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ABSTRACT
Mangroves are woody plant communities that appear in tropical and subtropical regions, 
mainly in intertidal zones along the coastlines. Despite their considerable benefits to humans 
and the surrounding environment, their existence is threatened by anthropogenic activities 
and natural drivers. Accordingly, it is vital to conduct efficient efforts to increase mangrove 
plantations by identifying suitable locations. These efforts are required to support conservation 
and plantation practices and lower the mortality rate of seedlings. Therefore, identifying 
ecologically potential areas for plantation practices is mandatory to ensure a higher success 
rate. This study aimed to identify suitable locations for mangrove plantations along the 
southern coastal frontiers of Hormozgan, Iran. To this end, we applied a hybrid Fuzzy- 
DEMATEL-ANP (FDANP) model as a Multi-Criteria Decision Making (MCDM) approach to 
determine the relative importance of different criteria, combined with geospatial and remote 
sensing data. In this regard, ten relevant sources of environmental criteria, including meteor-
ological, topographical, and geomorphological, were used in the modeling. The statistical 
evaluation demonstrated the high potential of the developed approach for suitable location 
identification. Based on the final results, 6.10% and 20.80% of the study area were classified as 
very-high suitable and very-low suitable areas. The obtained values can elucidate the path for 
decision-makers and managers for better conservation and plantation planning. Moreover, the 
utility of charge-free remote sensing data allows cost-effective implementation of such an 
approach for other regions by interested researchers and governing organizations.
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1. Introduction

Mangroves are a community of woody plants which 
grow in tropical and subtropical regions, mainly along 
coastlines and intertidal areas (Syahid et al. 2020; Sakti 
et al. 2020). Structure-wise, they are a combination of 
tree and shrub species that can flourish under harsh 
environmental conditions such as high salinity and high 
temperature (Osei Darko et al. 2021). Mangroves pro-
vide essential benefits to humans and their surrounding 
environments in many ways, such as reducing the 
impact of shoreline erosion and storms (Maurya, 
Mahajan, and Chaube 2021), acting as water purifiers 
(Hu et al. 2020), being a source of income, food, fuel, 
and medicine (Melo et al. 2020) and providing habitat 
for many species (Syahid et al. 2020). More particularly, 
by sequestering 1.023 Mg per hectare of carbon, they 
play a crucial role in carbon sequestration and mitigat-
ing climate change (Veettil et al. 2020; Syahid et al.  
2020; Omar, Misman, and Musa 2019).

Despite mangroves’ advantages, their survival has 
been threatened by anthropogenic activities and nat-
ural drivers (Omo-Irabor et al. 2011; DATTA and 

DEB 2012). Regarding the human-induced activities, 
mangroves are mostly eradicated for fuel (Mark et al.  
2017), and their corresponding areas are transited to 
other land uses such as rice fields, aquacultures, and 
fisheries (Cormier-Salem and Panfili 2016). Moreover, 
climate change, sea-level rise, natural hazards, and 
ecological anomalies are among the natural drivers of 
mangroves’ loss (Woodroffe 1990; Syahid et al. 2020). 
Approximately 20–30% of mangroves all around the 
world have faded away over the last 50 years (Giri  
2021), and the situation is getting worse by the end 
of 21 century, especially in Asia, which has a 40% share 
of the world’s mangroves (Veettil et al. 2020).

Mangrove communities have been recognized as 
a beneficial component of the United Nations 
Sustainable Development Goals (UN-SDGs) (Swamy 
et al. 2018). Therefore, mapping and monitoring their 
state in spatial and temporal manners are vital for 
sustainable management (Ghosh, Kumar, and Roy  
2016). More particularly, identifying suitable locations 
for planting mangroves and having a strategic plan for 
their conservation are obligatory to increase and save 
them worldwide (Hu et al. 2020). In this way, it is 
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essential to undertake effective workflows to identify 
ecologically suitable locations for mangrove planta-
tions (Hu et al. 2020). The suitability allocation allows 
for achieving higher success rates in mangrove planta-
tion practices and lowers the mortality rates in the 
mangrove seedlings. Various ecological criteria, such 
as climatic criteria, geomorphic parameters, flora con-
ditions, and human interfaces, should be incorporated 
to support exhaustive suitability mapping 
(Chakraborty et al. 2019). Most of these factors are 
available through Remote Sensing (RS) and have been 
effectively employed in mangroves studies with differ-
ent purposes (Veettil et al. 2020; Dahdouh-Guebas  
2002). Compared to field-based methods, RS provides 
frequent datasets with consistent spatial coverage per-
mitting investigations over large-scale areas (Kamal, 
Phinn, and Johansen 2015; Baloloy et al. 2020; 
Ghorbanian et al. 2022; dela Torre et al. 2021).

Furthermore, it is possible to integrate and manip-
ulate various RS datasets within Geographic 
Information System (GIS) environments (Al-Hanbali 
et al. 2021). Many studies have employed the combi-
nation of RS and GIS for mangrove investigations 
(Jumawan and Macandog 2021; Jayanthi et al. 2018; 
Pattanaik and Prasad 2011). For instance, a study in 
Southeast Asia utilized a combined GIS and RS tech-
nique to determine the mangrove loss drivers in 
Southeast Asia by identifying the foremost land covers 
that substituted deforested mangroves between 2000 
and 2012 (Richards and Friess 2016). Likewise, 
Maurya, Mahajan, and Chaube (2021) stated that the 
combination of satellite data acquired by RS and the 
GIS environment is the most practical and handiest 
way for mangrove ecosystem monitoring. 
Furthermore, Sushobhan et al. (2022) implemented 
an object-based modeling approach using four 
Normalized Difference Vegetation Index (NDVI) 
images with ten years interval to examine mangrove 
dynamics in Sundarbans, India. They reported a high 
mangrove disappearance due to sea-level rise, anthro-
pogenic activities, and a lack of conservation policies.

The flexibility of GIS allows combining different 
criteria through the Multi-Criteria Decision Making 
(MCDM) methods. One of the well-known MCDM 
methods is the Analytic Hierarchy Process (AHP), 
widely used in natural hazards and spatial modeling 
studies (Das 2020). The AHP method provides the 
relative importance of considered criteria (i.e. 
weights), and the final spatial modeling map (i.e. suit-
ability or risk) is generated through the Weighted 
Linear Combination (WLC) procedure (Shabani, 
Masoumi, and Rezaei 2022). In recent years, the 
AHP method has also been implemented in a few 
mangrove studies to weight the considered mangroves 
restoration and plantation allocation criteria. Scholars 
declared that this group of methods had shown satis-
factory results (Chakraborty et al. 2019; Matani et al.  

2021). In another study, over the last 20 years, RS 
datasets were employed to identify the different cri-
teria for the degradation of mangrove forests using the 
Delphi technique. The AHP method was then imple-
mented to rank and weight these criteria for remedia-
bility and preventability. The authors declared that the 
result of their study could aid policymakers in having 
an insight into mangrove ecosystem management and 
sustainability (Savari, Damaneh, and Damaneh 2022).

