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Targeting intracellular galectins
for cancer treatment

Rita Nehmé and Yves St-Pierre*

INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
Although considerable attention has been paid to the role of extracellular

galectins in modulating, positively or negatively, tumor growth and metastasis,

we have witnessed a growing interest in the role of intracellular galectins in

response to their environment. This is not surprising as many galectins

preferentially exist in cytosolic and nuclear compartments, which is consistent

with the fact that they are exported outside the cells via a yet undefined non-

classical mechanism. This review summarizes our most recent knowledge of

their intracellular functions in cancer cells and provides some directions for

future strategies to inhibit their role in cancer progression.
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1 Introduction

Inside the cells, galectins are best known to form aggregates following the recognition

of glycans on the surface of damaged endocytic vesicles, including damaged phagosomes,

endosomes, and lysosomes (1). Although galectins bind carbohydrates, it is also becoming

apparent that intracellular galectins are involved in carbohydrate-independent interactions

with multiple ligands. This may not be surprising as some galectins harbor distinctive

glycan binding sites (GBS) that preclude binding to b-galactoside and other carbohydrates

(2–4). For example, galectin-10, also known as the Charcot-Leyden crystals (CLC), binds in

a carbohydrate-independent manner with intracellular RNases, modulating their

translocation inside eosinophils (5). In the case of galectin-16, it binds via protein-

protein interactions to c-Rel, an NF-kB subunit known to play a central role in multiple

types of cancer (4). The ability of intracellular galectins to accomplish various functions via

protein-protein interactions is not restricted to galectins with limited carbohydrate binding

functions. Still, it is shared by multiple, if not all, galectin family members. These protein-

protein interactions control many cellular processes linked to cancer progression, such as

resistance to drug-induced apoptosis, cell transformation, expression of cancer genes,

proliferation, dysregulation of cellular metabolism or cytoskeletal remodeling, obliging us

to rethink our strategies to design galectin drugs in the context of specific diseases. Here, we

discuss the challenges and opportunities associated with targeting intracellular galectins for

cancer treatment.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1269391/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1269391/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1269391&domain=pdf&date_stamp=2023-09-11
mailto:yves.st-pierre@inrs.ca
https://doi.org/10.3389/fimmu.2023.1269391
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1269391
https://www.frontiersin.org/journals/immunology
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2 Where are galectins in cancer cells?

The short answer to this question is “almost everywhere”. We

find galectins in the cytosol, the nucleus, or associated with

subcellular organelles, such as mitochondria or endocytic vesicles.

This has been well documented for those galectins such as galectin-

1, -3, and -9 (6). The movement of galectins will be decisive for the

cell’s survival, particularly its resistance to apoptosis and the

acquisition of an invasive phenotype. The recent literature has

shown, however, that this paradigm also applies to many, if not

all, other galectins. A case in point is galectin-8, which has attracted

the attention of many researchers of different disciplines following

the discovery that intracellular galectin-8 acts as a danger signal

following the recognition of pathogen-damaged endocytic vesicles

in the cytosol (1). Recent studies have also shown that intracellular

galectin-8 and galectin-9 control cellular metabolism and

autophagy by modulating the activation state of the Ser/Thr

protein kinase MTOR (mechanistic target of rapamycin kinase)

and AMPK (5’ AMP-activated protein kinase) (7, 8). Whether

intracellular galectin-8 controls cancer progression is not clear

yet, but the fact that it controls key signaling pathways suggests

that it may be the case in several types of cancer (9). Galectin-8

might also play a central role in cell proliferation. This hypothesis is

supported by the study of Lo and colleagues, who showed that

galectin-8 is localized to the mitotic apparatus and associated with

centrosomes, possibly contributing to the organization of the

mitotic structure and the regulation of cell-cycle progression (10).

