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A B S T R A C T   

Wetlands have long been recognized among the most critical ecosystems globally, yet their numbers quickly 
diminish due to human activities and climate change. Thus, large-scale wetland monitoring is essential to provide 
efficient spatial and temporal insights for resource management and conservation plans. However, the main 
challenge is the lack of enough reference data for accurate large-scale wetland mapping. As such, the main 
objective of this study was to investigate the efficient deep-learning models for generating high-resolution and 
temporally rich training datasets for wetland mapping. The Sentinel-1 and Sentinel-2 satellites from the Euro
pean Copernicus program deliver radar and optical data at a high temporal and spatial resolution. These Earth 
observations provide a unique source of information for more precise wetland mapping from space. The second 
objective was to investigate the efficiency of vision transformers for complex landscape mapping. As such, we 
proposed a 3D Generative Adversarial Network (3D GAN) to best achieve these two objectives of synthesizing 
training data and a Vision Transformer model for large-scale wetland classification. The proposed approach was 
tested in three different study areas of Saint John, Sussex, and Fredericton, New Brunswick, Canada. The results 
showed the ability of the 3D GAN to stimulate and increase the number of training data and, as a result, increase 
the accuracy of wetland classification. The quantitative results also demonstrated the capability of jointly using 
data augmentation, 3D GAN, and Vision Transformer models with overall accuracy, average accuracy, and Kappa 
index of 75.61%, 73.4%, and 71.87%, respectively, using a disjoint data sampling strategy. Therefore, the 
proposed deep learning method opens a new window for large-scale remote sensing wetland classification.   

1. Introduction 

Wetlands are ecosystems found at the intersection of land and fresh- 
or salt-water environments and are defined by hydric soils that are 
regularly flooded (Cowardin et al., 1979). Emergent, shrub, and wood
land vegetation dominate these habitats. They provide nutrients, flood 
prevention, erosion reduction, recreation, and aesthetics (Davidson, 
2016). Wetlands also have significant economic value for commercial 
and recreational fisheries as they are home to various fish and wildlife 
(Ozesmi and Bauer, 2002). Nonetheless, the twentieth century’s wet
lands have been substantially degraded due to industrialization, climate 
change, and pollution. Due to the significance of these areas and the 
challenges they face, an accurate map of the distribution and structure of 

wetland vegetation is critical. These maps are an essential source of 
information for assessing the consequences and direct anthropogenic 
use on wetlands and protecting and managing them. Satellite-based 
Earth observations from optical and radar systems have become a 
valuable source of observation for wetland mapping (B. Hosseiny et al., 
2022; Bansal et al., 2017). Remote sensing offers a cost-efficient and 
timely approach to wetland mapping. However, accurately mapping of 
wetlands may be a challenging task since these regions are often not 
portrayed by a particular vegetation cover but rather by the presence of 
water at the surface, underneath of the vegetation canopy, or within the 
soil, which makes them difficult to classify utilizing spectral or back
scattering information with coarse spatial resolutions (Gallant, 2015). 
On the other hand, high spatial and temporal resolution Earth 
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observations, such as Sentinel-1 and Sentinel-2 data, provide a perfect 
opportunity for detailed and accurate wetland classification from space 
(Slagter et al., 2020). 

Moreover, different machine-learning techniques have been devel
oped for accurate wetland identification in recent years (Jean Elizabeth 
Granger et al., 2021; Mahdavi et al., 2018). In particular, traditional 
supervised machine learning models, including decision trees (Jamali 
et al., 2021a), Support Vector Machines (Huang et al., 2014), and 
Random Forest (Berhane et al., 2018), are commonly utilized for 

wetland classification. However, deep learning approaches have become 
more relevant as computational capabilities have increased (DeLancey 
et al., 2020). Due to the general hand-crafted feature engineering (i.e., 
information extraction), the execution of the conventional classifiers 
significantly relies on the quality of the feature selection procedure. 
However, deep learning models learn through representation rather 
than empirical feature engineering. Internal feature representations are 
automatically learned, making these approaches extremely effective for 
image classification (Martins et al., 2020). While deep learning models 