Despite the popularity and convenience of the AHP 
method, it includes a few limitations that require 
further consideration. One of these limitations is that 
experts state their opinions using crisp numbers, lead-
ing to bias or inconsistency (Chen et al. 2011). Also, 
the involved criteria in allocation studies (e.g. man-
grove plantation suitability) probably are correlated 
considering their geographical aspect. Consequently, 
they could have different levels of reciprocal impacts, 
which should be considered (Arabsheibani, Kanani 
Sadat, and Abedini 2016; Kanani-Sadat et al. 2019). 
Therefore, to overcome the mentioned shortcomings 
that have been precluded in previous mangrove plan-
tation studies, we applied a hybrid MCDM method. In 
this hybrid approach, DEcision-MAking Trial and 
Evaluation Laboratory (DEMATEL) method was inte-
grated with fuzzy logic, and then the results were 
incorporated into the Analytical Network Process 
(ANP) method as an improved version of AHP. 
Fuzzy logic is a solution to handle the uncertainty of 
using crisp numbers by utilizing fuzzy membership 
functions, eliminating or decreasing the correspond-
ing vagueness (Feizizadeh et al. 2014). Also, 
DEMATEL is an efficient approach for investigating 
and identifying the interconnection between criteria 
involved in a complicated problem (Büyüközkan and 
Çifçi 2012). The efficiency of the DEMATEL method 
for dealing with interdependencies between criteria 
has been stated in many studies that could ensure 
achieving more reliable results (Wang et al. 2019).

Accordingly, this paper aims to (1) identify ecolo-
gically suitable areas for mangrove plantation by 
incorporating ten criteria in different categories (i.e. 
topographical, geomorphological, and meteorological) 
in Hormozgan province, southern Iran, (2) investigate 
the efficiency of the Fuzzy-DEMATEL approach com-
bined with the ANP method for the criteria weighting 
task, and (3) examine the performance of Fuzzy- 
DEMATEL-ANP (FDANP) approach over the con-
ventional AHP approaches that were employed in 
previous mangrove plantation allocation studies. In 
this regard, ten relevant sources of environmental 
criteria, such as (1) precipitation, (2) elevation, (3) 
slope, (4) wind, (5) temperature, (6) solar radiation, 
(7) NDVI, (8) Normalized Difference Salinity Index 
(NDSI), (9) Normalized Difference Moisture Index 
(NDMI), and (10) Land Use and Land Cover 
(LULC) were incorporated to generate mangrove 

2 R. SAHRAEI ET AL.



plantation suitability map. Finally, visual comparisons 
and statistical evaluations were performed to examine 
the suitability of the implemented approach.

2. Study area

Mangroves exist along the Persian Gulf and Oman Sea 
coastal areas in three southern provinces of Iran. The 
study area of this research is the entire coastal area of 
Hormozgan province, which is home to the Hara 
Protected Area, the largest mangrove ecosystem in 
the Persian Gulf and Oman Sea. The study area lies 
between 25° 24׳ and 28° 57׳ latitudes and 53° 41׳ and 
 longitudes and covers an area of over 7000 km2 ׳15 59°

(see Figure 1). The border length of the study area, as 
the coastal boundary of Hormozgan province, facing 
the Persian Gulf and Oman Sea, is approximately 900  
km. The mean annual temperature in this region var-
ies between 21.5°C and 53.7°C. The study area hosted 
two types of mangroves, namely Avicennia marina 
and Rhizophora mucro, with the dominant portion of 
the former (Ghorbanian et al. 2021), which have been 
recognized as excellent sources of carbon sink (Amiri  
2021; El Hussieny, Shaltout, and Alatar 2021). Except 
for the Hara Protected area, the study area inhabits 
several other mangrove ecosystems patches (Mafi- 
Gholami et al. 2020; Alireza and Beglu Mansour  
2012) and is thus considered one of the potentially 
suitable areas for mangrove plantations.

3. Material and methods

3.1. Datasets

3.1.1. Remote sensing and geospatial data
For mangrove suitability mapping, ten environmental 
factors and geospatial layers of criteria from different 
categories (i.e. topographical, geomorphological, and 
meteorological) were considered. These criteria were 

chosen based on the previous literature that incorpo-
rated relevant criteria for mangrove plantation alloca-
tion or the proven fact of their impact on mangrove 
health and data availability over the study area 
(Chakraborty et al. 2019; Savari, Damaneh, and 
Damaneh 2022). Consequently, ten criteria of (1) pre-
cipitation, (2) elevation, (3) slope, (4) wind, (5) tem-
perature, (6) solar radiation, (7) NDVI, (8) NDSI, (9) 
NDMI, and (10) LULC were employed. These datasets 
were collected and analyzed using the cloud comput-
ing platform of Google Earth Engine (GEE). This 
cloud computing platform allows the visualization, 
prototyping, and processing of many open-access RS 
and geospatial datasets (Ravanelli et al. 2018; Gorelick 
et al. 2017; Amani et al. 2020). GEE hosts multi- 
petabyte satellite imagery and geospatial catalogs, 
making it an appealing choice for large-scale and 
multi-criteria data preparation and manipulation. 
Given that this information was acquired/generated 
from different sources, either downscaling or upscal-
ing step was applied to the original datasets to make all 
consistent in terms of spatial resolution (i.e. 100 m) for 
further processing.

Afterward, all the involved criteria were normal-
ized in a GIS environment for criteria range com-
patibility. In particular, if the higher value of 
a criterion was associated with higher mangrove 
suitability, it was normalized by y ¼ x� xmin

xmax � xmin 
(direct), otherwise y ¼ xmax� x

xmax � xmin 
(inverse) was used, 

where x and y are the un-normalized and normal-
ized values of each criterion, respectively. xmin and 
xmax are respectively the lowest and highest value of 
each layer. NDVI, NDMI, solar radiation, and pre-
cipitation were normalized using the former equa-
tion (direct). Also, wind and slope were normalized 
using the latter equation (inverse) because they 
impact mangrove suitability contrariwise. 
Furthermore, according to temperature data in the 

Figure 1. (a) Geographical location of the study area in the southern part of the country extending along the Persian Gulf and 
Oman Sea; (b) study area along with four zoomed patches of very high-resolution images for better representation.
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study area, we split the values of this criterion into 
two groups. The earlier direct equation normalized 
those areas with a temperature less than 34°C, and 
areas with higher temperatures were normalized by 
the inverse equation.

Moreover, the elevation values lower than 4 m were 
normalized using the direct equation, and otherwise, 
an inverse equation was used. The normalization of 
the LULC criterion was different from other criteria, 
which were applied based on experts’ knowledge, and 
a pair-wise comparison was considered to evaluate the 
suitability of different classes in the GIS environment. 
The criteria summary is provided in Table 1, and the 
final prepared criteria are presented in Figure 2.

3.1.2. Reference data
In addition to satellite and geospatial datasets, refer-
ence data in two classes of mangrove and non- 
mangrove were collected spreading over the study 
area. These samples were collected through precise 
visual inspection of very-high-resolution satellite 

imagery available within ArcMap and Google Earth. 
A total of 1015 reference samples for mangrove classes 
and 1015 reference samples for non-mangrove classes 
were selected. The reference samples were employed 
to fulfill two tasks (1) retrieving point values of differ-
ent criteria for the mangrove class to support a better 
weighting procedure and (2) applying statistical eva-
luation to ensure the reliability of the implemented 
approach.