As in the case of other galectins, however, galectin-8 may have a

dual role depending on the cancer subtype or its intracellular

localization. Subcellular localization of galectins in cancer cells is

an important yet often underestimated issue considering that there

is a considerable amount of literature showing that the functions of

galectins inside depend on their subcellular localization (11–16). A

good example is the expression of galectin-1 and galectin-8 in

cancer cells. In patients with triple-negative breast cancer (TNBC),

an aggressive subtype of breast cancer which lacks HER2, estrogen

and progesterone receptors, the presence of galectin-8 in the

nucleus is associated with good disease-free (17). In contrast, high

expression of nuclear galectin-1 correlates with a bad prognosis and

overall survival. Interestingly, patients who were positive for nuclear

galectin-1 and galectin-8 were found to have a 5-year disease-free

survival of 100%, indicating that galectin-8 impacted on the role of

galectin-1. Such distinctive intracellular distribution of galectin-8

has also been observed in colon cancer by Nagy and colleagues, who

found that while galectin-8 was located in both the cytoplasm and

nuclei of normal and benign colon tissue, it was located exclusively

in the cytoplasm of malignant colon cells (18). This dual

localization of galectin-8 has also been observed in Warthin’s

tumor, a benign neoplasm of the salivary gland (19, 20). In

contrast, a recent study in patients with cervical cancer revealed

that galectin-8 was only expressed in the cytoplasm but not in the

nucleus, suggesting that localization of galectin-8 can be localized to

a specific compartment, depending of the tumor stage and the

cancer type (21). This exclusive cytosolic localization was also

observed in the case of galectin-9. Interestingly, expression of

both galectin-8 and -9 was associated with relapse-free survival
Frontiers in Immunology 02
and a better prognosis regarding overall survival, respectively. Such

an association between low galectin-8 expression and improved

survival has also been observed by Trebo and colleagues (22). This is

a clear contrast with the expression of galectin-7 in breast cancer,

where its expression not only correlates with cancer progression but

also promotes metastasis (23).

Another interesting case that has emerged recently is galectin-4,

which expression has been primarily studied in epithelial cells of the

gastrointestinal tract. Although the number of studies on the role of

galectin-4 in cancer remains relatively low (approximately 60 studies

in the last ten years, compared to more than a thousand for galectin-

3, for example), we are starting to get a better view of its possible

implication in cancer, not only outside the cells but also inside,

allowing us to pinpoint its role in cancer progression (24–27). In the

case of nasal papilloma and squamous carcinoma, for example, Duray

and colleagues showed that galectin-4 can be expressed in both

cytosolic and nuclear compartments but sometimes only in a single

compartment (20). Similar results were obtained in lung, pancreatic,

ovarian and hepatocellular carcinomas (28–33). In many cases, the

authors observed that expression of galectin-4 was downregulated in

patients with advanced stages of the disease and patients with good

survival, leading to the hypothesis that galectin-4 may act as a tumor

suppressor, at least for specific types of cancer (34). The current view

is that galectin-4 inside the cells interferes with the Wnt signaling

pathways and inhibits cell proliferation and migration of colorectal

cancer cells (30). This does not apply, however, to all cancer subtypes.

Suppression of galectin-4 expression in gastric cancer has recently

been shown to reduce metastasis (35). The development of an elegant

HCT-116 colon cell model where expression of the gene encoding

human galectin-4 is regulated by doxycycline will likely contribute

significantly to improving our understanding of the role of galectin-4

in cancer progression (36). It might help to understand better, for

example, the molecular mechanism regulating compartmentalization,

a dynamic process regulated upon binding to intracellular ligands,

including chaperones.

With respect to other human galectins, including galectin-2,

-10, -12, -13, -14 and -16, our knowledge of these galectins remains

rather fragmentary regarding their intracellular roles in cancer, or

even their role once released into the tumor microenvironment for

that matter. It is reasonable to believe that the accessibility of new

tools for detecting their protein expression and modulating their

activity will contribute to a better understanding of their role in

tumor progression. This is particularly the case for placental

galectins (galectin-13, -14, and 16), a subgroup whose biological

characteristics share many points with the functions associated with

cancer development (37, 38). Concerning galectin-2, a recent study

demonstrated that it plays a crucial role in TNBC by contributing to

the formation of an immunosuppressive microenvironment,

possibly following the release of its form extracellular by the

tumor cell (39). These observations add to prior studies

establishing galectins as prime targets for improving the efficacy

of immunotherapy within the tumor microenvironment (40–42).

