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Introduction
Volatile organic compounds (VOCs) are organic compounds 
that have high vapor pressures (~10 Pa) at room temperature 
(25°C).1 Acute and chronic exposures to these chemical com-
pounds can cause adverse health effects such as irritation of the 

eyes and upper respiratory tract, and effects on the central ner-
vous system (e.g., loss of coordination), as well as being toxic to 
the liver and kidneys.2,3 Furthermore, benzene, trichloroethylene, 
and vinyl chloride are accepted carcinogens3 and ethylbenzene, 
carbon tetrachloride, 1,2-dichloroethane, chloroform, and other 
trihalomethanes have been identified as possible carcinogens.

In Canada, it has been estimated that 2.3 Mt of VOCs were 
released in 2005, a 21% (600 Kt) decrease from 1990.4 Oil and gas 
industries were the main source of VOC emissions (29.6% of total 
emissions; 650 kt), followed by transportation and mobile equip-
ment (27.4%; 630 kt), and paints and solvents (19.13%; 440 kt).4

Spatial distribution and seasonality of concentrations of 
VOCs in urban areas

Governments use annual emission inventories of greenhouse 
gases and air pollutants to identify sources of atmospheric pol-
lutants. Given restrictions related to data, time, staff, funding, 
and the lack of a systematic assessment, it has been shown that 
emission inventories often underestimate concentrations of air 
pollutants.5–7 Although most emission inventories have a 1° by 
1° spatial resolution and a temporal resolution of one year, this 
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ation of benzene, n-decane, ethylbenzene, trimethylbenzene, and 
hexane concentration in Montreal for three monitoring cam-
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Background: Volatile organic compounds (VOCs) are components of the complex mixture of air pollutants within cities and can 
cause various adverse health effects. Therefore, it is necessary to understand their spatial distribution for exposure assessment in 
epidemiological studies.
Objectives: The objective was to model measured concentrations of five VOCs within the city of Montreal, Canada, developing 
spatial prediction models that can be used in health studies.
Methods: We measured concentrations using 3M 3500 Organic Vapor Monitors, over 2-week periods, for three monitoring cam-
paigns between 2005 and 2006 in over 130 locations in the city. Using GC/MSD (Gas Chromatography/Mass Selective Detector), we 
measured concentrations of benzene, n-decane, ethylbenzene, hexane, and trimethylbenzene. We fitted four different models that 
combine land-use regression and geostatistical methods to account for the potential spatial structure that remains after accounting for 
the land-use variables. The fitted models also accounted for possible variations in the concentration of air pollutants across campaigns.
Results: The highest concentrations for all VOCs were found in December with hexane being the most abundant followed by eth-
ylbenzene. We obtained predicted surfaces for the VOCs for the three campaigns and mean surfaces across campaigns. We found 
higher concentrations of some VOCs along highways and in the Eastern part of Montreal, which is a highly industrialized area.
Conclusions: Each of the fitted models captured the spatial and across-campaigns variability for each VOC, and we found that 
different VOCs required different model structures.
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level of spatial resolution is not sufficient to characterize the 
variability of concentrations of some pollutants within cities, as 
some studies have shown that for pollutants related to traffic, 
such as nitrogen dioxide (NO2), intraurban variability exceeds 
inter-city variability.8–10 Furthermore, recent studies found dif-
ferences in the distribution of sources and in the concentrations 
of ozone precursors, especially VOCs, between urban, subur-
ban, rural, and industrial areas.11–14

Within cities, traffic is a significant source of many air pol-
lutants such as nitrogen dioxide, carbon dioxide, particulate 
matter, black carbon, ultrafine particles, and VOCs.15 More spe-
cifically, in downtown areas, vehicle exhaust is the most abun-
dant source of airborne pollutants.16

