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Abstract: Like other chronic viral infections, HIV-1 persistence inhibits the development of antigen-
specific memory T-cells, resulting in the exhaustion of the immune response and chronic inflammation.
Autophagy is a major lysosome-dependent mechanism of intracellular large-target degradation such
as lipid and protein aggregates, damaged organelles, and intracellular pathogens. Although it is
known that autophagy may target HIV-1 for elimination, knowledge of its function as a metabolic
contributor in such viral infection is only in its infancy. Recent data show that elite controllers (EC),
who are HIV-1-infected subjects with natural and long-term antigen (Ag)-specific T-cell protection
against the virus, are characterized by distinct metabolic autophagy-dependent features in their T-cells
compared to other people living with HIV-1 (PLWH). Despite durable viral control with antiretroviral
therapy (ART), HIV-1-specific immune dysfunction does not normalize in non-controller PLWH.
Therefore, the hypothesis of inducing autophagy to strengthen their Ag-specific T-cell immunity
against HIV-1 starts to be an enticing concept. The aim of this review is to critically analyze promises
and potential limitations of pharmacological and dietary interventions to activate autophagy in an
attempt to rescue Ag-specific T-cell protection among PLWH.

Keywords: autophagy; Ag-specific T-cells; HIV-1; PLWH; EC; metabolism; effector functions; ART;
metabolic plasticity; mitochondria

1. Introduction: Autophagy, a Key Degradation Program for Nutrient Recycling

Autophagy is a highly conserved and essential catabolic pathway in eukaryotic cells
that is specialized in delivering cytoplasmic components and organelles to the lysosomes
for digestion where hydrolases, lipases, and proteases reside. In this context, autophagy is
a fundamental cellular homeostasis program that engages with harmful and/or surplus
contents, such as protein aggregates (proteophagy), dysfunctional organelles including
long-lived mitochondria (mitophagy), intracellular pathogens (xenophagy), and stored
nutrients in lipid droplets (lipophagy). Beyond its housekeeping role, autophagy can act
as a fueling metabolic program to provide sources of energy or building blocks for the
synthesis of macromolecules by allowing cells to reuse its digested materials [1]. In this
context, the recent role of autophagy as a metabolic contributor for cellular function and
survival has received special attention in the context of cancer with tumor adaptation
towards stressful environments. Originally, it is known that tumor cells preferentially
consume large amounts of glucose relative to most non-transformed cells through increased
glycolysis, a phenomenon described as the “Warburg effect”. This provides tumor cells
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with a mitochondria-independent metabolic program that allows them to quickly produce
energy to sustain increased rates of proliferation and malignant progression [2–4]. In the
Warburg effect, glycolysis terminates with L-lactate production and secretion despite the
presence of oxygen. However, when glucose becomes scarce, tumor cells can rewire their
metabolism to promote long-term maintenance by using alternative sources of nutrition,
which is a mechanism known as “metabolic plasticity” [5–7]. This epigenetic process
involves autophagy in providing tumor cells with recycled nutrients, that include amino
acids, such as glutamine and lipid subunits, to provide additional metabolic resources
rather than exclusively relying on glucose [8–13].