Fig. 1. The pilot sites and their reference data of a) Saint John, b) Saint John (DDSTr), and c) Saint John (DDSTs), d) Sussex, e) Sussex (DDSTr), and f) Sussex 
(DDSTs), g) Fredericton, h) Fredericton (DDSTr), and k) Fredericton (DDSTs), New Brunswick, Canada (DDSTr = training data for disjoint data sampling, DDSTs =
test data for disjoint data sampling). 
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have been used in different applications, these models often rely on 
massive training datasets, extensive domain expertise, and computa
tional resources (Martins et al., 2020). 

CNNs are among the most well-known and utilized deep learning 
models in remote sensing image classification due to their great success 
in obtaining a higher classification accuracy than conventional methods 
such as RF (DeLancey et al., 2020). Generally, CNNs have driven com
puter vision modeling, primarily image classification. However, trans
formers are currently the most utilized architectures in natural language 
processing (NLP). The transformers (Vaswani et al., 2017) use attention 
mechanisms to explore long-range patterns in data. Its resounding suc
cess in the NLP field has encouraged scientists to explore its use in image 
classification, that have already shown promising results in a variety of 
research, including several remote sensing tasks (Bazi et al., 2021; D. 
Hong et al., 2021). 

Moreover, the acquisition of training and validation samples is a 
hurdle in wetland mapping due to the high cost of field wetland data 
acquisitions. While a wide range of research has been undertaken in 
Canada on wetland classification (Amani et al., 2018; Asselen et al., 
2013), there is no research on the possibility of producing synthetic 
reference data for large-scale mapping of wetlands. The transformers 
overperform the CNN networks thanks to their more generalizable 
characteristics. Additionally, transformers consider the connectivity 
between different characteristics of an image (i.e., attention component 
or positional encoding). Although, transformers necessitate more 
training information than that of CNNs to attain full image classification 
capabilities, which can be a considerable issue in some remote sensing 
tasks. Transfer learning (Jiao et al., 2021; Khan et al., 2021) and 
Generative Adversarial Networks (GANs) (Jamali et al., 2021b) are two 
techniques that can address the issue of scarcity of remote sensing 
reference data, specifically in wetland mapping. Therefore, this paper 
proposes a deep learning methodology based on GANs and the vision 
transformers for complex wetland classification to address the main 
limitations of deep learning models for large-scale wetland monitoring, 
including the scarcity of high-quality reference data. As such, the main 
contributions of this study can be defined as: 

(1) To address the main limitation of deep learning models, i.e., 
limited training data, a 3D GAN was developed and proposed for the 
generation of high-resolution satellite reference data. 

(2) To investigate the capability of vision transformers for the large- 
scale classification of complex wetlands. 

2. Materials 

2.1. Study area 

As shown in Fig. 1, in this research, three pilot sites were selected in 
and around the towns of Saint John, Sussex, and Fredericton, located in 
New Brunswick, Canada. We identified five types of wetlands, including 
bog, marsh, fen, and forested and shrub wetlands. The reference data 

were collected from New Brunswick’s wetland inventory, as seen in 
Fig. 2. It is worth mentioning that the reference data was collected as 
shape files and were extracted for the study areas in QGIS software. To 
minimize the over-classification of wetland regions, we used Google 
Earth’s high-resolution imagery to visually identify three additional 
non-wetland classes, including water bodies, urban areas, and agricul
tural lands. 

For accuracy assessment, we used a disjoint data sampling strategy to 
significantly reduce the correlation between the training and test data, 
as seen in Table 1 (N. Audebert et al., 2019). The classification accuracy 
may considerably decrease; however, better results comparison from 
different algorithms can be obtained and discussed. We used a lower 
number of training data in the 3D GAN, as training the GAN model with 
a high number of training data is significantly costly in terms of time and 
hardware computation cost. 

