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ABSTRACT

Monitoring the rock-physics properties of the subsurface is of great importance for reservoir man-
agement. For either oil and gas applications or CO2 storage, seismic data are a valuable source of
information for tracking changes in elastic properties which can be related to fluids saturation and
pressure changes within the reservoir. Changes in elastic properties can be estimated with time-lapse
full-waveform inversion (TL-FWI). Monitoring rock-physics properties, such as saturation, with
TL-FWI is usually a two-step process: first, elastic properties are estimated with full-waveform inver-
sion (FWI), then, the rock-physics properties are estimated with rock-physics inversion. However,
multiparameter TL-FWI is prone to crosstalk between parameter classes across different vintages.
This leads to leakage from one parameter class to another, which, in turn, can introduce large errors
in the estimated rock-physics parameters. To avoid inaccuracies caused by crosstalk and the two-step
inversion strategy, we reformulate TL-FWI to estimate directly the changes in the rock-physics
properties. Using Gassmann’s model, we adopt a new parameterization containing porosity, clay
content, and water saturation (PCS). In the context of reservoir monitoring, changes are assumed to
be induced by fluid substitution only. The porosity and clay content can thus be kept constant during
time-lapse inversion. We compare the PCS parameterization with the usual density-velocity (DV)
parameterization for different benchmark models. Results indicate that the proposed parameterization
eliminates crosstalk between parameters of different vintages, leading to more accurate estimation of
saturation changes. We also show that using the PCS parameterization, the elastic changes can be
monitored more accurately.

Keywords full-waveform inversion · CO2 monitoring · time-lapse inversion · reservoir monitoring · rock-physics
monitoring

Introduction

Either for oil and gas applications or CO2 sequestration, the ability to monitor reservoirs is highly important as it allows
for safe and profitable operations. Time-lapse seismic monitoring is a powerful tool that allows to investigate large-scale
changes in a reservoir (Lumley, 2001; Landrø et al., 2003; Dupuy et al., 2016a; Maharramov et al., 2016; Fabien-Ouellet
et al., 2017; Lang and Grana, 2019; Zhou and Lumley, 2021; Mardan et al., 2022a,c). Seismic monitoring is sensitive to
changes in elastic parameters, which can be related to reservoir parameters, such as saturation, through a rock-physics
model.
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Numerous studies have been conducted to monitor saturation changes in reservoirs. Landrø et al. (2003) used PP and
PS seismic data to better estimate the time-lapse changes. Buland and Ouair (2006) proposed a Bayesian time-lapse
inversion method and applied it to monitor the Norne Field offshore Norway with seismic data acquired from 2001 to
2003. Vedanti and Sen (2009) used prestack seismic data inversion to monitor the in situ combustion in the Balol oil
field. Lang and Grana (2019) studied the potential of the Johansen field in Norway by simulating CO2 injection for 10
years and monitoring the reservoir. All of these studies are based on linearized amplitude variation with offset (AVO)
and the convolutional model whose accuracy decreases by increasing the incidence angle (Mallick, 2007). Although
AVO has been very successful and is commonly used in industry, it has some other limitations. AVO inversion only uses
the amplitude of the reflected waves while for better imaging, all type of waves should be involved during the inversion
(Virieux et al., 2017). In addition, AVO relies on the assumption that reflectors are flat, which is a restrictive hypothesis
in many cases (Queißer and Singh, 2013). Last but not least, AVO suffers from the uncertainties in data preprocessing
such as velocity model errors (Naeini et al., 2017; Hu et al., 2021). These assumptions and the incomplete use of
waveforms can lead to suboptimal use of the resources invested in monitoring.

A variety of studies have used time-lapse full-waveform inversion (TL-FWI) to monitor reservoirs. For example,
Watanabe et al. (2005) used time-lapse crosswell seismic data to monitor the changes during a gas hydrate thermal
production test at the Mallik site. Raknes et al. (2013) monitored the leakage of one producing well over a field in North
Sea by studying the seismic data of two vintages with two years time difference. Hicks et al. (2016) and Lescoffit et al.
(2016) showed the interest of TL-FWI when studying seismic data and changes in P -wave velocity (VP ) at Grane field
due to gas-oil replacement. Maharramov et al. (2016) showed the potential of TL-FWI to image the changes in the
Genesis field in the Green Canyon area of the central Gulf of Mexico. In these studies, TL-FWI is carried out to map
the acoustic changes in the subsurface using a monoparameter acoustic formulation (analyzing only VP ). To obtain the
changes in terms of rock-physics properties, full-waveform inversion (FWI) is employed to estimate VP and in the next
step, the estimated VP is inverted using rock-physics inversion. For example, this two-step procedure has been used to
estimate the changes in the saturation of CO2 at Sleipner field in North Sea (Queißer and Singh, 2013; Dupuy et al.,
2016a,b; Yan et al., 2019; Dupuy et al., 2021; Romdhane et al., 2022).