2. Thanks to Nutrient Diversification, Autophagy Becomes a New Facet of Ag-Specific
T-Cell Metabolism

It is now acknowledged that autophagy-dependent metabolic plasticity in the form
of recycled intracellular nutrients is not only beneficial for tumor cells, but is also used by
our immune system to ensure the fast generation of effector T-cells, especially protective
Ag-specific cells. First, lysosome-dependent autophagy machinery is known to be rapidly
induced after T-cell receptor (TcR) engagement in the first hours of T-cell activation [14–17].
Autophagy can also be induced in vaccine-specific CD8 T-cells in healthy human volun-
teers, thus allowing weaker responders, such as aged individuals, to improve their immune
protection [18]. Activated Ag-specific CD4 and CD8 T-cells have been confirmed to use au-
tophagy to recycle nutrients, such as the glutamine amino acid and lipid subunits, to ensure
optimal energy-dependent effector processes (Figure 1). These rely on the implementation
of multiple protective programs, which include the expression of the antiviral/antitumoral
cytokines (interleukin 2 (IL-2), IL-21, tumor necrosis factor alpha (TNF-α), and interferon
gamma (IFN-γ)), the production of cytotoxic molecules such as granzymes and perforin in
CD8 T-cell (CTL) activity, as well as T-cell polyfunctionality [15,16,19–23]. The latter refers
to a T-cell’s ability to produce multiple molecules at the same time. Autophagy does not
solely act as a metabolic contributor for effector functions in Ag-specific T-cells. In fact,
it can also act as an immune check point to control (i) their proper TcR engagement by
targeting several negative downstream regulators of cell activation [24], (ii) their levels of
cell proliferation along with cell cycle progression [25], and (iii) their long-term mainte-
nance [26–28]. Overall, autophagy is considered as a new and promising metabolic tool in
the context of chronic HIV-1 infection treatment, where Ag-specific T-cell functions could
be reinforced in PLWH despite viral suppression with antiretroviral therapy (ART) [29].
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Figure 1. Autophagy, the driving force behind the Ag-specific T-cell immunity. Schematic summariz-
ing how Ag-specific T-cells are using the autophagy system to diversify their nutrient sources (amino
acids and lipid subunits) to ensure high energy production and robust vaccinal/antiviral-specific
responses in opposition to strict glucose dependency. Of note, the figure includes the impact of
autophagy on the regulation of the immune negative checkpoint PD-1 and the release of metabolite
products in the extracellular plasma fluid. In red, Ag-presenting or infected cells; in blue, Ag-specific
T-cells; in green; extracellular environment (plasma, ECM). ATP, adenosine triphosphate; ECM,
extracellular matrix; FAO, fatty acid oxidation; OXPHOS, oxidative phosphorylation.

3. High Autophagy Is Key for Optimal Ag-Specific T-Cell Immunity in PLWH
3.1. Autophagy Grants the Metabolic Plasticity-Dependent T-Cell Protection Found in Elite
Controllers (EC)

Despite the success of ART in fully suppressing viral replication in plasma, HIV-1
remains an incurable infection. A cure for HIV-1, which represents the next objective in
therapeutic research, is defined as a durable control of viral replication in the absence of
ART [30,31]. Therefore, natural control of HIV-1 remains one of the most promising models
for a cure, since elite controllers (EC) represent a unique HIV-1-infected and ART-naïve
group of individuals who are defined by replication-competent virus control along with
effective and persistent Ag-specific T-cell immune responses for years [32–35]. Identifying
the mechanisms contributing to HIV immune control has recently been highlighted by
the International AIDS Society as one of the research priorities for the development of an
HIV cure [36]. This is supported by a second case of an EC, known as the “Esperanza
patient”, who presents with a spontaneous eradication of HIV-1 infection [37,38]. Recent
single-cell transcriptional analysis has revealed that anti-HIV-1 CD8 T-cells from EC display
a distinct metabolic program associated with a lesser reliance on the glycolytic pathway
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when compared to the PLWH receiving ART or not [39]. Similarly, before the loss of
natural immune control over HIV-1, PLWH present with a specific metabolomic program,
which is characterized by increased glycolytic metabolism and deregulated mitochondrial
function [40,41]. This abnormal increase in the rate of glucose uptake in PLWH, which is
similar to the cancer-related Warburg effect, can be associated with exhausted T-cell immune
protection against HIV-1 [39]. In opposition, we recently found that autophagic activity,
which we confirmed to be enhanced in CD4 and CD8 T-cells from EC including in their
anti-HIV-1 cells [42], can provide a potent metabolic plasticity pathway by recycling protein-
and lipid-based nutrients rather than exclusively depending on glucose (Figure 1). This
metabolic plasticity found in Ag-specific T-cells from EC fuels the oxidative mitochondrial
metabolism required for the preservation of their energy-dependent effector protection
against HIV-1 [15,16,43]. Data suggest the possibility to rescue HIV-1-specific immunity in
non-controller PLWH by artificially inducing their autophagy with AMP-activated protein
kinase (AMPK) activator 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) with
or without IL-21 supplementation [15,16]. Interestingly, AMPK activation is also required
for the metabolic adaptations in Ag-specific CTL that allow for secondary effector cell
generation in mice that are reinfected with Listeria monocytogenes [44]. Aside from its
contributive role in providing Ag-specific T-cells with diverse sources of metabolites, high
autophagy levels in T-cells from EC are also associated with HIV-1 containment through
targeted elimination of the viral machinery by a selective process called xenophagy [42,45].
Similarly to autophagy, xenophagy can restrict HIV-1 infection in productively HIV-1-
infected CD4 T-cells by selectively degrading Tat, a protein that is essential for viral
transcription and virion production [46]. Using human lymphoid tissue cultured ex vivo,
Pedreño-López S. et al. show that the autophagy inducer rapamycin can inhibit the level
of HIV-1 DNA integration and viral replication [47]. Another study, performed on a
human mucosal infection model, showed that several autophagy-inducing drugs other
than rapamycin, such as carbamazepine and everolimus, can also limit HIV-1 acquisition
and suppress viral replication in gut CD4 T-cells [48].

