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Abstract: Rice is one of the most essential and strategic food sources globally. Accordingly, poli-
cymakers and planners often consider a special place in the agricultural economy and economic
development for this essential commodity. Typically, a sample survey is carried out through field
observations and farmers’ consultations to estimate annual rice yield. Studies show that these meth-
ods lead to many errors and are time-consuming and costly. Satellite remote sensing imagery is
widely used in agriculture to provide timely, high-resolution data and analytical capabilities. Earth
observations with high spatial and temporal resolution have provided an excellent opportunity for
monitoring and mapping crop fields. This study used the time series of dual-pol synthetic aperture
radar (SAR) images of Sentinel-1 and multispectral Sentinel-2 images from Sentinel-1 and Sentinel-
2 ESA’s Copernicus program to extract rice cultivation areas in Mazandaran province in Iran. A
novel multi-channel streams deep feature extraction method was proposed to simultaneously take
advantage of SAR and optical imagery. The proposed framework extracts deep features from the
time series of NDVI and original SAR images by first and second streams. In contrast, the third
stream integrates them into multi-levels (shallow to deep high-level features); it extracts deep features
from the channel attention module (CAM), and group dilated convolution. The efficiency of the
proposed method was assessed on approximately 129,000 in-situ samples and compared to other
state-of-the-art methods. The results showed that combining NDVI time series and SAR data can
significantly improve rice-type mapping. Moreover, the proposed methods had high efficiency
compared with other methods, with more than 97% overall accuracy. The performance of rice-type
mapping based on only time-series SAR images was better than only time-series NDVI datasets.
Moreover, the classification performance of the proposed framework in mapping the Shirodi rice
type was better than that of the Tarom type.

Keywords: deep learning; rice mapping; attention modules; SAR; NDVI; multi-temporal

1. Introduction

According to the Food and Agriculture Organization (FAO), rice is one of the essential
commodities in the world [1–3]. More than half of the world’s population depends on
rice as the primary food [1]. Rice paddies account for approximately 12% of the global
croplands of the planet [4]. According to FAO’s 2016 statistics, global rice cultivation is
around 741 million hectares, and about 50% of the world’s rice is cultivated in India and
China. Historical records show rice has been cultivated in Iran since the first century BC.
Based on statistics, Iran is a medium rice producer [5].

Given the importance of rice in the household food basket, creating jobs and in-
come for large-scale agricultural producers and the government’s willingness to replace
high-yielding cultivars with other varieties are crucial challenges for regional and local
authorities [6–8]. According to the latest reports from governmental institutions in Iran,
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statistics about the area under cultivation and the annual rate of rice harvesting were
carried out through field sampling and census data collection (www.maj.ir, accessed on
23 October 2022). The reliability of this approach is very low, and consequently, these
results cannot be used in critical decision-making due to uncertainties. One of the most
critical aspects of this lack of information and accuracy is the spatial distribution of rice
paddies in this region [9].

Identifying and classifying the area under the cultivation of various agricultural prod-
ucts is vital for decision-making, improving management and policymaking, and economic
planning for agricultural development [10,11]. Monitoring and mapping rice paddies con-
tinuously and efficiently play an essential role in agriculture and a sustainable environment,
water and food security, damage assessment, and policy and decision-making [12–14]. Re-
mote sensing techniques can provide timely and valuable information on crop distribution
and the area under cultivation and yield potential for decision-makers [15,16].

For decades, optical remote sensing data have been used in different agricultural
applications, including crop types classification [17], biomass and leaf area estimation [18],
yield modeling [19], and disease identifications [20]. These applications used data from var-
ious spectral bands and sensors, such as Moderate Resolution Imaging Spectroradiometer
(MODIS), SPOT, Landsat, etc. [21].

Due to the increased availability of multispectral remote sensing images, rice mapping
has become a hot research topic. To this end, many studies have been done for mapping rice
based on optical multispectral satellite imagery. For instance, Zhang et al. [22] used deep
learning convolutional neural network (CNN) for paddy-rice mapping from multi-temporal
Landsat 8, phenology data, and thermal datasets. In the first step, the spatial-temporal
adaptive fusion model was employed to fuse MODIS and Landsat data to simulate multi-
temporal Landsat-like data. Then, a thresholding procedure was conducted to derive
the phenological variables from the Landsat-like NDVI time series. A generalized single-
channel algorithm was used to derive LST from Landsat 8. Finally, multi-temporal Landsat
8 images, combined with phenology and LST data, were used to map rice paddies using a
CNN framework.

