABSTRACT 

Longwave radiation (LR) is one of the energy balance components responsible for warming 

and cooling water during hot summers. Both downward incoming LR, emitted by the 

atmosphere, and outgoing LR emitted by land surface are not widely measured. The influence 

of clouds on the LR heat budget makes it even harder to establish reliable formulations for all-

sky conditions. This paper uses air temperature and cloud cover from the ERA5 reanalysis 

database to compare 20 models for the downward longwave irradiance (DLI) at the Earth’s 

surface and compare them with ERA5’s DLI product. Our work uses long-time continuous DLI 

measured data at three stations over Canada, and ERA5 reanalysis, a reliable source for data-

scarce regions, such as central British Columbia (Canada). The results show the feasibility of 

the local calibration of different formulations using ERA5 reanalysis data for all-sky conditions 

with RMSE metrics ranging from 37.1 to 267.3
𝑊

𝑚2, which is comparable with ERA5 reanalysis

data and can easily be applied at broader scales by implementing it into hydrological models. 

Moreover, it is shown that ERA5 gridded data for DLI shows the best results with RMSE = 

31.7
𝑊

𝑚2 . This higher performance suggests using ERA5 data directly as input data for

hydrological and ecological models. 

Key Words: Long Wave Radiation, ERA5 data, Empirical Models. 

1. Introduction

Longwave radiation (LR) is one of the main heat budget terms responsible for multiple

environmental processes in land and aquatic environments (Bernhardt et al. 2022; McFarlane; 

Clark 2021; Ouellet et al. 2014). LR exchange, which usually refers to wavelengths longer than 

four μm from rivers, is controlled by the surface’s thermal emissivity, atmospheric objects, 

clouds, water vapor, and carbon dioxide (Herrero; Polo 2012). There are two LR-related 

variables (downward and upward radiation); the downward longwave irradiance (DLI) acts as 

a signature of the atmosphere condition (Tang et al. 2021). Therefore, it controls an important 

part of the surface heat budget (Zhou et al. 2020). One of the critical roles of LR is cooling 

water during summer, which significantly impacts aquatic flora and fauna. A previous study 

has shown that this component of the heat budget balance is responsible for cooling the water 

temperature in the Nechako watershed in central British Columbia, Canada (Khorsandi et al., 

2022). Therefore, using a more accurate longwave radiation balance in this region for energy 

balance modeling is necessary. The more precise representation of DLI can improve the 
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simulation results and analysis of hydrological and water quality (e.g., temperature) models 

(Gatien et al. 2022; Khorsandi et al. 2022).  

Over the past decades, multiple studies developed the scientific foundations for DLI (Zhou 

et al. 2020). Although the physical foundation for DLI is well understood and represented based 

on Stephan-Boltzman law, the knowledge related to the interaction of variables that affect 

atmospheric emissivity is still developing. As a result, multiple studies parameterized and 

studied DLI using several equations (Bárbaro et al. 2009; Duarte et al. 2006; Herrero; Polo 

2012; Huang et al. 2007; Koll; Cronin 2018; Sicart et al. 2010). Idso; Jackson (1969) developed 

a general formula for the surface DLI estimation using theoretical analysis of atmospheric 

thermal behavior. Using global scale measurements, they found that DLI has the minimum 

effective emittance at 273K. Based on this finding, they presented a new equation for ground 

surface DLI modeling.  

Multiple studies improved the work by Idso; Jackson (1969), which Miller (1981) compiled 

for the energetics of ecosystems (Miller 1981). His textbook presented formulations and 

applications of DLI for ecosystem modeling. Afterward, multiple scholars developed 

formulations mainly for air emissivity. It is well known that cloud cover is the primary 

controlling meteorological variable with impacts on DLI through emissivity after air 

temperature (Li et al. 2017; Zhou et al. 2020).  

With the advances in data acquisition, cloud cover impact has been studied significantly. 

Duarte et al. (2006) studied the clear sky and cloudy sky DLI using well-known 

parameterizations in Southern Brazil; Sicart et al. (2010) did the same for Andean glaciers, 

Herrero; Polo (2012) for a mountainous site, and Voortman et al. (2015) for dune ecosystems. 

These studies have shown the efficiency of already developed models in providing reliable 

estimates in cloudy-sky conditions. 

More recent studies paid greater attention to all sky parameterizations (Li et al. 2017; Long 

et al. 2021). For example, Li et al. (2017) compared and recalibrated fifteen parametric models 

for DLI. They showed that previously proposed DLI models can be categorized into only a few 

families of models. They recommended the Brunt (Brunt 1932) family of models for future 

use. Long et al. (2021) tested six models for clear-sky conditions and eight for cloudy 

conditions over the Tibetan Plateau. Their results showed an average of 26.4 W/m2 for RMSE 

as the efficiency metric for all-sky conditions. The analysis of cloud cover impact on DLI 

converged to the intercomparison with reanalysis data. Tang et al. (2021) showed that 
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reanalysis products for DLI outperform satellite retrievals over the land surface. They pointed 

out the extensive possibility of reanalysis usage for DLI modeling. 

Parallel to the cloud impact assessments and development on DLI, the impact of other 

meteorological variables has been studied via clear sky conditions. Prata (1996) focused on 

clear sky conditions and developed his equation. He formulated his equation based on the 

impact of air temperature and water vapor on DLI. Multiple studies showed vapor pressure as 

the second primary controlling variable on air emissivity (Abramowitz et al. 2012; Dilley; 

O'brien 1998; Huang et al. 2007; Li et al. 2017; Morcrette 2002; Niemelä et al. 2001; Zhou; 

Cess 2000). 

It can be seen that DLI is well formulated, and the main controllers of DLI emissivity are 

air temperature, cloud cover, and water vapor pressure. Also, the usage of reanalysis data as a 

proxy for meteorological variables was recommended in the literature (Gatien et al. 2022; 

Tarek et al. 2020). However, there is no previous research for data-scarce regions that can 

benefit from reanalysis data as a proxy for meteorological measurements to calculate DLI or 

the reanalysis-based product for DLI. 

This work presents a comparative analysis of different DLI formulations using the 2 Dec 

2019 to 31 May 2022 period of hourly observation of DLI with hourly ERA5 reanalysis 

meteorological data. The study area is the Nechako watershed (British Colombia, Canada), 

which has two stations to measure DLI [at Skins Lake spillway (SLS) and Kenny dam, see Fig. 

1]. Using this analysis, locally selected parameterizations for emissivity for all-sky conditions, 

based on hourly ERA5 data, are proposed, calibrated using measurements at SLS, and validated 

against measurements at Kenny dam, 75km from SLS. The significance of the results using the 

second validation station on an experimental drainage basin operated by the École de 

Technologie Supérieure (QC, Canada) is called the ‘BVE Sainte-Marthe Station’ (hereafter 

BVE station). Two different approaches were performed and validated at the study site for DLI 

modeling: (1) comparing the physically-based parameterizations of previous equations in the 

literature and (2) using ERA5 gridded DLI data instead of calculating DLI. Finally, the possible 

application of the different parameterizations developed are addressed for future modeling at 

the Nechako watershed. 

2. Materials and Methods

a. Study area

Accepted for publication in Journal of Hydrometeorology. DOI 10.1175/JHM-D-22-0184.1.
Brought to you by I.N.R.S. | Unauthenticated | Downloaded 04/18/23 12:18 PM UTC



5 

The Nechako River watershed has a 45,000 km2 drainage area with two main rivers, 

Nechako and Nautley. This watershed is located in the central part of British Columbia, Canada 

(Fig. 1). The present paper focuses on the two aforementioned measuring sites for radiation 

measurements: SLS and  Kenny Dam (Table 1). These two stations are located on the shore 

along the Kenny Dam Reservoir, with low canopy cover (Fig. A1 in Appendix A). The 

observed data were used without any pre-processing. 