To approach the true properties of the subsurface, an elastic formulation is preferred over acoustic as it allows taking
into account the different seismic phases in the measured data. An elastic medium requires multiparameter TL-FWI. In
this case, model parameters can have coupled effects on the seismic data, which is referred to as crosstalk between
parameters (Operto et al., 2013; Yang et al., 2018). Ma et al. (2016) studied the Marmousi model for multiparameter
acoustic TL-FWI and showed that the crosstalk problem is more severe in TL-FWI. Although Ma et al. (2016) recovered
good images of the subsurface using FWI, the estimated time-lapse images were inaccurate due to the crosstalk problem
(Figure 2 and 3 of Ma et al. (2016)). This problem can be alleviated by using different parameterizations (Tarantola,
1986; Operto et al., 2013; Ma et al., 2016; Hu et al., 2021). A comprehensive discussion is provide by Pan et al. (2019)
where the authors analyzed the efficiency of different parameterizations such as velocity-density (DV) (P -wave velocity,
S-wave velocity, and density), modulus-density (DM) (bulk modulus, shear modulus, and density), impedance-density
(D-IP) (P -wave impedance, S-wave impedance, and density), velocity-impedance-I (V-IP-I) (P -wave velocity, S-wave
velocity, and P -wave impedance), and velocity-impedance-II (V-IP-II) (P -wave velocity, S-wave velocity, and
S-wave impedance) for performing elastic FWI.

The goal of this study is to recover the changes in water saturation (Sw) by considering an elastic earth. To minimize
the effects of crosstalk that can occur due to the time-lapse nature of the problem, the TL-FWI is formulated in terms
of porosity (φ), clay content (C), and water saturation, as proposed by Hu et al. (2021) in the context of FWI. This
parameterization (called PCS) is chosen to facilitate the time-lapse inversion as we can assume that porosity and
clay content are constant with time in the reservoir. To perform this technique, a connection between the elastic and
rock-physical properties is required. In this work, we use Gassmann’s equation for this purpose. Using the PCS
parameterization, we combine the rock-physics inversion and FWI in a single inversion scheme. In this way, saturation
can be directly inverted from the raw seismic data (shot gather). By performing TL-FWI with the PCS parameterization,
we can also easily obtain the time-lapse images of elastic properties using the underlying rock-physics model.

This paper is organized by first presenting FWI and the required formulation to include Gassmann’s model for estimating
the porosity, clay content, and water saturation. This section is followed by a brief discussion on TL-FWI. Then, we
study and discuss the efficiency of this method by using numerical models.

Theory

Full-waveform inversion

Full-waveform inversion is a local optimization process that minimizes residuals between the observed and estimated
wavefields at the receivers locations for different source positions (Virieux and Operto, 2009). The objective function
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can be written as
χ(m) =

1

2
‖Wd (Ru(m)− d) ‖22 + χREG, (1)

where R maps the wavefield (u) to the receivers locations. Vectors m and d are the model parameter and observed data,
respectively. Wd is a weighting operator on the data misfit and χREG is a regularization term. FWI is highly ill-posed,
where an infinite number of models matches the data. A variety of regularization methods such as the Tikhonov, total
variation, prior information, and parameter-relation techniques have been proposed to condition the FWI problem
and reduce the ill-posedness (Virieux and Operto, 2009; Asnaashari et al., 2015). In this study, we use the Tikhonov
regularization. This regularization method is presented in Appendix A in addition to total variation, prior information,
and parameters-relation techniques. In equation 1, the wavefield is the solution of a partial differential equation (PDE)
which is discretized to perform the forward modeling. For the 2D isotropic elastic case in time domain, this PDE can be
written as 

ρv̇x = ∂xτxx + ∂zτxz,

ρv̇z = ∂zτzz + ∂xτxz,

τ̇xx = (λ+ 2G)∂xvx + λ∂zvz + s,

τ̇zz = λ∂xvx + (λ+ 2G)∂zvz + s,

τ̇xz = G(∂zvx + ∂xvz),

(2)

where λ and G denote lamé’s parameter and where ρ and s are density and the source function. In equation 2, the
particle velocities in x- and z-directions (vx and vz) as well as (τxx and τzz) and shear stresses (τxz) constitute vector u.
Spatial partial derivative operators are indicated by ∂x and ∂z for x− and z−directions and the temporal differentiation
is denoted by overhead dot (@̇A).

In the case of equation 2, the vector of model parameter, m in equation 1, is

m = [λ,G, ρ]T , (3)

where T is the transpose operator. Although, the forward modeling is performed using Lamé parameters and density, FWI
can be performed using different parameterizations. For example, the DV parameterization is a common formulation.
Switching between parameters can be carried out using the chain rule, as shown at the end of this section.