Galectin-2 has also been found in the cytosol and nuclei of gastric

cancer cells (43). In this case, Jung and colleagues reported that loss

of galectin-2 in gastric cancer cells was associated with the

aggressiveness of cancer cells, revealing a commonality between
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galectin-2 and other galectins in playing contradictory roles in

tumor progression, depending on the type. Regarding galectin-10,

the galectin that forms CLC in eosinophils, its role in cancer has not

been highly investigated. However, we do know that it is expressed

in the cytosol of ovarian cancer cells and, like galectin-4 and

galectin-13, is possibly associated with a favorable prognosis (44).

But just like these other less well-known galectins, their intracellular

role and the nature of their intracellular interactions in various

types of tumor cells remain unknown.
3 What are the binding partners of
galectins inside cancer cells?

The importance of intracellular galectins in cancer progression

goes back decades ago but attracted the attention of many when it

was shown that galectin-1 binds activated H-Ras, stabilizing its

anchorage to the cell membrane (45). This study was undoubtedly a

turning point in recognizing the importance of intracellular

galectins in tumor progression. Since then, much water has

flowed under the bridge, making it possible to understand better

the importance of the interactions between galectins and their

intracellular ligands, particularly in response to signals originating

from the tumor microenvironment. Nowadays, direct interactions

between galectins and their ligands have been characterized,

revealing dependent or not on their sugar-binding activity

(Figure 1). In the case of galectin-3, this includes proteins such as

b-catenin, hnRNPA2B1, gemin4, nucleoporin 98, importin-a, and
Alix, a component of the endosomal sorting complex required for

intracellular transport (16, 46–49). In the case of Alix, this involves

a sugar-independent mechanism (47). For galectin-7, this includes
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sugar-independent binding to bcl-2 and E-cadherin (1, 14).

Galectin-7 also binds, in a carbohydrate-dependent manner, to

human tumorous imaginal disc (Tid1) heat shock protein 40

(Hsp40), and this interaction attenuates tumorigenicity and

metastasis of head and neck squamous sarcoma cancer cells (50).

Tid1 seems to prevent the translocation of galectin-7 to the nucleus,

suppressing galectin-7 protumoral activity. These results support

the previous hypothesis that Tid1 is a tumor suppressor in head and

neck squamous cell carcinoma (47). They also provide a possible

explanation for the previous finding that a mutation in the glycan

binding site of galectin-7 promotes cancer progression compared to

wild-type galectin-7 (51). Future research is needed to characterize

the interaction between galectins and Tid1 better and to determine

whether this interaction could explain the dual role of galectins in

cancer. This is an important question, as cancer cells express more

than one intracellular galectin (17, 33).

Notwithstanding the nature and type of interaction between

intracellular galectins and their ligands, a trend emerges that these

interactions modulate, positively or negatively, signaling pathways

that come together in response to the tumor microenvironment.

This new paradigm derives from studies using cancer models and

studies highlighting cytosolic galectins’ role as danger sensors

during membrane damage induced by infectious agents (1). This

has been particularly well established in the case of galectin-8 and its

ability to modulate the mTOR pathway. GST-pulldown assays in

HeLa cells revealed a direct interaction between galectin-8, but not

galectin-9, and all four Rag GTPases. This interaction requires a

full-size galectin-8 and a functional CRD2 domain, suggesting it

involves carbohydrate-dependent binding (7). The mTOR protein

is the catalytic subunit of two distinct protein complexes, mTOR

complex 1 (mTORC1) and mTOR complex 2 (mTORC2). In cancer
FIGURE 1

Localization and binding partners of intracellular galectins in cancer cells. It is also important to take into account that, in most cases, we still ignore
the intracellular ligands of galectins. The knowledge of the target site(s) remains also very fragmentary. It is thus important to consider that two
galectins may compete for the same binding site on any given ligand(s). Created with BioRender.com.
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cells, the two complexes are critical regulators in the signal

transduction networks that control several cell functions,

including cell division and survival (52). It is, therefore, logical to

raise the hypothesis that galectin-8 can act as a tumor suppressor via

its “GALTOR”-like activity, a term used by Jia and collaborators to

define a dynamic galectin-based regulatory subsystem controlling

mTOR (7).