Table 1: The names and locations of longwave radiation measuring stations 

Station 
Longitude 

(West) 

Latitude 

(North) 

Elevation 

(masl) 

Distance from closest 

ERA5 grid point (Km) 

Data availability 

Start End 

Skins Lake 

Spillway 
-125.997 53.77 865 2.5 2 Dec 2019 31 May 2022 

Kenny Dam - 124.95 53.58 857 9.7 2 Dec 2019 31 May 2022 

BVE -74.28 45.43 144 12.2 1 Nov 2018 31 Oct 2022 

Fig. 1. Nechako River and BVE Sainte-Marthe watersheds and measuring stations, SLS, 

Kenny Dam, and BVE 
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The SLS station was used for calibration and the Kenny Dam station for validation. The third 

station which was used for validation was the BVE station (http://bvesm.etsmtl.ca/) (Fig. 1 

and Table 1). This station is located approximately 70 km west of Montreal in Quebec, 

Canada (45.43N, 74.28W). Among all the measured hydroclimate variables, DLI was used. 

In contrast to the other stations, the BVE station is located in an area with a dense canopy 

(Fig. A1 in Appendix A). The observed data showed a persistent bias compared to ERA5 data 

and all DLI calculation models. This bias (Equation 26 in Section 2f) was calculated using 

the simulated and observed values. Therefore, as the pre-processing for this station, the bias 

was calculated and subtracted from the measured values. 

b. ERA5 reanalysis data

The required input meteorological variables for the models were provided by the European

Center for Medium-Range Weather Forecasting (ECMWF) through their European Reanalysis 

5th generation (ERA5) (Hersbach et al. 2020). ERA5 reanalysis data cover all required 

meteorological variables. Gatien et al. (2022) showed the possibility of using ERA5 reanalysis 

data for water temperature modeling in calibration and simulation steps using the Nechako 

River as their case study. In this study, three variables from the ERA5 database were used: (1) 

DLI (W/m2), (2) air temperature at 2 m height (ᵒC), and (3) total cloud cover (Dimensionless). 

The 2 m height data were used based on common meteorological standards and the DLI sensors 

installed at the same height. ERA5 gridded-based data were used hourly from the closest grid 

points to our measuring stations.  

c. Longwave heat budget modeling

The most fundamental equation for longwave radiation is the Stefan-Boltzmann Equation.

The Stefan–Boltzmann law is a well-known equation to quantify the power radiated from a 

black body in terms of its temperature. It expresses that the total energy emitted from a black 

body object per unit area per time is proportional to the fourth power of black body temperature 

in Kelvin: 

𝐽 = 𝜎𝑇4 (1) 

where 𝐽 = radiant emittance ( 𝑊𝑚−2 ), 𝜎 = Stefan–Boltzmann constant ( 5.670373 ×

10−8𝑊𝑚−2𝐾−4), and 𝑇= thermodynamic temperature (𝐾). Not all radiation is re-emitted for

natural objects, like a perfect black body, and the emissivity varies with wavelength. However, 
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the total emissivity for natural objects is usually estimated using a constant without considering 

wavelength dependency. The final equation is: 

𝐽 = 𝛽𝜎𝑇4 (2) 

where 𝛽= emissivity of the object (0 < 𝛽 < 1). This equation can be used as downward 

incoming longwave radiation for clear sky conditions. To estimate air emissivity (𝛽), some 

equations are proposed for hydrological studies. For example, Morin; Couillard (1990) 

presented the following equation: 

𝛽 = (0.74 + 0.0065𝑒𝑎)(1 + 0.17𝐵
2)

(3) 

where 𝑒𝑎= vapor pressure (𝑚𝑚 𝐻𝑔) and 𝐵= total cloud cover (𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠). Among all 

cloud related variables, total cloud cover is usually used for applied studies (Morin; Couillard 

1990; Morin et al. 1994; Ouellet et al. 2014). For west Canada, Gatien et al. (2022) showed the 

usage efficiency of total cloud cover to calculate total heat budget impacting water temperature. 

However, different clouds with completely different effects on DLI can have the same total 

cloud cover value (e.g., Cirrus clouds may have higher efficiency than low-level stratiform 

clouds in influencing DLI, while cirrus cloud and low-level stratiform clouds or the 

combination of them can give the same value of total cloud cover). As it is often done in other 

studies, there is no discrimination done for different types of clouds in the present study. The 

DLI equations consider the longwave heat from the atmosphere as a 1D phenomenon instead 

of 3D. Also, the variables used in these equations are close to the surface measurements and 

developed based on the total cloud cover variable. Therefore, the most probable choice from 

the ERA5 dataset to implement in this study is to use the total cloud cover variable. 

Alternatively to calculated 𝛽, Fassnacht (2001) mentioned the following equation: 

𝛽 = (0.53 + 0.2055𝑒𝑎
0.5)(1 + 0.40𝐵)

(4) 

𝑒𝑎 can be estimated using Tetens equations and 𝑇𝑎𝑖𝑟 as follows: 

𝑒𝑎 = 7.50062 ×

{

0.061078 × exp(
17.27𝑇𝑎𝑖𝑟
𝑇𝑎𝑖𝑟 + 237.3

), 𝑇𝑎𝑖𝑟 ≥ 0°𝐶

0.061078 × exp(
21.875𝑇𝑎𝑖𝑟
𝑇𝑎𝑖𝑟 + 265.5

), 𝑇𝑎𝑖𝑟 < 0°𝐶

(5) 

It has been shown that cloud cover and vapor pressure significantly impact the incoming 

longwave radiation from the air (Hogan; Bozzo 2016; Morcrette 2002; Schafer 2017). 

However, the relationship between effective emissivity for a cloudy condition related to cloud 
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cover, air temperature, and vapor pressure is complicated. One method is to use advanced 

global climate models output products, empowered with computational fluid dynamic methods, 

to tackle the complex relationship of thermodynamic variables. These models and their 

products are the utmost recent developments for DLI calculations in atmospheric science. 

However, historically, simple mathematical formulations have been used to calculate DLI for 

local and terrestrial purposes. Sugita; Brutsaert (1993) studied the impact of cloud effect on 

downward longwave radiation. They categorized equations for two conditions: (1) clear sky 

and (2) cloudy sky, as described below. 

1) CLEAR SKY LONGWAVE RADIATION

Sugita; Brutsaert (1993) showed that equation (2) is accurate enough for a clear sky. The 

only problem is estimating 𝛽. They reviewed different equations to estimate 𝛽 as follows: 

𝛽 = 1 − 𝑎1exp[𝑏1(273 − 𝑇𝑎𝑖𝑟)
2]    (Idso; Jackson 1969) (6) 

𝛽 = 𝑎2(
𝑒𝑎

𝑇𝑎𝑖𝑟
)𝑏2     (Brutsaert 1975) (7) 

𝛽 = 𝑎3[1 − exp(−𝑒𝑎

𝑇𝑎𝑖𝑟
𝑏3 )] (Satterlund 1979) (8) 

𝛽 = 𝑎4 + 𝑏4𝑒𝑎
0.5      (Sellers 1965) (9) 

where: 𝑎𝑥, 𝑏𝑥, 𝑐𝑥(𝑥 = 1…4) are constants that need to be calibrated. 

Since 𝑇𝑎𝑖𝑟 and 𝑒𝑎 are essential parameters to estimate 𝛽 for clear sky, Huang et al. (2007) 

studied clear-sky outgoing longwave radiation sensitivity to these variables. Their results 

showed that 𝑇𝑎𝑖𝑟  has a dominant impact compared to 𝑒𝑎  in the low or middle troposphere, 

while in the upper troposphere, the impacts of each component are nearly equal. In this study 

𝑇𝑎𝑖𝑟 and 𝑒𝑎 refer to 2-meter measurements.  

Some authors prefer to estimate longwave radiation heat flux for clear sky based on 

equations other than Stephan-Boltzman. They proposed several equations, which Ouellet et al. 