2.2. Remote sensing data 

Various features from Sentinel-1/2 data, including spectral bands 
and normalized backscattering coefficients, were extracted in the Goo
gle Earth Engine (GEE) platform. The median Sentinel-1/2 image data 
were utilized. We should note that we utilized maskS2clouds and median 
algorithms to only include Sentinel-2 images with less than 10 % cloud 
coverage dated from June 1st to September 1st, 2020. The GEE platform 
provides preprocessed Sentinel-2 Level 2A images utilizing the sen2cor 
algorithm (Louis et al., 2016). Given that the spatial resolutions of the 
Sentinel-2 bands are different (10–60 m), utilized bands were converted 
into 10 m spatial resolutions. We utilized Sentile-2 bands of B2, B3, B4, 
B5, B6, B7, B8, B8A, B11, and B12 (Jamali et al., 2021a). Moreover, to 
improve the wetland classification accuracy, the normalized difference 
built-up index (NDBI), the modified normalized difference water index 
(MDNWI), the normalized difference vegetation index (NDVI), and the 
bare soil index (BSI) were employed as well. Sentinel-1 ground range 

Fig. 2. Examples of wetland and non-wetland samples of a) urban, b) water, c) shrub wetland, d) marsh, e) forested wetland, f) fen, g) crop, and d) bog.  

Table 1 
Using a disjoint data sampling strategy, the number of references, test, and train 
pixels in Saint John, Fredericton, and Sussex pilot sites.  

Class Saint 
John 
(pixels) 

Fredericton 
(pixels) 

Sussex 
(pixels) 

Training 
3D GAN/Vision 
Transformer 

Test 
Data 

Bog 2145 3249 314 673/7845 5708 
Marsh 1610 4202 272 841/9363 6084 
Fen 6206 1245 – 1792/10918 7451 
Forested 

Wetland 
4980 3809 933 1251/13052 9722 

Shrub 
Wetland 

3346 3073 4021 1277/13290 10,440 

Water 5055 1526 349 760/8628 6930 
Urban 3511 4453 3389 1545/15940 11,353 
Crop 624 3589 6918 1060/11335 11,131  
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detected (GRD) data, comprising σ0
VV, σ0

VH, σ0
HH, and σ0

HV that is log scaled 
at 10 m ground sampling distance are also available in the GEE platform. 
In the GEE platform, the Sentinel-1 toolbox pre-processes the delivered 
Sentinel-1 data, including terrain correction, thermal noise removal, and 
radiometric calibration. 

3. Proposed deep learning method 

A complete overview of the proposed methodology diagram is pre
sented in Fig. 3. First, synthetic Sentinel-1 and Sentinel-2 data for classes 
with a few training samples are generated using a 3D GAN to increase 
wetland classification accuracy and address the common issue of limited 
reference wetland data (Part I). Then, as shown in Fig. 3, the real and 
synthetic data from three pilot sites are combined. Finally, synthetic and 
real data are fed to the Vision Transformer classifier for large-scale 
wetland mapping in New Brunswick (Part II). In Part I of the frame
work, the 3D GAN model only uses 10 % of the reference data as training 
and 90 % of the reference data as test data. The 3D generator produces 
high-quality Sentinel-1/2 for different wetland and non-wetland classes 
with a minority of training samples, while the 3D discriminator’s task is 
to recognize the real samples from produced synthetic data. After 
reaching an acceptable overall classification accuracy by the 3D classi
fier of 3D GAN in Part I, the synthetic data and real data are utilized in 
the proposed Vision Transformer for large-scale complex wetland 
mapping in Part II, as described in the following sections. We employed 
70 % of real and synthetic data and 30 % as test data in Part II by the 
Vision Transformer. 