3.2. Autophagy Improves Antiviral T-Cell Generation by Supporting Major Histocompatibility
Complex (MHC) Restricted Ag Presentation

As mentioned earlier, autophagy is functionally well equipped to isolate viral pathogens
in autophagosomes and clear them out by lysosome-dependent degradation (xenophagy).
Autophagosomes are double membrane-bound vesicles that enclose cytosolic constituents,
including pathogens, which fuse with lysosomes to digest the encapsulated cargo during
active autophagy. Accordingly, autophagy in conventional Ag-presenting cells, such as
myeloid dendritic cells (DC) and macrophages, participates in the processing of many viral
Ag including HIV-1-derived peptides, especially in the context of MHC Class II-restricted
Ag presentation [49–52]. In this context, data show that the Ag-processing pathway for
MHC Class II-restricted CD4 T-cell epitopes that have been associated with spontaneous
control of HIV-1 replication begins with the endocytosis of exogenous antigens or au-
tophagy of intracellular contents [53,54]. Using human monocyte-derived DC, results
confirm that inhibition of autophagy with drugs or small interfering RNA reduces the
degradation of incoming HIV-1 particles and subsequent activation of Ag-specific CD4
T-cells [55,56]. Recently, Sarango G. et al. have gone one step further and shown that the au-
tophagy receptor TAX1BP1 (T6BP) can improve Ag presentation by MHC Class II molecules
in the context of HIV-1-derived Gag peptides [57,58]. Another study in mice shows that it is
possible for bone marrow-derived DC to improve the presentation of simian immunodefi-
ciency virus (SIV) Gag peptides to Ag-specific CD4 T-cells by manipulating their autophagy
system. Indeed, the authors show that, when fused to the autophagosome-associated
LC3 cargo protein, SIV Gag proteins can be functionally targeted to autophagosomes,
processed by autophagy-mediated degradation in their lysosomes, presented to MHC
Class II compartments, and elicit effective potential CD4 T-cell responses [59]. Importantly,
compared with the SIV Gag peptides alone, SIV gag-LC3 fusion antigen can induce stronger
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Ag-specific T-cell in vivo responses, which are characterized by an enhanced magnitude
and cell polyfunctionality. Similarly, the immunization of mice with DNA Gag constructs
reveals that, in comparison to HIV-1 Gag peptides delivered alone, the fusion of Gag Ag
to the autophagy cargo p62 protein enhances the number of IFN-γ-producing Ag-specific
CD4 and CD8 T-cells in animals [60]. Finally, investigators have known for a long time that
CD4 T-cells in PLWH can sometimes present HIV-1 Ag, such as Gp120 peptide, to induce
Ag-specific CTL T-cell responses [61]. In fact, recent data confirm that activated CD4 T-cells
are indeed highly effective at MCH Class II-restricted presentation of an immunodominant
HIV-1-derived Gag peptides along with its subsequent processing and presentation of
endogenously produced Ag [62]. The authors show that activated CD4 T-cells can present
HIV-1-derived Ag to Gag-specific CD4 T-cells to elicit their IL-2 and TNF-α production.
There is also a good chance that, similarly to DC, the CD4 T-cell-mediated HIV-1 peptide
presentation to Ag-specific T-cells might involve endogenous processing of HIV-1 materials
through autophagy. In conclusion, autophagy machinery orchestrates Ag-specific T-cell
immunity in PLWH by providing their cellular energy-dependent effector functions and by
supporting their immune education through MHC restricted Ag presentation.