3.2. Methodology

This section covers the methodological aspects of pro-
ducing a mangrove plantation suitability map. 
Figure 3 presents the workflow of the implemented 
approaches to integrate different criteria for mangrove 
plantation allocation. In this regard, the Pearson cor-
relation coefficient values between the considered cri-
teria are calculated to examine the possible 
interdependencies among them. Then, the developed 
FDANP method is thoroughly described, followed by 

Table 1. Summary of sources and data preparation descriptions of all considered mangrove plantation suitability mapping criteria.
NO. Criterion Source Description Reference

1 Precipitation Climate Hazards Group InfraRed 
Precipitation with Station data 
(CHIRPS)

The study area’s daily accumulated precipitation data were used to 
calculate this criterion. The time duration was between January and 
July 2020. The original data had a 5566 m spatial resolution that was 
resampled to 100 m using the nearest neighbor method.

(Funk et al.  
2015)

2 Elevation Shuttle Radar Topography Mission 
(SRTM)

This topographic criterion was generated at a 100 m spatial resolution 
using the SRTM Digital Elevation Data Version 4. The original data had 
a 90 m spatial resolution that was resampled to 100 m using the 
nearest neighbor method.

(Jarvis et al.  
2008)

3 Slope Elevation (SRTM) This topographic criterion was calculated using the SRTM Digital Elevation 
Data Version 4 dataset. The original data had a 90 m spatial resolution 
that was resampled to 100 m using the nearest neighbor method.

(Jarvis et al.  
2008)

4 Wind Global Forecast System (GFS) The wind criterion consisted of two components, including v_component 
and u_component of wind. We aggregated these two components in 
the GIS environment to create the wind layer using this formula: 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðv componentÞ2 þ u componentð Þ
2

q

The original data had a 27,830 m spatial resolution that was resampled to 
100 m using the nearest neighbor method.

(Alpert  
2004)

5 Temperature Landsat-8 The mean temperature was considered for the study area between 
January and July 2020. The original data had a 30 m spatial resolution 
that was resampled to 100 m using the nearest neighbor method.

USGS

6 Solar 
radiation

National Centers for Environmental 
Prediction (NCEP) Climate Forecast 
System

The mean value of solar radiation for the study area was considered 
between January and July 2020. The original data had 
a 22,264 m spatial resolution that was resampled to 100 m using the 
nearest neighbor method.

(Saha et al.  
2011)

7 NDVI Landsat-8 NDVI is an indicator that evaluates the condition of healthy green 
vegetation using near-infrared (NIR) and Red spectra of Landsat 8. It 
was calculated using 

NDVI ¼ NIR� R
NIRþR . The mean value for a one-year duration (January 2020- 

January 2021) was considered. The original data had a 30m spatial 
resolution that was resampled to 100 m using the nearest neighbor 
method.

USGS

8 NDSI Landsat-8 The NDSI index uses NIR and Red bands to provide a proxy for the salinity 
condition of the salt-affected area and was calculated by. 

The mean value for a one-year duration (January 2020- January 2021) was 
considered.

USGS

9 NDMI Landsat-8 The normalized difference moisture index (NDMI) was derived from the 
NIR and the SWIR band using 
NDMI ¼ NIR 4ð Þ� SWIR 5ð Þ

NIR 4ð ÞþSWIR 5ð Þ . The mean value for a one-year duration 
(January 2020- January 2021) was considered.

USGS

10 LULC Copernicus Global Land Cover (CGLC) The LULC map of the study area had seven classes after reclassification of 
the original map obtained from GEE. The following classes are included 
in this criterion: unknown and bare, woody vegetation, agriculture and 
vegetation, urban, forest, waterbody, and wetlands. The original data 
had a 100m spatial resolution.

(Buchhorn 
et al.  
2020)
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a brief explanation of the conventional AHP method, 
which has been adopted in previous mangrove studies 
(Savari, Damaneh, and Damaneh 2022; Syahid et al.  
2020; Jumawan and Macandog 2021). Finally, the vali-
dation procedure using collected reference samples for 
quality assurance is described.

3.2.1. Fuzzy-DEMATEL-ANP (FDNAP) algorithm
FDNAP is a hybrid MCDM method that incorporates 
the fuzzy logic and interrelationships of considered 
criteria to improve the final results compared to 
more conventional MCDM methods (Phochanikorn 
and Tan 2019). In complex decision-making 

Figure 2. The spatial variability of (a) elevation, (b) LULC, (c) NDMI, (d) NDSI, (e) NDVI, (f) Slope, (g) solar radiation, (h) precipitation, 
(i) temperature, (j) wind across the study area.
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problems, directly/indirectly interdependent criteria 
with reciprocal impacts exist. Accordingly, to ensure 
an improved MCDM, it must sufficiently detect 
mutual interactions and turn them into an under-
standable model for further processing. One method 
is the DEMATEL (Gabus and Fontela 1973), which 
takes the “Cause” and “Effect” interactions between 
input criteria using graphs and matrices 
(Falatoonitoosi, Ahmed, and Sorooshian 2014). 
DEMATEL has proven to be an effective procedure 
for examining and considering the reciprocal interac-
tions between different criteria (Sorourkhah and 
Edalatpanah 2022). Accordingly, since the objective 
of the current study is to identify ecologically suitable 
areas for mangrove plantation by considering ten cri-
teria, which may have possible interrelationships, the 
DEMATEL method was considered. A sample of the 
DEMATEL diagram and matrix is shown in Figure 4, 
in which the numbers 0, 1, 2, 3, and 4 depict “no 
influence”, “very low influence”, “low influence”, 
“high influence”, and “very high influence”, respec-
tively. As an example, in Figure 4, it can be seen that 
C4 has a major impact on C3, though it has less impact 
on C5.

The relative importance and preferences of consid-
ered criteria are provided based on one’s acquaintance 
and experience. They are declared using linguistic 
values, which as a human-centered operation, defi-
nitely includes uncertainty. Accordingly, it is sug-
gested to incorporate linguistics variables from fuzzy 
logic instead of crisp numbers as the relative impor-
tance of all criteria (Kanani-Sadat et al. 2019; Soner  

Figure 3. Flowchart of the proposed methodology for man-
grove plantation suitability mapping.

Figure 4. (a) the direct graph and (b) matrix form of a schematic sample of a typical causal relationship between five arbitrary 
criteria.
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2021). Therefore, to implement a trustworthy MCDM 
framework, the vagueness in the verbal terms has to be 
reduced or even eliminated (Gigović et al. 2016; 
Sangaiah et al. 2017; Ayçin and Kayapinar Kaya  
2021). In order to handle the inherent uncertainty 
and ambiguity in one’s opinion, fuzzy variables intro-
duced by (Zadeh, Klir, and Yuan 1996) can be utilized. 
Therefore, we combined fuzzy logic with the 
DEMATEL method to explore the causal relationships 
between criteria and build a network-based structure 
with the ANP method. Consequently, the final weight 
values of all criteria are calculated, and then they are 
integrated through a WLC method to generate the 
suitability map. In this hybrid approach, the following 
six steps are required to calculate weight values.