In urban areas, VOCs are emitted by different sources such 
as traffic, industrial processes, construction, waste, and sol-
vents.16 Some VOCs related to traffic include benzene, toluene, 
ethylbenzene, and xylene (BTEX), hexane, methylcyclopentane, 
2-methylhexane, 2,2,4-trimethylpentane, trans-2-pentene, eth-
yltoluene, 1,2,4-trimethylbenzene and 1,2,4-trichlorobenzene, 
and many others.17 Moreover, alkanes associated with trans-
port-related emissions, such as hexane, are highly correlated 
with carbon monoxide.18

The concentration and mixture of traffic-related pollutants 
can change across space and time depending on a combination 
of different factors such as the proximity to roads or other point 
sources, traffic volume, the composition of the vehicle fleet, 
and the presence of other pollutants.19 Depending on pollution 
levels, individual susceptibility, the population levels of activ-
ity, acute and past exposures can lead to diverse adverse health 
effects immediately or after years of exposure.19

Given the adverse health effects of these pollutants, in this study, 
we focus on five VOCs commonly found in urban areas: ben-
zene, n-decane, ethylbenzene, hexane, and 1,2,3-trimethylbenzene. 
Benzene, ethylbenzene, and trimethylbenzene are three aromatic 
hydrocarbons found in fossil fuels and urban air masses, predomi-
nantly emitted by vehicle exhausts, fuel evaporation, and spoilage.20 
N-decane and hexane, alkane hydrocarbons, are found in fossil fuels 
and solvents that become airborne by evaporation or combustion.21

Land-use regression (LUR) methods have been extensively 
used to estimate the spatial distribution of air pollutants such as 
nitrogen oxides (NOx), NO2, particulate matter 2.5 (PM2.5), and 
VOCs10,22,23 and to study their relationship with environmental 
factors in urban settings. Although there is no consensus on the 
monitoring process22 (e.g., number of monitoring sites, monitor-
ing period, the distance between sites), a study on NO2 found 
that studies using LUR should be based on a large number of 
sites (>80) for better performance.24

Previous studies have shown that, contrary to ozone and 
PM2.5, there is little overlap in the distributions of VOCs between 
high-income countries and low- and middle-income coun-
tries, given how quickly VOCs disperse into the atmosphere.22 
However, within urban areas, LUR studies for PM2.5, ozone, and 
VOCs usually involve the same set of predictors, such as traf-
fic-related variables, land use, and other unique features of the 
study area.22

Objectives

To support two population-based case-control studies of post-
menopausal breast cancer25,26 and one prostate cancer case-con-
trol study27 that we conducted in the mid-1990s and early 2000s 
in Montreal, Quebec, we conducted a dense monitoring pro-
gram of NO2

14 and selected VOCs to link these to the residential 
addresses of participants in these studies.

The main objective of the present study was to determine 
the spatial distribution of ambient concentrations of the five 
selected VOCs from our monitoring campaign conducted in 
2005 and 2006, using a combination of land-use regression and 
geostatistical methods.

Additionally, we obtained predicted surfaces by interpolat-
ing concentrations at locations where measurements were not 
made, while accounting for local variations in concentrations so 
that in our case-control studies, we can link the predictions with 
residential addresses of participants,25–27 and hence estimate 
risks associated with these exposures. The implications of using 
these predictions in health-related studies as proxies of environ-
mental exposures are beyond the scope of the present article.

Materials and methods
The greater Montreal area is the second most populated city in 
Canada, with a population in 2016 of over 4 million inhabi-
tants.28 From 1981 to 2010, the mean daily temperature in April 
was around 6.4°C (temperature range, 1.2° to 11.6°C), 20.1°C 
in August (temperature range, 14.8°C to 25.3°C), and –5.4°C in 
December (temperature range, –9.3°C to –1.4°C).29 The average 
annual concentration of NO2 in 2018 was of 10.4 parts per bil-
lion (ppb), while the 3-year average from 2016 to 2018 was 7.4 
µg/m3 for fine particulate matter and 57 ppb for ozone.30

The east end of Montreal is of particular interest as it is an 
industrial area with refineries and various other heavy indus-
tries. Between 2005 and 2006, refineries included Shell Canada 
Montreal East Refinery (closed in 2010), the Petro Canada 
Montreal Refinery (now Suncor), and petrochemical plants like 
Parachem Petrochemical and Petromont (closed in 2008).31