Moreover, Jiang et al. [23] have recently used the differenced NDVI (dNDVI) and a
thresholding approach based on Landsat’s NDVI to monitor changes in rice-cultivated
areas in Southern China. They used two Landsat images to identify double-cropping rice
(DCRs) using dNDVI and one Landsat image to identify single-cropping rice (SCRs). Most
studies using optical data to identify rice-cultivated areas have relatively decent accuracies
and results. The greatest challenge related to these studies is obtaining a significant number
of images (i.e., high temporal resolution) to correctly identify the rice cultivation pattern.
However, due to the small size of agricultural lands, the low spatial resolution causes
spectral mixing issues, which highly affects the performance of small rice paddy detection
and mapping.

According to the previous studies, methods based on the rice phenology cycle employ
data from the time-series images of Landsat and MODIS. Due to the high temporal resolu-
tion of the MODIS data, it has a high potential to identify the area under rice cultivation.
However, due to the low spatial resolution of this data and the small size of the paddies,
MODIS pixels may include several different classes. As a result, this spectral mixture may
lead to inaccurate identification of the areas under rice cultivation and increases uncertainty.
On the other hand, Landsat images have a higher spatial resolution, which can resolve
the problem of the mixed pixels and can much better extract the areas under rice cultiva-
tion. Due to the high cloud coverage in the study area and the low temporal resolution of
Landsat imagery, it is not easy to obtain a significant amount of Landsat data. On the other
side, using a high temporal and spatial resolution of the Sentinel-2 images, identifying the
area under rice cultivation with the phenological-based rice approach is possible. Due to
adverse weather conditions, e.g., clouds and rain, in the northern region of Iran, most of
the time, optical data may not be beneficial for rice monitoring.

www.maj.ir
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SAR data has shown attractive characteristics for agricultural applications thanks to
their independence from weather and illumination conditions. These advantages of SAR
satellite imagery caused some studies to focus on rice mapping based on SAR imagery.
For instance, Nguyen, et al. [24] have studied the potential of time series of C-band SAR
data for seasonal mapping of rice-cultivated areas. They showed that Sentinel-1 high-
resolution images could increase the accuracy of the classification of rice paddies. Besides,
Clauss, et al. [25] also used the Sentinel-1 time series and super-pixel segmentation for
mapping rice fields in Poyang Lake in China. They applied image segmentation using the
super-pixel method (i.e., SLIC). They also used a phenology-based decision tree for the
extracted time series to classify each segment or object as either rice or no rice. Additionally,
Bazzi, et al. [26] have analyzed the temporal behavior of SAR backscattering in many plots
covering different crops. This analysis identified the rice paddies using several metrics
derived from the Gaussian profile, the VV/VH time-series variance, and the slope of the
linear regression of the VH time series.

Despite all these results, the biggest challenge with radar images and phenology-
based methods for identifying rice paddies is the existence of similar classes with rice
phenology cycles, such as wetlands, which slightly increases the error rate. Several studies
have overlooked this challenge by integrating optical imagery, potentially improving
discrimination among similar classes. The fusion of SAR and optical datasets can be
considered an essential source for rice mapping. In this regard, Torbick et al. [27] have
produced a land cover map through a random forest (RF) algorithm, including crop, water,
forest, shrub, and urban areas, jointly using Sentinel-1, Landsat-8 OLI, and PALSAR-
2 satellites in Myanmar. They used only crop pixels and masked non-crop pixels and
analyzed the behavior of time-series pixels of crops for Sentinel-1 images. Finally, they used
these analyses to extract the rice crop using the decision tree method. Their results showed
that the mapped cultivated rice areas were close to the census statistics (e.g., R2 = 78%).

Moreover, Onojeghuo et al. [28] employed RF and SVM algorithms to extract rice
paddies from multi-temporal Sentinel-1A SAR data and Landsat-derived NDVI data. When
the NDVI time-series data were fused with the various combinations of multi-temporal
polarization channels (VH, VV, and VH/VV), overall classification improved significantly.
In another study, Park et al. [29] classified paddy rice using RF and SVM machine learning
algorithms based on satellite sensors Landsat, RadarSAT-1, and ALOS PALSAR. They first
used Landsat images to identify rice paddies using RF and SVM algorithms. Then, SAR
images were used to classify and extract rice paddies. Finally, they combined Landsat, SAR,
and 30-m DEM to classify paddy rice. The results have shown that the fusion of optical
and SAR sensor time-series data has the highest accuracy.

