UNIVERSITÉ DU QUÉBEC

Mémoire

Institut national de la recherche scientifique

comme exigence partielle de la maîtrise ès sciences (eau)

par

Lahcen Ait-Ssi Ingénieur géologue

ÉTUDE DES PROPRIÉTÉS HYDRAULIQUES PAR SIMULATIONS DE RÉSEAUX DE FRACTURES DANS UN MILIEU FISSURÉ - APPLICATION AU SITE DU BARRAGE DANIEL-JOHNSON À MANIC 5 -

Juillet 1986

RÉSUMÉ

Les propriétés hydrauliques d'un milieu fissuré ont été étudiées à partir de l'analyse des essais d'injection d'eau et des simulations de réseaux de fractures du massif rocheux du barrage Daniel-Johnson à Manic-5. Il découle des essais d'injection d'eau que ce massif rocheux est constitué de deux zones de perméabilités distinctes. Dans la zone relativement perméable, on a pu établir que les conductivités hydrauliques du milieu sont distribuées suivant un modèle log-normal.

Lors des simulations, la porosité du massif a été déterminée par l'analyse de sensibilité des paramètres des modèles stochastiques Network et Netflo. Il en résulte que la porosité totale est très sensible: a) aux paramètres du modèle régissant la densité et la longueur de fractures, les conditions aux limites et la perméabilité <u>in situ</u> et, b) aux plans de simulations vertical et horizontal. Le système de fractures se comporte comme un réseau élastique ayant une porosité plus ou moins faible selon qu'il est plus ou moins dilaté. La porosité efficace est d'autant plus élevée que la densité est plus grande. Il semble aussi, par ailleurs, que les vitesses de circulation d'eau dans le domaine simulé suivraient une distribution lognormale.

Enfin, l'étude des propriétés hydrauliques, et, en particulier, de la porosité dans ce genre de problème, s'avère intéressante afin d'établir le comportement hydraulique et physique d'un site et la nécessité (ou non) de consolidation ou d'imperméabilisation d'un domaine par injection de coulis.

i

ABSTRACT

The hydraulic properties of a fissured medium have been studied from water injection tests analysis and from fracture networks simulations of the Daniel-Johnson dam's bed rock at Manic-5. It appears from the water injection tests, that the bed rock is made of two distinct permeability zones. In the more permeable zone, one can establish that the hydraulic conductivities of the medium are log-normally distributed.

In the simulations phase, the rock mass porosity has been determined from the sensitivity analysis of the parameters of two stochastic models (the Network and the Netflo models). It follows that the total porosity is very sensitive to a) the model's parameters like the density and length of the fractures, the boundaries conditions and the hydraulic conductivity and, b) the vertical and horizontal simulation plans. The fracture's system behaves as an elastic network having low porosity when it's expanded and reciprocally. The effective porosity is as much higher as the density is important. Otherwise, it seems also that the seepage velocity in simuled site is log-normally distributed.

At last, the study of hydraulic properties and in particular of the porosity, in this kind of problem, seems very interesting in order to establish the hydraulic and physical behavior of a site and the necessity (or not) to consolidate or to clog up a domain by grouting injection.

i i

REMERCIEMENTS

TABLE DES MATIÈRES

Résumé Abstract Remerciements Table des matières Liste des figures Liste des tableaux Notation	i ii iv vii xii xii
Chapitre 1 - Introduction	1
1.1 Problématique 1.2 Objectifs	1 2 3 4
1.4.1 Analyse de la fracturation 1.4.2 Analyse des essais d'eau 1.4.3 Simulations	4 5 5
1.5 Bref aperçu des conclusions 1.6 Travaux antérieurs	5 6
1.6.1 Hydrologie des milieux fissurés 1.6.2 Théories des essais d'eau	6 8
Chapitre 2 - Description du site d'étude	13
2.1 Cadre géographique 2.2 Cadre géologique	13 13
2.2.1 Formation du roc 2.2.2 Dépôts meubles	13 15
2.3 Cadre structural	15
Chapitre 3 - Traitement statistique des donnnées	17
3.1 Travaux antérieurs effectués dans le site 3.2 Caractérisation des systèmes de fractures	17 17
3.2.1 Analyse des orientations de fractures	18
3.2.1.1Trous de forages3.2.1.2Escarpements de surface3.2.1.3Biais d'orientation et de visée3.2.1.4Traitement statistique3.2.1.5Conclusion	18 20 20 21 28

	3.2.2	Analyse statistique des longueurs	28
		3.2.2.1 Erreur de manipulation 3.2.2.2 Biais de longueur	30 30
	3.2.3	Analyse et interprétation des essais d'injection	34
		3.2.3.1 Méthode directe d'analyse des ouvertures de fractures	36
		jection	36
		d'eau 3.2.3.4 Interprétation des résultats des tests d'eau 3.2.3.5 Conclusion	38 45 48
	3.2.4	Analyse des densités	48
Chap	itre 4	- Simulation des propriétés hydrauliques souterraines .	59
4.1 4.2	Choix Descri	de modèles mathématiques de simulation ption des modèles (NETWORK et NETFLO)	59 60
	4.2.1 4.2.2 4.2.3	Fonctions de Network Fonctions de Netflo Approximations des modèles	60 61 61
4.3	Prépar	ation des données d'entrée	62
	4.3.1 4.3.2 4.3.3	Données d'orientations des séries de fractures Densités des séries de fractures Conditions aux limites	62 64 70
		4.3.3.1 Dans le plan vertical 4.3.3.2 Dans le plan horizontal	70 73
4.4	Simula	itions numériques	75
	4.4.1	Simulation dans un plan vertical	75
		 4.4.1.1 Influence sur la porosité totale de la per- méabilité équivalente des essais d'eau 4.4.1.2 Sensibilité des longueurs 4.4.1.3 Sensibilité des densités 4.4.1.4 Influence des variations de longueurs et de densités des séries de fractures sur le rap- port porosité efficace et porosité totale 	76 83 90 91
	4.4.2	Simulation dans un plan horizontalla porosité	97
	4.4.4	totale Distribution des vitesses d'écoulement Discussion des résultats	97 101 105

Chapitre 5 - Conclusions et recommandations	113
Bibliographie	117
ANNEXES	
Annexe A: Analyse de quelques travaux antérieurs	A.1
A.1 Techniques de modélisation	A.1
A.1.1 Études sur le terrain A.1.2 Etudes en laboratoire A.1.3 Etudes théoriques	A.1 A.1 A.2
A.2 Types de modèles d'eau souterraine	A.3
A.3 Écoulement dans un réseau de fractures	A.4
A.3.1 Équations de perméabilité et d'écoulement	A.4
A.4 Théories des essais d'injection d'eau	A.10
A.4.1 Perméabilité des fissures A.4.2 Méthode indirecte de calcul des ouvertures de	A.10
fractures A.4.3 Distribution des ouvertures de fractures	A.15 A.16
Annexe B: Entrée/sortie des modèles NETWORK et NETFLO	B.1
 B.1 Données d'entrée B.2 Fichiers de sortie B.3 Formats des données d'entrée 	B.1 B.1 B.4
Annexe C: Résultats de l'analyse des essais d'eau	C.1
Annexe D: Quelques programmes utilisés	D.1
D.1 Estimation des paramètres d'une distribution log-normale ayant quelques données de valeurs tronquées	D.1
D.1.1 Programme d'estimation des paramètres d'une distribu- tion log-normale de données tronquées	D.8
D.2 Ajustement d'une loi log-normale aux données d'ouvertures de géocaméra	D.12
D.2.1 Programme d'ajustement d'une loi log-normale	D.15
Annexe E: Effets des conditions de charges aux limites sur la porosité totale du milieu	E.1

Annexe F:	Sommaire des résultats des simulations	F.1
Annexe G:	Graphiques des simulations (RO59 à RO68): Effets d'une variation de 22 % des longueurs des fractures sur la porosité totale	G.1
Annexe H:	Cartes d'études	H.1
H.1 Carte	du site du barrage Daniel-Johnson à Manic-5	H.2
H.2 Cartes	s des relevés de fractures des escarpements de surface .	H.4

LISTE DES FIGURES

14	Carte de localisation du site du barrage Daniel- Johnson à l'échelle de la province de Québec	2.1 :	Figure
24	Diffuso-gramme "scatter-gramm" des orientations de fractures étudiées	3.1 :	Figure
25	Projection de Lambert pondérée des pôles de frac- tures de surface (hémisphère inférieur équi-aire)	3.2 :	Figure
26	Projection de Lambert pondérée de pôles de fractures de quelques forages à Manic 5-P.A. (hémisphère infé- rieur équi-aire)	3.3 :	Figure
27	Projection de Lambert pondérée des pôles de frac- tures de Manic 5-P.A. (hémisphère inférieur équi- aire)	3.4 :	Figure
32	Histogramme des longueurs des séries de fractures étudiées	3.5 :	Figure
47	Histogramme de la distribution du logarithme naturel des perméabilités <u>in situ</u> de la zone 1 du Manic 5-P.A.	3.6 :	Figure
49	Bloc diagramme illustrant la densité volumique des plans de joints parallèles	3.7 :	Figure
65	Illustration de la variation des orientations des séries de fractures sur l'hémisphère inférieur d'une projection stéréographique	4.1 :	Figure
66	Orientation des séries de fractures dans un plan vertical perpendiculaire à l'axe du canal d'amenée .	4.2 :	Figure
67	Orientation des séries de fractures dans un plan horizontal	4.3 :	Figure
72	Plan rectangulaire général allant du canal d'amenée au réservoir Manic 5-P.A	4.4 :	Figure
74	Conditions aux limites dans: (a) plan vertical; (b) plan horizontal	4.5 :	Figure
77	Schéma général de la méthodologie suivie: plan des simulations	4.6 :	Figure

80	Relation perméabilité / porosité totale du milieu: ajustement par rapport à la moyenne d'une distribu- tion log-normale des perméabilités <u>in situ</u> [K _{LN})obs]	4.7 :	Figure
81	Relation perméabilité / ouverture des séries de fractures: ajustement par rapport à la moyenne d'une ouverture log-normale des perméabilités <u>in situ</u> [k _{LN})obs]	4.8 :	Figure
82	Relation perméabilité / porosité totale du milieu: ajustement par rapport au logarithme naturel de la moyenne des perméabilites <u>in situ</u> [k _{obs}]	4.9 :	Figure
84	Relation perméabilité / ouverture des séries de fractures: ajustement par rapport au logarithme naturel de la moyenne des perméabilites <u>in situ</u> [^k obs]	4.10:	Figure
87	Relation perméabilité / porosité totale: effet d'une légère augmentation des longueurs (ALE + E _{std}) sur la porosité totale du milieu	4.11:	Figure
88	Relation perméabilité / porosité totale: effet d'une légère diminution des longueurs (ALE - E _{std}) sur la porosité totale du milieu	4.12:	Figure
89	Influence de la variation des longueurs des séries de fractures sur la porosité totale du milieu (superposition des figures 4.9, 4.11 et 4.12)	4.13:	Figure
94	Relation perméabilité / porosité totale: effet d'une légère augmentation des densités (ôs + E _{std}) sur la porosité totale du milieu	4.14:	Figure
95	Relation perméabilité / porosité totale: effet d'une légère diminution des densités (&s - E _{std}) sur la porosité totale du milieu	4.15:	Figure
96	Influence de la variation des densités des séries de fractures sur la porosité totale du milieu (superpo- sition des figures 4.9, 4.14 et 4.15)	4.16:	Figure
98	Relation entre les rapports porosité efficace / porosité totale et la variation des longueurs (a) et des densités (b) des séries de fractures	4.17:	Figure
99	Relation perméabilité / porosité totale dans le plan horizontal	4.18:	Figure

Figure	4.19 :	Relation perméabilité / ouverture des séries de fractures dans le plan horizontal	100
Figure	4.20 :	Influence de la variation des longueurs des séries de fractures et du biais des conditions aux limites sur la porosité totale du milieu (superposition des figures E.1, E.3 et E.4)	102
Figure	4.21 :	Influence de la variation des longueurs des séries de fractures et du biais des conditions aux limites sur la porosité totale du milieu (superposition des figures E.1, E.5 et E.6)	103
Figure	4.22 :	Distribution des vitesses des éléments interceptant le mur du canal d'amenée dans: (a) plan vertical et (b) plan horizontal	106
Figure	4.23a:	Exemple du réseau de fractures simulées dans le plan vertical	108
Figure	4.23b:	Exemple du réseau de fractures simulées dans le plan horizontal	109
Figure	4.24 :	Effets de l'incertitude des différents paramètres d'entrée sur la porosité totale	110a
Figure	A.1	: Esquisse de la méthode de calcul des espacements entre fractures parallèles (d'après Snow, 1965)	A.5
Figure	A.2	: Schéma du dispositif des tests d'injection d'eau dans un trou de forage	A.11
Figure	B.1	: Plans et limites des modèles conçus pour les programmes NETWORK et NETFLO: (a) plan rectangu- laire; (b) plan circulaire	B.2
Figure	C.1	Illustration des variations de fréquences (FR), de perméabilité (K _e , K _f) et d'ouvertures calculées (2b _{cal}) en fonction de la profondeur des forages 01-84 à 06-84	C.13
Figure	C.2	: Illustration des variations de fréquences (FR), de perméabilités (K _e , K _f) et d'ouvertures calculées (2b _{cal}) en fonction de la profondeur des forages 5001-74 à 5011-74	C.18
Figure	E.1	Relation perméabilité / porosité totale: effet du biais des conditions aux limites sur l'estimation de la porosité totale du milieu	E.2
Figure	E.2	Relation perméabilité / ouverture: effet du biais des conditions aux limites sur l'estimation de l'ouverture des séries de fractures	E.3

Figure E.3 :	Relation perméabilité / porosité totale dans le plan vertical: effets du biais des conditions aux limites et d'une légère augmentation des longueurs (ALE + E _{std}) sur la porosité totale du milieu	E.4
Figure E.4 :	Relation perméabilité / porosité totale dans le plan vertical: effets du biais des conditions aux limites et d'une légère diminution des longueurs (ALE - E _{std}) sur la porosité totale du milieu	E.5
Figure E.5 :	Relation perméabilité / porosité totale dans le plan vertical: effets du biais des conditions aux limites et d'une légère diminution des longueurs (δs + E _{std}) sur la porosité totale du milieu	E.6
Figure E.6 :	Relation perméabilité / porosité totale dans le plan vertical: effets du biais des conditions aux limites et d'une légère diminution des longueurs (δs - E _{std}) sur la porosité totale du milieu	E.7
Figure G.1 :	Relation perméabilité / porosité totale dans le plan vertical: effets d'une augmentation des longueurs des fractures de 22 % sur la porosité totale du milieu	G.2
Figure G.2 :	Relation perméabilité / porosité totale dans le plan vertical: effet d'une diminution des longueurs des fractures de 22 % sur la porosité totale du milieu .	G.3
Figure G.3 :	Influence de la variation de 22 % des longueurs des fractures sur la porosité totale du milieu (superposition des figures 4.9, G.1 et G.2)	G.4

LISTE DES TABLEAUX

19	3.1 : Caractéristiques physique des forages étudiés	Tableau
22	3.2 : Types de données d'orientations de fractures décrites dans les rapports d'investigation d'Hydro- Québec (d'après Nguyen <u>et al.</u> , 1984)	Tableau
29	3.3 : Principales familles de fractures du Manic 5 obte- nues par comparaison des données de fractures de surface et de forages	Tableau
35	3.4 : Statistiques des longueurs de fractures dans chaque famille	Tableau
37	3.5 : Estimation des paramètres statistiques d'une dis- tribution log-normale ajustée aux logarithmes naturels des ouvertures de fissures obtenues par relevés de géocaméra	Tableau
39	3.6 : Exemples de données des essais d'injection d'eau considérées par Hydro-Québec	Tableau
40	3.7 : Transformations des unités considérées dans les calculs	Tableau
43	3.8 : Paramètres des statistiques de perméabilités et des ouvertures des fractures (résultats des essais d'eau)	Tableau
44	3.9 : Types de calculs utilisés dans l'analyse des perméabilités des essais d'eau	Tableau
52	3.10: Fréquences moyennes des fractures de chaque série dans les zones 1 et 2 du Manic 5-P.A	Tableau
57	3.11: Statistiques des densités volumiques des zones 1 et 2 du Manic 5-P.A.	Tableau
63	4.1 : Estimation des paramètres d'une distribution pseudo-normale des orientations de chaque famille de fractures	Tableau
68	4.2 Estimation des paramètres de la distribution des orientations dans un plan vertical perpendiculaire à l'axe du canal d'amenée orienté de 65° vers l'est	Tableau

	Estimation des paramètres de la distribution des orientations dans un plan horizontal ayant l'axe Y parallèle à l'axe du canal d'amenée orienté de 65°	u 4.3 :	Tableau
69	vers l'est		
71	Statistiques des densités des séries de fractures dans les plans vertical et horizontal par rapport à l'axe du canal d'amenée	u 4.4 :	Tableau
74a	Débits d'écoulement à différentes limites des cinq premières simulations préliminaires	u 4.5 :	Tableau
86	Comparaison des statistiques des réalisations ROO1 à ROO8 et RO1A à RO8A	u 4.6 :	Tableau
93	Statistiques générales des effets de variation des longueurs des séries de fractures sur les ouver- tures et la porosité totale du milieu	u 4.7a:	Tableau
94	Statistiques générales des effets de variation des densités des séries de fractures sur les ouvertures et la porosité totale du milieu	u 4.7b:	Tableau
105	Valeurs probables de porosités totales moyennes dans chacun des cas considérés sous l'influence ou non du biais des conditions aux limites	u 4.8	Tableau
B.3	Fichiers de sortie des programmes NETWORK et NETFLO (d'après Rouleau, 1985)	u B.1 :	Tableau
B.5	Exemple de données d'entrée des programmes NETWORK et NETFLO (plan vertical : réalisation ROO8)	u B.2 :	Tableau
C.2	Calculs des perméabilités et des ouvertures de fractures dans chaque intervalle du test des forages 01-84 à 06-84	u C.1	Tableau
C.7	Calculs des perméabilités et des ouvertures de fractures dans chaque intervalle du test des forages 5001-74 à 5011-74	u C.2	Tableau
E.9	Statistiques générales des effets des conditions aux limites et de variation des longueurs des séries de fractures sur les ouvertures et la porosité totale du milieu	u E.1 :	Tableau
E.10	Statistiques générales des effets des conditions aux limites et de variation des densités des séries de fractures sur les ouvertures et la porosité totale du milieu	u E.2 :	Tableau
F.3	Différents types de variations des données d'entrée (simulations RO1A à RO68)	u F.1 :	Tableau

NOTATION

AAP	:	Ouverture moyenne d'une série de fractures (LOG), [L]
AAP b	::	Ouverture moyenne simulée des séries de fractures (LOG), [L] Ouverture d'une fracture [L]
^{2b} i di	: : :	Ouverture de la fracture i, [L] Cosinus directeur de la ligne d'échantillonnage Distance entre deux fractures consécutives le long d'un forage,
e Ev ESTD ESTD FOU	(γ): S _V :	Épaisseur du bloc rocheux, [L] Erreur standard sur la densité volumique de fractures, [L] Erreur standard sur un paramètre quelconque Erreur standard sur la densité dans un plan de simulation, [L ⁻¹] Fréquence ou densité volumique de fractures le long d'un forage, [L ⁻¹]
g h	:	Accélération de pesanteur, [LT ⁻²] Hauteur du canal d'amenée considérée dans la plan de simulation, [L]
HI HW	: ан	Charge hydraulique au niveau du rayon d'influence, [L] Charge hydraulique dans un forage, [L]
I ou		Gradient du potentiel efficace, $[L \cdot L^{-1}]$
NAAP	^{oL} :	Nombre d'ouvertures moyennes différentes considérées
NAP	:	Nombre d'échantillonnages différents considérés
k ve	:	Permeabilite d'un milieu poreux en règime permanent, [LT-1]
kij	÷	Conductivité hydraulique movenne du milieu poreux équivalent.
~1J		[LT ⁻¹]
k 1	:	Conductivité hydraulique calculée à partir du débit simulé, [LT-1] Longueur de la ligne d'échantillonnage entre deux fractions consé-
1'	:	Distance réelle entre deux fractures consécutives, [L]
L	:	Longueur totale d'une ligne d'échantillonnage, [L]
Ľ	:	Longueur de la chambre de test d'injection, [L]
Li	:	Longueur fictive du trou de forage i, [L]
^{-R} i	•	Movenne d'une distribution normale
M	:	Nombre de trous de forages
ni	:	Cosinus directeur du plan normal à une fracture
n'ou	n _j :	Nombre de fractures dans une chambre du test d'injection
N	:	forages
Ν	:	Nombre de stations d'échantillonnage
Ni	:	Nombre de fractures recoupant un forage i
q'	:	Volume d'écoulement par unité de largeur à travers une fracture,
q	1	Décharge spécifique le long d'une fracture, [LT-1]

Q +	1	Débit total d'écoulement le long d'une fracture, $[L^{3}T^{-1}]$
Q	1	Débit de drainage du réservoir simulé par le programme NETFLO,
3		[L ³ T ⁻¹]
r _T	;	Rayon d'influence, [L]
rŵ	:	Rayon du puits ou du forage
Å	:	Vecteur vitesse, [LT-1]
υίχυ	j:	Matrice (3×3) formée par les cosinus directeurs de la normale au conduit
au V _T	5	Volume du bloc de roche à simuler, [L ³]
W	5	Espacement entre deux fractures consécutives, [L]
ρ	:	Densité volumique de l'eau, [ML-3]
λ	:	Nombre moyen de fractures par longueur de l'intervalle du test
γ	:	Pendage du plan moyen de chaque série de fractures (dans un plan
		horizontal) ou angle entre l'axe du canal d'amenée et le pôle moyen
		de chaque série (dans un plan vertical), [L]
υ	1	Viscosité cinématique
Φ	:	Angle entre l'axe d'un forage et le pôle moyen d'une série de frac-
		tures, [L]
δ _{ii} .	:	Delta de Kronecker
δ'(γ)	:	Densité superficielle de fractures dans un plan de simulation, $[1-1]$
Θ.		Porosité totale du milieu $\begin{bmatrix} 1 & 3 \\ 1 & -3 \end{bmatrix}$
θc		Porosité totale movenne du milieu. [L ³ L ⁻³]
Θ,	1	Meilleure valeur estimée de la porosité totale du milieu, [L ³ L- ³]
μ	:	Viscosité dynamique, [ML- ¹ T- ¹]
μ	:	Conductivité hydraulique moyenne équivalente des intervalles de
"e		tost [IT-1]
D.		Conductivité hydraulique movenne des fractures individuelles
۳ĸi	٠	conductivite hydraulique moyenne des fractures finatvidueries,
μLΝ	:	Moyenne d'une distribution log-normale
μ	;	Moyenne originale d'une population dont l'echantillon est distribue
		log normalement
μv		Moyenne de la densite volumique reelle d'une serie de fracture,
-		[L-1] Écont turo de la conductivité huduculieur de tous los intervalles
°ke		cart type de la conductivite nydraulique de tous les intervalles
		du test, [LT-1]
^o ki	*	Ecart type de la conductivité hydraulique des fractures indivi-
N.		duelles d'un milieu poreux équivalent, [LT-1]
^o LN		Ecart type d'une distribution log normale
σ	÷	Loart type de la densité volumique réelle d'une série de joints,
сē.		
σ	:	Ecart type d'une population originale dont l'échantillon est dis-
r.	5	Tribue log normalement Nombre de fractures d'une série recoupant le forage i
° 1		nombre de tractures à une serve recoupant re rorage r

x٧

CHAPITRE 1: INTRODUCTION

1.1 Problématique

L'écoulement souterrain des fluides à travers des masses rocheuses fissurées joue un rôle fondamental dans la plupart des problèmes de génie (géologie et géotechnique). En effet, le design de stabilisation des berges, des fondations de barrages, de bâtiments ainsi que le drainage des mines et des tunnels, le développement et l'exploration des ressources souterraines (eau, pétrole, gaz et ressources géothermales) doivent rigoureusement tenir compte des propriétés physiques et hydrauliques des masses rocheuses.

L'un des premiers problèmes qui préoccupe les spécialistes en hydrogéologie des milieux fissurés est la recherche des sites favorables à l'exploitation optimale des ressources en eau souterraine ou du pétrole. Il a été démontré que la présence des fractures dans les roches consolidées et non consolidées influe considérablement sur les rendements des puits qui s'y trouvent (Lattman et Parizek, 1964; Summers, 1972; Caswell, 1979).

Actuellement, le problème considéré, surtout dans les pays industrialisés, concerne l'élimination des déchets toxiques ou radioactifs. Le largage de ces produits dans les cours d'eau ou dans la mer entraîne des conséquences désastreuses sur la flore et la faune. Plusieurs études touchant ces questions, en regard spécialement des propriétés physiques et hydrauliques des formations imperméables¹ ont visé à savoir si ces formations contaminent, à moyen ou à long terme, le milieu avoisinant.

La présente étude s'intéresse à un autre problème: celui du drainage et de l'infiltration d'eau (fuite d'eau) sous les ouvrages hydrauliques tels que barrages. Cette question, qui s'avère d'un intérêt particulier d'ailleurs pour la plupart des ouvrages d'ingénierie, comme nous l'avons mentionné ci-dessus, revêt une importance spéciale pour éviter certains risques ou dangers.

1.2 Objectifs

Les études hydrologiques des milieux fissurés (Castillo <u>et al.</u>, 1972; Sharp et Maini, 1972; Krisek <u>et al.</u>, 1973; Gale, 1984; de Marsily, 1985; Wilke <u>et al.</u>, 1985) rapportent que les propriétés hydrauliques de ces milieux (perméabilité, vitesse, percolation, etc.) sont essentiellement fonction de la géométrie des éléments stucturaux², de l'échelle d'étude et de

¹ Ces formations sont souvent fissurées (présence de diaclases, failles, etc.)

Géologiquement, les éléments structuraux apparaissent comme étant les suivants: failles, diaclases ou joints, fractures, plis, folliations, cisaillements, etc. Dans cette étude, ces éléments sont tous recouverts par les termes: fractures, fissures ou joints. La géométrie de ces éléments comprend: orientations longueurs, ouvertures, espacements, connections, etc.

type de roches place. En tenant compte de ces informations¹ dans le problème qui nous concerne, l'objectif du présent travail consiste à : 1) évaluer le rôle de la géométrie des fractures sur le comportement hydraulique d'un massif rocheux fissuré et 2) déterminer la porosité totale de ce massif dans le but de pouvoir estimer, par exemple, le volume de coulis "grouting" nécessaire à l'injection pour imperméabiliser un site et empêcher les fuites d'eau.

1.3 Choix du site d'étude

Suivant les objectifs fixés plus haut, deux sortes d'informations sont nécessaires au choix d'un site d'étude:

- informations sur la disponibilité des données de fracturation dont l'utilité consiste dans la détermination des propriétés physiques d'un milieu;
- informations sur la disponibilité des données des essais d'eau permettant la détermination des propriétés hydrauliques d'un milieu.

Ces données nous sont parvenues après une sélection de plusieurs projets et rapports d'investigation consultés lors d'une visite au centre de documentation d'Hydro-Québec à Montréal. En effet, le site qui répond le plus à nos exigences est la partie du massif rocheux située en amont et vers le

¹ Pour plus de détails, voir les travaux antérieurs et annexe A.

nord-ouest du barrage Daniel-Johnson à Manicouagan. Les travaux géologiques et géotechniques entrepris dans ce site ont été effectués entre les années 1958 et 1984. L'examen de ces rapports nous indique, à première vue, que le site de Manic-5 renferme beaucoup d'éléments structuraux. La mise en évidence de ces structures est faite par cartographie de surface, en particulier sur des parois d'excavations, et, surtout, par l'analyse des forages à l'aide de la géocaméra.

1.4 Les méthodes utlisées

1.4.1 ANALYSE DE LA FRACTURATION

La majeure partie des données de fracturation provient des forages à partir des relevés de géocaméra.

Les données d'orientations de fractures ont été traitées, d'une part, à l'aide des duffiso-grammes "scatter-gramm" du programme BMDP (option 6D) et, d'autre part, au moyen des projections de Lambert pondérées établies par le programme de géocaméra d'Hydro-Québec. Les longueurs de fractures sont mesurées au moyen d'un curvimètre sur des cartes des escarpements de surface, cartographiées par Comtois (1974), à proximité du barrage Daniel-Johnson. Quant aux ouvertures de fractures, deux méthodes ont été utilisées: une méthode directe à partir des mesures prises par la géocaméra et une méthode indirecte à partir des résultats des essais d'injection d'eau.

1.4.2 ANALYSE DES ESSAIS D'EAU

Les essais d'injection d'eau ont été effectués sur une dizaine de forages entre deux obturateurs gonflables "packers" (fig. A.2, annexe A). En fonction de la profondeur de ces derniers, du temps et des pressions d'injection d'eau, ces essais permettent de fournir: 1) les débits d'écoulement depuis la section des essais vers le rocher et 2) la charge hydraulique à ce niveau.

1.4.3 SIMULATIONS

Les simulations ont fait l'objet d'une portion de 10 m x 10 m du massif rocheux de la zone 1 de la région étudiée à Manic 5 (annexe H, carte H.1). Cette portion est prise dans le côté est du canal d'amenée et les simulations sont réalisées à l'aide de deux programmes: NETWORK et NETFLO. Pendant cette phase d'étude, notre travail consiste à: 1) déterminer la porosité totale du milieu simulé et 2) étudier la sensibilité de cette porosité par rapport aux paramètres des modèles, tels: densités, longueurs de fractures, etc.

1.5 Bref aperçu des conclusions

 La région étudiée à Manic 5 est composée de quatre familles de fractures: deux familles de fractures subverticales, une subhorizontale et l'autre intermédiaire (inclinée de 40° vers le sud-ouest).

- L'étude des perméabilités d'un milieu poreux équivalent montre que le domaine d'étude peut être subdivisé en deux zones: une zone relativement perméable vers le nord-est et l'autre relativement imperméable vers le sud-ouest.
- L'étude de sensibilité des paramètres des modèles mathématiques indique que la porosité du milieu simulé est sensible à la variation de la plupart des paramètres de ces modèles.

1.6 Travaux antérieurs

1.6.1 HYDROLOGIE DES MILIEUX FISSURÉS

Plusieurs études antérieures (Hwitt, 1955; Snow, 1968; Sharp et Maini, 1972; Gale, 1977 et 1982a; Long <u>et al.</u>, 1982; Rouleau et Gale, 1984; etc.) mentionnent un grand nombre de paramètres pour caractériser la géométrie de fractures et le comportement de l'écoulement dans les milieux fissurés. D'après Parsons (1972) et Wilson <u>et al.</u> (1983), l'étude de ces paramètres peut être basée sur deux approches: l'approche continue et l'approche discontinue. Dans l'approche continue (Snow, 1985; Parsons, 1972), le milieu fissuré est traité comme un milieu poreux équivalent. Il est caractérisé statistiquement par des propriétés hydrogéologiques moyennes qui sont utilisées pour décrire, à la fois, les processus de l'écoulement des fluides et les caractéristiques du milieu. Dans l'approche discontinue (Long <u>et al.</u>, 1982; Schwartz <u>et al.</u>, 1983; Rouleau, 1984), l'écoulement des fluides s'effectue dans un réseau de fractures discontinues de longueurs variables. Le choix d'une approche doit être effectué sous plusieurs considérations dont deux d'entre elles sont importantes, savoir: l'échelle du problème et la disponibilité et la fiabilité des données expérimentales du terrain (Parsons, 1972). Dans leurs concepts théoriques de base, ces deux approches peuvent invoquer diverses approximations. L'une de ces approximations, qui est habituellement la plus utilisée, est l'analogie entre l'écoulement des fissures et l'écoulement entre deux plans parallèles lisses ou rugueux (Baker, 1955; Huitt, 1965; Snow, 1965; Bianchi et Snow, 1968; Louis, 1969; Bear, 1972 et d'autres). Ces auteurs comptent parmi ceux qui ont dérivé les équations de base décrivant un écoulement le long d'une fracture ou d'un conduit simple. Pour un fluide newtonien visqueux, incompressible, de phase simple et en régime laminaire, le volume d'écoulement par unité de largeur à travers une fissure à surfaces parallèles est donné par l'équation:

$$q = \frac{(2b)^3}{12\mu} \rho g I$$
 (1.1)

où:

- 2b: ouverture de fracture, [L];
- ρ: densité volumique de l'eau, [ML-³];
- μ : viscosité dynamique, [ML⁻¹T⁻¹];
- g : constante de gravité, [LT-²];
- I : gradient de charge hydraulique, $[LT^{-1}]$.

Cette équation est généralement connue sous le nom de la loi cubique. Elle est largement utilisée par plusieurs chercheurs dont Iwai (1976), Gale (1977), Gale et Witherspoon (1979), Neuzil (1981), Gale (1982, 1982a), Long <u>et al.</u> (1982), Witherspoon <u>et al.</u> (1983), Schwartz <u>et al.</u> (1983), Gale (1984) et Rouleau (1984) ainsi que d'autres, qui ont développé un énorme champ d'application de cette loi. Se basant sur la fameuse loi de Darcy (Q = KAI), l'expression de la perméabilité d'une fissure est dérivée de (1.1), soit:

$$K_{f} = \frac{\rho g (2b)^{2}}{12 \mu}$$
(1.2)

1.6.2 THÉORIES DES ESSAIS D'EAU

Les théories des essais d'injection d'eau sont développées sur le terrain par plusieurs chercheurs (Snow, 1970; Maini, 1970; Gale <u>et al</u>., 1979; Gale et Witherspoon, 1979; Francis, 1981; Gale 1980 et 1982a). Les techniques utilisées consistent à isoler des sections de forages entre deux obturations gonflables, d'écartement constant (Zeigler, 1976; Francis, 1981; etc.) ou variables (Zeigler, 1976) sous l'effet des pressions d'injections constantes. L'étude conceptuelle de ces essais d'injection d'eau nécessite certaines approximations dont les principales sont énumérées dans les travaux de Francis (1981) et Wilson et Witherspoon (1970). Nous nous contentons de retenir les suivantes:

- 1. écoulement radial et laminaire;
- 2. fractures continues avec des ouvertures constantes;
- 3. fractures horizontales et recoupées par des trous de forages verticaux;
- 4. pertes de charge négligeables, résultant du fléchissement et contractions des lignes d'écoulement à l'entrée des fractures dans la section d'essais; d'après Francis (1981), la signification de cet effet dans les tests d'injection n'a pas été évaluée expérimentalement;
- 5. validité de la loi de Darcy.

Une autre approximation liée à l'homogénéité, à l'isotropie et à la saturation de la zone du test a été soulevée par Zeigler (1976).

Sous considération des approximations précédentes, la relation linéaire entre l'écoulement et la différence de charge hydraulique est dérivée de la loi de Darcy (Gale, 1980 et 1982; Francis, 1981; etc.), soit:

$$Q_{t} = \frac{2 L \pi K_{e} (H_{W} - H_{I})}{\ln (r_{I} / r_{W})}$$
(1.3)

où

- L : longueur de l'intervalle du test [L];
- K_p : perméabilité du milieu poreux équivalent [L/T];
- Q_t : débit d'écoulement [L³/T];
- r_W : rayon du puits [L];

 r_{I} : rayon d'influence, [L]; $H_{W}-H_{T}$: différence des charges hydrauliques, [L].

La perméabilité d'une fracture individuelle K_f, dans un intervalle d'essais d'eau contenant n fractures de mêmes ouvertures (2b), est:

$$K_{f} = \frac{L}{n (2b)} K_{e}$$
(1.4)

$$(2b) = \left(\frac{6\mu}{n\pi\rho g} \frac{Q_{t} \ln (r_{I} / r_{W})}{(H_{W} - H_{I})}\right)^{1/3}$$
(1.5)

Selon Snow (1970), les valeurs probables des perméabilités et d'ouvertures de fractures individuelles ne peuvent pas être déterminées directement quand plusieurs fractures existent dans un intervalle d'essais d'eau, sauf si la distribution de leurs ouvertures est a priori bien connue. Quant à Maini (1971), il a utilisé uniquement une valeur moyenne des ouvertures en les considérant toutes de mêmes dimensions.

Plusieurs études rapportent que les ouvertures de fractures sur le terrain (forages et affleurements de surface) suivent une distribution lognormale (Bianchi et Snow, 1968; Snow 1970; Parsons, 1972; Francis, 1981; Long <u>et al.</u>, 1982; Schwartz <u>et al.</u>, 1983; Rouleau et Gale, 1984). Dans une étude des données des essais hydrologiques au niveau d'un ensemble de sites de barrages et tunnels, Snow (1968a) indique que la diminution de la perméabilité en profondeur est plus affectée par la diminution des ouvertures de fractures que par la diminution de leurs interconnections. Il ajoute également que le volume de roche à imprégner par du coulis "grouted rock" peut être obtenu en divisant le volume de coulis par la porosité des fissures. Cependant, cette approximation nécessite de tenir compte de la nature du coulis, car, par exemple, un coulis de particules ou de viscosité élevées n'a pas le même effet sur la porosité qu'un coulis chimique.

Enfin, quelques informations détaillées relatives à l'exposé ci-dessus sont fournies dans l'annexe A ou à l'intérieur du texte principal.

CHAPITRE 2: DESCRIPTION DU SITE D'ÉTUDE

2.1 Cadre géographique

A l'échelle de la province de Québec, le barrage Daniel-Johnson occupe une place importante sur le plan de la réserve en eau et de la production d'énergie électrique (1 292 000 Kw). Le réservoir qui s'étend derrière le barrage présente une superficie de 2 000 km² et contient un volume d'eau de 2 225 000 m³. Il est situé sur la rivière Manicouagan, à environ 210 km au nord de la ville de Baie-Comeau et à environ 600 km de Montréal (figure 2.1). La superficie du site étudié dans la région Manic 5, comprenant environ 3 000 m², se situe dans le voisinage du réservoir et à quelque 200 ou 300 m au nord-ouest des évacuateurs du barrage (annexe H, carte H.1).

2.2 Cadre géologique

Deux formations rocheuses distinctes forment la géologie de la région de Manic-5 P.A.: la formation du roc et les dépôts meubles.

2.2.1 FORMATION DU ROC

Le roc affleure en grande partie sur la rive droite du réservoir de Manic-5 comprise entre le bouchon du canal d'amenée et le barrage Daniel-Johnson et sur le promontoire orienté ENE-OSO. À ces endroits, la couverture de matériaux meubles est généralement faible (environ quelques mètres ou moins). La plupart des informations sur la nature et la disposition du

Figure 2.1

Carte de localisation du site du barrage Daniel-Johnson à l'échelle de la province de Québec

roc proviennent essentiellement des forages; ainsi, il apparaît que le roc s'enfonce plus ou moins vers le sud-ouest et le nord-ouest. Pétrographiquement, le roc est un gneiss blanchâtre ou gris plus ou moins foncé d'âge archéen et appartenant à la province géologique de Grenville (bouclier canadien) (Beaupré et al., 1984; Nguyen et al., 1984).

C'est une alternance centimétrique à métrique de gneiss granitique et de gneiss mafique (gneiss à biotite et/ou hornblende) (Vieira, 1978; Beaupré <u>et al.</u>, 1984; Nguyen <u>et al.</u>, 1984); le tout est recoupé de nombreux filons de pegmatites et quelques enclaves de granite d'anatexie.

