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Abbreviations  

ALL All stations 

ANN Artificial neural network  

BIAS Mean bias  

CCA Canonical correlation analysis  

DHR Delineation of homogeneous regions  

GAM Generalized additive model  

LFA Local frequency analysis 

MCN Mean curve number 

Mean-El Mean elevation 

MLR Multiple linear regression  

NASH Nash efficiency criterion  

NLCCA Non-linear canonical correlation analysis 

PAGR Percentage of the area covered by agriculture 

PCC Pearson correlation coefficient  

PFOR Percentage of area occupied by forest 

PSTERIL Percentage of sterile area 

RE Regional estimation  

RFA Regional frequency analysis 

RMSE Root-mean-square error  

RRMSE Relative root-mean-square error 

TwT Water temperature quantile corresponding to return period T 
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1. Introduction and review 

River temperature is an important indicator of an aquatic ecosystem's health. It influences 

the metabolic activity of aquatic organisms (Demars 2011), their reproduction, their 

survival (Connor et al. 2003), and their growth rate (Edwards et al. 1979; Elliott et al. 1995; 

Elliott and Hurley 1997). Changes in the thermal regime of rivers also affect the 

distribution of species in rivers (Dugdale et al. 2016; Edwards and Cunjak 2007; Elliott 

and Hurley 1997; Howell et al. 2010). There is a specific range of temperatures that aquatic 

organisms can tolerate, and high temperatures can adversely affect fisheries' resources by 

limiting their habitat or even causing fish mortality (Caissie et al. 2007; Elliott and Hurley 

2001; Lund et al. 2002; Sundt-Hansen et al. 2018). Therefore, the thermal regime of rivers 

has become a critical variable for assessing and modeling their health.  

Modeling can enhance our understanding of river thermal regimes and provides tools for 

assessing environmental effects. Several models have been developed to predict thermal 

regimes in river systems based on various climate variables and watershed characteristics. 

Modeling to estimate water temperature at different spatial and temporal scales has 

traditionally been approached using two types of models: deterministic and statistical 

(Benyahya et al. 2007; Caissie 2006). Deterministic models focus on mathematical 

relationships that characterize physical heat fluxes and mass transfer processes and relate 

stream temperature to other hydrologic factors (Caissie et al. 2007; Hebert et al. 2011; 

Ouellet et al. 2014; Sinokrot and Stefan 1993; St-Hilaire et al. 2003). However, these 

models require a large number of input variables (Benyahya et al. 2007). Statistical or 

empirical models are widely used to predict water temperature since they require fewer 

parameters than deterministic models. Over the past few years, linear regression models 
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(Arismendi et al. 2014; Krider et al. 2013) and non-linear regression models (Qiu et al. 

2020; Saadi et al. 2022; St-Hilaire et al. 2012) have been adopted for different time scales. 

The lack of data at sites of interest motivated the use of regional frequency analysis (RFA). 

This approach aims to determine the return period of extreme events at ungauged sites 

where few or no observations are available. In general, RFA consists of two main steps: 

(1) the delineation of homogeneous regions (DHR) to identify gauged sites similar to the 

target one, and (2) regional estimation (RE) to transfer the information from the gauged 

sites to the target one.  

Different approaches to RE have been widely considered in RFA studies. For instance, 

multiple linear regression (MLR) assumes a linear relationship between the response 

variables and explanatory variables (GREHYS 1996; Ouarda et al. 2008a). However, this 

assumption is not always verified. Alternative methods were employed to account for the 

presence of potential non-linearities. As an illustration, due to their considerable flexibility, 

generalized additive models (GAM) are commonly used in the RFA of floods, low flows, 

etc. (Ouarda et al. 2018; Rahman et al. 2018). An artificial neural network (ANN) is a non-

parametric mathematical model whose design is based on the biological functioning of 

brain neurons (Bishop 1995). It was considered in several RFA studies, for instance, to 

estimate floods (Ouali et al. 2017; Shu and Ouarda 2007) and low flows Ouarda and Shu 

(2009). The random forest (RF) technique is also gaining popularity in several areas due to 

its powerful non-linear and non-parametric nature. A recent study by Desai and Ouarda 

(2021) applied the RF to estimate flood flows at ungauged sites. The multivariate adaptive 

regression splines (MARS) model that considers non-linearity and interactions between 

variables was introduced in RFA by Msilini et al. (2020). A procedure based on the 
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Temperature-Duration-Curve approach was developed by Ouarda et al. (2022) to estimate 

the daily river water temperature at ungauged locations. 

These RE methods are applied within a homogeneous region. Homogenous regions were, 

for example, defined as geographically contiguous regions or non-contiguous hydrological 

neighborhoods. Among the methods used for delineating geographically non-contiguous 

regions was the hierarchical cluster analysis (HCA) (Statsoft 1995). HCA identifies similar 

sites based on the distance between stations within the physiographic and meteorological 

space (Ouarda et al. 2018). On the other hand, the neighborhood approach assumes that 

each target site has its own homogeneous region. This means that each site will have its 

own unique set of stations within its neighborhood. The neighborhood approach can be 

based on the region of influence principle (ROI) (Burn 1990) or the use of canonical 

correlation analysis (CCA) (Ouarda et al. 2001). CCA is an important statistical tool for 

the analysis of multivariate data. CCA allows the establishment of linear combinations of 

variables within the group, for which the canonical correlation is maximum (Ouarda et al. 

2000). According to Ouarda et al. (2008b), the CCA method is more robust than other 

methods, such as HCA for DHR.   

Nonetheless, this method has some limitations when modeling the thermal regime of rivers. 

It is not robust to the non-linear relationships between response variables and watershed 

physiographic and meteorological characteristics. Natural factors such as topography, soil 

structure, geological formations, and climate affect the variability of water temperatures. 

This leads to a natural complexity, which has been widely recognized and documented in 

the literature (Beechie et al. 2010; Caissie 2006; Hewlett and Fortson 1982; Lisi et al. 2013; 
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Wahli et al. 2008). Thus, ignorance of the non-linear structure of the relevant explanatory 

variables in the DHR step can result in large uncertainty in the estimation step.  

In the literature, few studies have focused on integrating non-linear approaches into the 

delineation step. For example, in Lin and Chen (2006), the self-organizing map was trained 

using an unsupervised competitive learning algorithm for DHR. Durocher et al. (2016) 

proposed to carry out the delineation of homogenous regions using hydrological variables 

predicted by projection pursuit regression instead of using physiographic caracteristics. 

