Science Advances

Supplementary Materials for

Unmasking of the von Willebrand A-domain surface adhesin CglB at bacterial focal adhesions mediates myxobacterial gliding motility

Salim T. Islam et al.

Corresponding author: Tâm Mignot, tmignot@imm.cnrs.fr; Salim T. Islam, salim.islam@inrs.ca

Sci. Adv. **9**, eabq0619 (2023) DOI: 10.1126/sciadv.abq0619

This PDF file includes:

Figs. S1 to S7 Tables S1 to S4

Fig. S1. CglB gliding motility importance and protein characteristics. A) Single-cell gliding speeds for *M. xanthus* OM-module mutant strains (n = 100 cells) on CYE hard (1.5%) agar. The lower and upper boundaries of the boxes correspond to the 25th and 75th percentiles, respectively. The median (line through centre of boxplot) and mean (+) of each dataset are indicated. Lower and upper whiskers represent the 10th and 90th percentiles, respectively; data points above and below the whiskers are drawn as individual points. Asterisks denote datasets displaying statistically significant differences in dataset distributions (P < 0.0001) relative to WT, as determined via unpaired two-tailed Mann-Whitney tests. B) Ratio of number of Cys residues per gliding motility-complex protein, divided by the total number of amino acids in that protein.

Fig. S2. CglB co-occurrence and gene synteny in bacteria. Taxonomic distribution and cooccurrence of *agl* and *glt* genes in bacteria. Bootstrap values at each node are indicated as shown in the side legends. Colour of gene hit indicates synteny with the G1 *gltDEFGHIJ* (dark blue) or G2 *gltKBAC* (blue) gene clusters or lack thereof (light blue), respectively. Herein, synteny denotes a minimum of three genes in the vicinity of each other.

Fig. S3. AlphaFold prediction quality for the CglB tertiary-structure model. (A) AlphaFold CglB models ranked from 1 to 5. Per-residue confidence scores (pLDDT: predicted local-distance different test) are directly reported on the 3D structure of CglB (with the range of possible values from 50 [*red*] to 90 [*blue*]). (B) Corresponding predicted aligned error for each ranked model. (C) Plot showing the corresponding pLDDT scores per residue for each ranked model.

Fig. S4. Role of CglB in Agl–Glt complex localization and directed surface transport. (A) Ingel fluorescence (i) scan and (ii) densitometry analysis of AglZ-YFP levels in WT vs. $\Delta cglB$ crudecell lysates resolved via SDS-PAGE. Fluorescence levels were analyzed across six biological replicates and are displayed +/– SEM. Despite a higher mean value for AglZ-YFP levels in $\Delta cglB$ cells than in WT cells, this difference was not statistically significant, as determined via Wilcoxon signed-rank test performed relative to "100" (P = 0.0938). (B) Fluorescence microscopy time-course montage of *M. xanthus* $\Delta cglB$ (on hard agar) expressing AglZ-YFP, clusters of which are indicated (*white arrowheads*). Images were acquired at 10 s intervals. Scale bar: 2 µm. (C) Kymograph of AglZ-YFP localization in *M. xanthus* cells on chitosan-coated PDMS microfluidic chambers via TIRFM. Arrows in *orange* denote sequential kymograph slices over time. Arrows in *cyan* indicate positions of trafficked Agl–Glt clusters in the cell. The manners in which various fluorescent-cluster tracking data (see Fig. 5C-F) were obtained have been indicated in the example images. Scale bar: 3 µm (D) Representative time course of polystyrene bead position tracking along the length of a cell (see Fig. 5H).