Optimization

To minimize the cost function (equation 1), a variety of optimization algorithms such as steepest-descent, conjugate-
gradient, `-BFGS, and Newton algorithms can be employed (Virieux and Operto, 2009). These algorithms minimize
the cost function in the vicinity of a starting model, m0, as

m = m0 + α∆∆∆m, (4)

where α is step size and the search direction, ∆∆∆m, for gradient descent is

∆∆∆m = −

[ ∇m(1)χ
∇m(2)χ
∇m(3)χ

]
, (5)

where ∇m(n)χ is the gradient of the cost function with respect to model parameter m(n).

One of the most problematic challenges of multiparameter FWI is crosstalk between parameters. Crosstalk is due
to the fact that different parameters can have a coupled effect on the seismic wavefield and different combination of
changes in these parameters can cause similar seismic response (Operto et al., 2013; Yang et al., 2018). To address
this problem, different strategies have been deployed (Métivier et al., 2013; Operto et al., 2013; Lavoué et al., 2014;
Fabien-Ouellet et al., 2017; Keating and Innanen, 2019). Operto et al. (2013) listed four main strategies: the choice
of appropriate parameterization, the use of the Hessian as it can measure the level of coupling between parameters, a
data driven strategy i.e., using multi-components data, and a sequential inversion where the dominant parameters are
estimated before the secondary parameters. To further reduce the crosstalk problem, it is also proposed to scale the
gradient (Kamei and Pratt, 2013; Lavoué et al., 2014). Hence equation 5 can be rewritten as

∆∆∆m = −

[ ∇m(1)χ
ξ∇m(2)χ
β∇m(3)χ

]
, (6)
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where ξ and β scale the gradient of different parameter classes.

By using a quasi-Newton method, `-BFGS, we consider an approximation of the Hessian into the solution (Nocedal
and Wright, 2006) which helps reducing crosstalk. However the most important point of this study is the chosen
parameterization. Considering the fact that the time-lapse changes in P -wave velocity due to fluid substitution (more
affected than S-wave velocity and density) are approximately 10% of the baseline model (Zhou and Lumley, 2021), the
challenges of FWI are more pronounced in time-lapse studies than in conventional FWI. Ma et al. (2016) studied the
possibility of deploying TL-FWI for multiparameter acoustic studies. Although they estimate the model parameters
very well, crosstalk prevents from obtaining an acceptable time-lapse image of the subsurface for any of two time-
variable parameters. Thereby, an efficient parameterization is required to minimize the crosstalk in multiparameter
TL-FWI. Inspired by Hu et al. (2021), we study the feasibility of performing TL-FWI using the PCS parameterization.
Recalling that the porosity and clay content can be reasonably considered constant with time, water saturation is the
only time-variable parameter.

In the next section, we provide the required equations to adapt the FWI problem to estimate the PCS parameters using
Gassmann’s equation. In this case, the vector of model parameter can be written as

m = [φ,C, Sw]T . (7)
Using the aforementioned assumption that porosity and clay content remain constant over time for reservoirs, the
changes in water saturation can be the only parameter to be sought in the time-lapse inversion.

It is worth recalling that the chain rule is used to change the parameters for inversion. As an example, q parameterization,
q = [q1, q2, q3]T , can be changed to a new parameterization, p = [p1, p2, p3]T , as

∂χ

∂qi
=

∂χ

∂p1

∂p1

∂qi
+
∂χ

∂p2

∂p2

∂qi
+
∂χ

∂p3

∂p3

∂qi
, (8)

for i ∈ (1, 2, 3). FWI can be performed in any parameterization while the forward modeling is implemented using
equation 2.

This study is carried out using PyFWI (Mardan et al., 2023a) which is an open-source package that implements FWI in
terms of DV parameterization. In the next section, we present the methodology to transfer the earth model from PCS
parameterization to DV parameterization for forward modeling. In Appendix B, we present the required equations to
obtain the gradient of the cost function in terms of PCS parameterization for performing the inversion.

Porous media homogenization

To perform TL-FWI with a rock-physics parameterization, a rock-physics model is needed to map the rock-physics
properties to the elastic properties. Although there are numerous empirical rock-physics models that satisfy this
requirement, we employ Gassmann’s equation (Gassmann, 1951) which is valid for most of consolidated rocks (Dupuy
et al., 2016b). Gassmann’s relation is used to compute the variation of bulk modulus during the fluid substitution. In
practice, Gassmann’s model requires some information on the fluid and mineral properties. In the context of TL-FWI,
this information should be available as time-lapse FWI is usually performed in well studied fields.

The effective properties of the fluid (bulk modulus, K, and density) can be calculated using weighted arithmetic
averages (Voigt, 1889),

Kf = SwKw + (1− Sw)Kh,

ρf = Swρw + (1− Sw)ρh,
(9)

where the subscripts f , w, and h respectively denote the effective property of the fluid, water, and hydrocarbon.