(2014) listed as follows: 

𝐽𝑎𝑖𝑟 = 𝐽𝑎0 + 𝜎(𝑇𝑎𝑖𝑟
4 − 𝐽𝑎0)𝐵

1.4𝛼 (Ouellet et al. 2014)

with  𝐽𝑎0 = 1 − 0.261exp(−0.000777𝑇𝑎𝑖𝑟
2 )

(10)
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𝐽𝑎𝑖𝑟 = 𝛽𝜎𝑇𝑎𝑖𝑟
4 𝐵−0.0227𝛼  (Surgita and Brutsaert 1993)

(11) 

𝐽𝑎𝑖𝑟 = 5.16453 × 10−13[1 + (0.17𝐵2)]𝑇𝑎𝑖𝑟
6   (Lai; Mooney 2009) 

(12) 

where 𝛼 = empirical coefficient (dimensionless). 

Barbaro et al. (2010) concluded that because the previous equations do not contain enough 

information about the daily vertical dynamics of air temperature and water vapor, they possibly 

fail to model the surface emissivity’s daily variation. They, therefore, suggested a more 

accurate way to estimate 𝐽𝑎𝑖𝑟  for clear-sky conditions using an expression derived from a 

purely empirical approach. Barbaro et al. (2010) used 5 min averaged time series for longwave 

radiation to develop an experimental equation. This time step can capture most longwave 

patterns, e.g., hourly, daily, and monthly variabilities. Their equation predicts better values than 

previous equations in the literature for clear sky conditions in Sau Paulo. This equation was: 

𝐽𝑎𝑖𝑟 = 1827.231 + 31.35𝑇𝑎𝑖𝑟 − 35.06𝑒𝑎 − 967.82 ln 𝑇𝑎𝑖𝑟 −
7725.26

𝑇𝑎𝑖𝑟

+ 390.92√𝑒𝑎 +
2372.20

𝑒𝑎

(13) 

where 𝑒𝑎 (hPa). They also mentioned some other experimental equations for clear sky 

conditions suggested before them as follows: 

𝐽𝑎𝑖𝑟 = (0.52 + 0.065√𝑒𝑎)𝜎𝑇𝑎𝑖𝑟
4   (Brunt 1932) 

(14) 

𝐽𝑎𝑖𝑟 = (9.2 × 10−6𝑇𝑎𝑖𝑟
2 )𝜎𝑇𝑎𝑖𝑟

4  (Swinbank 1963) 
(15) 

𝐽𝑎𝑖𝑟 = (1 − [1 + 46.5 (
𝑒𝑎

𝑇𝑎𝑖𝑟
)] 𝑒𝑥𝑝 〈− {1.2 + 3 [46.5 (

𝑒𝑎

𝑇𝑎𝑖𝑟
)]}

1/2
〉)𝜎𝑇𝑎𝑖𝑟

4

(Prata 1996) 

(16) 

𝐽𝑎𝑖𝑟 = 59.38 + 113.7 (
𝑇𝑎𝑖𝑟

273.16
)
6

+ 96.96√18.6 (
𝑒𝑎

𝑇𝑎𝑖𝑟
)    (Dilley; O'brien 1998) 

(17) 

𝐽𝑎𝑖𝑟 = {
[0.72 + 0.009(𝑒𝑎 − 1.5)]𝜎𝑇𝑎𝑖𝑟

4, 𝑒𝑎 ≥ 1.5

[0.72 − 0.076(𝑒𝑎 − 1.5)]𝜎𝑇𝑎𝑖𝑟
4, 𝑒𝑎 < 1.5

    (Niemelä et al. 2001) 

(18) 

2) CLOUDY SKY LONGWAVE RADIATION
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Clouds trap longwave radiation and can re-emit it, thereby increasing the amount of 

radiation reaching the surface. Therefore, DLI equations should include cloud cover for 

practical purposes (Duarte et al. 2006). Although cloud cover and cloud parameters are 

measured by satellite imagery, ground-based measurements are not always available. The 

cloudy sky condition is easily observable, nevertheless hard to quantify. The complexity of 

measuring cloud cover is due to its relatively small scale size, the height of clouds, the cloud 

formation, and types, and the prohibitive cost of measurement devices. Although cloud cover 

is monitored in crucial places like airports, their data are for local purposes and not easily 

transferable to larger regions. When cloud cover measurements are unavailable, they can be 

estimated by Crawford and Duchon equation (Crawford; Duchon 1999). However, this 

equation can only be used for daytime when downward solar radiation measurements are 

available (Choi et al. 2008). There are two possible alternative methods of estimation for all 

sky conditions:  

First, it is possible to use reanalysis products for cloud cover. The assimilated products of 

reanalysis climate models provide a reasonably acceptable estimation for cloud cover for large-

scale studies (Gatien et al. 2022; Tang et al. 2021; Yao et al. 2019; Yao et al. 2020). However, 

different cloud types have a distinct influence on DLI. Since different cloud types can be active 

simultaneously and influence DLI, the total cloud cover is used. Cloud cover is one of the most 

uncertain variables among reanalysis products since it’s purely influenced by the implemented 

atmospheric models and is model-dependent (Free et al. 2016; Yao et al. 2019; Yao et al. 2020). 

Among all the cloud properties, the total cloud cover is most measurable using satellite imagery 

incorporated in reanalysis models. Therefore, the reanalysis of assimilated products is more 

reliable for this variable. Also, it is an aggregate indicator of all clouds in the sky. Yao et al. 

(2019) compared three reanalysis products for East Asia and concluded that they could 

represent the cloud characteristics. Their results showed that CRA reanalysis better represents 

the total cloud cover than the other two reanalysis datasets (ERA5 and MERRA2) for East 

Asia. To our knowledge, Canada has no previous study to compare reanalysis products with 

the measurements for cloud cover variables. However, multiple case studies using ERA5 

showed this reanalysis product’s suitability for different hydrological cycle processes (Gatien 

et al. 2022; Khorsandi et al. 2022; Tarek et al. 2020). Total cloud cover is the widespread cloud-

related measurement in Canada, mainly measured in airports (Milewska 2004). Moreover, 

Canada has stopped producing synoptic cloud cover reports due to the Automated Weather 

Observing Systems (AWOS) since 1990 (Milewska 2004). Although specific sensors are 
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designed to measure the cloud cover parameters (www.atmos-meteo.com), to our knowledge, 

there are no measurements for such sensors in the Nechako watershed, and cloud-related 

studies are among the least studied subjects in Canada (Milewska 2004). Therefore, the second 

method uses the reanalysis of cloud cover data for cloudy conditions. A typical approach is to 

adjust  𝐽𝐶𝑙𝑒𝑎𝑟𝑠𝑘𝑦 using correction factor equations (e.g., Bolz (1949) or Budyko (1974)) as 

follows: 

𝐽𝐶𝑙𝑜𝑢𝑑𝑦𝑠𝑘𝑦 = 𝐽𝐶𝑙𝑒𝑎𝑟𝑠𝑘𝑦(1 + 𝑢𝐵
𝑣) (19) 

where 𝑢 and 𝑣 are constants with different values in each reference. Bolz (1949) used 𝑣 = 2 

for different values of 𝑢. Some examples of this form presented by other scholars (Duarte et al. 