Results showed clear improvements in neighbourhood definitions and quantile estimates 

in comparison to linear approaches. Wazneh et al. (2016) used a similarity measure derived 

from depth functions to calculate similarities between target sites and those gauged in the 

DHR.  Ouali et al. (2016) introduced the non-linear canonical correlation analysis 

(NLCCA) approach to identify hydrological neighborhoods. In this approach, the authors 

coupled CCA with ANN. The obtained results demonstrated the importance of considering 

non-linearity in the delimitation step, which also improved estimation performance.  

Although there is strong evidence for the non-linearity of river thermal regime processes, 

the NLCCA approach has not yet been considered for modeling river temperature. It is 

important to note that no study in the literature has considered non-linear methods 

simultaneously in both RFA steps to estimate river water temperature quantiles. The 

present paper aims to address the issue of non-linearity in the DHR step using NLCCA to 

improve performance. Then, different combinations of non-linear approaches in the two 

RFA steps are considered. Another objective is to identify which step is most affected by 

the non-linearity. 
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This paper is organized as follows: Section 2 presents a brief theoretical overview of the 

regionalization approaches used. The case study and data used are presented in Section 3. 

The methodology is described in Section 4.  Section 5 provides the results obtained and 

their discussions. Finally, the conclusions of the study are summarized in the last section.  

2. Theoretical background 

In this section, the adopted statistical tools are briefly described and discussed. 

2.1. Methods for the delineation of homogeneous regions  

The following section presents a brief description of the CCA and NLCCA methods used 

in RFA. 

2.1.1 Canonical correlation analysis  

CCA is a multivariate analysis approach for identifying possible correlations between two 

groups of variables (Hotelling 1935). It consists of a linear transformation of two groups 

of random variables into pairs of canonical variables, which are arranged to maximize the 

correlations between the pairs. Let X = (X1, X2, …, Xq) and Y = (Y1, Y2, …, Ys) be sets of 

random variables including respectively, the q physio-meteorological variables and the s 

thermal variables. By considering linear combinations of variables X and Y, we can obtain 

canonical variables 𝑈𝑖 and 𝑉𝑖  as follows: 

𝑈𝑖 = 𝑎𝑖1𝑋1 + 𝑎𝑖2𝑋2 + ⋯ + 𝑎𝑖𝑞𝑋𝑞 (1) 

𝑉𝑖 = 𝑏𝑖1𝑌1 + 𝑏𝑖2𝑌2 + ⋯ + 𝑏𝑖𝑠𝑌𝑠 (2) 

where 𝑖 = 1, … , 𝑝, with  𝑝 = 𝑚𝑖𝑛(𝑞 , 𝑠). The first weight vectors a1 and b1 maximize the 

correlation coefficients between the resulting canonical variables, i.e., 𝜆1 =  𝑐𝑜𝑟𝑟 (𝑈1,  𝑉1), 
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under unit variance constraints. Once the first pair of canonical variables is identified, other 

pairs (𝑈𝑖 , 𝑉𝑖 , 𝑖 > 1) can be obtained under the constraint 𝑐𝑜𝑟𝑟 (𝑈𝑖 , 𝑉𝑗)  =  0  for i ≠ j. 

CCA is commonly used to determine target site neighborhoods. In a target site, the 

canonical physio-meteorological information is generally known, and the thermal data are 

not available. We denote 𝑢0 the canonical score corresponding to the physiographic values 

of a target basin, that is, the corresponding values of the canonical variables for the target 

basin with respect to its physiographic scores. The thermal mean position of the target site 

is given by 𝛬 𝑢0, where 𝛬 =  𝑑𝑖𝑎𝑔 (𝜆1, … , 𝜆𝑝). Hence, a neighborhood with a confidence 

level of 100 (1−α) % can be identified by the Mahalanobis distance between the mean 

position of the target site 𝛬 𝑢0 and the positions of the other sites V, such that:  

(V − Λ𝑢0 )′(𝐼𝑃 − Λ2)−1(V − Λ𝑢0 ) ≤  χα , p
2  (3) 

where 𝐼𝑃 is a p × p identity matrix, and 𝜒𝛼 , 𝑝
2  is such that, for an observed Mahalanobis 

distance 𝜒2, we have: 𝑃(𝜒2 ≤  𝜒𝛼 , 𝑝
2 ) = 1 − 𝛼. Eq. (3) describes the interior of an 

ellipsoidal region in the canonical space V. The use of CCA for the delineation of 

hydrological neighborhoods is described in detail in (Ouarda et al. 2001). 

2.1.2 Non-linear canonical correlation analysis  

ANN is considered a non-parametric model that is a universal approximator (Geman et al. 

1992; Hornik et al. 1989). This model was applied to solve large complex problems such 

as pattern recognition, non-linear modeling, classification, and control (see for instance 

Alobaidi et al. 2014). The basic architecture of an ANN (Fig. 1) consists of a layer of input 

neurons linked to one or more layers of "hidden" neurons, which are themselves linked to 

a layer of output neurons. An ANN is widely used in many fields to solve regression and 
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classification problems, and it can be coupled with other multivariate methods such as 

NLCCA. NLCCA is an approach developed by Hsieh (2000) in the meteorological domain 

based on ANN (CCA-NN). The approach has since been used in a number of fields, such 

as environmental modeling and renewable energy assessment (see for instance 

Woldesellasse et al. 2020).  In NLCCA, we follow the same procedures as in CCA, except 

for the linear mappings in Eqs. (1 and 2) which are substituted by non-linear mapping 

functions based on ANN. Mappings from the original variables (X and Y) to the new 

canonical variables (U and V) are represented by the double-barreled ANN on the left half 

of Fig. 1. The transfer function  f maps the inputs to the neurons in the hidden layer ℎ(𝑥)and 

ℎ(𝑦): 

ℎ𝑘
(𝑥)

= 𝑓[(𝑊(𝑥)𝑥 + 𝑏(𝑥))𝑘];           𝑘 ∈ {1, . . . , 𝑙} (4) 

ℎ𝑛
(𝑦)

= 𝑓[(𝑊(𝑦)𝑦 + 𝑏(𝑦))𝑛];          𝑛 ∈ {1, . . . , 𝑙} (5) 

where 𝑊(𝑥) and 𝑊(𝑦) are weight matrices; 𝑏(𝑥) and 𝑏(𝑦) are bias parameter vectors; k, n, 

are respectively the indices of the vector elements ℎ(𝑥)and ℎ(𝑦), and 𝑙 is the number of 

hidden neurons. The transfer function f, identical for x and y, is generally fixed to the 

hyperbolic tangent function (Hsieh 2001; Wu et al. 2003) (See Bishop (1995b), section 4.3, 

discusses the choice of transfer functions). 