4. Autophagy in Ag-Specific T-Cells from PLWH Must Be Induced Together with ART
(Figure 2)
4.1. As HIV-1 Proteins Hijack Autophagy to Block Lysosomal Degradation

In the absence of ART-mediated viral suppression, productive HIV-1 infection represents
one of the best characterized systems in which autophagy can be disarmed by the virus via
the development of multiple strategies preventing the sequestration and degradation of its
proteins, thus leading to the establishment of a chronic infection [63–65]. In fact, several
HIV-1-related proteins, such as Tat, Nef, and Vif, which are produced during the late stages
of HIV-1 replication, inhibit autophagy in human cells, including infected T-cells [66–71].
Therefore, it will be critical to manipulate autophagy in PLWH when HIV-1 replication is
suppressed by ART if we want to achieve a beneficial effect of autophagy-mediated lysosomal
degradation and potentiate Ag-specific T-cell immune responses.

4.2. As Autophagy-Mediated Metabolism Favors Cell Infectivity and Viral Replication

Although metabolic plasticity mediated by autophagy in the form of recycled glu-
tamine is key to ensure optimal HIV-1-specific CD4 T-cell responses, it is also involved in
polyclonal T-cell activation which generates new targets for HIV-1 infection. Indeed, in
addition to autophagy allowing energy-dependent IL-21 production and cell polyfunction-
ality in HIV-1-specific CD4 T-cells [15,43], it is now clear that glutaminolysis-dependent
energy production also increases T-cell susceptibility to de novo HIV-1 infection [72]. In
fact, data show that the entry of glutamine-derived carbons into the mitochondrial tricar-
boxylic acid cycle (TCA) supports the early steps of HIV-1 infection in naïve and memory
CD4 T-cells [73]. The authors came to this conclusion by first demonstrating that CD4
T-cell mitochondrial biomass was related to their oxygen consumption. They also showed
that the CD4 T-cell with the highest mitochondrial biomass had a higher percentage of
infected cells following HIV-1 virion exposure. To conclude, the authors determine that
glutaminolysis, one of the major catabolic pathways that fuels mitochondrial OXPHOS, is
required for optimal viral infection. Similarly, if not suppressed by ART, HIV-1 alters CD4
T-cell metabolism by driving elevated mitochondrial energy production to increase its viral
replication [74]. The authors further showed that the inhibition of mitochondrial energy
metabolism with the drug metformin, which targets the mitochondrial respiratory chain
complex-I, suppresses HIV-1 replication in both human CD4 T-cells and in vivo humanized
mice. Finally, additional studies show that the early steps of HIV-1 infection, such as
virus binding to CD4 or membrane fusion, allow the virus to increase the autophagocytic
pathway, hence preparing the cells to be more permissive to viral infection [75–77]. Mecha-
nistically speaking, data indicate that the autophagy-related gene (ATG) 9A is required for
high HIV-1 infectivity in Jurkat CD4 T-cells in an Env-dependent manner [78]. Altogether,
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the data indicate that inducing autophagy in PLWH without ART-driven viral suppression
may favor viral dissemination and higher Ag-specific T-cell infectivity.
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Figure 2. Limitations and challenges of inducing autophagy in Ag-specific T-cells in PLWH. Schematic
of clinical/virological parameters that may impact our ability to efficiently harness autophagy and T-cell
immune control of HIV-1 infection in the presence or absence of long-term ART. LT, lymphoid tissue. In
blue, observations expected in the context of ART-induced HIV-1 suppression in treated PLWH; in red,
in the context of ART-naïve PLWH and HIV-1-productive infection. ?, parameters that have been shown
to impact autophagy in several research models, although not yet proven with PLWH.