2006) for various case studies where −1 ≤ 𝑢 ≤ 1 and 0 ≤ 𝑣 ≤ 4. 

d. ECMWF radiation scheme ERA5 data and DLI

Hogan; Bozzo (2016) presented the calculation scheme within the ECMWF model [Integrated 

Forecasting System (IFS)], which is the “Longwave layer-wise emission” scheme to calculate 

multiple atmospheric variables, including DLI.  The formulation can be shown as the following 

equation: 

𝑑𝐻𝑙𝑜𝑛𝑔↓

𝑑𝛿
= 𝐷(−𝐻𝑙𝑜𝑛𝑔↓ + 𝐹𝑖−1

2
+ 𝛿𝐹′) (20) 

where 𝐷 = 1.66 is the diffusivity factor accounting for longwave heat transport, 𝐹
𝑖−
1

2

 is the 

Planck function above 𝑖 th atmosphere layer, and 𝐹′  is the gradient of the Planck function

(Hogan; Bozzo 2016). This three-dimensional (each calculation cell is based on longitude, 

latitude, and altitude differentiation) modeling of DLI by the ECMWF atmosphere model uses 

thermodynamic laws for the atmosphere system, which cannot be compared with one-

dimensional modeling approaches. However, the result of this model needs to be assessed for 

inland data-scarce regions for future implementations. 

e. Calibration algorithm

The calibration algorithm is the Covariance Matrix Adaptation Evolution Strategy (CMA-

ES), an evolutionary algorithm developed by (Hansen 2016). CMA-ES is a global optimization 

method able to solve high-dimensional problems. These benefits make it a good candidate as a 

general-purpose optimization method (Hansen; Ostermeier 1996). This algorithm is assessed 

Accepted for publication in Journal of Hydrometeorology. DOI 10.1175/JHM-D-22-0184.1.
Brought to you by I.N.R.S. | Unauthenticated | Downloaded 04/18/23 12:18 PM UTC



12 

as a superior candidate for use in hydrology (Arsenault et al. 2014). CMA-ES follows four 

steps until a stopping criterion is met, fully explained by Hansen (2016). The only stopping 

criterion used is the number of evaluations (10000). The lower and upper boundaries for 

calibration variables were defined based on the literature recommendations. 

f. Calibration of coefficients in DLI equations

This study used the Root Mean Square Error (𝑅𝑀𝑆𝐸) as the objective function for all

calibrations, aiming to find the optimal values for each model’s coefficients. RMSE was used 

to calibrate the model parameters since it is one of the general efficiency metrics often used to 

measure the performance of temperature models by focusing on all data without focusing on a 

specific part of the data (e.g., high values or low values) (Gupta et al. 2009; Legates; McCabe 

Jr 1999). At the same time, it is shown that none of the efficiency criteria perform ideally to 

show the goodness of fit (Krause et al. 2005). Therefore, multiple efficiency metrics were 

calculated as strongly recommended by Legates; McCabe Jr (1999), as well as Gauch et al. 

(2022). 

Relative Root Mean Square Error (𝑅𝑅𝑀𝑆𝐸) was used to show each equation’s skill in a 

dimensionless way both for calibration and validation steps. Nash–Sutcliffe efficiency (𝑁𝑆𝐸) 

shows a statistically meaningful efficiency of fit as well as the performance of fit for high 

values. The correlation (𝑟) and coefficient of determination (𝑅2) metrics were presented as

recommended by Legates; McCabe Jr (1999). Since using more parameters and input variables 

can cause overfitting, there is a need to help for choosing better models while keeping the 

models parsimonious. To this goal, the Akaike information criterion (AIC) (Akaike 1974) and 

Bayesian information criterion (BIC) (Schwarz 1978) were also calculated to help select the 

best models while considering the number of parameters. Finally, a simple bias metric was 

calculated to show the level of bias between simulations and observed data. 

A summary of these metrics is presented as follows: 

𝑅𝑀𝑆𝐸𝑗 =
√∑ (𝑆𝑖,𝑗 − 𝑂𝑖,𝑗)

2𝑁
𝑖=1

𝑁
(21)
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𝑅𝑅𝑀𝑆𝐸𝑗 =
𝑅𝑀𝑆𝐸𝑗

�̅�𝑗
× 100 (22) 

𝑟𝑗 =
∑ (𝑆𝑖,𝑗 − 𝑆�̅�)(𝑂𝑖,𝑗 − 𝑂�̅�)
𝑁
𝑖=1

√∑ (𝑆𝑖,𝑗 − 𝑆�̅�)2∑ (𝑂𝑖,𝑗 − 𝑂�̅�)2
𝑁
𝑖=1

𝑁
𝑖=1

(23) 

𝑅𝑗
2 =

[

∑ (𝑆𝑖,𝑗 − 𝑆�̅�)(𝑂𝑖,𝑗 − 𝑂�̅�)
𝑁
𝑖=1

√∑ (𝑆𝑖,𝑗 − 𝑆�̅�)2∑ (𝑂𝑖,𝑗 − 𝑂�̅�)2
𝑁
𝑖=1

𝑁
𝑖=1 ]

2

(24) 

𝑁𝑆𝐸𝑗 = 1 −
∑ (𝑆𝑖,𝑗 − 𝑂𝑖,𝑗)

2𝑁
𝑖=1

∑ (𝑂𝑖,𝑗 − 𝑂�̅�)2
𝑁
𝑖=1

(25) 

𝐵𝑖𝑎𝑠𝑗 = 𝑂�̅� − 𝑆�̅� (26) 

𝐴𝐼𝐶𝑗 = 𝑁. 𝐿𝑛 (
∑ (𝑆𝑖,𝑗 − 𝑂𝑖,𝑗)

2𝑁
𝑖=1

𝑁
) + 2𝑘 +

2𝑘(𝑘 + 1)

𝑁 − 𝑘 − 1
+ 𝑁. 𝐿𝑛(2𝜋) + 𝑁 (27) 

𝐵𝐼𝐶𝑗 = 𝑁. 𝐿𝑛 (
∑ (𝑆𝑖,𝑗 − 𝑂𝑖,𝑗)

2𝑁
𝑖=1

𝑁
)+ 𝑘. 𝐿𝑛(𝑁) + 𝑁. 𝐿𝑛(2𝜋) + 𝑁 (28) 

where 𝑅𝑀𝑆𝐸𝑗 , 𝑅𝑅𝑀𝑆𝐸𝑗 , 𝑟𝑗 , 𝑅𝑗
2, 𝑁𝑆𝐸𝑗 , 𝐵𝑖𝑎𝑠𝑗, 𝐴𝐼𝐶𝑗  and𝐵𝐼𝐶𝑗 are the metrics for the 𝑗th station;

𝑂𝑖,𝑗 and 𝑆𝑖,𝑗 respectively are observed and simulated values for the 𝑗th station at 𝑖th time step; 

𝑁 is the number of time steps (measurements), and 𝑘 is the number of coefficients in the model; 

�̅�𝑗  is the mean of observed values. The 𝐴𝐼𝐶𝑗  and 𝐵𝐼𝐶𝑗  metrics not only use the variance 

between observed and simulated values, but they also use the sample size (𝑁) and the number 

of model parameters (𝑘) to penalize  the less parsimonious model(s). Calculated AIC and BIC 

increase linearly towards the non-optimal range by increasing the number of coefficients. 
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g. Testing LR equations

As presented in section 2.c, many formulations for longwave heat budget estimation exist.

In this study, two methods for longwave calculation will be evaluated using ground-based 

measurements: (1) testing ERA5 data as a proxy instead of using DLI models and (2) estimating 

DLI using 20 forms of models for both clear and cloudy conditions (Table 2). Both cases are 

evaluated with ground-based observation for DLI using three installed sensors. For clear sky 

conditions, equations can be divided into two groups (Fig. 2): The first group is composed of 

formulations requiring the estimation of 𝛽, while the second group includes the formulations 

that do not require estimating 𝛽. The decision tree and selected models are as Fig. 2. The 

detailed parametrization is provided in Table 2. 

Fig. 2: Flowchart for calculation of DLI in different conditions using selected equations 

(Total number of options is 20) 

Based on Fig. 2, 20 models (Table 2) will be tested using three net radiometers installed at 

the SLS, Kenny dam, and BVE stations. These net radiometers (Apogee) have four 

components: two pyranometers that measure incoming (upward-looking) and reflected 

(downward-looking) shortwave radiation and two pyrgeometer facing upward and downward 

for longwave radiations. All four radiation fluxes were recorded hourly for periods mentioned 

in Table 1.  

The ERA5 variables were used without any correction as they were proposed as a reliable 

proxy for data-scarce regions or ungauged watersheds over Canada by Tarek et al. (2020). 

