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Abstract: Increasing agricultural production is a major concern that aims to increase income, reduce
hunger, and improve other measures of well-being. Recently, the prediction of soil-suitability has
become a primary topic of rising concern among academics, policymakers, and socio-economic
analysts to assess dynamics of the agricultural production. This work aims to use physico-chemical
and remotely sensed phenological parameters to produce soil-suitability maps (SSM) based on Ma-
chine Learning (ML) Algorithms in a semi-arid and arid region. Towards this goal an inventory of
238 suitability points has been carried out in addition to14 physico-chemical and 4 phenological
parameters that have been used as inputs of machine-learning approaches which are five MLA pre-
diction, namely RF, XgbTree, ANN, KNN and SVM. The results showed that phenological parameters
were found to be the most influential in soil-suitability prediction. The validation of the Receiver
Operating Characteristics (ROC) curve approach indicates an area under the curve and an AUC of
more than 0.82 for all models. The best results were obtained using the XgbTree with an AUC = 0.97
in comparison to other MLA. Our findings demonstrate an excellent ability for ML models to predict
the soil-suitability using physico-chemical and phenological parameters. The approach developed to
map the soil-suitability is a valuable tool for sustainable agricultural development, and it can play an
effective role in ensuring food security and conducting a land agriculture assessment.

Keywords: precision agriculture; sentinel-2; random forest; XgbTree; digital soil mapping; remote
sensing; agricultural management

1. Introduction

As the world’s population is rapidly growing day by day, so too does the pressure to
expand and intensify the use of agricultural land; additionally, putting a strain on natural
resources to meet the rising demand for food and agricultural products [1–3]. This pressure
can cause a degradation in the potential of agricultural lands, causing a list of issues, such
as soil degradation, waterlogging, salinization/alkalization, and pollution [4], which have
a direct impact on food production and food security [5–8]. In addition, agricultural land
use is more demanding in terms of soil quality and performance when compared to other
land uses. This requirement stems from the fact that not all soils can be used for agriculture,
and not all crops can be grown successfully under given soil conditions, due to the differing
crop nutrient requirements and the physico-chemical properties of soils [9]. For this
purpose, researchers consider it of great importance to map land suitability [1,10,11] with
the main goals of establishing the sustainable use of agricultural lands and assessing the
soil potential for agricultural purposes [1,11]. The status of land suitability is determined
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by intrinsic soil properties (e.g., parent materials, soil texture, organic matter, slope, and
depth) as well as characteristics that can be affected by human management (e.g., drainage,
irrigation, soil and water quality, soil fertility, and crop management) [1]. The new model
and analysis approach has led to a number of high quality decision-making tools, which
perform complex treatments using a large number of variables [12,13].

Many researches have applied new approaches to map land suitability, such as linear
combination [13,14], simple limitation [15], fuzzy-logic modeling [16], artificial neural
networks [17], remote sensing RS [18,19], and Machine learning ML. The major domains
where ML algorithms are frequently used are disease detection, business intelligence, in-
dustry automation, and sentiment analysis [20]. Furthermore, ML methods have made
significant contributions to soil degradation and landslide susceptibility mapping, ground
subsidence and groundwater potentiality estimation [21,22], Multi-Criteria Decision Analy-
sis (MCDA), Multi-Criteria Evaluation (MCE) [21–23], and Analytical Hierarchy Process
(AHP) [24,25]. Despite some limitations of AHP, MCE and MCDA are still the most com-
monly applied methods for land evaluation, especially on a small scale. However, the AHP,
MCE and MCDA methods are time-consuming and involve costly procedures in sampling
and ground surveying without allowing to cover the spatio-temporal proprieties.