The canonical variables neurons U and V are determined from a linear combination of 

hidden neurons ℎ(𝑥) and ℎ(𝑦) (but from a non-linear combination with respect to x and y). 

𝑈 =  𝑤(𝑥)ℎ(𝑥) + �̅�(𝑥) (6) 

𝑉 =  𝑤(𝑦)ℎ(𝑦) + �̅�(𝑦) (7) 

Without loss of generality, U and V are assumed to have zero mean. Thus, we have: 
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�̅�(𝑥) =  − ⟨𝑤(𝑥)ℎ(𝑥)⟩  and  �̅�(𝑦) =  − ⟨𝑤(𝑦)ℎ(𝑦)⟩   (8) 

where 〈𝑧〉 is the empirical mean of variable z.  

Once the canonical variables are determined, the inverse mapping of the canonical 

variables to the original variables is developed. The mapping of canonical variables (U, V) 

to hidden layers (ℎ(𝑈),  ℎ(𝑉)) is represented in Fig. 1. Then the final mapping is from the 

hidden layers (ℎ(𝑈),  ℎ(𝑉)) to the model output (𝑋′,  𝑌′) (Fig. 1). 

The limitation of NLCCA is that it provides only one set of canonical variables when 

applied to the original data, namely, one for the physiographic variables and another for 

the thermal variables. This may exclude some information since there is no guarantee that 

this first pair (U, V) of canonical variables represents the most significant part of the 

explained variance. To solve this problem, we use the notion of modes or iterations 

introduced by Hsieh (2000). Having determined the first mode 𝑋′ from the initial data X, 

the NLCCA method can be applied again to the residue to determine the second mode. In 

other words, we determine the unexplained information from the previous mode by 

reapplying the procedure to the new variables: 

𝐼2  =  𝑋 − 𝑋′        (9) 

𝐽2  =  𝑌 − 𝑌′ (10) 

where 𝑋’ and 𝑌’ are results of the first mode and 𝑋 and 𝑌 are the original data. 

The same procedure is followed for the higher-order modes, taking each time the residue 

of the previous mode as input. There must be a minimum number of iterations equal to the 

smallest number of variables. The final result is the sum of all considered modes: 

Jo
urn

al 
Pre-

pro
of



11 
 

𝑋𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 = 𝑋′ + 𝑋′′ + ⋯ 𝑋𝑛  (11) 

where 𝑋𝑛 is the result of the nith mode. As a result, multiple modes can increase the amount 

of information embodied in the canonical variables. 

In this work, we present the NLCCA approach for identifying the neighborhood of a non-

gauged site. Following the extraction of the first NLCCA mode, the second mode is 

extracted by taking the residue as input as in Eqs (9) and (10). Consequently, we obtain the 

canonical variables in the non-linear space. In the non-linear case, V1 and V2 are the 

canonical thermal variables of the first and second modes, respectively, and Λ1 and Λ2 are 

the canonical correlation coefficients of the two modes. In order to identify physiographic 

scores U01 and U02 at a target site, Eq. (6) is used. Then, using the Mahalanobis distance 

calculated with Eq. (3), the hydrological neighborhood of each ungauged site is 

determined. Similarly to the linear case, the non-linear case can also be obtained using the 

same constraint. Nevertheless, the ellipsoid equation differs from the linear case since the 

axes are not parallel to the coordinate systems. A detailed discussion of the theoretical 

background and the application of NLCCA for DHR is presented in Ouali et al. (2016). Jo
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Fig. 1 The neural networks (NNs) used to perform the NLCCA. Double-barrel NNs on 

the left map from (Y, X) to canonical variables (V, U) on the right. 

 

2.2. Regional thermal quantile estimation 

The methods described below are used to transfer information from the neighborhood 

stations to the target site. 

2.2.1. Multiple linear regression  

The MLR method is commonly used in a large number of fields to determine a linear 

relationship between the response variable Y (such as the quantile of water temperature 

𝑇𝑤𝑇 corresponding to a period T) and one or more random variables X, called explanatory 

variables (X1, X2, ..., Xn) (Hosking and Wallis 1993; Pandey and Nguyen 1999) and is 

defined as follows: 

𝑌 = 𝛽0 + ∑ 𝛽𝑗𝑋𝑗 

𝑛

𝑗=1

+  𝜀 
(12) 

Jo
urn

al 
Pre-

pro
of



13 
 

 

where X is a matrix whose columns correspond to a set of n explanatory variables, 𝛽0 and 𝛽𝑗 

are unknown parameters and 𝜀 is the model error. 

A logarithmic transformation is usually applied to linearize the relationship in Eq (12): 

𝑙𝑜𝑔 𝑌 = log 𝛽0+ ∑ 𝛽𝑗𝑙𝑜𝑔

𝑛

𝑗=1

𝑋𝑗 +  𝜀  
(13) 

This transformation introduces an additional bias (Girard et al. 2004). The coefficients 𝛽𝑗 

of the model are usually determined using the ordinary least squares method (Thomas and 

Benson 1970). 

2.2.2. Generalized Additive Model  

The GAM was first introduced by Hastie and Tibshirani (1987) and has since gained wide 

popularity in a large number of fields (see for instance Ouarda et al. 2016). GAM is an 

extension of the general linear model (GLM) in which the linear predictor is replaced with 

a set of smooth functions of explanatory variables. This model allows for a non-Gaussian 

response distribution and a non-linear relationship between the response variable Y and the 

explanatory variables X using smooth functions (Wood 2006). For a response variable Y, 

the GAM can be expressed as: 

𝑔(𝑌) =  𝛼 + ∑ 𝑓𝑖

𝑚

𝑖=1

(𝑋𝑖) + 𝜀, 
(14) 

where g is a monotonic link function and 𝑓𝑖 are smooth functions giving the relationship 

between the explanatory variables 𝑋𝑖 and the response Y. The parameter α is the intercept, 
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and ε is the error term. The structure of Eq (14) permits the interpretation of each 

explanatory variable. 