Also, the efficiency of the direct use of ERA5 products over the Nechako watershed was 

confirmed by Gatien et al. (2022) and Khorsandi et al. (2022). 
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Model No. Based on Stephan-Boltzman Equation for 𝜷 Equation 

1 Yes 𝛽 = 1 𝐽1 = (1 + 𝑢1𝐵
𝑣1)𝜎𝑇𝑎𝑖𝑟

4

2 Yes (Eq. 3) 𝐽2 = (1 + 𝑢2𝐵
𝑣2)[(0.74 + 0.0065𝑒𝑎)(1 + 0.17𝐵

2)]𝜎𝑇𝑎𝑖𝑟
4

3 Yes (Eq. 4) 𝐽3 = (1 + 𝑢3𝐵
𝑣3)[(0.53 + 0.2055𝑒𝑎

0.5)(1 + 0.40𝐵)]𝜎𝑇𝑎𝑖𝑟
4

4 Yes (Eq. 6) 𝐽4 = (1 + 𝑢4𝐵
𝑣4)〈1 − 𝑎4exp[𝑏4(273 − 𝑇𝑎𝑖𝑟)

2]〉𝜎𝑇𝑎𝑖𝑟
4

5 Yes (Eq. 7) 𝐽5 = (1 + 𝑢5𝐵
𝑣5)[𝑎5(

𝑒𝑎
𝑇𝑎𝑖𝑟

)𝑏5]𝜎𝑇𝑎𝑖𝑟
4

6 Yes (Eq. 8) 𝐽6 = (1 + 𝑢6𝐵
𝑣6) 〈𝑎6[1 − 𝑒𝑥𝑝(−𝑒𝑎

𝑇𝑎𝑖𝑟
𝑏6 )]〉 𝜎𝑇𝑎𝑖𝑟

4

7 Yes (Eq. 9) 𝐽7 = (1 + 𝑢7𝐵
𝑣7)(𝑎7 + 𝑏7𝑒𝑎

0.5)𝜎𝑇𝑎𝑖𝑟
4

8 No - 
𝐽8 = (1 + 𝑢8𝐵

𝑣8){1 − 0.261𝑒𝑥𝑝(−0.000777𝑇𝑎𝑖𝑟
2 ) + 𝜎〈𝑇𝑎𝑖𝑟

4 − [1 − 0.261𝑒𝑥𝑝(−0.000777𝑇𝑎𝑖𝑟
2 )]〉𝐵1.4𝛼8}

𝐽8 = (1 + 𝑢8𝐵
𝑣8){1 − 𝑎8𝑒𝑥𝑝(−𝑏8𝑇𝑎𝑖𝑟

2 ) + 𝜎〈𝑇𝑎𝑖𝑟
4 − [1 − 𝑎8𝑒𝑥𝑝(−𝑏8𝑇𝑎𝑖𝑟

2 )]〉𝐵1.4𝛼8}

9 No (Eq. 3) 𝐽9 = (1 + 𝑢9𝐵
𝑣9)[(0.74 + 0.0065𝑒𝑎)(1 + 0.17𝐵

2)]𝜎𝑇𝑎𝑖𝑟
4 𝐵−0.0227𝛼9

10 No (Eq. 4) 𝐽10 = (1 + 𝑢10𝐵
𝑣10)[(0.53 + 0.2055𝑒𝑎

0.5)(1 + 0.40𝐵)]𝜎𝑇𝑎𝑖𝑟
4 𝐵−0.0227𝛼10

11 No (Eq. 6) 𝐽11 = (1 + 𝑢11𝐵
𝑣11)〈1 − 𝑎11exp[𝑏11(273 − 𝑇𝑎𝑖𝑟)

2]〉𝜎𝑇𝑎𝑖𝑟
4 𝐵−0.0227𝛼11

12 
No 

(Eq. 7) 𝐽12 = (1 + 𝑢12𝐵
𝑣12)[𝑎12(

𝑒𝑎
𝑇𝑎𝑖𝑟

)𝑏12]𝜎𝑇𝑎𝑖𝑟
4 𝐵−0.0227𝛼12

13 No (Eq. 8) 𝐽13 = (1 + 𝑢13𝐵
𝑣13) 〈𝑎13[1 − 𝑒𝑥𝑝(−𝑒𝑎

𝑇𝑎𝑖𝑟
𝑏13 )]〉 𝜎𝑇𝑎𝑖𝑟

4 𝐵−0.0227𝛼13

14 No (Eq. 9) 𝐽14 = (1 + 𝑢14𝐵
𝑣14)(𝑎14 + 𝑏14𝑒𝑎

0.5)𝜎𝑇𝑎𝑖𝑟
4 𝐵−0.0227𝛼14

15 No - 𝐽15 = (1 + 𝑢15𝐵
𝑣15)〈5.16453 × 10−13[1 + (0.17𝐵2)]𝑇𝑎𝑖𝑟

6 〉

16 
No 

- 𝐽16 = (1 + 𝑢16𝐵
𝑣16) (𝑎16 + 𝑏16𝑇𝑎𝑖𝑟 − 𝑐16𝑒𝑎 − 𝑑16 ln 𝑇𝑎𝑖𝑟 −

𝑒16
𝑇𝑎𝑖𝑟

+ 𝑓16√𝑒𝑎 +
𝑔16
𝑒𝑎
) 

17 No - 𝐽17 = (1 + 𝑢17𝐵
𝑣17)(𝑎17𝑇𝑎𝑖𝑟

2 )𝜎𝑇𝑎𝑖𝑟
4

18 
No 

- 𝐽18 = (1 + 𝑢18𝐵
𝑣18)(1 − [1 + 𝑎18 (

𝑒𝑎
𝑇𝑎𝑖𝑟

)] 𝑒𝑥𝑝 〈− {𝑏18 + 𝑐18 [𝑎18 (
𝑒𝑎
𝑇𝑎𝑖𝑟

)]}
𝑑18
〉)𝜎𝑇𝑎𝑖𝑟

4

19 

No 

- 𝐽19 = (1 + 𝑢19𝐵
𝑣19) 〈𝑎19 + 𝑏19 (

𝑇𝑎𝑖𝑟
273.16

)
6

+ 𝑐19√(
𝑒𝑎
𝑇𝑎𝑖𝑟

)〉 

20 No - 𝐽20 = (1 + 𝑢20𝐵
𝑣20) {

[𝑎20 + 𝑏20(𝑒𝑎 − 1.5)]𝜎𝑇𝑎𝑖𝑟
4, 𝑒𝑎 ≥ 1.5

[𝑎20 + 𝑐20(𝑒𝑎 − 1.5)]𝜎𝑇𝑎𝑖𝑟
4, 𝑒𝑎 < 1.5

Table 2. Formulation of the twenty DLI estimation models for this study (models are numbered from 1-20) 
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3. Results

The results presented here are a comparison of 𝐽𝑎𝑖𝑟  obtained from the ERA5 reanalysis

database together with the 20 models described in Table 2. Each equation shows the impact of 

cloud cover (𝐵), vapor pressure (𝑒𝑎) and air temperature (𝑇) in estimating measured DLI. 

a. Model calibration

Firstly, the calibration results for the SLS station are presented using the RMSE metric for

different methods in Table 3. The calibrated coefficients for twenty models are shown in Table B1 

in Appendix B. There is high variability between RMSEs obtained by various models from a 

minimum value 31.75 
𝑊

𝑚2 (RRMSE = 11.7%, For ERA5 data) to maximum 267.3 
𝑊

𝑚2 (RRMSE =

98.64%, For method 8). However, there is less variability between the remaining 19 models. This 

similarity of the results for the other 19 models is perhaps not surprising since the models are based 

on physical laws for radiation; however, the emissivity of the air is not similarly formulated. The 

ERA5 downward longwave radiation is superior to all models, which can be related to the fact that 

ERA5 products are the result of 3D modeling of radiation in the atmosphere using multiple layers 

of the atmosphere (Martens et al. 2020). Also, the RMSE = 31.75 
𝑊

𝑚2
 is comparable to results by

Long et al. (2021). 