On the other hand, SAR data can be an attractive alternative to optical imagery for
studying the dynamics of rice. However, optical data can still help identify rice paddies
better, thanks to the absence of speckles in these images. Because of this region’s relatively
small rice paddies and the necessity of providing reliable information for operational
applications, high-spatial-resolution imageries from both SAR and optical sensors are
primordial for rice mapping and monitoring. In addition, multi-temporal satellite imagery
is essential for crop monitoring applications in general and rice in particular; this is because,
according to the rice cultivation pattern, earth observations with a few days or a week of
revisit time are needed to accurately study the crop conditions during the growing season.

The performance of deep learning-based frameworks has been assessed in many
agricultural fields, and rice-type mapping is one of the most critical applications. Recently,
some deep learning-based rice mapping frameworks have been proposed [30,31]. Unlike
standard supervised methods, deep learning-based frameworks can automatically generate
high-level instances and spatial features from the input dataset [32]. To this end, this
research proposes a novel deep-learning framework for rice-type mapping. The proposed
framework uses three-channel streams for deep feature extraction. The first and second
channels investigate the original SAR and optical datasets, while the third channel considers
the fusion of both. This research has made the following key contributions:



Agriculture 2022, 12, 2083 4 of 19

(1) Presenting a novel deep learning procedure for mapping rice types based on multi-
stream CNN.

(2) Introducing an informative channel attention module for rice mapping.
(3) Utilizing point-wise and group dilated convolution layers for improving the deep

feature extractor.
(4) Assessing the performance of the advanced rice-type methods based on deep learning

frameworks and machine learning-based algorithms.

2. Study Area and Datasets
2.1. Study Area

Historical records show that rice has been cultivated in Iran since the first century BC,
and today Iran is known as a mid-producer of rice (FAOSTAT, 2020). A small percentage
of agricultural lands cultivated annually in Iran is under rice cultivation. About 70% of
the rice cultivated areas are located in the two northern provinces, Gilan and Mazandaran,
located south of the Caspian Sea. The position and original location of Mazandaran
province represent two major areas, consisting of the Alborz coastal line and alluvial plains.
The weather of the study area is moderate, humid in the summer, and relatively cold
and dry in the winter, and the average temperature required for rice cultivation in this
region is 23.5 ◦C. The total annual precipitation in this province is 631 mm (www.irimo.ir,
accessed on 23 October 2022). The study area of this research is located in the eastern part
of Mazandaran province, with an area of 73 km2 (Figure 1).
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Figure 1. (a) Geographical location of the study area, and (b) a false-color composite NDVI image (R:
April, G: June, and B: July).

2.2. Sentinel Imagery

The rice growth stages are from 85 to 100 days from planting to harvesting in the study
area. Rice is transplanted in this area from early May to mid-June and harvested from the
beginning of August through mid-September using mechanical or traditional methods
(Figure 2).

www.irimo.ir
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Figure 2. Sentinel-1 and Sentinel-2 acquisition dates (2019) and phenology stages of rice crop in the
Mazandaran province, Iran.

According to the crop calendar of the study area, multi-temporal imagery from
Sentinel-1 and Sentinel-2 in 2019 was used to determine the rice cultivated areas. Fif-
teen Sentinel-1 images were collected every 12 days and used as SAR data. However, only
twelve cloud-free Sentinel-2 images were helpful over the study area during the growing
season (Figure 2).

Sentinel-1 provides dual-pol SAR data in Interferometric Wide Swath (IW) mode
Level-1. The ground-range detected high-resolution (GRDH) products were employed.
These image data were collected during the spring and summer of 2019. The pre-processing
steps include radiometric calibration, speckle filtering, and terrain correction. To remove
the speckle from SAR data in this study, the Enhanced Lee Filter (3 × 3) has been applied.
The multi-temporal imagery from Sentinel-2 was also used as the optical/multispectral
data. The Sen2Cor processor was then used for Sentinel-2 data correction [33,34]. All
Sentinel-1 and Sentinel-2 datasets were resampled to a 10 m grid.

2.3. Reference Samples

In the study area, various surveys were conducted to collect samples of rice cultivation
systems according to the growing season. The distribution of the in-situ samples over the
study area is shown in Figure 3. A total of 354 samples, including 259 rice fields of Tarom-
Hashemi and Shirodi varieties and 167 non-rice fields and other land covers, including
wheat, canola, gardens, roads, wetlands, and rural areas, were collected (Table 1). These
samples were randomly divided into three groups for training, validation, and testing of
classification results, respectively.