In GAM, a spline is used to estimate smooth functions 𝑓𝑖. A spline is a curve composed of 

piecewise polynomial functions, joined at points called nodes. Several types of splines have 

been proposed in the literature, such as cubic splines, P-splines, B-splines, etc. (Wahba 

1990). In a regression spline, the number of nodes is significantly reduced. Generally, a 

smooth function 𝑓𝑖 can be described by a linear combination of q basis functions 𝑏𝑖𝑗(𝑋): 

𝑓𝑖(𝑋) = ∑ 𝛽𝑖𝑗

𝑞

𝑗=1

+ 𝑏𝑖𝑗(𝑋) 

(15) 

where 𝛽𝑖𝑗 are smoothing coefficients. 

3. Case study and datasets 

The network of water temperature stations in Switzerland is chosen as a case study for this 

work. This study is based on the daily water temperature data provided by the Swiss Federal 

Office for the Environment (FOEN). The data used in the present study consist of 24 river 

temperature stations studied in Souaissi et al. (2021). The 24 stations selected met the 

following three criteria: First, the river must have a natural flow regime. Secondly, the 

station must have at least 15 years of historical record. The station's historical data must 

also meet the basic assumptions of independence, stationarity, and homogeneity, i.e., the 

data series of seasonal or annual maxima must be independent and identically distributed 

(iid). To test independence, the Wald and Wolfowitz (1943) test is employed, the Mann 

(1945) test is used to test stationarity, and the Wilcoxon (1946) test is employed to test 

homogeneity. Fig. 2 illustrates the location of the gauging stations that are selected for this 
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study. The diameters of the circles are proportional to the areas of the basins, which vary 

between 3 and 6299 km2. The stations cover a large area of Switzerland. 

 

Fig. 2 Geographic distribution of the water temperature stations used in the study. 

This study uses the results of the local frequency analysis of maximum summer water 

temperatures of Souaissi et al. (2021) to estimate regional thermal quantiles corresponding 

to different return periods: Tw2, Tw5, Tw10, Tw20, Tw50, and Tw100. TwT represents the 

water temperature quantile corresponding to return period T. Local quantiles are distributed 

between a minimum of 12.75 °C and a maximum of 30.84 °C (Fig. 3). The appropriate 

probability distributions identified are mainly the two-parameter Weibull distribution 

(W2), the normal distribution (N) and the inverse Gamma (IG) distribution. 
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Fig. 3 Box plots of maximum water temperature corresponding to different return 

periods. 

The physiographic and meteorological variables for each watershed in the study area are 

extracted using ArcGIS. The variables related to topography are calculated through the use 

of a digital elevation model (DEM), such as the mean elevation (Mean-El) and the mean 

slope of a watershed (MSLP). The other explanatory variables are determined using the 

land use and geological maps that are available on the FOEN website in Switzerland, such 

as the percentage of forest (PFOR), the percentage of agriculture (PAGR), the percentage 

of barren areas (PSTERIL), and the mean curve number (MCN). The descriptive statistics 

of the physio-meteorological variables used in the data set are presented in Table 1. 

Table 1. Descriptive statistics of the physiographic-meteorological variables. 

Notation Variable Unit Min Max Median Mean 

Physiographic- meteorological variables 

AREA  Catchment area km2 2.76 6299.19 94.51 522.03 

DD Drainage density Km-

1 

1.7 4.64 2.416 2.52 

LATC Latitude of the centroid of the basin m 5089623 5219930 5089623.83 5089623.8

3 

LONGC  Longitude of the centroid of the basin m 487475 566530 527002.62 527002.62 
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MCN Mean curve number  - 71 86 73.5 74.95 

Mean-El Mean elevation m 501.97 2698.32 1052.81 1310.41 

MSLP Mean slope of the watershed ° 1.36 36.67 15.24 17.614 

PAGR Percentage of the area covered by 

agriculture 

% 8.17 79.41 43.45 42.18 

PFOR Percentage of area occupied by forest % 3.05 62.6 29.28 31.21 

PGLACIAL Percentage of area covered by glacial 

deposits 

% 0 26.02 0 2.40 

PLAKE Percentage of area occupied by lakes % 0 8.14 0 0.543 

PSTERIL Percentage of sterile area % 0 54.70 1.29 14.83 

PURBAN Percentage of urban area % 0 28.30 2.86 5.35 

PWetland Percentage of area occupied by peatlands 

and marshes 

% 0 28.4 1.75 4.99 

Max-Tair Maximum annual air temperature °C 16.75 32.1 29.14 28.04 

 

4. Methods 

4.1 Regional models 

In this study, we combine the two DHR methods, CCA and NLCCA, with the RE models 

MLR and GAM presented in Section 2. We also consider using all stations without 

definition of homogeneous regions (denoted ALL).  

This leads to the following linear combinations: 

• ALL/MLR: MLR is used without neighborhoods. 

• CCA/MLR: MLR is used with neighborhoods identified using the CCA linear 

method. 

The following semi-linear combinations: 

• ALL/GAM: GAM is used without neighborhoods. 

• CCA/GAM: GAM is used with neighborhoods identified with the CCA linear 

method. 
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• NLCCA/MLR: MLR is used with neighborhoods identified using the non-linear 

NLCCA method. 

And one non-linear combination: 

• NLCCA/GAM: GAM is used in conjunction with non-linear NLCCA methods 

of identifying neighborhoods. 

NLCCA has the same objective as CCA: reduce the variables X and Y into canonical 

variates U and V such that cor(U, V) is maximized. Unlike the linear compression of the 

CCA, which is achieved by weighted sums of the original variables (Eqs. 1 and 2), the non-

linear compression of the NLCCA is accomplished by neural networks (Eqs. 4 and 5). 

These two approaches are applied to DHR using sets of physio-meteorological 

variables. When performing a CCA or a NLCCA, the relevant variables are selected using 

a stepwise process. A description of this approach is provided in subection 4.2. 

The CCA and NLCCA procedures generate neighborhoods with varying sample sizes from 

one site to another. Note that using CCA, each site's neighborhood is an ellipsoid with a 

zero rotation angle (Leclerc and Ouarda 2007; Ouarda et al. 2001). In the NLCCA method, 

an ellipsoid was identified with a rotation angle of ϕ ~ 21°. As opposed to CCA, the 

orientation of the ellipsoid in the NLCCA method tends to follow the shape of the data 

dispersion (Ouali et al. 2016). Since the sample size is an essential factor for the reliability 

of the estimates obtained by MLR or GAM, it was decided that the region size for each 

target station would be increased until an optimal size was reached by applying a jackknife 

procedure. 
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MLR and GAM are used in this study as RE methods. GAM was implemented in R using 

the mgcv package (Wood 2006). Due to their theoretical origins, thin plate regression 

splines, which are a generalization of cubic splines, can be considered as the 𝑏𝑖𝑗(. ) basis 

of the smoothing functions 𝑓𝑖 as described in Eq. (15). This smoothing function has the 

advantage of having a high computational speed and a limited number of parameters 

compared to other smoothing functions (Wood 2003). The considered link function g in 

Eq. (14) is the identity function since the log-transformed quantiles are approximately 

normally distributed (as in Msilini et al. 2022; Ouali et al. 2017). 