Data collection

The location of the samplers was chosen using a popula-
tion-weighted location-allocation model that placed 133 
samplers in areas likely to have high spatial variability of 
traffic-related pollution and in areas with high population 
densities.14 In addition, we added about 20 samplers to cap-
ture concentrations in residential areas that were under-repre-
sented by the initial allocation scheme. The minimum distance 
between any two neighboring samplers was approximately 
100 m and the maximum distance was just over 3 km. The sam-
plers were deployed in three monitoring campaigns: December 
2005 (“cold” weather), April 2006 (“temperate” weather), and 
August 2006 (“hot” weather).

In addition to the Ogawa samplers that measured concen-
trations of NO2,

14 we co-located passive 3M 3500 Organic 
Vapor Monitors (3M Company, Saint Paul, MN). After a 
2-week uninterrupted sampling period, we retrieved each 
monitor, snapped the shipping cap onto the monitor, ensuring 
that the two-port plugs were sealed firmly, and then recorded 
the date and time. We placed the sampler in the shipping con-
tainer, closed the container with its plastic lid, and then sealed 
it immediately with Teflon tape. These were then shipped to 
a commercial laboratory that conducted all of the analyses 
(Airzone, Mississauga, ON27).

Samples were extracted with 2 ml of solvent (carbon disul-
fide) and concentrations using GC/MSD (Gas Chromatography/
Mass Selective Detector) were estimated using NIOSH (National 
Institute for Occupational Safety and Health) methods 1,003, 
1,500, and 1,501 with a detection limit of 0.2 µg/m3. We had 
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three field blanks per sampling survey, and all sample results 
were corrected with the blanks, deuterated internal standard, 
and recovery. The multipoint calibration curve had a R2 > 0.999 
and the detection limits, based on the U.S. Federal Register Code 
of Federal Regulations (CFRs) 40 method, are shown in Table 
SM-1 (http://links.lww.com/EE/A199).

As part of the fieldwork, we included additional monitors in 
each sampling period in randomly selected monitoring sites to 
determine the measurement campaign’s reliability. We had 30, 
8, and 9 duplicates in the December, April, and August cam-
paigns, respectively, and 4 triplicates in the December campaign. 
To assess agreement between these duplicate monitors, we com-
puted differences between duplicate measurements to produce 
Bland-Altman plots, and we also computed the intraclass cor-
relation coefficient (ICC) and associated 95% confidence inter-
vals using a multilevel procedure. ICC values close to 1 imply a 
high similarity between duplicated measurements.

Volatile organic compounds data

We analyzed concentrations of five exhaust-related VOCs (n-de-
cane, hexane, ethylbenzene, benzene, and 1,2,4-trimethylben-
zene) for three, continuous 2-week monitoring campaigns in 
December 2005, April 2006, and August 2006. There were 133 
monitoring locations for the December and April campaigns 
and 131 for the August campaign.

Land-use variables

Potential predictors of the different VOCs were obtained using 
circular buffers at 50-, 100-, 200-, 500-, and 1,000-m radii around 
each monitoring location (Table SM-3; http://links.lww.com/
EE/A199). Land-use variables were available as a proportion 
of the area of each buffer covered by each specific variable. The 
available land-use variables for each VOC were obtained from 
DMTI Spatial Inc.32 (Markham, Ontario, Canada) and included 
buildings, open areas, residential, industrial, commercial, water-
body, parks and recreational, governmental and institutional, 
commercial, and roads land-use, which are common predictors 
for local variability of urban air pollution.14,33,34 Average and 
total NOx and total daily traffic volume were obtained from 
VISSIM (Verkehr In Städten – SIMulationsmodell),35 a traffic 
simulation software, and MOVES (MOtor Vehicle Emission 
Simulator),36 an emission modeling system for mobile sources. 
Population density for 2016 was based on Canadian census 
data.28 Finally, the easting and northing coordinates were also 
included in the mean structure of the models.