3.1. 3D generative adversarial network 

As seen in Equation (1), based on the min–max objective function of 
the 3D GAN, the generator tries to create more realistic Sentinel-1 and 
Sentinel-2 wetland data utilizing noises (z pz(z)), while the discrimi
nator tries to distinguish the real Sentinel-1 and Sentinel-2 data from 
simulated ones. 

min
G

max
D
U(D,G) = Ex pdata [ln(D(x) ) ]+Ez pz [ln(1 − D(G(z)))] (1)  

where the expected function and the objective function are formulated 
by E and U(D,G). The distribution of real wetland samples is presented 
by pdata. We used a conditional map unit in the proposed 3D GAN to 
generate synthetic data from a random noise vector, similar to the 
GAMO (Subhra Mullick et al., 2019) and 3D-HyperGAMO (S. K. Roy 
et al., 2021) models, only for classes with fewer reference data. The 
advantage is solving the unbalanced data issue, which is common in 
wetland mapping. The 3D patch generator utilizes seven units, one for 
each class with a lower amount of training data. Consequently, the unit 
Ui generates γg

i samples as shown in Equation (2). 

γgi = γm − γi (2)  

where γm denotes the training data number in the class with the highest 
number of training samples, and γi denotes the number of training data 
in the classes with the lower training samples. Each of Ui uses data from 
3D patches of Sentinel-1 and Sentinel-2 imagery with a dimension of γi ×

S× S× B, as well as the output of the conditional map unit. The output 
of the conditional unit map is the intermediate feature expressed by If . 
Then it is transformed into a feature with the length of γi using a dense 
layer followed by a softmax layer. The feature vector is repeated by n =

S × S × B times for the generation of the class-specific random feature 
(Im) with the dimension of n× γ. The γi × S × S × B dimension of the 3D 
Sentinel-1 and Sentinel-2 data samples is then translated into a matrix 
(Pm) of dimension n× γ. The class-specific feature matrix (Fm) for 
Sentinel-1 and Sentinel-2 image patches is then computed by Equation 
(3). 

Fm = Im.(Fm)T (3) 

Then, a flattened vector (Fv) with a dimension of n is calculated by 
adding the column-wise sums of each row belonging to the Fm matrix. 
Finally, the synthetic Sentinel-1 and Sentinel-2 image samples are 
generated by converting Fv into the dimension of S × S × B where S and 
B are equal to 8 and 16, respectively. 

3.2. Discriminator and classifier 

The architecture of the 3D classifier of the proposed GAN network is 

Fig. 3. The overall architecture of the developed wetland classifier.  
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demonstrated in Table 2, which includes three 3D convolutional layers 
and two 2D convolutional layers, followed by a 2D global average 
pooling layer and three dense layers with sizes of 20, 10, and 8. 

As seen in Table 3, the proposed 3D discriminator network consists of 
two 3D convolutional layers and two 2D convolutional layers, followed 
by a 2D global average pooling layer and three dense layers with sizes of 

20, 10, and 1. 
The 3D GAN can be seen as a regularization technique that signifi

cantly reduces the overfitting issue. The 3D generator and 3D discrim
inator are trained in a competitive approach. The generator produces as 
realistic Sentinel-1 and Sentinel-2 synthetic data as possible, and the 3D 
discriminator attempts to classify the actual and synthetic samples. In 
this competitive rivalry, 3D networks (i.e., 3D generator and 3D 
discriminator) desire the best results. The 3D discriminator wants to 
achieve the best classification results, and the 3D generator tries to make 
simulated samples with the most matching distribution to the real 
Sentinel-1 and Sentinel-2 image patch data. 