Table 1. A description of the statistical details of the reference samples.

ID Crop Type All Samples Training (4.1%) Validation (0.9%) Test (95%)

1 Non-Rice 93,991 3854 846 89,291
2 Tarom-Hashemi 15,568 638 140 14,790
3 Shirodi 26,009 1066 235 24,708

Total 135,568 5558 1221 128,789
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Figure 3. Distribution of the in-situ samples of ten classes for training and testing.

In addition, during the field study, local farmers were consulted to collect some
information regarding cropping information. Moreover, statistics from the ministry of
agriculture were obtained about two significant rice varieties cultivated in the study area.
Both rice varieties in the study area are cultivated simultaneously, and the time interval
between planting and harvesting is similar. Nevertheless, the only thing distinguishing
these two rice varieties is that one has a higher vegetation density and more weight than
the other.

We have tried to select training samples from these two varieties equally. Another
critical factor in selecting training samples in the study area is the soil type throughout the
region. In some areas, farmers add clay soils or sea sands to their paddies each year to have
more fertile paddies and grow more rice products, but in some other areas, paddies have
rough soil, which causes low cropping per year. We have considered this factor in collecting
training samples and identified areas with different soil types and high quality through the
ministry of agriculture statistics and the local farmers. We also collected training samples
in several areas with more diverse soils.

3. Rice Type Classification

The overview of the rice types classification proposed framework is illustrated in
Figure 4. Based on the presented flowchart, the rice-type mapping framework is applied in
three main steps.

3.1. Data Preparation

This research used the pre-processed Sentinel-2 L1-C dataset available through the
Sentinel Hub by ESA Copernicus program. However, the atmospheric correction was
applied to these data using the SNAP’s Sen2Cor module. Next, the NDVI time series was
generated. Feature extraction can be carried out in various ways (i.e., statistical methods,
spectral indices), but one of the most common analyses is combining spectral bands using
simple mathematical operations. Since NDVI is simple and highly applicable for crop
mapping, it was chosen from different spectral indices. The NIR and red bands were used
to calculate NDVI (see Equation (1)).
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NDVI =
(NIR− Red)
(NIR + Red)

(1)

Furthermore, Sentinel-1 SAR Level-1 Ground Range Detected (GRD) images were
used. The main pre-processing of Sentinel-1 SAR imagery includes despeckling (refined
Lee filter) and the geometric correction conducted in SNAP software.

3.2. Proposed Multi-Streams Framework

Deep feature extraction is the most crucial part of rice-type mapping. The multi-stream
deep feature extract framework is widely used for analyzing a bi-temporal dataset. The
Siamese architectures are the most common such architecture that has two streams. Our
proposed framework inspired the Siamese network architecture but with more modification.
Thus, this research proposed a novel multi-streams deep feature extraction framework.
Figure 5 shows the proposed architecture for rice-type mapping in this research. The
proposed architecture has three streams that extract the deep features from the input
dataset based on this figure. The first channel considers the task of deep feature extraction
from the optical time-series NDVI dataset. The third stream investigates the time series
SAR images for deep feature generation. The second stream extracts the deep feature by
fusion of optical and SAR deep features at different abstracts. Next, the feature maps are
fed to the global average-pooling layer to reduce feature map size. The latest part is the
classification, which uses the fully connected and soft-max layers. This part extracts deep
features by three streams concatenated by concatenating layers. Then, the deep features
are fed to a fully connected layer for more consideration. Finally, the soft-max layer is
employed to make decisions on the input datasets and map rice-type. In comparison with
other CNN frameworks, the proposed architecture has the following differences:

(1) Utilizing a multi-streams framework that can consider high-level meaningful features
from the original dataset and fuse them in different feature levels.

(2) Introducing a channel attention module for informative feature extraction.
(3) Using residual, point-wise, and group dilated convolution layers for deep

feature extraction.
(4) Employing the global average-pooling layer instead of a flattening layer reduces the

model parameters.
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Figure 5. The proposed multi-streams framework for rice-type mapping.