On this basis, ML and RS can address these limitations by offering an alternative means
of classical soil suitability mapping in large spatio-temporal scales. ML models are capable
of learning from large datasets and can integrate different types of data easily [26–28]. In a
digital soil mapping framework, ML models were applied to make the links between soil
observations and auxiliary variables in order to understand the spatial-temporal variation in
soil types and other soil properties [29]. Additionally, the application of ML is well-known
in assessing various phenomena in relation to natural disasters [30], soil erosion, and crop
growth management [31]. Several algorithms were used to perform soil suitability maps
based on artificial neural networks (ANNs) [30], random forest (RF) [26,32], support vector
machines (SVMs) [31,33], K-Nearest Neighbor (K-NN) [34], and Extreme Gradient Boosting
(XgbTree) [35]. Likewise, ML methods have demonstrated greater robustness and stability,
making them popular and cost-effective in assessing agricultural land potentiality [27].
ML methods are still an emerging and challenging research field. In the present study,
phenological characteristics derived from a vegetation indices time series were combined to
fill the missing spatial information from the punctual soil observation data in order to assess
for an agricultural land use potential. According to several studies and researches, the
exploitation of phenological data has proven useful for detecting, mapping, and monitoring
soil suitability [5,19]. The behavior of the vegetation cover expresses the potential of the soil
(high or low) to produce biomass [18,35,36]. Using the maximum values of the phenological
parameters, which are closely related to biomass production over a long period of time,
other factors related to climatic conditions and crop management are directly excluded,
and only the agricultural production potential of the land is highlighted [37].

The phenology approach indicates the soil suitability impact on vegetation develop-
ment, which constitutes a key indicator for assessing soil potential. However, in order
to assess for a land suitability map for agriculture, a deep understanding of soil type
characteristics and vegetation cover behavior is highly required. In this case, the ML
methods were selected to perform the spatial analysis, combining phenological metrics
and physico-chemical soil factors. The uniqueness of this work is the development of a
decisive, fast, efficient, and less expensive approach for evaluating soil suitability with
the greatest precision. We have developed an original and novel method for this purpose
that combines physico-chemical and phenological approaches using artificial intelligence
tools. To our knowledge, this novel approach will be tested for the first time in the field of
smart agriculture.

The main purpose of this study is to map soil suitability in a semi-arid and arid region,
using five ML methods. In this regard, a total of eighteen physico-chemical soil factors (N,
ESP, Capacity of Exchange Cation (CEC), Ca, P, K, pH, Na, OM, Mg, CaCO3, depth, and
soil salinity) and four main phenological parameters were chosen to constitute a spatial
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input to establish decisional maps based on ML. Consequently, this innovative approach
can help systematically to assess the actual situation of soil suitability by considering
the aforementioned factors. The combination of soil physico-chemical parameters and
phenological factors related to biomass makes this work original and a useful tool for
decision makers. The study’s findings will assist decision makers and stakeholders in
achieving sustainable development goals and continuing to increase agricultural production
in the region.

2. Materials and Methods
2.1. Materials
2.1.1. Study Area

The study area is located in the Beni-Mellal-Khenifra region of central Morocco be-
tween latitudes of 32◦30′0′′ and 33◦40′0′′ N and longitudes of 6◦10′0′′ and 7◦00′0′′ W.
(Figure 1). It covers an area of 1541 km2. The region has a semi-arid to arid climate, with
a dry season lasting from April to October and a rainy season extending from November
to March [38] with an annual rainfall of 350 mm and evaporation of 1800 mm, [35]. The
average annual temperature is 17 ◦C, with winter months averaging 3.5 ◦C and summer
months averaging 38 ◦C. The region’s primary lithological formations are Lias limestones
and dolomites, alluvium, Triassic red clays, Paleozoic shales, sandstones, and quartzites.
Furthermore, the appropriateness of the region’s soils is one of the main critical production
elements in agriculture and can have a direct impact on crop productivity [23,38]. (Figure 1,
Table 1).
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Figure 1. Location of the study area and soil type. BThB: Browned soils, CCB: Calci-magnesic
Limestone browns soils, CCR: Calci-magnesicrendzines soils, ISB: isohumic soils, NNCA: Little
evolved soils, MNE: Raw mineral soils, NNC: Little evolved soils Of colluvial contribution, NNE:
Little evolved soils Erosion, XFeC: iron sesquioxide soils.
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Table 1. Description of the soil unit codes.

Classes Sub-Classes Groups Codes

Raw mineral soils No climatic Erosion MNE
Little evolved soils No climatic Erosion NNE
Little evolved soils No climatic Colluvial contribution NNC

Calci-magnesic soils Carbonates Rendzines CCR
Calci-magnesic soils Carbonates Limestone browns CCB

isohumic soils In pedoclimate in the
rainy season Subtropical browns ISB

Browned soils Temperatehumid climates Browns BThB

ironsesquioxide soils Fersiallitics Low-leaching
calcium reserve XFeC

Little evolved soils No Climatic Collu-alluvial
contribution NNCA

2.1.2. Soil Data

In order to achieve our objectives, in addition to the field missions carried out, we
used data collected and analyzed by the National Institute of Agronomy (INRA). Over
the research region, a total of 28 soil profiles were collected and evenly dispersed. The
laboratory of the IAV Hassan II, used methods recognized and adopted to the Moroccan
soils for the pedological classification (CPCS 1967) [39,40] to conduct the geochemical
analyses. The study area is characterized by 10 soil classes with 4% crude mineral soils,
15% poor soils, 43% calcium-magnesium soils, 16% iso-humic soils, 7% brown soils, 7%,
and 8% iron sesquioxide soils and the rest are complex soils (Table 1, Figure 1).