In summary, galectins undergo a complex intracellular journey

in cancer cells through several compartments in response to

environmental signals. Through this pathway, they bind to

multiple ligands involved in trafficking and cell activation, and

this via sugar-dependent and independent interactions. What is the

degree of redundancy between these interactions for a cell that

sometimes expresses a varied repertoire of intracellular galectins

remains an open question that will eventually need to be answered

to fully exploit galectins’ potential as therapeutic targets.
4 Targeting intracellular galectins

Although the number of galectin inhibitors having reached

clinical trials for the treatment of cancer remains relatively modest,

it is surely not because of the lack of effort. The development of

galectin inhibitors faces several major challenges, if only the

difficulties encountered at the conceptual level, such as their

sometimes contradictory role in tumor progression, and at the
Frontiers in Immunology 04
structural level, considering the significant homology between the

different members of galectins and the redundancy of their

functions. In this context, several strategies have been adopted or

are being developed, several of which are perfectly suited for the

inhibition of their role at the intracellular level (Figure 2).
4.1 Small pharmacological inhibitors

There are several challenges associated with small

pharmacological inhibitors being effective intracellularly. The first

is the need to cross the plasma membrane. A recent study by

Stegmayr and collaborators has compared the cellular uptake of

three high-affinity (in the low nanomolar range) galectin-3

thiodigalactosides and a-d-galactoside inhibitors (53). Using

JIMT-1 breast cancer cells, the authors reported striking

differences in the cellular uptake of the inhibitors and their ability

to reduce the accumulation of galectin-3 around chemically-

induced disruption of intracellular vesicles of JIMT-1 breast

cancer cells. A similar approach but in a different type of breast

cancer cells (MCF-7) was used to test the cell permeability of other

synthetic small-molecule galectin inhibitors (54). The authors

reported that one of their inhibitors blocked amitriptyline-

induced vesicle damage in breast carcinoma MCF-7 cells, possibly

by blocking the interaction between galectin-3 and LAMP1/2

proteins. Such studies with in vitro cell systems can clearly help
B
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FIGURE 2

Different strategies for intracellular targeting of galectins in cancer cells. (A) Inhibition by gene silencing using RNA interference, antisense strategies
or CRISPR-mediated gene knockdown for inhibition of galectin genes at the transcriptional or post-transcriptional levels. (B) Inhibition of
intracellular glycan-dependent interaction using carbohydrate-based inhibitors or other small drugs that modulate the binding of glycosylated
intracellular ligands. The mechanism of action may imply direct binding to the glycan-binding site of galectins or an allosteric effect that modulates
the activity of the GBS. (C) Inhibition using intrabodies. Such a strategy may inhibit galectin’s intracellular activity via multiple mechanisms of action,
including inhibition of both carbohydrate-dependent and independent interactions and modulating intracellular trafficking of galectins. (D) The
expression of dominant negative (DN) mutants can be used to interfere with the interaction of galectins to different types of ligands or simply by
interfering with the formation of homodimers in the case of prototypic galectins. (E) This strategy employs proteolysis-targeting chimeras
(PROTACs), which bring galectins to the ubiquitination machinery. In this case, the intrabody can be linked, for example, to a subunit of the Von
Hippel–Lindau (VHL) with ubiquitin E3 ligase activity, a common strategy to target intracellular proteins of interest. (F) Peptide-mediated inhibition is
mediated using either glycopeptides or following receptor-mediated entry of peptides. Created with BioRender.com.
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to define which properties are needed to obtain better cell

permeability and to target intracellular galectins for specific cell

types. Yet, the number of studies looking at inhibiting the

intracellular functions of galectins with small pharmacological

inhibitors remains relatively rare as most of these inhibitors target

extracellular galectins. Moreover, although some of these inhibitors

can cross the cell membrane, it remains unclear if they can induce

long-lasting inhibition, impact protein-protein intracellular

interactions, or act on other intracellular galectins. Thus, although

several studies have shown excellent permeability for some

synthetic small-molecule galectin inhibitors, it is imperative to

determine if they can reach the galectin pools and inhibit specific

interactions with galectin’s ligands. This is not a trivial task, as

galectins may be located in distinct intracellular compartments,

including the nucleus. This is why it is crucial to determine where

the protumorigenic roles of galectins are expressed. A third

challenge is identifying the intracellular ligand(s) of interest and

the functional target site. Many small pharmacological inhibitors

were designed to target the glycan-binding site of galectins.