The density of the solid frame of rock can be calculated using weighted average of the density of the grains as
ρs =Cρc + (1− C)ρq, (10)

where subscripts s, c, and q denote solid medium, clay, and quartz, respectively. The bulk and shear moduli of the solid
can be estimated using Voigt-Reuss-Hill method

Ks =
1

2
[(CKc + (1− C)Kq)

+

(
1

C/Kc + (1− C)/Kq

)]
,

Gs =
1

2
[(CGc + (1− C)Gq)

+

(
1

C/Gc + (1− C)/Gq

)]
.

(11)
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The effective dry moduli of the rock, KD and GD can be computed using various effective medium theories (Berryman,
1995; Mavko et al., 2020). Following Pride (2005), we estimate the dry moduli with

KD = Ks
1− φ

1 + csφ
,

GD = Gs
1− φ

1 + 3
2csφ

,
(12)

where cs is the general consolidation parameter which defines the degree of consolidation among grains. This parameter
can be considered as a free parameter in predicting velocities (Lee, 2005). For further studies about cs, readers are
referred to Lee (2005) where the author discusses the importance of this parameter and how it can be calculated.

Finally, the effective properties of the porous medium is calculated with the following expressions (Gassmann, 1951;
Voigt, 1889),

K =
φKD + (1− (1 + φ)KD/Ks)Kf

φ(1 + ∆)
,

G = GD,

ρ = (1− φ)ρs + φρf ,

(13)

where

∆ =
1− φ
φ

Kf

Ks

(
1− KD

(1− φ)Ks

)
=

1− φ
φ

Kf

Ks

(
1− 1

1 + csφ

)
. (14)

The elastic properties can be calculated using equation 13 as

VP =

√
K + 4

3G

ρ
,

VS =

√
G

ρ
,

ρ = ρ.

(15)

For a detailed discussion on Gassmann’s model and the provenance of equations 9-15 see Dupuy et al. (2016b).

Time-lapse full-waveform inversion

Time-lapse FWI can be performed by considering different combinations of FWI runs. These combinations can be
performed sequentially such as for the cases of the cascaded, cross-updating, and weighted-average methods (Watanabe
et al., 2005; Maharramov et al., 2016; Mardan et al., 2022b, 2023b), or in parallel as in the case of the independent and
central-difference methods (Plessix et al., 2010; Zhou and Lumley, 2021). In addition to these methods, Maharramov
et al. (2016) proposed a joint inversion of seismic data from different vintages by introducing the cost function as

χtl(mb,mm) =‖Ru(mb)− db‖22 + ‖Ru(mm)− dm‖22
+ δ‖mm −mb‖22,

(16)

where subscripts b and m denote baseline and monitor models. The difference between the estimated baseline and
monitor models is used as a regularization term and the weight of this term in the cost function is controlled by
parameter δ which is constant during the inversion. This parameter, δ, can vary for different surveys and should be
picked by trial and error. More details on this parameter can be found in Maharramov et al. (2016). The flowchart of
this method (hereafter called simultaneous TL-FWI) is presented in Figure 1. Simultaneous TL-FWI gets an initial
model and observed seismic data from two vintages. In the first step, the baseline data are inverted and the estimated
baseline is used as the initial model for time-lapse FWI. TL-FWI minimizes the residuals between the estimated and
observed data from the baseline and monitor models regularized by the difference between the estimated models.

Simultaneous TL-FWI is one of the most accurate strategies for time-lapse studies (Mardan et al., 2023b). Incorporating
a regularization term for minimizing the difference between two estimates (baseline and monitor models) helps this
method to produce less artifacts.

The methodology we propose is as follows. We first estimate the baseline model, using standard FWI in the PCS
parametrization. Then we perform a single-parameter inversion of Sw with jointly inverting the baseline and monitor
data (equation 16). We justify the last step by making the hypothesis that porosity and clay content remains constant
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Figure 1: Flowchart of simultaneous TL-FWI. After performing FWI on baseline data, a joint time-lapse FWI inverts
baseline and monitor data where the inversion process is regularized by the difference between estimated baseline and
monitor models.

after fluid injection. In the case of inversion with the DV parameterization, the TL-FWI is a multi-parameter problem.
Furthermore, it requires the additional step of inverting the elastic properties to obtain Sw. In this work, we use `-BFGS
to do so, which minimizes the following cost function

χrp =
1

2
‖F (φ,C, Sw)−mDV ‖2, (17)

where F is a function that calculates VP , VS , and ρ based on equations 9-15 and mDV is vector of estimated elastic
properties using the DV parameterization.

Numerical analysis

In this section we assess the feasibility of the proposed strategy with two synthetic models. For both analysis, FWI
is performed to estimate all model properties (elastic or rock-physics properties) simultaneously. In this regard, the
multi-scale strategy (Bunks et al., 1995) is employed to avoid cycle-skipping. We filter the observed and estimated data
using a lowpass Butterworth filter with cut-off frequencies of 10, 20, 25, 35, 40, and 55 Hz. The source for forward
modeling is a Ricker wavelet with a central frequency of 30 Hz. Perfectly matched layers (PML) are used at the
boundaries of the models to minimize waves reflected from the boundaries (Berenger, 1994). We use the Tikhonov
regularization (equation 18) in the x-direction (Bz = 0) to decrease the ill-posedness of FWI problem and make the
estimated models smoother in the x-direction.