● Step 1: Fuzzy direct relation matrix

In this step, k number of pair-wise comparison 
matrices containing the reciprocal influence criteria in 
verbal terms format are collected. Later, Fuzzy 
Triangular Membership Functions (FTMF) are defined 
as Ek

ij = (lk
ij;mk

ij; uk
ij), where Ek

ij is the judgment regarding 
the impact of ith criterion on jth criterion made by kth 

expert. Fuzzy lingual expressions and the correspond-
ing FTMF specifications are provided in Table 2. 
Afterward, the fuzzy direct relation matrix (~A) is com-
puted using Equation (1), in which ~A is the fuzzy direct- 
relation and N indicates the number of experts. 

eA ¼
~E1
� ~E2

� . . . ~EN
� �

N
(1) 

below, the structure of eA is shown. 

eA ¼

0 ~a12 . . . ~a1n
~a21

..

.
0
..
.

. . . ~a2n

. .
. ..

.

~an1 ~an2 . . . 0

2

6
6
4

3

7
7
5 (2) 

● Step 2: Normalizing the fuzzy direct relation 
matrix

The normalized fuzzy direct relation matrix (~X) is 
generated by applying Equation (3) to the eA (Mavi and 
Standing 2018). 

xij ¼
aij

s
¼

lij
s
;
mij

s
;
uij

s

� �

; s ¼ max

max
1�i�n

Xn

j¼1
uij

 !

; max
1�j�n

Xn

i¼1
uij

 !" # (3) 

below, the structure of ~X is shown. 

eX ¼

0 ~x12 . . . ~x1n
~x21

..

.
0
..
.

. . . ~x2n

. .
. ..

.

~xn1 ~xn2 . . . 0

2

6
6
4

3

7
7
5 (4) 

● Step 3: Acquiring the fuzzy total relation 
matrix

In this stage, the fuzzy total relation matrix (~T) that 
includes both direct and indirect interactions between 
all criteria is generated using Equations (5)–(6). 

eT ¼

~t11 ~t12 . . . ~t1n
~t21

..

.
~t22

..

.
. . . ~t2n

. .
. ..

.

~tn1 ~tn2 . . . ~tnn

2

6
6
6
4

3

7
7
7
5
; etij ¼ l

00

ij;m
00

ij; u
00

ij

� �
;

i; j ¼ 1; 2; . . . ; n (5) 

l
00

ij

h i
¼ Xl � I � Xl

� 1� �
; m

00

ij

h i

¼ Xm � I � Xm
� 1� �

; u
00

ij

h i
¼ Xu � I � Xu

� 1� �

(6) 

later, the fuzzy total relation matrix (eT) is defuzzified 
using Equation 7 to ease the comprehension of the 
mutual impacts of criteria and provide a better insight 
into the relations and interactions among criteria. It is 
worth noting that during the defuzzification step of 
the fuzzy total relation matrix, elements with negligi-
ble values (low reciprocal influence) are filtered out 
(i.e. set to 0) using the α-cut threshold defined by 
experts (Vinodh, Sai Balagi, and Patil 2016; Kanani- 
Sadat et al. 2019). The α-cut total-relation matrix total- 
relation matrix (Tα) is shown in Equation 8. 

Tdef
ij ¼

l00ij þ 4m00

ij þ u00ij
6

(7) 

Tα ¼

tα
11 tα

12 . . . tα
1n

tα
21

..

.
tα
22

..

.
. . . tα

2n

. .
. ..

.

tα
n1 tα

n2 . . . tα
nn

2

6
6
6
4

3

7
7
7
5

(8) 

● Step 4: Calculate the fuzzy values of D and R

The summation of ith row (see Equation (9)) of the 
~T gives the ~R values as the indicator of the direct/ 
indirect impact of criterion ith on others (Jassbi, 
Mohamadnejad, and Nasrollahzadeh 2011). 

Moreover, eDj indicates the overall impacts of all 

Table 2. The implemented fuzzy triangular membership functions (FTMF) versus verbal terms.

Lingual term

Influence level

No Very low low High Very high

FTMF numbers (0, 0, 0.25) (0, 0.25, 0.5) (0.25, 0.5, 0.75) (0.5, 0.75, 1.0) (0.75, 1.0, 1.0)
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criteria on the jth criterion that is calculated by sum-
ming the jth column (see Equation (10)) of the ~T 
(Jassbi, Mohamadnejad, and Nasrollahzadeh 2011). 

~R ¼ eRi
� �

n�1 ¼
Xn

j¼1

etij (9) 

~D ¼ eDj
� �

1�n ¼
Xn

i¼1

etij (10) 

● Step 5: Defuzzification of eRi þ eDi and eRi � eDi 
values

In order to acquire the casual relations between 
all criteria and calculate their importance, eRi þ eDj 

and eRi � eDj are defuzzified based on Equation (11). 
In this way, the strength of the impact of the ith 

criterion on the other criteria is evaluated by 
eRi þ eDi. Meanwhile, the positive value of eRi � eDj 

is a sign of the effectiveness of ith criterion and 
settles into the “Causes” group. Moreover, the ith 

criterion, which takes influence from others, settles 
into the group of “Effects” in the case that eRi � eDj 

value is negative. Criterion with a higher eRi � eDj 

value has a considerable impact on others and has 
a higher priority; consequently, criteria that have 
lower values of eRi � eDj are those affected by other 
criteria, hence, have a lower priority (Jassbi, 
Mohamadnejad, and Nasrollahzadeh 2011; Kanani- 
Sadat et al. 2019). 

~R� ~D
� �def ¼

~R� ~D
� �fuzzy

l þ4 ~R� ~D
� �fuzzy

m þ ~R� ~D
� �fuzzy

u
6

(11) 

● Step 6: Calculating the criteria weights 
through ANP

In the final step, the weight value of each criter-
ion is calculated based on the ANP method that 
considers the interdependencies among factors 
(Saaty 1996). In the ANP method, hierarchical 
structure restriction is eliminated, and a network 
model is used efficiently to manage the interdepen-
dencies between the criteria. Therefore, applying 
the ANP approach can lead to more satisfactory 
results with interdependent relationships 
(Ghorbanzadeh, Feizizadeh, and Blaschke 2018). 
To this end, the relative importance pair-wise com-
parison matrix is generated based on crisp numbers 
between 1 to 9, with higher importance by increas-
ing the value (Saaty 1996). Equation (12) shows the 
general form of the super-matrix in which Cn 
refers to the nth criterion, and Wij points to the 
effect of jth criterion on the objective compared 
with the ith criterion. 

C1 C2 . . . Cn

W ¼

C1
C2
..
.

Cn

W11 W12 . . . W1n
W21

..

.
W22

..

.
. . . W2n

. .
. ..

.

Wn1 Wn2 . . . Wnn

2

6
6
4

3

7
7
5

(12) 

later, a weighted pair-wise comparison matrix (WW) is 
generated by multiplying the normalized α-cut total 
relation matrix (Ts) (see Equation (13)) by the relative 
importance pair-wise comparison matrix (W), and the 
results are called a weighted super-matrix (Ww in 
Equation (14)). Finally, by limiting Ww powered to 
a large enough number (Equation (15)), the weighted 
super-matrix Ww converges to a long-term stable 
matrix. Consequently, each element in each row ren-
ders the conclusive weights of the criteria (Ali et al.  
2020). 