After obtaining the spatial variables at the different buffer 
sizes, we selected the appropriate variables and buffer sizes for 
each VOC in each campaign by using the procedure of least 
absolute shrinkage and selection operator (LASSO).37 This 
regression analysis method shrinks the coefficients towards zero 
to reduce the set of covariates used in the model. The goal is 
to minimize the sum of squared errors with a bound on the 
absolute values of the coefficients. We included the variables 
selected using LASSO for each campaign so that we would have 
the same set of variables for all three campaigns.

Because our main goal was to predict concentrations where 
measurements were not made rather than to find associations 
between the concentrations and the land-use variables, we 
excluded variables that were highly correlated (>0.99) with each 
other (Tables SM-3–10; http://links.lww.com/EE/A199). For 
example, average and total NOx were highly correlated, and we 
included only average NOx.

Statistical Analysis

For each VOC, we fitted four different regression models (see 
below). These models considered possible variations between 

monitoring campaigns and a possible spatial structure between the 
monitoring locations after accounting for the land-use variables. 
To select the best model among the fitted ones for each VOC, the 
Watanabe-Akaike information criterion (WAIC) was used. WAIC is 
a measure of the predictive accuracy that allows us to measure the 
performance of a model and to compare multiple models account-
ing for both goodness of fit and model complexity.38 Smaller values 
indicate the optimal model among the fitted ones.

Model description

To obtain predicted surfaces over a region given the information 
collected at a set of monitoring stations, we used a combination of 
land-use regression and geostatistical methods to obtain the pre-
dicted surfaces. This model considered possible variations across 
campaigns and a possible latent (unobservable) spatial structure 
after accounting for the land-use variables. This latent structure is 
such that neighboring locations will tend to have similar adjust-
ment after accounting for the available explanatory variables.39

Specifically, for all our models, let Yj (s) be the natural loga-
rithmic concentration of a VOC at location s, and campaign j 
where j = 1, 2, 3 for the December, April, and August campaigns, 
respectively. The base model is defined as follows:

 Yj (s) = Z′
jαj +X′ (s)βj + ωj (s) + εj (s) (1)

where X (s) is a q-dimensional vector containing the land-
use predictors, an intercept, and the standardized Universal 
Transverse Mercator (UTM) coordinates at each monitoring site; 
βj is a vector of coefficients associated with the land-use vari-
ables for each campaign; Zj represents each campaign, such that 
Z1 = 0, and αj is the coefficient associated with this indicator 
variable. Finally, the latent spatial structure ωj helps to accom-
modate for a possible residual spatial structure left after account-
ing for the land-use variables and the campaign fixed effect Zj.  
The spatial residual ωj(·) follows a zero mean Gaussian process 
with variance σ2

j  and an exponential correlation function. Then 
ωj = (ωj (s1) , · · · ,ωj (sn))′ follows, a priori, a multivariate nor-
mal distribution with mean 0 and an exponential covariance 
matrix Σj = σ2

j exp(−d/φj) where σ2
j  is the partial sill at each 

campaign j, d is the Euclidean distance matrix, and φj is a param-
eter that controls how fast the spatial correlation among ωj (·) 
decays to zero; and the measurement error εj (s) follows a zero 
mean normal distribution with variance τ2 (nugget effect).

We fitted four models that are particular cases of the general 
structure in equation (1). For model 1, we let βj = β meaning 
the effect of the land-use variables is the same across campaigns, 
in model 2, we also let βj = β, and ωj (s) = 0, so that the spatial 
variation is fully captured by the land-use variables. In model 
3, we let α = 0, so that all the variability across campaigns is 
captured by βj, and ωj (s), and finally in model 4, we let α = 0 
and ωj (s) = 0, meaning there is no additional spatial structure 
after accounting for the land-use variables.