3.3. Vision transformer 

To evaluate the efficiency of transformers for ecological mapping, we 
used the Vision Transformer (Alexander et al., 2021) for complex 
wetland classification. The Vision Transformer classifier receives real 
and synthetic Sentinel-1 and Sentinel-2 data generated by the proposed 
3D GAN (see Fig. 4). The standard transformer takes a 1D series of token 
embeddings as input data. To use 3D Sentinel-1 and Sentinel-2 image 
patches, the satellites’ image patches (x ∈ RH×W×B) are reshaped into a 
sequence of flattened 2D patches (xp ∈ RN×(P2 .B)), where B presents the 
band’s number, (H × W) is the primary resolution of images, (P,P) de
notes each image patch’s resolution and resulted number of patches is 
presented by N = HW/P2 which also presents as the transformer’s 
effective input sequence size. With a trainable linear projection, the 
image patches are flattened and transferred into D dimensions as the 
transformer employs a constant latent vector with a size of D in all layers 
(see Eq. (4)). It should be noted the names used for the output of the 
projection are called patch embeddings. 

z0 =
[
xclass; x1

pE; x
2
pE;⋯; xNp E

]
+EposE ∈ R(P

2 .B)×D,Epos ∈ R(N+1)×D (4) 

A learnable embedding to the series of embedded Sentinel-1/2 image 
patches (z0

0 = xclass) is appended, the state of which serves as the image 
representation (y) at the transformer encoder output (z0

L) (see Eq. (5)). 

y = LN(z0
L) (5) 

Table 2 
Configuration of the 3D classifier of the proposed GAN network.  

Input dimension 8× 8× 16× 1 

Layer type Size 
3D Convolutional layer 1× 1× 7× 16 
3D Convolutional layer 3× 3× 5× 32 
3D Convolutional layer 5× 5× 7× 32 
Reshape layer – 
2D Convolutional layer 3× 3× 64 
2D Convolutional layer 3× 3× 64 
2D Global Average Pooling layer – 
Flatten layer – 
Dropout layer 0.5 
Dense layer 20 
Dense layer 10 
Dense layer 8  

Table 3 
Configuration of the 3D Discriminator of the proposed GAN network.  

Input dimension 8× 8× 16× 1 

Layer type Size 
3D Convolutional layer 1× 1× 7× 32 
3D Convolutional layer 3× 3× 3× 64 
Reshape layer – 
2D Convolutional layer 1× 1× 64 
2D Convolutional layer 3× 3× 64 
2D Global Average Pooling layer – 
Flatten layer – 
Dropout layer 0.5 
Dense layer 20 
Dense layer 10 
Dense layer 1  

Fig. 4. Overview of the Vision Transformer (ViT).  
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In fine-tuning and pre-training steps, the z0
L is connected to a classi

fication head. In the pre-training step, a multi-layer perceptron (MLP) 
that has one hidden layer is employed as the classification head, while a 
single linear layer is utilized at the fine-tuning step. It is worth noting 
that to keep positional information, position embeddings are attached to 
the patch embeddings. Standard learnable 1D position embeddings in 
the Vision Transformer are employed as more complex 2D-aware posi
tion embeddings do not significantly improve performance (Alexander 
et al., 2021). The encoder receives the generated sequence of embedding 
vectors as its input data. The transformer encoder includes two layers of 
multiheaded self-attention (MSA) and MLP blocks formulated in Eq. (6) 
and Eq. (7). 

Before each block, layer normalization (LN) is applied, and residual 
connections are added after each block, as seen in Fig. 4. Moreover, the 
Gaussian Error Linear Unit (GELU) non-linearity is utilized in the two 
layers of the MLP. 

z′

L = MSA(LN(zl− 1) )+ zl− 1l = 1,⋯, L (6)  

zL = MLP
(
LN

(
z′

l

) )
+ z′

l l = 1,⋯,L (7)  

3.4. Experimental settings 

In this study, 8 by 8 patch sizes were chosen experimentally from 
preprocessed Sentinel-1 and Sentinel-2 images. We also used Adam 
optimizer to train the 3D GAN and the Vision Transformer with a 0.0004 
learning rate. The maximum training iteration for the 3D GAN was set to 
30,000 epochs, and for the Vision Transformer classifier, we set it to 100 
epochs. In addition, the noise dimension and training batch size in the 
3D GAN were 100 and 32, respectively. The experiments were run with 
an i7-10750H Intel processor, 16 GB Random Access Memory (RAM), 
and an RTX 2070 NVIDIA GeForce Graphical Processing Unit (GPU) 
running on 64-bit Windows 10. It is worth mentioning that the loss 
function in the 3D GAN is mean squared error, while we utilized sparse 
categorical cross entropy as the loss function for the proposed Vision 
Transformer. 