Secondly, each method’s other efficiency metrics were calculated to provide multiple criteria 

for comparison (Table 3). The resulting RRMSEs, as a dimensionless metric but similar to RMSE, 

show that other than methods 3, 8, and 10, the remaining methods show RRMSE values of less 

than 20%, which offers relatively good performance. The RRMSE for ERA5 data as the 

benchmark is 11.7% for the SLS station as the calibration step. Since the RMSE and RRMSE for 

multiple methods are close, the other metric values were calculated and compared (Table 3). ERA5 

shows the best performance NSE performance (NSE = 0.56), followed by methods 1, 5, and 19.  

The NSE metric shows the determination power of the model compared to the mean of the 

values. The mean of values is a better estimate if a model has an NSE value less than zero. 

Therefore, this metric identifies the worst models, i.e., with NSE ≤ 0, that should be ignored. It 

can be seen that models 3, 6, 8, 9, 10, 15, and 16 do not have enough determination power.  
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Other than ERA5 and models 1, 5, and 19, the remaining models (11, 12, 13, 14, 19, and 20) 

have similar NSE metrics (≈ 0.37). The R2 values for these models show a similar range, too (≈ 

0.39). As another metric, simple bias can be used. Models 1, 5, and 19 show the best Bias values.  

The only metrics that consider the complexity and performance of a model at the same time are 

AIC and BIC. These metrics identify the most parsimonious models with acceptable performance. 

Both AIC and BIC criteria show the minimum (best) value for ERA5, followed by models 1, 5, 

and 19, as the best options (Table 3). Models 11, 12, 13, 14, 19, and 20 again show similar good 

performances after the above candidates. 
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Model No. RMSE RRMSE Correlation R2 NSE Bias AICc BIC 

ERA5 31.75 11.72 0.78 0.61 0.56 6.54 83384.97 83384.97 

1 37.533 13.85 0.62 0.39 0.383 2.692 85912.033 85916.513 

2 45.44 16.77 0.63 0.39 0.10 27.03 88796.43 88800.90 

3 74.81 27.61 0.62 0.38 -1.45 61.75 96318.15 96322.63 

4 43.60 16.09 0.62 0.38 0.17 23.71 88178.66 88187.62 

5 37.121 13.70 0.63 0.40 0.401 2.281 85751.821 85760.771 

6 50.35 18.58 0.643 0.40 -0.11 35.56 90347.76 90356.72 

7 43.82 16.17 0.642 0.41 0.16 26.02 88254.17 88263.12 

8 267.30 98.64 0.06 0.00 -30.31 259.79 115531.67 115542.87 

9 49.05 18.10 0.63 0.39 -0.05 33.55 89952.98 89959.69 

10 58.92 21.75 0.61 0.38 -0.52 25.30 92718.82 92725.54 

11 38.00 14.02 0.63 0.40 0.37 -4.70 86107.48 86118.68 

12 38.19 14.09 0.63 0.39 0.36 -4.47 86179.74 86190.93 

13 37.73 13.92 0.63 0.40 0.38 3.643 85997.03 86008.23 

14 38.27 14.12 0.63 0.39 0.36 -4.64 86212.38 86223.57 

15 54.20 20.00 0.63 0.40 -0.29 40.47 91458.70 91465.41 

16 48.44 17.88 0.60 0.36 -0.03 31.81 89777.20 89797.34 

17 42.96 15.85 0.62 0.39 0.19 4.98 87952.12 87958.84 

18 43.61 16.09 0.641 0.41 0.17 25.58 88186.16 88199.60 

19 37.492 13.83 0.62 0.39 0.382 0.42 85901.682 85912.882 

20 38.39 14.17 0.63 0.40 0.35 11.90 86258.84 86270.04 

Table 3: Efficiency metrics for calibration step for ERA5 data and 20 calibrated 

irradiance equations compared with observed data at the SLS station. The best candidate is in 

bold based on each efficiency metric. The three alternatives after the best model are 

italicized, and the metrics are numbered 
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The scatter plots of estimations vs. observations for the best models are shown in Fig. 3. 

Fig. 3. Scatter plots for the best models for calibration at the SLS station. The models are: (a) 

for the ERA5 dataset, (b), (c), and (d) are the three selected alternatives, respectively, for 

models 1, 5, and 19 with their RMSE metrics 

b. Model validations

With the calibrated parameters and equations from the calibration step on SLS, the validation 

results on the Kenny Dam and BVE stations are presented in Table 4 and Table 5. 
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Model No. RMSE RRMSE Correlation R2 NSE Bias AICc BIC 

ERA5 34.62 12.77 0.75 0.56 0.47 8.92 84689.07 84689.07 

1 38.383 14.16 0.62 0.38 0.351 -0.811 86249.003 86253.483 

2 46.34 17.10 0.61 0.37 0.06 25.78 89094.05 89098.53 

3 76.35 28.18 0.60 0.36 -1.55 60.06 96624.38 96628.86 

4 44.18 16.30 0.60 0.36 0.14 22.47 88375.85 88384.81 

5 38.172 14.09 0.623 0.38 0.362 1.062 86171.382 86180.342 

6 51.29 18.93 0.62 0.38 -0.15 34.71 90627.56 90636.52 

7 44.33 16.36 0.62 0.38 0.14 25.54 88428.93 88437.89 

8 272.28 100.48 0.07 0.01 -31.49 267.33 115810.33 115821.53 

9 49.83 18.39 0.61 0.37 -0.09 32.59 90189.90 90196.62 

10 62.46 23.05 0.60 0.36 -0.71 21.80 93598.31 93605.02 

11 39.10 14.43 0.622 0.38 0.33 -6.14 86538.30 86549.49 

12 39.39 14.54 0.62 0.38 0.32 -6.07 86647.09 86658.29 

13 38.93 14.37 0.62 0.38 0.34 2.15 86470.37 86481.57 

14 39.50 14.58 0.62 0.38 0.32 -6.26 86689.37 86700.56 

15 55.20 20.37 0.62 0.38 -0.34 39.49 91735.34 91742.06 

16 48.58 17.93 0.59 0.35 -0.03 31.40 89819.27 89839.42 

17 45.13 16.66 0.61 0.38 0.11 2.40 88696.60 88703.32 

18 44.08 16.27 0.621 0.38 0.15 25.25 88346.09 88359.53 

19 38.001 14.02 0.61 0.38 0.371 -1.133 86106.171 86117.371 

20 38.91 14.36 0.62 0.38 0.34 10.83 86461.58 86472.78 

Table 4: Efficiency metrics as a validation step for ERA5 data and 20 DLI models 

compared with observed data at Kenny Dam station. The best candidate is in bold based on 

each efficiency metric. The three alternatives after the best model are italicized, and the 

metrics are numbered 
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Model No. RMSE RRMSE Correlation R2 NSE Bias AICc BIC 