Ts ¼

tα
11

d1

tα
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. . .

tα
1n
d1

tα
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. . .
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. . .
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. . .
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. ..
.
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s . . . tnn
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3
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7
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di ¼
Xn

j¼1
tαij (13) 

Ww ¼

ts
11 �W11 . . .

..

.

ts
i1 �W1i

. .
.

. . .

ts
1i �Wj1

..

.

ts
ij �Wji

. . . ts
1n �Wn1

..

.

. . . ts
in �Wni

..
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. ..

.

ts
n1 �W1n . . . ts
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nn �Wnn
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6
6
6
6
6
6
6
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7
7
7
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(14) 

WL ¼ lim
p!1

WWð Þ
p (15) 

3.2.2. Analytical hierarchy process algorithm
AHP is an MCDM approach that includes organizing 
different criteria into a hierarchy, determining their 
relevant importance, comparing alternative solutions 
for each criterion, and deciding the final ranking based 
on suitability, risk, and cost (Saaty 1977, 1980; Feloni, 
Mousadis, and Baltas 2020). The first step of the AHP 
is determining the relative importance of each criter-
ion regarding other criteria for suitability mapping. In 
this regard, the relative importance values are deter-
mined by numerical values, ranging between 1 and 9, 
with higher importance by increasing the value 
(Mahmoud and Gan 2018), leading to a pair-wise 
matrix. According to the number of generated pair- 
wise matrices, it might be required to calculate the 
average pair-wise matrix using the geometric mean 
using Equation (16) 
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Aave ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Yk

i¼1
Ai

k

r

(16) 

where k is the number of experts, Ai is the pair-wise 
matrix of ith expert, and Aave is the average pair-wise 
matrix. The next step is to normalize the final pair- 
wise matrix by dividing each column element by the 
corresponding column’s sum using Equation (17) 

aij
0 ¼

aij
Pn

i¼1 aij
(17) 

where n is the number of criteria, aij is the value of the 
criterion in the pair-wise matrix, and aij

0 is the nor-
malized criterion (Cabrera and Lee 2020).

Later, the final weight value of each criterion is 
calculated by summing the elements of each row and 
dividing them by order of the matrix using Equation 
(18) (Bouamrane et al. 2020). 

Wi ¼

PN
j¼1 aij

0

N
(18) 

where N represents the order of the matrix 
(Bouamrane et al. 2020).

Afterward, the Consistency Ratio (CR) was calcu-
lated to ensure the correctness and suitability of the 
weight value determination step (see Equation (19)). 
In this regard, first, the Consistency Index (CI) must 
be calculated, and the Random Inconsistency (RI) was 
set at 1.49 (Saaty 1980; Dano 2021). CR values less 
than 0.1 indicate a suitable pair-wise matrix; other-
wise, the pair-wise matrix should be reconsidered. All 
criteria are integrated through the WLC method to 
generate the suitability maps using weights obtained 
by implemented methods in this study at the final step 
using Equation (20) 

CR ¼
CI
RI
;CI ¼

λmax � n
n � 1

(19) 

MSM ¼
Xn

i¼1
Wi � Ci (20) 

3.2.3. Accuracy assessment
Accuracy assessment is an essential step to ensure the 
reliability of the produced suitability map. Accordingly, 
several statistical parameters were calculated to validate 
the final suitability results. It is worth noting that the 
collected reference samples were employed for accuracy 
assessment. First, the Receiver Operator Characteristics 
(ROC), as a broadly used approach to determine the 
capability of spatial modeling, was applied (Chen et al.  
2011; Samanta et al. 2018; Falah et al. 2019). To this end, 
the ROC curve was plotted in 2D space for different 
threshold values, which displayed the model’s sensitiv-
ity and specificity (see Equations (21) and (22). 

x ¼ 1 � specificity ¼ 1 �
TN

TN þ FP

� �

(21) 

y ¼ sensitivity ¼
TP

TP þ FN
(22) 

later, the ROC’s Area Under Curve (AUC) was calcu-
lated as the quantitative measure of implemented 
model performance. Furthermore, two other metrics 
of Overall Accuracy (OA, see Equation (23)) and 
Kappa Index (KI, see Equation (24)) were also calcu-
lated (Kanani-Sadat et al. 2019; Samanta et al. 2018). 

Overall Accuracy ¼
TP þ TN

TP þ FP þ TN þ FN
(23) 

with a step of 0.01 for each threshold value ranging 
between 0 and 1, the OA value was repetitively calcu-
lated to acquire the best threshold value for labeling 
mangrove and non-mangrove areas. The threshold 
value given the optimum OA was selected (Kanani- 
Sadat et al. 2019; Shafapour Tehrany et al. 2019).

In the previous equations, TP (True Positive) and TN 
(True Negative) values are the numbers of points cor-
rectly classified as mangrove and non-mangrove points. 
FP (False Positive) denotes the number of non-mangrove 
points labeled as mangrove, and FN (False Negative) the 
number of mangrove points labeled as non-mangrove.

The KI was also considered for further assessment 
of the models’ ability. A higher KI value shows that the 
model is more reliable (Khosravi et al. 2018). 

KI ¼
Po � Pe

1 � Po
(24) 

in Equation (26), P� is the correctly categorized rate of 
mangrove and non-mangrove points, and Pe represents 
the proportion of points in which the agreement would 
be expected due to chance (Janizadeh et al. 2019; 
Tehrany, Jones, and Shabani 2019). P�and Pe were 
obtained using the following equations: 

P� ¼ TP þ TN (25) 

Pe ¼ TP þ FNð Þ TP þ FPð Þ þ FP þ TNð Þ FN þ TNð Þ

(26) 

4. Results

This study considered the ten criteria (see Section 3.1) 
to generate a mangrove plantation suitability map in 
coastal areas of Hormozgan province, southern Iran. 
These criteria were then integrated within a GIS envir-
onment, and two methods of FDANP and AHP were 
applied to produce the final suitability maps, the 
results of which are provided in subsequent 
subsections.
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4.1. Pearson correlation coefficient result

As already mentioned, the considered criteria might 
have possible interrelationships that could affect the 
final MCDM results (Kanani-Sadat et al. 2019). 
Accordingly, to consider the effect of these interde-
pendencies, FDANP was implemented in this study. 
The Pearson correlation coefficient values were calcu-
lated to determine the possible interdependencies 
among criteria. As it is shown in Table 3, some of 
the considered criteria have a higher level of correla-
tion with one another. The highest correlation values 
were observed between NDMI, NDVI, and NDSI. For 
instance, the Pearson correlation coefficient value 
between NDVI and NDSI is 0.83, which falls in the 
very strong correlation category, according to (Cao 
et al. 2020). On the other hand, some of the considered 
criteria had negligible and minor interdependencies, 
such as wind and NDVI and temperature and wind, 
respectively. This demonstrates the necessity of con-
sidering the interrelationships among criteria through 
DEMATEL to improve the final mangrove plantation 
suitability mapping.