2.2.2 DÉPÔTS MEUBLES

Ce sont des sédiments d'origine glaciaire et fluvioglaciaire (till) ou constitués de sable et de gravier fin ou grossier avec des assises d'argiles et de silts (Vieira, 1978 et 1979; Beaupré Nguyen, 1984; Nguyen <u>et al.</u>, 1984). Certaines parties de ces dépôts sont oxydées, compactes, et vont du gris au brun; leurs épaisseurs augmentent vers le sud-ouest et le nord-ouest de l'axe du canal d'amenée et au niveau de la vallée NO-SE, passant immédiatement en aval de la prise d'eau; ailleurs, sur le promontoire orienté NE-SO, ces épaisseurs sont faibles et souvent submétriques.

2.3 Cadre structural

Les éléments structuraux sont fort prononcés dans cette région. En effet, plusieurs zones fracturées, altérées, comportant des joints ouverts

et/ou oxydés, ont été signalées. Le fait qu'il y avait des pertes de charges et des retours d'eau à plusieurs endroits montre que le caractère de communication et d'interconnection est relativement important entre la plupart des forages. Afin d'éviter des problèmes majeurs pouvant découler de ces phénomènes, des mesures de stabilisation par soutènement et consolidation ont été entreprises. Ces travaux ont été poursuivis durant les années 1976 à 1984, à la suite d'études d'investigation visant à préciser les caractéristiques pétrographiques (texture et structure) des roches et les conditions hydrogéologiques du massif.

CHAPITRE 3: TRAITEMENT STATISTIQUES DES DONNÉES

3.1 Travaux antérieurs effectués dans le site

Depuis 1958, plusieurs dizaines de forages à percussion ou à rotation (diamant) ainsi que certaines campagnes d'excavation souterraine telles que la galerie d'amenée, la prise d'eau, la centrale, etc., ont été réalisés. On a également tenu compte de la cartographie de surface (Comtois, 1974), de l'analyse des sondages par géocaméra, des travaux d'injection d'eau dans les trous de forages et, finalement, des travaux de stabilisation par soutènement et injection de coulis de ciment. Ces travaux nous sont parvenus par le biais des rapports généraux d'investigations consultés au centre de documentation d'Hydro-Québec à Montréal (voir bibliographie).

3.2 Caractérisation des systèmes de fractures

Toute tentative de compréhension des facteurs qui contrôlent l'écoulement des fluides à travers les roches fracturées doit être basée sur un concept clair de la nature structurale de la masse rocheuse (Gale, 1982c et 1984). Les voies principales d'écoulement dans les roches fissurées sont les joints, les filons ou veines, les zones fracturées et les zones de cisaillement. Néanmoins, dans cette étude, aucune distinction n'a été faite entre ces différentes structures; nous les avons toutes attribuées soit aux fractures ou fissures, soit aux joints (terminologie usuellement plus courante). Comme nous l'avons mentionné plus haut, les principaux facteurs qui exercent une influence prépondérante sur l'écoulement dans une roche sont l'orientation et la géométrie de fractures. D'autres facteurs incluant les contraintes et la rugosité (Gale, 1982) ne sont pas pris en considération dans cette étude.

3.2.1 ANALYSE DES ORIENTATIONS DE FRACTURES

L'orientation est un facteur statistiquement mieux connu que la plupart du reste des paramètres géométriques des fractures. En effet, elle est facilement mesurable par des techniques simples de photographie des trous de sondages ou sur des affleurements de surface. L'orientation d'une fracture peut être obtenue par une mesure directe ou indirecte de sa <u>direction</u> et de son <u>pendage</u>. En ce qui concerne notre site d'étude, ces paramètres ont été mesurés à l'aide d'un appareil "géocaméra" dans la plupart des trous de sondages ou bien au moyen d'une boussole ordinaire quand il s'agit des murs des excavations ou des escarpements de surface.

3.2.1.1 Trous de forages

Depuis 1958, plusieurs forages ont fait l'objet d'analyses par géocaméra (annexe H, carte H.1). Étant donné la quantité de ces données et l'hétérogénéité qu'elles peuvent impliquer, cette étude porte uniquement sur une vingtaine de forages (tableau 3.1). Notons, en outre, que ce choix est basé sur d'autres critères parmi lesquels celui de pouvoir distinguer la possibilité d'avoir des forages intégrant une abondance relative des données d'orientations et d'ouvertures des fractures prises par géocaméra et des données d'injection d'eau sous pression ou de traceurs.

- 18 -

Tableau 3.1

Caractéristiques physiques des forages étudiés

		COORDONNÉES DE FORAGES		LONGUEURS
Forage numéro	Direction-Plongée	X	Y	(M)
5001-74 5002-74 5003-74 5003-74 5005-74 5005-74 5008-74 5011-74 01-83 02-83 03-83 04-83 05-83 06-83 08-83 10-83 01-84 02-84 03-84 05-84	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	18413589.7N 18413624.2N 18413360.0N 18413810.4M 18413701.9N 18412789.6N 18412789.6N 18412406.2N 5612474.8N 5612511.1N 5612502.4N 5612494.0N 5612483.8N 5612484.5N 5612480.8N 5612524.0N PM 979.84 PM 988.76 PM 980.62 PM 1125.11	946585.0E (1) 946620.9E " 946435.0E " 946283.4E " 946296.8E " 945765.8E " 945765.8E " 945454.9E " 288505.6E (2) 288532.9E " 288513.8E " 288501.7E " 288503.1E " 288520.8E " 288552.1E " 9.50 G (3) 0.22 D " 0.194 D " 0.04 G "	$ \begin{array}{c} 112.8\\ 107.8\\ 122.6\\ 107.3\\ 90.6\\ 224.0\\ 222.5\\ 183.4\\ 31.5\\ 35.2\\ 35.6\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 30.3\\ 25.3\\ 35.7\\ 60.0\\ 48.4\\ 66.4\\ 36.0\\ \end{array} $
06-84	036 - 54	PM 978.47	4.32 D "	54.3

N.B. (1) : Coordonnées en mesures impériales (2) : Coordonnées en mesures métriques (3) : Coordonnées par rapport aux points métriques(PM) sur la carte

3.2.1.2 Escarpements de surface

Sur le site, quatre endroits ont fait l'objet de collectes de données d'orientations (Comtois, 1974): 1) l'escarpement le long de la base du blondin incliné, au Mont Cantin (rive droite), 2) l'escarpement le long de la base du blondin horizontal (niveau inférieur et supérieur), 3) l'escarpement de la rive ouest à l'accès du barrage Daniel-Johnson et 4) l'escarpement de l'ancienne prise d'eau (annexe H, carte H.2). Chacun de ces secteurs est représenté sous forme de cartes sur lesquelles la plupart des fractures individuelles sont reportées. Ces éléments sont, dans la majorité des cas, identifiés par des codes alphanumériques et peuvent être accompagnés de certaines descriptions supplémentaires telles que nature et composition du remplissage, dimensions des ouvertures, etc.

3.2.1.3 Biais d'orientation et de visée

Le biais d'orientation est généralement dû à l'échantillonnage préférentiel de fractures perpendiculaires aux lignes de mesures (axe de forage) (Terzaghi,1965). Dans cette étude, une correction de ce biais a été faite par pondération pour toutes les données de géocaméra (Lechasseur, 1980). Le biais de visée ou de paralaxe a été fait uniquement dans les forages inclinés. Cela est attribuable au fait que le plan de la boussole à pivot n'est pas parallèle au plan perpendiculaire à l'axe du forage. Ce biais a été également corrigé par rapport à la déclinaison magnétique suivant le cadran dans lequel le plan de fracture se trouve (Lechasseur, 1980).
3.2.1.4 Traitement statistique

Les données d'orientation utilisées proviennent des rapports d'investigation des campagnes 1974, 1983 et 1984 (Comtois, 1974; Nguyen <u>et al.</u>, 1984, Beaupré et Nguyen, 1984). Ces données sont présentées sous forme de tableaux (voir exemple tableau 3.2). Deux sortes d'orientations peuvent être distinguées: orientations apparentes et orientations réelles. Les orientations apparentes correspondent aux mesures d'orientations prises dans les forages et les orientations réelles sont fournies par le programme de géocaméra après correction des biais mentionnés plus haut. Ces corrections ont été faites uniquement pour les forages inclinés alors que, pour les forages verticaux, ces corrections n'ont pas eu lieu (Lechasseur, 1980). C'est pour cela qu'après correction les données corrigées (orientations réelles) peuvent être interprétées comme si elles étaient prises dans l'espace c'està-dire dans des forages verticaux.

Nous avons essayé au début d'adopter le programme FRACTAN¹ (Mahtab <u>et</u> <u>al.</u>, 1972; Schanley <u>et al.</u>, 1975) au traitement des données d'orientations (direction et pendages) des fractures des forages individuelles ou combinées. Malheureusement, il a été très difficile de distinguer des familles

¹ Ce programme est conçu pour regrouper les fractures d'un site en familles. Le critère utilisé est la représentation stéréographique des pôles de fractures et le regroupement de ces dernières suivant la densité de leurs pôles.

Types de données d'orientation de fractures décrites dans les rapports d'investigation d'Hydro-Québec (d'après Nguyen <u>et al.</u>, 1984)

FORAGE	PROFONDEUR [m]	AZIMUT APPAR.	PENDAGE APPAR.	AZIMUT VRAI	PENDAGE VRAI	OUVERTURE [mm]
	2.25	0	0	337	0	_
	2.40	346	50	323	50	2
	3.12	68	55	45	55	10
	3.80	160	60	137	60	5
	3.83	68	53	45	53	10
01-84	4.07	230	31	207	31	10
	10.34	240	47	217	47	
Vertica	1 11.25	90	60	67	60	4
	11.36	90	62	67	62	2
	12.64	93	56	70	56	12
	14.37	204	27	181	27	20
	14.88	180	3	157	3	2
	15.72	94	37	71	37	30
	16.06	315	87	292	87	
	3.00	0	0	353	35	
	3.45	257	45	276	41	2
	3.76	297	50	298	65	
	4.40	180	50	138	17	2424
	4.59	215	50	226	21	2
03-84	4.65	225	50	241	26	5
	5.08	150	50	93	32	2
(083-55) 5.10	66	50	32	75	3
	6.12	211	50	219	19	1
	6.30	256	80	246	67	1
	6.40	150	50	93	32	
	6.41	150	50	93	32	
	6.59	337	80	135	72	
	6.84	267	70	262	65	

 $^{1}\,$ Les chiffres entre parenthèses indiquent respectivement la direction et la plongée du forage

représentatives à cause de la dispersion des données. C'est la raison pour laquelle nous avons utilisé la méthode du diagramme rectangulaire d'orienta-Quant à l'utilisation de la méthode de projection de Lambert pondétion. rée, elle nous sert à illustrer les familles de fractures existantes. La première méthode consiste à utiliser le programme statistique BMDP (option 6D); cette option reproduit un diffuso-gramme ("scatter-gram") des variables dépendantes Azimut-pendage des fractures (figure 3.1). Du point de vue pratique, certaines transformations ont été faites (0 < pendage < 90 pour 0 < Azimuth < 180 et 90 < pendage < 180 pour 180 < Azimuth < 360). Pour la</pre> seconde méthode, un traitement spécial des données d'orientations de fractures a été fait à l'aide du programme de géocaméra (programme d'Hydro-Québec), en considérant les données de surface (figure 3.2) et celles de géocaméra (figure 3.3) séparément, puis une combinaison des deux (figure 3.4). Puisque les données des orientations réelles ont été obtenues après correction des biais d'orientation et de visée (voir plus haut), le traitement de ces données peut être effectué sans aucun problème avec le programme¹ de géocaméra à condition de spécifier une déclinaison magnétique nulle (Lechasseur, 1985 - communication personnelle). En effet, l'apparition d'une zone muette à la périphérie des diagrammes de projection de Lambert pondérée peut s'expliquer par l'élimination totale des fractures subverticales. Cette manière de procéder ne fausse en rien les résultats.

- 23 -

¹ Dans ces cas, le programme interprète les données d'orientations réelles (direction et pendage) comme si elles provenaient toutes des forages fictifs verticaux.

Figure 3.1

Diffuso-gramme "scatter-gramm" des orientations de fractures étudiées

Figure 3.2

Projection de Lambert pondérée des pôles de fractures de surface (hémisphère inférieur équi-aire)

Projection de Lambert pondérée des pôles de fractures de quelques forages à Manic 5-P.A. (hémisphère inférieur équi-aire)

Figure 3.4

Projection de Lambert pondérée des pôles de fractures de Manic 5-P.A. (hémisphère inférieur équi-aire)

Cependant, elle nous sert simplement à déterminer le nombre de familles de joints existantes et leurs limites.

L'analyse des concentrations de nuages de points (figures 3.2, 3.3 et 3.4) donne quatre familles principales dont les orientations moyennes sont déterminées par le programme BMDP (tableau 3.3). Il faut noter aussi qu'un problème se pose au niveau de la séparation des familles. Il est indiqué par les troncatures introduites entre ces familles à cause du chevauchement de ces dernières.

3.2.1.5 Conclusion

Il émane des graphiques de projection de Lambert que les orientations de fractures (direction et pendage) sont assez dispersées. Cependant, quatre familles de fractures peuvent être distinguées: deux subverticales (familes 1 et 2), une subhorizontale (famille 3) et la dernière intermédiaire (famille 4), qui est inclinée d'environ 40° vers le nord-ouest. La fracturation du massif rocheux de Manic-5 et la dispersion des orientations des fractures se sont manifestées, semble-t-il, pendant les événements de la fin du Protérozoïque et probablement à la suite de l'impact météoritique affectant la région au Trias (Rondot, 1985, communication personnelle).

3.2.2 ANALYSE STATISTIQUE DES LONGUEURS DES FRACTURES

Les longueurs des fractures sont mesurées à l'aide d'un curvimètre sur des cartes d'escarpements de surface. Ces sites ont été cartographiés en

Principales familles de fractures (joints) du Manic-5 obtenues par comparaison des données de fractures de surface et de forage

FAMILLE	AZIMUTH		PENDAGE		MOYENNES PAR B	OBTENUES MDP-6D	NOMBRE DE FRACTURES
	DE	Α	DE	Α	AZ	PEND	CHAQUE SÉRIE
1	355	105	60	90	228	00	022
	181	265	54	90	220	00	JLL
2	106 128 266	127 180 354	60 54 54	90 90 90	318	87	616
3	000 128 355	127 354 359	00 00 00	10 53 29	254	30	852
4	000 355	127 359	11 30	59 59	054	40	396
						Σ	2786 ¹

¹ Ce nombre renferme 83 fractures supplémentaires contenant des informations sur les mesures d'ouvertures et qui proviennent des forages non traités 5018 à 5025 (Viera, 1978)

1974 et sont subdivisés en mailles dans lesquelles les traces des fractures indexées d'un code d'identification, sont reportées (annexe H, carte H.2). Dans un premier temps, le travail consiste à attribuer à chaque élément codé sa longueur mesurée et son orientation correspondante. Par ailleurs, trois sources d'erreurs peuvent être distinguées.

3.2.2.1 Erreur de manipulation

Cette erreur peut être commise aussi bien au moment du traçage des fractures sur la carte qu'au moment de la mesure de leur longueur. Seule l'erreur sur la mesure des longueurs a été estimée (≃ 15 cm). En tenant compte de l'échelle des cartes, on suppose que l'erreur sur le curvimètre est non significative.

3.2.2.2 Biais de longueur

Les biais affectant l'estimation de la longueur des fractures du terrain sont le biais de grandeur et le biais de troncatures (Rouleau, 1984). Dans le premier cas, il est clair que les fractures de taille élevée ont beaucoup plus de chance d'être échantillonnées que celles qui sont de petite taille. Par conséquent, cet aspect pourrait entraîner un échantillonnage préférentiel de fractures de grande taille. En ce qui concerne la troncature, les éléments de longueurs plus élevées sont les plus affectés. Dans cette étude, ce phénomène est très fréquent pour les longueurs comprises entre 0,46 m et 25 m , valeurs qui correspondent respectivement aux longueurs minimale et maximale de fractures observées. En vue de faire une distinction entre différents degrés de troncature, nous avons utilisé les codes suivants: Icens = 0 pour les fractures situées complètement à l'intérieur du domaine, Icens = 1 pour les fractures dont l'une des extrémités est invisible et Icens = 2 pour les fractures dont les extrémités se trouvent entièrement à l'extérieur de la partie cartographiée. Cette notation vise à corriger le biais de troncature (Annexe D).

Plusieurs méthodes ont été suggérées pour analyser les longueurs des fractures en tenant compte des biais mentionnés plus haut. Par exemple, Long et al. (1982) et Schwart et al. (1983), en se basant sur des travaux antérieurs, ont utilisé, respectivement dans leurs modèles, une distribution log-normale et exponentielle négative. Quant à Rouleau (1984), il propose deux méthodes pour évaluer les paramètres de distribution de ces longueurs. Il s'agit notamment d'une distribution exponentielle des longueurs d'un échantillon progressivement tronqué et d'une distribution log-normale. Quoique ces deux méthodes peuvent représenter statistiquement la distribution de longueurs, Rouleau a préféré la seconde pour des fins de calculs dans ses modèles. Les paramètres statistiques de cette distribution lognormale ont été obtenus, dans son cas, par une résolution des équations du maximum de vraisemblance (MV) à l'aide d'une procédure itérative basée sur la méthode de Newton-Raphson. Par ailleurs, c'est sur ces travaux, et sur l'allure des diagrammes de fréquences des longueurs (figure 3.5), que nous nous sommes appuyés pour adopter un modèle log-normal pour les distributions des longueurs des fractures du site étudié. L'étude de cette distribution

- 31 -

Histogramme des longueurs des séries de fractures étudiées

(suite)

est décrite en détail en annexe D pour un échantillon dont certaines données sont tronquées alors que les résultats sont résumés au tableau 3.4.

3.2.3 ANALYSE ET INTERPRÉTATION DES ESSAIS D'INJECTION

D'après la littérature, trois types de distribution des ouvertures ont été distingués. D'une part, Bianchi et Snow (1968) ont conclu que les ouvertures mesurées sur le terrain suivent une distribution log-normale, d'autre part, Snow (1969) a parlé surtout d'une distribution normale biaisée. Sharp (1970) a noté que les ouvertures mesurées en laboratoire sur une seule fracture suivent bien une forme log-normale ayant des extrémités tronquées dues probablement à la petite surface d'échantillonnage. Ajoutons également que Parsons (1972), Francis (1981), Long et al. (1982), Schwartz et al. (1983) et Rouleau (1984) ont tous considéré une distribution lognormale des ouvertures. Enfin, en plus d'une distribution log-normale, Neuzil et al. (1981) ont discuté d'une distribution grossièrement gaussienne. Pour les fins de cette étude, nous avons supposé que les données des ouvertures des fractures de Manic-5 suivent une distribution log-normale telle que mentionnée ci-dessus. Ainsi, deux méthodes d'analyse des ouvertures des fractures ont été utilisées: une méthode indirecte décrite au paragraphe A.4.2 (annexe A) et une méthode directe ci-dessous.

Statistiques des longueurs de fractures dans chaque famille

FAMILLE		1			2			3			4	
DEGRÉ DE TRONCATURE (ICENS)	0	1	2	0	1	2	0	1	2	0	1	2
Nombre d'obs.	83	79	17	63	99	27	121	52	3	64	26	5
Minimum (m)	0,91	0.61	3.05	0.46	0.76	1.83	0.61	0.46	6.1	1.22	0,91	3,96
Maximum (m)	17,83	23,77	17,98	16,92	21,03	16,46	24,69	17,83	24,69	16,92	16,76	17,37
Moyenne (m)	4,74	5,15	7,48	4,40	4,65	5,76	5,37	5,21	13,62	5,16	4,81	8,23
Ecart type (m)	3,89	4,77	4,38	3,41	3,71	4,56	4,52	3,74	9,79	3,71	3,86	5,33
μ _{LN} (m) σ _{IN} (m)	1,9349 0,9982			2,140 1,057	9 '3		1,675 0,884	7 6		1,671 0,789	1	
σ _{LN} / √ N (m)	0,0743			0,076	i9		0,066	57		0,080)9	
μ	11,3942			14,877			7,9008			7,2599		
σ	14,8934			21,345			8,6077			6,7467	1	

 μ_{LN} et σ_{LN} : moyenne et écart type du logarithme naturel des longueurs de fractures; μ et σ : moyenne et écart type de la distribution réelle estimées à partir de μ_{LN} et σ_{LN} suivant les équations 3.17 et 3.18 N

: nombre de fractures totales dans une série

Ces paramètres estimés sont tous corrigés pour le biais de troncature N.B.

3.2.3.1 Méthode directe d'analyse des ouvertures des fractures

Elle consiste à faire l'analyse à partir des données des ouvertures prises par géocaméra dans les sondages des campagnes 1983 et 1984. Il nous semble, par ailleurs, que la limite inférieure de détection des ouvertures par géocaméra est de 1 mm car, en dessous de ce seuil, aucune valeur précise n'a été indiquée par la géocaméra. Puisqu'une bonne partie de l'information demeure mal connue (ouvertures inférieures à 1 mm), nous avons reconstitué les données d'ouvertures manquantes par l'ajustement d'une distribution lognormale aux données existantes, tout en respectant les polygones de fréquences observées. La méthode de calcul adoptée est brièvement décrite dans l'annexe D et les résultats sont donnés au tableau 3.5.

3.2.3.2 Optique et modes opératoires des tests d'injection

Hydro-Québec ne dispose pas encore d'un schéma général du dispositif expérimental des tests d'injection; cependant, l'utilisation d'un nouvel appareil¹, qui s'est ajouté à l'équipement habituel, a conduit à la préparation d'un manuel actuellement en cours de rédaction (Grumich, 1985; communication personnelle). Le but principal des réalisations des tests d'injection sur le terrain est de connaître le degré d'étanchéité du rocher. Pour cela, dans chaque chambre du test, trois essais à pression constante sont

¹ Micro-enregistreur installé en 1984 au niveau de l'obturateur supérieur: permet la lecture directe de la pression réelle dans la chambre du test (différence entre la pression d'injection et la pression statique de l'eau à ce niveau).

Estimation des paramètres statistiques d'une distribution log-normale ajustée aux logarithmes naturels des ouvertures de fissures obtenues par relevés de géocaméra

OUVERTURES DES FISSURES										
FAMILLE	MOYENNE (m)	ÉCART TYPE (m)	POURCENTAGE AJUSTÉ (%)							
1	- 7,13	0,66	63							
2	- 7,22	0,68	68							
3	- 7,38	1,05	67							
4	- 7,14	0,57	66							

effectués pendant au moins quatre minutes. Au premier essai, la chambre du test est soumise à une pression donnée; au second essai, on double la pression de départ, laquelle est maintenue durant le troisième essai. Cette manière de procéder permet de donner une idée du degré d'élasticité, du colmatage ou de la réouverture (refracturation du rocher) des fractures et, par conséquent, du régime d'écoulement qui règne dans la proportion isolée du test. Dans cette étude, toutes les données (pressions et débits) proviennent de la dernière phase d'injection (période de retour), durant laquelle le milieu est censé être saturé et l'écoulement est du type laminaire. La procédure de calculs des perméabilités et des ouvertures à partir des essais d'injection d'eau est décrite ci-dessous.

3.2.3.3 Procédure de calculs et résultats des essais d'eau

À partir des essais d'eau sous pression réalisés sur le terrain par Hydro-Québec et dont les données sont présentées sous forme de tableaux dans les rapports 1974 à 1984 (voir exemple type, tableau 3.6), seules les données obtenues pendant la phase de retour (troisième période d'essai) sont prises en considération dans les calculs. Les unités de ces données sont reprises dans le système international (S.I.) (voir tableau 3.7).

Soient L = 3,05 m, la longueur constante de chaque intervalle du test, g = 9,8 m/s², l'accélération de pesanteur, $\rho = 10^3$ N/m³, la masse volumique

Exemples de données des essais d'injection d'eau considérées par Hydro-Québec

Mojei	. Duine	Add		emplacement Galorie	do fuite	- Control	501	ndøge no	5011	longueu du trou	601 7	misures à Partir du plaucher (2 5')
PHOFUM	DEUR DE	PRESSIC	W W/an ²	CHRONO	SETRAGE	CTPIT EN G	ALLONS	A.750			01111	protection (2, a /
INFI RIEUP	SUPE REUR	AU MA-	A L'ODT	LECT	UNE	A LICIU	RE	GAL. HAP,	GAL. IMP.	REMARQUES		
				(MIN	TTES)							
340	330	77	_189_	5.0		_0.09_		01.4_	(0.000) 0,029	_Pression	constante t	iprès + dc 2 minutes
			265	5.0		_0.14		-02-2_	0.045-	(0.000)		**
		77	189	5.0		0.12		01.9	0.038	(0.000)		**
350	340	79	195	5.0		_0.09.	_	01.1_	0.020	_(0,000)_		"
		158	2.13	5.0		0.13		02,1	0.012	(0.000)		"•
••	**	70	195	5.0		0.10		01.6	0.012	(0,000)		
360	350	82	201	5.0		0.10		_01.6	0,032	(0.000)		· •
		163	282	5.0		0.12		01.9	0,038	(0.000)		••
		82	201	5.0		0,10		01.6	0.032	(0.000)		
370	360	8-1	205	5.0		0.10		01.6	0,032	(0.000)		**
		168	289	5.0		0.13		02.1	0.012	(0.000)		•
	**	8-1	205	5.0		0.11		01.8	0.035	(0,000)		
380	370	87	212	5.0		0.10		01.6	0.032	(0.000)		••
		173	298	5.0		0.15		02.1	0.018	(0.000)*		
		87	212	5.0		0.12		01.9	0.038	(0.000)		
390	380	89	217	5.0		0.13		02,1	0.012	(0.000)		•
		178	306	5.0		0.19		03.0	0.061	(0.000)		••
		89	217	5.0		0.16		02.6	0.051	(0,000)		**
4110	390	92	223	5.0		0,12		01.9	0.038	(0,000)		
*		183	314	50		0.20		03.2	0.064	(0.000)		
		92	223	5.0		0.15		02.4	0.018	0.018 (0.000)		"
efailise pa	er selsule per végifié per pour niois		Junior Fridlich - C									

Tableau 3.7

Transformation des unités considérées dans les calculs

ТҮРЕ	TRANSFORM	MATION	OPÉRATION DU "X"
Longueur de l'intervalle du test	Pi	m	0,3048
Temps du test	mn	sec	60
Pression d'injection	Lb/po ²	m	0,7032
Pression d'injection	kPa	m	10,2145 10-2
Débit d'eau injecté	1	m ³	10-3
Débit d'eau injecté	Gal. imp	• m ³	4,544 10 ⁻³

-

de l'eau, $\mu = 1,002 \ 10^{-3}$ Pa. sec., la viscosité dynamique de l'eau, $r_{I} = 10$ m, le rayon d'influence des forages et $r_{W} = 0,0757$ m, le rayon du forage. En remplaçant ces valeurs dans les équations (A.14, A.15 et A.16), la perméabilité équivalente, la perméabilité individuelle et l'ouverture des fractures peuvent être réécrites respectivement sous la forme suivante:

$$k_e = 25,48 \times 10^{-2} \frac{Q_t}{(H_w - H_i)} (m/sec)$$
 (3.1)

$$k_f = 77,72 \times 10^{-2} \frac{q_t}{n(2b) \cdot (H_w - H_i)}$$
 (m/sec) (3.2)

(2b) = 98,43 x 10⁻⁴
$$\left(\frac{q_t}{n (H_w - H_i)}\right)^{1/3}$$
 (m) (3.3)

où:

Qt : débit injecté pendant un temps t (m³/sec);
H_W - H_i: différence de charges hydrauliques (m);
n : nombre de fractures dans un intervalle d'essais.

Le résultat des calculs de ces équations est donné dans les tableaux C.3 et C.4 (annexe C). Les figures C.1 et C.2 (annexe C) montrent également les variations dégagées. Ensuite, après le calcul de la moyenne $(\mu_{k_{e}})$ et de la variance $(\sigma_{k_{e}}^{2})$ des perméabilités équivalentes et du nombre moyen de fractures par longueur du test (λ) , la moyenne (μ_{1}) et l'écart type (σ_{1}) de la distribution lognormale des ouvertures de fractures de chaque forage à Manic-5, sont donnés respectivement par les expressions (A.27) et (A.28), soit:

$$\mu_{1} = \ln 2 \left(\frac{\alpha^{2}}{(\alpha^{2} + \beta^{2})^{1/2}} \right)^{1/3}$$
(3.4)
$$\sigma_{1} = \ln \left(\frac{\alpha^{2} + \beta^{2}}{\alpha^{2}} \right)^{1/9}$$
(3.5)

avec:

 $\alpha = 4,68 \ 10^{-7} \ \mu_{k_{e}} / \lambda$

$$\beta^2 = 2,19 \ 10^{-13} \ (\sigma^2_{k_e} / \lambda - \mu^2_{k_e} / \lambda^2)$$

Les valeurs calculées de ces paramètres sont indiquées au tableau 3.8. Le tableau 3.9 montre également les différents types de calculs considérés dans les statistiques des perméabilités des essais d'eau. Il s'agit de faire le traitement sur les données des perméabilités provenant des forages individuels puis sur les perméabilités provenant à la fois des intervalles d'injection de tous les forages. Pour chacun de ces cas, les données sont traitées avec ou sans logarithme naturel.

Paramètres des statistiques des perméabilités et des ouvertures des fractures (résultats des essais d'eau)

ZONE	FORAGE N°	λ [m ⁻¹]	μ [m/s	<e sec]</e 	ס [m/:	Ke sec]	μ [m/s	<i sec]</i 	م [m/s	(i sec]	μ ₁ [m]	σ ₁ [m]
1	01-84 02-84 03-84 06-84 5001-74 5004-74	2,19 2,48 1,58 4,00 1,64 4,70	3,26 2,13 5,10 6,44 2,07 7,90	10-6 10-5 10-6 10-6 10-6 10-6	7,88 2,35 6,69 6,67 6,47 3,79	10-6 10-5 10-6 10-6 10-6 10-5	4,88 2,81 1,04 5,28 4,15 5,52	10-7 10-6 10-7 10-7 10-7 10-7	3,00 8,05 2,86 1,84 2,87 1,00	10-6 10-6 10-7 10-6 10-5	- 10,08 - 09,26 - 09,58 - 09,87 - 10,17 - 10,40	0,41 0,25 0,24 0,28 0,43 0,64
MOYENNE		2,77	7,66	10-6	1,49	10-5	9,72	10-7	4,77	10-6	- 9,89	0,38
2	05-84 5004-74 5005-74 5011-74	4,51 3,04 5,25 2,46	3,94 2,55 1,68 1,09	10 ⁻⁸ 10-7 10 ⁻⁶ 10 ⁻⁷	2,47 2,73 3,90 1,16	10 ⁻⁸ 10 ⁻⁷ 10 ⁻⁶ 10 ⁻⁷	2,87 2,76 1,05 1,45	10-9 10-8 10-7 10-8	6,00 8,54 9,70 3,96	10-9 10-8 10-7 10-8	- 11,46 - 10,82 - 10,73 - 11,00	0,19 0,26 0,50 0,24
MOYENNE		3,82	5,21	10-7	1,08	10-6	3,75	10-8	2,75	10-7	- 11,00	0,30

 λ : nombre de joints par longueur d'un intervalle de test

HKe: conductivité hydraulique moyenne équivalente des intervalles de test

«Ke: écart type de la conductivité hydraulique de tous les intervalles de test

PKi: conductivité hydraulique moyenne des fractures individuelles

oke: écart type des conductivités hydrauliques des fractures individuelles

 μ_1 : moyenne (log) des ouvertures de joints

 σ_1 : écart type des ouvertures de joints

Types de calculs utilisés dans l'analyse des perméabilités des essais d'eau

	PERMÉABILITÉS DES ESSAIS D'EAU									
FORAGES	MOYENNE (m/s)	ÉCART TYPE (m/s)	ERREUR STANDARD (m/s)							
Individuels	- 14,17 ²	2,35	0,23							
Combinés	- 14,73 ²	2,35	0,23							
Individuels	7,66 ³ 10 ⁻⁶	1,49 10-5	0,15 10-5							
Combinés ¹	6,02 ³ 10 ⁻⁶	2,35 10 ⁻⁵	0,23 10 ⁻⁵							

- N.B.¹ Dans ce cas les données des perméabilités traitées proviennent de tous les forages ayant subi des essais d'eau.
 - ² Moyennes obtenues à partir du logarithme naturel des perméabilités
 - ³ Moyennes obtenues sans transformation

3.2.3.4 Interprétation des résultats des tests d'eau

Afin de faciliter l'interprétation des données des essais d'injection d'eau, un patron de courbes de fréquences, de perméabilités et d'ouvertures des fractures versus profondeur a été créé (annexe C, figures C.1 et C.2). L'analyse des courbes permet de dégager les remarques subséquentes:

- La perméabilité du massif rocheux présente des fluctuations en profondeur dans la quasi-totalité des forages. En moyenne, ces fluctuations se manisfestent par une légère diminution de perméabilité le long des forages excepté 02-84 et 03-84 localisés en amont (annexe H, carte H.1). La réponse de ces derniers forages peut être imputée probablement à leur faible profondeur ou à la perturbation des structures lithologiques du rocher à ces endroits (Beaupré et Nguyen, 1984).
- L'étude de la perméabilité moyenne de chacun des forages (tableau 3.8) et de la localisation de ces derniers (annexe H, carte H.1) permet de supposer éventuellement l'existence de deux zones de perméabilités apparemment distinctes. Une zone (zone 1) vers le nord-est relativement perméable et l'autre (zone 2) vers le sud-ouest relativement imperméable.
- Étant donné que nous avons déjà une information générale sur la distribution spaciale de la perméabilité, d'après la remarque précédente, nous

projetons restreindre cette étude à la zone relativement perméable. Ainsi, l'analyse statistique des perméabilités de cette zone montre que ces perméabilités suivent une distribution log-normale tronquée à gauche et de moyenne $\bar{k}_{Ln} = -14,73$ (ou 4,00 10^{-7} m/s) (figure 3.6). Nous avons préféré travailler sur les donnnées de perméabilités des intervalles d'essais de tous les forages de la zone 1 afin d'éviter la surestimation de la perméabilité moyenne introduite par le traitement des données des perméabilités des forages individuels (tableau 3.9). Cette surestimation de la perméabilité peut être attribuée, en fait, au nombre assez élevé de données de la perméabilité des intervalles d'essais dans les forages de l'année 1974 plutôt qu'à ceux de l'année 1984 (Tableau B.1, Annexe B).

Il convient aussi de noter que les ouvertures efficaces, calculées à partir des débits d'écoulements et des gradients de pressions mesurés pendant les tests d'injection entre les obturateurs, sont assez petites (environ 100 fois) par rapport aux ouvertures de fractures observées par géocaméra. Cette différence est due à l'imprécision de la géocaméra, à la possibilité d'érosion des lèvres des fractures par outils de forage et aux degrés d'interconnection des fractures ainsi qu'aux variations de leurs ouvertures (Gale, 1982a). Figure 3.6

Histogramme de la distribution du logarithme des perméabilités <u>in situ</u> de la zone 1 du Manic 5-P.A.

3.2.3.5 Conclusion

D'après les remarques du paragraphe précédent, le domaine étudié à Manic-5 peut être considéré comme un milieu hétérogène et anisotrope. Cette anisotropie semble avoir une direction prévilégiée qui varie approximativement du nord-est au sud-ouest. A l'exception de cette direction, l'évolution spatiale de cette anisotropie est mal connue. Les perméabilités équivalentes d'un milieu poreux semblent suivre une distribution log-normale tronquée à gauche. Il semble, par ailleurs, que le domaine étudié à Manic-5 peut être subdivisé en deux zones. La zone 1 relativement perméable située vers l'amont du PM 1100 et la zone 2 relativement imperméable située vers l'aval (annexe H, carte H.1). Conformément à cette conclusion et puisque seul le massif rocheux est considéré dans cette étude, il semble raisonnable de tenir compte de cette distinction dans les plans de simulation.

3.2.4 ANALYSE DES DENSITÉS

Rouleau (1984) a utilisé une méthode très simple de calcul de la densité¹ des séries de fractures. Il a supposé que cette densité S_V (figure 3.7), peut être estimée directement par la fréquence², F, des fractures le long

¹ En trois dimensions, la densité (L-¹) d'une série de fractures est définie comme la surface totale des joints divisée par le volume de la roche; en deux dimensions, c'est la longueur totale des joints divisée par la surface de la roche.

² La fréquence d'une série de fractures est le nombre d'intersections de fractures divisé par la longueur de l'intervalle du trou de forage.

Figure 3.7: Bloc diagramme illustrant la densité volumique des plans de joints parallèles (d'après Rouleau, 1984)

des trous de forage. En effet, cette fréquence est égale au nombre moyen d'intersections avec les plans des fissures par unité de longueur de forage (Rouleau, 1984, p. 90), soit, finalement:

$$S_{V} = F = \sum_{i=1}^{M} N_{i} / \sum_{i=1}^{M} L_{i}^{\prime}$$
(3.8)

avec:

$$L_{i}' = L_{R_{i}} \cos \Phi \qquad (3.9)$$

où:

N_i: nombre de fractures dans une série interceptée par le forage i;
 M : nombre de trous de forages;
 L'_i: longueur réelle du trou de forage i;
 L_{R_i}: longueur fictive du forage i;
 Φ_i: angle entre l'axe du forage i et le pôle d'une série de fractures; cet angle est déterminé comme suit:

Soit U_h et V_h la direction et le pendage du trou de sondage et U_f et V_f ceux du pôle moyen d'une série de fractures données (V_f = pendage de la série - 90°). Les cosinus directeurs de l'axe du sondage et du pôle du plan moyen de chaque série sont calculés par la formule générale suivante:

```
p = cos U cos V
q = sin U cos V
r = sin V
```

d'où:

$$\cos \Phi = P_h P_f + q_h q_f + r_h r_f$$
(3.10)

(Rouleau, 1984)

La relation (3.8) suppose que toutes les fractures au sein de chaque série sont subparallèles et interceptées par des forages d'orientation quelconques. Les résutlats obtenus par cette méthode sont résumés dans le tableau 3.10.

La dispersion de ces densités dans chaque série est déterminée en considérant la méthode des données pondérées (Spiegel, 1976), dont le poids est égal à la longueur corrigée L¦ de chaque forage.

Si ζ_i est le nombre de fractures d'une série recoupant le forage i, la densité de fractures observée au niveau de chaque forage est:

Fréquences moyennes des fractures de chaque série dans les zones 1 et 2 du Manic 5-P.A.