2.1.3. Satellite Data

In this study, Sentinel-2 MSI data were used to extract phenological data over the
study area. The Sentinel-2 contains the Multispectral Instrument (MSI), which has signifi-
cantly different spectral response functions with 13 spectral bands, three distinct spatial
resolution, and a five-day interval between revisits when two satellites are operating simul-
taneously [40]. The current research aims to understand the soil suitability by integrating
satellite-phenological metrics. Therefore, all the available sentinel-2 data over the study
area were acquired through the Google earth engine platform, covering the period from
September 2016 to August 2020 (150 images).

2.2. Methodology

Figure 2 depicts an overview of the methodology used in this study, outlining the
steps (pre-processing, compositing, smoothing, phenological information extraction, and
classification) used in mapping the soil suitability based on phenological information data
and soil parameters.

2.2.1. The Suitability Inventory Map (SIM)

The SIM is required for various predictive models to prepare the Soil Suitability
Map [9]. To develop the SIM, the mapping of suitable areas was carried out using high-
resolution Google Earth images as well as soil suitability maps derived from INRA. As
results showed 238 suitability points were identified. Then, 70% of soil suitability points
(166) were randomly selected for model training, and the remaining 30% (72) were used for
models testing (Figure 2) [30,41].
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2.2.2. Processing of Geochemical Soil’s Parameters

In this work, point-based field data are utilized to generate a map of soil geochemical
properties interpolated using the Inverse Distance Weighted (IDW) approach, and each
measurement point is assigned a weight. The distance between the point and the other
unsampled point influences the amount of weight applied. The power of ten is used to
handle these weights. With a power-of-ten increase, the impact of the points that are farther
away increases [42]. Weights are distributed across adjacent places more evenly when there
is less power. The distance between the points matters in this strategy; therefore, points
with the same distance have the same weights, Figure 3. After the IDW we classify the
soil parameters according to the soil suitability classes [43]; we found that salinity is not a
constraint affecting the soils in the study area.
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2.2.3. Processing Phenological Metrics

After generating a 10 day composite NDVI from the original Sentinel-2 data in Google
Earth Engine (GEE), the Savitzky–Golay filter was applied to the NDVI profile to reduce
the remaining noises in the time-series. The resulting filtered and fused NDVI time-series
were then used to extract a set of 13 phenological metrics, which included the date of the
start, mid, end, and length of the season and the phenological proxies, such as the peak and
base values, seasonal amplitude or rate of increase and decrease (see the full list of metrics
in Table 2) [43–49]. Several authors [35,45,46] have demonstrated that four phenological
parameters (AMPL, PEAK, LINGT, and SINTG) are considered good indicators of biomass
production. Overall, vegetation development expresses various factors (e.g., anthropic
action, crop type, water deficiency, drought, pests, and nutrient deficiency) and not solely
soil potential, hence the reason why the maximum values of phenological parameters
were selected as input parameters. This approach allows for the exclusion of other factors
related to climatic conditions and crop management, highlighting only the soil production
potential (Figures 4 and 5).

Table 2. Seasonality parameters in TIMESAT.

Phenological Parameters Abbreviation Description

Start of season SOS Time for which the left edge has increased to 10% of the seasonal
amplitude measured from the left minimum level.

End of season EOS Time for which the right edge has decreased to 10% of the seasonal
amplitude measured from the right minimum level.

Middle of season MOS
Mean value of the times for which the left part of the VGI curve has

increased to the 90% level and the right part has decreased to the
90% level.

Length of season LOS Time from the start to the end of the season.
Base value BVAL The average of the left and right minimum values.

Maximum value PEAK Maximum VGI value for the fitted function during the season.
Amplitude AMPL Difference between the peak value and the base level.

Large integral LINTG The area under the smoothed curve between SOS and EOS.
Small integral SINTG The area below the base level from the SOS to EOS.

Left derivative LDERIV Rate of increase at the SOS between the left 10% and 90% of
the amplitude.