4.2 Stepwise regression 

The stepwise procedure is adopted in this work to select the optimal explanatory variables 

in the two RFA steps. For this approach, a regression method (MLR or GAM) is first 

applied with a model incorporating all the explanatory variables. During each step, the 

variable with the highest p-value for the null hypothesis is removed, namely the parameter 

(for MLR) or smooth term (for GAM). The procedure ends once the p-values for all 

remaining variables are below a given threshold (5%). 

4.3 Validation 

For each regional model mentioned in subsection 4.1, a jackknife method (cross-validation) 

is employed. In this procedure, a gauged site is temporarily removed, i.e., considered non-

gauged, to make a regional estimate. It is a process of comparing the regional estimate with 

the observed value. The following four evaluation criteria are used to assess the 

performance of each regional model: Nash coefficient (NASH), root mean square error 

(RMSE), relative root mean square error (RRMSE), and mean bias (BIAS). These criteria 

are expressed as:  

Jo
urn

al 
Pre-

pro
of



20 
 

𝑁𝐴𝑆𝐻 = 1 −  (∑(𝑦𝑖 − ŷ𝑖)2

𝑁

𝑖=1

∑(𝑦𝑖 − �̅�)2

𝑁

𝑖=1

⁄ ) 

(16) 

𝑅𝑀𝑆𝐸 = √1
𝑁⁄ ∑(𝑦𝑖 − ŷ𝑖)2

𝑁

𝑖=1

 

(17) 

𝑅𝑅𝑀𝑆𝐸 = 100√1
𝑁⁄ ∑ [

(𝑦𝑖 − ŷ𝑖)
𝑦𝑖

⁄ ]
 2

𝑁

𝑖=1

 

(18) 

𝐵𝐼𝐴𝑆 = 1
𝑁⁄ ∑(𝑦𝑖 − ŷ𝑖)

𝑁

𝑖=1

 

(19) 

where N is the number of stations; 𝑦𝑖 and ŷ𝑖 are the local and regional quantile estimates at 

station i; and  �̅� is the local mean of the thermal variable. 

5. Results  

5.1 Selection of optimal variables for DHR and RE 

The selection of variables is based on a stepwise procedure in the two RFA steps. This 

approach led to the identification of four explanatory variables for DHR. Fig. 4 depicts the 

dispersion of the thermal quantiles Tw5 and Tw10, the physiographic variables selected for 

DHR, and the Pearson correlation coefficients (PCC) associated with these variables. 

Therefore, for DHR with CCA and NLCCA, we used q=4 physiographic variables and s=2 

thermal variables. Examining the scatterplots in Fig. 4 reveals various types of 

relationships between the variables. In this figure, we can observe non-linear relations. The 

most notable non-linear relationships are detected between MCN, PSTERIL, and the other 

variables.  
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For the RE step, a stepwise selection is considered for each thermal quantile corresponding 

to different return periods (Tw2, Tw5, Tw10, Tw20, Tw50, and Tw100). This is carried out for 

each MLR and GAM estimation model. The variables selected for each quantile and model 

are shown in Table 2. Following Eq. 13, the MLR model is used to estimate regional 

thermal quantiles as follows: 

log(𝑇𝑤2)  = 𝛽0 +  𝛽1  log (𝑀𝑒𝑎𝑛 − 𝐸𝐿)  + 𝛽2 log  (𝑃𝑆𝑇𝐸𝑅𝐼𝐿)

+  𝛽3 log  (𝑀𝐶𝑁), 

(20) 

log(𝑇𝑤5)  = 𝛽0 +  𝛽1  log (𝑀𝑒𝑎𝑛 − 𝐸𝐿)  + 𝛽2 log  (𝑃𝑆𝑇𝐸𝑅𝐼𝐿)

+  𝛽3 log  (𝑃𝐹𝑂𝑅), 

(21) 

Mean-EL is the most crucial variable in Eqs. (20) and (21), respectively. Mean-EL, 

PSTERIL, and PFOR are important variables for quantiles corresponding to all return 

periods except Tw2. MCN is used instead of PFOR for Tw2. 

GAM is likely to have a different selection of variables. Table 2 summarizes the final 

variables for each GAM combination. The model used for extreme water temperatures 

within the models ALL + GAM, CCA + GAM, and NLCCA + GAM is then written as:  

 log (𝑇𝑤𝑇) = 𝛼 + 𝑓1(𝑀𝑒𝑎𝑛 − 𝐸𝐿) + 𝑓2 (𝑃𝐴𝐺𝑅) + 𝑓3 (𝑃𝑆𝑇𝐸𝑅𝐼𝐿) + 𝜀, (22) 

Mean-EL, PAGR, and PSTERIL, are three significant predictors for all thermal quantiles.  
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Fig. 4 Scatter plots of physiographical and thermal variables with their correlation 

coefficients 

 

               Table 2. Variables selected for each regional model. 

Regional models Quantiles Selected predictor variables 

ALL+MLR, CCA+MLR, NLCCA+MLR  Tw
2
 

 Tw
5
 

 Tw
10

 

 Tw
20

 

 Tw
50

 

 Tw
100

 

Mean-El, PSTERIL, MCN 

Mean-El, PSTERIL, PFOR,  

Mean-El, PSTERIL, PFOR 

Mean-El, PSTERIL, PFOR 

Mean-El, PSTERIL, PFOR 

Mean-El, PSTERIL, PFOR 

ALL+GAM, CCA+GAM, NLCCA+GAM Tw
2
 

 Tw
5
 

 Tw
10

 

 Tw
20

 

 Tw
50

 

 Tw
100

 

Mean-El, PAGR, PSTERIL 

Mean-El, PAGR, PSTERIL 

Mean-El, PAGR, PSTERIL 

Mean-El, PAGR, PSTERIL 

Mean-El, PAGR, PSTERIL 

Mean-El, PAGR, PSTERIL 
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Fig. 5 illustrates the smooth functions obtained for the thermal quantile Tw5. Smooth 

functions allow us to assess the influence of each variable independently of the others. The 

Mean-EL is perfectly linear with Tw5 with narrow confidence intervals and small residuals. 