ERA5 47.33 15.90 0.77 0.59 0.57 0.01 134923.67 134923.67 

1 36.383 12.22 0.892 0.79 0.753 4.22 128937.083 128941.913 

2 41.88 14.07 0.87 0.76 0.66 23.92 132146.54 132151.37 

3 63.81 21.44 0.87 0.75 0.22 42.82 141730.38 141735.22 

4 41.68 14.00 0.87 0.75 0.67 21.96 132039.46 132049.13 

5 36.79 12.36 0.89 0.78 0.74 6.33 129196.28 129205.96 

6 47.95 16.11 0.88 0.78 0.56 35.30 135230.91 135240.58 

7 49.96 16.79 0.88 0.78 0.52 32.88 136165.58 136175.25 

8 304.77 102.39 -0.01 0.00 -16.77 295.63 177329.85 177341.94 

9 46.52 15.63 0.87 0.76 0.59 31.60 134536.96 134544.22 

10 63.18 21.23 0.87 0.76 0.24 -4.01 141507.72 141514.97 

11 36.98 12.42 0.891 0.79 0.74 0.381 129315.80 129327.89 

12 35.932 12.07 0.893 0.79 0.752 -1.592 128661.602 128673.692 

13 35.09 11.79 0.89 0.78 0.76 5.22 128125.82 128137.91 

14 35.821 12.03 0.89 0.78 0.751 -2.023 128589.781 128601.871 

15 49.40 16.60 0.88 0.78 0.53 37.28 135906.37 135913.62 

16 54.38 18.27 0.85 0.73 0.43 36.93 138105.11 138126.87 

17 36.88 12.39 0.88 0.78 0.74 -4.84 129251.40 129258.66 

18 52.69 17.70 0.89 0.78 0.47 34.65 137379.21 137393.72 

19 38.45 12.92 0.88 0.78 0.72 5.11 130203.10 130215.19 

20 40.37 13.56 0.89 0.78 0.69 16.76 131313.17 131325.26 

Table 5: Efficiency metrics as a validation step for ERA5 data and 20 DLI models 

compared with observed data at BVE station. The best candidate is in bold based on each 

efficiency metric. The three alternatives after the best model are italicized, and the metrics are 

numbered 

The results for the Kenny Dam station show very similar metrics and conclusions to the 

SLS station. Therefore, ERA5 and models 1, 5, and 19 provide the best estimates for these two 

stations belonging to the same watershed. The scatter plots for these models are presented in 

Fig. 4. 

Accepted for publication in Journal of Hydrometeorology. DOI 10.1175/JHM-D-22-0184.1.Brought to you by I.N.R.S. | Unauthenticated | Downloaded 04/18/23 12:18 PM UTC



22 

Fig. 4. Scatter plots for the best models for the validation step on Kenny Dam station. The 

models are: (a) for the ERA5 dataset, (b), (c), and (d) are the three selected alternatives, 

respectively, for models 1, 5, and 19 with their RMSE metrics 

The validation results for the BVE station are somehow different. Model 13 shows the best 

performance for the majority of efficiency metrics in this station. The following alternative 

models are models 1, 12, and 14. A similar candidate for the two validation stations is model 

1. Also, ERA5 does not provide the best metrics in any of the efficiency metrics. To facilitate
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the interpretation of the results, scatter plots for these candidates are depicted in Fig. 5, together 

with models 5 and 19. 

Fig. 5. Scatter plots for the best models for the validation step on the BVE station: (a) ERA5, 

(b) Model 12, (c) Model 13, and (d) Model 14. The best model is model 13, and the two

selected alternatives are models 12 and 14, with their RMSE metrics. ERA5 results are also 

plotted for comparison. There is a systematic deviation among all the candidate models for a 

subset of data which is marked in red in panel (a) 
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Fig. 5 shows a systematic deviation among all the candidate models for a subset of data 

(marked in red in Fig. 5 for ERA5) for the BVE station compared with SLS or Kenny Dam 

stations. The magnitude of underestimation is ≥ 100 W/m2. These larger measure values are 

due to the microclimate around the BVE station. These overestimated records cover the April-

October period. This time of the year in Montreal, BVE station coincides with the growth of 

leaves on the trees and full canopy. To further analyze this fact, the whole validation step was 

repeated on BVE without using April-October records, and the resulted RMSE is 38.81 W/m2 

(RMSE for the whole period is 47.33 W/m2, based on Fig. 5a). 

It is evident that the difference between a full canopy and bare leaf trees (BVE station is 

snow-covered during Nov-Mar) dramatically affects the DLI at the BVE station. The metrics 

for the partial time series in Fig. 6 are: RMSE = 38.81 W/m2, RRMSE = 16.81%, R2 = 0.97, 

and NSE = 0.89. The results show ERA5 data for the BVE station during Nov-Mar have 

comparable or better metrics than the SLS station. The high performance is associated with air 

temperatures ≤ 22℃ and all cloud conditions.  

4. Discussion

Table B1 in Appendix B shows values of zero for the 𝑣 calibration parameter in the cloud

correction factor (1 + 𝑢𝐵𝑣) for some models (Models 1, 2, 3, 8, 17, and 19). While 𝑢 value is

not equal to zero, it means the cloudiness correction factor to correct the longwave heat term 

is a constant, not changing with cloudiness. These values show the dominance of 𝑇𝑎𝑖𝑟 compare 

to 𝑒𝑎 in estimating DLI in agreement with Abramowitz et al. (2012). 

Out of all formulations, model 8 has poor results and is not comparable with other models. 

Therefore, this formulation is not recommended for our study area. The other flawed model is 

number 17, which shows 𝑎18 ≈ 0. This almost 0 value is faulty since it causes almost the same 

values for 𝐽𝑎𝑖𝑟 no matter which meteorological variables are present. The efficiency metrics of 

this parametrization for calibration and validation are not among the best. Therefore this 

formulation is not recommended for the Nechako River watershed. 

Not surprisingly, ERA5 data for DLI shows promising metrics among all models. This high 

level of performance is due to an improved scheme for radiation in the Integrated Forecasting 

System (IFS) for ECMWF (Hersbach et al. 2020; Hogan; Bozzo 2016; Urraca et al. 2018). 

However, for a single station, other models for DLI (formulations other than ERA5, 8, and 17) 

show comparable or even better performance than ERA5 data. This adequacy of the classic 

Stephan-Boltzmann equation for DLI agrees with Sugita; Brutsaert (1993). Further application 
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of these DLI models depends on the measured observations for humidity and cloud cover at 

the multiple layers of the atmosphere. Yao et al. (2019) suggest that the water clouds are 

generally overestimated in ERA5 and MERRA-2 for East Asia. However, our results for 

simulated DLI using total cloud cover don’t show systematic biases for selected models (Fig. 

3 and Fig. 4); however, some models show higher values for bias (Tables 3-5). 

Further studies using cloud cover measurements at the atmosphere layers are needed to split 

the impact of data or model selection on DLI results. Although specific sensors are designed 

to measure the cloud cover parameters (www.atmos-meteo.com), to our knowledge, there are 

no measurements for such sensors in the Nechako watershed. Due to the lack of data for cloud 

cover-related variables, further studies are needed to validate reanalysis data for clouds in 

different layers of the atmosphere for Canada (Milewska 2004). 

With a more careful look at the formulations and resulting parameters, we can see non-

uniqueness among them, which means some of the equations are the same due to calibrated 

coefficients equal to zero. The original list can be shortened to 13 unique formulations 

(Numbered with roman numerals in Table C1 in Appendix C).  

It is visible that the ERA5 dataset provides reliable estimates for DLI, directly usable for 

the lands without dense canopy. SLS and Kenny dam stations are open, unvegetated stations 

within a radius of 100 m of the installed sensors. However, the BVE station is surrounded by 

a thick canopy. It is visible that the local canopy effective distance (<100 m) is much less than 

the ERA5 grid distances (≈ 25 Km), so the ERA5 data can’t be used to analyze the local canopy 

effects. Also, to compare a station’s observed data with ERA5 data, the canopy effect should 

be eliminated as a pre-processing step. This canopy effect has two impacts at the BVE station: 

First, there is a constant bias between observed DLI at the BVE station, compared to ERA5, 

and all the calibrated models. This effect is visible as a systematic bias (in this study and for 

BVE station ≈ 54 W/m2). This bias is not related to the leaf on the trees or the vapor pressure 

since it is present in all climate conditions over the year. Also, this bias is not associated with 

cloud effects since it is visible even in non-cloudy conditions. However, this longwave 

radiation is a local phenomenon possibly related to scattered DLI from non-living surfaces. 

Therefore, pre-processing was needed to eliminate this local effect from the observed data 

before comparing that with model results.  

As the second impact, measurements at the BVE station show an overestimation in 

measured DLI values for the April-October period. This period is the growing season for 
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grasses and trees, and since the longwave absorption by snow is higher than the growing 

canopy, there is more DLI irradiance. These visible larger values for this specific period 

directly relate to DLI scattering, which is detected and observed by the sensor. Again, this 

canopy effect cannot be due to cloud cover, regardless of the amount of cloud cover and 

precisely for a specific period of the year.  