3.2.1. Channel Attention Mechanism (CAM)

Each high-level channel mapping of a feature can be considered a class-specific re-
sponse, with different semantic responses being interrelated [35]. By leveraging the depen-
dencies between channel maps, you can emphasize interdependent functional maps and
improve the functional representation of specific semantics [17]. The result is a CAM that
explicitly models channel interdependence [36]. Thus, this research used a CAM for rice
mapping to improve the generalization capabilities of the proposed model. According to
Figure 6, the channel attention module has the following general structure.
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The out-of-the-CAM module (Ω) for the input feature map ( f ) can be formulated
as follows:

Ωi,j =
e( fi f j)

∑C
i=1 e( fi f j)

(2)

where C is the number of channels, and Ωi,j calculates the impact of the ith channel on the
jth channel. Finally, the output of the CAM module (H) can be calculated by multiplying a
scale parameter (η) and applying an element-wise sum operation with ( f ).

Hj = η
C

∑
i=1

(
Ωi,j fi

)
+ f j (3)

where η gradually learns a weight from 0.
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3.2.2. Convolution Layer

Convolutional layers are the fundamental basis of the CNN framework, and their
primary function is to generate high-level depth features from the feature data ( f ) [32].
At the convolution layer, both spatial and spectral features are considered. The basic
calculation for the lth convolution layer with a activation function (χ) is given below [37].

f l = χ
(

wl f l−1
)
+ bl (4)

where w and b denote weight and bias, respectively. Equation (1) for a 2D-convolution at
position (φ, λ) with a dilation rate (ζ) can be expanded as follows [38]:

f φλ
l = χ(bl + ∑

m
∑
x

∑
y

Wx,y
l,m f (φ+x×ζ)(λ+y×ζ)

l−1,m ) (5)

where m denotes the feature map associated with the current feature map in the (α− 1)th
layer. The point-wise convolution layer uses the kernel convolution filter with size (1 × 1).
Moreover, the group dilated convolution layers use the convolution layers with different
dilation rates (i.e., 1, 2) and kernel sizes. In this layer, the number of filters for each layer θn
are determined by multiplying a ratio of parameters τn with θ. The mathematical number
of filters can be described as follows:

θn = τn × θ s.t :
N

∑
n=1

τn = 1 (6)

where n is the number of layers in the group convolution layer, which this study set at 3,
and τ is the coefficient that determines the number of filters for the convolution layer. The
residual block allows gradients to be directly back-propagated to earlier layers, which is
particularly useful for preventing vanishing gradients or explosions.

3.2.3. Comparison with Other Classification Methods

The result of rice mapping is compared with the most common machine learning and
deep learning-based methods. To this end, we implemented four methods: RF, XGBoost, 2D-
CNN, and 3D-CNN. The 2D-CNN proposed by Zhao et al. [24] includes two 2D-convolution
and 2D-pooling layers and soft-max layers for making input decisions. Fernandez-Beltran
proposed the 3D-CNN framework and utilized 3D convolution layers. This method uses
six 3D-convolution and 3D pooling layers for feature map reduction.

Finally, a fully connected layer and soft-max layer are used for making a decision. The
input data of these methods are stacking time-series Sentinel-1 and NDVI derived from
Sentinel-2 images. The results of rice-type mapping are assessed by quality measurement
indices that include overall accuracy (OA), kappa coefficient (KC), user’s accuracy (UA),
producer’s accuracy (PA), omission error (OE), and commission error (CE).

4. Experiment and Discussion
4.1. Parameter Setting

Some parameters need to be set for rice mapping classifier algorithms. The best value
of classifier parameters is obtained by trial and error and evaluated on the validation
dataset. Table 2 provides the optimum value of machine learning methods and deep
learning algorithms.
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Table 2. Optimal values for the classifier parameters.

Data Description

RF estimators = 105, features to split each node = 3
XGBoost rounds = 500, subsample = 1, min-child-weight = 1, max-depth = 5.

Deep Learning Models Dropout-Rate = 0.1, Mini-Batch-Size = 150, Iterations = 500,
Initial Learning = 10−4

In deep learning-based methods, patch size is of utmost importance. We evaluated the
sensitivity of patch size in the performance of the proposed method (Figure 7).
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4.2. Classification Results

Optical and Radar earth observations from Sentinel-1 and Sentinel-2 sensors have
advantages and disadvantages for rice crop mapping. For example, the pixel-based rice
map would be noisy due to speckle noise in Sentinel-1 images. On the other hand, it is
necessary to have a regular SAR image every few days due to the rice cultivation pattern.
Moreover, SAR data would be a real advantage for the cloudy conditions of the study area.
In contrast, the Sentinel-2 data are affected by clouds and shadows but are free of noise.