5. Clinical Parameters in PLWH May Impact the Efficacy of Autophagy Induction with
ART Co-Treatment (Figure 2)
5.1. Biological Sex and Age of the Individuals

Although the underlying molecular mechanisms of sex differences in autophagy
remain largely unexplored, recent evidence show sex differences in autophagy in the
context of cancer, inflammatory diseases, and viral infections [79–81]. Using bioinformatics
data analyses, a 2023 study points to the possibility of autophagy as a critical contributor
to sex differences in rheumatoid arthritis [82]. In an autism spectrum disorder (ASD)
in vivo model, data show sex-dependent variation in transcript and protein levels for
several ATG and for the autophagosome cargo p62 protein [83]. Another study in mice,
which were assigned to different physical exercises, show that both biological sex and
age of the animals impact the autophagy–lysosome system, with young female mice
displaying greater abundance of autophagy and lysosome proteins than young males [84].
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In the context of viral infection, several studies have demonstrated an influence of sex
and age on autophagy. In Carp and Zebrafish that are infected with herpesvirus, data
show that female fish, which are more vulnerable to the infection, have lower antiviral
responses when compared to the male group [85]. The authors find that these low antiviral
responses in females are mediated by increased autophagic degradation for the mediator
of IRF3 activator (MITA). Furthermore, in individuals who display moderate-to-severe
coronavirus disease 2019 (COVID-19), abnormal high concentration of the autophagosome
cargo p62 is found in the sera of the patient, particularly in aged people who are more
than 50 years old [86]. Finally, human umbilical artery smooth muscle cells in female
newborns respond much better to autophagy induction with rapamycin treatment than
male cells [87]. Although there is no indication of sex- and age-based differences in
autophagy with PLWH, there are some proving distinct biological differences regarding
protective immunity against HIV-1 between women and men, as well as in middle-aged
and elderly patients. For example, the levels of immune hyperactivation in T-cells and
inflammation, which are hallmarks of chronic HIV-1 infection despite ART, differ between
men and women and could be a central mechanism in the sex differences observed in the
rate of HIV-1 disease progression [88–94]. Furthermore, data show that there are sex-based
differences in mortality and CD4 T-cell responses among ART-treated PLWH [95]. In this
study, the authors find that women show consistently better immune responses to treatment
than men and older patients. Altogether, research regarding the impact of sex and age
on autophagy in the context of human viral infections including HIV-1 has just started,
but it is apparent that these parameters must be considered in the context of autophagy
manipulation in PLWH.

5.2. The Duration and Nature of Antiretroviral Drug (ARV) Regimens

While current ARV regimens are generally well tolerated, risks for side effects and
toxicity remain high as PLWH must take lifelong medications [96]. In this context, using
different mice, rat, and human models with peripheral blood mononuclear cells (PBMC),
data show that several ARV inhibit autophagy and induce lysosome dysfunction such
as the reverse transcriptase inhibitors efavirenz, zidovudine, and stavudine [97–101], the
protease inhibitors ritonavir and lopinavir [102], and 2- to 3-drug regimens [103–105]. Data
show that mitochondria toxicity in ART-treated PLWH are usually characterized by lower
adenosine triphosphate (ATP) production, inhibition of electron transport chain complexes,
impairment of fatty acid oxidation (FAO), and altered membrane potential. Since the
conceptual idea of boosting autophagy is to rescue energy-dependent HIV-1-specific T-cells
in PLWH, this therapeutic venue requires mitochondria to be fully functional. However,
recent data show that T-cell mitochondrial functions can be impaired in PLWH by the
long-term exposure to several ARV [106]. For example, it has been shown that CD4 T-cells,
collected from PLWH receiving the integrase inhibitors dolutegravir or elvitegravir, showed
mitochondrial respiratory impairment with lesser energy production [107]. Similarly,
Maagaard A. et al. have confirmed that PLWH, which are exposed to reverse transcriptase
inhibitors for years, display mitochondrial DNA loss in both CD4 and CD8 T-cells [108,109].
In summary, although the lives of PLWH are dramatically prolonged due to highly effective
ART, long-term administration of these drugs have shown to impact autophagy, lysosomal
activity, and mitochondrial integrity. Therefore, it may be mandatory to design and select
specific ARV regimens with lesser impact on these cellular mechanisms to provide effective
autophagy-dependent energy production while inhibiting HIV-1 replication. Interestingly,
Angin M. et al. have recently provided a table that summarizes several drug regiments
and NRTI mitochondria toxicity index which may be helpful in designing safer ART
administration to PLWH [39]. Additionally, this data may also provide the initial step in
our efforts to reduce ART-mediated mitochondria toxicity to a minimum in HIV-1-infected
patients, therefore improving the therapeutic success of metabolism-targeted strategies via
autophagy induction.
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5.3. Low Distribution of ARV into Lymphoid Tissues