Whether these GBS-specific inhibitors can interfere with the

protein-protein interactions of galectins is a real possibility, as

binding of a ligand within the GBS can affect the overall structure

of the CRD via allosteric mechanisms (55). Another challenge is to

achieve specificity. There is, however, a reason to be optimistic in

this regard, as differences between galectin binding sites allow a

fine-tuning of ligand selectivity and potency, a strategy that has

been successfully exploited in the past by the group of Nilsson and

colleagues and more recently for the generation of galectin-8-

specific inhibitors (56). Yet, it might be profitable to inhibit

multiple galectins in a cancer cell if, and only if, these galectins

are all pulling the wagon in the same direction. Thus, although these

obstacles may seem difficult to overcome, they can nevertheless be

circumvented by adapting drug screens at the earliest stages

of development.
4.2 Antisense-oligonucleotide and
siRNA drugs

Genetic silencing using antisense oligonucleotides (ASOs) and

siRNAs has been the cornerstone of fundamental research on the

role of galectin in cancer progression. This is mainly because

specificity is theoretically easier to achieve and the absence, or

relative rarity, of highly specific research tools. Knockdown of

galectins using ASOs has been extensively used to demonstrate

the role of galectin-1 and galectin-3 in cancer (57–60). It has also

been used for less well-known galectins or when manipulating

galectin gene expression in model organisms, such as Zebra fish

(61). We and others have also used this approach to establish the

role of galectin-7 in cancer progression (62) or the role of galectin-4

(63). ASO drugs have been an excellent research tool given their

ease of production and versatility, considering the structural

homology between galectins expressed in the same cancer cell. In

recent years, ASOs have been replaced by siRNA-based drugs for

galectin research. In most cases, siRNAs have been used with in
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vitro cell models or for measuring the effect of the knockdown of a

specific galectin in its tumorigenic potential once implanted in

mice. For example, in a recent report, Li and colleagues used

galectin-9-specific siRNA loaded into exosomes decorated with

transferrin receptor-binding peptides to target glioblastoma cells

and inhibit their growth, opening the way to novel

immunotherapies of glioblastoma (64). Orozco and colleagues

have also shown that it is possible to use siRNA to deplete

galectin-1 in pancreatic stellate cells, which inhibited cancer

progression and metastasis when co-injected with pancreatic

tumor cells (65). However, using siRNA-loaded nanocarriers to

inhibit galectin expression in vivo remains rare but clearly possible.

Using a mouse preclinical pancreatic cancer model, Zhou and

colleagues have shown that it is possible to inhibit galectin-9

expression in the host following the intravenous injection of

galectin-9-specific siRNA-loaded exosomes (66). When combined

with oxaliplatin, the authors observed a quite remarkable reduction

in the growth of the primary tumor and a significant increase in the

overall survival when compared to control groups. Before bringing

such drugs to patients, however, several hurdles still need to be

overcome, explaining at least in part why there are still very few

FDA-approved siRNA drugs, which are generally reserved for

undruggable targets or genetic diseases, particularly those caused

by protein overexpression. The site-specific delivery and rapid

clearance are the main challenge in using siRNA-based drugs.

Yet, the number of clinical trials testing siRNA therapeutics is on

the rise following significant development in strategies to improve

siRNA delivery for patients with solid tumors, especially for cancers

with limited treatment options, such as pancreatic cancer.
4.3 Using peptides

The use of peptides for inhibiting galectins has received much

attention with the development of Anginex and its derivatives.