Zone	Forage numéro	Série 1 Azimut Pendage	γ	Cos y	L(m)	L'(m)	NF	
1	01-84	236-84	84	0,105	56,67	5,924	23	
	02-84	236-87	85	0,093	23,00	2,150	23	
	03-84	040-87	68	0,376	34,00	12,785	20	
	06-84	236-88	55	0,580	28,00	16,24/	29	
	01-83	220-82	82	0,139	26,6/	3,/12	24	
	02-83	262-72	/2	0,309	/,84	2,423	1	
	03-83	061-88	88	0,035	26,41	0,922	/	
	04-83	211-84	84	0,105	29,59	3,093	8	
	05-83	224-73	72	0,292	32,90	9,619	34	
	06-83	227-73	73	0,292	28,81	8,423	14	
	08-83	240-82	82	0,139	22,46	3,126	6	
	10-83	196-75	75	0,259	7,80	2,019	3	
	5001-74	217-89	83	0,129	103,30	13,300	45	
	5002-74	065-87	55	0,579	100,77	58,340	25	
	5003-74	224-81	88	0,034	107,02	3,651	174	
Σ						145,732	436	SV=2,9918
2	5004-74	049-90	75	0,251	80,92	20,346	57	
	5005-74	053-90	52	0.610	68.46	41,738	32	
	5007-74	204-82	76	0,239	190,50	45,557	23	
	5008-74	032-81	81	0.159	204.22	32, 388	41	
	5011-74	040-77	74	0,274	166,76	45,624	9	
	05-84	084-74	35	0,820	34,81	28,540	19	
Σ						214,193	181	SV=0,8450

 γ : Angle entre l'axe du forage et le pôle moyen d'une série de fractures

L : Longueur réelle d'un forage;

L': Longueur fictive d'un forage;

NF: Nombre total de fractures;

Tableau 3.10 (suite)

Zone	Forage numéro	Série 2 Azimut- Pendage	γ	Cos y	L(m)	L'(m)	NF	
1	01-84	320-79	79	0,191	56,67	10,813	14	
	02-84	306-82	66	0,415	23,00	9,544	8	
	03-84	322-85	69	0,366	34,00	12,433	9	
	06-84	300-83	81	0,160	28,00	4,468	26	
	01-83	306-72	72	0,309	26,67	8,415	16	
	02-83				7,84	7,840	0	
	03-83	142-83	83	0,122	26,41	3,219	8	
	04-83	308-83	82	0,139	29,59	4,118	17	
	05-83	134-82	82	0,139	32,90	4,579	14	
	06-83	313-75	75	0,259	28,81	7,457	13	
	08-83	303-81	81	0,156	22,46	3,514	10	
	10-83				7,80	7,800	0	
	5001-74	323-83	51	0,630	103,30	65,033	26	
	5002-74	310-80	80	0,179	100,77	18,051	38	
	5003-74	318-86	58	0,526	107,02	56,264	24	
2						223,548	223	SV=0,9975
2	5004-74	137-78	71	0,325	80,92	26,345	53	
	5005-74	315-86	87	0,555	68,46	3,763	52	
	5007-74	334-86	85	0,090	190,50	17,055	11	
	5008-74	333-87	58	0,536	204,22	109,554	11	
	5011-74	310-80	73	0,288	166,73	47,972	18	
	05-84	135-86	72	0,302	34,81	10,509	25	
2						215,198	170	SV=0,7900

Tableau 3.10 (suite)

Zone	Forage numéro	Série 3 Azimut- Pendage	γ	Cos y	L(m)	L'(m)	NF	
1	01-84	342-31	31	0,857	56,67	48,576	23	
	02-84	257-30	52	0,619	23,00	14,251	20	
	03-84	248-23	14	0,971	34,00	32,997	24	
	06-84	237-29	13	0,974	28,00	27,261	36	
	01-83	266-41	41	0,755	26,67	20,128	23	
	02-83	267-24	24	0,913	7,84	7,162	7	
	03-83	282-30	30	0,866	26,41	22,870	22	
	04-83	239-37	37	0,799	29,59	23,632	25	
	05-83	247-37	37	0,799	32,90	26,275	19	
	06-83	254-40	40	0,766	28,81	22,070	40	
	08-83	260-37	37	0,799	22,46	17,937	18	
	10-83	322-11	11	0,982	7,80	7,657	4	
	5001-74	233-24	33	0,841	103,30	80,846	45	
	5002-74	240-27	64	0,447	100,77	45,022	45	
	5003-74	258-30	63	0,450	107,02	48,171	65	
Σ						444,855	416	SV=0,9351
2	5004-74	249-34	50	0,646	80,92	52,240	33	
	5005-74	270-33	65	0,424	68,46	29,010	69	
	5007-74	233-28	63	0,449	190,50	86,550	37	
	5008-74	231-26	36	0,813	204,22	165,970	42	
	5011-74	231-23	31	0,860	166,73	143,370	37	
	05-84	211-33	71	0,328	34,81	11,430	9	
Σ.						488,57	227	SV=0,4646

Tableau 3.10 (suite)

Zone	Forage numéro	Série 4 Azimut- Pendage	γ	Cos y	L(m)	L'(m)	NF	
1	01-84	074-41	41	0,755	56,67	42,769	25	
	02-84	022-24	54	0,589	23,00	13,538	4	
	03-84	081-46	81	0,157	34,00	5,327	9	
	06-83	040-33	69	0,359	28,00	10,056	15	
	01-83	061-48	48	0,669	26,67	17,846	3	
	02-83	082-35	35	0,819	7,84	6,422	3	
	03-83	051-47	47	0,682	26,41	18,011	8	
	04-83	045-44	44	0,719	29,59	21,285	25	
	05-83	071-42	42	0,743	32,90	24,449	13	
	06-83	057-44	44	0,719	28,81	20,714	6	
	08-83	033-43	43	0,731	22,46	16,426	15	
	10-83	063-37	37	0,799	7,80	6,229	6	
	5001-74	060-41	68	0,382	103,30	39,456	7	
	5002-74	067-39	19	0,944	100,77	95,178	20	
	5003-74	061-30	32	0,846	107,02	90,490	18	
Σ						428,206	177	SV=0,4133
2	5004-74	072-40	50	0,647	80,92	52,339	19	
	5005-74	027-45	14	0,971	68,46	66,491	8	
	5007-74	080-36	2	0,999	190,50	190,430	18	
	5008-74	051-40	58	0,536	204,22	109,463	24	
	5011-74	090-30	46	0,689	166,73	114,960	34	
	05-84	069-44	2	0,999	34,81	34,779	16	
2						568,462	119	SV=0,2093

$$x_{i} = \frac{\zeta_{i}}{L_{i}'}$$
(3.11)

En supposant que les fréquences f_i des densités x_i sont identiques aux longueurs corrigées L'_i du forage i, la moyenne μ_v (avec $\mu_v = S_v$) et l'écart type σ_v de la densité volumique réelle des fractures d'une série donnée sont donnés par les relations:

$$\mu_{\mathbf{v}} = \sum_{i=1}^{M} \frac{f_i x_i}{N}$$
(3.12)

$$\sigma_{V} = \left[\frac{\sum_{i=1}^{M} x_{i}^{2} f_{i} - \left(\sum_{i=1}^{M} f_{i} x_{i}\right)^{2}}{N (N - 1)} \right]^{1/2}$$
(3.13)

avec:

$$N = \sum_{i=1}^{M} f_i$$
 (3.14)

L'erreur standard sur la densité volumique est:

$$E_{v} = \sigma_{v} / \sqrt{N}$$
 (3.15)

Les résultats issus de ces relations sont fournis dans le tableau 3.11.
Tableau 3.11

Statistiques des densités volumiques des zones 1 et 2 du MANIC 5-P.A.

SÉRIE	ZONE 1			ZONE 2			
	μv	σ _v	ε _v	μ _v	σ _v	Ev	
1	2,9918	7,415	0,61	0,8450	0,716	0,05	
2	0,9975	1,112	0,07	0,7900	1,890	0,13	
3	0,9351	0,367	0,02	0,4646	0,501	0,02	
4	0,4133	0,349	0,02	0,2093	0,114	0,005	

CHAPITRE 4: SIMULATION DES PROPRIÉTÉS HYDRAULIQUES SOUTERRAINES

4.1 Choix de modèles mathématiques de simulation

Le choix est porté sur les modèles NETWORK et NETFLO. Ils ont été développés par Rouleau (1984) dans le cadre d'un programme de recherche concernant le problème d'élimination et de stockage de déchets radioactifs dans les roches cristallines imperméables. Le choix de ces deux modèles est basé sur les critères de sélection suivants:

- Approche stochastique: étant donné la complexité de la nature physique des milieux fissurés, les modèles stochastiques semblent, jusqu'à présent, ceux qui représentent le mieux la réalité des milieux fissurés.
- Approche discontinue: les modèles utilisés tiennent compte de la discontinuité des fractures dans un espace bidimensionnel.
- Géométrie des fissures: c'est un paramètre de grande importance du fait qu'il contrôle considérablement les propriétés de l'écoulement dans un milieu fissuré. À l'exception de la rugosité et de la déformation, ces programmes intègrent toutes les caractéristiques géométriques de chaque série de fractures qui contribuent à l'écoulement. En plus, au lieu des valeurs moyennes des paramètres géométriques des fissures, ces modèles utilisent plutôt leurs distributions statistiques.

- Porosité du milieu: étant donné que notre travail porte sur l'étude de la porosité d'une partie du massif rocheux à Manic-5, notre choix est basé surtout sur le fait que ces modèles ont été conçus également pour donner des informations sur:
 - 1. le volume total des vides (qui donne la porosité totale du milieu);
 - le volume efficace à travers lequel l'écoulement se produit (et qui donne la porosité efficace).

4.2 Description des modèles (Network et Netflo)

Il s'agit, en fait, de deux modèles numériques complémentaires ayant les fonctions suivantes:

4.2.1 FONCTIONS DE NETWORK

Comme données d'entrée, NETWORK a besoin des informations relatives au nombre de séries de fractures, à la densité puis au type et aux paramètres de distribution des longueurs, aux orientations et aux ouvertures de chaque série de fractures. A l'aide de l'approche de Monte-Carlo et en présence de ces données, le modèle NETWORK exécute les séquences suivantes: 1) génération d'un patron de lignes (ou réseau) suivant une distribution pseudo-aléatoire pour les longueurs et les orientations des fractures et aléatoire pour leur centre, (2) le calcul (optionnel) des valeurs d'espacement, (3) la localisation de toutes les intersections efficaces dans le réseau, (4) la génération (optionnelle) d'un fichier de traçage et, finalement, (5) la définition des éléments (segments de lignes entre deux intersections efficaces consécutives) et l'enregistrement des numéros de noeuds qui identifient chaque élément.

4.2.2 FONCTIONS DE NETFLO

En plus des données d'entrée citées plus haut, le programme NETFLO a besoin des données des conditions aux limites et du réseau de lignes générées par NETWORK. Ensuite, les séquences suivantes sont immédiatement exécutées: 1) détermination des conditions aux limites de chaque noeud situé à la limite du domaine, (2) renumérotation de tous les noeuds pour réduire la largeur de bande de la matrice du système des équations à résoudre, (3) résolution des valeurs inconnues des côtes hydrauliques et, (4) calcul du débit et de la vitesse d'écoulement en chaque segment ainsi que le débit total à chaque limite. Les entrées – sorties de ces modèles sont succinctement décrites à l'annexe B.

4.2.3 APPROXIMATIONS DES MODÈLES

Ces deux modèles supposent: (1) une matrice rocheuse imperméable, (2) l'écoulement bidimensionnel à travers les réseaux de fissures ayant des plans parallèles à surfaces lisses, perpendiculaires au plan de simulation, (3) la validité de la loi de Darcy au niveau de chaque fissure, (4) l'écoulement laminaire (régime permanent), (5) les parois de fissures rigides et non déformables et (6) un milieu statistiquement homogène.

4.3 Préparation des données d'entrée

Le nombre de séries et les distributions de longueurs et d'ouvertures de fractures sont déterminés statistiquement au chapitre 3 et peuvent être utilisés directement comme données d'entrée pour les deux modèles. Le reste des données sera complété en considérant deux plans de simulation de forme rectangulaire: un plan vertical et un plan horizontal et cela par référence à l'axe du canal d'amenée orienté de 65⁰ vers l'est. Le plan vertical est pris perpendiculairement à l'axe du canal alors que, dans le plan horizontal, le domaine rectangulaire de simulation a deux de ses côtés parallèles à l'axe du canal.

4.3.1 DONNÉES D'ORIENTATION DES SÉRIES DE FRACTURES

Précédemment, nous avons discuté les méthodes d'analyse des données d'orientation, du nombre de familles de joints existantes, du phénomène du chevauchement et de troncature créé entre ces familles et, enfin, de la tendance centrale des données d'orientation. Dans ce paragraphe, en se référant au travail de Rouleau (1984), nous supposons que l'orientation de chaque série de fractures peut être décomposée en deux variables dépendantes normalement distribuées: <u>direction</u> et <u>pendage</u>. Les valeurs non corrigées des paramètres de cette distribution sont données dans le tableau 4.1.

La détermination des angles d'orientation et des écarts types de chaque famille de joints dans les plans de simulation vertical et horizontal est faite à l'aide de la méthode de représentation stéréographique (Rouleau,

Tableau 4.1

Estimation des paramètres d'une distribution pseudo-normale des orientations de chaque famille de fractures

	D	IRECTION	PENDAGE			
FAMILLE	MOYENNE	ÉCART TYPE*	MOYENNE	ÉCART TYPE*		
1	228	27	88	17		
2	318	24	87	18		
3	254	57	30	14		
4	54	34	40	13		

 Toutes les valeurs des écarts types calculés sont estimées à partir d'une distribution pseudo-normale des directions et pendanges des fractures

1984). Cette méthode consiste à tracer, pour chaque famille de joints, quatre plans (A, B, C et D) situés à un écart type de part et d'autre du plan moyen de la série et ce, par rapport à l'azimut moyen et au pendage moyen (figure 4.1). Chacun de ces quatre plans doit recouper les plans de simulation vertical et horizontal en un point. Dans le plan vertical, l'orientation moyenne de chaque série correspond simplement à l'orientation de l'intersection du plan moyen de chaque série avec la verticale (ex.: 60° pour la série 3, figures 4.1 et 4.2); l'écart type de chacune de ces séries est calculé directement par la moyenne arithmétique des angles absolus de chaque intersection des plans A, B, C et D avec le plan moyen de la famille (ex.: 8 + 17 + 14 + 14 = 53 ÷ 4 = 13,25 pour la série 3). Tandis que dans le plan horizontal, l'orientation moyenne d'une série est observée directement sur la figure 4.1, alors que les écarts types des directions et pendages de fractures sont donnés au tableau 4.1, suivant la convention adoptée pour le programme NETWORK, l'angle d'orientation étant mesuré à partir de l'axe des x dans le sens inverse des aiguilles d'une montre (figures 4.2 et 4.3). Ces données d'orientation doivent être transformées comme l'indiquent respectivement les tableaux 4.2 et 4.3.

4.3.2 DENSITÉS DES SÉRIES DE FRACTURES

À partir de l'équation (3.8) présentée au chapitre 3 concernant le calcul de la densité volumique des fractures, μ_v , Rouleau (1984) a défini la densité superficielle des fractures, δ_s , dans un plan faisant un angle γ avec le plan moyen d'une série, tel que:

Illustration de la variation des orientations des séries de fractures sur l'hémisphère inférieur d'une projection stéréographique

Pôle du plan moyen Axe du canal d'amenée Plan moyen d'une série Plan perpendiculaire au canal d'amenée Plan orienté d'un écart type de part et d'autre du plan moyen d'une série par rapport à sa direction et son pendage

Orientation des séries de fractures dans un plan vertical perpendiculaire à l'axe du canal d'amenée

SÉRIE 4

Orientation des séries de fractures dans un plan horizontal

Tableau 4.2

Estimation des paramètres de la distribution des orientations dans un plan vertical perpendiculaire à l'axe du canal d'amenée orienté de 65° vers l'est

	ANGLE D	D'ORIENTATION			
FAMILLE	MOYENNE	ÉCART TYP			
1	88	8			
2	79	34			
3	30	13			
4	140	95			

N.B.: L'angle d'orientation est mesuré dans le sens inverse des aiguilles d'une montre à partir de l'axe des X

Tableau 4.3

Estimation des paramètres de la distribution des orientations dans un plan horizontal ayant l'axe Y parallèle à l'axe du canal d'amenée orienté de 65° vers l'est

	ANGLE	D'ORIENTATION			
FAMILLE	MOYENNE	ÉCART TYPE			
1	107	27			
2	17	24			
3	81	57			
4	101	34			
4	101	34			

N.B.: L'angle d'orientation est mesuré dans le sens inverse des aiguilles d'une montre à partir de l'axe des X

$$\delta_{s}(\gamma) = \mu_{v} \sin \gamma \qquad (4.1)$$

L'erreur standard dans un tel plan est:

$$E_{STD}(\gamma) = E_{v} \sin \gamma$$
 (4.2)

où:

γ: correspond directement au pendage du plan moyen de chaque série de fractures, dans le cas d'un plan de simulation horizontal. Quand il s'agit d'un plan de simulation vertical, γ correspond à l'angle situé entre l'axe du canal d'amenée et le pôle du plan moyen de chaque série. Les résultats de cette méthode se trouvent dans le tableau 4.4 et sont utilisés comme données d'entrée du programme NETWORK pour chaque zone considérée.

4.3.3 CONDITIONS AUX LIMITES

4.3.3.1 Dans le plan vertical

Le plan rectangulaire général allant du canal d'amenée au réservoir est indiqué à la figure 4.4. Seules les limites 1, 3, 5 et 7 sont considérées. La limite 1 coïncide avec la verticale issue de la rive du réservoir, la limite 3 est confondue avec la surface, la limite 5 correspond au mur du canal et la limite 7 constitue la base du modèle. Les charges aux limites 1 et 5 sont respectivement 45 m (soit 357-312) et 0 m. La charge à la limite 7 est linéairement décroissante. Dans le cas où il est difficile de

Tableau 4.4

γ

Statistiques des densités des séries de fractures dans les plans vertical et horizontal par rapport à l'axe du canal d'amenée

		Ŷ	SIN Y	ZONE 1				ZONE 2			
PLAN	SÉRIE			[m-1]	[m [¥] 1]	δ _s (γ) [m-1]	$E_{\text{STD}(\gamma)}$ $[m^{-1}]$	[m ⁴ 1]	[m⊻ı]	δ _s (γ) [m-1]	Estp(y) [m ⁻]
VERTICAL	1	73	0,9563	2,9918	0,61	2,86	0,59	0,845	0,05	0,81	0,05
	2	18	0,3090	0,9975	0,07	0,31	0,03	0,790	0,13	0,24	0,04
	3	86	0,9876	0,9350	0,02	0,93	0,02	0,465	0,02	0,46	0,02
	4	82	0,9900	0,4133	0,02	0,41	0,02	0,209	0,005	0,21	0,005
	1	88	0,9994	2,9918	0,61	2,99	0,61	0,845	0,05	0,84	0,05
HORIZONTAL	2	87	0,9986	0,9975	0,07	1,00	0,07	0,790	0,13	0,79	0,13
	AL 3	30	0,5000	0,9350	0,02	0,47	0,01	0,465	0,02	0,23	0,01
	4	40	0,6428	0,4133	0,02	0,26	0,01	0,209	0,005	0,13	0,003

: angle (en degrés) entre le plan moyen d'une famille de fractures et le plan du modèle : densité volumique des fractures d'une série [m⁻¹]

μv Ev

erreur standard des μ_v [m⁻¹] densité superficielle de fractures dans un plan vertical (respectivement dans un plan horizontal) faisant un $\delta_{\varsigma}(\gamma)$ angle γ avec le plan moyen d'une famille de fractures $[m^{-1}]$

 $E_{STD}(\gamma)$: erreur standard de la densité par rapport aux deux plans vertical et horizontal

Plan rectangulaire général allant du canal d'amenée au réservoir Manic 5-P.A.

simuler tout le domaine, la réduction peut se faire suivant la figure 4.4. Ainsi, on obtient un nouveau domaine (figure 4.5a) dont les limites 1 et 3 sont parallèles respectivement à la verticale issue du réservoir et à la surface. Les conditions aux limites 5 et 7 restent inchangées, tandis que la charge à la nouvelle limite 1 devient proportionnelle à la charge au barrage (soit, par exemple, 7 m pour une distance de 10 m par rapport au canal). Quant à la limite 3, plusieurs conditions peuvent être envisagées. Dans un premier temps, nous avons considéré une charge constante de 7 m. Cette condition a été vite rejetée puisqu'elle entraîne une chute brusque de charge de la limite 3 à la limite 5. Dans un second temps, une charge décroissante a été essayée. Ainsi, d'après les cinq premières simulations préliminaires présentées au tableau 4.5, on constate que le débit sortant à la limite 3 est de 1,2 fois plus grand que celui qui sont à la limite 5. En transposant ce résultat au domaine réel simulé, on constate que le débit qui tend à monter vers la surface sera de 1.2 fois plus élevé que celui qui est récupéré dans le canal, ce qui n'est pas réaliste. À cause de ce problème et du fait que le modèle NETFLO n'offre pas la possibilité d'inclure une surface libre, nous avons imposé une limite imperméable à la limite 3. Il faut aussi rappeler que cette limite peut être subdivisée en deux limites 3 et 4 ayant chacune une condition différente. Cette option n'a pas été étudiée à cause de sa complication.

4.3.3.2 Dans le plan horizontal

Comme précédemment, quatre limites sont utilisées (figure 4.5b); les limites 1 et 5 sont respectivement parallèles à la rive du réservoir et, au

Conditions aux limites (C.L.) dans: (a) plan vertical; (b) plan horizontal

Tableau 4.5

Débits d'écoulement à différentes limites des cinq premières simulations préliminaires

SIMU-		LIMITE DU PLAN	DU MODÈLE	
TION	1	3	5	7
	5.33E-05	-4.68E-05	-2.10E-05	1.45E-05
1	9.05E-05	-1.05E-04	-1.40E-05	2.81E-05
	1.04E-05	-9.97E-06	-4.05E-06	3.62E-06
	3.13E-05	-2.77E-05	-1.88E-05	1.52E-05
	1.23E-04	-4.90E-05	-2.22E-05	-5.20E-05
2	1.54E-05	-1.14E-05	-2.54E-05	2.14E-05
	1.52E-06	2.05E-07	-2.71E-06	9.85E-07
	9.44E-06	-1.69E-06	-5.09E-06	-2.65E-06
	1.47E-05	9.27E-06	-3.12E-05	7.23E-06
3	3.79E-05	-2.47E-05	-5.72E-06	-7.53E-06
	3.28E-06	-3.43E-06	-1.72E-06	1.87E-06
	6.89E-06	4.84E-07	-1.08E-05	3.45E-06
	6.36E-06	5.44E-06	-3.76E-05	2.58E-05
4	5.89E-06	-2.53E-06	-7.01E-06	3.65E-06
	2.46E-06	-3.13E-07	-1.02E-05	8.09E-06
	4.09E-06	1.11E-06	-2.17E-06	-3.03E-06
	8.33E-06	-1.21E-06	-8.54E-06	1.42E-06
5	1.17E-05	-9.96E-06	-5.03E-05	4.86E-05
	7.13E-06	-5.44E-06	-5.26E-06	3.57E-06
	7.56E-06	-3.99E-05	-2.70E-06	3.50E-05
Σ	4.51E-04	-3.22E-04	-2.87E-04	1.57E-04
MOY.	2.26E-05	-1.61E-05	-1.43E-05	7.87E-06
%	7.42E-01	5.29E-01	4.71E-01	2.58E-01

N.B: Les valeurs negatives indiquent les debits sortant d'une limite

canal d'amenée, ont la même charge que celle du plan vertical. Les limites 3 et 7 sont perpendiculaires à l'axe du canal d'amenée ayant des charges linéaires décroissantes.

4.4 Simulations numériques

La zone 2 étant considérée comme suffisamment imperméable, sa porosité semble donc être suffisamment petite pour qu'une intervention de coulis "grouting" y soit faite. Dans ce qui suit, nous nous contenterons d'étudier uniquement la zone 1.

4.4.1 SIMULATION DANS UN PLAN VERTICAL

L'objectif de cette étude est de simuler les propriétés hydrauliques d'une tranche¹ du massif rocheux allant du canal d'amenée à la rive du réservoir. Malheureusement, étant donné la densité élevée des séries de fractures d'une part, et la limitation de la capacité des calculs et de mémoire de stockage sur le système CDC à 203 K par usager d'autre part, on ne peut pas dépasser un plan de simulation de 10 x 10 m². Comme le modèle NETFLO simule une tranche d'épaisseur de 1 m, le volume simulé est de 10 x 10 x 1 m³.

 1 Tranche de 64 m sur 45 m comprise entre les PM 1040 à 1100.

Tous les paramètres d'entrée ont une marge d'erreurs. Nous allons considérer seulement les paramètres suivants: 1) ouverture de fracture, 2) perméabilité du milieu poreux équivalent issue des données des essais d'eau sur le terrain, 3) densité et 4) longueur de fracture. L'évaluation de l'influence des erreurs de chacun de ces paramètres sur la porosité totale du milieu étudié peut être déterminée par une analyse de sensibilité basée sur un nombre de simulations (réalisations) suivant le schéma général de la figure 4.6. Cinquante-quatre simulations ont été exécutées dans un plan vertical et réparties comme décrit ci-dessous.

4.4.1.1 Influence sur la porosité totale de la perméabilité équivalente des essais d'eau

À cause de l'approche stochastique utilisée par les modèles (méthode de Monte-Carlo), plusieurs simulations sont nécessaires pour chaque cas considéré, pour obtenir une tendance plus significative des résultats de simulations. Dans ce but, nous avons voulu, pour l'ensemble des réalisations du présent travail, nous limiter à huit simulations pour chaque paramètre d'entrée considéré. Dans ce paragraphe, aucune modification n'a été faite sur les paramètres des modèles, à l'exception du "SEED"¹ et des ouvertures moyennes "AAP"². Ces dernières (AAP) varient proportionnellement aux valeurs d'ouvertures moyennes données par géocaméra. Quant aux écarts types

¹ SEED: Valeur initiale qui permet de générer des variables aléatoires, comprise entre 1 et 2147483647.

² AAP : Moyenne du logarithme naturel des ouvertures.

Schéma général de la méthodologie suivie; plan des simulations

-77-

ils demeurent toujours constants. Nous avons considéré, durant l'ensemble des simulations quatre valeurs d'ouvertures différentes (quatre NAAP¹) et quatre types d'échantillonnages d'ouvertures différentes (quatre NAP²). De ce fait, 16 débits drainant le réservoir sont simulés pendant chaque réalisation. Suite à la réduction du plan rectangulaire établi (figure 4.4) par rapport à la charge, les débits simulés sont obtenus en faisant correspondre une charge constante de 7 m à la limite 1 du plan de simulation vertical. Par ailleurs, en considérant une tranche du domaine à simuler d'épaisseur e = 1 m, la perméabilité du milieu équivalent K_s, à partir du débit simulé Q_s, est calculée suivant la formule de Darcy, Q_s = -k_s en $\frac{\partial H}{\partial x}$, soit:

$$k_s = -\frac{Q_s}{e \cdot h \cdot \frac{\partial H}{\partial x}}$$

où:

h : hauteur de la tranche du domaine simulé, [L]; ƏH ___: gradient de charge hydraulique entre la limite 1 et le mur du canal Əx

d'amenée,[L/L].

Les valeurs de porosités simulées (Θ_s) peuvent être obtenues à partir d'un fichier de sortie du programme NETFLO (Annexe A, tableau A.1). Il

¹ NAAP: Nombre de différentes valeurs de AAP à utiliser dans la génération des ouvertures.

² NAP : Nombre de distributions des ouvertures à générer pour chaque valeur de AAP.

suffit donc de calculer le rapport moyen du volume total du réseau de fractures (V_F) et du volume total du bloc de roche (V_T) pour chaque ouverture moyenne (NAAP) considérée, soit:

$$\Theta_{s} = \frac{1}{K} \sum_{i=1}^{K} \frac{(V_{F})_{i}}{V_{T}}$$

avec:

K = NAAP

Chaque simulation comprend ainsi quatre valeurs de porosité simulée (Θ_{s}) . Pour les simulations (ROO1 à ROO8), l'analyse statistique des perméabilités calculées (K_{s}) versus porosités (Θ_{s}) montre une tendance linéaire (figure (4.7) dont la droite de régression croise la droite de $K_{LN} = -14.73$ (moyenne de la distribution log-normale des perméabilités) (tableau 3.6)) en une porosité totale moyenne $\Theta_{s} = -7.38$ (ou 6,24 10⁻⁴). Également, on peut procéder de la même façon avec les ouvertures de fractures à condition que celles-ci soient de même grandeur pour toutes les séries de fractures. D'après le tableau 3.5, l'ouverture moyenne qui convient le mieux aux fractures de toutes les séries est l'ouverture de la série 2. Ainsi, en supposant que toutes les fractures ont les mêmes ouvertures moyennes que celles de la série 2, la meilleure valeur d'ouverture estimée est donnée à la figure 4.8 soit - 9,24 (ou 97 μ). Les graphiques des figures 4.7 et 4.8 constituent le support de comparaison de base des résultats des simulations RO1A à RO40.

Le même raisonnement ci-dessus a été réutilisé sans toutefois considérer la distribution log-normale des perméabilités des essais d'eau et les

Relation perméabilité / porosité totale du milieu: ajustement par rapport à la moyenne d'une distribution log-normale des perméabilités <u>in situ</u> $[K_{LN})$ obs]

Figure 4.8

Relation perméabilité / ouverture des séries de fractures: ajustement par rapport à la moyenne d'une ouverture log-normale des perméabililés in situ $[\kappa_{\rm LN}){\rm obs}\,]$

Relation perméabilité / porosité totale du milieu: ajustement par rapport au logarithme naturel de la moyenne des perméabilités <u>in situ</u> $[k_{obs}]$

simulations correspondantes sont RO1A à RO8A. Les graphiques des perméabilités calculées (K_s) versus porosités (Θ_s) (figure 4.9) et K_s versus ouvertures (AAP) (figure 4.10), montrent une tendance linéaire dont la droite de régression croise celle de la perméabilité observée \bar{K}_{Ln} (ou \bar{K}_{OBS}) en une porosité totale moyenne $\bar{\Theta}_s = -6,51$ (ou 1,49 10⁻³) dans le premier cas et en une moyenne d'ouverture AAP = -8,37 (ou 232 μ) dans le second cas.

En faisant la comparaison de l'ouverture moyenne des fractures données par les essais d'injection d'eau avec les ouvertures moyennes simulées (tableau 4.6), la considération d'une distribution log-normale de la perméabilité fournit des résultats plus acceptables que ceux d'une distribution normale.

4.4.1.2 <u>Sensibilité des longueurs</u>

Afin d'illustrer l'influence de la variation des longueurs de fractures sur la porosité totale du milieu, nous avons opéré de la façon suivante:

Dans un premier temps, nous avons réalisé huit simulations (ROO9 à RO16) dans lesquelles nous avons maintenu constantes les longueurs de fractures à leurs valeurs¹ moyennes initiales plus une erreur standard. Le reste des paramètres est inchangé à l'exception des ouvertures, lesquelles suivent les mêmes variations que celles des simulations ROO1 à ROO8. Dans un second temps, le même raisonnement est appliqué aux simulations RO17 à

¹ Distribution des longueurs de chaque série avec les écarts types constants et non nuls (cf. tableau 3.4).

Relation perméabilité / ouverture des séries de fractures: ajustement, par rapport au logarithme naturel de la moyenne des perméabilités <u>in situ</u> $[k_{obs}]$

Tableau 4.6

Comparaison des statistiques des réalisations ROO1 à ROO8 et RO1A à RO8A

RÉALISATIONS			Θ _s			AAP			
		- K _{obs}	Y	Θ _s	ESTD%	Y	SIMULATIONS	ESSAIS D'EAU	
R001 À	R008	- 14,73 (log)	3,17x + 8,72	- 7,38 (6,24 10 ⁻⁴)	8	3,12x + 14,11	- 9,24 ⁽¹⁾ (97µ)	0.001	
RO1A à	à RO8A	6,02 10 ⁻⁶ (sans log)	2,71x + 6,92	- 6,51 (1,49 10 ⁻³)	23	2,85x + 11,86	- 8,37 (232 μ)	- 9,891 (51μ)	
Kobs: Øs Øs Y AAP:	perméab porosit porosit droite ouvertu	ilité moyenne obs és simulées é moyenne simulée de régression res moyennes	servée <u>in situ</u> e						

¹ Valeur d'ouverture des fractures de la zone 1 obtenue au tableau 3.5

RO24 sauf qu'au lieu d'ajouter une erreur standard nous l'avons soustraite. L'étude des perméabilités calculées (K_s) versus porosités (Θ_s) des simulations RO09 à RO16 et RO17 à RO24 est montrée respectivement dans les figures 4.11 et 4.12.

La superposition des graphiques des figures 4.7, 4.11 et 4.12 est faite à la figure 4.13. La relation qui se dégage des variations des longueurs moyennes n'est pas assez significative.

Si, en moyenne, l'erreur standard sur les longueurs moyennes des séries de fractures est de 7 % (moyenne des erreurs standards, tableau 3.4) l'erreur standard introduite sur la porosité totale du milieu est:

$$E_{std} = \frac{\bar{\Theta}_{smax} - \bar{\Theta}_{smin}}{2}$$

soit 9 % et la meilleure valeur estimée de porosité totale moyenne estimée est:

$$\Theta_{te} = (\overline{\Theta}_{smax} + \overline{\Theta}_{smin}) / 2$$

soit:

$$\Theta_{+\Phi} = -7,37 \text{ (ou } 6,30 \ 10^{-4}\text{)}$$

Relation perméabilité / porosité totale: effet d'une légère augmentation des longueurs (ALE + E_{STD}) sur la porosité totale du milieu

Relation perméabilité / porosité totale: effet d'une légère diminution des longueurs (ALE - E_{std}) sur la porosité totale du milieu

Influence de la variation des longueurs des séries de fractures sur la porosité totale du milieu (superposition des figures 4.9, 4.11 et 4.12)

4.4.1.3 Sensibilité des densités

La même démarche que pour les variations des longueurs a été suivie pour les densités. Il s'agit de maintenir fixes, pour chaque série, les moyennes des densités plus une erreur standard dans les simulations RO25 à RO32. Par contre, l'opération inverse est mise en évidence dans les simulations RO33 à RO40. Les graphiques des perméabilités simulées (K_s) versus porosités (Θ_s) des simulations RO25 à RO32 et RO33 à RO40 sont indiqués respectivement aux figures 4.14 et 4.15 et leur superposition sur le graphique de la figure 4.7 est donnée à la figure 4.16. L'examen des courbes de cette dernière figure montre une augmentation de la porosité totale (diminution de la pente de la droite de régression) avec l'augmentation de la densité.

Si, en moyenne, une erreur $E_{std} = 17 \%$ est commise au niveau des densités des fractures, l'erreur introduite sur la porosité totale du milieu est calculée à partir du graphique de la figure 4.16, et correspond à $E'_i = | \bar{\Theta}_{max} - \bar{\Theta}_{min} | / 2$, soit $E'_i = 16 \%$. En effet, la meilleure valeur estimée de porosité totale moyenne du milieu est:

$$\Theta_{te} = (\overline{\Theta}_{smax} + \overline{\Theta}_{smin}) / 2$$

soit:

$$\Theta_{+0} = -7,42 \text{ (ou } 5,99 \ 10^{-4}\text{)}$$
Tous les résultats que nous venons de décrire sont résumés dans les tableaux 4.7a et 4.7b.

La comparaison des résultats des tableaux 4.7a et 4.7b montre que la porosité totale du milieu est plus sensible à la variation des densités des fractures qu'à celle de leurs longueurs.

4.4.1.4 Influence des variations de longueurs et de densités des séries de fractures sur le rapport porosité efficace et porosité totale

L'utilisation des rapports de porosité efficace et de porosité totale a été faite dans le but d'évaluer les proportions de fractures qui contribuent plus efficacement à l'écoulement dans la zone étudiée, et ce, à l'égard des différents types d'échantillonnages aléatoires évoqués par la méthode de Monte-Carlo. L'influence de la variation des longueurs et des densités des séries de fractures apparaît à la figure 4.17. Dans celle-ci, on peut constater que les proportions de fractures qui contribuent plus efficacement à l'écoulement sont d'autant plus élevées que les longueurs ou les densités des séries de fractures augmentent. Cela a été obtenu en considérant un plan bidimensionnel. Or, en réalité, comme le milieu étudié est tridimensionnel, la remarque précédente serait probablement beaucoup plus significative par rapport aux degrés d'interconnectivité des fractures que par rapport à la plupart du reste des paramètres considérés plus haut.

- 91 -

Tahleau 4.7a

.

٠

Statistiques générales des effets de variation des longueurs des séries de fractures sur les ouvertures et la porosité totale du milieu

LONGUEUR	OUVERTURE					POROSITÉ				
	Y	AAP	E TAP	EIND	ÂÂP	¥	Ĩ,s	E	EIND	ête
ALE + E _{std}	3,23 x + 14,90	- 9,18 (103µ)	7,2			3,18 x + 8,60	- 7,35 (6,43 10-4)	7,3		
ALE	3,16 x + 14,47	- 9,24 (97µ)	7,4	10,3	- 9,21 (100µ)	3,17 x + 8,71	- 7,38 (6,24 10 ⁻⁴)	7,3	9	- 7,37 (6,30 10-4)
ALE - E _{std}	3,16 x + 14,31	- 9,20 (101µ)	7,4			3,10 x + 8,05	- 7,35 (6,43 10-4)	7,5		

Tableau 4.7b

Statistiques générales des effets de variation de densités des séries de fractures sur les ouvertures et la porosité totale du milieu

DENSITÉ	OUVERTURE					POROSITÉ				
	Ŷ	AAP	EAAP (%)	EIND	ААР	Y	Θ _S	^E (%)	E NP	^Θ ΤΕ
δ_{s} + E _{STD}	2,98 x + 13,03	- 9,32 (90µ)	7,8			3,06 x + 7,72	- 7,33 (6,56 10-4)	7,6		
δ _s	3,16 x + 14,47	- 9,24 (97µ)	7,4	13,1	- 9,26 (95μ)	3,17 x + 8,71	- 7,38 (6,24 10 ⁻⁴)	7,3	16,4	- 7,42 (5,99 10 ⁻⁴)
$\delta_{s} - E_{STD}$	3,18 x + 14,52	- 9,20 (101µ)	7,3			3,19 x + 9,23	- 7,51 (5,48 10 ⁻⁴)	7,3		

AAP : ouverture moyenne

 E_{AAP} : erreur standard sur AAP AAP : meilleure estimé de AAP

AAP : mellieure estime de AAP E_{IND} : erreur introduite par les mesures de perméabilité <u>in situ</u> et de longueur (ou densité) sur AAP Θ_s : porosité totale moyenne E_{Θ} : erreur standrad sur Θ_s Θ_TE : meilleur estimé de Θ_s E_{IND} : erreur induite parles mesures de perméabilité et de longueur (ou densité) sur Θ_{TE} Y: équation de la droite de régression W unité de mesure (misence)

μ : unité de mesure (microns)

Relation perméabilité / porosité totale: effet d'une légère augmentation des densités (δs + $E_{\mbox{std}}$) sur la porosité totale du milieu

Relation perméabilité / porosité totale: effet d'une légère diminution des densités (δs - $E_{std})$ sur la porosité totale du milieu

Influence de la variation des densités des séries de fractures sur la porosité totale du milieu (superposition des figures 4.9, 4.14 et 4.15)

4.4.2 SIMULATIONS DANS UN PLAN HORIZONTAL

En ce qui concerne l'influence sur la porosité de la perméabilité équivalente <u>in situ</u>, une démarche semblable à celle qui a été appliquée dans le plan vertical (ROO1 à ROO8) est entreprise ici (RO47 à RO54). Il s'agit toujours de faire varier les ouvertures de fractures de façon à chercher la meilleure valeur estimée de porosité (ouverture) qui ajuste le mieux la perméabilité moyenne mesurée <u>in situ</u>. Les graphiques illustrant cette situation sont donnés aux figures 4.18 et 4.19 et donnent une meilleure estimation de porosité totale Θ_s de l'ordre de - 7,48 (ou 5,64 10⁻⁴) et d'ouverture moyenne AAP de l'ordre de - 9,34 (ou 88 μ).