As mentioned previously, current antiretroviral therapy (ART) can achieve long-term
suppression of plasma viral load to levels less than 20 copies per millimeter of plasma,
especially when they are initiated early in PLWH; however, optimal ARV drug penetration
in lymphoid tissues, such as lymph nodes, spleen, and gut-associated lymphoid tissue
(GALT), is under debate in these individuals [110–112]. Data show that, despite ART, these
tissues can become pharmacological sanctuaries that result in incomplete suppression
of viral replication. In fact, it is believed that the poor penetration of ARV to lymphoid
tissues including the mesenteric lymph nodes (MLN) may limit the therapeutic efficacy to
achieve a complete viral eradication in SIV-infected rhesus macaques [113,114]. Hence, the
residual HIV-1 replication in lymphoid tissues including MLN, regardless of effective viral
suppression in the bloodstream, may counteract the efficacy of boosting autophagy with
drugs in PLWH.

5.4. Changes in the Gut Microbiota

The balance of microbial communities in the gut is critical for preserving effective
antiviral immune defenses, including Ag-specific T-cell immunity [115]. In fact, a group
of authors found that in mice treated with broad-spectrum antibiotics to deplete gut mi-
crobiota, both antiviral CD4 and CD8 T-cells that are specific for hepatitis B virus produce
lesser amounts of INF-γ, TNF-α, and IL-2 cytokines. In the context of HIV-1 infection, recent
studies confirm that PLWH on ART exhibit persistent microbial gut dysbiosis, referring to
a change or imbalance of intestinal flora, when compared to uninfected individuals. Recent
data show that gut dysbiosis in PLWH is characterized by the depletion of commensal bac-
teria (Clostridia) and an increase of pathogenic bacteria (Negativicutes, Bacilli, Coriobacteriia,
and Prevotella) [116–120]. In opposition, the naturally HIV-1-protected EC have richer gut
commensal microbiota with unique bacterial signatures which may contribute to immune
control of HIV-1 [121]. Since the gut commensal microbiota can induce autophagy, whereas
pathogenic bacteria mainly suppress the autophagy flux [122,123], we cannot exclude
that gut dysbiosis found in PLWH may impact the pharmacological manipulation of the
catabolic pathway.

6. Therapeutic Tools to Induce Autophagy in T-Cells of PLWH
6.1. Autophagy Activator Drugs

There are many drugs available to artificially induce autophagy in human cells as
well as in the context of HIV-1 infection. First, there are rapamycin, Torin-1, dactolisib,
everolimus, carbamazepine, and other rapalogues that are known to enhance autophagy by
inhibiting its main negative regulator; the mammalian target of rapamycin (mTor). Aside
from mTor inhibition, autophagy can also be activated after induction of AMP-activated
protein kinase (AMPK) by using AICAR, metformin, trehalose, and resveratrol. Although
data show that in vitro induction of autophagy is responsible for the effector functions in Ag-
specific T-cells, including anti-HIV-1 cells, this mainly depends on AMPK activation rather
than mTor inactivation [14–16,124]. However, several in vivo and ex vivo observations
also vouch for increased autophagy in effector T-cells using mTor-inactivating drugs. In
this context, HIV-1-infected and rapamycin-treated mice show increased expression for
autophagy-related proteins (ATG) including ATG-5 and the autophagy cargo microtubule-
associated protein 1A/1B-light chain 3 (LC3) [125]. Ex vivo cultures of human lymphoid
tissue, which is a suitable model to obtain critical insight into HIV-1 and its intricate
relationship with autophagy, also confirm that rapamycin is effective in inducing autophagy
in CD4 T-cells [47]. Similarly, mucosal CD4 T-cells, treated with rapamycin, everolimus,
or carbamazepine in the context of an ex vivo human HIV-1 infection model, showed
increased autophagy activity [48].
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6.2. Pro-Autophagy Diets