However, it didn’t exactly lead to the expected clinical success,

primarily for reasons related to their pharmacological properties

(6). In addition, we still need to learn more about its specificity. We

know that it binds to galectin-1 and -3, but little is known about its

ability to bind to other galectins and murine forms, important

information for preclinical studies in animal models. Moreover,

although this peptide has generated encouraging results in its ability

to reduce angiogenesis in pre-preclinical models, it needs to be

clarified whether this effect depends on its interaction with galectin-

1 or galectin-3. That being said, there is every reason to believe the

development of new high-throughput screening strategies will make

it possible to generate highly specific peptides with optimal

pharmacological properties to inhibit galectins. And all the more

so since we have witnessed in recent years significant advances in

our knowledge of the mechanisms of transport and translocation of

peptides in the cytosol (67, 68). Our group has also demonstrated

that it is possible to generate galectin inhibitor peptides that are

highly specific and capable of inhibiting both sugar-dependent and

sugar-independent interactions (69, 70). These peptides, called

DIPs (Dimer-Interfering Peptides), were developed by rational
frontiersin.org
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design following a careful analysis of the interface of galectin-7

homodimers, which offers an exciting source of specificity for the

development of galectin inhibitors. The binding of these peptides at

the monomer interface inhibits the formation of functional dimers,

making this mechanism of action well-suited for inhibiting

prototypical galectins.

Many others have also identified galectin-specific peptides using

different strategies, such as the screen of random phage libraries.

One of the peptides, G3-C12, binds human galectin-3 with

relatively high (70 nM) affinity (71). This peptide inhibits the

interaction of galectin-3 to carbohydrate Thomsen-Friedenreich

tumor antigen, a galactose b1-3N-acetylgalactosamine

disaccharide. The authors subsequently showed that G3-C12

significantly reduced the growth of human MDA-MB-231 breast

carcinoma cells in nude mice (71). However, it was unclear whether

this in vivo effect was galectin-3-dependent, and if so, whether the

therapeutic effect resulted from the interaction of the peptide with

human galectin-3 or mouse galectin-3 secreted by the host in the

tumor microenvironment. In a “Two Birds, One Stone” strategy,

Sun and colleagues used the G3-C12 peptide embedded in a

polymer to disrupt mitochondrial functions of prostate cancer

cells following its entry into the cytosol via a receptor-mediated

mechanism or to facilitate the entry of the anti-tumor drug 5-

fluorouracil (72, 73). This study further demonstrated that it is

possible to use galectin-specific ligands combined with specific

delivery systems to inhibit a galectin’s extracellular function and

deliver intracellular therapeutic loads inside the cells (74).

A variation of the peptide strategy is to use dominant-negative

peptides or protein fragments, a strategy commonly used as a

research tool to interfere with intracellular signaling functions in

cell biology. The group of Ron Patterson has used this strategy to

inhibit galectin-3’s function of splicing pre-mRNA in a cell-free

splicing assay (75). They used the N-terminal polypeptide domain

of galectin-3 to inhibit the spliceosome formation. Today, it is

possible to use high-throughput methods to identify dominant

negative gene fragments that are specific for a protein or its

specific subdomain(s), including sequencing of DNA libraries

encoding S. cerevisiae polypeptides or lentiviral overexpression

libraries of peptides (76, 77). In summary, it is logical to foresee

that peptide-based strategies could be adapted for other galectins,

considering the molecular interactions between the monomers of

tandem repeat-type galectins.
4.4 Using intrabodies

Over 30 years ago, camelid antibodies were discovered and

completely transformed how we understood the structure of

antibodies (78). New technological platforms have since been

developed to utilize the distinct characteristics of camelid

antibodies, offering exciting opportunities to use their exceptional

properties, including their ability to accurately bind a diverse range

of antigens with high specificity and affinity. These antibodies often

referred to as nanobodies (Nbs), which is a trademark of Ablynx,

are different from traditional antibodies in that they can bind to

antigenic epitopes more effectively due to a single, variable domain
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encoded in the heavy chain fragment (VHH). Another unique

feature of Nbs is their extended convex-shaped paratope, which

can recognize epitopes that are usually inaccessible to conventional

antibodies. This is possible because their hypervariable region is

made of a single stretch of amino acid residues composed of flexible

peptide loops, including a relatively long complementary

determining region (CDR)-3 loop that is extended and made of

15-25 residues on average (compared to 12 residues in human) (79).