4.4.3 INFLUENCE DES CONDITIONS AUX LIMITES SUR LA POROSITÉ TOTALE

La modélisation des phénomènes naturels est, dans la majorité des cas, très difficile à maîtriser; en effet, elle ne peut être qu'approximative. D'après les conditions aux limites considérées dans le paragraphe 4.3, la condition imposée à la limite 3 et celle de la charge décroissante le long de la limite 7 (plan vertical) ou 3 et 7 (plan horizontal) peuvent introduire un biais dans l'application de la loi de Darcy au moment de l'évaluation des perméabilités K_s (Rouleau, 1985, communication personnelle). Cette erreur peut être quantifiée de la façon suivante.

Relation entre les rapports porosité efficace / porosité totale et la variation des longueurs (a) et des densités (b) des séries de fractures

Relation perméabilité / porosité totale dans le plan horizontal

Figure 4.19

Relation perméabilité / ouverture des séries de fractures dans le plan horizontal

- 100 -

Il s'agit d'abord de calculer les rapports des débits de la limite 7 et des débits totaux (Q_7 / Q_T) dans le plan vertical et des débits des limites 3 et 7 et des débits totaux ($Q_3 + Q_7 / Q_T$) dans le plan horizontal de tous les NAP de chaque simulation. Ensuite, on vérifiera si les moyennes de ces rapports sont nulles car, l'idéal pour l'application de la loi de Darcy, est d'avoir des moyennes nulles. Malheureusement, ce n'est pas le cas, puisque, dans le plan vertical, toutes les moyennes de ces rapports sont positives et comprises entre 0,60 et 0,30 alors qu'une moyenne négative de l'ordre de - 1,20 est constatée dans le plan horizontal (annexe F). Par ailleurs, l'étude des effets des conditions aux limites sur la porosité totale est faite à l'annexe E et les relations qui en découlent sont illustrées aux figures 4.20 et 4.21 (voir aussi: tableaux E1 et E2, annexe E). On peut donc conclure de ces résultats que les conditions aux limites utilisées entraînent une sous-estimation de la porosité totale du milieu dans un plan vertical à cause de l'introduction des erreurs par excès sur les débits de la limite 5 et, par conséquent, sur les perméabilités simulées K_s, tandis que le contraire est constaté dans le plan horizontal (tableau 4.8).

4.4.4 DISTRIBUTION DES VITESSES D'ÉCOULEMENT

La variation spatiale des vitesses d'écoulement dans un milieu fissuré ou non (directions et amplitudes des vitesses) influence considérablement l'évolution des nappes phréatiques, le transport et, finalement, le taux de migration des contaminants dans les eaux souterraines. Un certain nombre d'informations concernant la position de chaque élément du réseau de joints étudié et la vitesse de l'eau à travers ces éléments sont fournies par les

Influence de la variation des longueurs des séries de fractures et du biais des conditions aux limites sur la porosité totale du milieu (superposition des figures E.1, E.3 et E.4)

Influence de la variation des longueurs des séries de fractures et du biais des conditions aux limites sur la porosité totale du milieu (superposition des figures E.1, E.5 et E.6)

Tableau 4.8

Valeurs probables de porosités totales moyennes dans chacun des cas considérés sous l'influence ou non du biais de C.L.

CORRECTION DE BIAIS DE (C.L.)	PI	PLAN HORIZONTAL		
	R001 à R008	R009 à R024	R025 à R040	R048 à R054
SANS	- 7,38 (6,24 10-4) ⁽¹⁾	- 7,37 (6,30 10-4)	- 7,42 (5,99 10-4)	- 7,48 (5,64 10-4)
AVEC	- 7,46 (5,76 10 ⁻⁴)	- 7,41 (6,05 10 ⁻⁴)	- 7,49 (5,58 10 ⁻⁴)	-

(1) Les valeurs entre parenthèses correspondent aux porosités totales moyennes estimées.

-

programmes NETWORK et NETFLO. Par contre, dans la présente étude, seules les vitesses des éléments recoupant la limite 5 des plans de simulations vertical (RO41 à RO46) et horizontal (RO55 à RO58) sont considérées. Les meilleures estimations des ouvertures ajustant la perméabilité des essais <u>in</u> <u>situ</u> sont conservées pour chaque série (- 9,24 ou 97 μ dans le plan vertical et - 9,34 ou 88 μ dans le plan horizontal). Les distributions des vitesses sont montrées aux figures 4.22a et 4.22b. Ces distributions paraissent suivre une loi log-normale et laissent voir une moyenne de vitesse plus grande dans le plan vertical (3,18 10⁻³ m/s) que dans le plan horizontal (2,70 10⁻³ m/s). Cette différence peut s'expliquer probablement par les effets suivants: a) conditions imposées aux limites 3 et 7, b) degrés d'interconnectivité (figures 4.23a et 4.23b), c) différence des valeurs moyennes d'ouvertures ou d) combinaisons de tous ces cas.

4.4.5 DISCUSSION DES RÉSULTATS

Il a été constaté, durant cette étude, que plusieurs erreurs peuvent affecter l'estimation des paramètres hydrauliques d'un milieu fissuré. À partir des résultats de l'analyse de sensibilité, on peut dresser le tableau 4.9 et tracer la figure 4.24 résumant l'influence de l'incertitude des différents paramètres d'entrée¹ sur la porosité totale simulée. L'allure des courbes de la figure 4.24 laisse voir que la porosité totale est plus ou

- 105 -

Paramètres d'entrée considérés séparemment (ex. longueurs, densités de fractures et perméabilité in situ).

Figure 4.22

Distribution des vitesses des éléments interceptant le mur du canal d'amenée dans: (a) plan vertical et (b) plan horizontal

Exemple du réseau de fractures simulées dans le plan vertical

- 108 -

Figure 4.23b

Exemple du réseau de fractures simulées dans le plan horizontal

moins sensible à la variation de chacun des paramètres d'entrée. En effet, la porosité totale est d'autant plus grande que la densité des fractures ou la perméabilité in situ sont élevées. Cependant, pour les longueurs de fractures, la considération d'une variation de 7% n'a pas d'effet remarquable et significatif sur la porosité totale. Afin de pouvoir quantifier cet effet, nous avons ajouté dix autres simulations: simulations R059 à R063 dans lesquelles une erreur standard de 22% est ajoutée aux longueurs de fractures et simulations RO64 et RO68 dans lesquelles la même quantité est soustraite (cf. figures G.1, G.2 et G.3: Annexe G). Sur le graphique de la figure 4.24, on remarque qu'une diminution des longueurs de fractures de 22 % entraîne une légère diminution de la porosité totale par rapport à ce qu'elle était dans le cas précédent (cas de 7%), tandis qu'une augmentation des longueurs de 22% est suivie plutôt d'une diminution assez grande de la porosité totale. Il faut noter que les fractures, dans ce cas, se comportent comme un réseau élastique dont l'allongement ou le raccourcissement entraîne respectivement la diminution ou l'augmentation des ouvertures (porosité) de fractures. D'une autre manière, en présence de fractures plus longues, la connectivité entre les fractures des différentes séries devient plus élevée et la proportion de fractures qui contribuent à l'écoulement devient importante. Par conséquent, le système de fractures simulées a besoin d'ouvertures plus petites (respectivement de porosité plus faible) pour simuler les conditions hydrauliques naturelles observées (même conductivité hydraulique in situ, même perte de charge, même débit de fuite vers le canal).

Figure 4.24

Effets de l'incertitude des différents paramètres d'entrée sur la porosité totale

Par ailleurs, d'après une étude faite par Snow (1968a) sur les données des essais hydrauliques en regard d'un ensemble de sites de barrages et de tunnels, l'estimation de la porosité totale du milieu peut être utilisée pour évaluer le volume¹ total de coulis d'imprégnation d'un site. Snow a indiqué, en plus, qu'une bonne connaissance des dimensions des joints et de leurs degrés d'interconnectivité peut nous renseigner aussi sur la qualité et la nature du coulis à utiliser dans les opérations d'injections.

Il faut rappeler que le même raisonnement peut être applicable à la zone 1 du site du barrage Daniel-Johnson une fois obtenue la meilleure estimation de la porosité totale. Dans ce cas, la gamme des valeurs probables de porosité totale moyenne, mentionnée au tableau 4.8, peut servir à l'évaluation du volume de coulis d'injection cherché.

Volume de coulis = volume des vides = porosité totale x volume de la roche.

CHAPITRE 5: CONCLUSIONS ET RECOMMANDATIONS

La considération des résultats précédents nous permet de dégager les conclusions et les recommandations suivantes:

- La fracturation du rocher du Manic-5 P.A. est composée de quatre familles de fractures partiellement dispersées: deux familles subverticales, une famille subhorizontale et une famille intermédiaire, inclinée de 40 degrés vers le nord-ouest.
- 2. L'analyse des perméabilités <u>in situ</u> fait ressortir l'existence de deux zones quasi distinctes dans la région étudiée à Manic 5: une zone relativement perméable, sujet de nos simulations, située à l'amont du PM = 1100 et une autre zone relativement imperméable, située vers l'aval.
- 3. La plupart des paramètres des modèles NETWORK et NETFLO (longueurs, densités, conditions aux limites, etc.) et de perméabilités <u>in situ</u> sont connus avec certaines précisions. En effet, l'étude de l'influence des incertitudes des paramètres sur la porosité totale a permis de dégager les effets suivants:
 - a) l'utilisation d'une distribution log-normale des perméabilités permet d'obtenir des résultats plus réalistes tant sur la porosité totale du milieu (ouverture également) que l'utilisation d'une distribution normale;

- b) la porosité totale du milieu est très sensible à la variation des densités de fractures. Quant à la variation des longueurs de fractures, le milieu se comporte comme un réseau élastique ayant une porosité faible lorsqu'il est dilaté et une porosité élevée lorsqu'il est comprimé;
- c) la proportion des fractures qui contribuent le plus efficacement à l'écoulement est d'autant plus grande que les densités et/ou les longueurs des séries de fractures sont élevées. Par conséquent, dans ce cas, la substitution de la notion du milieu fissuré à celle du milieu poreux équivalent est beaucoup plus significative;
- d) les vitesses semblent être distribuées log-normalement dans les deux plans de simulation avec, toutefois, une moyenne plus grande dans le plan vertical.
- 4. Il nous semble que l'évaluation des propriétés hydrauliques par les modèles¹ utilisés, à partir des données des essais d'injection d'eau, donne des valeurs surestimées du fait que le régime permanent n'a pas été souvent atteint. Dans le but d'obtenir une meilleure estimation des propriétés hydrauliques d'un site, nous proposons aux responsables d'Hydro-Québec d'allonger un peu la durée de chaque test d'injection,

¹ Les propriétés hydrauliques fournies par les modèles NETWORK et NETFLO sont ajustées par la perméabilité moyenne in situ

cela, surtout pendant la troisième phase d'injection d'eau dans la cavité d'essai afin qu'un régime permanent puisse s'établir.

- 5. Il apparaît également que la région de Manic-5 P.A. constitue un milieu fortement anisotrope dont les directions principales d'anisotropie restent à déterminer. Une étude de terrain, à ce sujet, s'avère nécessaire dans le but d'étudier les voies principales d'écoulement et la variation spatiale des vitesses, tout en tenant compte de l'alternance des couches de gneiss granitiques et mafiques.
- 6. Il sera aussi intéressant d'étudier l'influence de la fluctuation du niveau d'eau au réservoir sur les propriétés hydrauliques du milieu puis de voir enfin l'influence de l'effet d'échelle, en particulier, sur la porosité totale du milieu.

- 117 -

BIBLIOGRAPHIE

ABRAMOWITZ, M. et I.A. STEGUM (1964) Handbook of Mathematical Functions with Formulas, Graphs and Mathematical tables. Dover Publications Inc., New-York, 1046 p. APPEL, C.A. et J.D. BREDEHOEFT (1976) Status of Ground-Water Modeling in the U.S. Geological Survey, Geological Survey Circular 737, 9 p. BAKER, W.J. (1955) Flow in Fissured Formations. Dans: Proc. of the Fourth World Petroleum Congress, Sect. II/E., Carlo Colom. publ.: 379-393, Rome. BEAR, J. (1972) Dynamics of Fluids in Porous Media, American Elsevier Publ. Co., New-York, 764 p. BEAUPRE, M. et D. NGUYEN (1984) Rapport d'investigations géologiques et géotechniques (1983), relativement à la stabilité du mur gauche du canal d'amenée entre les PM 1040 et 1080 (MANIC 5-P.A.), Hydro-Québec, Montréal, volumes 1 et 2, no G.G.2017/2743-621-896-15. BERTRAND, L., BEUCHER, H., CREUTIN, D., FEUGA, B., LANDRY, J. et D. THIERRY (1982)Les milieux discontinus en hydrogéologie; essai de détermination régionale du tenseur de perméabilité du "Milieu Poreux Equivalent", Colloque National, Orléans, pp. 95-120. BEUCHER, H. et G. DE MARSILY (1984) Approche statistique de la détermination des perméabilités d'un massif fracturé, LHM /RD/16, École des Mines de Paris, C.I.G. 108 p. BIANCHI, L. et D.T. SNOW (1968) Permeability of Cristalline Rock Interpreted from Measured Orientations and Apertures of Fractures, Annals of Arid Zone 8(2): 231-245. CASTILLO, E., KRISEK, R.J. et G.M. KARADI (1972) Comparison of Dispersion Characteristics in Fissured Rock, paper presented at the 2th symp. on Fundamentals of Transport Phenomena in Porous Media, Int. Ass. of Hydrol. Res. Int. Soc. of Soil Sci., Guelph, Ont., pp. 778-797. CASWELL, W.B.(1979) Maine's Ground-Water Situation, Ground-Water, 17(3): 235-243.

COMTOIS. N. (1974) Rapport géologique, Manic-5 P.A., campagne 1974, géologie et relevés de géocaméra, section B (Centrale - Galerie de fuite), Section C (Prise d'eau - Galerie d'amenée amont et aval), Hydro-Québec, Montréal, 2 (2743 - 648 - 895/39)COMTOIS, N. (1974) Rapport géologique, Manic-5.P.A., campagne 1974, section D (cartographie du rocher: Rive droite), section E (description des sondages et essais d'eau sous pression), Hydro-Québec, Montréal, 3 (2743-648-895/39). DE MARSILY, G. (1985) Flow and transport in fractured rocks connectivity and scale effect. IAH International Symp. on the hydrogeology of rocks low permeability, Tucson, U.S.A, p. 1-9. DE MARSILY, G. (1972) Calculs en géologie. Dans: Traité d'informatique géologique, par Laffite, P. (1972), ouvrage collectif, éditeurs Masson et Cie, pp. 239 -305. FEUGA, B. (1981) Détermination des directions principales et de l'anisotropie de perméabilité d'un milieu rocheux fracturé à l'aide de levés de fracturation -Approche théorique et premières applications; Rapport du B.R.G.M. 81 SGN497GEG, 23 p. FRANCIS, R.M. (1981) Hydrogeological properties of a fractured porous aquifer, Winter River Basin, Prince Edward Island. Thèse de maîtrise, University of Waterloo, Ontario, 154 p. FRANCIS, R.M., GALE, J.E. et L.C. ATKINSON (1984) Characterization of aquifer zones in a fractured porous media; International Ground-Water Symposium, Montréal, 1: 33-43. FYFE, W.S., PRICE, N.J. et A.A. THOMPSON (1978) Fluids in the earth's crust. Elsevier, pp. 253-273. GALE, J.E. (1977) A numerical field and laboratory study of flow in rocks with deformable fractures. Fisheries and Environment Canada, p. 143. GALE, J.E. (1980) Field course on fractured rock hydrogeology. Chapter 3, pp. 37-50. GALE, J.E. (1982a) Assessing the permeability characteristics of fractured rock. Geological Society of America, special paper 189, Univ. of Waterloo, Ontario, pp. 163-181.

GALE, J.E. (1982c) The effects of fracture type (induced versus natural) on the stressfracture closure-fracture permeability relationships, 23rd U.S. Rock Mecanics Symp., Berkeley, Cal., pp. 290-298. GALE, J.E. (1984) Changes in fracture permeability as a function of sample size, fracture type and stress history. International Ground-Water Symposium, Montréal, 1: 44-53. GALE, J.E. et K.G. RAVEN (1980) Effects of sample size on the stress-permeability relationships for natural fractures; Law. Berk. Lab. technical report, 112 p. GALE, J.E. et E.J. REARDON (1984) Effects of ground-water geochemistry on the permeability of grouted fracture, Can. Geothec. J., 21: 8-20. GALE, J.E. et P.A. WITHERSPOON (1979) An approach to the fracture hydrology at Stripa: preliminary results. Lawrence Berkeley Lab., rep. LBL-7079, SAC-15. GRISAK, G.E. et J.A. CHERRY (1975) Hydrologic charasteristics and response of fractured till and clay confining a shallow aquifer, Can. Geotech. J., 12(1): 23-43. GRISAK, G.E., PICKENS, J.F. et J.A. CHERRY (1980) Solute transport through fractured media. 2. Column study of fractured till, Water Res. Res., 16(4): 731-739. GRUMICH, J. (1985) Communication personnelle. Hydro-Québec, service Géologie, Montréal. GUVANASEN, V. (1984) Flow simulation in a fractured rock mass, International ground-water Symposium, Montréal, pp. 403-412. HUITT, J.L. (1956) Fluid flow in simulated fractures. AIHE Journal, 2(2): 259-264. IWAI, K. (1976) Fundamental studies of fluid flow through a single fracture. Thèse de doctorat, Univ. of California, Berkeley, Calif., 208 p. KIRALY, L. (1971) Ground-water flow in heterogeneous, anisotropic fractured media: A simple two-dimensional electric analog. Geological Institute, Neuchatel Journal of Hydrology, 12: 255-261. KRIZEK, R.J., CASTILLO, E. et G.M. KARADI (1973) Theoretical study of dispersion in fractured rock aquifer, Journ. of Geoph. Research, 78(3): 558-573.

KRIZEK, R.J., KARADI, G.M. et E. SOCIAS (1972) Dispersion of contaminant in fissured rock. Paper presented at the Symp. on percolation through fissured rock. Ins. of Soc. Rock Mech., Stuttgart W. Germany, p. T3 c1-c15. LATTMAN, L.H. et R.R. PARIZEK (1964) Relationship between fractured traces and the occurrence of groundwater in carbonate rocks. Journal of Hydrology, 2: 73-91. LAWLESS, J.F. (1982) Statistical models and methods for lifetime data. Univ. of Waterloo, 580 p. LE CHASSEUR, P. (1980) Normes et directives, Géocaméra - Analyse des données -, Hydro-Québec, Montréal, no N.D.G.G. 2229, 46 p. LONG, J.C.S., REMER, J.S., WILSON, C.R. et P.A. Witherspoon (1982) Porous media equivalents for networks of discontinuous fractures. Water Resources Res., 18(3): 645-658. LOUIS, C. (1969) A study of ground-water flow in jointed rock and its influence on the stability of rock masses. Imperial College Sci. Technol., Rock Mechanics Research Report no. 10, 90 p. MAHTAB, M.A., BOLSTAD, D.D., ALLDREGE, J.R. et R.J. SHANLEY, (1972) Analysis of fracture orientations for input to structural models of discontinuous rock. Denver Mining Research Center, Denver, Colo., R.I. 7669, 76 p. MAINI, Y.N.T. (1971) In situ hydraulic parameters in jointed rock. Their Measurement and Interpretation. Thèse de doctorat, Imperial College of London, 324 p. MERCER, J.W. and C. R. FAUST (1981) Groud-water modeling. National Water Will Association, 60 p. MOENCH, A.F. (1984) Double-porosiy models for a fissured groundwater reservoir with fracture skin. Water Resources Res., 20(7): 831-846. NEUZIL, C.E. et J.V. TRACY (1981) Flow through fractures. Water Resources Res., 17(1): 191-199. NGUYEN, D., BEAUPRÉ, M. et A. WHALEN (1984) Rapport de synthèse, revue de la conception du canal d'amenée à Manic 5-P.A. - Investigations géologiques et géotechniques complémentaires (1984), Hydro-Québec, Montréal, 1(2743-621-896/09).

PARSONS, M.L. (1972)

Determination of hydrogeological properties of fissured rocks. Proc. 24th Geol. congress, Mtr. section II, Hydrogeology, pp. 89-99.

RIBSTEIN-COUDRAIN, A. (1983)

Contribution à l'étude des massifs rocheux fissurés, transferts de fluide, de chaleur et de matière dissoute associées. Thèse de doctorat en ingénierie, E.N.S.M.P. et U.P.M.C., Paris VI, 184 p.

RONDOT, J. (1985)

Communication personnelle. Ministère de l'Énergie et des Ressources, division de géologie, Québec.

ROULEAU, A. (1984)

Statistical characterisation and numerical simulation of a fracture system: Application to ground-water flow in the stripa granite. Thèse de doctorat, Dept. of Earth Sciences, University of Waterloo, 416 p.

ROULEAU, A. and J.E. GALE (1984)

Statiscal characterization and numerical simulation of fracture system for hydrogeological purposes. Congrès intern. de l'Assoc. intern. des hydrogéologues, sur l'utilisation des eaux souterraines et l'hydrogéologie des contaminants, vol. 1, Montréal, pp. 188-196.

SCHWARTZ, F.W., SMITH, L. et A.S. CROWE (1983)

A stochastic analysis of macroscopic dispersion in fractured media, Water Resources Res., <u>19(5): 1253-1265</u>.

SHANLEY, R.J. et M.A. MAHTAB (1975)

FRACTAN : A computer code for analysis of clusters defined on the unit hemisphere. Denver Mining Research Center, Denver, Colo., IC 8671, 49 p.

SHARP, J.C. (1970)

Fluid flow through fissured media. Thèse de doctorat, Imperial College of Science and Technology, Univ. of London, 181 p.

SHARP, J.C. et Y.N.T. MAINI (1972)

Fundamental considerations on hydraulic characteristics of joints in rock. Proc. Symp. on Percolation through fissured rock, Int. Soc. for Rock Mecanics Stuttgartt, pp. T1-F 1 à 15.

SNOW, D.T. (1965)

A parallel plate model of fractured permeable media. Thèse de doctorat, Univ. of California, Berkeley, 331 p.

SNOW, D.T. (1968)

Fracture deformation and changes of permeability and storage upon changes of fluid pressure. Quarterly of the Colorado School of Mines, 63(1): 201-244.

SNOW, D.T. (1968a) Rock fracture spacings, openings and porosities. Jour. Soil Mech. and Found. Div. Proc., Am. Soc. Civil Engineers, 94(1): 73-91. SNOW, D.T. (1969) Anisotropic permeability of fractured media. Water Resources Res., Colorado School of Mines, 5(6): 1273-1289. SNOW, D.T. (1970) The frequency and apertures of fractures in Rock. Int. J. Rock Mechanics Sc., 7: 23-40. SPIEGEL, M.R. (1976) Théorie et application de la statistique, série Schaum, pp. 43-88. SUMMERS, W.K. (1972) Specific capacities of wells in crystalline rocks. Ground-Water, 10(6): 37-47. TERZAGHI, R.D. (1965) Sources of error in joint surveys. Geotechnique, 15: 287-304. VIEIRA, W.S. (1978) Manic 5 - Puissance additionnelle, investigations géologiques supplémentaires, 1978, Montréal, Hydro-Québec, 1(2743-648-895/39). VIEIRA, W.S. (1979) Manic 5 - Puissance additionnelle, investigations géologiques, 1979, Montréal, Hydro-Québec, 1(2743-648-810/09-05). WILKE, S., GUYON, E. et G. DE MARSILY (1985) Water penetration through fractured rocks: Test of a tridimensionnal percolation description. Journal of the Intern. Assoc. for Mathematical Geology, pp. 1-23. WILSON, C.R. et P.A. Witherspoon (1970) An investigation of laminar flow in fractured porous rocks. Dept. of Civil Engineering, publication 70-6, Univ. of California, Berkeley, 178 p. WILSON, C.R., WITHERSPOON, P.A., LONG, J.C.S., GALBRAITH, R.M., DUBOIS, A.O. et M.J. Mc PHERSON (1983) Large-scale hydraulics conductivity measurements in fractured granite. Int. J. Rock Mech. Min. Sc. and Geomech. Abstr., 20(6): 269-276. WITHERSPOON, P.A., WANG, J.S.Y., IWAI, K. et J.E. GALE (1980) Validity of cubic law for fluid flow in a deformable rock fracture.

Water Resources Res., 16(6): 1016-1024.

ZEIGLER, T.W. (1976)

Determination of rock mass permeability. U.S. Army Engineer Waterways Experiment Station Soils and Pavements Laboratory, Vicksburg, Miss.(F/G 8/7), NTIS AD/A-021 192.

ANNEXE A : ANALYSES DE QUELQUES TRAVAUX ANTÉRIEURS

A.1 Techniques de modélisation

Dans le but de quantifier le comportement de l'écoulement souterrain des fluides dans les milieux fissurés, la modélisation de ces phénomènes est rendue possible grâce aux études élaborées en fonction des trois étapes suivantes.

A.1.1 ÉTUDES SUR LE TERRAIN

L'étude systématique du milieu constitue une étape de reconnaissance. C'est la première étape. Elle permet de déterminer les relations de causes à effets qui génèrent la réalité du terrain. Il s'agit de savoir comment se comporte le système physique vis-à-vis les phases liquides qui le parcourent. À ces fins, plusieurs méthodes sont utilisées, telles la cartographie de surface et des excavations, la géophysique, l'étude des forages et des carottes de sondages ainsi que les essais d'eau (injection ou pompage).

A.1.2 ÉTUDES EN LABORATOIRE

C'est l'étape au cours de laquelle, par exemple, on va soumettre aux essais sous pression (essais d'injection d'eau et/ou essais de contraintes effectives), soit des échantillons collectés sur le terrain, soit des échantillons synthétiques. Ces essais ont pour but d'évaluer, d'une part les propriétés physiques ponctuelles (porosité, etc.) et hydrauliques
(perméabilité, vitesse, transfert de masse, etc.) de la roche, et en particulier des fractures, et, d'autre part, les effets des forces de compression et de dilatation, des différents processus naturels ou non, sur la géométrie (ouvertures, etc.) des fractures et, par conséquent, sur leurs comportements hydrauliques.

A.1.3 ÉTUDES THÉORIQUES

C'est l'étape durant laquelle les supports mathématiques de base des modèles sont créés. À ce niveau, tous les termes physiques du système sont convertis en leurs équivalents mathématiques. Ainsi, trois types de modèles mathématiques peuvent être distingués (De Marsily, 1972; Mercer et Faust, 1981): les modèles déterministes, les modèles stochastiques ou une combinaison des deux. Puisque les milieux fissurés sont des systèmes hétérogènes et anisotropes complexes, leurs modélisations mathématiques ne sont souvent possibles qu'après plusieurs approximations¹ (Moench, 1984). Par ailleurs, suivant l'échelle du problème et la fiabilité des données expérimentales obtenues sur le terrain, le choix d'une approche d'étude performante peut être effectué (Parsons, 1972).

Les trois étapes précédentes ont suffisamment été étudiées en ce qui concerne des échelles locales (quelques dizaines de mètres). Malgré quelques tentatives assez récentes (Schwartz <u>et al.</u>, 1983; Rouleau, 1984), il

¹ Au nombre de ces approximations, mentionnons les suivantes: matrice rocheuse imperméable, analogie de fractures avec les plans parallèles, régime permanent, etc.

reste encore des lacunes dans l'intégration de ces données à l'écoulement régional.

A.2 Types de méthodes de simulations des eaux souterraines

Plusieurs modèles ont été développés dans la plupart des domaines de l'hydrogéologie. Ainsi, Appel et Bredehoeft (1976) ont distingué sept types de modèles qui traitent de l'écoulement de fluides souterrains dans une zone saturée ou partiellement saturée et de la déformation des aquifères sous l'effet d'une forte exploitation. Les autres types forment une simple combinaison de ces deux modèles en tenant compte d'autres aspects économiques, hydrologiques et physico-chimiques du milieu. Ensuite, Mercer et Faust (1981), ont repris cette classification et regroupé ces modèles en quatre principaux types permettant des applications différentes.

- Des modèles d'écoulements souterrains s'intéressent, d'une part, aux problèmes d'approvisionnement en eau, et, d'autre part, aux comportements et à l'évolution des nappes dans l'espace et dans le temps. Ces modèles sont décrits par des équations habituellement traduites en termes de charges hydrauliques, dérivées généralement de la fameuse loi de Darcy.
- Des modèles de transferts en solution facilitent l'étude des problèmes de la qualité des eaux souterraines en rapport avec les concentrations en éléments chimiques et la propagation de ces éléments dans le milieu.

Snow (1965) et Parsons (1972) ont essayé de développer des modèles au moyen d'une approche statistique (approche de Monte Carlo) pour quantifier les propriétés hydrogéologiques des milieux fissurés. Le modèle de Kiraly (1971) est basé sur une analogie électrique simple pour simuler l'écoulement souterrain dans un milieu hétérogène et anisotrope.

A.3 Ecoulement dans un réseau de fractures

A.3.1 ÉQUATIONS DE PERMÉABILITÉ ET D'ÉCOULEMENT

Les roches cristallines fracturées forment un milieu dont la perméabilité est imputée à la présence de fractures ayant des orientations et des formes variables et au grand nombre de leurs intersections. Par conséquent, puisqu'il est parfois difficile ou presque impossible de mesurer l'exactitude des paramètres des fractures, le problème a été souvent résolu statistiquement par échantillonnage aléatoire des fractures (Bianchi et Snow, 1968; Parsons, 1972, etc.).

Snow (1965) a supposé que si un système de fractures croise une ligne d'échantillonnage de longueur L_e , chaque fracture a alors une image à une distance l(l < L_e), suivant la direction de l'itinéraire choisi (figure A.1). Dans un repère orthonormé fixe, l'espacement W entre une fracture et son image est donné par Bianchi et Snow, (1968), soit: Figure A.1

Esquisse de la méthode de calcul des espacements entre fractures parallèles (d'après Snow, 1965)

$$W = 1 | n_i - D_i |$$
 (A.1)¹

où:

n_i: coordonnée du plan normal à une fracture

D_i: coordonnée de la ligne d'échantillonnage.

Sous forme tensorielle, la perméabilité d'une fracture infinie d'ouverture b et d'orientation arbitraire est:

$$K_{ij} = \frac{2}{3} \frac{b^{3}}{1 | n_{i} - D_{i} |^{*}} (\delta_{ij} - v_{i}v_{j})$$
(A.2)

où:

 ν_i et ν_j : coordonnées suivant les axes i et j de la normale à une fracture.

La perméabilité équivalente du milieu est donnée par la valeur moyenne obtenue à partir de toutes les stations d'échantillonnage (Bianchi <u>et</u> Snow, 1968), soit:

- A.6 -

^{*} Selon Parsons (1972), $W = 1 | n_i - D_i |$ est un facteur poids qui dépend notamment de l'angle que fait la fissure avec l'orientation moyenne de la série de fracture.

$$\bar{\kappa}_{ij} = \frac{1}{N} \sum_{31}^{2} \frac{2}{|n_i - D_i|} \frac{b^3}{|n_i - D_i|} (\delta_{ij} - v_i v_j)$$
(A.3)

Snow (1965, 1969) a déjà utilisé cette approche; ainsi, sous l'approximation de la superposition de l'écoulement, il fit ses calculs séparément pour toutes les séries de fractures simulées, puis superposa ensuite ses résultats. Aussi, Parsons (1972) et Gale et Witherspoon (1979) se sont tous servis de cette approche dans l'étude d'un système de fissures discontinues. Cependant, sans tenir compte de la ligne d'échantillonnage, Kiraly (1971), Bertrand <u>et al.</u> (1982), Feuga (1981), Beucher et de Marsily, ainsi que d'autres, ont développé des équations semblables du tenseur de perméabilité équivalente. Par ailleurs, dans chacun des cas, les composantes principales de la perméabilité du milieu poreux équivalent au milieu fracturé ainsi que leurs directions sont données respectivement par les valeurs propres et les vecteurs propres de l'équation matricielle.

Chaque fracture peut contribuer à la perméabilité de la roche si et seulement si elle croise d'autres fractures conductrices (Long <u>et al.</u>, 1982 et Wilke <u>et al.</u>, 1985). Ceci, d'une part, parce que les fractures individuelles sont de longueur et d'étendue finies et d'autre part, parce que leurs ouvertures varient considérablement dans l'espace à cause, par exemple, de la déformation ou du colmatage par des dépôts de minéraux (quartz, calcite, argile, etc.). Autrement dit, dans le cas d'une matrice imperméable, si une fissure est isolée, elle est alors automatiquement exclue de la contribution à la perméabilité globale du milieu si elle n'a pas de lien direct avec d'autres fractures. L'étude des mesures de perméabilité directionnelle reprise par Long <u>et</u> <u>al.</u> (1982), en supposant un milieu homogène et anisotrope dans lequel la loi de Darcy est applicable ($v_j = k_{ij} \frac{\partial \phi}{\partial x_i} = K_{ij} J_i$), est basée sur deux méthodes,

où:

v_i: vitesse de Darcy

 Φ : charge hydraulique [L]

J : gradient de charge [L/L]

qui donnent lieu à des ellipses de perméabilité. La première méthode utilise les mesures dans la direction du flux et dont l'axe majeur de l'ellipse indique la direction de perméabilité maximale. La deuxième méthode utilise les mesures dans la direction du gradient et permet d'obtenir la direction de perméabilité maximale suivant l'axe mineur de l'ellipse. 11 est clair, d'après Wilson et al. (1983), que l'écoulement dans certaines fractures ne se produit pas nécessairement dans la direction du gradient moyen. Il en découle que les pressions mesurées ne fournissent pas souvent les gradients moyens existants. Ces auteurs ont conclu que si le gradient moyen n'est pas déterminé, l'exactitude de la conductivité hydraulique équivalente du milieu est alors suspendue. C'est probablement dans cette optique que Long et al. (1982) ont préféré, néanmoins, pour le calcul de la perméabilité relative à un milieu hétérogène, la méthode utilisant la direction du gradient qui est approximativement linéaire en régime permanent tant que le milieu considéré est un volume élémentaire représentatif (VER). En éliminant la notation tensorielle, dans le concept théorique de la

perméabilité équivalente mentionné plus haut, plusieurs chercheurs dont Iwai (1976), Gale (1977, 1982), Long <u>et al.</u> (1982), Schwartz <u>et al.</u> (1983), Rouleau (1984), etc., ont développé, au préalable, le calcul de la perméabilité de fractures individuelles dans une masse rocheuse, grâce à une formule qui suppose que la perméabilité d'une fracture (K_j) est fonction carrée de son ouverture (2b) soit:

$$K_{f} = \frac{\rho g}{12 \mu} (2b)^{2}$$
 (A.4)

où:

g: constante de gravité [LT-2];

 μ : viscosité dynamique [ML⁻¹T⁻¹];

et l'équation du mouvement de fluide newtonien visqueux, incompressible, de phase simple et en régime permanent, est:

$$q = \frac{(2b)^3}{12 \mu} \cdot \rho g I$$
 (A.5)

où:

q: débit d'écoulement [L³T⁻¹];

I: gradient de charge hydraulique [LL⁻¹].

A.4 Théories des essais d'injection d'eau

A.4.1 PERMÉABILITÉ DES FISSURES

Sur le terrain, les essais d'injection peuvent être effectués au niveau d'un trou de forage entre deux éléments d'obturateurs gonflables connus sous le nom de "packers". Ces éléments sont conçus pour isoler des sections spécifiques de roches dans un forage donné (figure A.2). L'injection d'eau dans ces "packers" crée un écoulement radial vers le milieu fissuré. En appliquant une approximation d'un milieu fissuré à un milieu poreux équivalent dans des conditions de régime permanent, et en supposant les fissures à plans parallèles et horizontales, la loi de Darcy est exprimée par:

$$q = -K \frac{dH}{dr}$$
(A.6)

où:

q: la décharge spécifique (L/T);

K: la conductivité hydraulique du milieu (L/T);

H: la charge hydraulique (L);

Figure A.2

r: la distance radiale à partir du centre du puits (L).

D'après Maini (1971) et Francis (1981), la conductivité hydraulique d'un milieu fissuré équivalent à un milieu poreux est donnée par:

$$K_{e} = \sum_{i=1}^{n} \frac{(2b_{i})}{L} K_{i}$$
 (A.7)

où:

2b_i: ouverture de la i^{ième} fracture (L); L : longueur de la chambre du test d'injection (L); n : nombre de fractures dans la section isolée sous essais; K_i : conductivité hydraulique de la i^{ème} fracture, donnée par l'équation (A.4), soit:

$$K_{i} = \frac{\rho g (2b_{i})^{2}}{12 \mu}$$
(A.8)

Le débit total d'écoulement (Q_{ti}) absorbé par une fissure horizontale de section A_i perpendiculaire à l'écoulement à travers un forage vertical est donné par:

$$Q_{ti} = q_i \times A_i \tag{A.9}$$

La combinaison des équations (A.6), (A.8) et (A.9) donne le débit total d'écoulement dans la section isolée du test, soit:

$$Q_{t} = -2\Pi r \frac{dH}{dr} \sum_{i=1}^{n} (2b_{i}) K_{fi}$$
(A.10)

Par réarrangement, l'équation (A.10) devient:

$$\int_{r_W}^{r_I} \frac{dr}{r} = -\frac{2\Pi}{Q_t} \sum_{i=1}^{n} (2b_i) \kappa_{fi} \int_{H_W}^{H_I} dH$$
(A.11)

où:

 Q_t : débit total d'écoulement dans la section du test $[L^3/T]$; r_W : rayon du puits [L]; r_I : rayon d'influence [L]; H_W : charge hydraulique au niveau du puits [L]; H_I : charge hydraulique au niveau du rayon d'influence [L].