Consequently, we integrated these two data to improve the classification performances
for efficient and reliable rice crop mapping. As shown in Figure 8, the rice maps classi-
fied by RF and XGBoost methods provide many noisy labels. In contrast, the DL-based
methods performed better thanks to their internal use of spatial and spectral features
for classification.

In this area, rice paddies are mainly located near wetlands to benefit from water for
irrigation. According to the field observations from the study area, in the center of the study
area, more Tarom rice is cultivated, and in the south, more Shirodi rice is cultivated. The
rice map obtained from our proposed method corresponds more with field observations.

Nevertheless, as shown in Figure 9, the second factor is the large rice volume in some
areas, with a few pixels of another type of rice among them. This may be because the
rice-type seeds are not completely separated, which means that one type of rice does not
grow uniformly in the rice fields.
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The performance of the rice-type mapping was assessed based on the field samples
collected. Figure 10 shows the proposed and implemented classification methods’ confusion
matrices. As can be seen, many pixels are incorrectly classified in RF and XGBOOST
methods, and the error rate in Deep Learning methods is much lower. In deep learning
methods, the wrong pixels classified in the 3D-CNN algorithm are gradually less than in
the 2D-CNN algorithm, which may be because the 3D-CNN algorithm analyses the data
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in more detail. Furthermore, in our proposed method, the percentage of wrong pixels is
much lower than other algorithms because it has a more complex architecture than other
methods that perform much more accurate analysis.
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(b) XGBoost, (c) 2D-CNN, (d) 3D-CNN, and (e) the proposed method.

Table 3 summarizes the statistical accuracy assessment for the rice-type mapping
utilizing different accuracy measures. A non-deep learning algorithm, the RF algorithm,
had the lowest performance (OA = 81% and KC = 0.60), while the XGBoost classifier
provided satisfactory results (OA = 84% and KC = 0.65). In contrast, all deep learning
algorithms except the 2D-CNN algorithm achieved over 90% by OA. In particular, the
proposed method presented the highest accuracy for rice-type mapping with an OA and KC
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of 97% and 0.94, respectively. In addition, 3D-CNN provided UA more than the proposed
method (0.2%) in the Non-Rice class, while it missed its performance in the other classes.

Table 3. Comparison of different classification algorithm accuracies. The bold values show the
highest accuracies.

Method Class UA PA CE OE OA KC

RF

Non-Rice 96.5 92.5 3.5 7.5

80.8 0.60Tarom-Hashemi 34.1 54.6 65.9 45.4

Shirodi 68.4 53.9 31.5 46.1

XGBOOST

Non-Rice 94.2 96.6 5.8 3.4

84.0 0.65Tarom-Hashemi 47.2 32.2 52.7 67.8

Shirodi 63.6 69.7 36.4 30.3

2D-CNN

Non-Rice 98.9 98.9 1.0 1.0

93.4 0.86Tarom-Hashemi 73.1 79.6 26.8 20.4

Shirodi 86.1 81.5 13.8 18.4

3D-CNN

Non-Rice 99.6 99.2 0.3 0.7

95.8 0.91Tarom-Hashemi 81.4 86.1 18.5 13.8

Shirodi 90.8 89.2 9.1 10.7

Proposed

Non-Rice 99.4 99.7 0.6 0.3

97.1 0.94Tarom-Hashemi 89.1 89.4 10.8 10.6

Shirodi 93.7 92.5 6.2 7.5

4.3. Ablation Analysis

Various aspects of artificial intelligence methods can be evaluated using ablation
analysis. The primary purpose of this analysis is to obtain an insight into the effects of
removing a part of the system, e.g., an attention layer, on the general model performance.
Using three scenarios, we examined the effectiveness of our proposed method after ablation
analysis (S1) without attention block, (S2) without a pooling layer, and (S3) without a Fully
Connected Layer. Table 4 shows the result of ablation analysis in the different scenarios.
Based on numerical results, the first scenario (without attention block) has the highest effect
on the result of rice mapping. Moreover, the third scenario, i.e., without a Fully Connected
Layer, has the lowest effect on the proposed model’s performance.

Table 4. Ablation analysis of proposed method in rice variety mapping. The bold values show the
highest accuracies.