Smoothing functions of Mean-EL have a negative slope. This explains that the higher the 

temperature, the lower the altitude, i.e., the low-altitude areas are more heated than the 

high-altitude areas (Wahli et al. 2008). In terms of PAGR, the results are not as far from 

linearity with Tw5. The slope of the smoothing functions of the PAGR is negative, which 

explains why water temperatures increase after logging of riparian forests or agriculture 

(Steedman et al. 1998; Zeni et al. 2019). The PSTERIL variable exhibits complex non-

linear behavior. In particular, the relationship between Tw5 and PSTERIL increases for low 

PSTERIL values, decreases for medium values and increases again for high values. 

Therefore, GAM demonstrates that even if the first two variables are linear, the third 

variable exhibits a non-linear relationship. A negative PCC is observed between the 

thermal quantiles corresponding to different return periods and PSTERIL in Table 3, 

whereas the slope of the smooth function is positive. Also, the PCC is positive for PAGR, 

while the slope of the smooth functions is negative. The positive correlation between 

thermal quantiles and PAGR can be explained by the fact that much agricultural activity 

occurs at high altitudes in Switzerland. Altitude may hence be a confounding factor (Table 

3). Hence, the conclusions that can be drawn from the PCC are different from those that 

can be drawn from the GAM model. GAM allows for the interpretation of the impact of a 

given explanatory variable on the response variable independently of the other explanatory 

variables. Conclusions based solely on correlations can hence be misleading. 
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Fig. 5 Smooth functions of thermal quantile Tw5 for the explanatory variables. The 

dashed lines represent the 95% confidence intervals, and the dots are the residuals. 

Table 3. Pearson correlation coefficients between quantiles and selected physiographic 

variables. 

 Physiographic 

variables 

Tw2  Tw5  Tw10  Tw20  Tw50  Tw100  

MCN -0.25 -0.26 -0.27 -0.28 -0.29 -0.29 

Mean-El -0.80 -0.80 -0.80 -0.80 -0.80 -0.80 

PAGR 0.36 0.37 0.37 0.37 0.37 0.37 

PFOR 0.48 0.49 0.49 0.49 0.49 0.49 

PSTERIL -0.61 -0.61 -0.60 -0.60 -0.60 -0.60 

 

5.2 Delineation of regions with CCA and NLCCA 

A neighborhood is defined for the target site with the CCA and NLCCA methods. In both 

DHR approaches, similar variables are selected, such as Mean_El, PSTERIL, PFOR, and 
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MCN as physiographic variables and Tw5 and Tw100 as thermal variables. A neighborhood 

size of 18 stations is optimal for the CCA and NLCCA methods according to RMSE results. 

Both delineation approaches require that the thermal variables and the explanatory 

variables be normal. Therefore, some variables are transformed to achieve normality. In 

CCA and NLCCA, the physiographic and thermal variables are logarithmically 

transformed, whereas in NLCCA, a square root transformation was more appropriate for 

PSTERIL.  

Fig. 6 illustrates the point cloud of the study sites in the non-linear canonical spaces: 

physiographic (U1, U2) and thermal (V1, V2) spaces. In contrast, Fig. 7 depicts the point 

cloud in physiographic and thermal linear spaces with CCA. These two figures demonstrate 

that each space is nearly symmetrical to the other, i.e., the non-linear physiographic space 

is symmetrical to the linear physiographic space, and likewise for the thermal spaces. On 

the basis of the spatial location of the stations, as shown in Fig. 2, the high-altitude stations 

are located within the same area in the canonical space. At the same time, the low-altitude 

stations are also located within the same area.  

 

Fig. 6 Data set in non-linear canonical spaces: a) the physiographic non-linear space and 

b) the thermal non-linear space.  
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Fig. 7 Data set in linear canonical spaces: a) the physiographic linear space and b) the 

thermal linear space.  

Additionally, it is convenient to present the data in spaces (U1, V1) and (U2, V2) to obtain 

information regarding the estimation error. This is displayed in Figs. 8 and 9 for the non-

linear and linear cases, respectively. There is a linear relationship between the two 

canonical variables (U1, V1). That does not appear to be the case for the couple (U2, V2) 

(Chebana and Ouarda 2008; Ouali et al. 2016). As a result, the point cloud in the non-linear 

case seems to be more linear in the two pairs (U1, V1) and (U2, V2) (Fig.8) than in the linear 

case (Fig.9). Moreover, the canonical correlation coefficients obtained from the NLCCA 

(U1, V1 = 0.968; U2, V2 = 0.761) method are higher than those obtained from CCA (U1, V1 

= 0.906; U2, V2 = 0.445). 
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Fig. 8 Data set in the non-linear canonical spaces: a (U1, V1) and b (U2, V2). 

 

 

 

               Fig. 9 Data set in the linear canonical spaces: a (U1, V1) and b (U2, V2). 
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The CCA and NLCCA procedures are also applied with coefficients α ranging in the 

interval [0, 1]. The optimal coefficient α value is determined using the minimum RMSE 

values of the jackknife resampling procedure, as explained in Ouarda et al. (2001). The 

optimal value is determined to be α = 10-5 for CCA, and α =10-14 for NLCCA. Fig. 10 shows 

that in the non-linear case (n = 4), 17 neighboring stations are identified. In contrast, in the 

linear case, 22 neighboring stations are identified (Fig.10), although the α parameter is less 

optimized with NLCCA. As a result, the NLCCA requires fewer stations to obtain the same 

RMSE as the CCA. 
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Fig. 10 Delineation of homogeneous regions results shown for station 4 using: a) 

NLCCA and b) CCA approaches. 

5.3 Comparison of regional models 

To evaluate the results obtained for DHR and their impact on the final RFA estimates, we 

proceed to the RE step. As discussed in Section 4, a jackknife resampling procedure is 

employed to compare the different approaches considered in this study. The performance 

indices for thermal quantile estimations obtained from this procedure are presented in 

Table 4. The bold font in Table 4 indicates the optimal approach for each cell. The NLCCA 

+ GAM methods give us the best results in terms of total performance. A NASH criterion 

of 1, would indicate that the model produces a perfect estimate. The obtained NASH results 

are higher than 0.7. According to this criterion, the various models are ranked in order of 

performance from highest to lowest: non-linear combinations NLCCA + GAM, semi-linear 

combinations NLCCA + MLR, ALL + GAM, and CCA + GAM, and linear combinations 

CCA + MLR, and ALL + MLR (Table 4). In the non-linear combinations, all the NASH 
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values are near or above 0.9. This suggests that the GAM model can provide more accurate 

estimates in the NLCCA space. 