Under the Bayesian paradigm, model specification is complete 
after assigning a prior distribution to the parameter vector. In our 
case, all parameters were assumed to be independent a priori. We 
assigned a normal distribution having a mean of zero and with large 
variances for α and for β in models 1 and 2, as this reflects our prior 
ignorance about the association between the land-use variables and 
the concentrations of VOCs; for σ2 and τ 2, we assigned an inverse 
gamma prior with mean fixed at 1 and an infinite variance; for the 
spatial range ϕ we assigned an exponential prior with mean equal to 
the practical range (assuming the correlation between sites decreases 
to 0.05 at half of the maximum observed distance); and for model 4, 
the regression coefficients βj follow a normal prior with mean γ, and 
variance ψ2 where γ ∼ N (0, 10), and ψ2 follows an inverse gamma 
distribution with mean equals to 1 and an infinite variance. The 
parameter vector for each model is defined as θ1 = {α, β, τ , σ, ϕ} 
for model 1, θ2 = {α, β, τ} for model 2, θ3 = {β, τ , σ, ϕ} for 
model 3, and θ3 = {β, γ, τ , σ, ψ} for model 4.

http://links.lww.com/EE/A199
http://links.lww.com/EE/A199
http://links.lww.com/EE/A199
http://links.lww.com/EE/A199


Zapata-Marin et al. • Environmental Epidemiology (2022) 00:e226 Environmental Epidemiology

4

We used Markov Chain Monte Carlo methods40 to obtain 
samples from the posterior distribution. The statistical analysis 
was conducted using the package Nimble in the software R  (R 
Foundation for Statistical Computing, Vienna, Austria; version 
3.4.5).41 The code for fitting these models is available at https://
github.com/SaraZM/VOCs.

After fitting all four models, we chose the appropriate model 
for each VOC using the minimum value of the WAIC.

Results

Comparison of duplicate monitors

Bland-Altman plots of the analyses of agreement of duplicate mon-
itors are shown in the Supplement (Figure SM-1; http://links.lww.
com/EE/A199 and Table SM-2; http://links.lww.com/EE/A199), 
where we observed an average difference across observations close 
to zero, except for n-decane and hexane where we found an aver-
age absolute difference of about 0.15 and 0.28 μg/m3, respectively. 
For most pollutants, we found in each campaign ICCs close to 
unity, indicating almost perfect agreement in measured concentra-
tions, but an anomalously low ICC for hexane in the December 
campaign and for 1,2,4-trimethylbenzene in the August campaign.

Volatile organic compounds

For the December 2005 campaign, there were eight measure-
ments below the detection limit for n-decane, and in the April 
and August 2006 campaigns, there were three and two mea-
surements below the detection limit for n-decane and hexane, 
respectively. Given there are only few measurements below the 
limit of detection these measurements were excluded from the 
analysis. Additionally, only the locations that were present in all 
three campaigns were analyzed. Therefore, the analysis included 
127 monitoring locations for hexane, 121 for n-decane, and 129 
for ethylbenzene, 1,2,4-trimethylbenzene, and benzene.

The concentration of benzene ranged from 0.18 to 5.27 µg/
m3, n-decane ranged between 0.13 and 5.25 µg/m3, ethylbenzene 
ranged between 0.59 and 27.47 µg/m3, hexane ranged between 
0.40 and 32.03 µg/m3, and 1,2,4-trimethylbenzene between 

0.36 and 2.22 µg/m3 (Table  1). The largest variability for all 
the VOCs was found in December, except for ethylbenzene, that 
had a greater variability in August. Hexane had the highest con-
centrations across campaigns, followed by ethylbenzene.

Model comparison and diagnostics

To choose the best model for each VOC, among the proposed 
ones, we used the minimum WAIC (Table 2). For benzene and 
n-decane, the selected model was one with spatial structure and 
an indicator variable to capture the variability across campaigns 
(model 1). For ethylbenzene, hexane, and 1,2,4-trimethylben-
zene, the selected model had different coefficients for the land-
use variables across campaigns and did not have a component 
for spatial structure (model 4).

We also computed the observed versus the predicted val-
ues for each VOC, and we did not identify important outliers 
(Figure 1). Although not shown here, we found no important 
patterns in the residuals for each campaign after accounting for 
the covariates and spatial structure.