Fig. S5. Possibility of post-translational processing of CglB. (A) Precipitated soluble supernatant samples from Δglt mutants that exhibit depleted levels of cell-associated CglB. Equivalent supernatant volumes from different strains were filtered through a 0.2 µm filter, sedimented in an ultracentrifuge (120 000 \times g, 85 min, 4 °C), then treated with TCA to precipitate all remaining soluble proteins. Legend: ◀, truncated CglB. (B) Peptides identified via trypsin/V8 digestion and mass spectrometric analysis of immunoprecipitated CglB from $\Delta gltB$ culture supernatant. Legend: grey, predicted signal peptide; green, trypsin-derived peptide; cyan, V8derived peptide; red box, N-terminal tract of CglB unaccounted for by mass spectrometry. (C) a-CglB Western immunoblot demonstrating the resumption of CglB release from EDTA-grown cells upon transfer to an EDTA-free minimal buffer (TPM) or rich medium (CYE). Legend: ◀, fulllength CglB; \leftarrow , CglB degradation band; P_{EDTA}, parent strain (WT or $\Delta gltB$) grown in the presence of EDTA. (D) In-gel fluorescence (following SDS-PAGE) of EDTA-grown cells treated with Proteinase K. Each strain (WT, $\Delta glt K/B/A/H$) was made to express IMss-mCherry, a modified fluorescent mCherry that is expressed in the periplasm but remains tethered to the IM. Digestion aliquots were removed at 15-min intervals and heat-inactivated to stop digestion. (E) Vancomycin sensitivity curves for mutant strains defective for various constituents of the Glt OM platform. Strains (n = 3) were grown in CYE liquid broth with increasing concentrations of the antibiotic. (F) Vancomycin sensitivity curves for mutant strains defective for various constituents of the Glt OM platform. Strains (n = 3) were grown in CYE liquid broth in the presence of EDTA (1 mM)with increasing concentrations of the antibiotic. For Panels E and F, mean values for each mutant strain were compared to that of WT at each concentration using two-way ANOVA and Dunnett's multiple comparisons test, with a single pooled variance. No statistically significant differences were detected (P > 0.05) at any vancomycin concentration.

Fig. S6. CglB localizes to the cell surface despite Glt OM-platform deficiencies. Fluorescence micrographs of live immunolabelled $\Delta cglB$, $\Delta gltAB$, $\Delta gltAH$, $\Delta gltBH$, and $\Delta gltHK$ cells grown with(out) EDTA (labelled with α -CglB 1° antibody, followed by goat α -rabbit 2° antibody conjugated to AlexaFluor647) on agar pads at 32 °C. Representative images are provided for cluster labelling patterns observed on ~20% or more of analyzed cells for a given strain and treatment. Scale bar: 1 µm. For each strain grown with(out) EDTA, the number of fluorescent clusters detected per cell was counted (X-axis) and compared against the proportion of cells with such a labelling phenotype (purple left-side Y-axis). The size of each cluster was also measured, with the median area (dark green right-side Y-axis) given for each labelling phenotype. The number of cells analyzed for each treatment is as follows (-/+ EDTA): $\Delta cglB$ 361/373, $\Delta gltAB$ 319/471, $\Delta gltAH$ 534/262, $\Delta gltBH$ 647/335, $\Delta gltKH$ 478/394.

CglB⁺ Lysozyme⁺

α-CglB

Fig. S7. Heterologous expression and co-purification of the Glt OM complex with CglB. (A) Plasmids for the expression of the OM-platform proteins and CglB in E. coli BL21(DE3). Different combinations of plasmids were designed for the pulldown assay (pCDF-Duet and pET-Duet) and the negative control (pACYC-Duet and pET-Duet). A C-terminally StrepII-tagged GltC, GltB and A were cloned into MSC2 of pCDF-Duet and pACYC-Duet vector whereas a Cterminally His₆-tagged GltK was cloned into the MSC1 of pCDF-Duet. The cglB and gltH sequences were cloned in tandem into pET-Duet MSC1 with an additional Shine Dalgarno (SD). (B) Fluorescence micrographs of E. coli BL21(DE3) cells immunolabelled with α -CglB 1° antibody, followed by goat α-rabbit 2° antibody conjugated to AlexaFluor Plus 488 (AF⁺488). Cells had been transformed with the following plasmids: "pCDF-Duet-GltK^{6H}+GltBAC^S & pET-Duet-GltH-CglB" (for co-expression of GltA, GltB, GltC-StrepII, GltK-His₆, GltH, and CglB). Cells were induced overnight with 1.0 mM IPTG, fixed with paraformaldehyde, treated with lysozyme, then immunolabelled. Scale bar: 2 µm. (C) Western immunoblotting of purified OMplatform proteins from the pulldown assay (*right-side panels*) or negative control (*left-side panels*) using α -CglB, α -GltA, α -GltB, α -GltH, α -His (GltK), and α -GltC antibodies. Calculated molecular weights for monomeric forms of each protein construct (lacking signal peptide): CglB (42.3 kDa), GltA (25.4 kDa), GltB (27.5 kDa), GltC-Strep (74.4 kDa), GltH (20.0 kDa), GltK-His₆ (17.5 kDa). Lane legend: L, column loading fraction; E, column elution fraction. Blot legend: ◀, full-length protein; *, oligomeric species of the protein of interest; ←, degradation products of the protein of interest; o, non-specific protein band (detected in the elution fractions from both the control and pulldown samples) labelled by the respective α -CglB/ α -GltB/ α -His antibodies).