4.2. Fuzzy-DEMATEL-ANP (FDANP)

As stated earlier, six steps should be conducted to 
calculate the final weight values based on the 
FDANP approach (see Section 3.1.2). After passing 
four steps, the defuzzified values of eRi þ eDj and 
eRi � eDj were calculated to investigate the mutual 
impact of all criteria on each other. Based on 
Table 4, NDSI, NDMI, NDVI, temperature, and 
LULC with negative (Ri � Di) values are influenced 
by other criteria and categorized into the group of 
“effects.” On the other side, Precipitation, DEM, 
Wind, Slope, and Solar radiation with positive 
(Ri � Di) are assorted in the “causes” set. 
Considering (Ri � Di) indicator, the factors can be 
ranked. Therefore, DEM has the most impact on 
other criteria while NDMI predominantly takes the 
influence from others. Also, the (Ri þ Di) parameter 
can be interpreted as the prominence of a criterion 
compared to others. Therefore, as shown in Table 4, 
temperature, precipitation, NDMI, and NDVI have 

a critical position in the criteria network, and among 
all, the temperature is the most significant. This result 
logically makes sense since the temperature could 
affect the level of precipitation and, consequently, the 
moisture of the area and how vegetation changes 
depending on these criteria.

The α-cut total-relation matrix (Table 5) is 
obtained based on Equation 7 and 8. Afterward, the 
normalized α-cut total relation matrix (see supple-
mentary material) is generated and multiplied by the 
relative importance pair-wise comparison matrix to 
generate the ANP weighted super-matrix (see 
Table 6). Finally, by limiting the weighted super- 
matrix powered to 7, the weighted super-matrix con-
verged to a matrix with the same elements in each row, 
which were then used to calculate the final weights of 
all criteria (see Table 7).

Based on Table 7, NDVI and LULC were the 
most important criteria with weights values of 
0.198 and 0.155, while the wind and solar radiation 
were the least important criteria with 0.029 and 
0.030. Moreover, Figure 5 presents the mangrove 
plantation suitability map based on the FDANP 
approaches. Visual interpretation of the suitability 
map indicated that the highest suitability values 
were more proximate to existing mangrove ecosys-
tems and near intertidal zones (i.e. area above or 
underwater level at low/high tides, respectively). 
Based on the validation step, the FDANP results 
obtained 95.76% and 94.68% specificity and sensi-
tivity, respectively. Moreover, the OA and KI were 

Table 3. Obtained Pearson correlation coefficient values between ten criteria considered to identify ecologically suitable locations 
for mangrove plantation.

Precipitation Elevation Slope Wind Temperature Solar radiation NDVI NDSI NDMI LULC

Precipitation 1.00 −0.10 −0.08 −0.15 −0.11 0.28 0.34 −0.34 0.39 −0.10
Elevation −0.10 1.00 0.61 −0.02 0.30 0.04 −0.21 0.21 −0.36 0.18
Slope −0.08 0.61 1.00 −0.04 0.30 0.06 −0.24 0.24 −0.36 0.21
Wind −0.15 −0.02 −0.04 1.00 0.20 0.28 0.01 −0.01 −0.13 0.17
Temperature −0.11 0.30 0.30 0.20 1.00 0.49 −0.45 0.45 −0.74 0.42
Solar radiation 0.28 0.04 0.06 0.28 0.49 1.00 0.09 −0.09 −0.01 0.22
NDVI 0.34 −0.21 −0.24 0.01 −0.45 0.09 1.00 −1.00 0.83 −0.04
NDSI −0.34 0.21 0.24 −0.01 0.45 −0.09 −1.00 1.00 −0.83 0.04
NDMI 0.39 −0.36 −0.36 −0.13 −0.74 −0.01 0.83 −0.83 1.00 −0.27
LULC −0.10 0.18 0.21 0.17 0.42 0.22 −0.04 0.04 −0.27 1.00

Table 4. Defuzzified values of importances and preferences of 
each criterion computed using fuzzy logic and DEMATEL.

Criteria

Deffuzified Values

Ri þ Di Ri � Di

Precipitation 1.492 0.486
Elevation 1.380 0.933
Wind 0.970 0.012
NDSI 1.116 −0.333
NDMI 1.476 −0.580
NDVI 1.468 −0.515
Slope 1.208 0.619
Temperature 1.535 −0.396
Solar radiation 1.342 0.102
LULC 1.334 −0.328
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95.22% and 90.40%, respectively, representing the 
high potential of the FDANP approach.

4.3. Analytical hierarchy process

Table 8 provides the normalized pair-wise com-
parison matrix for the AHP method, which was 
then employed to calculate each criterion’s final 
weight value (see Table 9). Accordingly, NDVI 
and NDSI were the most important criteria with 
weights values of 0.229 and 0.177, while wind and 
solar radiation were the least important criteria 

with 0.027 and 0.024. Furthermore, Figure 6 pre-
sents the mangrove plantation suitability map 
based on the AHP approaches. Like the FDANP 
results, the visual interpretation of the suitability 
map indicated that the highest suitability values 
were closer to existing mangrove ecosystems and 
near intertidal zones. Based on the validation step, 
the AHP results achieved 92.56% and 90.91% spe-
cificity and sensitivity, respectively. Moreover, the 
OA and KI were 94.01% and 0.884, respectively, 
representing a satisfactory performance of the 
AHP approach.

Figure 5. Final mangrove suitability map based on criteria weights obtained through the Fuzzy-DEMATEL-ANP (FDANP) method.

Table 5. The α-cut total-relation matrix obtained by filtering out the defuzzified total relation matrix.
Precipitation Elevation Wind NDSI NDMI NDVI Slope Temperature Solar radiation LULC

Precipitation 0.035 0.025 0.074 0.111 0.186 0.185 0.027 0.142 0.088 0.116
Elevation 0.120 0.022 0.100 0.102 0.126 0.158 0.105 0.127 0.169 0.127
Wind 0.047 0.000 0.021 0.051 0.061 0.077 0.020 0.113 0.026 0.056
NDSI 0.022 0.000 0.023 0.026 0.071 0.070 0.000 0.035 0.023 0.086
NDMI 0.025 0.000 0.024 0.067 0.035 0.112 0.000 0.054 0.024 0.070
NDVI 0.028 0.000 0.026 0.067 0.095 0.036 0.000 0.090 0.025 0.071
Slope 0.042 0.041 0.070 0.074 0.144 0.100 0.020 0.126 0.185 0.112
Temperature 0.102 0.020 0.063 0.042 0.086 0.086 0.021 0.042 0.031 0.076
Solar radiation 0.054 0.022 0.034 0.097 0.130 0.091 0.023 0.162 0.024 0.084
LULC 0.028 0.000 0.043 0.088 0.095 0.077 0.020 0.075 0.025 0.033

Table 6. Weighted supermatrix obtained by multiplying the normalized α-cut total relation matrix (Ts) by the relative importance 
pair-wise comparison matrix (W).