For numerical studies, we use two synthetic models. For the first experiment, a simple layered model is used. Then,
TL-FWI is performed using the Marmousi model which is a more realistic case. During the inversion, the gradient is
scaled using equation 6. The scaling weights ξ and β are obtained by trial and error, by performing FWI runs on the
simple layered model. Then we use the same weights for the Marmousi model. The rock-physical properties used in
this study are shown in Table 1.

Layered model

To investigate the performance of the methodology, a simple model with three flat reflectors is first used (Figure 2).
Figure 2a-2c shows the true models for porosity, clay content and water saturation for the baseline and Figure 2d-2f
shows the true monitor model. The initial model of the inversion is shown in Figure 2g-2i. Finally, the true time-lapse
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Bulk modulus (GPa) Shear modulus (GPa) Density (g/cm3)

Quartz 37.00 44.00 2.65
Clay 21.00 10.0 2.55
Water 2.25 0.00 1.00
Gas 0.04 0.00 0.10

Table 1: Elastic properties in this study for minerals and fluids where cs is set to 20 (Dupuy et al., 2016a; Hu et al.,
2021).

model is shown in Figure 2j-2l. The elastic properties of this model are shown in Figure 3. Comparing Figure 2j-2l with
Figure 3j-3l shows that with a 25% increment of water saturation, P-wave velocity and density increase by 3% and
0.8%, respectively, while the S-wave velocity decreases by 0.4%.

To perform this study, seven isotropic sources are used on the surface for forward modeling. Receivers are located on
the surface and in two imaginary wells at both sides of the model. Noise-free pressure data are inverted to recover the
time-lapse anomaly. The rock-physics properties estimated by using Gassmann’s equation are presented in Figure 4a-4c.
The parameters in this model are used to obtain an indirect estimate of P - and S-wave velocities as well as density, as
shown in Figure 4d-4f. A 1D plot obtained at X = 0.5 km (dashed line in Figure 2l) is also shown in Figure 5 for both
rock-physics properties, Figure 5a-5c, and elastic properties, Figure 5d-5f.

Results of the first step obtained with this simple synthetic model shows that FWI and the proposed formulation have
the potential to recover the rock-physics properties. However, reconstructing the clay content seems problematic and
the interfaces in this parameter are not recovered sharply (Figure 4b and 5b). Although Hu and Innanen (2021) showed
that the C model can be estimated better by considering a parameter-relation regularization, this type of regularization
is not taken into account in this study. The parameter-relation regularization allows us to regularize the inversion
based on the relation between two parameters in the field. So in general, we can expect that the parameter-relation and
prior-model regularization (Asnaashari et al., 2013) should improve the accuracy of the estimated clay content. These
two regularization methods are provided in Appendix A for interested readers.

After estimating the baseline model (Figure 4), TL-FWI can be performed using equation 16. We first compare the
efficiency of the DV and PCS parameterization to monitor the rock-physics properties. Using the DV parameterization,
changes in terms of the rock-physics properties are estimated in two steps. We first estimate the elastic properties of
the baseline and the monitor models using equation 16. In the second step, equation 17 is employed to estimate the
rock-physics properties of the baseline and the monitor models and differences are presented in Figure 6a-6c. This is a
naive method to perform multiparameter TL-FWI and leads to overestimation of porosity and inaccurate time-lapse
estimate. We cannot get an accurate time-lapse image using this method due to the crosstalk between parameters. It is
worth reminding that the crosstalk problem is more severe in time-lapse inversion, because the magnitude of changes
in reservoirs is comparable to generated artifacts. To improve the results, we follow another strategy. In this strategy,
the rock-physics properties of the baseline are estimated using equation 17. Then, by assuming that porosity and clay
content are not variable with time, the elastic properties of the monitor model are inverted to estimate the saturation.
For this purpose, the estimated rock-physics model of the baseline is used as initial model to estimate the rock-physics
properties of the monitor model. Despite the inversion of the baseline model, we perform single-parameter inversion for
estimating the rock-physics properties of the monitor model during which only Sw is updated. This strategy leads to
the time-lapse estimate presented in Figure 6d-6f where a better time-lapse image of the saturation is obtained. This
strategy is used hereafter in this study to compute the time-lapse rock-physics properties using the DV parameterization.
By using the PCS parameterization and considering time-independent porosity and clay content, direct TL-FWI is
performed to only monitor the water saturation. The estimated time-lapse models of porosity, clay content, and water
saturation are presented in Figure 6g-6i. Comparing Figure 6 to Figure 2j-2l shows that the PCS parameterization
can improve the accuracy of time-lapse studies for monitoring the saturation of the fluids in the subsurface. The
accuracy of the results is measured using root-mean-square error (RMSE) and direct monitoring of Sw using the PCS
parameterization leads to a 37.3% higher accuracy in comparison to using the DV parameterization.