PDB Hit	Name	Probability	<u>E-</u>	<u>Score</u>	Aligned	Identities	<u>Similarity</u>
	<u>(Species)</u>		<u>value</u>		<u>Coils</u>		
1MF7_A	Integrin αM	99.4%	6.4E-	123.84	187	19%	0.191
	(Homo		14				
	sapiens)						
4FX5_A	Von	99.36%	3E-13	140.21	199	19%	0.161
	Willebrand						
	factor type A						
	(Catenulispora						
	acidiphila)						
40KR_A	Micronemal	99.34	3.8E-	127.97	180	20%	0.242
	protein MIC2		13				
	(Toxoplasma						
	gondii)						
4F1J_B	TRAP	99.18	1.1E-	110.16	178	17%	0.257
	(Plasmodium		11				
	falciparum)						
3TXA_A	GBS104 tip	99.13	7.2E-	136.34	188	17%	0.239
	pilin		12				
	(Streptococcus						
	agalactiae						
	serogroup V)						

Table S1. HHpred fold-recognition hits in the PDB to CglB.

<u>Strain</u>	Genotype/Description	Construction	Source or Reference
DZ2	WT	Wild type	Laboratory collection
TM770	$\Omega cglB$	DZ2 $\Omega cglB$	This work
TM913	$\Delta cglB$	DZ2 $\Delta cglB$	This work
TM600	$\Delta g l t K$	DZ2 $\Delta gltK$ (pBJ $\Delta gltK$)	(7)
TM603	$\Delta g l t B$	DZ2 $\Delta gltB$ (pBJ $\Delta gltB$)	(7)
TM606	$\Delta gltA$	DZ2 $\Delta gltA$ (pBJ $\Delta gltA$)	(7)
TM570	$\Delta gltC$	DZ2 $\Delta gltC$ (pBJ $\Delta gltC$)	(7)
TM646	$\Delta g l t J$	DZ2 $\Delta gltJ$	This work
TM731	$\Delta g l t I$	DZ2 $\Delta gltI$	This work
TM149	$\Delta g l t H$	DZ2 $\Delta gltH$ (pBJ $\Delta gltH$)	(7)
TM135	$\Delta gltG$	DZ2 $\Delta gltG$ (pBJ $\Delta gltG$)	(7)
TM136	$\Delta gltF$	DZ2 $\Delta gltF$ (pBJ $\Delta gltF$)	(7)
TM148	$\Delta gltE$	DZ2 $\Delta gltE$ (pBJ $\Delta gltE$)	(7)
TM142	$\Delta g l t D$	DZ2 $\Delta gltD$ (pBJ $\Delta gltD$)	(7)
TM1157	$\Delta gltK \Delta gltH$	TM149 $\Delta gltK$ (pBJ $\Delta gltK$)	This work
TM1156	$\Delta gltB \Delta gltH$	TM149 $\Delta gltB$ (pBJ $\Delta gltB$)	This work
TM1158	$\Delta gltA \ \Delta gltH$	TM149 $\Delta gltA$ (pBJ $\Delta gltA$)	This work
TM1154	$\Delta gltA \ \Delta gltB$	DZ2 pBJ $\Delta gltBA$	This work
TM1397	$\Delta gltA \ \Delta gltB \ \Delta gltH$	TM149 $\Delta gltBA$ (pBJ $\Delta gltBA$)	This work
TM829	WT + aglZ-YFP	DZ2 pBJAglZ-YFP	(12)
TM1181	$\Delta cglB + aglZ$ -YFP	TM913 <i>aglZ-YFP</i> (pBJ <i>AglZ-YFP</i>)	This work
TM1159	$\Delta cglB + cglB_{\rm WT}$	TM913 <i>cglB</i> _{WT} (pCglB _{WT})	This work
TM1149	$\Delta cglB + cglB_{D56A}$	TM913 <i>cglB</i> _{D56A} (pCglB _{D56A})	This work
TM1153	$\Delta cglB + cglB_{S58A}$	TM913 <i>cglB</i> _{S58A} (pCglB _{S58A})	This work
TM1297	WT + aglZ-mNeonGreen	DZ2 pBJaglZ-mNeonGreen	(82)
SI96	WT + IMss-mCherry	WT DZ2 transformed with plasmid pSWU19-PpilA-IMss- mCherry	This work
SI97	$\Delta gltK$ + IMss-mCherry	$\Delta gltK$ transformed with plasmid pSWU19-PpilA-IMss-mCherry	This work