Numerous pro-autophagic dietary interventions are being investigated for their po-
tential therapeutic effects to enhance the protective antiviral T-cell immunity, although this
therapeutic approach has not yet been thoroughly investigated in PLWH. For example,
calorie restriction (CR), which refers to a chronic reduction of energy intake by 15% to 40%
while maintaining an adequate intake of micronutrients such as vitamins and minerals, has
been found to be effective in enhancing the proliferative response and cytokine production
by Ag-specific T-cells upon reinfection with influenza virus in aged mice [126]. “Fasting”,
which is a diet strategy that involves a willful abstaining from consuming nutrients for a
certain period of time, is known not only to induce autophagy in leukocytes [127], but also
to enhance antiviral CD4 T-cell immunity in severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2)-infected individuals through the production of ketone bodies [128,129].
Data show that ketone bodies, which can also be supplemented in the context of ketogenic
diets, provide an alternative carbon source in Ag-specific CD4 T-cells to fuel mitochondrial
energy production [128]. The supplementation of specific micronutrients such as sper-
midine, ascorbic acid (vitamin C), and niacin (vitamin B3) induces autophagy [130,131].
Spermidine, which is a natural polyamine that is critically involved in the maintenance
of cellular homeostasis and acts as an anti-aging vitamin in humans, is another potent
autophagy inducer [132]. In fact, the potency of spermidine in inducing autophagy has
been recently quantified to be equivalent to that of rapamycin [133]. Although not available
in the context of HIV-1 research, spermidine supplementation has been found to be effec-
tive in improving autophagy and vaccine-induced antiviral CD8 T-cell function in older
donors [18]. Spermidine supplementation in hepatitis B virus (HBV)-vaccinated mice also
improves Ag-specific CD8 T-cell protection [134]. Similarly, another recent study showed
that cytomegalovirus (CMV)-specific T-cell functionality can be improved by vitamin C
pre-treatment for several days [135]. Altogether, data show that while many approaches
to stimulate autophagy with drugs and/or dietary supplementations, such as rapamycin,
spermidine, niacin, and metformin, have shown promise in preclinical studies, their trans-
lation to HIV-1-related clinical application and their overall efficacy and safety profiles in
PLWH require further investigations.

7. Final Remarks

Considering the growing body of evidence, manipulating the catabolic process of
autophagy with drug inducers and/or specific diets is becoming a promising avenue in
rescuing defective HIV-1-specific T-cell responses along with a better control of HIV-1 viral
replication. Not only recent in vitro studies prove that autophagy acts as a metabolic cat-
alyzer of Ag-specific effector functions [15,16,39], but in vivo observations also confirm that
drug-mediated autophagy induction improves antiviral responses during HIV-1 infection.
For example, in HIV-1-infected humanized mice, results confirm that treatment with the
autophagy inducer rapamycin significantly improves Ag-specific T-cell responses. The
authors further show that in vivo co-treatment with rapamycin and ART leads to signif-
icantly reduced viral rebound after ART withdrawal in infected animals [125]. It is also
worth noting that, whereas the majority of PLWH experience rapid viral rebound after ART
interruption, a rare population of individuals, termed post-treatment controllers (PTC),
demonstrate sustained viral suppression ranging from several months to a couple of years
after ART cessation [136]. Similarly to EC displaying high autophagy, metabolomic analysis
of PTC show several plasma metabolites that are associated with better HIV-1 control after
ART cessation; these include increased levels of glutamate and alpha-ketoglutarate (αKG),
and lower levels of L-lactate when compared to PLWH with lesser HIV-1 control [137].
Overall, the literature indicates that drug-induced autophagy must be considered in PLWH
before ART cessation to improve their post-treatment control of HIV-1 due to a better
organized metabolic plasticity and energy-dependent Ag-specific T-cell protection. Finally,
autophagy-dependent metabolic reprogramming in CD4 T-cells may also be considered to
purge HIV-1 reservoirs, which persist in PLWH despite ART and reignite systemic viral
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replication should treatment be interrupted. This HIV-1 reservoir is primarily persistent
in long-lasting memory CD4 T-cells that are latently infected with the virus [138]. Recent
studies indicate that the cellular metabolism and the energy-dependent processes are major
determinants of HIV-1 reservoir seeding in CD4 T-cells and may be important targets for
new therapeutic approaches against HIV-1 [139,140]. In conclusion, although autophagy
is a new therapeutically targetable process in PLWH, it is mandatory to improve our un-
derstanding of this mechanism in humans to better harness the potential of autophagy
manipulation in HIV-1 care.
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