L'intégration de (A.11), après y avoir substitué (A.28), donne:

$$Q_{t} = \frac{2\Pi (H_{W} - H_{I})}{\ln (r_{I} / r_{W})} \sum_{i=1}^{n} \frac{\rho g (2b_{i})^{3}}{12 \mu}$$
(A.12)

Le terme de sommation de (A.12) étant déjà défini, le flux total devient:

$$Q_{t} = \frac{2\Pi L K_{e} (H_{W} - H_{I})}{\ln (r_{I} / r_{W})}$$
(A.13)

L'équation (A.13) pourrait être utilisée au préalable pour déterminer la conductivité hydraulique de la partie isolée du test appliquée par approximation à un milieu poreux équivalent quand une relation linéaire débit d'injection - charge hydraulique est obtenue, soit:

$$K_{e} = \frac{Q_{t} \ln (r_{I}/r_{W})}{2\pi L (H_{W} - H_{I})}$$
(A.14)

Les concepts théoriques ci-dessus sont basés, d'une part, sur les travaux de Gale (1980, 1982a) qui a d'ailleurs largement utilisé l'équation (A.14) dans l'analyse des tests d'injection dans les roches cristallines fracturées et, d'autre part, sur une étude effectuée par Francis (1981) et Francis <u>et al.</u> (1984), dans le but d'analyser les propriétés hydrogéologiques d'un milieu poreux fissuré. Deux termes distincts constituent le développement de Francis; il s'agit notamment d'un terme réservé purement aux fractures individuelles, et l'autre, à la matrice rocheuse perméable. D'autres études peuvent être signalées; citons, par exemple, l'étude de Snow (1970) dans laquelle il a été reporté que les valeurs exactes de K_iet 2b_i de chaque fracture ne peuvent être déterminées directement quand plusieurs fractures existent dans un intervalle d'essai, sauf si la distribution de leurs ouvertures est a priori bien connue. Ajoutons encore que, dans son étude, Maini (1971) a utilisé uniquement une valeur moyenne des ouvertures sous l'approximation que ces fractures ont toutes les mêmes dimensions. D'autres approximations qu'il faut considérer dans l'analyse théorique des données de tests d'injection sont mentionnées ci-dessous:

- 1. écoulement radial et laminaire;
- 2. fractures continues ayant des ouvertures constantes;
- 3. fractures horizontales et recoupées par des trous de forages verticaux;
- 4. pertes de charges négligeables, résultant du fléchissement et contractions des lignes d'écoulement à l'entrée des fractures dans la section d'essais; d'après Françis (1981), la signification de cet effet dans les tests d'injection n'a pas été évaluée expérimentalement;
- 5. validité de la loi de Darcy.

En ce qui concerne les descriptions de ces approximations, le lecteur est référé au travail de Francis (1981).

A.4.2 MÉTHODE INDIRECTE DE CALCUL DES OUVERTURES DE FRACTURES

La méthode d'analyse indirecte consiste à calculer les ouvertures des fractures individuelles à partir des données des essais d'eau sur le terrain. Certaines approximations sont nécessaires à cet effet et requièrent, outre celles qui sont décrites plus haut, les conditions suivantes: a) la représentation, par des plans parallèles horizontaux ayant des ouvertures égales, du système de fissures présent dans la chambre du test, et b) la saturation et la considération de la zone du test comme un milieu poreux équivalent, homogène et isotrope (Zeigler, 1976; Maini, 1971, etc.). De l'équation (A.7), si les conditions a et b sont remplies, la perméabilité d'une fracture individuelle peut s'écrire:

$$k_{f} = \frac{L}{n (2b)} k_{e}$$
 (A.15)

En substituant (A.14) dans (A.15) et en l'égalisant avec (A.8), l'ouverture (2b) de fractures individuelles dans un intervalle j d'essai est:

$$(2b_{j}) = \left\{ \frac{6 \mu}{n_{j} \Pi \rho g} \frac{Q_{tj} \ln (r_{I} / r_{W})}{(H_{W} - H_{I})} \right\}^{1/3}$$
(A.16)

A.4.3 DISTRIBUTION DES OUVERTURES DE FRACTURES

Selon Snow (1968, 1970), la fréquence des fractures obéit spatialement à la loi de Poisson¹ et leurs ouvertures sont distribuées log-normalement sur un affleurement et dans des forages (Bianchi et Snow, 1968; Snow, 1970; Francis, 1981). Les statistiques de la distribution des ouvertures de fractures peuvent être déterminées pour chaque forage si: (1) la fréquence moyenne de fractures peut être déterminée et (2) la relation entre la grandeur des ouvertures de fractures et leur fréquence (modèle de distribution des ouvertures) peut être déterminée aussi (Francis, 1981). Nous avons mentionné, dans le paragraphe précédent, que la conductivité hydraulique équivalente (équation A.7) est fonction du nombre de fractures présentes dans l'intervalle d'essais et de leurs ouvertures efficaces. En utilisant l'analyse théorique de Snow (1970) et Francis (1981), nous pouvons écrire les relations suivantes:

$$\mu_{k_{i}} = \mu_{k_{p}} / \lambda \tag{A.17}$$

et

$$\sigma_{k_{i}}^{2} = \sigma_{k_{e}}^{2} / \lambda - \mu^{2}_{k_{e}} / \lambda^{2}$$
(A.18)

où:

 μ_{k} et σ_{k}^{2} : conductivité hydraulique moyenne et variance de fractures individuelles du milieu poreux équivalent;

 ${}^{\mu}k_{e}$ et σ_{k}^{2} : conductivité hydraulique moyenne et variance de fractures dans tous les intervalles équivalents à un milieu poreux;

 λ : nombre moyen de fractures par longueur du test.

Les équations A.17 et A.18 peuvent être utilisées pour obtenir les paramètres de la distribution de perméabilité de fractures individuelles à partir des paramètres de la distribution de perméabilité équivalente. En substituant A.18 dans A.17, nous obtenons, pour une seule fracture:

$$K_{ei} = \frac{2 \rho g}{3 \mu L} (b_i)^3$$
 (A.19)

soit :

$$(b_i)^3 = \frac{3\mu L}{2\rho g} K_{ei}$$
 (A.20)

Ainsi, la moyenne et la variance des conductivités hydrauliques de fractures individuelles peuvent être converties à la moyenne (α) et la variance (β^2) du cube de la moitié de l'ouverture, soit:

$$\alpha = \frac{3\mu L}{2\rho g} \mu_{K_i}$$
(A.21)

$$\beta^2 = \left(\frac{3\mu L}{2\rho g}\right)^2 \sigma^2 \kappa_i$$
 (A.22)

Si on suppose que les ouvertures efficaces 2b et b des fissures sont distribuées log-normalement, alors b³ est aussi distribué log-normalement du fait que 3 ln b est normal. De même, puisque (α) et (β^2) sont la moyenne et la variance de la fonction densité de probabilité Δ (b³), alors les paramètres de la fonction N(Ln b³) sont μ et σ^2 :

$$\mu = \ln \frac{\alpha^2}{(\alpha^2 + \beta^2)_{2}^{1_2}}$$
 (A.23)

$$\sigma^2 = \ln\left(1 + \frac{\beta^2}{\alpha^2}\right) \tag{A.24}$$

En effet, si la fonction N (ln b³) a pour paramètres (μ) et (σ^2), alors la fonction N (ln 2b) a pour paramètres μ_1 et σ_1^2 reliés par les relations suivantes:

$$\mu_1 = -\frac{\mu}{3} + \ln 2 \qquad (A.25)$$

$$\sigma_1^2 = \frac{\sigma^2}{9} \tag{A.26}$$

Finalement, la moyenne (μ_1) et la variance (σ_1^2) du logarithme naturel des ouvertures efficaces de fractures sont:

$$\mu_{1} = \ln 2 \left(\frac{\alpha^{2}}{(\alpha^{2} + \beta^{2})^{1/2}} \right)^{1/3}$$

$$\sigma_{1}^{2} = \ln \left(\frac{\alpha^{2} + \beta^{2}}{\alpha^{2}} \right)^{1/9}$$
(A.28)

ANNEXE B: ENTRÉE / SORTIE DES MODÈLES NETWORK ET NETFLO

B.1 Données d'entrée

Les données d'entrée du programme NETWORK sont principalement de deux types: 1) données décrivant la géométrie de patron de joints et 2) données reliées à la géométrie des limites (formes et coordonnées). Dans le premier cas, le patron de fractures est défini par la densité, le type et les paramètres de distribution de longueurs, d'orientation et d'ouvertures de chaque série de fractures. Dans le second cas, le programme NETWORK a l'avantage de considérer deux modèles de forme géométrique différente: modèle rectangulaire et modèle circulaire (figure B.1). Dans la présente étude, seul le modèle rectangulaire est utilisé et cela, aussi bien dans un plan vertical que dans un plan horizontal. Comme données d'entrée exigées par NETFLO, il y a le réseau généré par NETWORK et les conditions de charges et d'écoulement imposées aux limites.

B.2 Fichiers de sortie

Les programmes NETWORK et NETFLO offrent un certain nombre d'options pour la création de fichiers de sortie. En effet, la variable d'entrée ISP fournit la possibilité de créer des fichiers de données des espacements, obtenus à partir des lignes du réseau généré, tandis que la variable IPRT fournit d'autres fichiers de sortie tels que résumés au tableau B.1. Plans et limites des modèles conçus pour les programmes NETWORK et NETFLO: (a) plan rectangulaire; (b) plan circulaire (d'après Rouleau, 1984)

① Numéro de la limite ayant une condition de charge hydraulique

(a) plan rectangulaire

(b) plan circulaire

Tableau B.1

Fichiers de sortie des programmes NETWORK et NETFLO (d'après Rouleau, 1985)

IPRT	FICHIE	RS D'ENTRÉE/	SORTIE	REMARQUE S
	PROGRAMME	NUMÉRO DE L'UNITÉ	CONTENU	
1	NETWORK	9 10 11 12 8 3 4	Noeuds Eléments Ouvertures SUMNET POROS SPACING1 SPACING2	Fichier informatisé contenant les données de noeuds, des éléments et des ouvertures de fractures exigées par NETFLO Information sommaire sur le réseau de lignes générées Information sommaire sur la porosité Données des espacements générées par les sous-routines SPCNG1 ou SPCNG2 respectivement
	NETFLO	25 28	SUMFLO FLOBORY	Sommaire des calculs d'écoulement Résultats des calculs d'écoulement des éléments situés sur des limites
2*	NETWORK	2 19 20 21	TACES NODFO ELEFO APEFO	Information détaillée sur le réseau de lignes générées Fichiers de format équivalent aux fichiers 9, 10 et 11 respectivement
	NETFLO	27	FLOALL	Résultats de calculs d'écoulement pour tous les éléments
3*	NETFLO	26	FLOMAT	Information détaillée sur la renumérotation des noeuds et sur les matrices d'écoulement

* Tous les fichiers créés par l'option précédente sont présents

B.3 Formats des données d'entrée

Les fichiers de données d'entrée (tableau B.2, par exemple) sont constitués des informations générales suivantes:

Ligne 1:

Colonnes 1 à 80: titre, (20A4)

Ligne 2:

```
Colonnes 1 à 5:
                      NSET, (15)
                     ISP, (15)
Colonnes 6 à 10:
Colonnes 11 à 15:
                      COEF, (F5.0)
SEED, (F5.0)
Colonnes 16 à 20:
Colonnes 21 à 25:
                      PLTSIZ, (F5.0)
Colonnes 26 à 30:
                      IGEOM, (I5)
                     NAP, (15)
NAAP, (15)
DAAP, (F10.0)
Colonnes 31 à 35:
Colonnes 36 à 40:
Colonnes 41 à 50:
                      IPRT, (15)
Colonnes 51 à 55:
```

Ligne 3:

Coordonnées des limites internes et externes des modèles

Colonnes 1 à 40: XMINO, YMAXO, YMINO, YMINI, YMAXI, XMAXI, YMINI (sens d'une aiguille d'une montre (8F.50))

Ligne 4 et suivantes:

De I = 1 jusqu'à NBO (NBO = 8 pour un modèle rectangulaire, et 6 pour un modèle circulaire), chaque ligne contient d'autres informations concernant chaque limite.

Colonnes 1 à 5: ISHAP(I), (I5) Colonnes 6 à 10: R(I), (F5.0) Colonnes 11 à 15: XB(I), (F5.0) Colonnes 16 à 20: YB(I), (F5.0) Colonnes 21 à 25: IBC(I), (F5.0) Colonnes 26 à 30: HDB(I), (F5.0) Colonnes 31 à 35: HDE(I), (F5.0)

Lignes suivantes:

Premières séries d'informations sur le réseau de fractures (de I = 1 jusqu'à NSET dans chaque ligne)

Colonnes 1 à 60: ALE(I), BLE(I), ATH(I), AAP(I), BAP(I), (6F10.0)

- B.5 -

Tableau B.2

Exemple de données d'entrée des programmes NETWORK et NETFLO (plan vertical: réalisation R008)

R008	NETWO	RK-NE	TFLO	/ CAN	NAL D'	AMENE	E (ZONE	1: AMONT	DU	PM=1100)(P.V.)
4	2	4.4	55.	17.	1	4	4	30	1	
-1.	11.	11.	-1.	0.	10.	10.	0.			
1	0.	0.	0.0	1	7.03	7.03				
0	0.	0.	0.	0	0.	0.				
1	00.	0.	10.	0	7.03	0.				
0	ο.	0.	0.	0	0.	0.				
1	0.	10.	10.	1	0.	е.				
0	Ο.	0.	0.	0	0.	0.				
1	0.0	10.	0.	2	Ο.	7.03				
0	0.	0.	0.	0	0.	0.				
	2.86		73.	2	2	2				
	0.31		18.	2	2	2				
	0.93		86.	2	2	2				
	0.41		82.	2	2	2				
	1.93		1.00		88.0		8.0	-9.23		0.66
	2.14		1.06		79.0		34.3	-9.32		0.68
	1.68		88.0		30.0		13.3	-9.48		1.05
	1.67		0.79	1	40.0		9.5	-9.24		0.57

ANNEXE C: RÉSULTATS DE L'ANALYSE DES ESSAIS D'EAU

Tableau C.1

Calculs des perméabilités et des ouvertures de fractures dans chaque intervalle du test des forages 01-84 à 06-84

PROJET: MANIC-5 P.A.	SON TF	IDAGE N° D 01-84		EMPLACEMENT CANAL D'AMENÉE- BOUCHON		LONGUEUR: 60,00 (m)	
Pronfondeur des obtura-	Nombre	ΔP	т	Q _T	К _е	ĸ _i	2b
teurs SUP - INF.	de fracture	[m] s	[sec]	[m ³ /sec]	[m/sec]	[m/sec]	[m]
8,92 - 11,97 11,97 - 15,02 18,08 - 21,12 21,12 - 24,17 24,17 - 27,22 27,22 - 30,27 30,27 - 33,32 33,32 - 36,37 37,89 - 40,94 40,94 - 43,99 43,99 - 46,95 46,95 - 50	3 3 8 5 12 2 3 1 15 7 5	4,09 4,60 6,13 9,19 11,24 12,26 13,79 15,32 18,39 19,92 21,45 22,98	240 360 240 600 360 240 240 240 240 240 360 360	- 5,92E-04 6,02E-04 8,33E-06 4,17E-06 8,33E-06 2,50E-05 8,33E-06 1,25E-05	- 2,46E-05 1,67E-05 1,89E-07 8,67E-08 1,54E-07 - 1,15E-07 3,20E-07 9,90E-08 1,39E-07	- 7,99E-02 3,21E-02 2,21E-03 7,34E-04 3,55E-03 4,66E-03 1,51E-03 1,15E-03 1,80E-03	- 3,13E-04 1,98E-04 5,21E-05 3,00E-05 6,60E-05 7,56E-05 4,31E-05 3,75E-05 4,70E-05

Tableau C.1 (suite)

PROJET: MANIC-5 P.A.	SON TFI	DAGE N° D 02-84		EMPLAC CANAL D' BOUC	EMENT AMENEE- HON	LONGUEUR: 48,38 (m)	
Prondeur des obturateurs SUP - INF.	Nombre de fracture:	∆P [m] s	T [sec]	Q _T [m³/sec]	K _e [m/sec]	K _i [m/sec]	2b [m]
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	5 5 2 13 13 8 7	7,05 3,58 3,58 7,05 14,09 10,62	600 540 - 120 180 480 180	7,22E-05 3,38E-04 - 9,45E-04 8,40E-04 2,39E-04 8,33E-04	2,61E-06 2,41E-05 - 6,74E-05 3,04E-05 4,32E-06 2,00E-05	1,27E-02 5,60E-02 - 5,88E-02 3,46E-02 1,30E-02 3,95E-02	1,25E-04 2,62E-04 2,69E-04 2,06E-04 1,26E-04 2,20E-04

PROJET: MANIC-5 P.A.	SON TF	DAGE N° D 03-84		EMPLAC CANAL D' BOUC	EMENŢ AMENĒE- HON	LONGUEUR: 66,42 (m)	
Pronfondeur des obtura- teurs SUP – INF.	Nombre de fracture	∆P [m] s	T [sec]	Q _T [m ³ /sec]	^K e [m/sec]	K _i [m/sec]	2b [m]
6,21 - 9,26 9,26 - 12,31 12,31 - 15,36 15,36 - 18,41 18,41 - 21,46 21,46 - 24,51 24,51 - 27,56 27,56 - 30,61 30,61 - 33,66 33,66 - 36,71 36,71 - 39,76	5 4 15 7 6 3 2 1 2 6 2	9,19 15,32 20,42 25,54 30,64 35,75 8,17 45,97 51,07 17,88 61,29	240 240 240 240 480 360 480 240 360 240	5,92E-04 1,17E-04 9,17E-05 5,17E-04 4,12E-04 7,29E-06 5,92E-04 2,08E-05 8,33E-06 5,83E-04 8,33E-06	1,64E-05 1,95E-06 1,14E-06 5,16E-06 3,43E-06 5,20E-08 1,85E-05 1,15E-07 4,16E-08 8,31E-06 3,46E-08	4,34E-02 1,22E-02 3,53E-03 1,60E-02 1,35E-02 1,32E-03 8,64E-02 4,65E-03 1,48E-03 2,44E-02 1,32E-03	2,31E-04 1,22E-04 6,58E-05 1,40E-04 1,29E-04 4,02E-05 3,26E-04 7,56E-05 4,27E-05 1,73E-04 4,02E-05

Tableau C.l (suite)

PROJET: MANIC-5 P.A.	SON TF	DAGE N° D 05-84		EMPLAC CANAL D' BOUC	EMENI AMENEE- CHON	LONGUEUR: 36,09 (m)	
Pronfondeur des obtura-	Nombre	ΔP	т	Q _T	к _е	ĸ _i	2b
teurs SUP - INF.	de [m] [sec fractures		[sec]	[m ³ /sec] [m/sec		[m/sec] [n	
20,35 - 23,4 23,4 - 26,45 27,97 - 31,02 31,02 - 34,07	14 12 18 11	12,77 25,54 28,09 30,64	240 240 240 360	4,17E-06 4,17E-06 8,33E-06	4 16E-08 3,78E-08 6,93E-08	4,50E-04 3,22E-04 6,70E-04	- 2,35E-05 2,00E-05 2,87E-05

Tableau C.l (suite)

PROJET: MANIC-5 P.A.	SON TF	DAGE N° D 06-84		EMPLAC CANAL D' BOUC	EMENJ AMENEE- HON	LONGUEUR: 54,28 (m)	
Profondeur des obtura- teurs SUP - INF.	Nombre de fracture	∆P [m] s	T [sec]	Q _T [m ³ /sec]	K _e [m/sec]	K _i [m/sec]	2b [m]
5,29 - 8,34 8,34 - 11,39 11,39 - 14,44 14,44 - 17,49 17,49 - 20,54	5 10 21 18 7	9.19 12.77 15.32 17.88 20.43	240 360 360 360 360	5,92E-04 4,92E-04 2,58E-04 6,67E-05 5,83E-05	1,64E-05 9,82E-06 4,29E-06 9,51E-07 7,27E-07	4,34E-02 1,94E-02 6,82E-03 2,76E-03 4,34E-03	2,31E-04 1,54E-04 9,14E-05 5,82E-05 7,30E-05

Tableau C.2

Calculs de perméabilités et des ouvertures de fractures dans chaque intervalle du test des forages 5001-74 à 5011-74

PROJET: MANIC-5 P.A. Pronfondeur des obtura- teurs SUP - INF.			SONDAGE N° 5001-74		EMPLAC CANAL D' BOUC	EMENT: AMENÉE- HON	LONGUEUR: 112,81 (m)	
		Nombi de fract	re ∆P [m] ures	T [sec]	Q _T [m³/sec]	K _e [m/sec]	K _i [m/sec]	2b [m]
$\begin{array}{c} 13,20 \\ -16,25 \\ -19,30 \\ -22,35 \\ -25,40 \\ -28,45 \\ -31,50 \\ -34,55 \\ -37,60 \\ -40,65 \\ -43,70 \\ -46,75 \\ -49,80 \\ -52,85 \\ -55,90 \\ -55,90 \\ -55,90 \\ -55,90 \\ -58,95 \\ -55,90 \\ -58,95 \\ -68,10 \\ -71,15 \\ -74,20 \\ -71,15 \\ -74,20 \\ -71,20 \\ -80,25 \\ -83,30 \\ -80,25 \\ -83,30 \\ -80,25 \\ -83,30 \\ -80,25 \\ -83,30 \\ -80,25 \\ -83,30 \\ -92,45$	16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 49, 52, 55, 58, 62, 65, 68, 71, 74, 77, 80, 89, 92, 92, 92,	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2,11 3,52 4,22 4,22 4,92 6,33 7,03 7,74 8,44 9,14 11,95 8,44 9,14 11,95 8,44 7,03 7,03 6,33 5,63 5,63 5,63 5,63 4,92 4,92 4,92 4,92 5,53 5,53 6,33 7,00 7,74	300 300 300 300 300 300 300 300 300 300	1,51E-05 4,73E-04 7,56E-06 9,06E-06 4,53E-06 2,89E-05 1,59E-04 3,99E-04 4,53E-06 4,53E-06 4,53E-06 4,53E-06 3,03E-06 9,09E-06 2,42E-05 9,10E-06 4,53E-06 4,53E-06 1,51E-05 4,53E-06 4,53E-06 4,53E-06 4,53E-06 4,53E-06 4,53E-06 4,53E-06	1,83E-06 3,43E-05 4,58E-07 5,49E-07 2,35E-07 1,49E-06 6,40E-06 1,45E-05 1,50E-07 1,37E-07 5,49E-07 9,69E-08 1,37E-07 1,10E-07 3,30E-07 9,76E-07 4,12E-07 2,06E-07 2,35E-07 1,57E-07 3,92E-07 7,82E-07 2,09E-07 1,82E-07 2,75E-07 1,49E-07	7,35E-03 7,09E-02 2,36E-03 3,60E-03 2,04E-03 4,89E-03 1,17E-02 4,64E-02 1,52E-03 3,29E-03 3,60E-03 1,58E-03 1,58E-03 1,54E-03 4,51E-03 6,61E-03 4,32E-03 2,72E-03 6,63E-03 2,09E-03 2,09E-03	9,49E-05 2,95E-05 5,38E-05 6,65E-05 5,00E-05 7,76E-05 1,20E-04 2,38E-04 4,31E-05 6,35E-05 6,64E-05 4,94E-05 4,94E-05 4,40E-05 4,40E-05 4,35E-05 7,28E-05 5,78E-05 5,78E-05 5,07E-05 5,07E-05 5,07E-05
98,55 - 101,60 - 104,65 - 107,70 -	101, 104, 107, 110,	60 1 65 1 70 6 75 22	8,44 9,14 9,84 10,55	300 300 300 300	7,56E-06 7,56E-06 7,56E-06 4,53E-06	2,28E-07 2,11E-07 1,96E-07 1,10E-07	7,34E-03 6,96E-03 2,00E-03 5,74E-04	9,49E-05 9,24E-05 4,96E-05 2,65E-05

PROJET:	SONI	DAGE N°		EMPLAC	EMENT	LONGUEUR:		
MANIC-5 P.A.	50	DO3-74		PRISE	D'EAU	122,59 (m)		
Pronfondeur des obtura- teurs SUP - INF.	Nombre de fractures	∆P [m] S	T [sec]	QT [m³/sec]	K _e [m/sec]	K _i [m/sec]	2b [m]	
12,19 - 15,24 15,24 - 18,29 18,29 - 21,34 21,34 - 24,38 24,38 - 27,43 27,43 - 30,48 30,48 - 33,53 33,53 - 36,58 36,58 - 39,62 39,62 - 42,67 42,67 - 45,72 45,72 - 48,77 48,77 - 51,82 51,82 - 54,86 54,86 - 57,92 57,91 - 60,96 66,96 - 64,00 64,01 - 67,06 67,06 - 70,10 70,10 - 73,19 73,15 - 76,20 76,20 - 79,28 79,25 - 82,30 82,30 - 85,34 85,34 - 88,39 88,39 - 91,44 91,44 - 94,49 94,49 - 97,54 100,58 - 103,67	4 15 9 18 4 15 3 5 3 11 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 4 1 5 2 5 1 5 2 5 1 5 2 5 1 5 2 5 1 5 2 5 1 5 2 5 1 5 2 6 1 <	0,70 2,81 4,22 6,33 7,74 9,84 11,25 13,36 14,77 16,88 18,28 19,69 21,80 23,21 25,32 26,72 28,83 30,24 32,35 33,75 35,86 37,27 38,68 40,79 42,19 44,30 45,71 47,82 49,22 51,33	300 300 300 300 300 300 300 300 300 300	6,06E-04 3,77E-04 3,03E-06 3,03E-06 3,03E-06 3,03E-06 3,03E-06 3,03E-06 3,03E-06 3,03E-06 4,53E-06 4,53E-06 4,53E-06 3,03E-06 1,97E-05 5,15E-05 2,42E-05 1,97E-05 1,97E-05 1,97E-05 1,97E-05 1,97E-05 1,97E-05 1,97E-05 1,97E-05 1,97E-05 1,97E-05 1,97E-05 1,97E-05 1,97E-05 1,97E-05 1,97E-05 1,97E-05 1,97E-05 1,97E-05 1,21E-05 1,21E-05 2,12E-05 1,21E-05 2,12E-05 1,51E-05	2,20E-04 3,41E-05 1,83E-07 1,22E-07 9,99E-08 7,85E-08 6,87E-08 5,78E-08 5,78E-08 5,78E-08 5,78E-08 5,78E-08 1,27E-07 5,88E-08 1,27E-07 5,88E-08 3,33E-08 1,98E-07 4,91E-07 2,14E-07 2,14E-07 2,15E-07 9,15E-08 1,40E-07 1,26E-06 1,40E-07 1,26E-08 1,29E-07 1,26E-08 3,76E-08 3,76E-08 1,29E-07	1,18E-01 3,00E-02 1,04E-03 1,65E-03 8,55E-04 3,60E-03 8,24E-04 5,60E-04 3,73E-04 4,13E-04 8,16E-04 3,90E-04 4,20E-04 3,34E-04 1,21E-03 1,61E-03 8,00E-04 1,19E-03 1,21E-03 6,03E-04 7,44E-04 3,11E-03 9,12E-04 1,27E-03 1,15E-03 5,73E-04 5,13E-04 1,08E-03 1,23E-03 8,00E-04	3,80E-04 1,92E-04 3,57E-05 4,50E-05 3,24E-05 6,65E-05 3,18E-05 2,62E-05 2,14E-05 2,25E-05 3,16E-05 2,27E-05 2,03E-05 3,85E-05 3,85E-05 3,82E-05 3,82E-05 3,82E-05 3,94E-	
103,63 -106,68	3 10	54,15	300	3,23E-04	1,56E-06	5,69E-03	8,36E-05	
106,68 -109,73	3 12	54,15	300	3,43E-04	1,61E-06	5,15E-03	7,95E-05	
109,73 -112,78	3 7	56,26	147	8,41E-04	3,81E-06	1,31E-02	1,27E-04	
112,82 -115,82	2 32	57,66	206	6,40E-04	2,83E-06	3,90E-03	6,92E-05	

PROJET:	SONDAGE N°			EMPLAC	EMENT	LONGUEUR:		
MANIC-5 P.A.	5004-74			PRISE	D'EAU	107,26 (m)		
Pronfondeur des obtura- teurs SUP - INF.	Nombre de fracture	∆P [m] s	T [sec]	Q _T [m³/sec]	K _e [m/sec]	K _i [m/sec]	2b [m]	
21, 34 - 24, 38 24, 38 - 27, 43 27, 43 - 30, 48 30, 48 - 33, 53 33, 53 - 36, 58 36, 58 - 39, 62 39, 62 - 42, 67 42, 67 - 45, 72 45, 72 - 48, 77 48, 77 - 51, 82 51, 82 - 54, 86 54, 86 - 57, 91 57, 91 - 60, 96 60, 96 - 64, 00 64, 00 - 67, 06 67, 06 - 70, 10 70, 10 - 73, 15 73, 15 - 76, 20 76, 20 - 79, 25 79, 25 - 82, 30 82, 30 - 85, 34 85, 34 - 88, 39 88, 39 - 91, 44 91, 44 - 94, 49 94, 49 - 97, 54	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3,52 4,92 7,03 8,44 9,84 11,25 12,66 13,36 15,47 16,88 18,28 22,50 24,61 26,00 27,42 29,53 30,94 33,05 34,45 36,57 37,97 40,08 41,49 43,60 45,00	300 300 300 300 300 300 300 300 300 300	3,03E-06 4,53E-06 3,03E-06 9,06E-06 3,03E-06 7,56E-06 9,06E-06 4,53E-05 4,53E-05 4,53E-05 4,53E-05 4,53E-06 7,56E-06 4,53E-06 3,62E-05 6,37E-05 1,14E-04 7,56E-05 9,06E-06 3,03E-06 3,03E-06 3,03E-06 4,53E-06	2,20E-07 2,35E-07 1,10E-07 2,73E-07 7,85E-08 1,72E-07 1,82E-07 8,64E-07 7,46E-07 6,84E-07 4,66E-07 5,13E-08 7,83E-08 4,44E-08 1,12E-07 4,24E-08 2,98E-07 4,91E-07 8,43E-07 5,27E-07 6,08E-08 1,93E-08 1,93E-08 1,77E-08 2,57E-08	2,45E-03 1,35E-03 1,23E-03 1,58E-03 7,76E-04 9,96E-04 9,95E-04 2,81E-03 4,42E-03 2,91E-03 4,58E-03 9,27E-04 7,27E-04 7,27E-04 7,46E-04 1,55E-04 5,49E-04 4,21E-03 3,70E-03 3,01E-03 2,59E-03 1,04E-03 3,26E-04 2,37E-04 8,41E-04 4,28E-04	5,48E-05 4,07E-05 3,89E-05 4,40E-05 3,09E-05 3,50E-05 3,50E-05 5,87E-05 5,87E-05 7,36E-05 5,97E-05 3,03E-05 3,03E-05 1,38E-05 2,60E-05 5,64E-05 3,57E-05 5,64E-05 3,57E-05 2,00E-05 1,71E-05 3,21E-05 2,29E-05	
97,54 -100,58	5 7	47,11	300	3,03E-06	1,64E-08	3,46E-04	2,06E-05	
100,58 -103,63	5 7	48,52	300	3,03E-06	1,59E-08	3,40E-04	2,04E-05	

PROJET: MANIC-5 P.A.	SONDAGE N° 5005-74			EMPLAC PRISE	EMENT: D'EAU	LONGUEUR: 90,56 (m)	
Pronfondeur des obtura- teurs SUP - INF.	Nombre de fractures	∆P [m] S	T [sec]	Q _T [m ³ /sec]	K _e [m/sec]	K _i [m/sec]	2b [m]
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	15 16 15 13 17 21 16 20 27 11 12 16 18 16 7	4,92 6,33 7,03 8,44 9,84 10,55 11,95 13,36 14,06 15,47 16,17 17,58 18,99 19,69 21,10	300 300 300 300 300 300 300 300 300 300	4,53E-06 3,91E-04 4,84E-05 4,84E-05 2,42E-05 3,34E-05 3,62E-05 1,21E-05 4,53E-06 1,67E-05 5,61E-05 3,62E-05 4,84E-05 4,39E-05	2,34E-07 1,57E-05 1,76E-06 1,46E-06 6,27E-07 8,06E-07 7,72E-07 2,31E-07 8,21E-07 7,46E-08 2,63E-07 8,13E-07 4,86E-07 6,26E-07 5,31E-07	1,23E-03 1,94E-02 4,71E-03 4,57E-03 2,18E-03 2,24E-03 2,60E-03 1,00E-03 1,91E-03 7,04E-04 1,54E-03 2,70E-03 1,77E-03 2,26E-03 3,52E-03	3,88E-05 1,54E-04 7,60E-05 7,49E-05 5,17E-05 5,24E-05 5,65E-05 3,51E-05 4,85E-05 2,94E-05 4,34E-05 5,75E-05 4,66E-05 5,27E-05 6,57E-05

PROJET: MANIC-5 P.A.	SON 5	DAGE N° 011-74		EMPLAC GALERIE CENT	EMENT DE FUITE RALE	LONGUEUR: 183,40 (m)		
Pronfondeur des obtura- teurs SUP - INF.	Nombre de fracture	∆P [m] s	T [sec]	Q _T [m ³ /sec]	K _e [m/sec]	K _i [m/sec]	2b [m]	
15,24 - 18,29 18,29 - 21,34 21,34 - 24,38 24,38 - 27,43 27,43 - 30,48	6 14 1	5,63 7,74 9,14 11,25 12,66	300 300 300 300 300	4,53E-06 3,03E-06 4,53E-06 3,03E-06	2,06E-07 8,45E-08 1,03E-07 6,10E-08	2,08E-03 - 4,31E-03 3,04E-03	5,05E-05 - 7,27E-05 6,11E-05	
30,48 - 33,53 33,53 - 36,58 36,58 - 39,62 39,62 - 42,67 42,67 - 45,72	6 2 2 3 3	14,77 16,17 17,58 19,69 21,10	300 300 300 300 300	4,53E-06 3,03E-06 3,03E-06 3,03E-06	7,81E-08 4,78E-08 3,92E-08 3,66E-08	1,09E-03 1,63E-03 1,09E-03 1,04E-03	3,65E-05 4,47E-05 	
45,72 - 48,77 48,77 - 51,82 51,81 - 54,86 54,86 - 57,91 57,91 - 60,96	4 13 10 2 6	23,21 24,61 26,72 28,13 30,24	300 300 300 300 300	4,53E-06 7,56E-06 4,53E-06 3,03E-06 7,56E-06	4,99E-08 7,85E-08 4,34E-08 2,75E-08 6,39E-08	1,06E-03 6,51E-04 5,23E-04 1,13E-03 9,51E-04	3,60E-05 2,83E-05 2,53E-05 3,72E-05 3,41E-05	
60,96 - 64,00 64,00 - 67,06 67,06 - 70,10 70,10 - 73,15 73,15 - 76,20	13 6 1 1 8	31,64 33,75 35,16 36,57 38,68	300 300 300 300 300	3,03E-06 3,03E-06 3,03E-06 7,56E-06 6,97E-05	2,44E-08 2,29E-08 2,19E-08 5,28E-08 4,59E-07	2,99E-04 4,80E-04 1,54E-03 2,76E-03 2,92E-03	1,92E-05 2,43E-05 4,34E-05 5,82E-05 5,99E-05	
76,20 - 79,25 79,25 - 82,30 82,30 - 85,34 85,34 - 88,39 88,39 - 91,44	5 4 2 7 1	40,08 42,19 43,60 45,71 47,11	300 300 300 300 300	3,94E-05 4,53E-06 7,56E-06 4,53E-06 1,51E-06	2,51E-07 2,75E-08 4,42E-08 2,53E-08 8,20E-08	2,67E-03 7,10E-04 1,55E-03 4,63E-04 3,71E-03	5,73E-05 2,95E-05 4,36E-05 2,38E-05 6,74E-05	
91,44 - 94,49 94,49- 97,54 97,54-100,58 100,58-103,63 103,63-106,68	13 1 7 5 43	49,22 50,63 52,74 54,15 55,55	300 300 300 300 300	2,42E-05 1,97E-05 2,42E-05 2,89E-06 2,42E-05	1,26E-07 9,92E-08 1,17E-07 1,36E-07 1,11E-07	4,21E-03 1,28E-03 1,78E-03 3,70E-04	3,31E-05 7,19E-05 3,97E-05 4,67E-05 2,13E-05	
109,73-112,78 112,78-115,82 115,82-118,87	20 16 11 5	57,66 59,07 61,16 62,58	300 300 300 300	2,42E-05 2,73E-05 2,89E-05 3,94E-05	1,07E-07 1,18E-07 1,20E-07 1,60E-07	5,05E-04 7,44E-04 9,66E-04 1,98E-03	2,49E-05 3,02E-05 3,44E-05 4,93E-05	

Tableau C.2 (suite)

PROJET: MANIC-5 P.A.	SONDAGE N° 5011-74			EMPLACEMENT GALERIE DE FUITE CENTRALE		LONGUEUR: 183,40 (m)	
Pronfondeur des obtura- teurs SUP - INF.	Nombre de fracture	∆P [m] s	T [sec]	Q _T [m³/sec]	K _e [m/sec]	K _i [m/sec]	2b [m]
118,87-121,92 121,92-124,97 124,97-128,02 128,02-131,06 131,06-134,11	7 13 8 9 8	64,69 66,10 68,21 69,62 71,02	300 300 300 300 300	3,62E-05 3,34E-05 3,62E-05 3,62E-05 3,62E-05	1,43E-07 1,29E-07 1,36E-07 1,33E-07 1,31E-07	1,47E-03 9,07E-04 1,30E-03 1,18E-03 1,27E-03	4,24E-05 3,34E-05 3,99E-05 3,81E-05 3,94E-05
Figure C.1

Illustration des variations de fréquences (FR), de perméabilité (K_e , K_f) et d'ouvertures calculées (2 b_{cal}) en fonction de la profondeur des forages 01-84 à 06-84

PRO	JET :				EMPL	ACEMENT	:		FORA	SE NE	
	M	ANIC	5-P.	Α.		Canal d'an	nenée-bouc	hon	0	1-84	
OFONDEUR (m)	F (m	r -1)			Ke (m/sec))		K _f (m/sec)	-	(2b)	col.
Æ	1.0	20	30	10-8 1	0-6	1.0-4	10-5	10-3	10-1	10-5	1 שו
		-						_			
9	[1							
11					-						
13		4									
			1.00	$\cdots \cdots \rightarrow$							
15	1 =										- 1
17.											i i
19.	I	0		the state	I	** **			1		1
			-	• • • • • •							
21	1				t				1		- 1
23	a n a n										I
25.	Į		5 - 4 - 2 - 4		1						.1 -
				1999 - 199 E							
21	1 T			1				1			
29 -											
31	[1		. 1	1
		15.	1.01			r er utsatså					
33.	1		_]	e unere		
35.					_						
37	1										
							· · · · · ·			1	
39											
41				- 4				1		·	
43		. .									
45									• • • • • • •		. 1
43.							a.;				
47	' '				· .			1			
49		· · · •									
EI	1	I	-	о г ф	· ·		·i ·	,		J	
51			• •		·						
53		-1-								-	
			1.		-					···	
			1	4 ÷	2			· · · · · · · · · · · · · · · · · · ·	0 H - CA		

Figure C.1 (suite)

Figure C.1 (suite)

PRO	JET :				EMPL	ACEME	NT:			FORA	GE N≗	
	M	ANIC	5-P.	Α.	Canal d'amenée-bouchon					03-84		
OFONDEUR (m)	F (m	r ,			K _e (m/sec)		(K _f m/sec)		(2b) (m)	cal.
¥.	10	20	3 0	10 ⁻⁹	10-7	10-5	10-4	1	0-2]	10-5	10-
7 9.				·]							[
- 11.	1										1	
13		0 2 — 2										
15	l					1		- 1	Ţ		<u> </u>	
17												
19	_					-	_		[
21							-					
23												
25	ľ			1								i - ·
27 -	ļ				T			T			т.	
29												
31					1			-1			-1^{1}	
33						T					<u> </u>	
35												
37	I					1			1			
			1									
					-							
								(#)=(=)				
		ж лад			4.12							
						<u>. </u>		-	1			
				-				1				
					1 							
				· · · · ·	11 V R	· ·	100	4		18. m - 1		· ·

Figure C.1 (suite)