Precipitation Elevation Wind NDSI NDMI NDVI Slope Temperature Solar radiation LULC

Precipitation 0.035 0.051 0.377 0.056 0.375 0.047 0.054 0.430 0.536 0.118
Elevation 0.052 0.019 0.259 0.029 0.055 0.034 0.090 0.329 0.439 0.055
Wind 0.020 0.000 0.045 0.018 0.026 0.027 0.014 0.120 0.055 0.039
NDSI 0.126 0.000 0.389 0.072 0.796 0.098 0.000 0.390 0.323 0.242
NDMI 0.030 0.000 0.298 0.041 0.085 0.136 0.000 0.527 0.293 0.085
NDVI 0.257 0.000 0.362 0.307 0.432 0.083 0.000 0.819 0.338 0.162
Slope 0.023 0.045 0.230 0.027 0.053 0.022 0.022 0.276 0.811 0.061
Temperature 0.060 0.012 0.223 0.018 0.038 0.038 0.019 0.074 0.215 0.045
Solar radiation 0.013 0.010 0.047 0.027 0.036 0.021 0.008 0.056 0.033 0.029
LULC 0.057 0.000 0.264 0.182 0.395 0.159 0.084 0.466 0.207 0.068

Table 7. Final weights and the importance rank of each criterion using the Fuzzy-DEMATEL-ANP (FDANP) method.
Precipitation Elevation Wind NDSI NDMI NDVI Slope Temperature Solar radiation LULC

Weight of criteria 0.128 0.085 0.029 0.153 0.086 0.198 0.077 0.053 0.030 0.155
Rank 4 6 10 3 5 1 7 8 9 2
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4.4. Comparisons

The final weight value of each criterion obtained by 
FDANP and AHP methods has changed based on 
Tables 7 and 9. The reason is that DEMATEL examines 
the interdependencies among criteria and considers 
their impact on weight calculation in the network. As 
expected, the ranking of the involved criteria did change 
in this study. For instance, “LULC” with a weight of 
0.136 ranked 3 in the AHP method, but FDANP ranked 
this criterion as the second one with 0.155. Also, the 
order of “solar radiation” and “wind” has changed.

Moreover, the minor change in the final weight 
values slightly enhanced the suitability map (i.e. 
based on the statistical accuracy assessment) when 
incorporating interdependencies in the FDANP 
approach. The mangrove plantation suitability maps 
based on two approaches were provided in previous 
subsections. Statistical accuracy assessment (e.g. OA 
and KI) revealed that incorporating interdependencies 
between involved criteria through the FDANP 
improved the suitability map by about 1.21% and 
1.98% in OA and KI, respectively. Furthermore, the 

AUC of the ROC curves for both approaches was 
calculated (see Figure 7), manifesting the better per-
formance of the FDANP method.

In a further step, for simplification of interpreting 
the generated mangrove plantation suitability maps, 
the final maps were classified into five classes, includ-
ing “Very High”, “High”, “Medium”, “Low”, and 
“Very Low” using natural break method. The classified 
suitability map of FDANP is presented in Figure 8. 
Visual interpretation of the classified maps suggested 
a slight difference between the performances of both 
approaches. Additionally, the area of each class was 
computed to investigate the suitable area for man-
grove plantations in Hormozgan Province (see 
Figure 9). The highest portion of the coastal area was 
identified as Moderate by the AHP approach, whereas 
the FDANP approach recognized Low as the domi-
nant class. Likewise, based on the FDANP suitability 
map, 20.80% and 6.10% were classified as Very Low 
and Very High suitability. On the other hand, the AHP 
approach indicated 18.30% and 5.70% of the study 
area as Very Low and Very High suitability classes.

Table 8. The normalized average matrix of experts’ pair-wise comparisons in the AHP method.
Precipitation Elevation Wind NDSI NDMI NDVI Slope Temperature Solar radiation LULC

Precipitation 0.098 0.125 0.143 0.083 0.160 0.058 0.111 0.121 0.154 0.156
Elevation 0.049 0.063 0.086 0.055 0.040 0.058 0.055 0.121 0.077 0.078
Wind 0.020 0.021 0.029 0.028 0.016 0.039 0.018 0.020 0.026 0.052
NDSI 0.196 0.188 0.171 0.166 0.320 0.117 0.166 0.162 0.128 0.156
NDMI 0.049 0.125 0.143 0.041 0.080 0.117 0.166 0.162 0.128 0.078
NDVI 0.392 0.250 0.171 0.331 0.160 0.233 0.276 0.162 0.154 0.156
Slope 0.049 0.063 0.086 0.055 0.027 0.047 0.055 0.081 0.103 0.078
Temperature 0.033 0.021 0.057 0.041 0.020 0.058 0.028 0.040 0.103 0.052
Solar radiation 0.016 0.021 0.029 0.033 0.016 0.039 0.014 0.010 0.026 0.039
LULC 0.098 0.125 0.086 0.166 0.160 0.233 0.111 0.121 0.103 0.156

Table 9. Final weights and the importance rank of each criterion using the AHP method.
Precipitation Elevation Wind NDSI NDMI NDVI Slope Temperature Solar radiation LULC

Weight of criteria 0.121 0.068 0.027 0.177 0.109 0.229 0.064 0.045 0.024 0.136
Rank 4 6 9 2 5 1 7 8 10 3

Figure 6. Final mangrove suitability map based on criteria weights obtained through the AHP method.
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In the final step, the produced mangrove planta-
tion suitability map based on FDANP was visually 
compared with high-resolution satellite imagery to 
explore the proposed method’s applicability. In this 
regard, two regions with existing mangrove patches 
and one region with no mangrove patches were con-
sidered (see Figure 10). It is evident that the pro-
duced mangrove plantation suitability map had 
successfully delineated suitable locations for 

mangrove plantation. This is according to the fact 
that regions with existing mangrove patches obtained 
relatively high suitability values. Moreover, the 
FDANP was capable of distinguishing ecologically 
unsuitable areas for mangrove plantation. For 
instance, in Figure 10 (upper circles), the zoomed 
area is covered by bare soil, and the outcrop covers 
with relatively higher distance to an intertidal zone 
that obtained low suitability values.

Figure 7. The statistical parameters for validation and comparison of Fuzzy-DEMATEL-ANP (FDANP) and AHP methods.

Figure 8. Classified mangrove suitability map generated based on the obtained criteria weights through the Fuzzy-DEMATEL-ANP 
(FDANP).

Figure 9. Individual class’ suitability percentage based on generated mangrove suitability maps by (a) Fuzzy-DEMATEL-ANP 
(FDANP) and (b) AHP methods.
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5. Discussion

Studying mangroves has significant importance in 
conserving or restoring this threatened socio- 
ecological diversity since the rate of their disappearing 
is approximately one-third of the world’s mangroves 
over the past 50 years (Baloloy et al. 2020). By disap-
pearing this invaluable ecosystem, human is deprived 
of many socio-economic benefits, including flood and 
flow control, protecting the shoreline from storms and 
soil erosion, and carbon sink source (Amad et al. n.d; 
Maurya, Mahajan, and Chaube 2021; Zhuang et al.  
2022). Furthermore, their importance for the sur-
rounding environment has been recognized by various 
international organizations, and the restoration and 
conservation of mangrove ecosystems can support 
achieving several UN SDGs (e.g. Goals 14 and 15). In 
particular, the Global Mangrove Alliance partnership 
aligned a target (OceanAction14787, 2017) to increase 
mangrove habitat by 20% by 2030 as support to the 
UN SDG 14 (Alliance 2019). Accordingly, identifying 
suitable locations with accurate methods is mandatory 
to contribute toward prosperous mangrove planta-
tions and lower the mortality of seedlings.