Method Class UA PA CE OE OA KC

S1

Non-Rice 99.2 99.4 0.7 0.5

95.5 0.90Tarom-Hashemi 81.3 85.1 18.6 14.8

Shirodi 90.7 87.4 9.2 12.5

S2

Non-Rice 99.5 99.1 0.4 0.8

96.1 0.92Tarom-Hashemi 86.0 85.4 13.9 14.6

Shirodi 90.0 91.6 9.9 8.3

S3

Non-Rice 99.5 99.6 0.4 0.3

96.3 0.92Tarom-Hashemi 86.1 85.0 13.8 15.0

Shirodi 90.6 91.2 9.4 8.8

All Components

Non-Rice 99.4 99.7 0.6 0.3

97.1 0.94Tarom-Hashemi 89.1 89.4 10.8 10.6

Shirodi 93.7 92.5 6.2 7.5
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4.4. Discussion
4.4.1. Accuracy Assessment and Comparison with Other Models

The result of rice mapping shows that the proposed method outperformed other
methods. The OA index provided the proposed method with more than 97% accuracy.
Furthermore, the proposed method has high efficiency in detecting rice type compared
with other methods, as the UA and PA are more than 89%. Based on numerical analysis,
the proposed method’s performance in classifying Shirodi is better than Tarom-Hashemi.
This issue derived from the used sample data for Shirodi is more than Tarom-Hashemi.

Figure 9 shows the classified map of the proposed method in different areas using
VHR imagery. As can be seen, our proposed method has been very good at separating
roads and even the boundaries between rice paddies. It has correctly identified residential
areas, water areas, gardens, etc., as a non-rice class. The accuracy of the classified map using
our proposed method is 97.12, which is approximately a three percent error, which can be
due to two reasons. Wetlands are the first cause of the change process in this crop calendar,
somewhat similar to rice cultivation. In the first stage, wetlands are dry areas filled with
water to supply rice paddies. Then water gradually decreases, and the vegetation grows
until the water is completely drained, and the vegetation will be the size of a rice plant.

Several studies have been done for rice mapping based on various remote sensing
datasets in recent years. Table 5 shows some recent and advanced rice mapping methods
based on remote sensing satellite images. The proposed method has provided promising
results compared with other machine and deep learning methods.

Table 5. The comparison of numerical results from rice-type mapping is based on multisource remote
sensing imagers.

Reference Method Dataset OA (%)

Zhai et al. [39] RF classifier Sentinel-2, Radarsat-2 94
Xu et al. [40] SVM classifier Landsat-8 88
Cao et al. [41] Decision tree classifier Landsat-5/Landsat-8 85

Zhang and Lin [42] Object-based MODIS/Landsat 92
Liu et al. [43] RF Sentinel-2 91

Lasko et al. [44] RF classifier Sentinel-1 93
Zhang et al. [45] Object-based Sentinel-1, Sentinel-2 90

Nguyen, Gruber and Wagner [24] Decision tree classifier Sentinel-1 87
Zhao, Liu, Ding, Liu, Wu and Wu [31] Deep Learning HJ-1 A/B 93

Xu et al. [46] Deep Learning Sentinel-1 91
Wei et al. [16] Deep Learning Sentinel-1 91

Proposed Method Deep Learning Sentinel-1, Sentinel-2 97

Rice cultivation in Iran mainly covers a small region in the north. The size of rice
paddies in this region is typically small. Therefore, spatial resolution can be essential for rice
mapping in such areas. There are many studies for rice-type mapping based on medium-
resolution remote sensing datasets (i.e., MODIS, VIIRIS) [47,48]. These studies reported
promising accuracy for rice-type mapping. For example, Gumma et al. [49] reported an OA
under 90 for rice classes based on MODIS imagery.

Moreover, the medium-resolution sensors have a high temporal resolution. They can
provide rich information for rice-type mapping but cannot map the rice fields with small
regions. This issue is more evident in northern Iran, where more rice fields cover small
areas. Thus, mapping small rice fields is more complex, and utilizing medium-resolution
datasets is unsuitable for such areas. High-resolution satellite imagery (i.e., Sentinel-1,
Sentinel-2, and Landsat) can be a valuable data source for this application.

The sample data collection is the most crucial factor in rice mapping by super-
vised learning methods. The collection of relevant and reliable sample data is time-
consuming and challenging. It is worth noticing that the proposed model is trained only
by about 6000 pixels. Moreover, other semantic segmentation-based methods (i.e., U-Net,
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Deeplab) [50] demand more sample datasets with all label pixels for a patch. Thus, the
proposed method can be applied to rice-type mapping with sample data lower than used
by other semantic segmentation-based methods.