These properties have been exploited to generate, for example, Nbs

capable of recognizing hitherto inaccessible antigenic epitopes of

catalytic sites of enzymes, such as matrix metalloproteases (MMPs),

a family of enzymes with minimal active site specificity (80). The

specificity of MMP inhibitors has always been a significant problem,

given the contradictory roles of MMPs during cancer progression

(81). Like MMPs, galectins have stage- and tumor-specific roles,

even contradictory (dual) roles. Single-chain Nbs are among the

new generation of MMP inhibitors that have contributed to the

rebirth of the interest in MMPs as anti-cancer drugs in clinical trials

(82). Such success could reflect in the development of galectin-

specific Nbs whose antigen-binding region’s structure is perfectly

designed to target epitopes located at the dimer interface of

prototypic galectins or those buried deep within the GBS. Yet,

although Nbs are increasingly used for therapeutic purposes, it is

only in recent years that we have witnessed their use to target

intracellular proteins, leading to the concept of “intrabodies” (83–

85). A simple strategy when using intrabodies is to use Nbs with an

ALFA tag, a compact short hydrophilic, uncharged 15 amino acid

sequence that readily adopts an alpha-helix structure that

spontaneously refolds even after exposure to harsh chemical

treatment (such as those used to fix cells or during SDS-PAGE).

This tag is functional irrespective of its position on the target

protein and developed by rational design for the labelling of Nbs

(86). The rationale behind using ALFA-tagged Nbs is that they can

potentially interfere with intracellular protein-protein interactions

essential for galectins to exert their protumorigenic functions. It is

also likely that such intrabodies will interfere with the intracellular

localization of galectins by interfering with binding partners acting

as chaperones. This is an important issue as the role of a given

galectin in cancer may well depend on its intracellular distribution.

Such intrabody would thus not only allow the development of novel

therapeutics but also provide research tools for investigating the

importance of subcellular localization with cancer progression.

Another interesting option offered by Nbs is to use proteolysis-

targeting chimeras (PROTACs) that will bring the nanobody-

galectin complex to the ubiquitination machinery, leading to

polyubiquitination of the galectin and subsequent proteasomal

degradation (87). Often referred to as an “affinity-directed protein

missile system,” this strategy is increasingly used to obtain sustained

inhibition of an intracellular protein expression (88–90). It is logical

to predict that PROTACs would reduce the intracellular pool of

galectins and the release of extracellular galectins, limiting their

ability to create local immunosuppression via the killing of activated

immune cells or neutralizing cytokines that are essential for the

recruitment and activation of immune cells. This “two birds with

one stone” strategy could be an interesting approach when

combined with immune checkpoint inhibitors as it would help
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the patients to mount a cancer-specific immune response. On a

long-term basis, we can envision the delivery of mRNA-encoding

galectin-specific intrabodies to target cancer cells, taking advantage

of the immense progress on mRNA vaccines accomplished during

the recent pandemic (91–93). These strategies are at our doorstep

since several groups have already reported the development of

galectin-specific Nbs and their derivatives against galectin-1, -2,

-7 and -10 (94–97).
5 Summary

Much interest in galectins has been devoted to their

extracellular roles, notably in controlling the immune response

and their ability to modulate intracellular signaling through their

interaction with glycosylated membrane receptors. However, recent

studies have demonstrated their ability to interact directly with

numerous intracellular ligands in various compartments, making

them targets for modulating signaling networks. It is logical to

believe that their ability to modulate these networks will directly

affect the expression of critical genes in tumor development and

perhaps even epigenetic modifications considering their key role in

the interface between the cell and its tumor microenvironment,

which is highly adaptable and undergo frequent changes that will

impact the efficacy of the inhibitors (98). Moreover, surprisingly,

few studies have been devoted to the impact of galectins, whether in

their intra or extracellular form, on the transcriptome. There is no

doubt that intracellular galectins will reveal new surprises and

positions for developing new cancer therapies, especially

aggressive cancers for which few therapeutic options exist.
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