For benzene and n-decane (Tables SM-4–7; http://links.lww.
com/EE/A199), we obtained different intercepts for each cam-
paign, with August having the lowest values. For benzene (Tables 
SM-4 and 5; http://links.lww.com/EE/A199), the spatial variance 
and practical range also changed across campaigns, suggesting that 
the spatial structure was different for each of the campaigns, with 
the highest spatial variance in the August campaign and similar val-
ues for the December and April campaigns. In the case of n-decane 
(Tables SM-6 and 7; http://links.lww.com/EE/A199), we obtained 
similar values for the spatial variance across campaigns but differ-
ent values for the practical range, with a posterior mean of 8.82 km 
and 1.53 km for the April and December campaigns respectively.

For ethylbenzene, hexane, and 1,2,4-trimethylbenzene (Tables 
SM-8–10; http://links.lww.com/EE/A199), some of the coeffi-
cients associated with land-use variables differed in magnitude 
and direction across campaigns. This might be due to seasonal 
effects that can affect the relationship between the land-use vari-
ables and the pollutants levels.

To estimate the concentrations of each VOC at unsam-
pled locations across Montreal, we obtained samples from 

Table 1.

Selected moments of the distributions of benzene, n-decane, ethylbenzene, hexane, and 1,2,4-trimethylbenzene levels (in µg/m3) 
across three sampling campaigns in Montreal, between 2005 and 2006

Descriptive  
statistics

Benzene n-Decane

December April August Average December April August Average

Mean 1.35 1.30 0.56 1.07 2.08 2.05 0.95 1.69
Median 1.28 1.18 0.49 0.98 1.92 1.96 0.88 1.61
SD 0.61 0.60 0.31 0.44 0.73 0.66 0.44 0.42
Minimum 0.40 0.68 0.18 0.54 0.25 0.89 0.13 1.01
Maximum 4.72 5.27 2.51 3.35 4.27 5.25 3.31 3.27

Descriptive  
statistics

Ethylbenzene Hexane

December April August Average December April August Average

Mean 3.63 2.77 2.03 2.81 14.25 6.35 1.57 7.39
Median 3.23 2.65 1.82 2.62 13.78 5.83 1.42 7.07
SD 2.15 0.92 2.30 1.62 5.21 3.80 0.83 2.11
Minimum 1.12 1.22 0.59 1.30 2.24 2.32 0.40 3.32
Maximum 23.70 8.90 27.47 20.02 30.77 32.03 5.56 16.79

 1,2,4-Trimethylbenzene  

December April August Average  

Mean 1.14 0.98 1.00 1.04  
Median 1.10 0.98 0.97 0.99  
SD 0.38 0.22 0.26 0.23  
Minimum 0.36 0.53 0.53 0.63  
Maximum 2.16 1.85 2.22 1.85
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the resultant posterior predictive distributions of the different 
VOCs at unobserved locations of interest (e.g., residences of 
participants in the three case-control studies), and we com-
puted means, medians, and SDs at each unobserved location, 
as described in Section 3 of the Supplementary Material (http://
links.lww.com/EE/A199).

Figure 2 shows the predicted surfaces on a natural logarith-
mic scale obtained for a grid with a 0.25 by 0.25 km cell size. 
We also obtained the SD of the posterior predictive distribution 
showing higher uncertainty in areas where no monitors were 
located (Figures SM-2–6; http://links.lww.com/EE/A199).

The predicted surfaces for all the analyzed VOCs resulted in 
higher concentrations across the island for the December cam-
paign, especially in the north part of the island. The predicted 
surfaces for benzene showed higher concentrations in an area in 
the northeast part of the island with December and April show-
ing similar levels. The mean predicted surface also showed the 
highest values at the northeast part of Montreal. For benzene 
and n-decane, we also found high concentrations during the 
April campaign. For n-decane and 1,2,4-trimethylbenzene, we 
also found higher concentrations in the central part of the island 
and along some of the most important highways in Montreal. 
The predicted surface of hexane shows the highest concentra-
tions for the December campaign with small spatial variability 
across campaigns (Figure SM-7; http://links.lww.com/EE/A199).