PROJET : MANIC 5-P./				Α.	EM	FORA	FORAGE N≗ 05-84				
)FONDEUR (m)	Fr (m ⁻¹)		Fr Ke (m ⁻¹) (m/sec)				K _f (m/sec)			(2b) _{cal.}	
PR C	10	20	30	10-9	10-7	10-5	10-6	10-4	10-2	10-5	10-3
	-									5	
20	<u> </u>		_								
22											
24					I			1			
26			-			. <u></u>					
20	1							1 		1.1	
28.		1 -		1.1						T	
3 0.							_				::
32-		•			'					1	
34	-										
341						54 A -				1	-
	***** · · · · · ·										
							-				
					n 18 k				- (+ (++)	1	
		(Maa - Tz									
										-	
							_				
										1	
		-									-
											3.5
								taranan		·	
					1						
										1	
					2		1				
				<u>s</u> .				12	a 2.27		
		с с <u>-с</u>							•		
										1.000	
		چە مە م									
			!	÷ = + + +			-	<u>.</u>			

Figure C.1 (suite)

PRO	JET: MAN	1C 5-P.	Α.	EMP	ACEMEN Canal d'	T: amenée-bo	FORA	FORAGE N2 06-84		
DFONDEUF (m)	Fr (m ⁻¹)			K _e (m/sec	(e m/sec)		K _f (m/sec)			cal.
Ř	10 2	0 30	10-8	10-6	10-4	10-5	10-3	10-1	10-5	10-3
5									-	
6.	+									
8		•							2	
Ŭ	<u> </u>					-		1 ¹		ſ
10		-								• • •
12	1 .	r	21.22				Ī	1	1	1
12										
14				<u> </u>						
16						-				
	. 1			1						
18	Į			· · · · · · · · · · · · · · · · · · ·						
	-	•								
20	1					_	1			
		······								
	**			1.14		-		·····	• >	
1										
										
1	·									
					्रम् स्ट्रा					
				÷0						
					12. 27. and 61.					
			p. and		5 I.S.					
	• 		1							
							1.12	a 4		
1										
									1	
1 1				:	1					
					ان منه قصب محمد م					
					a a x					
						1-				1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
			· · · · · · ·							
				2			$A_{i} = 1 + \frac{1}{2}$	8 N N		
						1	1			
		1				1 *	1 1	102 0		- 1

Illustration des variations de fréquences (FR), de perméabilité (K_e , K_f) et d'ouvertures calculées ($2b_{cal}$) en fonction de la profondeur des forages 5001-74 à 5011-74

- C.18 -

Figure C.2 (suite)

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	NOJET -	-P.A. Canal di	mente-pouchor	GE NE 5001-74
	E (Fr)	Ke (m/sec	Kr (n/sec	(2b)col
	10 21	10 10 ⁻⁶ 10 ⁻⁶ 10 ⁻⁴	12-5 16*2 17**	20 9
	1		1	1
	1,1			
	11.			1-1-
	H			
	{ F - −			
			1	1
	1-t I			
			·	
	1,	1-, 1		1
	1			1.
	[-+-
	11			
	11			1. t
	11 _			1
	1	1 I		1,
	**	1.51, 2.5	-1,	17,
	1			
				- F
	1 - T	the second of the second of the second s	I	1 T
	A			
	1 -	a a francisco a	_	
	h _	1	4	
	4		-	
	14	, 1	,1	
	11			
	1 · · · ·			
			\	1
	ļ			
		the second states of the second	55 (#3.8***)#	1
				11
	11		- - - - - - - - - - -	11
		· · · · · · · · · · · · · · · · · · ·		1
	1			1
	1			1
	100000	-		
	1			1
				1
				1
	1			1
	1	1		1
	1	a serve set		
			,	
				1
2 2 · · · · · · · · · · · · · · · · · ·	1 -			

Figure C.2 (suite)

PRO	JET : MANIC	5-P.	Α.	EN	Prise	IT : d'eau		FORA 500	GE Nº	
JFONDEUR Pi)	Fr (m ⁻¹)			K _e (m/s	ec)		K _f (m/sec))	(2b)col.
₩~	10 20	301	10-8	10 ⁻⁶	10-4	10-6	10-4	10-2	10-5	. 10 ⁻³
80										
· 90 .										
100						1				105 M 1
110	l									
120.]]	
130					· · ·					
140				1				I		
150								l		
160	- 1		_	1 -	v			1	1-1	
170								101100 M	1-4	
180	1			- 2 - 2				1 		
200	1				a		1		11	
210	-								11	
220		-		() (a (+ +)	alatine farme					
230				ere a	1. 4 1	-			11	
240		-1-1-								
250	1			4			9 8 . <mark></mark>	1		
260	- ++					-				
270	1,1		- 1 -			-				
280	1,1,		· · · ·							a ana ing
290	l ₁					1-				9 cm m.
300		•				1				
310	ll					1		* * * * * *		
320		1-				1	1			2

Figure C.2 (suite)

PRO	JET :				EMPL	ACEMENT	:		FORA	SE N	2
MANIC 5-P.A.			Α.		Prise d	5005-74					
oroudeur pi)	 (r	F r n-1)			K _e (m/sec)			K _f (m/sec)		(2))cal.
æ	10	20	30	10-7	10-5	10 ⁻³	10-5	10-3	10	10-5	10 ⁻³
80		T							1	-	
90 -								T	1		
100					î						
110	11	1									1
120		1									
130		, <u> </u>									
140		1_{T}									1 () (MAR)
150								4		4	
160			1								
170				1						4	
180 .	<u> </u>	·		1						4	
190 .		l,									
200 -		<u>1 </u>								4	
210	T					1					
220	1							3			
	1997 - 19										
									1		
		-		11							
							1				
		<u>-</u>			1			1			
1			1		10 B	1					

PROJE	T MANIC 5P.	A. Salerie dr	i. fulte-centrale	FORAGE NE 5011-24
	Fr (#r1)	Ke (m/sec)	Kr (m/set	(2b)col
	10 20 30	11-0 10-t 10-t	10.4 10.1	10-5 1
0 _				
	2.33.4.3			
		-		
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
1				T
	100			
50 4				
6C 1	1 1	-1		
70				
× 1	-			
90			1 1	
		1	1	
o				
i.		1		
		<u> </u>		
				T
		1		
÷#	1	1	100.00	
r.	-1			
0		-	I	
- 40	r	1		
9 T				
44				
3				
-	_ 1]			
4 -	-1			
o -	11			
. 1				
0	5			
	1			
0	104			
] [
1	I I		-	-
1				
1			····-	
1				
1				
1			500	
	·····			
	-			
1	1	1		and some

ANNEXE D: QUELQUES PROGRAMMES UTILISÉS

D.1: <u>Estimation des paramètres d'une distribution log-normale ayant quel</u>ques données de valeurs tronquées

Soit l, la longueur d'une fracture; si nous supposons que l est distribuée log-normalement, alors, par définition, t = log l est distribué normalement. En adoptant cette transformation à nos données, la fonction de densité de probabilité (FDP) d'une distribution normale de moyenne μ et d'écart type σ est la suivante:

$$f(t) = \frac{1}{(2 \pi)^{1/2} \sigma} \exp \left(\frac{-(t - \mu)^2}{2 \sigma^2} \right) \qquad -\infty < t < +\infty \quad (D.1)$$

En tenant compte des données tronquées dans une distribution donnée, l'estimation du MV (EMV) est un peu plus compliquée (Lawless, 1982; Rouleau, 1984). Pour corriger le biais de longueur de fractures, nous nous sommes référés à Lawless (1982, pp. 220-225). Soit Φ (Z) et Q (Z) la FDP et la fonction de distribution cumulée (FDC) d'une distribution normale centréeréduite.

$$\Phi$$
 (Z) = $\frac{1}{(2 \pi)^{1/2}} e^{\left(-\frac{z^2}{2}\right)}$

$$Q(Z) = \int_{Z}^{\infty} \Phi(Z) dz - \infty < Z < + \infty$$
 (D.2)

Si t suit une loi N (μ , σ^2), alors elle aura respectivement pour FDP et FDC $\sigma^{-1} \Phi [(t - \mu)/\sigma]$ et Q $[(t - \mu)/\sigma]$. Aussi, dans le but de considérer le phénomène de troncature des données dans la détermination des paramètres de la distribution des longueurs t_i (i = 1, n) de chaque série, nous allons nommer D le domaine contenant les longueurs non tronquées (Icens = 0) avec u = |D| et C celui qui contient toutes les longueurs de fractures dont l'une au moins des extrémités est tronquée (Icens = 1 et 2). La fonction de vraisemblance usuelle d'une loi normale est de la forme:

$$L = \Pi_{i \in D} \frac{1}{\sigma} \left(\frac{t_i - \mu}{\sigma} \right) \Pi_{i \in C} Q \left(\frac{t_i - \mu}{\sigma} \right)$$
(D.3)

Le logarithme de cette équation donne:

$$Log L (\mu, \sigma) = -u \log \sigma - \frac{1}{2\sigma^2} \sum_{i \in D} (t_i - \mu)^2 + \sum_{i \in C} \log Q \begin{pmatrix} t_i - \mu \\ - \sigma \end{pmatrix} \quad (D.4)$$

La dérivée première de log L est:

$$\frac{\partial \log L}{\partial \mu} = \frac{1}{\sigma^2} \sum_{i} (t_i - \mu) + \frac{1}{\sigma} \Phi \left(\frac{t_i - \mu}{\sigma} \right) / Q = \frac{t_i - \mu}{\sigma}$$
(D.5)

et

$$\frac{\partial \log L}{\partial \mu} = -\frac{\mu}{\sigma} + \frac{1}{\sigma^3} \sum_{i \in D} (t_i - \mu)^2 + \frac{1}{\sigma} \sum_{i \in C} \frac{t_i - \mu}{\sigma} \Phi\left(\frac{t_i - \mu}{\sigma}\right) / Q\left(\frac{t_i - \mu}{\sigma}\right)$$
(D.6)

Les équations du MV sont obtenues en posant (D.5) et (D.6) comme égales à zéro, soit:

$$\sum_{i \in D} Z_i + \sum_{i \in C} V(Z_i) = 0$$
 (D.7)

$$-u + \sum_{i \in D} Z_i^2 + \sum_{i \in C} Z_i V (Z_i) = 0$$
 (3.8)

avec:

$$Z_{i} = (t_{i} - \mu) / \sigma$$

$$V(Z) = -\frac{d}{dZ} \log Q (Z) = \frac{\Phi(Z)}{Q(Z)}$$

$$\lambda(Z) = \frac{d}{dZ} V (Z) = V(Z) (V(Z) - Z)$$
(D.9)

Lawless (1982) a nommé V(Z) une fonction aléatoire de la distribution log-normale et $\lambda(Z)$ sa dérivée.

Deux méthodes ont été suggérées pour estimer la moyenne $\mu_{L\,N}$ et l'écart

type σ_{LN} de la distribution log-normale: la méthode itérative de Newton-Raphson et la méthode itérative proposée par Sampford et Taylor (1959) (citée et adoptée par Lawless, 1982). Nous avons choisi cette dernière puisqu'elle permet de converger plus rapidement que celle de Newton-Raphson. Cette méthode dépend, en fait, du type d'observation et suppose que la variable t ~ N (μ , σ^2). L'espérance mathématique de la variable t, sachant qu'elle est supérieure ou égale à une valeur L, est:

$$E (t / t > L) = \mu + \sigma V \left(\frac{L - \mu}{\sigma}\right)$$
 (D.10)

Cette équation est obtenue de la façon suivante:

$$E (t / t > L) = \int_{L}^{\infty} t \frac{1}{\sigma} \Phi \left(\frac{t - \mu}{\sigma} \right) dt / Q \left(\frac{L - \mu}{\sigma} \right)$$
$$= \mu + \left[\sigma / Q \left(\frac{L - \mu}{\sigma} \right) \right] \int_{(L-\mu)/\sigma}^{\infty} Z \Phi (Z) dZ$$

L'intégrale, à l'extrême droite de l'équation ci-dessus peut s'écrire:

$$\int_{(L-\mu)/\sigma}^{\infty} Z \Phi (Z) dz = \int_{(L-\mu)/\sigma}^{\infty} \frac{1}{(2\pi)^{1/2}} Z e^{-z^{2}/2} dz$$
$$= \frac{1}{(2\pi)^{1/2}} e^{-z^{2}/2} e^{-z^{2}/2} \left(\frac{-(L-\mu)^{2}}{2\sigma^{2}} \right)$$

$$= \Phi\left(\frac{L - \mu}{\sigma}\right)$$

d'où l'équation (D.10).

Si nous posons T_i° comme la variable qui représente la longueur d'une fracture i tronquée, alors, d'après (D.1), nous aurons:

$$E(T_i^{\circ} / T_i^{\circ} > t_i) = \mu + \sigma V [(t_i - \mu) / \sigma]$$

ou bien, d'une façon générale, si W_i est la variable qui représente les longueurs de toutes les fractures individuelles n dans une série donnée:

$$W_{i} = t_{i} \quad \text{pour} \quad i \in D$$

$$W_{i} = \mu + \sigma V \left(\frac{t_{i} - \mu}{\sigma}\right)$$

$$= \mu + \sigma V (Z_{i}) \quad \text{pour} \quad i \in C$$

Les équations du MV (D.7) et (D.8) peuvent être réécrites comme suit:

$$\sum_{i=1}^{n} \frac{w_i - \mu}{\sigma} = 0$$
 (D.11)

$$-u + \sum_{i=1}^{n} \left(\frac{w_i - \mu}{\sigma} \right)^2 - \sum_{i \in C} \lambda(Z_i) = 0$$
 (D.12)

Lawless (1982) suggère que si tous les W_i et λ (Z_i) dans (D.11) et (D.12) sont connus, les équations peuvent être résolues analytiquement pour μ et σ pour obtenir:

$$\mu = \sum_{i=1}^{n} \frac{w_i}{n}$$
(D.13)

$$\sigma^{2} = \sum_{i=1}^{n} (w_{i} - \mu)^{2} / (u + \sum_{i \in C} \lambda(Z_{i}))$$
(D.14)

À partir des valeurs initiales approchées de μ et σ , les équations (D.13) et (D.14) convergent très lentement vers les estimateurs μ_{LN} et σ_{LN} du MV de chaque série considérée. Cependant, dans le but d'alléger le calcul de la FDC Q(Z), une approximation polynomiale peut être utilisée, soit:

$$Q(Z) = \Phi(Z) (a_1 x + a_2 x^2 + a_3 x^3)$$
 (D.15)

où:

x = $(1 + pz)^{-1}$; p = 0,33267; a₁ = 0,4361836; a₂ = - 0,120676; $a_3 = 0,9372980.$

L'erreur commise par cette approximation étant de moins de 10^{-5} pour toutes les valeurs de Z, si, |Z| est grande (7 et plus généralement), une autre approximation a été utilisée pour le calcul de V(Z), soit:

$$V(Z) = Z \left(1 - \frac{1}{Z^2} + \frac{3}{Z^4} - \frac{15}{Z^6} \right)^{-1}$$
 (D.16)

La moyenne μ et l'écart type σ de la distribution de la population originale de fractures peuvent être estimées par les relations suivantes (Rouleau, 1984, p. 55):

$$\mu = EXP \left[\mu_{LN} + \sigma_{LN} / 2 \right]$$
 (D.17)

$$\sigma = \{ EXP (2 \mu_{LN} + \sigma_{LN}^2) [EXP (\sigma_{LN}^2) - 1] \}_{2}^{1}$$
(D.18)

Le programme du paragraphe D.1.1 a été écrit à ces fins et les résultats apparaissent au tableau 3.4

D.1.1 <u>Programme d'estimation des paramètres d'une distribution log-normale</u> <u>de données tronquées</u>

```
.PROC, TROUVMU, FICHIN.
** PROC, POUR ESTIMER LES PARAMETRES DE LA LOI LOG-NORMALE [MU ET SIGMA]
** POUR LES FRACTURES (TRONQUEES ET NON TRONQUEES) DONT LES
** LONGUEURS ET LES INDICES DE TRONCATURES SONT SUR LE FICHIER
** "FICHIN".
RETURN, LGO.
GET, TAPE1=FICHIN.
FTN5, I=PROG, B=LGO, L=O, DB=PMD.
LGO.
REVERT. PROC "TROUVMU" TERMINEE.
.DATA, PROG.
     PROGRAM PPP(TAPE1, OUTPUT)
С
   METHODE TIREE DE "STATISTICAL MODELS AND METHODS
                                                       C
С
                    FOR LIFETIMES DATA"
                                                       С
С
                                                       С
                    (LAWLESS, J.F.; 1982: PAGES 220-224)
C
                                                       C
                                           SH/AVRIL/85 C
С
С
С
      N : NB TOTAL DE FRACTURES
С
     IR NB DE FRACTURES NON TRONOUEES (DOMAINE D)
С
     IC : NB DE FRACTURES TRONQUEES (DOMAINE C)
С
    REM : N = IR + IC (NON TRONO. + TRONO.)
С
      Y : VECTEUR DU LOG DES LONGUEURS
      Z : VECTEUR DES Y CENTRES REDUITS (POUR LA LOI NORMAL (0,1) )
С
    XMU : MOIYENNE QU°ON CHERCHE À ESTIMER
С
С
    SIG : ECART-TYPE OU°ON CHERCHE À ESTIMER
С
  ICENS : VECTEUR DES DEGRÉS DE TRONCATURES DES FRACTURES:
С
          ICENS(I) = 0 : FRACTURE I NON TRONQUEE (DOMAINE D)
С
          ICENS(I) = I : FRACTURE I TRONQUEE (DOMAINE C)
С
   LAMB : LAMBDA
С
      W : LONGUEURS (TRONQUEES OU NON) DE TOUS LES JOINTS
С
          INDIVIDUELS N DANS UNE SERIE DONNEE
С
REAL Y(1000), W(1000), LAMB(1000)
     REAL ICENS(1000)
С
  LECTURE DES Y ET DES ICENS
С
С
     READ(1,°(A1)°) BIDC
     READ(1, *) N
     DO 10 I=1,N
     READ(1,*) BIDAZ, BIDDIP, Y(I), ICENS(I)
     Y(I) = LOG(Y(I))
  10 CONTINUE
С
С
   VALEURS INITIALES POUR "MU" ET "SIGMA"
С
```

```
XMU=1.1
       SIG=0.6
XMUPRE=0.
       SIGPRE=0.
      EPS=1.E-6
       IR=0
      DO 15 I=1,N
   15 IF(ICENS(I).EQ.0) IR=IR+1
С
C CALCUL DE LA VARIABLE "W"
C
  100 IF(ABS(XMU-XMUPRE).LT.EPS.AND.ABS(SIG-SIGPRE).LT.EPS) GOTO 900
      XMUPRE = XMU
      SIGPRE=SIG
      SOMW=0.
      PRINT 8001, XMU, SIG
 8001 FORMAT(° XMU=°, F10.5,° SIG=°, F10.5)
      DO 200 I=1, N
      IF(ICENS(I).EO.0) GOTO 150
С
С
   ICI, DOMAINE C (ICENS(I)=1)
С
      Z = (Y(I) - XMU) / SIG
      W(I) = XMU + SIG + V(Z)
      LAMB(I) = V(Z) * (V(Z) - Z)
      GOTO 190
С
С
   ICI, DOMAINE D (ICENS(I)=0)
С
  150 W(I) = Y(I)
      LAMB(I)=0.
C
  190 SOMW=SOMW+W(I)
  200 CONTINUE
С
      XMU = SOMW / N
С
C CALCUL DES ESTIMATIONS DE XMU ET DE SIG
С
      SOMD2=0.
      SOMLAM=0.
      DO 300 I=1,N
      SOMD2=SOMD2+(W(I)-XMU)**2.
      SOMLAM=SOMLAM+LAMB(I)
  300 CONTINUE
      SIG=SQRT(SOMD2/(IR+SOMLAM))
      GOTO 100
С
  IMPRESSION DES VALEURS FNALES DE XMU ET DE SIG
С
          ٠
```

- D.10 -

```
C
  900 PRINT 2001, XMU, SIG
 2001 FORMAT(° MU =°,F15.5/
1 ° SIGMA =°,F15.5)
C
      STOP
      END
С
C CALCUL D°UNE FONCTION ALEATOIRE DE LA DISTRIBUTION
C NORMAL DE LA VARIABLE Z
С
      FUNCTION V(Z)
      DATA P/.33267/
      DATA A1/.4361836/
      DATA A2/-.1201676/
      DATA A3/.9372980/
      DATA PI/3.141592654/
С
      IF(ABS(Z).GT.8.) GOTO 200
С
С
    CAS OU Z EST PETIT
С
      PHI=1./(SQRT(2.*PI)*EXP(Z*Z/2.))
      T = 1./(1.+P*Z)
      Q = PHI*(AI*T + A2*T*T + A3*T*T*T)
      V = P H I / Q
      GOT0 900
С
С
    CAS OU Z EST GRAND
С
  200 V=Z/(1. - 1./(Z*Z) - 3./Z**4 - 15./Z**6)
      PRINT *, *** PASSAGE PAR GROS "Z"*
  900 RETURN
      END
```

Nous avons vu au paragraphe 3.2.3.1 qu'environ 55 à 70 % des ouvertures sont inférieures à 1 mm et de valeurs exactes inconnues. Or, d'après la littérature, comme les ouvertures sont censées suivre une distribution lognormale, nous avons essayé d'appliquer cette hypothèse aux informations recueillies par géocaméra. Il s'agit donc d'ajuster une loi log-normale aux pourcentages d'ouvertures connues en respectant toutefois, leurs polygones de fréquences. La démarche choisie est la suivante:

Soit x, une variable aléatoire, dont la fonction de densité de probabilité (FDP) est de la forme:

$$Z(x) = \frac{1}{\sqrt{2}\pi} \exp(-x^2/2)$$

La fonction de densité cumulée (FDC) est:

$$P(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} exp(-t^{2}/2) dt = \int_{-\infty}^{x} Z(t) dt$$

D'après Abramowitz <u>et al.</u> (1964, p. 931-932), une variable aléatoire X, de moyenne m et de variance σ^2 , est distribuée normalement si et seulement si, pour tout X < x la relation suivante est vérifiée: _ D.13 _

Pr
$$(X < x) = \frac{1}{\sigma \sqrt{2\pi}} \int_{-\infty}^{X} \exp(-(t - m)^2/2\sigma^2) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{(x-m)/\sigma} \exp(-t^2/2) dt$$
$$= P \frac{(x - m)}{\sigma}$$

Si X est distribué normalement, log X est distribué log-normalement et a pour moyenne μ_{LN} et pour écart type, σ_{LN} . Selon Abramowitz, à l'aide d'une approximation appropriée, la FDC est réécrite comme:

 $P(u) = Z(u) (b_1t + b_2t^2 + b_3t^3 + b_4t^4 + b_5t^5) + \epsilon(u)$

avec:

$$u = \frac{x - \mu_{LN}}{\sigma_{LN}} \quad \text{et} \quad t = \frac{1}{1 + P \cdot u}$$

$$| \epsilon(u) | < 7,5 \times 10^{-8}$$

$$P = 0,2316419$$

$$b_1 = 0,319381530$$

$$b_2 = -0,356563782$$

$$b_3 = 1,781477937$$

$$b_4 = -1,821255978$$

$$b_5 = 1,330274429$$

Si nous désignons par x le logarithme des valeurs des ouvertures, par F_{obs} , la fréquence relative observée et par $F_{cal} = 0.5 / \sigma_{LN} \sqrt{2\pi} EXP$ $(u^2/2)$, la fréquence calculée, alors les paramètres μ_{LN} et σ_{LN} d'une distribution log-normale ajustée seront obtenus par optimisation de la fonction objective P(u) avec respect de la contrainte MIN $\sum |F_{cal} - F_{obs}|^2$. Le programme du paragraphe D.2.1 a été créé pour ces fins et les résultats sont décrits au tableau 3.8.

D.2.1 Programme d'ajustement d'une loi log-normale

```
.PROC, FFPOR1.
* PROCEDURE PERMETTANT D°ESTIMER LES PARAMETRES"MOYENNE ET ECART-TYPE"
* D°UNE DISTRIBUTION LOG-NORMALE TRONQUÉE. AJUSTEMENT PAR RAPPORT
* AUX POLYGONES DE FRÉQUENCE DES OUVERTURES DES SÉRIES DE JOINTS
RETURN, LGO.
GET, UOPTIM.
FTN, I = PRINC, L = 0, A, ER, PMD.
LOAD, LGO.
SATISFY, UOPTIM.
EXECUTE.
REVERT. FFPOR1 TERMINEE.
.DATA, PRINC
     PROGRAM PROG(INPUT, OUTPUT, TAPE5, TAPE6=OUTPUT, TAPE7, TAPE8)
     DIMENSION Z(300)
     DATA NCORE/500/
     CALL GRG(Z, NCORE)
     STOP
     END
SUBROUTINE GCOMP(G,X)
      NX: NOMBRE TOTAL D°OUVERTURES DANS UNE SÉRIE
С
    Y(I): MESURE D°UNE OUVERTURE I (MM)
С
C FOBS(I): FRÉQUENCE OBSERVÉE D°UNE OUVERTURE I
С
    FCAL: FRÉQUENCE CALCULÉE D°UNE QUVERTURE
С
    X(1): MOYENNE ESTIMÉE D°UNE DISTRIBUTION LOGNORMALE
    X(2): ECART-TYPE ESTIME DOUNE DUSTRIBUTION LOCNORMALE
С
С
    G(1): SOMMATION DE |FCAL-FOBS|**2
С
    G(2): FONCTION DE DISTRIBUTION CUMULEE SOUSTRAITE
С
          D°UNE AIRE UNITE
С
DIMENSION G(1), X(1)
     DIMENSION Y(50), FOBS(50)
     DATA IPASS/0/
     IF(IPASS.EQ.1) GOTO 30
C
C LECTURE DES DONNEES D°ENTREES
С
     READ(8,8010) BID
8010 FORMAT(A1)
     READ(8,*) NX
     DO 50 I=1,NX
     READ(8, \star) Y(I), FOBS(I)
   50 CONTINUE
     IPASS=1
  30 G(1)=0
     DO 20 I=1,NX
     Z = (Y(I) - X(I)) / X(2)
     PI=3.141592654
     DX=0.5
```

```
FCAL=DX/(X(2)*SQRT(2.*PI)*EXP(2*Z/2.))
      G(1)=G(1)+(FCAL-FOBS(I))**2
   20 CONTINUE
C
      P=.2316419
      XMIN=0.
      ZZ = (XMIN - X(1))/X(2)
C
      IENEG=0
      IF(ZZ.LT.O.) IENEG=1
      ZZ = ABS(ZZ)
С
      T=1./(1.+P*ZZ)
      B1=.319381530
      B2=-.356563782
      B3=1.781477937
      B4=-1.821255978
      B5=1.330274429
      PHI=1./(SQRT(2.*PI)*EXP(ZZ*ZZ/2.))
      G(2)=1.-PHI*(B1*T+B2*T*T+B3*T*T*T+B4*T**4+B5*T**5)
      IF(IENEG.EO.1) G(2)=1.-G(2)
C
      RETURN
      END
      SUBROUTINE REPORT(G,X,MP1,N,CON,VAR,XO)
      DIMENSION G(1), X(1), CON(1), VAR(1), XO(1)
      DIMENSION Y(50), FOBS(50)
С
C LECTURE DES DONNEES D°ENTREES
С
      REWIND 8
      READ(8,8010) BID
8010 FORMAT(A1)
      READ(8, *) NX
      DO 30 I=1,NX
      READ(8, *) Y(I), FOBS(I)
  50 CONTINUE
      IF(X(1).NE.XO(1).OR.X(2).NE.XO(2)) GOTO 120
     PRINT 8009
8009 FORMAT("1
                  SIMULATION AVEC RESULTATS INITIAUX"/
    1
                  ------
                                             ----"//
       4X, "Y", 6X, 3X, "FOBS", 3X, 3X, "FCAL", 3X)
    1
     GOTO 130
 120 PRINT 8011
8011 FORMAT("1
                 SIMULATION AVEC RESULTATS FINAUX"/
    1
                  _____
                                            -----///
       4X, "Y", 6X, 3X, "FOBS", 3X, 3X, "FCAL", 3X)
    1
 130 PI=3.141592654
     DO 60 I=1, NX
     Z = (Y(I) - X(1)) / X(2)
```

```
FCAL=.5/(X(2)*SORT(2.*PI)*EXP(Z*Z/2.))
       PRINT 8012, Y(I), FOBS(I), FCAL
 8012 FORMAT(1X, 3F10.5)
    60 CONTINUE
       PRINT 8014, X(1), X(2)
 8014 FORMAT(//"CECI AVEC X(1)=", F10.5/
                 11
      1
                         ET X(2) = ", F10.5)
       RETURN
       END
 .DATA, TAPES
    2
       2
NAME AJUSTLOG-NORMAL POROSITÉ CLASSE 4
ROW
 0
     1
 R
      2
          2
                          .00000
                                                1.0000
END
BOUND
 R
     1
          1
                         -10.000
                                              10.00000
 R
      2
          2
                         0.00000
                                              50,00000
END
INITIAL
SEPARATE
     1
          1
                        0.40000
      2
          2
                          .50000
END
METHOD
FDC
END
GO
STOP
.DATA, TAPES
POROSITE CLASSE 4
13
.25 .250000
.75 .067568
1.25 .040541
1.75 .033784
2.25 .027027
2.75 .006757
3.25 .006757
3.75 .006757
4.25 .000000
4.75 .000000
5.25 .000000
5.75 .000000
5.25 .000000
END OF FILE
```

ANNEXE E: EFFETS DES CONDITIONS DE CHARGES AUX LIMITES SUR LA POROSITE TOTALE DU MILIEU

Nous avons vu, dans le plan vertical, que les erreurs introduites par les conditions aux limites sur les débits de drainage Q_s et, par conséquent, sur les perméabilités K_s sont de l'ordre de 6 à 30 %. Ces erreurs étant positives, elles devront être ajoutées à K_s pour obtenir les perméabilités simulées corrigées K'_s :

$$K'_{c} = K_{c} \cdot (1 + \Delta \%)$$

où \triangle % est l'erreur comise sur K_s.

Pour chacun des cas considérés dans cette étude, les erreurs induites sur la porosité totale par les conditions aux limites sont illustrées dans les figures E.1 à E.5 Les superpositions des figures E.1, E.3 et E.4 de la variation des longueurs et des figures E.1, E.5 et E.6 de la variation des densités sont faites dans les figures 4.20 et 4.21. Ces dernières figures nous montrent les meilleures estimations de porosité totale ajustée par la perméabilité moyenne des essais d'eau. En effet, si en moyenne l'erreur standard provoquée sur les perméabilités simulées K_s par les conditions aux limites est de α %, alors, l'erreur standard introduite sur la porosité totale du milieu est E_{std} = $\left| \begin{array}{c} \theta_{sMAX} & - \begin{array}{c} \theta_{sMIN} \end{array} \right| / 2$ et la meilleure valeur

Relation perméabilité / porosité totale: effet du biais des C.L. sur l'estimation de la porosité totale du milieu

-E.2-

Relation perméabilité / ouverture: effet du biais des C.L. sur l'estimation de l'ouverture des séries de fractures

-E.4-

Relation perméabilité / porosité totale dans le plan vertical: effets du biais des C.L. et d'une légère diminution des longueurs (ALE - E_{std}) sur la porosité totale du milieu

- E.5 -

Relation perméabilité / porosité totale dans le plan vertical: effets du biais des C.L. et d'une légère diminution des longueurs ($\delta s + E_{std}$) sur la porosité totale du milieu

Relation perméabilité / porosité totale dans le plan vertical: effets du biais des C.L. et d'une légère diminution des longueurs ($\delta s - E_{std}$) sur la porosité totale du milieu

estimée de porosité totale moyenne est (figures 4.20 et 4.21):

$$\Theta_{te} = (\Theta_{sMAX} + \Theta_{sMIN}) / 2$$

Les résultats obtenus plus haut sont résumés dans les tableaux E.1 et E.2. Dans le plan horizontal, la moyenne des rapports $Q_3 + Q_7$ et Q_T est négative et dépasse les 100 %. Il en découle qu'une correction des perméabilités K_s ne peut être envisagée dans ce cas.
Tableau E.1

Statistiques générales des effets des C.L. et de variation des longueurs des séries de fractures sur les ouvertures et la porosité totale du milieu

LONGUEUR	Ŷ	AAP	EAAP (%)	EJND	ÂÂP	Y	ēs	Е <u>б</u> s (%)	Eind (%)	θ _{TE}
ALE + E STD	3,23 x + 15,0	- 9,23 (98µ)	7,2			3,17 x + 8,75	- 7,39 (6,17 10-	7,3 .4)		
ALE	3,12 x + 14,3	- 9,33 (89µ)	7,5	13	- 9,28 (93µ)	3,17 x + 8,95	- 7,46 (5,76 10-	7,3 ⁴)	12	- 7,41 (6,0 10 ⁻⁴)
ALE - E _{STD}	3,15 x + 14,4	- 9,22 (99µ)	7,4			3,10 x + 8,10	- 7,37 (6,30 10-	7,5 4)		

Tableau E.2

Statistiques générales des effets des C.L. et de variation des densités des séries de fractures sur les ouvertures et la porosité totale du milieu

DENSITÉ	Y	AAP	EAAP (%)	EIND (%)	ÂÂP	Y	θ _s	Eōs (%)	Eind (%)	θ _{TE}
δ _s + E std	2,98 x + 13,3	- 9.41 (82µ)	7,8			3,06 x + 7,99	(6,0 ⁴²)	7,6		
δ s	3,12 x + 14,3	- 9,33 (89µ)	7,5	16	- 9,34 (88µ)	3,17 x + 8,95	- 7,46 (5,76 10-	7,3 ')	14 (5	- 7,49 5,59 10 ⁻⁴)
δ – E s STD	3,18 x + 14,7	- 9,25 (96µ)	7,3			3,18 x + 9,38	- 7,56 (5,21 10-	7,3		
$\begin{array}{cccc} \overline{AAP} & & ouve \\ \overline{EAP} & & erre \\ \overline{AAP} & & meil \\ \overline{E}IND & & erre \\ \overline{\theta} & & poro \\ \overline{E} & & erre \\ \overline{E} & & erre \\ \overline{IND} & & erre \\ Y & & equa \\ \mu & & unit \\ \overline{\theta} TE & meil \end{array}$	rture moyenne ur standard sur leure estimation ur induite par l sité totale moye ur standard sur ur induite par l tion de la droit é de mesure (mic leure estimation	AAP de AAP es mesures nne ^θ s es mesures e de régres rons) de porosit	de perméat de perméat sion té totale m	oilité <u>in</u> oilité <u>in</u> noyenne	<u>situ</u> et d <u>situ</u> et d	e longueur (ou der e longueur (ou der	usité), sur A/ usité) sur θ _{TI}	АР <u>=</u>		

ANNEXE F: SOMMAIRE DES RÉSULTATS DES SIMULATIONS

Une liste résumant les principaux résultats des simulations des caractéristiques physiques et hydrauliques du milieu fissuré, étudiées par les modèles stochastiques NETWORK et NETFLO, est fournie dans cette annexe.