4. Results and discussion 

To assess the classification capability of the proposed classifier, its 
result is compared with several state-of-the-art CNN models, including 
HybridSN (S. K. Roy et al., 2020), a Multi-model CNN classifier (Jamali 
and Mahdianpari, 2022a), and the Swin Transformer (Liu et al., 2021) 

Fig. 5. The confusion matrix of the proposed 3D GAN model for generating synthetic Sentinel-1 and Sentinel-2 data using a) random sampling strategy b) disjoint 
data sampling strategy. 
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that was developed and proposed for complex wetland mapping in New 
Brunswick (Jamali and Mahdianpari, 2022b). For accuracy assessment, 
the wetland classification results are compared in terms of the overall 
accuracy, average accuracy, kappa index, F-1 score, precision, and recall 
(Jamali et al., 2021a; Stehman and Foody, 2019). 

4.1. 3D GAN 

We evaluated the results of the developed 3D GAN model to generate 
synthetic Sentinel-1/2 data. We merged the reference data from the 
three study sites of Saint John, Sussex, and Fredericton to assess the 
efficiency of the proposed 3D GAN model for large-scale wetland 
reference data generation. The general results demonstrated a relatively 
high agreement between the reference and predicted non-wetland and 
wetland classes (see Fig. 5). Moreover, using the disjoint data sampling, 
the 3D GAN classifier obtained a kappa index, average accuracy, and 
overall accuracy of 64.66 %, 66.52 %, and 69.37 %, respectively, as seen 
in Table 4 and Fig. 5. 

Table 4 and Fig. 5 reveal that the 3D GAN classifier demonstrated 

relatively lower performance on wetland classes with high similarity in 
vegetation structure. A high confusion was observed between the shrub 
and forest wetland classes. This confusion can be due to a significant 
similarity between these two wetlands regarding vegetation structure 
and patterns, which results in their comparable spectral reflectance, 
notably in optical satellite imaging of Sentinel-2. Examples of real and 
generated synthetic data by the 3D GAN model for different wetland and 
non-wetland classes are illustrated in Fig. 6. The presented examples are 
random samples created by the 3D generator of the developed 3D GAN. 
Using thousands of training samples of wetland and non-wetland classes, 
the 3D generator produced high-quality synthetic data for the classes 
with a minority of training samples. It should be noted that the shown 
samples are random and are not the exact synthetic data for the pre
sented real data. 

4.2. Accuracy assessment 

We evaluated the wetland classification results utilizing different 
settings, including data augmentation and synthetic data with the Vision 

Table 4 
Accuracy parameters of the proposed 3D GAN model: Kappa Index (KI), Average Accuracy (AA), Overall Accuracy (OA), and F1-score (Ag = data augmentation, ViT =
Vision Transformer, ST = Swin Transformer). (Using Disjoint Data Sampling).  

Class ViT ST (Jamali and Mahdianpari, 
2022b) 

HybridSN 
(S. K. Roy et al., 
2020) 

Multi-Model 
(Jamali and Mahdianpari, 
2022a) 

3D GAN 
(ours) 

ViT +
Ag 
(ours) 

GAN +
ViT 
(ours) 

GAN + ViT +
Ag 
(ours) 

Bog  0.64  0.69 0.71  0.7  0.58 0.77  0.69 0.76 
Marsh  0.43  0.34 0.44  0.45  0.45 0.45  0.43 0.53 
Fen  0.61  0.56 0.65  0.61  0.57 0.62  0.65 0.65 
Forested 