The RMSE and BIAS indices represent a measure of prediction accuracy on an absolute 

scale. Both these indices indicate that the method based on the neighborhood approach in 

conjunction with MLR (NLCCA + MLR) performs better than the methods based on the 

CCA + MLR and ALL + MLR approaches (Table 4). Furthermore, the combination of the 

GAM model and NLCCA leads to the best RMSE and BIAS performance among all 

models used. For instance, the highest RMSE for the non-linear combination NLCCA + 

GAM is 1.8°C, and the highest BIAS is -0.029°C. It is also worth noting that Both GAM 

and MLR approaches applied in the non-linear canonical space lead to better results than 

in the linear canonical space. As a result, these results demonstrate the importance of 

incorporating non-linearity into the DHR step.  

Regarding the RE method, the results obtained with GAM using the same delineation 

methods are more accurate than those obtained with MLR. This is most likely due to 

GAM's flexibility and the way it accounts for non-linearities between predictor and 

response variables. 

Based on the relative RRMSE index, NLCCA + GAM also results in better performances 

(Table 4). For instance, RRMSE for the Tw5 quantile is 7% with NLCCA + GAM, while 

it is 10% with CCA + GAM and ALL + GAM. The combination of NLCCA with MLR 

provides an RRMSE of 8%, which is more accurate than the results obtained with CCA + 

MLR and ALL + MLR. According to these results, the NLCCA approach improves 

significantly regional water temperature estimates in comparison to the CCA or the non-

neighborhood approaches.  
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Table 4. Results of cross-validation of all regionalization methods for stream 

temperatures. 

                             ALL CCA 

(Neighborhood = 18) 

NLCCA 

(Neighborhood = 18) 

 
Quantiles GAM MLR GAM MLR GAM MLR 

NASH   

Tw2 0.837 0.750 0.835 0.747 0.916 0.856 

 
Tw5 0.820 0.727 0.813 0.826 0.907 0.877 

 
Tw10 0.815 0.725 0.796 0.821 0.902 0.876 

 
Tw20 0.812 0.724 0.78 0.814 0.897 0.874 

 
Tw50 0.807 0.721 0.752 0.806 0.889 0.871 

 
Tw100 0.805 0.719 0.732 0.799 0.868 0.869 

RMSE (°C)  

Tw2 1.768 2.188 1.775 2.201 1.265 1.659 

 
Tw5 1.939 2.393 1.977 1.906 1.390 1.604 

 
Tw10 2.018 2.46 2.12 1.987 1.465 1.651 

 
Tw20 2.079 2.519 2.247 2.064 1.535 1.697 

 
Tw50 2.156 2.294 2.444 2.164 1.633 1.759 

 
Tw100 2.209 2.650 2.586 2.238 1.817 1.807 

BIAS (°C)  

Tw2 -0.093 0.034 -0.268 -0.174 -0.029 -0.067 

 
Tw5 -0.106 -0.144 -0.316 -0.040 -0.017 0.090 

 
Tw10 -0.112 -0.142 -0.374 -0.043 -0.005 0.101 

 
Tw20 -0.116 -0.140 -0.382 -0.045 0.007 0.112 

 
Tw50 -0.121 -0.136 -0.390 -0.046 -0.010 0.126 

 
Tw100 -0.123 -0.133 -0.424 -0.047 -0.020 0.136 

RRMSE (%)  

Tw2 9.792 10.533 9.407 10.249 7.441 8.045 

 Tw5 10.140 13.773 9.996 10.535 7.722 8.855 

 Tw10 10.280 13.85 10.488 10.769 7.917 8.939 

 Tw20 10.394 13.943 10.905 11.021 8.121 9.042 

 Tw50 10.573 14.097 11.613 11.367 8.444 9.213 

 Tw100 10.698 14.228 12.133 11.632 9.057 9.352 
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Fig. 11 illustrates the local and regional estimates of Tw5 for the six combinations 

considered in this research. According to Fig. 11, the full non-linear model NLCCA + 

GAM shows better overall performances, followed by the semi-linear model NLCCA + 

MLR. Therefore, the regional and local estimates are close because the points are less 

dispersed around the diagonal in the case of the combined models with the NLCCA. At the 

same time, the variance is larger when using the CCA neighborhood method or even 

without the neighborhood. These results clearly illustrate the importance of using the non-

linear tools in both steps of the RFA process. 

 

Fig. 11 Regional and local estimates for Tw5 quantile at sites for river temperature. a) 

ALL + GAM, b) CCA + GAM, c) NLCCA + GAM, d) ALL + MLR, e) CCA + MLR, f) 

NLCCA + MLR. 

Fig. 12 shows the Tw5 and Tw100 regional thermal quantile maps from the best combination 

of NLCCA and GAM. There is generally an increase in temperature toward the north on 

both maps. This indicates that the highest thermal quantiles are found in low-altitude 

regions, whereas the lowest values are located in high-altitude areas. The diameters of the 
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circles are proportional to the absolute residual error rates of the Tw5 and Tw100 quantiles 

obtained from NLCCA+GAM. The findings indicate that the highest residual errors are 

generally associated with lower altitudes. Consequently, the lower the altitude, the greater 

the temperature, and the greater the error. 
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Fig. 12 Maps of thermal quantiles of Tw5 (a) and Tw100 (b), and the absolute residual 

error in Switzerland using the NLCCA+GAM combination. Station numbers are also 

provided. 

In addition, Table 5 provides cross-validation results of the α-optimization process. 

Compared to the results of an 18-station neighborhood, the optimization case showed no 

improvement. This may be related to the fact that the data set considered is not large enough 

(24 watersheds). Table 5 indicates that the best overall results are achieved with the 

combination of NLCCA and GAM, when we consider either one of the following 

performance criteria NASH, RMSE, or RRMSE. On the other hand, the CCA + MLR 

combination leads to the lowest values of the BIAS. The comparison of the two results 

reveals that the fixed neighborhood approach is more accurate than the approach based on 

the optimization of the neighborhood through the parameter α. We can hence conclude that 

optimizing the parameter α for CCA and NLCCA does not significantly improve the results 

when the database is composed of a limited number of stations. 

Table 5. Cross-validation results for all regionalization methods where the neighborhood 

determined by the optimization procedure α. 