Formats du listing

Col	onne
	-

Information

- 01-02 : Code d'identification du type d'information (nombre entier) 11 : Données des caractéristiques physiques du réseau de joints générés
 - 22 : Données des propriétés hydrauliques du milieu
 - 33 Paramètres et écoulements des réalisations des distributions de vitesses
 - 44 : Commentaire général
 - 55 : Moyenne des rapports des débits de la limite 7 (ou 7 et 3) et des débits totaux

Format du code 11

03-07: 08-13: 14-19: 20-24: 25-28: 29-33: 24-28:	Numéro de la simulation (alphanumérique) Nombre total d'intersections dans le réseau (Numint) Nombre des éléments (Numelt) Nombre de noeuds efficaces (Numnpt) Nombre de noeuds non efficaces Nombre de noeuds ayant une condition de charges aux limites Nombre de noeuds libres "cars condition de charges (nf)"
39-45 :	Dimension de la matrice "A" de résolution des charges hy- drauliques
46-50:	Dimension de la matrice "A" avant la renumérotation Dimension de la matrice "A" apres la renumérotation
	Format_du_code_22
03-07:	Numéro de la simulation (alphanumérique)
08-11:	Nombres séquentiels des distributions des ouvertures
12-19:	Code alphanumérique des données des ouvertures (cf. tableau F-1 pour plus de détails sur les valeurs utilisées lors des simulations)
20-25:	Code alphanumérique des données des longueurs (cf. tableau F-1 pour plus de détails)
26-31:	Code alphanumérique des données des densités (cf. tableau F-1 pour plus de détails)
32-42:	Porosités totales moyennes simulées d'une distribution des ouvertures données
43-53:	Rapports de porosités efficaces et de porosités totales
54-64:	Débits d'écoulement de drainage receuillis à la limite 5
65-75:	Rapports des débits de la limite 7 et de débits totaux

Format du code 33

03-07:	Numéro	de	la	simulation	(alphanumérique)
00 0/.	Numer 0	uc	1 u	STINUTUCION	(a phanamer rque)

- 08-11: Nombres séguentiels de distribution d'ouvertures
- 12-18: Meilleure valeur d'ouverture estimée
- 19-24: Code alphanumérique des données de longueurs calculées (cf. tableau F-1 pour plus de détails)
- 25-30: Code alphanumérique des données de densités calculées (cf. tableau F-1 pour plus de détails)
- 31-41:Débits d'écoulement de drainage recueillis à la limite 542-52:Rapports des débits de la limite 3+7 et des débits totaux

Format du code 44

03-80: Commentaires libres

Format du code 55

- 03-64: Commentaires libres
- 65-75: Moyenne des rapports des débits de la limite 7 (Q7) ou des limites 3 et 7 (Q7+Q3) et des débits totaux

Différents types de variations des données d'entrée (simulations RO1A à RO68)

ТҮРЕ	SYMBOLE	S1	S2	\$3	S4
	APER01 AERR02	-7.13 -7.43	-7.22 -7.52	-7.38 -7.68	-7.14 -7.44
	APER03	-7.73	-7.82	-7.98	-7.74
0	APER04	-8.33	-8.42	-8.58	-8.34
Ū	APER06	-8.63	-8.72	-8.88	-8.64
٧	APER07	-8.93	-9.02	-9.18	-8.94
E	APER08	-8.13	-8.22	-8.38	-8.14
R	APER09	-8.43	-8.52	-8.68	-8.44
1	APERIU APERIU	-0./3	-0.02	-0.98	-8./4
R	APER12	-9.13	-9.22	-9.38	-9.14
E	APER13	-9.43	-9.52	-9.68	-9.44
S	APER14	-9.73	-9.82	-9.98	-9.74
	APER15	-10.0	-10.1	-10.3	-10.0
	APER16	-9.23	-9.32	-9.48	-9.24
	APERI/	-9.53	-9.62	-9./8	-9.54
	APER18 APER19	-10.1	-10.2	-10.1	-9.84
LON	LONG1	1.93	2.14	1.68	1.67
GUE	LONG2	2.01	2.22	1.74	1.75
URS	LONG3	1.86	2.06	1.61	1.59
	LUNG4	2.10	2.3/	1.88	1.91
	LUNUJ	1./1	1.71	1.40	1.43
DEN	DENS1	2.86	0.31	0.93	0.41
SIT	DENS2	3.46	0.38	0.95	0.43
ES	DFN23	2.20	0.24	0.91	0.39

						-			
44	NETWO	RK-N	ETFLO /	CANAL	D°AMENI	EE (ZONE-I	- AMONT DU	PM = 1100)	
44	SIMU	LATI	ONS DANS	S LE PI	LAN VERT	FICAL (RO1	A A R046)		
11	ROIA	620	0 1022	586	34 57	529 85	35 520 23		
22	ROIA	01	APER01	LONG1	DENS1	4.738E-03	8.591E-01	3.302E-03	-3.885E-01
22	ROIA	0.2	APER01	LONG1	DENS1	4.738E-03	8.857E-01	2.012E-02	-4.419E-02
22	R01A	03	APER01	LONG1	DENS1	4.738E-03	8.839E-01	1.615E-02	-2.595E-01
22	ROIA	04	APER01	LONG1	DENS1	4.738E-03	8.818E-01	1.133E-03	-8.627E-01
22	ROIA	05	APERO2	LONG1	DENS1	3.134E-03	8.674E-01	8.032E-03	7.262E-02
22	ROIA	06	APER02	LONG1	DENS1	3.134E-03	8.511E-01	6.201E-04	-1.308E-01
22	ROIA	07	APER02	LONG1	DENS1	3.134E-03	8.356E-01	1.786E-03	2.178E-01
22	ROIA	08	APER02	LONG1	DENSI	3.134E-03	8.601E-01	2.442E-03	-5.309E-01
22	ROIA	09	APER03	LONG1	DENS1	2.408E-03	8.706E-01	3.031E-03	2.876E-01
22	ROIA	10	APER03	LONG1	DENS1	2.408E-03	8.769E-01	2.173E-03	5.806E-01
22	ROIA	11	APER03	LONG1	DENS1	2.408E-03	8.416E-01	5.920E-04	-9.629E-02
22	ROIA	12	APER03	LONGI	DENS1	2.408E-03	8.721E-01	2.689E-04	-7.568E-01
22	ROIA	13	APEROA	LONG1	DENS1	1.722E-03	8.580E-01	1.009E-04	-8.003E-01
22	ROIA	14	APER04	LONG1	DENS1	1.722E-03	8.482E-01	9.936E-04	9.107E-01
,,	ROIA	15	APEROA	LONGI	DENS1	1.722E-03	8.689E-01	1.209E-03	7.680E-01
22	ROIA	16	APER04	LONGI	DENSI	1.722E-03	8.685E-01	6.694E-04	7.571E-01
11	R02A	59	2 954	549	43 60	489 73	05 496 20		
22	RO2A	01	APER01	LONGI	DENS1	4.456E-03	8.394E-01	2.445E-03	-7.882E-01
22	RO2A	02	APER01	LONG1	DENS1	4.456E-03	8.564E-01	3.434E-03	-3.702E-01
22	RO2A	03	APER01	LONGI	DENSI	4.456E-03	8.632E-01	4.372E-03	-5.942E-01
22	RO2A	04	APERO1	LONGI	DENSI	4.456E-03	8.781E-01	1.426E-02	6.654E-01
22	RO2A	05	APER02	LONGI	DENSI	3.588E-03	8.845E-01	4.940E-03	5.733E-01
22	RO2A	06	APER02	LONGI	DENSI	3.588E-03	8.384E-01	9.589E-04	-4.222E-01
22	ROZA	07	APER02	LONGI	DENSI	3.588E-03	8.579E-01	2.769E-03	-7.136E-01
22	RO2A	0.8	APER02	LONGI	DENSI	3.588E-03	8.817E-01	1.913E-02	4.586E-01
22	RO2A	09	APER03	LONGI	DENSI	2.617E-03	8.676E-01	1.830E-03	2.421E-01
22	RO2A	10	APER03	LONGI	DENSI	2.617E-03	8.755E-01	4.178E-03	6.882E-01
22	R02A	11	APER03	LONGI	DENSI	2.617E-03	8.538E-01	7.152E-04	-3.276E-01
22	R02A	12	APER03	LONG1	DENSI	2.617E-03	8.582E-01	1.152E-03	-4.009E-01
22	RO2A	13	APER04	LONGI	DENSI	1.939E-03	8.589E-01	2.224E-03	6.483E-02
22	R02A	14	APER04	LONG1	DENSI	1.939E-03	8.706E-01	6.726E-04	-1.602E-01
22	R02A	15	APEROA	LONGI	DENS1	1.939E-03	8.622E-01	7.097E-04	-2.815E-01
22	R02A	16	APEROA	LONGI	DENSI	1.939F-03	8.904E-01	4.084E-03	5 - 701E - 01
11	ROJA	63	3 1047	604	29 70	534 83	56 508 22	410041 05	
22	ROJA	01	APEROL	LONGI	DENSI	4.908E-03	8-803E-01	2.517E-02	8.885E-01
22	ROJA	02	APEROI	LONGI	DENS1	4.908E-03	8.850E-01	4.045E-02	7.440E-01
22	ROJA	03	APEROI	LONGI	DENSI	4 908E-03	8.561E-01	6.906E-03	-1.571E-01
22	ROJA	04	APEROI	LONGI	DENSI	4.908E-03	8.793E-01	2.196E-02	5.743E-01
22	ROJA	05	APER02	LONGI	DENSI	3.571E-03	8.581E-01	8.587E-03	9.202E-01
22	R034	06	APERO2	LONGI	DENSI	3.5718-03	8.740E-01	3.108E-03	-1.167E-01
22	ROJA	07	APERO2	TONCI	DENSI	3 5718-03	8 5695-01	1.282E-03	-5-845E-01
22	PO3A	0.8	APERO2	LONGI	DENSI	3 5718-03	8 691F-01	9.912E-03	3-546E-01
22	POSA	00	APEROZ	LONGI	DENSI	2 6515-03	8 7428-01	2 825E-03	8.447F-01
22	POSA	10	APEROJ	LONGI	DENSI	2.051E 03	8 7435-01	1.761F-03	1.875F-01
22	POSA	11	APER03	LONGI	DENSI	2.6518-03	8 8085-01	1.3935-02	2.863E-01
22	ROJA	12	APERO.	LONGI	DENSI	2.6518-03	8.725F-01	2-6588-03	6.237E-03
22	ROJA	12	ADEDUV	LONGI	DENCI	1.876F-03	8-673E-01	6.178E-04	1.583E-01
22	ROJA	14	APEROA	LONGI	DENSI	1.876E-03	8-397E-01	3.548E-04	6.728E-01
22	ROJA	15	APEROA	LONGI	DENSI	1.876E-03	8-894E-01	7.990E-04	-2.652E-01
22	ROJA	16	APERO	LONGI	DENSI	1.876E-03	8.810E-01	3.417E-04	-3.967E-01
11	R04A	62	5 1023	583	42 58	525 78	13 510 20		
22	R04A	01	APER01	LONGI	DENSI	4.528E-03	8.907E-01	1.210E-02	-2.143E-01
22	R04A	02	APER01	LONG1	DENSI	4.528E-03	8.707E-01	5.388E-03	5.577E-01

- F.4 -

22	R04A	03 APER01	LONG1 D	ENS1	4.528E-03	8.682E-01	3.991E-03	-3.628E-01
22	RO4A	04 APER01	LONG1 D	ENS1	4.528E-03	8.713E-01	5.365E-02	7.345E-02
22	R04A	05 APER02	LONG1 DI	ENS1	3.859E-03	8.887E-01	5.394E-03	6.378E-01
22	RO4A	06 APERO2	LONG1 D	ENS1	3.859E-03	8.807E-01	2.016E-02	8.637E-01
22	R04A	07 APER02	LONG1 D	ENS1	3.859E-03	9.240E-01	4.844E+00	9.990E-01
22	R04A	08 APERO2	LONG1 DI	ENS1	3.859E-03	8.626E-01	1.396E-03	1.430E-01
22	RO4A	09 APER03	LONG1 D	ENS1	2.489E-03	8.749E-01	8.712E-04	9.479E-01
22	RO4A	10 APER03	LONG1 DI	ENS1	2.489E-03	8.886E-01	7.153E-03	8.404E-01
22	RO4A	11 APER03	LONG1 D	ENS1	2.489E-03	8.730E-01	3.902E-04	-1.187E-02
22	RO4A	12 APERO3	LONGI DI	ENS1	2.489E-03	8.823E-01	6.026E-03	8.849E-01
22	RO4A	13 APERO4	LONGI DI	ENS1	1.907E-03	8.898E-01	1.631E-02	9.578E-01
22	RO4A	14 APERO4	LONGI DI	ENS1	1.907E-03	8.881E-01	4.335E-04	-2.729E-01
22	RO4A	15 APER04	LONGI DI	ENS1	1.907E-03	8.863E-01	1.939E-03	7.039E-01
$\frac{2}{22}$	RO4A	16 APERO4	LONGI DI	ENS1	1.907E-03	8.845E-01	5.768E-04	5.614E-02
11	R05A	625 1023	583 4	2 58	525 781	3 510 20		
22	ROSA	01 APER08	LONGI DI	ENS1	1.668E-03	8.911E-01	6.023E-04	-2.143E-01
"	ROSA	02 APERO8	LONGI D	ENSI	1.668E-03	8-705E-01	2.683E-04	5-577E-01
22	ROSA	03 APER08	LONGI D	ENSI	1.668E-03	8-684E-01	1.987E-04	-3.628E-01
22	ROSA	04 APEROS	LONGI D	ENSI	1.668E-03	8.716E-01	2-671E-03	7.345E-02
22	ROSA	05 APER09	LONGI D	FNSI	1 420F-03	8 887F-01	2.686E - 04	6.378F-01
22	ROSA	06 APER09	LONGI D	FNS1	1 420E-03	8.811E-01	1.0048-03	8.637F-01
22	ROSA	07 APEROS	LONGI D	ENGI	1 4205-03	9.241E-01	2 4128-01	9 990F-01
22	ROSA	OS APEROS	LONGI D	ENCI	1.4208-03	8 6248-01	6 9528-05	1.4305-01
22	POSA	OG APERIO	LONGI D	ENCI	1.420E-0J	8.024E-01	0.9J2E-0J	9 4795-01
22	POSA	10 APERIO	LONGI D	ENGI	9.150E-04	8 8848-01	4.337E-03	9.4/9E-01
22	ROJA	10 APERIO	LONGI	ENGI	9.150E-04	8 731E-01	1 9/3E-05	-1 187E-02
22	DOSA	12 APERIO	LONGI D.	ENCI	9.1505-04	9.931E = 01	1.945E=03	-1.107E-02
22	RUJA	12 APERIU	LONGI D	ENGI	7.012E-04	9.021E-01	9 101E-04	0.579E - 01
22	RUJA	15 APERII	LONGI D.	ENSI	7.0132-04	0.0992-01	0.121E-04	9.5/8E-01
22	RUJA	14 APERII	LONGI D.	ENSI	7.013E-04	3.8/91-01	2.1382-03	-2.729E-01
22	RUJA	15 APERII	LONGI DI	ENSI	7.0132-04	8.803E-01	9.0332-03	7.039E-01
22	RUJA	IO APERII	LUNGI	LNSI	7.013E-04	8.545E-01	2.8/22-05	J.014E- 02
11	RUDA	01 1002	10101 01	9 04 ENCI		+ 509 25		0 5(17 01
22	RUDA	OI APEROO	LONGI DI	ENSI	1.7986-03	8,/JIE-01	4.8952-03	9.3012-01
22	RUDA	UZ APERUS	LONGI DI	LNSI	1.798E-03	8.822E-01	1.9422-03	-1.4422-01
22	RUDA	03 APER08	LONGI DI	LNSI	1.798E-03	8./80E-01	1.455E-03	4.130E-01
22	RUGA	04 APER08	LONGI DI	ENSI	1.798E-03	8.6/2E-01	2.2//E-04	-1.613E-01
22	RUGA	05 APER09	LONGI DI	ENSI	1.296E-03	8.836E-01	1.680E-04	-1.919E-01
22	ROGA	06 APER09	LONGI DI	ENSI	1.296E-03	8.653E-01	7.166E-05	2.5958-01
22	RUGA	07 APER09	LONG1 DI	ENSI	1.296E-03	8.808E-01	1.644E-04	7.962E-01
22	ROGA	08 APER09	LONGI DI	ENSI	1,296E-03	8.915E-01	4.392E-04	5.250E-02
22	RUGA	09 APERIO	LONGI DI	ENS1	9.114E-04	8.698E-01	3.611E-05	3.264E-01
22	R06A	10 APER10	LONGI DI	ENSI	9.114E-04	8.752E-01	2.823E-04	1.612E-01
22	ROGA	11 APER10	LONG1 DI	ENS1	9.114E-04	8.895E-01	8.448E-05	4.306E-01
22	ROGA	12 APER10	LONG1 DI	ENSI	9.114E - 04	8.662E-01	2.089E-05	-3.912E-01
22	ROGA	13 APER11	LONGI DI	ENS1	8.134E-04	8.930E-01	1.493E-04	-1.112E-01
22	ROGA	14 APER11	LONG1 DI	ENS1	8.134E-04	8.552E-01	3.970E-05	4.403E-01
22	ROGA	15 APER11	LONG1 DI	ENS1	8.134E-04	8.769E-01	3.840E-05	1.665E-01
22	ROGA	16 APER11	LONG1 DI	ENS1	8.134E-04	8.646E-01	2.685E-05	3.947E-01
11	RO7A	546 868	509 3	7 58	451 623	1 454 20	-	*
22	RO7A	OI APERO8	LONG1 DI	ENS1	1.719E-03	8.690E-01	4.357E-04	7.856E-01
22	R07A	02 APER08	LONG1 DI	ENS1	1.719E-03	8.417E - 01	2.480E-04	-2.373E-01
22	RO7A	03 APER08	LONG1 DI	ENS1	1.719E-03	8.470E-01	1.893E-03	9.593E-01
22	R07A	04 APER08	LONG1 DI	ENSI	1.719E-03	8.571E-01	2.646E-04	7.080E-01
22	RO7A	05 APER09	LONG1 D	ENS1	1.216E-03	8.282E-01	2.301E-04	9.092E-01
22	R07A	06 APER09	LONG1 DI	ENS1	1.216E-03	8.465E-01	2.937E-04	7.230E-02
22	R07A	07 APER09	LONGI DI	ENS1	1.216E-03	8.539E-01	8.235E-05	-4.351E-01

- F.5 -

22	R07A	08	APER09	LONGI	DENS1	1.216E-03	8.562E-01	1.394E-04	4.491E-01
22	R07A	09	APER10	LONG1	DENSI	9.708E-04	8.184E-01	7.593E-05	7.028E-01
22	R07A	10	APER10	LONG1	DENS1	9.708E-04	8.584E-01	6.028E-03	9.943E-01
$\frac{2}{2}$	R07A	11	APER10	LONG1	DENS1	9.708E-04	8.582E-01	2.566E-04	9.159E-01
22	R07A	12	APER10	LONG1	DENS1	9.708E-04	8.516E-01	4.263E-04	8.454E-01
22	R07A	13	APER11	LONG1	DENSI	6.852E-04	8.698E-01	5.686E-04	9.772E-01
,,	RO7A	14	APERII	LONGI	DENSI	6-852E-04	8.442E-01	2.442E-05	7.997E-01
22	RO7A	15	APER11	LONGI	DENSI	6-852E-04	8.4995-01	1.211E-05	6-466E-01
22	RO7A	16	APERII	LONGI	DENSI	6.852E-04	8.393E-01	5-985E-06	-1.092E-01
11	RORA	6.2	5 1029	589	36 59	530 8461	7 517 22		1.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
27	ROSA	01	APEROS	LONGI	DENSI	1.8005-03	9.060F-01	1.235E-03	5.687E-01
2 L))	PORA	02	APEROS	LONGI	DENSI	1 800E-03	8 989F-01	4.973F-04	9.495F-02
22	DOGA	02	ADEDOG	LONCI	DENSI	1 800E-03	8 864F-01	7 0005-04	3 3155-01
22	DOGA	0.5	ADEDOO	LONGI	DENSI	1.800E-03	8.091E-01	1 7005-04	3.313E-01
22	DOGA	04	APERUO	LONGI	DENSI	1.3005-03	0.901E-01	1.7292-03	7 0558-01
22	RUCA ROCA	05	APERU9	LONGI	DENSI	1.200E-03	0.997E-01	1.201E-04	
22	RUDA	00	APER09	LUNGI	DENSI	1.2802-03	8.900E-01	2.0202-04	5.021E-01
12	RUSA	07	APERUS	LUNGI	DENSI	1.280E-03	9.065E-01	3.082E-04	7.875E-01
22	RUBA	08	APER09	LONGI	DENSI	1.280E-03	8.894E-01	3.310E-04	8.9/8E-01
22	ROBA	09	APER10	LONGI	DENSI	8.827E - 04	8.962E-01	1.412E-04	7.367E-01
22	ROSA	10	APER10	LONG1	DENSI	8.827E-04	8.982E-01	9.701E-05	7.025E-01
22	RO8A	11	APER10	LONG1	DENSI	8.827E-04	8.807E-01	3.047E-05	2.650E-01
22	RO8A	12	APER10	LONG1	DENS1	8.827E-04	8.638E-01	6.957E-05	5.555E-01
22	R08A	13	APER11	LONG1	DENSI	6.638E-04	8.916E-01	3.395E-06	1.331E-02
22	ROSA	14	APER11	LONG1	DENS1	6.638E-04	8.996E-01	2.645E-05	7.827E-01
22	R08A	15	APER11	LONG1	DENS1	6.638E-04	8.751E-01	1.776E-05	4.888E-01
22	R08A	16	APER11	LONG1	DENS1	6.638E-04	8.757E-01	6.433E-05	5.838E-01
55	MOYEN	NE DI	ES RAPPO	ORTS DI	ES DEBIT	TS DE LA LIN	MITE 7 ET T	OTAUX	0.29458
11	R001	60	5 980	568	37 59	509 7213	3 505 23		
22	R001	01	APER04	LONG1	DENS1	1.879E-03	8.861E-01	1.471E-03	-7.709E-02
22	R001	02	APER04	LONGI	DENSI	1.879E-03	8.654E-01	9.902E-04	-2.251E-02
22	R001	03	APEROA	LONGI	DENSI	1.879E-03	8-845E-01	1.104E-03	2.845E-01
22	ROOI	04	APEROA	LONGI	DENSI	1.879F-03	8.477E-01	9.442E-05	-3.348E-01
22	ROOI	0.5	APEROS	LONGI	DENGI	1-454E-03	8-698F-01	1.272E-04	2.090E-01
22	POOL	06	APEROS	TONCI	DENSI	1.4545-03	8 8665-01	3 381F-04	6.275E-02
22	POOL	07	APEROS	LONCI	DENSI	1.4548-03	8 503E-01	5 2238-04	-7 686F-01
22	P OO1	07	APERUJ	LONGI	DENSI	1.4J4E-03	8.905E-01	9.22) = 04	2 5785-01
22	ROO1	00	APERUJ	LONGI	DENSI	1.4946-03	0.0502-01	0.010E-04	2.J75E-01
22	ROOI	10	APERUO	LUNGI	DENSI	1.059E-03	0,0492-01	1.4426-04	5.016E-01
22	ROOI	10	APERUD	LUNGI	DENSI	1.0592-03	0.040E-UI	4.0756-04	5.9102-01
22	RUUI	11	APEROO	LONGI	DENSI	1.059E-03	8.8/2E-01	9.9/0E-03	-3.3022-01
22	K001	12	APERUS	LONGI	DENSI	1.039E-03	9.080E-01	0.2/4E-04	5.044E-01
22	RUUI	13	APER07	LONGI	DENSI	7.144E-04	8.516E-01	1.3462-03	3.307E-01
22	R001	14	APER07	LONGI	DENSI	7.144E-04	8.602E-01	1.793E-05	3.122E-01
22	R001	15	APER07	LONG1	DENSI	7.144E-04	8.966E-01	2,665E-04	6.806E-01
22	R001	16	APER07	LONGI	DENSI	7.144E-04	8.771E-01	3,913E-05	7.262E-01
11	R002	61	9 1023	583	36 58	525 8447	7 518 21		
22	R002	01	APER04	LONG1	DENS1	1.856E-03	8.758E-01	1.282E-03	8.093E-01
22	R002	02	APER04	LONG1	DENSI	1.856E-03	8.959E-01	5.873E-04	1.014E-01
22	R002	03	APER04	LONG1	DENSI	1.856E-03	8.924E-01	1.283E-03	5.895E-01
22	R002	04	APER04	LONGI	DENS1	1.856E-03	8.737E-01	5.065E-04	-3.312E-01
22	R002	05	APER05	LONG1	DENS1	1.355E-03	8.614E-01	2.065E-04	3.502E-01
22	R002	06	APER05	LONG1	DENSI	1.355E-03	8.965E-01	3.150E-04	7.155E-01
22	R002	07	APER05	LONG1	DENSI	1.355E-03	8.825E-01	4.515E-04	7.220E-01
22	R002	08	APER05	LONG1	DENS1	1.355E-03	8.912E-01	4.826E-04	7.015E-01
22	R002	09	APER06	LONG1	DENSI	9.802E-04	8.687E-01	2.583E-05	1.231E-01
22	R002	10	APER06	LONG1	DENS1	9.802E-04	8.776E-01	2.373E-04	7.845E-01
22	R002	11	APER06	LONG1	DENS1	9.802E-04	9.027E-01	2.289E - 04	4.754E-02

22	R002	12 APE	106 LO	NG1 DENS1	9.802E-04	8.869E-01	1.359E-04	5.175E-01
22	R002	13 APEI	R07 L0	NG1 DENS1	7.799E-04	8.851E-01	1.109E-05	3.106E-02
22	R002	14 APE	R07 L0	NG1 DENS1	7.799E-04	8.842E-01	3.382E-04	8.260E-01
22	R002	15 APEI	107 LO	NG1 DENSI	7.799E-04	8.919E-01	7.070E-05	7.308E-01
22	R002	16 APEI	207 1.0	NGI DENSI	7.799E-04	8-958E-01	1.084E-04	6.635E-01
11	POOL	502	5/ 5	10 43 6r	489 730	5 496 20		•••••
11	R003	01 ADE1	0 (TO	47 4J UU NCI DENGI	1 9005-03	8 30.5-01	1 6438-04	-7 8875-01
22	RUUS	OI APEI	CO4 LO	NGI DENSI	1.8092-03	0,3746-01	1.9436-04	-7.8626-01
22	R003	02 APE	(04 LO	NGI DENSI	1.809E-03	8.559E-01	2.308E-04	-3.702E-01
22	R003	03 APEI	R04 L0	NG1 DENSI	1.809E - 03	8.628E-01	2.938E-04	-5.942E-01
22	R003	04 APEI	104 LO	NG1 DENS1	1.809E-03	8.779E-01	9.582E-04	6.654E-01
22	R003	05 APEI	105 LO	NG1 DENS1	1.458E-03	8.849E-01	3.320E-04	5.733E-01
22	R003	06 APE	R05 L0	NG1 DENS1	1.458E-03	8.387E-01	6.445E-04	-4.222E-01
22	R003	07 APE	805 LO	NG1 DENS1	1.458E-03	8.576E-01	1.861E-04	-7.136E-01
22	R003	08 APEI	205 1.0	NGI DENSI	1.458E-03	8-817E-01	1.286E-03	4.596E-01
22	R003	00 APEI		NCI DENSI	1 063E-03	8.676F - 01	1 2305-04	2.420F-01
22	R003	10 ADEL		NCI DENSI	1.0635-03	9 7565-01	2 8085-04	6 9825-01
22	RUUS	10 APE		NGI DENSI	1.0636-03	0.730E-01	2.000E-04	0,002E-01
22	ROOS	II APEI	K06 L0	NGI DENSI	1.063E-03	8.33/E-01	4.8062-05	-3.2/02-01
22	R003	12 APE	R06 L0	NG1 DENS1	1.063E-03	8.587E-01	7.745E-05	-4.009E-01
22	R003	13 APE	R07 L0	NG1 DENS1	7.879E-04	8.588E-01	1.495E - 04	6.483E-02
22	R003	14 APEI	R07 LO	NG1 DENS1	7.879E-04	8.702E-01	4.520E-05	-1.602E-01
22	R003	15 APEI	07 LO	NG1 DENS1	7.879E-04	8.623E-01	4.769E-05	-2.815E-01
22	R003	16 APEI	07 LO	NGI DENSI	7-879E-04	8.904E-01	2.745E-04	5.701E-01
11	R004	676 10	130 5	93 33 65	531 838	1 535 23		
22		AL ADEL		NCI DENGI	2 007 = 03	8 9885-01	0 0138-04	-8 396F-01
22	R004	OI APE		NGI DENSI	2.007E-03	0.956E = 01	1.062E - 02	4 445E-02
22	R004	02 APE		NGI DENSI	2.0072-03	9.0352-01	1.003E-02	4.44JE-02
22	KUU4	US APE	(04 LO	NGI DENSI	2.00/E-03	9.04/E-01	5.430E-04	0.496E-01
22	R004	04 APE	R04 L0	NG1 DENSI	2.007E - 03	8.897E-01	9.558E-04	4.854E-01
22	R004	05 APEI	805 LO	NG1 DENS1	1.500E-03	8.985E-01	7.580E-04	-2.099E-02
22	R004	06 APEI	R05 L0	NG1 DENS1	1.500E-03	8.974E-01	3.442E-04	-2.479E-02
22	R004	07 APEI	R05 L0	NG1 DENS1	1.500E-03	8.976E-01	1.130E-03	3.653E-01
22	R004	08 APE	805 LO	NG1 DENS1	1.500E-03	9.116E-01	9.981E-04	7.964E-01
22	ROOA	09 APE	R06 L0	NGI DENSI	1.003E-03	9.096E-01	1.086E-04	6.112E-02
22	POO4	IO APEI		NC1 DENSI	1 0035-03	9 029F-01	7 3028-04	6.097F - 01
22	R004	10 HFL		NGI DENSI	1.003E = 03	9.0292 01	4 337E-04	3 4105-01
22	R004	11 APE		NGI DENSI	1.003E-03	9.0002-01	4.5276-04	5.410E-01
22	R004	12 APE	K06 TO	NGI DENSI	1.003E-03	8.861E-01	1.041E-04	8.014E-01
22	R004	13 APE	R07 L0	NG1 DENS1	8.523E-04	8.960E-01	5.681E-05	1.193E-01
22	R004	14 APE	R07 LO	NG1 DENS1	8.523E-04	9.136E-01	4.871E-04	7.071E-01
22	R004	15 APE	807 LO	NG1 DENS1	8.523E-04	8.905E-01	9.178E-05	8.879E-01
22	R004	16 APE	R07 LO	NG1 DENS1	8.523E-04	8.738E-01	3.679E-05	3.826E-01
11	R005	626 10	39 5	93 33 62	531 838	1 535 23		
22	R005	01 APE	R16 LO	NG1 DENSI	6.049E-04	8.998E-01	2.709E-05	8.396E-01
22	R005	02 APE	216 10	NCI DENSI	6 049E-04	9.0558-01	2.906F-04	4.4458-02
22	POOS	02 APE		NCI DENSI	6 049E 04	9 046E-01	1 4855-05	6 4968-01
22	BOOS	O. ADEL		NGI DENSI	6.049E-04	9.0405-01	2.4036-05	6 954F-01
22	RUUJ	04 APE		NGI DENSI	0.049E-04	0.09/E-01	2.0126-05	4.6342-01
22	ROOD	05 APE	R17 LO	NGI DENSI	4.517E-04	8.982E-01	2.071E-05	-2.099E-02
22	R005	06 APE	R17 LO	NG1 DENS1	4.517E-04	8.972E-01	9.405E-06	2.479E-70
22	R005	07 APE	R17 LO	NG1 DENS1	4.517E-04	8.978E-01	3.088E-05	3.653E-01
22	R005	08 APE	R17 LO	NG1 DENS1	4.517E-04	9.117E-01	2.727E-05	7.964E-01
22	R005	09 APE	R18 LO	NGI DENSI	3.023E-04	9.096E-01	2.966E-06	6.112E-02
22	R005	10 APE	R18 LO	NG1 DENSI	3.023E-04	9.030E-01	1.995E-05	6.097E-01
22	R005	11 APE	R18 1.0	NGI DENSI	3.0238-04	9.088E-01	1.182E-05	3.410E-01
22	R005	12 APE	R18 TO	NCI DENSI	3-0238-04	8.862E-01	4.4848-06	8.019E-01
22	ROOS	13 ADE	10 10	NCI DENSI) 567E-04	8 9635-01	1 5528-04	1,1935-01
22	BUUE	1/ ADE		NOI DENOI	2. JU/E-04	0 126E-01	1 2215-00	7 0718-01
22		14 AFE	NTA TO	NGI DENSI	2.30/2-04	7.130E-UI	1.3315-03	9 970E-01
22	ROUD	IJ APE	N19 L0	NGI DENSI	2.30/E-04	0.902E-01	2.3082-06	
22	RUUS	TO ALE	KIA TO	NGI DENSI	Z. 367E-04	5./39E-01	1.003E-06	3.820E-UI

11	R006	632	1040	592	40 51	541 943	7 529 24		
22	R006	01	APER16	LONG1	DENS1	5.517E-04	8.473E-01	9.693E-06	7.791E-01
2.)	R006	02	APER16	LONGI	DENS1	5.517E-04	8.412E-01	1.668E-05	4.577E-01
2.2	R000	03	ADEDIG	LONCI	DENCI	5 5178-04	8 3875-01	1 984F-05	9 0128-01
22	R000	05	APERIO	LONGI	DENSI	5 5172 04	0.0072-01	1.704E 05	4 0055 02
22	RUUD	04	APERIO	LUNGI	DENSI	5.51/E=04	5.4432-01	0.JU2E-00	4.9952-02
22	R006	05	APERI/	LONGI	DENSI	4.33/E-04	8.382E-01	4.430E-00	0.010E-01
22	R006	06	APER17	LONGI	DENSI	4.357E-04	8.644E-01	1.362E-05	7.278E-01
22	R006	07	APER17	LONG1	DENS1	4.357E-04	8.414E-01	8.904E-06	7.931E-01
22	R006	08	APER17	LONG1	DENS1	4.357E-04	8.285E-01	7.832E-06	8.563E-01
22	R006	09	APER18	LONG1	DENS1	3.053E-04	8.488E-01	2.043E-06	6.806E-01
22	R006	10	APER18	LONGI	DENSI	3.053E-04	8.330E-01	2.482E-06	4.873E-01
22	R006	11	APER18	LONGI	DENSI	3.053E-04	8.498E-01	1-673E-06	3.480E-01
2.2	POOG	1.9	ADEDIS	LONCI	DENGI	3 0538-04	8 6785-01	2 1985-05	7 1895-01
22	R000	12	APERIO	LONGI	DENSI	0 2045 04	0 570E-01	2.1906-05	0 6225 01
22	RUUD	13	APERIA	LUNGI	DENSI	2.3802-04	8.3/2E-01	2.7102-00	9.0332-01
22	R006	14	APER19	LONGI	DENSI	2.386E-04	8.625E-01	3.508E-06	8.322E-01
22	R006	15	APER19	LONGI	DENSI	2.386E-04	8.585E-01	1.020E-05	9.951E-01
22	R006	16	APER19	LONGI	DENS1	2.386E-04	8.686E-01	6.846E-06	9.842E-01
11	R007	603	989	563	40 48	515 857	0 517 22		
22	R007	01	APER16	LONG1	DENS1	5.694E-04	8.549E-01	4.454E-06	-4.893E-01
22	R007	02	APER16	LONGI	DENS1	5.694E-04	8-610E-01	5-905E-06	-4.982E-01
22	R007	03	APERIA	LONGI	DENSI	5 694F-04	8 826F-01	8.469F-06	4.936F-01
2)	R007	04	ADEDIG	TONCI	DENSI	5 6048-04	9 801E-01	1 0175-05	-4.7502 01
22	R007	0.5	APERIO	LONGI	DENSI	J.094E-04	0.0715-01	7.000E 06	7 0555 00
22	RU07	05	APERI/	LUNGI	DENSI	4.3182-04	8.7801-01	7.2992-00	7.055E-02
22	R007	116	APERI/	LONGI	DENSI	4.318E-04	8.532E-01	1.488E-06	-5.134E-01
22	R007	07	APER17	LONGI	DENSI	4.318E-04	8.687E-01	3.544E-06	-1.965E-01
22	R 007	08	APER17	LONGI	DENSI	4.318E-04	8.537E-01	4.555E-06	-4.494E-01
22	R007	09	APER18	LONG1	DENS1	3.233E-04	8.580E-01	8.956E-07	-4.793E-01
22	R007	10	APER18	LONG1	DENS1	3.233E-04	8.858E-01	4.254E-06	8,625E-01
22	R007	11	APER18	LONG1	DENS1	3.233E-04	8.644E-01	7.384E-07	-1.669E-01
22	R007	12	APER18	LONGI	DENSI	3.233E-04	8.748E-01	2.067E-06	1.098E-01
22	R007	13	APFR19	LONGI	DENSI	2 3635-04	8 5405-01	4.143F-07	-5 057F-01
22	P007	1.4	ADEDIO	LONGI	DENCI	2.3638-04	8 69 5-01	1 0175-07	-5.0105-01
22	R007	14	APENIS	LONGI	DENSI	2.0000-04	0.0726-01	1.91/E-07	-J.919E-01
22	R()()/	15	APER19	LUNGI	DENSI	2.303E-04	5.736E-01	2.642E-07	-8.2032-01
22	K007	10	APER19	LONGI	DENSI	2.363E-04	8.695E-01	1.842E-07	-3.233E-01
11	R008	634	1062	615	39 64	551 873	4 509 23		
22	R008	01	APER16	LONGI	DENSI	5.988E-04	8.749E-01	1.805E-04	9.561E-01
22	R008	02	APER16	LONG1	DENSI	5.988E-04	8.823E-01	7.163E-05	-1.442E-01
22	R008	03	APER16	LONGI	DENSI	5.988E-04	8.779E-01	5.366E-05	4.130E-01
22	R008	04	APER16	LONG1	DENS1	5.988E-04	8.672E-01	8.399E-06	-1.613E-01
2)	R008	05	APER17	LONGI	DENSI	4.313E-04	8-836E-01	6.195E-06	-1.919E-01
22	2008	06	APER17	TONCI	DENGI	4.313E-04	8 651F-01	2 643E-06	2.5958-01
22	BOOD	00	APERI7	LONGI	DENSI	4.JIJE-04	0.001E-01	2.04JE-00	7 9675-01
22	ROUG	07	APERI/	LUNGI	DENSI	4.3136-04	8.808E-01	0.003E-00	7.902E-01
22	ROOR	08	APERI/	LONGI	DENSI	4.313E-04	8.916E-01	1.620E-05	5.250E-02
22	R008	09	APER18	LONGI	DENS1	3.034E-04	8.698E-01	1.332E-06	3.264E-01
22	R008	10	APER18	LONG1	DENSI	3.034E-04	8.748E-01	1.041E-05	1.612E-01
22	R008	11	APER18	LONG1	DENS1	3.034E-04	8.897E-01	3.116E-06	4.306E-01
22	R008	12	APER18	LONGI	DENSI	3.034E-04	8.665E-01	7.706E-07	-3.912E-01
22	R008	13	APER19	LONGI	DENS1	2.707E-04	8.930E-01	5.508E-06	-1.112E-01
22	R008	14	APER19	LONGI	DENSI	2-707E-04	8.550E-01	1.464E-06	4.403E-01
22	ROOR	15	APEPIG	LONCI	DENCI	2 7075-04	8 7685-01	1.4168-04	1 6658-01
22	2000	14	ADEDIO	TONOL	DENSI	2.7078-04	0.700E-01	0 0028 07	2 0.75-01
44	NOUT	10	APER19	LUNGI	DENSI	2.70/E-04	0.0491-01	9.90ZE-0/	3.94/2-01
22	MUYEN	NE DE	S RAPPO	JETS DI	LS DEBIT	IS DE LA LI	MITE / ET T	UTAL	0.20413
11	KU09	644	1062	601	43 54	547 987	5 534 23		
22	R009	01	APER04	LONG2	DENS1	1.778E-03	9.161E - 04	2.497E-03	9.075E-04
22	R009	02	APERO4	LONG2	DENSI	1.778E-03	9.021E-04	9.260E-04	-8.496E-02
22	R009	03	APERO4	LONG2	DENS1	1.778E-03	8.895E-04	2.584E-04	-3.494E-04

.