Wetland  
0.61  0.57 0.63  0.61  0.56 0.62  0.59 0.64 

Shrub Wetland  0.54  0.49 0.61  0.62  0.49 0.62  0.56 0.61 
Water  0.79  0.72 0.78  0.79  0.77 0.76  0.79 0.77 
Urban  0.99  0.99 1  0.99  0.99 1  0.99 1 
Crop  0.87  0.48 0.94  0.95  0.88 0.9  0.92 0.94          

KI (%)  66.46  55.24 70.89  70.06  64.66 69.97  68.91 71.87 
OA (%)  70.92  60.95 74.79  74.07  69.37 73.95  73.06 75.61 
AA (%)  68.41  60.69 71.93  71.25  66.52 71.84  70.3 73.4  

Fig. 6. Random examples of the real and synthetic data generated by the 3D GAN generator for different wetland and non-wetland classes.  
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Fig. 7. The confusion matrix of a) Vision Transformer, b) Swin Transformer, c) HybridSN, d) Multi-Model, e) 3D GAN, and f) the proposed method (Using Disjoint 
data sampling). 
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Transformer classifier. It is worth noting that data augmentation in
cludes random crop and random rotation of image patches to increase 
the number of training data fed to the Vision Transformer classifier to 
increase the accuracy of wetland classification. It is worth mentioning 
that both Swin Transformer and Multi-Model algorithms were devel
oped and proposed for complex wetland classification in New Bruns
wick. The Vision Transformer illustrated much better wetland 
classification accuracy in terms of average accuracy outperforming the 
state-of-the-art vision transformer of the Swin Transformer by approxi
mately 8 % (see Table 4 and Fig. 7). The reason can be explained as the 
better generalization capability of the Vision Transformer over the Swin 
Transformer for large-scale wetland mapping. Moreover, based on the 
results of the disjoint data sampling, the proposed classifier utilizing 
real, synthetic, and augmented data achieved the highest classification 
accuracy compared to the other settings in the kappa index, average 
accuracy, and overall accuracy of 71.87 %,73.4 %, and 75.61 %, 
respectively, as seen in Table 4. The Vision Transformer obtained an 
average accuracy of 68.41 %; however, adding augmented data 
improved the average accuracy of the Vision Transformer by 3.43 %. 
Moreover, the inclusion of both synthetic and augmented data improved 
the classification accuracy of the Vision Transformer by approximately 
5 % (see Table 4 and Fig. 7). In addition, the HybridSN (71.93 %) and the 
Multi-Model (71.25 %) algorithms demonstrated better classification 
results over the Swin Transformer (60.69 %) and the Vision Transformer 

(68.41 %) in terms of average accuracy, as seen in Table 4. 
The uncertainty of the results originates from two main sources of 

the error and uncertainty created by the possible wrong-labeled syn
thetic wetland and non-wetland samples produced by the 3D generator 
of the 3D GAN, as well as the ability of the vision transformer to fit and 
train by the existent limited training data. The synthetic data may in
crease the uncertainty of the classification accuracy; however, as the 
results demonstrated, the inclusion of the synthetic data improved the 
classification accuracy of wetlands by the proposed vision transformer, 
as seen in Table 4. As such, the significance and positive effect of using 
synthetic data to improve the accuracy of wetland classification covered 
the increase of the result’s uncertainty. It is worth noting that the most 
important objective of producing synthetic data is to improve the vision 
transformer’s classification accuracy. As discussed in the introduction 
section, utilizing synthetic data may increase the existent complexity of 
the wetlands; however, this study was based on the idea that the syn
thetic data generated by cutting-edge algorithms (GANs) can improve 
the classification accuracy of wetlands even with their possible imper
fections and increase of uncertainties. 