Right derivative RDERIV Rate of decrease at the EOS between the right 10% and 90% of
the amplitude.

Start of season value SOSV Start of season value.
End of season value EOSV End of season value.
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2.2.4. Machine Learning Algorithms
K-Nearest Neighbor

The k-nearest neighbor algorithm, abbreviated KNN or k-NN, is one of the simplest
machine learning algorithms based on the supervised learning technique. It assumes the
new and current data are similar and places the new example in the category to which it is
most similar. The KNN technique can be used for both regression and classification. The
KNN algorithm is as follows: an accurate estimate of K is chosen, which should be an odd
number, and the higher the K the greater the precision. The Euclidean distance between
the test data point and all other data points is then calculated [30].

Extreme Gradient Boosting Tree

Extreme Gradient Boosting (XgbTree) models use a scalable machine learning algo-
rithm with an end-to-end tree boosting system to classify or predict the desired models
from a larger learning database. It is a decision tree-based algorithm with gradient boosting
as the core optimization technique. It belongs to the boosting family of algorithms where
misclassification information from the previously grown tree is used to improve the next
tree, making it an optimized sequential process, also known as ‘boosting technique’. Tuning
parameters is the hardest part of modeling because decision tree algorithms are known for
overfitting. To obtain a model with low bias and low variance you have to find the best
way to hyper-tune the parameters. This prevents the model from becoming too accurate on
the training dataset, and it also enables the model to become more accurate on test datasets.
With these features, the XgbTree model is a good choice for classifying soil and land crops
that have almost identical spectral signatures when using multispectral data [49].
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Artificial Neural Network

In the Artificial Neural Network (ANN) model, the Multi-Layer Perceptron (MLP)
architecture was chosen, which contains three layers connected by several neurons: the
input layer, the hidden layer, and the output. For the input layer, which has one input and
several output pathways for each neuron, each node is connected with different determining
factors (GIFs). Hidden nodes, where there are several inputs and output connections for
each neuron, use weighted connections to learn and process the problem; weights can take
positive or negative values. Usually, for the modelling phase, the ANN method starts with
the adjustment of the weights of the different connections between neurons during the
training phase, then the output prediction stage is based on the constructed models [44].

Support Vector Machine

Support Vector Machine (SVM) is a popular Supervised Learning algorithm that is
used for both classification and regression problems. However, it is primarily used in
machine learning for classification problems. The SVM algorithm’s goal is to find the best
line or decision boundary for categorizing n-dimensional space. In this case, a hyperplane
is the best decision boundary, thus, SVM selects the extreme points/vectors that aid in the
creation of this hyperplane. These extreme cases are referred to as support vectors, and the
algorithm is known as the support vector machine [50].

Random Forest

Random Forest (RF) Algorithm is an ensemble machine learning method used for
both classification and regression. RF represent a group of decision trees in which the
values of a random vector are selected separately and evenly throughout all trees in the
forest to calculate the value of each tree. As the number of trees within a forest increases,
the overfitting approaches a limit. The generalization error of a forest of tree classifiers is
dependent on the relative strengths of the trees in the forest and their correlation. Using a
random selection of features to split each node yields error rates. In order to control the
inaccuracy, estimates are made of the model’s response to an increase in the number of
variables included in the analysis, as well as their relevance [50,51].

Models Hyperparameters

For all models, we tested the hypertune to detect the hyperparameters of each model.
The results are as follows: for RF with Mtry = 10 and Mtree = 500; for KNN to choose
the number of neighbors we applied K = 5; for ANN with size = 5 and decay = 5; for
SVM with sigma = 3 and C index = 0.2; and finally for xgbtree, the maximum number
of iterations is 200, the tree depth is 5, the learning rate is 0.05, and the loss reduction is
minimal = 0.05, minimum loss reduction required gamma = 0.01 colsample_bytree = 0.75,
and the sub-sample ratio of the training instance = 0.5.