At the same time, the results showed DLI from the ERA5 dataset does not need correction 

for elevation since the same product provides similar metrics for two validation stations in 

Eastern and Western Canada, with entirely different physiographies and elevations. The 

ECMWF global model includes the topography in the calculations for atmosphere-land 

interactions (Hersbach et al. 2020). The same reason is behind the reliable estimates for surface 

air temperature confirmed by Gatien et al. (2022) and Khorsandi et al. (2022) at the station 

scale and watershed scales in Nechako. 

Out of the multiple models for DLI, three options (models 1, 5, and 19) show the most 

accurate estimations, which are our recommended options for future studies at the Nechako 

River watershed. This result agrees with Sugita and Brutsaert (1993), who mentioned that the 

Stephan-Boltzman formulation is accurate enough. The only problem is finding the correct 

formulation for β for cloudy conditions. Although using model 5 or 19 with four or five 

parameters marginally improved RRMSE compared to equation 1 (from 13.8% to 13.7 and 

13.83% for calibration and from 14.16% to 14.09 and 14.02% for validation), it is at the price 

of adding two or three more parameters. It means cloud cover is the primary factor in 

controlling air emissivity, and vapor pressure (controlled by additional parameters) has a minor 

impact. The dominance of cloud cover in estimating β for the Nechako agrees with Huang et 

al. (2007) findings for outgoing longwave radiation and their results for the lower part of the 

atmosphere and Abramowitz et al. (2012) for DLI. 

5. Conclusion

This study’s main objective was to compare 20 models for DLI for the Nechako watershed

in British Columbia, Canada. More precise models for DLI for this watershed can help the 

impact analysis of longwave heat budget on aquatic life. Calibration for each model at SLS’s 

DLI was first performed, followed by validating those models on the Kenny Dam and BVE 

stations. Our results showed that the Stephan-Boltzman equation could provide reasonable 

estimates for DLI using the proper formulation to estimate β. Three formulations showed the 

best performance for both SLS and Kenny Dam, our proposed options for more hydrological 
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implementation at the Nechako watershed. Their superiority was shown using multiple metrics. 

Besides, the DLI downloaded data from the ERA5 reanalysis database provide the best results 

in terms of RMSE and RRMSE, which implies the direct use of ERA5 data instead of its 

calculation using a model. Our proposed options can be incorporated into hydrological models 

like CEQUEAU, which is of interest to decision-makers in the Nechako watershed. Since 

meteorological data have a significant local impact in this watershed and longwave radiation 

is one of the primary heat budget terms for water cooling during the summer, using more 

optimal options for DLI formulation can increase the model’s prediction skill for water 

temperature modeling. This deterministic improved skill can also provide a better tool for 

climate change studies. Future studies are recommended to apply proposed models at the 

watershed scale using available deterministic hydrological models. 
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APPENDIX 

Appendix A 

 (a) 

 (b) 

 (c) 

Fig. A1: The location of three installed sensors (a) SLS at the Nechako watershed, (B) 

Kenny Dam at the Nechako watershed, and (c) BVE station at the BVE Sainte-Marthe 

watershed 
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Appendix B 

Model No. 
Calibrated Parameter Values 

u v a b c d e f g α 

1 -0.17 0.00 - - - - - - - - 

2 -0.05 0.00 - - - - - - - - 

3 -0.39 0.00 - - - - - - - - 

4 0.18 4.00 0.26 0.00 - - - - - - 

5 0.07 4.00 0.82 0.00 - - - - - - 

6 0.23 2.05 1.00 2016.00 - - - - - - 

7 0.19 2.87 0.75 0.00 - - - - - - 

8 0.00 0.00 0.26 0.00 - - - - - 0.99

9 0.53 0.11 - - - - - - - 0.63

10 0.00 0.49 - - - - - - - 0.59

11 0.28 1.21 0.05 0.00 - - - - - 0.72

12 0.28 1.23 0.22 0.00 - - - - - 3.15

13 0.32 0.99 0.57 9173.20 - - - - - 1.79

14 0.28 1.25 0.64 0.00 - - - - - 1.06

15 0.07 0.22 - - - - - - - 1.06

16 0.22 1.62 1.01 0.75 4.97 0.00 0.00 0.00 0.00 - 

17 0.59 0.00 0.00 - - - - - - - 

18 0.19 2.75 5.47 3.28 4.84 0.30 - - - - 

19 0.70 0.00 68.37 81.30 36.86 - - - - - 

20 0.18 6141.76 0.79 0.00 0.00 - - - - - 

Table B1: Parameter values after the calibration step for the 20 calibrated DLI models in 

comparison with observed data at the SLS station 
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Appendix C 

Model No. Unique ID 
Number of 

Parameters 
Equation 

1 I 1 𝑱 = 𝜶𝝈𝑻𝒂𝒊𝒓
𝟒

4 

II 3 𝑱 = (𝟏 + 𝒖𝑩𝒗)𝜶𝝈𝑻𝒂𝒊𝒓
𝟒5 

7 

20 

11 

III 4 𝐽 = (1 + 𝑢𝐵𝑣)𝛼𝜎𝑇𝑎𝑖𝑟
4 𝐵−0.022712 

14 

2 IV 1 𝐽 = [(0.74 + 0.0065𝑒𝑎)(1 + 0.17𝐵
2)]𝛼𝜎𝑇𝑎𝑖𝑟

4

9 V 3 𝐽 = (1 + 𝑢𝐵𝑣)[(0.74 + 0.0065𝑒𝑎)(1 + 0.17𝐵
2)]𝛼𝜎𝑇𝑎𝑖𝑟

4 𝐵−0.0227

3 VI 1 𝐽 = [(0.53 + 0.2055𝑒𝑎
0.5)(1 + 0.40𝐵)]𝛼𝜎𝑇𝑎𝑖𝑟

4

10 VII 3 𝐽 = (1 + 𝑢𝐵𝑣)[(0.53 + 0.2055𝑒𝑎
0.5)(1 + 0.40𝐵)]𝛼𝜎𝑇𝑎𝑖𝑟

4 𝐵−0.0227

6 VIII 4 𝐽 = (1 + 𝑢𝐵𝑣) 〈𝑎[1 − 𝑒𝑥𝑝(−𝑒𝑎
𝑇𝑎𝑖𝑟
𝑏 )]〉 𝜎𝑇𝑎𝑖𝑟

4

13 IX 5 𝐽 = (1 + 𝑢𝐵𝑣)[1 − 𝑒𝑥𝑝(−𝑒𝑎
𝑇𝑎𝑖𝑟
𝑏 )]𝛼𝜎𝑇𝑎𝑖𝑟

4 𝐵−0.0227

18 X 7 𝐽 = (1 + 𝑢𝐵𝑣)(1 − [1 + 𝑎 (
𝑒𝑎
𝑇𝑎𝑖𝑟

)] 𝑒𝑥𝑝 〈− {𝑏 + 𝑐 [𝑎 (
𝑒𝑎
𝑇𝑎𝑖𝑟

)]}
𝑑

〉)𝜎𝑇𝑎𝑖𝑟
4

15 XI 2 𝐽 = (1 + 𝑢𝐵𝑣)〈5.16453 × 10−13[1 + (0.17𝐵2)]𝑇𝑎𝑖𝑟
6 〉

16 XII 5 𝐽 = (1 + 𝑢𝐵𝑣)(𝑎 + 𝑏𝑇𝑎𝑖𝑟 − 𝑐𝑒𝑎)

19 XIII 4 𝑱 = 𝜶 〈𝒂 + 𝒃 (
𝑻𝒂𝒊𝒓

𝟐𝟕𝟑. 𝟏𝟔
)
𝟔

+ 𝒄√(
𝒆𝒂
𝑻𝒂𝒊𝒓

)〉 

Table C1: Final unique equation forms after simplifications, together with the number of 

parameters in each 
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