4.3. Wetland classification 

Fig. 8 presents the wetland and non-wetland regions obtained by the 
different CNN classifiers in the study sites. The proposed method 

Fig. 8. Wetland maps of three pilot sites using of a) Vision Transformer, b) Swin Transformer, c) HybridSN, d) Multi-Model, e) 3D GAN, and f) the proposed method.  
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successfully differentiated various non-wetland and wetland regions 
based on our wetland experts’ visual interpretation of wetland maps. 
Based on the visual interpretation of wetland experts, the proposed al
gorithm for large-scale wetland mapping demonstrated better visual 
maps compared to other classifiers, including the HybridSN, Swin 
Transformer, and Vision Transformer. For example, HybridSN, Vision 
Transformer, and Multi-Model classifier showed over-classification of 
shrub wetlands in the Fredericton study site. Moreover, in Sussex, there 
was an over-classification of shrub wetlands by the HybridSN and Swin 
Transformer algorithms. Additionally, the Multi-Model and HybridSN 
classifiers resulted in an over-classification of marsh wetlands in Saint 
John. 

4.4. The effect of training ratio and window size 

Fig. 9 demonstrates the classification accuracies of the proposed 
Vision Transformer for different training sample rates and image patch 
sizes. Results showed that the training sample ratio substantially 
affected the wetland classification accuracies (1 % (i.e., 697 samples) to 
5 % (i.e., 3488 samples)). In other words, the average accuracy is 
significantly improved by approximately 27 %. Compared to the 5 % to 
10 % (i.e., 6977 samples) training sample ratio, average accuracy 
increased by around 15 %. After that, the classification accuracy 
improvement became steady. Based on the results, from 10 % to 100 % 
(i.e., 69,775 samples) training sample rates, the average accuracy 
increased by around 5 %, as seen in Fig. 9. Results demonstrated that 
there is a limit where increasing the number of training data would 
substantially improve the classification accuracy of wetlands. Although 
increasing the training data may increase the classification accuracy of 
wetlands by a few percent, the computation cost in terms of time will 
significantly increase from 50 % to 100 % training ratio. As such, there 
should be a trade-off between the number of training data to reach 
acceptable classification accuracy and the required computation cost 

that is dependent on the available hardware in a remote sensing project. 
Additionally, when the image patch size was set to 12, the proposed 

classifier obtained the highest average accuracy 73.52 %), as seen in 
Table 5, while the least average accuracy was obtained by setting the 
image patch size to 4 (69.66 %). When the size is too small, it is evident 
that the effect of spatial information is minimal. Moreover, when the 
image patch size is too large, the classification becomes slow, and the 
processing complexity rises significantly. 

5. Conclusion 

Due to the intrinsic complexity of wetlands, characterizing these 
valuable and threatened ecosystems using Earth observations is chal
lenging. Moreover, the scarcity of reference wetland data for precise 
large-scale wetland mapping is one of the most encountered challenges. 
Consequently, this study investigated the use and efficiency of cutting- 
edge CNNs (i.e., GANs) and transformers (i.e., the Vision Transformer) 
for wetland generation and classification. To improve the wetland 
classification accuracy, we used a 3D GAN to generate synthetic 
Sentinel-1 and Sentinel-2 data with classification accuracies in the 
kappa index, average accuracy, and overall accuracy with values of 
64.66 %, 66.52 %, and 69.37 %, respectively, by the 3D GAN classifier. 
Moreover, using both synthetic and augmented data, the developed 
classifier obtained wetland classification accuracies in the kappa index, 
average accuracy, and overall accuracy of 71.87 %, 73.4 %, and 75.61 
%, respectively. The Vision Transformer obtained an average accuracy 
of 68.41 %; however, adding augmented data improved the average 
accuracy of the Vision Transformer by 3.43 %. Moreover, the inclusion 
of both synthetic and augmented data improved the classification ac
curacy of the Vision Transformer by approximately 5 %. One of the main 
significances of the developed model is the capability of the developed 
3D GAN to produce high-quality synthetic wetland data. In this way, the 
need for costly and time-consuming field data acquisition by wetland 
experts will be significantly reduced. 
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