 CCA (α = 10-5) NLCCA (α = 10-14) 

 
Quantiles GAM MLR GAM MLR 

NASH   

Tw2 0.774 0.781 0.904 0.853 

 
Tw5 0.753 0.828 0.898 0.899 

 
Tw10 0.741 0.824 0.896 0.895 

 
Tw20 0.74 0.819 0.895 0.891 

 
Tw50 0.729 0.813 0.894 0.886 

 
Tw100 0.724 0.808 0.893 0.882 

RMSE (°C)  

Tw2 2.083 2.048 1.351 1.678 

 
Tw5 2.276 1.895 1.457 1.455 
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The best statistics are in bold characters. 

6. Discussions 

The motivation for this study was the lack of work that investigates methods for the 

regional estimates of water temperature quantiles. It is found that the proposed procedure 

produces positive results. According to the cross-validation results, the procedure is more 

robust when GAM+NLCCA is used. 

The RMSE and BIAS values found are low, with the highest being 1.8°C for the non-linear 

combination (GAM+NLCCA). NASH values are relatively high when compared to other 

regional estimation methods. There is a consistent improvement in these values over the 

semi-linear and linear combinations. It is important to note that using the GAM approach 

in RFA produces positive results. This result is consistent with previous studies conducted 

 
Tw10 2.386 1.968 1.515 1.518 

 
Tw20 2.444 2.036 1.56 1.578 

 
Tw50 2.559 2.125 1.592 1.656 

 
Tw100 2.625 2.190 1.632 1.715 

BIAS (°C)  

Tw2 -0.122 -0.216 0.333 -0.153 

 
Tw5 -0.140 0.036 0.344 0.108 

 
Tw10 -0.175 0.031 0.320 0.098 

 
Tw20 -0.217 0.027 0.302 0.089 

 
Tw50 -0.208 0.025 0.240 0.079 

 
Tw100 -0.216 0.023 0.201 0.071 

RRMSE (%)  

Tw2 10.126 9.742 7.102 7.822 

 Tw5 10.745 10.471 7.405 7.948 

 Tw10 11.141 10.619 7.604 8.131 

 Tw20 11.292 10.788 7.766 8.326 

 Tw50 11.754 11.04 7.986 8.6 

 Tw100 12.018 11.234 8.140 8.802 
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on hydrological variables (Ouarda et al. 2018). Recently, Abidi et al. (2022) demonstrated 

that the GAM model produces better results for estimating regional water temperatures. 

The main reason for this is that the GAM model allows for modelling the nonlinear 

relationships between the response variables and the predictors. The GAM was also used 

successfully by Laanaya et al. (2017) to estimate daily water temperatures. 

In other words, for the DHR step, the case where the NLCCA approach is used shows the 

best results, including NLCCA+GAM, followed by NLCCA + MLR. This study's results 

indicate that applying the ANN approach in the physiographic and thermal CCA space can 

significantly improve the estimation performance over the linear CCA approach or 

combine all stations without neighbourhood. Ouali et al. (2016) concluded that NLCCA 

performs better than CCA to estimate flood quantiles. Shu and Ouarda (2007) demonstrated 

that this approach can characterize the physiographic space better to estimate flood 

quantiles. The results of our research are consistent with those of this study. Therefore, 

better results could be obtained by using a more advanced NLCCA parameterization, and 

the difference between linear and nonlinear approaches to neighbourhood identification in 

this study is evident. It is in line with the suggestion made by Ouali et al. (2017), who also 

suggested that using fully nonlinear models (in both RFA steps) is the most appropriate as 

they provide the best performance and a more realistic description of the physical 

processes. 

On the other hand, semi-linear models that account for non-linearity in the delineation or 

estimation steps showed little improvement over linear models such as NLCCA+MLR, 

ALL+GAM and CCA+GAM. For most predictor variables, complex relationships that 

deviate from linearity can be observed. A similar issue has been raised in previous studies 
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dealing with regional water temperature estimation. There is an analogy between this 

research and the research of Ouarda et al. (2022) who focused on the estimation of daily 

temperatures at ungauged sites. 

Nevertheless, the limitations of the NLCCA approach are that it has relatively greater 

complexity than linear models and requires an extensive database, unlike our study. 

However, despite these shortcomings, it has produced acceptable results. This explains the 

robustness of the method. 

7. Conclusions and future work 

The present study focused on integrating the CCA technique coupled with ANN (NLCCA) 

for DHR. To evaluate the performance of this method, we compared it with the linear CCA 

and the ALL neighborhood-free method. Both CCA and ALL approaches are unable to 

represent the possibility of non-linear relationships between the variables of interest. 

Within each delimited region, either the GAM or the MLR were used to transfer thermal 

information. In total, six regionalization models were compared. This study examined the 

potential of non-linear approaches in both steps of the RFA process simultaneously. A 

stepwise regression method was employed to select the optimal variables to include in the 

regional models based on the study dataset. Results indicate that the regional model 

comprising the NLCCA approach for the DHR step and the GAM approach for the RE 

(NLCCA+GAM) is the most appropriate, followed by the NLCCA+MLR model. These 

results show that using a non-linear approach in DHR can significantly improve the 

performance of regional stream temperature frequency analysis approaches. However, the 

best results for estimating stream temperature quantiles at ungauged sites are obtained 

when non-linear approaches are adopted in both steps of the RFA. 

Jo
urn

al 
Pre-

pro
of



38 
 

Another DHR result derived from a neighborhood optimized through the α parameter for 

CCA and NLCCA is compared with results obtained using the fixed 18-station 

neighborhood. Results indicate that the α parameter optimization leads to a marginal 

performance improvement over the fixed neighborhood for some quantiles in the 

NLCCA+GAM combination. It is hence concluded that the use of the optimization 

procedure is not recommended when the database is composed of a limited number of 

stations.  

In future efforts, it may be interesting to investigate the impact of adopting other statistical 

estimation techniques such as the Random Forest and the multivariate adaptive regression 

splines models in conjunction with linear and non-linear delineation approaches for 

estimating water temperature quantiles. 
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Highlights 

• Improve the estimation of water temperature extremes at ungauged sites. 

• Incorporate non-linearities in the homogenous region delineation step using 

NLCCA. 

• Consider non-linear models in the whole estimation procedure (NLCCA+GAM). 

• Compare fully and partially non-linear approaches for water temperature 

regionalization. 

• The results underline the importance of considering the non-linearity of thermal 

processes. 
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Software and/or data availability 

Software availability 

Program language: MATLAB and R 

Developers: Zina Souaissi, Dhouha Ouali, Christian Charron 

Hardware requirements: PC 

Availability:  Codes are available from the author  

Data availability 

Data will be made available on request. 
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