2.2.5. Evaluation of the ML Algorithms Performance
Statistical Measures

To evaluate the robustness of the used machine learning models using the soil suitabil-
ity modeling process we employed a number of statistically based metrics, including the
kappa coefficient. The Cohen kappa method is used to evaluate a reliable soil suitability
model. The value varies between +1 and −1. The result when close to 1 is the most suitable.
The accuracy method generates the accurate model by combining suitable and non-suitable
areas. To evaluate the SSA modeling process we use four types of possible outcomes—true
positive (TP), false positive (FP), true negative (TN), and false negative (FN). The suitable
area and non-suitable area are obtained based on a cutoff value (here it is 0.5). Then, it is
calculated based on the comparison between each suitability truth pixel and the suitability
pixel on the obtained classified map. TP and FP refer to the suitability locations that are
determined to be suitable and non-suitable locations. FN and TN classify non-suitability
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locations as suitable and non-suitable locations, respectively. All of the equations used to
calculate these parameters are mentioned below:

Accuracy =
TN + TP

TP + FP + TN + TP
(1)

Kappa =
Accuracy− B

1− B
(2)

where B =
(TP + FN)(TP + FP) + (FP + TN)(FN + TN)√

TP + TN + FN + FP
(3)

ROC Curve and AUC

The Receiver Operating Characteristic (ROC) curve is considered a typical measure for
assessing the outcomes of applying ML models [40]. The sensitivity and the 1-specificity
combined with diverse cut-off limits are used to make the ROC curve. The perfect model
has an area under the curve (AUC) value close to 1, whereas an inaccurate model is
characterized by an AUC value of 0.5 [40]. In this study, the validation of the best-selected
model was performed using the ROC curve

Sensitivity =
TP

TP + FN
(4)

Specificity
TN

FP + TN
(5)

3. Results
3.1. Relative Importance of the Factors Affecting Soil Suitability

In order to assess the power of phenological and environmental covariates to distin-
guish between suitable and non-suitable areas, we employed variable analysis to classify
the most important factors, using RF, K-NN, ANN, SVM, and XgbTree methods. (Figure 6).
The results of the RF model show that the most relevant factors to map soil suitability are
CaCO3, K2O, K, and CEC. However, the models K-NN, SVM, and XgbTree indicate that
ESP, Na, CaCO3, and the large integral are the most influential variables. In accordance
with the ANN technique, the most relevant variables are ESP, Na, Mg, and K2O. In general,
both factors phenological and environmental covariates appear to be able to separate soil
suitable from non-suitable. In particular, the productivity metrics, such as LINTG, SINTG,
AMPL, PEAK, and the environmental covariates configure a good separability between the
two classes. However, only a very small part of one particular class may be misclassified
due to the existence of similar characteristics in phenological metrics that show less power
discrimination among other features.

3.2. Spatial Soil Suitability Analysis

The soil suitability models were built using the five ML algorithms described above
(Figure 7). The suitable area indices produced by the RF, ANN, XgbTree, KNN, and SVM
models were classified into four classes according to the FAO, namely low, medium, high,
and very high suitability, based on the natural break classification method. Figure 6 shows
soil suitability maps produced by the five machine learning models. The SSM soil suitability
map produced by the RF model (Figure 7) found that 30% of the study area has a very
high soil suitability. The high and moderate SS zones cover 19% and 17% of the study area,
respectively, while the remaining 35% falls into the low soil suitability class (Figure 7). The
SSM soil suitability map produced by the ANN model (Figure 7) found that more than 54%
of the study area has a low soil suitability. The high SS zones cover 3% and the moderate
cover less than 3% of the study area, while the remaining 40% falls into the very high soil
suitability class (Figure 7). Based on the results of XgbTree (Figure 7), the research area has
41% that falls into the low suitability class, followed by 40% in the very high suitability
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class, 8.04% in the high suitability class, and 11% in the moderate SS classes (Figure 7). In
case of the KNN model (Figure 7), the results show that the study area has a 25, 23% area
in the very high suitability class, followed by the moderate and high class at 24.07% and
19.85% respectively, and 30.8% in the Low SS classes (Figure 7, Table 3). According to this
model, ESP and Na are the most important contributing factors for MSS (Figure 6), while
phenology plays an important role in the soil suitability characterization in the case of the
RF and xgbtree models, as opposed to ANN, where the phenology plays a less important
role. In the case of the SVM model (Figure 7), the results show that the study area has
38.35% area in the very high suitability class, followed by the low and high class at 30.63%
and 17.45%, respectively, and 13.52% in the moderate SS classes (Figure 7).
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Table 3. The percentage of suitability classes in the five models.