In addition to the rock-physics properties, the PCS parameterization can be used to recover time-lapse images of the
elastic properties. For this case, we use equation 16 to obtain the baseline and monitor models in terms of porosity, clay
content and water saturation. The results are then used for rock-physics modeling (equation 9-15) to obtain the elastic
properties of the baseline and monitor models. While the DV parameterization leads to time-lapse images presented in
Figure 7a-7c, the PCS parameterization improves the time-lapse estimates (Figure 7d-7f). The DV parameterization
does not allow recovering the changes appropriately. This can be explained by considering that 25% changes in the
saturation (Figure 2l) is now spread out between three elastic properties and it causes only 3%, 0.4% and 0.8% variation
respectively in VP , VS , and ρ (Figure 3j-3l). Comparing the estimated time-lapse changes in Figure 7 shows that using
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Figure 2: Rock-physics properties of the layered model. (a-c) True baseline, (d-f) true monitor, and (g-i) initial models.
(j-l) Time-lapse changes between porosity (a and d), clay content (b and e), and water saturation (c and f). The time-lapse
model is presented with two color scales which show the changes in value and percentage. Dashed line in (l) is used for
1D profile in Figure 5 and 8.

the PCS parameterization, we can recover the elastic properties more accurately than using the DV parameterization.
The time-lapse elastic properties estimated using the PCS parameterization are 53% more accurate than with the DV
parameterization.

Figure 8a-8c shows 1D profiles of the true and estimated changes in the rock-physics properties along the dashed line
in Figure 2l. The estimated time-lapse elastic properties from PCS and DV parameterizations are also compared in
Figure 8d-8f. This comparison shows that the results obtained using the DV parameterization (dotted lines) are far from
accurate. For 1D analysis, the PCS parameterization leads to 43% higher accuracy (Figure 8a-8c). For monitoring the
elastic properties, the PCS parameterization yields 57% higher accuracy (Figure 8d-8f).
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Figure 3: Elastic properties of the layered model. (a-c) True baseline, (d-f) true monitor, and (g-i) initial models. (j-l)
Time lapse changes between VP (a and d), VS (b and e), and ρ (c and f). The time-lapse model is presented with two
color scales which show the changes in value and percentage.
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Figure 4: The estimated baseline model of (a) porosity, (b) clay content, (c) water saturation, (d) P -wave velocity, (e)
S-wave velocity, and (f) density estimated using the PCS parameterization.

10
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Figure 5: 1D assessment of the results for (a) porosity, (b) clay content, (c) water saturation, (d) P -wave velocity,
(e) S-wave velocity, and (f) density at X = 0.5 km (center of the 2D section). True value is shown with solid line,
estimated model is shown with dashed line and dotted line presents the initial model.
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Figure 6: Estimated time-lapse model for φ, C, and Sw with (a-c) the DV parameterization while all model parameters
can vary with time, (d-f) the DV parameterization while Sw is the only time-dependent parameter, and (g-i) the PCS
parameterization.
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Figure 7: Estimated time-lapse model for VP , VS , and ρ with (a-c) the DV parameterization and (d-f) the PCS
parameterization.
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Figure 8: 1D assessment of the time-lapse estimates for (a) porosity, (b) clay content, (c) water saturation, (d) P -wave
velocity, (e) S-wave velocity, and (f) density at X = 0.5 km. True value is shown with solid line, estimated model
with PCS parameterization is shown with dashed line and dotted line presents the estimated model with the DV
parameterization.
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Marmousi model

In this section, we aim at assessing the methodology using a more realistic model. For this purpose, a portion of the
Marmousi model is chosen (Figure 9). The true baseline and monitor models are shown in Figure 9a-9f. This model
contains two sandstone reservoirs. The monitor model (Figure 9d-9f) is created by reducing the water saturation in the
reservoir indicated by line A1 and increasing the water saturation in the reservoir indicated by line A2 (Figure 9l).

The elastic properties of this model are shown in Figure 10. Basically, the density of the saturated rock increases
by replacing the hydrocarbon by water. Although the P -wave velocity has a reverse relationship with density, the
hydrocarbon-water replacement increases the P -wave velocity due to the increase of the saturated bulk modulus.
However, the fluid shear modulus is nil and S-wave velocity is decreased due to the increase in density. Figure 9j-9l and
Figure 10j-10l show the time-lapse changes in rock-physics and elastic properties, respectively. The relative changes
are shown in Figure 11a-11c and Figure 11d-11f for the rock-physics and elastic properties. In this case, the maximum
changes in water saturation occurs in the reservoir A2, which shows a 40% change with respect to the baseline. This
change leads to maximum change of 6.2%, 2.31%, and 4.46% in elastic properties, VP , VS , and ρ respectively. Hence,
we can expect that changes can be better tracked using the PCS parameterization.