Consequently, the integration of RS and geospatial 
datasets and techniques make it possible to carry out 
such studies to support mangroves’ conservation, 
restoration, and mainly plantation. However, few stu-
dies have employed RS and geospatial datasets to gen-
erate mangrove suitability maps through MDCM 
approaches. For instance, Chakraborty et al. (2019) 
applied the AHP method to generate the Future 
Mangrove Suitability Index (FMSI) using fourteen 
criteria and projected climatic data to investigate dif-
ferent future scenarios and stated that this study would 
strengthen future planning projects and research in 
the mangrove ecosystem management of the study 
area. In the study by Chakraborty et al. (2019), 
NDVI obtained a weight of 8 and ranked as the most 

important criteria after soil salinity. In the current 
study, NDVI received a high weight and was ranked 
as the most important criterion. Moreover, comparing 
the weights of criteria indicates that the wind criterion 
has been recognized as the least important criterion in 
both studies. Moreover, Syahid et al. (2020) investi-
gated Hydrodynamic, Geomorphological, and 
Climatic parameters combined with different climate 
models and the Representative Concentration 
Pathway (RCP) scenarios. In order to produce man-
grove suitability maps, criteria were aggregated with 
both having the same weights and having different 
weights based on the AHP method. After identifying 
suitable locations for planting mangroves, this study 
analyzed the socio-economic parameters of the area 
and their influences on the land’s suitability. 
According to criteria weights obtained by AHP, the 
geomorphological parameters had the highest weight 
(38% of the total weight), followed by the hydrody-
namic parameters (32% of the total weight), and the 
Climatic parameter had the smallest weight (30% of 
the total weight). Geomorphological sub-parameters 
included elevation and slope, and the former was 
recognized as more important. In the current study, 
elevation also obtained a higher weight than slope, 
which is consistent with the previous studies (Syahid 
et al. 2020). In another study, (Jumawan and 
Macandog 2021) considered various criteria, includ-
ing LULC, mangrove areas, soil types, slope, 
Philippine rivers, Philippine roads, Aster DEM, and 
boundary of Oriental Mindoro, for mangrove restora-
tion in Oriental Mindoro, Philippines. The thematic 
maps of criteria were aggregated to obtain a suitability 
map using the AHP method and was classified into 
different suitability classes. Two thirds of municipali-
ties in the province were recognized as suitable areas. 
Their results demonstrated the practicality of a GIS 
framework as a decision support technique for poten-
tial mangrove restoration initiatives. Despite the 

Figure 10. Comparison of generated mangrove suitability map and real-world mangroves.
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efficiency of the above-mentioned works, they all 
implemented the traditional MCDM method named 
AHP, which is a simple method. AHP does not con-
sider the interactions between criteria and uses crisp 
numbers to calculate the weight of criteria. In fact, 
environmental factors involved in the study may 
impact each other, and by considering them, a more 
accurate result can be achieved. Also, using fuzzy logic 
theory combined with the MCDM method can 
improve the reliability of results because decision- 
makers express their idea using verbal values instead 
of crisp numbers, which is more real. Unfortunately, 
there was no study in mangrove suitability analysis 
that considers these points.

Therefore, this study aimed to fill this gap, and 
a hybrid MCDM method named FDANP was com-
pared to the traditional AHP method. These meth-
ods were combined with GIS and RS and geospatial 
datasets to map the potential area for restoration or 
plantation of mangroves along the southern coast 
of Iran. The results approve that the proposed 
method performed more efficiently in predicting 
potential mangrove areas. Moreover, the OA and 
KI of FDANP indicated that this method modeled 
mangrove suitability more precisely than the AHP 
method, which was in agreement with other rele-
vant spatial modeling studies (Kanani-Sadat et al.  
2019). The output of this study can help decision- 
makers and managers regarding future environ-
mental and socio-economic plans to have a better 
insight into endangered areas. Using these maps 
can lead to minimizing the probability of planting 
mangroves’ failure (Syahid et al. 2020).

Despite the efficiency of the current study, some 
limitations should be taken into account. For instance, 
a few parameters such as accurate population growth 
data and sea-level measurements should be included 
in further studies, unavailable throughout the study 
area due to data scarcity issues in developing countries 
like Iran. Moreover, a field-based survey should be 
done to obtain mangrove points in a dataset for the 
validation stage, which could allow a more robust 
accuracy assessment. Finally, future research can be 
directed toward Machine Learning (ML) approaches 
that do not require experts’ knowledge and can 
decrease biases and vagueness.

6. Conclusions

Identifying suitable areas for mangrove forest planta-
tion or restoration has become a necessary action that 
managers and decision-makers should consider. The 
rapid rate of mangrove ecosystem depletion is due to 
anthropogenic activities and natural drivers. The pre-
sent study utilized a hybrid system to investigate and 

map mangrove ecosystem suitability on the northern 
coast of the Persian Gulf and Oman Sea. It developed 
a hybrid MCDM approach that incorporated fuzzy 
logic, RS data, and GIS technology. The impact of ten 
criteria including precipitation, elevation, slope, wind, 
temperature, solar radiation, NDVI, NDSI, NDMI, and 
LULC was investigated on mangrove vegetation. These 
criteria were obtained from the GEE platform with 
a 100 × 100 m pixel size spatial resolution and used in 
a GIS environment to generate raster maps with the 
same pixel size. First, the DEMATEL approach was 
used to detect the impact of each criterion on others 
(inter-dependency), and as a result, there will be two 
groups of criteria called “Cause” and “Effect.” Also, the 
fuzziness level of experts’ judges has been managed by 
adopting fuzzy logic and merging it with the 
DEMATEL method. Fuzzy-DEMATEL results revealed 
that the DEM factor is an important criterion and 
significantly influences the other criteria. Then, the 
ANP approach was applied to calculate the weight of 
the criteria. NDVI has received the most weight value 
in mangrove ecosystem suitability mapping; the NDSI 
and LULC have the following ranks.

Moreover, solar radiation has the lowest impact 
on the resultant maps. To simplify the interpreta-
tion of obtained mangrove suitability maps, they 
are categorized into five classes. Furthermore, the 
assessment process was executed to certify the 
study’s findings. Overlying the obtained mangrove 
suitability maps with mangrove and non-mangrove 
points’ dataset proves the verification and efficiency 
of the investigated hybrid approach. By comparing 
the implemented approaches, it can be concluded 
that FDANP with AUC = 98.8% outperformed AHP 
with 
AUC = 97.5%. Therefore, the proposed framework 
that investigates mangrove ecosystem suitability in 
a regional area can be helpful in spatial planning 
procedures. It provides decision-makers and man-
agers with helpful information to deal with the 
degradation of this invaluable ecosystem by detect-
ing endangered areas. Hence, by implementing 
appropriate strategies and increasing people’s 
awareness in those regions, the level of loss can 
be reduced.
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