Soil Suitability ANN KNN RF SVM XgbTree

NS 54% 31% 36% 31% 41%

S3 3% 24% 18% 14% 11%

S2 3% 20% 17% 17% 8%

S1 40% 25% 29% 39% 40%

3.3. Validation of the Models

The validation of the results was carried out using ROC curves and AUC values of
RF, KNN, ANN, XgbTree, and SVM models (Figures 8 and 9). We found a good similarity
between the data collected during the fieldwork and the predicted results. The success
rates and the predictive rates of the RF, KNN, ANN, SVM, and XgbTree models are 0.93,
0.89, 0.92, 0.86, and 0.96 and 1, 0.82, 0.96, 0.85, and 0.97, respectively. The AUCs indicate a
very good to excellent prediction accuracy of the models for the SSM, and the XgbTree is
the most accurate and robust model for mapping the soil suitability.
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4. Discussion

Considerable progress has been made using the combined data coming from satellites
and punctual observation processed with ML methods to map agricultural land poten-
tial [27]. Soil suitability assessment based on effective geo-environmental factors is the
first step for managing soil suitability. Different approaches and procedures for the spa-
tial prediction of the potential of soil have been developed and implemented around the
world [9,31,41]. A controversial issue among environmental researchers is the prepara-
tion of a logical and reliable suitability map of soil. In the past decade, machine learning
techniques were developed to make several important applications, such as the prediction,
categorization, clustering, and elaboration of data [1]. Different sources were used to
prepare the input dataset. As some of the factors considered in the SSM were derived
from an NDVI time series, the resolution of the NDVI greatly affects the precision of the
results [52]. In this study RF, ANN, KNN, SVM, and XgbTree-based machine learning algo-
rithms were used to produce soil suitability maps based on training and validation datasets
and 18 factors, including phenological and soil factors. The high values for the effective
parameters demonstrate a significant correlation with soil suitability probability. As per the
RF and KNN models, the most effective factors are CaCO3, K2O, ESP, Na, and phenological
parameters, the SSMs based on the machine learning ensemble models, namely the RF,
XgbTree, KNN, ANN, and SVM. According to field information, these areas represent very
suitable soil with water resources considered to be the only limiting factor to overcome
using irrigation [36,47,50]. The class S3 area represents 24.39% of the total area according to
the model map with the NS in the models map area decreases by almost 20%. About less
than 54% Table 3 of the total study area was classified unsuitable using the ANN approach
when compared to 35.15% generated by the RF and xgbtree models Figures 7 and 9. This
result can be explained by the dependency of this classification upon climate change, which
can be caused by an increase in the extreme phenomena of precipitation and temperature
that mainly affects the arid and semi-arid zones [36]. On the contrary, the ML approach
aimed to meet all the climatic change needs by using more than 18 factors, in order to
remove all obstacles and keep only the soil suitability. In Figure 7, the results of all the
methods were explored and evaluated by comparing the suitability classes of the models
with ground truth [42]. Through a visual comparison, we found that the result of the RF is
close to reality as it shows that the soil is unsuitable (NS) for agriculture purposes in areas
of phosphate mining activity within the study area; whereas, the ANN model shows, as a
final result, that the soil is suitable for production in these areas. In the second part, we
find a big difference in the result, where the ANN model shows that the soil is unsuitable
for production, while the other models show a high capacity of the soil production also
identifying some irrigated areas which already exist, which confirms the high suitability of
these areas for intensive crop production.

5. Conclusions

The purpose of this study is not only to investigate the capability of a machine learning
model to predict the soil suitability, but also to compare its capability and robustness among
the implemented models, i.e., XgbTree, RF, KNN, ANN, and SVM. Therefore, 16 geo-
environmental and phenological factors were used and the significance of all the SSMs
was explored using the previous models. The findings highlighted that understanding
the strengths and limitations of each model remains difficult, even when performing
model comparisons with specific goals in mind, such as prediction accuracy and robustness.
Based on six threshold-dependent and independent assessment criteria, the RF and XgbTree
models achieved the best results. The SVM, ANN, and KNN have a slightly lower precision
when compared to the RF and XgbTree models in terms of pure prediction performance. The
results of all the models show that the north part of the study area has the highest suitability.
The outcome of the variable significance showed that the phenological parameters have
the most significant soil suitability followed by the influences of chemical factors. On the
other hand, the geology, pH, and soil salinity influences are the least important. The results
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of this research can be helpful for land resource management to cope with the current
uncertain situation and more accurately understand the different factors that influence soil
suitability. Additionally, this approach can be used as a guideline for future research to
analyze the capacity of soil in land use i.e., as a tool for regional soil resource analysis and
a purely remote method in the way of developing.
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