Figure 9: Rock-physics properties of the Marmousi model. (a-c) True baseline, (d-f) true monitor, and (g-i) initial
models. (j-l) Time-lapse changes between porosity (a and d), clay content (b and e), and water saturation (c and f).
Lines A1 and A2 are used for 1D studies in Figure 14.

FWI of the baseline data is carried out using the PCS parameterization with values of respectively 5 and 8 for ξ and
β, obtained from the layered model, studied in the previous section. The initial model for this inversion is presented
in Figure 9g-9i. The results of the inversion of the baseline are presented in Figure 12. As the receivers are located
only on the surface for this model, it can be seen that the quality of the model update decreases toward the edges.
Finally, the results of TL-FWI are shown in Figure 13. As shown in Figure 13a-13c, the DV parameterization allows
recovering changes in only reservoir A1. On the other hand, the time-lapse water saturation anomalies are detected in
both reservoirs using the PCS parameterization, as shown in Figure 13d-13f.

Figure 13g-13l shows the changes in elastic properties. In this case, the PCS parameterization, shown in Figure 13j-13l,
yields significant improvement over the DV parameterization, shown in Figure 13g-13i. This improvement leads to
11.7% higher accuracy by using the PCS parameterization. As can be seen in Figure 13g, the changes in P -wave
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Figure 10: Elastic properties of the Marmousi model. (a-c) True baseline, (d-f) true monitor, and (g-i) initial models.
(j-l) Time-lapse changes between VP (a and d), VS (b and e), and ρ (c and f).

velocity are not recovered in reservoir A2. Although the time-lapse changes in S-wave velocity can be detected, the
value in reservoir A1 is overestimated (Figure 13h). Last but not least, the time-lapse anomalies of density are not
detectable from Figure 13i. Despite inaccuracies in the estimated time-lapse elastic properties, Figure 13j-13l show that
the PCS parameterization can lead to a better estimation of elastic properties.

Finally, a 1D assessment of the results is carried out along lines A1 and A2, shown in Figure 9l. The 1D presentation of
time-lapse changes (Figure 14) shows that TL-FWI with the DV parameterization is not able to recover the changes in
the reservoirs appropriately, while using the PCS parameterization can provide accurate time-lapse images of the model
for both the elastic and rock-physics properties. In this 1D analysis, the PCS parameterization leads to 24.51% higher
accuracy for estimating the elastic properties and 19.57% for estimating the rock-physics properties.

Discussion

The potential of the PCS parameterization for estimating time-lapse changes in elastic and rock-physics properties is
shown in this study. The direct estimation of changes in rock-physics properties provides more accurate results rather
than the indirect estimation. However, the estimates presented in Figure 6 show clearly that an effective inversion
strategy and optimization method can improve the accuracy of estimated changes using indirect inversion. As the
computation time of the rock-physics modeling is negligible, global inversion methods such as Monte-Carlo methods
might be a better choice for the second step of the inversion (Dupuy et al., 2016b). However, the direct estimation of
rock-physics properties aid to avoid the challenges of picking an appropriate optimization method and parameters for
the rock-physics inversion.

The estimated time-lapse changes for the two presented synthetic models show that using the PCS parameterization can
also enhance the accuracy for monitoring the elastic properties (Figure 7 and Figure 13). This is due to the fact that
using the PCS parameterization, the crosstalk between parameters of different vintages can be avoided. In this study,
we assumed that the only variable parameter with time is fluid saturation. However, pore pressure is another important
parameter that should be considered. Although the changes in the pore pressure can be negligible in some fields due
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Figure 11: Absolute value of percent changes relative to the baseline in terms of studied (a-c) rock-physics and (d-f)
elastic properties.

Figure 12: The estimated models of (a) porosity, (b) clay content, (c) water saturation, (d) P -wave velocity, (e) S-wave
velocity, and (f) density estimated using the PCS parameterization.

to the properties such as high permeability (Dupuy et al., 2021), further studies should be conducted to analyze the
efficiency of simultaneous monitoring of saturation and pore pressure.

In this work, we have assumed a simple rock-physics model in which only saturation effects on elastic properties
are modeled. In reality, this model will contain errors in describing the actual subsurface properties either from the
calibration and subsurface assumptions or even the model itself. However, time-lapse studies are carried out in well
studied fields. The calibration of the rock-physics model should not pose too much of a problem in this scenario.
Besides, the geological information and well-log data of these fields can be employed to regularize the inversion
problem and increase the accuracy of FWI results.
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Figure 13: Estimated time-lapse model for φ, C, and Sw with (a-c) the DV and (d-f) PCS parameterizations. Estimated
time-lapse model for VP , VS , and ρ with (g-i) the DV and (j-l) the PCS parameterizations.