SI98	$\Delta gltB$ + IMss-mCherry	$\Delta gltB$ transformed with plasmid pSWU19-PpilA-IMss-mCherry	This work
SI99	$\Delta gltA$ + IMss-mCherry	∆ <i>gltA</i> transformed with plasmid pSWU19-PpilA-IMss-mCherry	This work
SI100	$\Delta gltH + IMss-mCherry$	$\Delta gltH$ transformed with plasmid pSWU19-PpilA-IMss-mCherry	This work

 Table S2. Myxococcus xanthus strains used in this study.

<u>Strain</u>	Genotype/Description	Source or Reference
BL21(DE3)	fhuA2 [lon] ompT gal (λ DE3) [dcm] Δ hsdS λ DE3 = λ sBamHI0 Δ EcoRI-B int::(lacI::PlacUV5::T7 gene1) i21 Δ nin5	Laboratory stock
DH5a	F-, $\Delta(argF-lac)U169$, phoA, supE44, $\Delta(lacZ)M15$, relA, endA, thi, hsdR	Laboratory stock

 Table S3. Escherichia coli strains used in this study.

<u>Plasmid</u>	Genotype/Description	Construction	Source or Reference
pSWU30	Used for integration at phage Mx8 attB site (TetR)	/	Laboratory stock
pCglB _{WT}	pSWU30 with <i>cglB</i>	From pSWU30	This work
pCglB _{D56A}	pSWU30 with <i>cglB</i> _{D56A}	From pCglB _{WT}	This work
pCglB _{S58A}	pSWU30 with $cglB_{S58A}$	From pCglB _{WT}	This work
pSWU19- PpilA- IMss- mCherry	pSWU19 expressing IMss- mCherry under control of the <i>pilA</i> promotoer	From pSWU19	(37)
pBJ114	<i>galK</i> -containing vector for generation of in-frame deletions in <i>M. xanthus</i> (Kan ^R)	/	Laboratory stock
pBJAglZ- YFP	pBJ114 with a cassette allowing construction of the <i>aglZ-YFP</i> chimeric gene	From pBJ114	(12)
pBJ∆ <i>gltK</i>	pBJ114 with a deletion cassette for <i>gltK</i>	From pBJ114	(7)
pBJ∆ <i>gltB</i>	pBJ114 with a deletion cassette for <i>gltB</i>	From pBJ114	(7)
pBJ∆ <i>gltA</i>	pBJ114 with a deletion cassette for <i>gltA</i>	From pBJ114	(7)
pBJ∆ <i>gltBA</i>	pBJ114 with a deletion cassette for <i>gltBA</i>	From pBJ114	This work
pBJ∆ <i>gltI</i>	pBJ114 with a deletion cassette for <i>gltI</i>	From pBJ114	(7)
pBJ∆ <i>gltJ</i>	pBJ114 with a deletion cassette for <i>gltJ</i>	From pBJ114	(11)
pCDF- duet1	Expression vector, <i>lacI</i> , PT7, Streptomycin Resistant (Sm ^R).	/	Novagen
pCDF- GltK ^{6H} - BAC ^S	<i>gltK</i> -6xHis into MCS1 , <i>gltBA and gltC</i> -StrepII into MCS2 cloned into pCDF-duet 1 (Sm ^R).	From pCDF-duet1	This work
pET-duet1	Expression vector, <i>lacI</i> , PT7, Ampicillin Resitant (Amp ^R).	/	Novagen
pET-GltH- CglB	<i>gltH</i> and <i>cglB</i> (<i>cglB</i> is inserted with a shine dalgarno sequence) cloned into pET-duet 1 MCS1 (AmpR).	From pET-duet1	This work

pACYC- duet1	Expression vector, <i>lacI</i> ,PT7, Chloramphenicol Resistant (ChloR).	/	Novagen
pACYC- GltBAC ^S	gltBA and gltC-StrepII into MCS2 cloned into pACYC-duet 1, (ChloR).	From pACYC-duet1	This work

Table S4. Plasmids used in this study.