4.4.2. Variables Assessment

The fusion of remote sensing datasets has improved mapping results in many ap-
plications. This study takes advantage of time-series Sentinel-1 and Sentinel-2 images
for rice-type mapping. To evaluate the effectiveness of these datasets, we assessed the
performance of the proposed method by three scenarios: S1 for only time-series Sentinel-
1, S2 for only Sentinel-2 NDVI time-series, and S3 for a combination of Sentinel-1 and
Sentinel-2 NDVI time-series. Table 6 represents the results of the evaluation of rice-type
mapping by the proposed method. The rice map from Sentinel-1 data is more accurate
than the time series of Sentinel-2 NDVI datasets. Furthermore, the combination of both
datasets improved the result of rice-type mapping significantly compared with the other
only one dataset.

Table 6. Comparison time-series Sentinel-1 and Sentinel-2 based NDVI datasets in rice variety
mapping. The bold values show the highest accuracies.

Method Class UA PA CE OE OA KC

S1

Non-Rice 99.0 97.4 1.0

90.7 0.81Tarom-Hashemi 75.0 51.5 25.0

Shirodi 72.5 90.3 27.5

S2

Non-Rice 99.3 97.4 0.7 2.6

89.5 0.78Tarom-Hashemi 61.6 56.3 38.4 43.7

Shirodi 72.3 80.9 72.3 19.1

S3

Non-Rice 99.4 99.7 0.6 0.3

97.1 0.94Tarom-Hashemi 89.1 89.4 10.8 10.6

Shirodi 93.7 92.5 6.2 7.5

4.4.3. Feature Fusion Strategies

Because the study area always has rainy and cloudy conditions for more of the time
during the cultivation season, the SAR data cloud is used to improve the result of crop
mapping. Integrating multisource data is the most common strategy to enhance the
mapping results. The integration of multisource datasets can be applied on different levels.
The feature-level fusion is widely used in many applications of remote sensing. The deep
learning methods extract deep features at different levels from the input dataset. The
deep features show spatial features (i.e., the object’s edge) in the shallow levels, while
deep high-level features present semantic spectral information. This research proposed a
multi-streams deep learning-based method that fuses deep features at low and high levels,
improving the mapping results.

The deep feature level fusion can be applied in the first, intermediate, and latest layers.
We evaluated the performance of feature-level fusion in the different layers that are in-
cluded: (1) first-layers (concatenating optical and SAR dataset), (2) latest-layer (concatenat-
ing extracted deep features from optical and SAR datasets), and (3) all layers (concatenating
all deep features of all layers). Table 7 shows the influence of feature-level fusion in the
different layers. As seen, the fusion of deep features in the latest layers is better than
the first layers as it improves the accuracy of the OA by 5%. Furthermore, the fusion of
deep features from different layers provided the best performance. They improved the
accuracy of rice-type mapping by more than 8% and 3% compared with the first and latest
layers, respectively.
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Table 7. Comparison of different strategies for deep feature fusion. The bold values show the
highest accuracies.

Method Class UA PA CE OE OA KC

First-layer

Non-Rice 98.9 96.9 1.1 3.1

87.3 0.73Tarom-Hashemi 49.4 72.8 50.6 27.2

Shirodi 77.6 61.3 22.4 38.7

Latest-layer

Non-Rice 98.9 98.6 1.1 1.4

92.3 0.84Tarom-Hashemi 68.9 76.1 31.1 23.9

Shirodi 83.7 79.3 16.3 20.7

All-layer

Non-Rice 99.28 99.4 0.7 0.6

95.9 0.91Tarom-Hashemi 84.6 84.6 15.4 15.4

Shirodi 90.4 89.8 9.6 10.2

5. Conclusions

This study aimed to develop an operational framework for mapping and inventorying
rice using remote sensing technology in Iran, as there has been a lack of information for
statistics and planning needs in the agricultural sector. This study analyzed two-time series
of Sentinel-1 and Sentinel-2 datasets from the spring and summer of 2019 to identify the
areas under rice cultivation. This research proposes a novel rice-mapping framework that
can detect rice areas. Furthermore, the proposed framework can identify the rice type
into two main classes that can inform decisions to support food security. The proposed
framework fuses time-series SAR and optical images for rice-type mapping. The model
is built based on a multi-stream deep feature fusion and extraction manner that extract
deep features from the original dataset and fuse them with another stream. The proposed
model has some advantages over the currently available models: (1) high accuracy in
rice-type mapping, (2) extracting deep features at the same time from SAR and optical
datasets and fusing them in different levels, (3) ability to detect rice type in the two main
classes, and (4) ability to take advantage of the CAM, residual block, and multi-scale
kernel convolutions.
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