Conclusions

Time-lapse seismic data have been proven as an important source of information for reservoir monitoring. Full-waveform
inversion is a powerful tool that relies on seismic data to recover the subsurface properties. However this method
generally suffers from crosstalk between parameters in multiparameter studies. This problem becomes more dramatic
in time-lapse studies, because the time-lapse changes can be caused by any combination of different parameters in
different vintages.

In this study, we formulated time-lapse full waveform inversion in terms of porosity, clay content, and water saturation
using Gassmann’s equation, to assess its performance for reducing crosstalk and improve estimates of saturation
changes. Using this formulation, we can rely on the assumption that water saturation is the only variable parameter
that changes in time and thereby, it is possible to avoid crosstalk caused by time-lapse study. We showed that the PCS
parameterization improves the time-lapse estimate. By using Gassmann’s equation and the new parameterization, it is
also shown that the time-lapse estimate in elastic properties can be obtained indirectly with higher accuracy (11.7%
higher accuracy in case of the Marmousi model).
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Figure 14: 1D assessment of the time-lapse estimates for saturation along the line (a) A1, (b) A2. Time-lapse estimates
for elastic properties along the line (c-e) A1 and (f-h) A2. True value is shown with solid line, estimated model with
the PCS parameterization is shown with dashed line and the dotted line presents the estimated model with the DV
parameterization.
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A Regularization in seismic FWI

By taking advantage of Tikhonov regularization, smoothness of the estimated model can be achieved (Asnaashari et al.,
2013). This regularization can be presented as

χ1 = λ1

(
mTBT

xBxm + mTBT
z Bzm

)
, (18)

where B and λ denote respectively the first-order spatial derivative operator and regularization hyperparameter. The
subscripts x and z specify the direction.

Total variation regularization (TV) has also shown promising results in FWI to decrease artifacts and preserve the edges
and the discontinuities (Anagaw and Sacchi, 2012; Esser et al., 2018). This regularization can be achieved by using

χ2 = λ2‖
√

(Bxm)2 + (Bzm)2‖1. (19)

Also, Asnaashari et al. (2013) state that where nonseismic information exists, it should be used as prior information for
FWI inversion. Hence, they proposed regularizing the cost function using the prior information (mp) as

χ3 = λ3‖Wm(m−mp)‖22, (20)
where Wm is a weighting operator in the model space.

Finally, in the case of multiparameter FWI, if information about the relationship between different parameters exists,
then regularization can be considered to force the optimization algorithm to follow (Hu and Innanen, 2021),

χ4 = λ4‖m1 − f(m2)‖22, (21)
where f is a function to estimates m1 from m2.

B The gradient of cost function in PCS parameterization

In equation 13, we showed how to calculate the elastic properties of the porous medium using K, G, and ρ. To
perform FWI with PCS parameterization, it is required to estimate the gradient of these parameters in terms of PCS
parameterization. Gradient of K, G, and ρ with respect to φ can be obtained as

∂K

∂φ
=
KD + φ∂KD

∂φ −
Kf

Ks

(
KD + (1 + φ)∂KD

∂φ

)
φ(1 + ∆)

−[
φKD +

(
1− (1+φ)KD

Ks

)
Kf

] (
1 + ∆ + φ∂∆

∂φ

)
φ2(1 + ∆)2

,

∂G

∂φ
=
∂GD
∂φ

,

∂ρ

∂φ
= ρf − ρs,

(22)

where
∂KD

∂φ
= −Ks

1 + cs

(1 + csφ)2
,

∂∆

∂φ
= − Kf

Ksφ2

(
1− 1

1 + csφ

)
+
Kf (1− φ)

Ksφ

cs

(1 + csφ)2
,

∂GD
∂φ

= −Gs
1 + 3

2cs

(1 + 3
2csφ)2

.

(23)

With respect to C, we have

∂K

∂C
=
φ∂KD

∂C +
Kf (1+φ)

K2
s

(
∂Ks

∂C KD − ∂KD

∂C Ks

)
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(
1− (1+φ)KD
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,
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,

(24)
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where
∂∆

∂C
=

(φ− 1)Kf

φK2
s

(
1− 1

1 + csφ

)
∂Ks

∂C
,

∂Ks

∂C
= Kc −Kq,
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= Gc −Gq,
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2csφ
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,

∂ρs
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= (ρc − ρq).

(25)

Finally, with respect to Sw, we have

∂K

∂Sw
=

(
1− (1+φ)KD

Ks

)
∂Kf

∂Sw
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(26)

where
∂Kf

∂Sw
= Kw −Kh,

∂∆

∂Sw
=

∆

Kf

∂Kf

∂Sw
.

(27)

Gathering the previous terms, the gradient of the cost function with respect to model parameters in PCS parameterization
can be calculated as 

∂χ
∂φ
∂χ
∂C
∂χ
∂Sw

 =

 ∂VP

∂φ
∂VS

∂φ
∂ρ
∂φ
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∂VP
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