Discussion
We fitted spatial regression models to data from three dense 
sampling campaigns in Montreal. Land-use variables were used 
to determine the predicted concentrations of five selected VOCs 
related to traffic. For each VOC, we selected the model that 
explained the most variability in the data, accounting for the 
complexity of the model, and found reasonably good fits to the 
data (Figure 1). From these models, we then predicted the con-
centration of each VOC across the island at a resolution of 0.25 
by 0.25 km cell grid size (Figure 2).

We found the highest concentrations for all five VOCs 
during the December campaign, followed by April and August. 
Meteorological conditions such as anticyclones in colder 
weather, leading to stagnant meteorological conditions, might 
have facilitated the accumulation of these air pollutants during 
the December campaign. Higher concentrations during winter 
have also been found in other cities for ozone and different 
VOCs.11,12,42,43 Additionally, higher levels of benzene and hexane 
were observed during this period compared with levels in other 
Canadian cities.44,45

We also found that the spatial distribution of the different 
VOCs changed by season; therefore, using one season to rep-
resent the annual exposure is not recommended, as shown in a 
previous study.45

There is face validity to our results. Specifically, for benzene, 
we found that areas located in the northeast part of Montreal 
where the highest benzene levels were predicted correspond to 
an area with oil refineries operating at the time the study was 
conducted. Additionally, we found for n-decane that the highest 
levels were predicted for sections of a major highway (Autoroute 
40), especially in the North. As well, for 1,2,4-trimethylbenzene, 

the predicted areas with the highest levels corresponded to mul-
tiple sections of several highways (Autoroute 40, Autoroute 
136, and Autoroute 15).

Given the nature of these VOCs and their emission sources, 
these findings are consistent with previous studies on NO2, 
ozone, and VOCs in other Canadian cities and low- and mid-
dle-income countries.14,44,46–48 These studies have found a similar 
spatial pattern with higher concentrations of air pollutants along 
road networks, in high traffic areas (e.g., downtown areas), and 
near industrial sources. Previous studies on the spatial distribu-
tion of NO2 in Montreal have also found higher concentrations 
along some of the major highways.14,46 However, due to the mul-
tiple emission sources of VOCs, in addition to major roads, we 
also found higher concentrations in industrialized areas.

Additionally, the majority of the LUR models for intraurban 
variation of VOCs are concentrated in high-income countries, 
particularly in Europe and North America.22 Furthermore, 
low- and middle-income countries can be more affected by air 
pollution than high-income countries.22 Even though the mean 
concentration of VOCs can vary a lot across different cities, 
given the nature of the five VOCs analyzed in this study, higher 
values are consistently found in high traffic and industrialized 
areas.11,16,44

Strengths and limitations

We used 3M passive monitors because of ease in installing on 
fixed city poles at 10-feet heights, they did not require electricity 
or pumps, if stolen they would not be costly, and were thought to 
be sufficiently accurate and precise. Passive samplers have been 
shown to be reliable in measuring VOCs over extended periods 
of time.49 Indeed, we found values of the intraclass correlation 
coefficient close to unity for duplicate samplers. Furthermore, 
an analysis of 3M organic passive dosimeters outdoors using a 
sampling duration of 72 hours was comparable to automated 
continuous gas chromatography measurements.50 Other meth-
ods could have been used that could have led to more accurate 
estimates, such as passivated Summa canisters and flame and 
photoionization detectors, but they are not suitable for remote 
sites without electricity, their operation is difficult in cold 
weather, they require knowledge of the proportions of concen-
trations of the different VOCs, and these methods are expensive.

The present study sampled a considerably larger number of 
sites than some of the previous studies.8,11–13,43–45,48,51 Additionally, 
both the spatial and campaign variability was accounted for by 
the model instead of averaging the data across campaigns. This 
allowed us to determine if the associations between each of the 
VOCs and explanatory variables changed across campaigns. 
From a statistical point of view, when one averages the observa-
tions across campaigns and then fits the models, one is implicitly 
assuming that these associations do not vary across campaigns. 
We believe this is a strong assumption and must be verified. By 
obtaining the predicted surface for several VOCs, we not only 
facilitate the comparison of pollutant levels across campaigns 
but also across VOCs.

As the main goal of the present study was prediction, the 
results presented here should not be used to identify the rela-
tionship between land-use variables and VOC concentrations. 
To meet this goal, one needs to adjust the method for vari-
able selection by testing for collinearity and confounding and 
possibly changing the set of predictors for each campaign. 
Additionally, it would also be valuable to account for meteo-
rological covariates such as temperature, wind speed, humidity, 
and atmospheric pressure.

Some previous reviews on LUR methods highlighted the 
importance of using local characteristics and sources specific to 
each VOC (e.g., dry cleaners, gas stations, etc.) to improve the 
predictions of their spatial distribution.22 For example, a pre-
vious study found that area sources were correlated with the 

Table 2.

WAIC of the fitted models for each VOC

Model Benzene n-Decane Ethylbenzene Hexane 1,2,4-Trimethylbenzene

Model 1 119.64 331.18 235.37 448.28 –19.80
Model 2 190.47 363.36 269.78 417.39 –13.58
Model 3 151.23 382.25 260.87 496.53 32.20
Model 4 187.05 348.87 219.44 415.02 –63.02

Bold values (minimum WAIC) identify the selected models.

http://links.lww.com/EE/A199
http://links.lww.com/EE/A199
http://links.lww.com/EE/A199
http://links.lww.com/EE/A199
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concentrations of VOCs at small spatial scales.52 Furthermore, 
there might also be variations between local VOC sources in 
rural and urban areas. For example, a study found higher lev-
els of benzene, toluene, ethylbenzene, and xylene in rural areas 
compared with cities due to different point sources such as 
domestic coal combustion during winter.53 

We did not make use of point sources because in 
Canada, it is based on industry-reported data, and these 

emissions from point sources are known to underestimate 
emissions54 and, to our knowledge, there is no emission 
inventory specific to the Montreal area that includes all 
relevant sources.

Finally, this study shares the same limitation of other LUR 
methods22 namely that the results are case- and area-specific; 
therefore, the results found here are only valid for the studied 
area.

Figure 1. Scatter plots of the observed versus fitted values for benzene, n-decane, ethylbenzene, hexane, and 1,2,4-trimethylbenzene using the selected 
models (Table SM-3; http://links.lww.com/EE/A199). The straight line represents perfect prediction.

http://links.lww.com/EE/A199
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Conclusions
In the present study, we obtained predicted surfaces showing 
the spatial variability of each of the five VOCs. We found higher 
concentrations of VOCs in the east and central part of Montreal 
with higher concentrations during the winter campaign.

We proposed four models, each of which accounted for spa-
tial and campaign variability. The model that fitted the best, 
according to WAIC, for benzene and n-decane accounted for 
the spatial structure after adjusting for the land-use variables, 
and for seasonal variability through the intercept. For hexane, 
ethylbenzene, and 1,2,4-trimethylbenzene, land-use covariates 
alone accounted for the spatial variability, and the campaign 

variability was accounted for through the coefficients associated 
with the land-use variables.

Inference was performed under the Bayesian framework; 
therefore, it was straightforward to obtain summaries of the 
predictive posterior distribution such that spatial interpolation 
to unobserved locations of interest naturally accounts for the 
uncertainty in the estimation of the unknowns in the model 
(Section 3 of the Supplementary Material; http://links.lww.com/
EE/A199).

The proposed models are flexible to adjust for any set of land-
use variables or air pollutants concentrations, and the methods 
are easily reproducible. The predicted surfaces obtained here, 

Figure 2. Posterior mean of the predicted surfaces in the log scale for benzene, n-decane, ethylbenzene, hexane, and 1,2,4-trimethylbenzene concentration 
at each campaign. Red solid circles represent the locations of the monitors.

http://links.lww.com/EE/A199
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and the spatial interpolation methods used in this study, can 
help estimate the air pollutant levels at residential addresses of 
participants for health studies.
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