22	R009	04 A	PERO4	LONG2	DENS1	1.778E-03	9.059E-01	1.939E-04	-7.114E-01
22	R009	05 A	PER05	LONG2	DENS1	1.496E-03	8.999E-01	4.242E-05	-5.547E-01
22	R009	06 8	PER05	LONG2	DENS1	1.496E-03	9.132E-01	1.428E-04	-4.293E-01
22	R009	07 A	APER05	LONG2	DENS1	1.496E-03	9.304E-01	2.393E-03	7.608E-01
22	R009	08 A	PER05	LONG 2	DENS1	1.496E-03	9.409E-01	8.633E-03	9.956E-01
22	R009	09 A	PER06	LONG2	DENS1	1.065E-03	9.128E-01	1.777E-04	1.046E-01
22	R009	10 A	PER06	LONG2	DENS1	1.065E-03	9.042E-01	1.665E-05	-3.661E-01
22	R009	11 A	PER06	LONG2	DENS1	1.065E-03	9.130E-01	1.347E-04	-5.572E-01
22	R009	12 A	PER06	LONG2	DENS1	1.065E-03	9.216E-01	2.347E-04	5.121E-01
22	R009	13 A	APER07	LONG2	DENS1	7.018E-04	8.984E-01	9.967E-05	7.291E-01
22	R009	14 A	APER07	LONG 2	DENS1	7.018E-04	9.064E-01	5.840E-05	7.522E-01
22	R009	15 A	APER07	LONG2	DENS1	7.018E-04	9.127E-01	3.221E-05	-3.775E-01
22	R009	16 A	APER07	LONG2	DENSI	7.018E-04	9.032E-01	3.359E-05	7.355E-01
11	R010	609	1016	579	30 58	521 7468	8 526 20		
22	R010	01 A	APER04	LONG2	DENS1	1.856E-03	8.797E-01	8.096E-01	7.821E-01
22	R010	02 A	APERO4	LONG2	DENS1	1.856E-03	8.818E-01	1.633E-03	9.075E-01
22	R040	03 A	APER04	LONG2	DENSI	1.856E-03	8.601E-01	2.068E-04	-2.383E-01
22	R010	04 A	APER04	LONG2	DENS1	1.856E-03	8.754E-01	6.386E-04	-1.375E-01
22	R010	05 A	APER05	LONG2	DENS1	1.307E-03	8.717E-01	1.302E-04	-5.887E-01
22	R010	06 A	APER05	LONG2	DENS1	1.307E-03	8.585E-01	6.218E-05	-6.439E-01
22	R010	07 A	APER05	LONG2	DENS1	1.307E-03	8.533E-01	1.237E-04	1.718E-01
22	R010	08 4	APEROS	LONG2	DENS1	1.307E-03	8.612E-01	6.050E-04	7.113E-01
22	R010	09 A	APER06	LONG2	DENS1	1.070E-03	8.547E-01	4.814E-04	6.401E-01
22	R010	10 A	APER06	LONG2	DENS1	1.070E-03	8.625E-01	3.089E-05	2.388E-01
22	R010	11 A	APER06	LONG2	DENS1	1.070E-03	8.763E-01	5.861E-05	2.969E-01
22	R010	12 A	APER06	LONG2	DENS1	1.070E-03	8.440E-01	2.749E-05	2.659E-01
22	R010	13 A	APER07	LONG2	DENS1	7.364E-04	8.775E-01	1.107E-04	7.805E-01
22	R010	14 A	APER07	LONG2	DENS1	7.364E-04	8.493E-01	4.809E-05	6.931E-01
22	R010	15 A	PER07	LONG2	DENS1	7.364E-04	8.657E-01	3.053E-05	-3.000E-01
22	R010	16 A	PER07	LONG2	DENS1	7.364E-04	8.690E-01	4.203E-05	-5.822E-01
11	R011	594	957	549	45 56	493 728	5 481 23		
22	R011	01 A	APER04	LONG2	DENS1	1.963E-03	8.613E-01	5.977E-03	3.461E-01
22	R011	02 A	PER04	LONG2	DENSI	1.963E-03	8.561E-01	4.949E-04	8.820E-01
22	R011	03 A	PERO4	LONG2	DENS1	1.963E-03	8.928E-01	3.620E-03	8.198E-01
22	R011	04 A	PERO4	LONG2	DENSI	1.963E-03	8.856E-01	6.017E-03	8.362E-01
22	R011	05 A	PEROS	LONG2	DENSI	1.427E-03	8.768E-01	5.630E-04	4.463E-01
22	R011	06 A	PEROS	LONG2	DENSI	1.427E-03	8.812E-01	1.011E-04	-3.473E-01
22	R011	07 A	PEROS	LONG)	DENSI	1.427E-03	8.561E-01	7.813E-04	-1.474E-01
22	R011	08 4	PEROS	LONG2	DENSI	1.427E-03	8.971E-01	1.228E-04	8.319E-01
22	R011	09 4	PEROS	LONG	DENSI	1.026E-03	8-839E-01	4.083E-04	-8-303E-02
22	R011	10 4	PEROG	LONG2	DENSI	1.026E-03	8.703E-01	2.314E-04	1.981E-01
22	R011	11 4	PEROG	LONG2	DENSI	1.026E-03	8.743E-01	1.424E-04	7.345E-01
22	ROII	12 4	PEROG	LONG	DENSI	1.0265-03	8-887E-01	1-687E-04	5-478E-01
22	ROII	13 4	PFR07	LONG	DENSI	7-630E-04	8-749E-01	7-496E-05	-3.769E-02
22	ROII	14 4	PFR07	LONG2	DENSI	7.6305-04	8.824E-01	1.456E-04	-7.790E-02
22	R011	15 4	PER07	LONGY	DENSI	7-6305-04	8.725E-01	1.651E-05	-5.735E-01
22	ROII	16	PER07	LONG2	DENSI	7.630E-04	8.557E-01	3.612E-05	3.644E-01
11	R012	588	965	550	38 55	495 7154	497 21		
22	R012	01 4	PEROA	LONG2	DENSI	1.918E-03	8.721E-01	5.098E-04	6.287E-01
22	R012	02	PEROA	LONG2	DENSI	1.918E-03	8.458E-01	7.942E-04	9.048E-01
22	R012	03	PEROA	LONG2	DENSI	1.918E-03	8.677E-01	9.212E-04	7.294E-01
22	R012	04 A	APER04	LONG2	DENSI	1.918E-03	8.706E-01	3.581E-04	-5.413E-01
22	R012	05 A	PEROS	LONG2	DENSI	1.427E-03	8.615E-01	1.171E-04	7.361E-02
22	R012	06	APER05	LONG2	DENSI	1.427E-03	8.677E-01	3.475E-04	7.894E-01
22	R012	07	APEROS	LONG2	DENSI	1.427E-03	8.834E-01	1.288E-02	9.628E-01
	R012	08	PEROS	LONG?	DENSI	1.4278-03	8.675E-01	1-946E-04	1-545E-02

22	R012	09 APERO6	LONG2	DENS1	1.075E-03	8.583E-01	1.109E - 04	-2.444E-02
22	R012	10 APER06	LONG2	DENSI	1.075E-03	8.453E-01	5.733E-05	4.404E-01
22	P012	11 ADEDOG	TONCO	DENCI	1 0755-03	8 7145-01	6 842F-05	-2 0758-01
0.0	RO11	10 ADEDOC	LONGZ	DENOI			1 2458-04	6 6218 01
22	RUIZ	12 APERUO	LONGZ	DENSI	1.0/52-05	0./415-01	1.2456-04	0.0216-01
22	R012	13 APER07	LONG2	DENS1	7.335E-04	8.584E-01	1.222E-05	-2.094E-01
22	R012	14 APER07	LONG2	DENS1	7.335E-04	8.815E-01	3.720E-04	9.629E-01
22	R012	15 APER07	TONC 2	DENSI	7 335F-04	8 710E-01	5.988E-05	4-847E-01
2.2	011	1/ ADDDOT	LONGZ	DENOI		0.1015 01	2 2618 05	4 000E 01
22	RUIZ	10 APERU/	LUNGZ	DENSI	1.313E-04	0.451E-U1	3.201E-03	4.0906-01
11	R013	588 965	550	38 55	495 7154	4 497 21		
22	R013	01 APER16	LONG2	DENS1	5.777E-04	8.721E-01	1.393E-05	6.287E-01
22	R013	02 APERIA	LONG 2	DENSI	5.777F-04	8.457E-01	2.170F-05	9.048E-01
22	012		LONGE	DENCI			0 5175 05	7 201 01
22	RUIS	US APERIO	LUNGZ	DENSI	5.///E-04	8.5/8E-UI	2.51/2-05	7.2942-01
22	R013	04 APER16	LONG2	DENSI	5.777E-04	8.703E-01	9.784E - 06	-5.413E-01
22	R013	05 APER17	LONG2	DENS1	4.299E-04	8.614E-01	3.199E-06	7.361E-02
22	R013	06 APER17	LONG?	DENS1	4.299E-04	8-678E-01	9.495E-06	7.495E-01
	BO12	07 ADED17	LONCE	DENCI	4 2008-04	0 0 0 0 0 1 0 1	2 520E-04	0 6285-01
22	RUIS	07 APERI7	LUNGZ	DENSI	4.2992-04	0.0326-01	3. JZUE-04	9.0202-01
22	R013	08 APER17	LONG2	DENSI	4.299E-04	8.680E-01	5.316E-06	1.545E-02
22	R013	09 APER18	LONG2	DENSI	3.234E-04	8.581E-01	3.031E-06	-2.444E-02
22	R013	10 APER18	LONG?	DENSI	3-234E-04	8-453E-01	1.566E-06	4.404E-01
	P013	11 ADED19	TONCA	DENCI	3 9245-04	9 712E-01	1 9695-06	-2 0755-01
44	RUIS	11 APERID	LUNGZ	DENSI	3.234E-04	0.7126-01	1.0096-00	-2.073E-01
22	R013	12 APER18	LONG2	DENSI	3.234E-04	8.737E-01	3.401E-06	6.621E-01
22	R013	13 APER19	LONG2	DENS1	2.210E-04	8.582E-01	3.338E-07	-2.094E-01
22	R013	14 APERIO	LONG 2	DENS1	2-210E-04	8 - 817E - 01	1.016E - 05	9.629E - 01
2.2	P013	15 ADED10	LONCA	DENCI	2 2105-04	8 7148-01	1 6365-06	4 8478-01
22	RUIS	IJ AFERIA	LUNGZ	DENSI	2.210E-04	0./146-01	1.0301-00	4.0476-01
22	R013	16 APER19	LONG2	DENSI	2.210E - 04	8.482E-01	8.909E-07	4.098E-01
11	R014	616 1022	583	33 56	527 8592	2 529 22		
22	R014	01 APERI6	LONG2	DENS1	5.765E-04	8.889E-01	3.666E-05	-1.310E-01
22	PO14	0) APERIA	LONC?	DENSI	5 765F-04	9 131F-01	5.592E-05	-9.441E-02
~ ~	RO14	O2 ADDD1(LONGZ	DENSI				760E 01
22	KU14	03 APERIO	LONGZ	DENSI	3./03E-04	8.999E-01	1.0082-05	-4.762E-01
22	R014	04 APER16	LONG2	DENSI	5.765E-04	8.925E-01	1.060E-05	-3.898E-01
22	R014	05 APER17	LONG2	DENS1	4.340E-04	9.017E-01	1.754E-06	3.685E-01
22	ROIA	06 APER17	LONG?	DENSI	4. 340F-04	8-7/8E-01	4-068E-06	-1-526E-01
20	RO14		LONG2	DENCI	4 340E 04	8 0015-01	1 0075-05	-3 134E-01
22	RU14	U/ APERI/	LUNGZ	DENSI	4.3402-04	0.9916-01	1.00/2-05	-3.134E-01
22	R014	08 APERI/	LONG2	DENSI	4.340E-04	8.918E-01	1.430E-03	-2.144E-UI
22	R014	09 APER18	LONG2	DENSI	3.045E-04	8.718E-01	3.033E-06	9.726E-02
22	R014	10 APER18	LONG2	DENSI	3.045E-04	8.929E-01	1.085E-06	-7.325E-01
22	P014	11 ADEDIS	LONCY	DENGI	3 0458-04	9 067F-01	1 840F-06	-4.179E-01
42	RO14	11 AFERIO	LONGZ	DENSI	J.04JE-04	9.0076-01	1 0 5 (E 0 (1 0005.00
22	R014	12 APERIS	LONGZ	DENSI	3.0432-04	8.822E-01	1.9302-00	1.0002+00
22	R014	13 APER19	LONG2	DENSI	2.308E-04	8.782E-01	1.342E-06	-2.262E-01
22	R014	14 APER19	LONG2	DENS1	2.308E-04	9.011E-01	1.483E-06	-4.251E-01
22	ROIA	15 APER19	LONG	DENSI	2-308E-04	8-741E-01	3-627E-07	-6.747E-01
20	BO14	16 ADEDIO	LONGL	DENCI	2 3085 04	8 00/5-01	1 7668-07	-0 3635-01
22	RU14	10 APERIS	LUNGZ	DENSI	2.3082-04	0.9946-01	1./052-0/	-9.3036-01
11	R015	641 1087	611	30 52	559 9742	2 556 24		
22	R015	01 APER16	LONG2	DENS1	5.408E-04	8.647E-01	2.101E-05	5.064E-01
22	R015	02 APERIG	LONG2	DENSI	5.408E-04	8.878E-01	3.160E-06	3.743E-01
22	POIS	02 ADED16	LONCA	DENCI	5 4085-04	8 747E-01	2 1058-05	-4.649E-01
22	ROIJ	OJ APERIO	LUNGZ	DENSI	J.408E-04	0.7472 01	5 30/E 0/	0 5628-01
22	ROIS	04 APERI6	LONG2	DENSI	5-408E-04	8.901E-01	3.3942-04	9.3032-01
22	R015	05 APER17	LONG2	DENS1	3.766E-04	8.871E-01	7.421E-06	-5.754E-02
22	R015	06 APER17	LONG2	DENSI	3.766E-04	8.898E-01	2.358E-06	-1.359E-01
22	R015	07 APEP17	LONCO	DENSI	3.766E-04	8.861E-01	4.310E-06	-1.066E-01
22	DOIL		TONOZ	DENCI	3 7648_04	8 8755-01	5 8915-04	6 861F-01
44	RUIJ	UO APERI/	LUNGZ	DENSI	3./07E-04		J.001E-00	1 0045 01
12	K012	U9 APER18	LONG2	DENSI	3.023E-04	8./SIE-01	3.378E-06	1.0801-02
22	R015	10 APER18	LONG 2	DENSI	3.023E-04	8.964E-01	8.108E-06	6.661E-01
22	R015	11 APERIS	LONG2	DENSI	3.023E-04	8.759E-01	1.393E-06	3.828E-01
27	R015	12 405010	LONCO	DENCI	3 0235-04	8.796F-01	5.104F-06	1.426E-01
~ ~ ~	DOIL	12 AFERIO		DENSI	J. UZJE-04			
22	K012	13 APER19	LONG2	DENSI	2.207E-04	9.065E-01	4.138E-06	3.9915-02

22	R015	14	APER19	LONG2	DENSI	2.207E-04	8.746E-01	2.140E-06	4.846E-01
22	R015	15	APER19	LONG2	DENSI	2.207E-04	8.924E-01	3.051E-06	3.332E-01
22	R015	16	APER19	LONG2	DENSI	2.207E-04	8.836E-01	2.585E-07	-7.362E-01
11	R016	603	5 1001	568	37 50	518 899	5 484 23		
22	R016	01	APER16	LONG2	DENS1	5.577E-04	8.578E-01	2.259E-05	-2.276E-01
22	R016	02	APER16	LONG2	DENS1	5.577E-04	8.269E-01	5.414E-06	3.898E-02
22	R016	03	APER16	LONG2	DENSI	5.577E-04	8.586E-01	1.487E-05	-2.495E-01
22	R016	04	APERIG	LONG?	DENSI	5.5778-04	8-376E-01	1.376E-05	7.019E-01
22	P016	05	APER17	TONC?	DENSI	4 214F-04	8 661F-01	7.08/E-06	-1.619E-01
11	POIG	06	ADED 17	LONG2	DENSI	4 - 214E -04	8 496E-01	4 814E-06	-6.772E-01
22	BO14	00	ADED 17	LONGZ	DENSI	4.2146-04	9.455E-01	2 6055-06	-7 3745-01
22	RU15	00	APERI/	LONGZ	DENSI	4.214E-04	8.4JJE-01 8.707E-01	2.00JE-00	-/.J/4E-01
22	RU10	00	APERI/	LONGZ	DENSI	4.214E-04	0.707E-01	7,7246-00	-1, JJIE-01
22	RUIO ROIG	10	APERIO	LONGZ	DENSI	3,001E-04	0.001E-01	7.130E-07	-1.05/6-01
22	RUIO	10	APERIO	LUNGZ	DENSI	3.001E-04	5.387E-01	1.2426-00	-3.460E-01
22	KUID	11	APERIS	LONGZ	DENSI	3.001E-04	8.6/3E-01	3.641E-06	3.065E-01
22	R016	12	APERIS	LONG2	DENSI	3.001E-04	8.307E-01	7.642E - 07	2.183E-01
22	R016	13	APER19	LONG2	DENSI	2.420E - 04	8.547E-01	6.273E-07	-3.579E-01
22	R016	14	APER19	LONG2	DENSI	2.420E - 04	8.696E-01	2.944E-06	5.067E-01
22	R016	15	APER19	LONG2	DENS1	2.420E-04	8.657E-01	8.300E-07	1.127E-01
22	R016	16	APER19	LONG2	DENSI	2.420E-04	8.716E-01	3.043E-06	6.720E-01
55	MOYEN	INE DI	ES RAPPO	RTS DI	ES DÉBI'	TS DE LA LI	MITE 7 ET T	OTAL	0.16073
11	R017	641	0 1045	605	35 72	533 819	2 540 22		
22	R017	01	APER04	LONG3	DENS1	2.054E-03	9.034E-01	6.183E-04	-5.482E-01
22	R017	02	APER04	LONG3	DENS1	2.054E-03	8.941E-01	7.313E-03	8.701E-01
22	R017	03	APER04	LONG 3	DENS1	2.054E-03	9.172E-01	1.756E-03	-2.249E-01
22	R017	04	APER04	LONG3	DENSI	2.054E-03	8-999E-01	6.333E-04	-1.094E-01
22	R017	0.5	APEROS	LONG3	DENSI	1.511E-03	8-805E-01	3-120E-04	-5-40/E-02
22	R017	06	APEROS	LONGS	DENSI	1 5118-03	9 107 = 01	2 315F-02	1.4435-02
22	P017	07	APEROS	LONCA	DENSI	1.511E-03	9.10/2-01	9 164F-04	-4 4548-01
22	ROI7	07	APEROJ	LONGS	DENSI	1.JIIE-03	9.0012-01	5.112E-04	2 7068-01
22	RU17	00	APERUS	LUNGS	DENSI	1.5116-05	0.933E-01	J. 101E-04	-3 PO F-01
22	RU17	109	APERUD	LUNGS	DENSI	9.922E-04	5.909E-01	1.121E-04	-3.8942-01
22	RU1/	10	APER06	LONGS	DENSI	9.922E-04	9.022E-01	7.603E-03	1.403E-02
22	R017	11	APER06	LONG 3	DENSI	9.922E - 04	9.071E-01	7.247E-05	-3.667E-01
22	R017	12	APER06	LONG3	DENSI	9.922E - 04	8.914E - 01	8.010E-05	-2.826E-01
22	R017	13	APER07	LONG3	DENS1	7.599E-04	8.945E-01	2.535E-05	7.708E-01
22	R017	14	APER07	LONG 3	DENS1	7.599E-04	9.029E-01	2.059E-04	6.023E-01
22	R017	15	APER07	LONG3	DENS1	7.599E-04	8.964E-01	7.402E-05	-2.418E-01
22	R017	16	APER07	LONG3	DENS1	7.599E-04	8.854E-01	4.357E-05	5.304E-01
11	R018	619	998	580	39 62	518 880	4 512 23		
22	R018	01	APER04	LONG 3	DENS1	1.835E-03	8.750E-01	1.106E-03	-5.293E-01
22	R018	02	APER04	LONG3	DENS1	1.835E-03	8.760E-01	6.865E-04	6.992E-01
22	R018	03	APER04	LONG3	DENS1	1.835E-03	8.645E-01	2.369E-04	-1.623E-01
22	R018	04	APER04	LONG3	DENSI	1-835E-03	8-635E-01	4-393E-04	4.976E-01
22	R018	0.5	APEROS	LONG3	DENSI	1.527E-03	8-832E-01	1.786E-03	8.642E-01
22	R018	06	APEROS	LONGS	DENSI	1.527E-03	8.582E-01	4.135E-04	1.365E-01
22	R018	07	APEROS	LONGS	DENSI	1.527E-03	8.747E-01	1.904E-04	-1.365E-01
22	R018	08	APEROS	LONGS	DENCI	1 5278-03	8 898F-01	1 3935-03	1.153E-01
22	ROIR	00	APEROS	LONGS	DENSI	1.0598-03	8 880E-01	5 5238-04	2 581F-01
22	ROIR	10	ADEDOA	TONCS	DENSI	1.0508-03	8 7128-01	2 1355-04	7 2385-01
	DOID	11	APEROO	LONGS	DENSI	1.0392-03	0.713E-01	2.1356-04	7,238E-01
22	2010	1 2	APEROO	LONGS	DENSI	1.0245-03	0.11/6-01	1 042E-U4	7.0012-01
22	D010	12	APERUD	LUNGS	DENSI	1.0392-03	0. J/01-01	1.000E-04	7.9946-01
22	DU10	1.7	APERU/	LUNGS	DENSI	7.3428-04	6./23E-01	2.4402-04	9.3148-01
44	R010	14	APERU/	LUNG3	DENSI	7.342E-04	8.88/E-U1	2.2348-04	9.294E-01
42	RUIS	10	APER07	LONG3	DENSI	7.342E-04	8.720E-01	1.995E-05	-3.939E-01
22	KOIR	10	APER07	LONG3	DENSI	7.342E-04	8.580E-01	4.638E-05	-2.788E-01
11	RU19	590	9 970	556	43 46	510 876	0 506 25		

		• •							
22	R019	01	APER04	LONG 3	DENSI	1.882E-03	8.492E - 01	1.018E-03	-5.766E-02
22	R019	02	APER04	LONG3	DENS1	1.882E-03	8.300E-01	2.692E-04	-3.503E-01
22	R019	03	APER04	LONG3	DENSI	1.887F-03	8 090F-01	1.977E-05	-8 726E-01
3.3	PO10	04	ADEDO	LONCZ	DENCI	1 0015 00	0 2005 01	2 6258-04	-1 0008.00
22	RU19	04	APERU4	LUNGS	DENSI	1.002E-03	8. 305E-UI	3.023E-04	-1.000E+00
22	R019	05	APER05	LONG 3	DENS1	1.429E-03	8.439E-01	4.437E-04	-2.210E-01
22	R019	06	APER05	LONG 3	DENSI	1.429E-03	8.302E-01	5.263E-04	5.891E-01
22	R019	07	APER05	LONG3	DENSI	1.429F-03	8.154E-01	2.303E-05	-8.321F-01
22	PO10	00	ADEBOS	LONCZ	DENCI	1 4205 03	0.1745 01	0 00/5-05	4 992E 01
22	KU19	00	APERUS	LUNGS	DENSI	1.4292-03	0.3/3E-01	9.0946-05	-4.502E-01
22	R019	09	APER06	LONG 3	DENSI	1.091E-03	8.410E-01	1.419E-05	-6.555E-01
22	R019	10	APER06	LONG3	DENS1	1.091E-03	8.562E-01	9.809E-04	8.923E-01
22	R019	11	APER06	LONG 3	DENSI	1.091E-03	8-506E-01	4-051E-03	-5-049E-03
22	POID	1 2	ADEDOG	LONCA	DENCI	1 0015 03	9 4675-01	1 6018-04	-2 041E 03
22	K019	12	AFERUO	LONGS	DENSI	1.0916-03	0.40/1-01	1.0012-04	-2.041E-02
22	K019	13	APER07	LONG3	DENSI	8.162E - 04	8.592E-01	1.355E-03	9.655E-01
22	R019	14	APER07	LONG3	DENS1	8.162E-04	8.053E-01	5.791E-06	-6.951E-01
22	R019	15	APER07	LONGS	DENSI	8-162E-04	8.256E-01	2.017E-05	-6.340E-01
22	POID	16	ADEDO7	LONCZ	DENCI	0 162E 04	9 4105-01	2 5458-05	-2 6725-01
22	K019	10	AFER07	LUNGS	DENSI	0.102E-04	0.412E-01	2.3036-03	-2.0/22-01
11	R020	65.	3 1092	623	30 58	565 979	5 569 23		
22	R020	01	APER04	LONG3	DENSI	1.868E-03	8.620E-01	5.820E-04	-6.991E-01
12	R020	02	APEROA	LONGS	DENSI	1.868F-03	8.510F-01	2.691E-04	-7.160F-01
3.3	0000	0.2	ADEDO	LONGS	DENOL	1 0(05 0)		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0705 00
22	R020	0.5	APERU4	LUNGS	DENSI	1.808E-03	8.0836-01	2.303E-03	2.8/2E-02
22	R020	04	APER04	LONG3	DENSI	1.868E-03	8.581E-01	2.351E-04	5.415E-01
22	R020	60	APER05	LONG3	DENS1	1.406E-03	8.677E-01	1.086E-03	9.345E-01
))	R020	06	APEROS	LONG3	DENSI	1.406F-03	8.591F-01	4.511E-04	-2.548E-01
	R020	07	ADEDOS	LONCO	DENCI	1.400E 03		1 0365 04	2.3402 01
22	RUZU	07	APERUS	LUNGS	DENSI	1.4062-03	5.332E-01	1.0202-04	3.4466-01
22	R020	08	APER05	LONG 3	DENSI	1.406E-03	8.564E-01	1.117E - 04	6.022E - 02
22	R020	09	APER06	LONG3	DENS1	1.044E-03	8.499E-01	5.764E-05	-8.027E-01
22	R020	10	APEROS	LONGS	DENSI	1.044F-03	8.662E-01	4.415E-04	6.322E-01
22	P020	1 1	ADEDOG	LONCZ	DENCI	1 0442 07	0 55/5-01	1 9778-04	7 4225-01
22	KUZU	11	APERUO	LUNGS	DENSI	1.044E-03	6.334E-01	1.2//2-04	7.452E-02
22	R020	12	APER06	LONG 3	DENSI	1.044E-03	8.669E-01	1.342E-04	3.187E-01
22	R020	13	APER07	LONG3	DENS1	7.775E-04	8.612E-01	5.477E-05	7.541E-01
22	R020	14	APER07	LONG 3	DENSI	7.7758-04	8.292F-01	3.954F-05	6.437F-01
22	R010	1 5	ADEDO7	LONGS	DENCI	7.7750.04	0.2725 01 9.600E 01	2 0 2 9 5 0 5	3 696E 01
22	RUZU	12	APERU/	LUNGS	DENSI	1.1132-04	9.044E-01	2.9352-03	-2.0001-01
22	R029	16	APER07	LONG3	DENSI	7.775E-04	8.500E-01	3.158E-05	2.100E-01
11	R021	65:	3 1092	623	30 58	565 979.	5 549 23		
21	R021	01	APER16	TONG 3	DENSI	5.629F-04	8.622E-01	1.590E-05	-6-991E-01
2.2	PO 21	0.0	ADED16	TONCS	DENCI	5 6205 04		7 2525-06	-7 1605-01
22	ROZI	02	AFERIO	LUNGS	DENSI	3.5292-04	0.JIIE-01	7.332E-00	-7.100E-01
22	RUZI	03	APERI6	LONG 3	DENSI	5.629E - 04	8.684E-01	6.436E-03	2.8/2E-02
22	R021	04	APER16	LONG 3	DENSI	5.629E-04	8.582E-01	6.423E-06	5.415E-01
22	R021	05	APER17	LONG3	DENSI	4.236E-04	8.680E-01	2.966E-05	9.345E-01
22	ROVI	06	APER17	LONC3	DENGI	4 236F-04	8 592F-01	1 2338-05	-2 548F-01
2.	8021	0.7	ADED17	LONGS	DENSI	4.2305-04	0.5722 01		2.5402 01
22	ROZI	07	APERI/	LUNGS	DENSI	4.230E-04	8.330E-01	2.803E-00	3.448E-01
22	R021	08	APER17	LONG3	DENSI	4.236E-04	8.565E-01	3.051E-06	6.022E-02
22	R021	09	APER18	LONG3	DENS1	3.146E-04	8.500E-01	1.575E-06	-8,027E-01
22	R021	10	APERIS	LONG3	DENSI	3 1465-04	8 661F-01	1 206F-05	6.322F-01
00	B021	1 1	ADEDIO	LONGS	DENSI	3.140E-04	0.001L 01	2 1005 04	7 . 295 09
22	RUZI	11	AFERIO	LUNGS	DENSI	3.140E-04	5.334E-01	3.4001-00	7.452E-02
22	R021	12	APER18	LONG 3	DENSI	3.146E-04	8.673E-01	3.667E-06	3.187E-01
22	R021	13	APER19	LONG3	DENS1	2.341E-04	8.614E-01	1.497E-06	7.541E-01
22	R021	14	APERIO	LONG3	DENSI	2.341E-04	8.283E-01	1.080E-06	6.437E-01
27	P021	15	ADEDIO	LONCA	DENCI	2 2415-04	9 6065-01	9 026F-07	-2 6865-01
22	RU21	15	AFERIS	LUNGS	DENSI	2.3416-04	0.0902-01	0.0202-07	-2.000E-01
12	KUZI	10	APER19	LONG3	DENS1	2.341E-04	8.496E-01	8.630E-07	2.100E-01
11	R022	601	0 983	566	34 56	510 766.	2 516 21		
22	R022	01	APER16	LONG3	DENS1	5.360E-04	8.694E-01	1.052E-05	1.000E-01
22	R022	02	APERIA	LONGS	DENSI	5.560F-04	8-828E-01	4.944F-05	2-8678-01
2.2	R012	0.2	ADEDIA	TORCO	DENCI	5 5600 0/	0 5000 01	1 4035 05	2 2015 01
24	NU 2 2	0.5	AFERIO	LUNGS	DENSI	3.3002-04	0.JZ9E-01	1.403E-03	2.3912-01
22	KU22	04	APER16	LONG 3	DENSI	5.560E-04	8.577E-01	2.417E-05	1.554E-01
22	R022	05	APER17	LONG 3	DENSI	4.151E-04	8.611E-01	1.000E-05	-3.341E-01

22	R022	06	APER17	LONG3	DENS1	4.151E-04	8.875E-01	2.028E-05	1.193E-01
22	R022	07	APER17	LONG3	DENS1	4.151E-04	8.757E-01	6.172E-06	-2.848E-01
22	R022	08	APER17	LONG3	DENS1	4.151E-04	8.778E-01	3.032E-06	-6.842E-01
22	R022	09	APER18	LONG3	DENS1	3.203E-04	8.779E-01	2.039E-06	-1.138E-01
22	R022	10	APER18	LONG3	DENSI	3.203E-04	8.833E-01	5.336E-05	-3.252E-03
22	R022	11	APER18	LONGS	DENSI	3.203E-04	8-588E-01	9.433E-07	-2.840E-01
22	P022	1 2	ADEDIS	TONCS	DENSI	3 2038-04	8 5985-01	1.6898-06	-6 07úF-01
22	P022	12	ADEDIO	TONCS	DENSI	2 180F-04	8 280F-01	4 519E-07	-7 9/35-01
22	D022	1.4	ADED10	TONCS	DENSI	2.1801-04	9.200E-01	1 1105-06	4 716E-01
22	RU22	14	APER17	LONGS	DENSI	2.1002-04	9 705E-01	1.110E = 00	-2 -2 -20E-01
22	RUZZ	15	APER19	LONGS	DENSI	2.100E-04	0.79JE-01	5 9058-07	-3.4396-01
22	RU22	10	APERI9	LUNGS	DENSI	Z.100E-04	0,0001-01	3.0932-07	-/.1916-01
T T	RUZS	20	/ 906	523	39 37	4/1 /94	0 429 24 0 (()T 0)	0 0 2 9 5 0 (5 0015 01
22	R023	01	APERIO	LONGS	DENSI	5.1422-04	8.004E-01	9.0382-00	5.0212-01
22	RUZS	02	APER16	LONGS	DENSI	5.142E-04	8.605E-01	2.1/2E-05	5.828E-01
22	R023	03	APER16	LONG 3	DENSI	5.142E-04	8.764E-01	3.610E-06	4.801E-01
22	R023	04	APER16	LONG 3	DENSI	5.142E - 04	8.644E-01	2.904E-06	-7.719E-01
22	R023	05	APER17	LONG 3	DENSI	4.212E - 04	8.657E-01	2.226E-06	9.021E-01
22	R023	06	APER17	LONG 3	DENSI	4.212E-04	8.928E-01	1.588E-05	1.900E-01
22	R023	07	APER17	LONG 3	DENS1	4.212E-04	8.709E-01	1.039E-05	4.237E-01
22	R023	0.8	APER17	LONG3	DENS1	4.212E-04	8.859E-01	9.191E-06	1.464E-01
22	R023	09	APER18	LONG3	DENS1	3.263E-04	8.804E-01	6.274E-07	-8.965E-01
22	R023	10	APER18	LONG 3	DENS1	3.263E-04	8.728E-01	1.708E-07	-9.605E-01
22	R023	11	APER18	LONG3	DENSI	3.263E-04	8.979E-01	1.459E-05	3.446E-01
22	R023	12	APERIS	LONGS	DENSI	3.263E-04	8.815E-01	3.539E-07	-8.940E-01
22	R023	13	APER19	LONGS	DENSI	2.289E-04	8-651E-01	8-873E-07	-9.429E-01
22	R013	14	APERIO	LONCS	DENSI	2.2092 04	8.679F-01	2.793E-06	7.971E-01
22	PO 13	15	ADEDIO	LONCS	DENSI	2.2072 04	8 8365-01	8 1248-07	-7 131F-01
22	R025	14	APER17	LONCO	DENSI	2.2072-04	9.070E-01	3 8148-06	7 8445-01
22	RUZ)	10	APERIO	LUNGS	DENSI	2.2096-04	0.0705-01	J.014E-00	1.6445-01
11	R024	0J.	1 1046	393	38 31	342 810		0 0 2 1 5 0 (= 0125 01
22	RUZ4	01	APERIO	LONGS	DENSI	0.200E-04	5.8295-01	5.951E-00	3.9156-01
22	ROZA	02	APERIO	LONGS	DENSI	6.256E-04	8.900E-01	2.791E-05	-1.945E-02
22	R024	03	APER16	LONG 3	DENSI	6.266E-04	9.083E-01	1.2/2E-05	-6.212E-01
22	R024	04	APER16	LONG3	DENSI	6.266E-04	8,964E-01	9.439E-03	9.399E-01
22	R024	05	APER17	LONG 3	DENS1	4.025E-04	8.909E-01	8.797E-06	4.931E-01
22	R024	06	APER17	LONG 3	DENS1	4.025E-04	8.787E-01	1.203E-05	8.611E-01
22	R024	07	APER17	LONG 3	DENS1	4.025E-04	8.998E-01	4.455E-06	5.806E-01
22	R024	08	APER17	LONG 3	DENS1	4.025E-04	9.015E-01	1.760E-05	-4.930E-01
22	R024	09	APER18	LONG 3	DENS1	3.370E-04	9.051E-01	7.358E-06	6.112E-01
22	R024	10	APER18	LONG 3	DENSI	3.370E-04	8.844E-01	4.100E-06	6.615E-01
22	R024	11	APER18	LONG3	DENS1	3.370E-04	8.858E-01	1.083E-05	8.174E-01
22	R024	12	APER18	LONG3	DENS1	3.370E-04	8.958E-01	2.058E-06	4.648E-02
22	R024	13	APER19	LONG3	DENS1	2.162E-04	8.840E-01	8.391E-07	1.920E-01
22	R024	14	APER19	LONG3	DENSI	2.162E - 04	8.934E-01	9.831E-07	2.988E-01
22	R024	15	APER19	LONG3	DENSI	2.162E-04	8.880E-01	1.199E-05	9.777E-01
22	R024	16	APER19	LONGS	DENSI	2.162E-04	8,916E-01	4.032E-07	-7.506E-01
55	MOYEN	NEDI	ES RAPP(DRTS DI	S DEBI	TS DE LA LI	MITE 7 ET T	OTAL	0.06112
11	R025	77	8 1304	736	4) 67	669 1241	1 664 26		
22	R025	01	APEROA	LONCI	DENS?	2.0078-03	9.0578-01	8.417E-04	8-825E-01
22	R025	02	APEROA	LONGI	DENG?	2.0078-03	9.096F-01	9.4728-04	7.735E-01
2)	R025	03	APEROA	LONCI	DENC)	2.0078-03	8-8375-01	5. 488F-04	6.511F-01
22	R025	0Å	APEPOA	TONCI	DENGY	2.0076-03	0.000F-01	1 3548-03	5.886F-01
27	RODS	05	ADEDAS	LONCI	DENSZ	1 5175-03	0 1585-01	2.325F_04	1 2758-01
22	ROUS	04	ADEDUE	LONGI	DENSZ	1.517E-03	7.1JOL-01 0 1925-01	7 7798-04	0 0148-01
22	ROZJ	00	ADEDAS	LONGI	DENGL	1.5178-03	7.1035-VI	7.720E-04	9.214E-01
22	ROZJ ROZS	07	APERUJ	LONGI	DENSZ	1.517= 03	7.110E-U1		9.003E-01
22	R023	00	APERUJ	LONGI	DENSZ	1.01/2-03	7.1395-01	1 4218-05	-7 2505-01

		1.0		1 0 1 0 1		1 0505 02	0 3335 01	8 0205 0/	0 = (0 = 0]
22	RUZS	19	APERUD	LUNGI	DENSZ	1.2392-03	9.232E-01	0.930E-04	9.3092-01
22	R025	11	APER06	LONGI	DENS2	1.259E-03	9.056E-01	4.813E-05	8.639E-02
22	R025	12	APER06	LONG1	DENS2	1.259E-03	9.225E-01	3.187E-04	6.914E-01
22	R025	13	APER07	LONG1	DENS2	8.705E-04	8.936E-01	4.489E-05	8.532E-01
22	R025	14	APER07	LONG1	DENS2	8.705E-04	9.100E-01	2.534E-05	7.920E-01
22	R025	15	APER07	LONGI	DENS?	8-705E-04	9.122E-01	5-430E-05	8-188E-01
22	D015	16	ADEDOT	LONCI	DENCI	9 7055-04	8 8305-01	2 3335-05	5 4585-01
22	RU23	10	AFERUI	LUNGI	DENSZ	0.70JE-04	0.0396-01	2.5556-05	J.4J9E-01
11	RUZO	15	1 1261	/12	39 62	020 1110	4 644 Z4		
22	R026	01	APER04	LONGI	DENS2	2.050E-03	8.585E-01	3.167E - 04	-1.283E-01
22	R026	02	APER04	LONG1	DENS2	2.050E-03	8.510E-01	1.565E-03	-1.849E-02
22	R926	0.3	APER04	LONG1	DENS2	2.050E-03	8.694E-01	2.579E-04	-2.599E-01
22	R026	04	APER04	LONG1	DENS2	2.050E-03	8-852E-01	1.656E-03	4-612E-01
22	R026	0.5	APEROS	LONGI	DENS?	1 494F-03	8 653F-01	1.3328-04	-8.622E-03
22	D026	06	ADEROJ	LONGI	DENCO	1 4048-02	8 620E 01	2 2 4 0 E = 0 4	7 0758-01
22	RUZO	00	APERUS	LUNGI	DENSZ	1.4946-03	0.0301-01	2.2492-04	7.0752-01
22	RUZO	07	APEROS	LONGI	DENSZ	1.4948-03	8.709E-01	2.136E-04	5./48E-01
22	R026	08	APER05	LONGI	DENS2	1.494E - 03	8.688E-01	3.766E-05	-8.351E-01
22	R026	09	APER06	LONGI	DENS2	1.080E-03	8.779E-01	4.938E-05	3.705E-01
22	R026	10	APER06	LONG1	DENS2	1.080E-03	8.664E-01	1.677E-05	-3.718E-01
22	R026	11	APEROS	LONGI	DENS2	1 0805-03	8.707E-01	1.0438-04	-3.727F-01
2.2	D026	10	APEROG	LONGI	DENCI	1.0805-03	9 756E-01	1 3705-04	1 7695-02
22	R020	12	AFERUS	LUNGI	DENSZ	1.0802-03	0./301-01	1.3702-04	1.200E-02
22	R026	13	APER07	LONGI	DENS2	8.301E-04	8.629E-01	2.863E-05	2.135E-01
22	R026	14	APER07	LONG1	DENS2	8.301E-04	8.690E-01	1.813E-05	-3.813E-01
22	R026	15	APER07	LONG1	DENS2	8.301E-04	8.792E-01	6.272E-05	2.391E-01
22	R026	16	APER07	LONG1	DENS2	8.301E-04	8.599E-01	1.324E-05	-4.022E-01
11	R027	76	B 1268	730	38 77	653 1086	7 652 25		
22	R017	01	ADEDOA	TONCI	DENC?	2 3058-03	8 6735-01	2 1148-03	-1 4808-01
22	R027	0.2	ADERO4	LONGI	DENSZ		0.07JE-01	2.1142-03	0 356E 03
22	RU27	02	APER04	LUNGI	DENSZ	2.3932-03	8.714E-01	3.0192-04	-9.236E-02
22	RUZ/	03	APER04	LONGI	DENSZ	2.395E-03	8.745E-01	3.14/E-03	8.144E-01
22	R027	04	APER04	LONGI	DENS2	2.395E-03	8.814E-01	1.171E-03	-1.269E-01
22	R027	05	APEROS	LONG1	DENS2	1.659E-03	8.865E-01	3.220E-04	-1.735E-01
22	R027	06	APER05	LONG1	DENS2	1.659E-03	9.011E-01	4.649E-03	7.938E-02
22	R027	07	APEROS	LONGI	DENS2	1-659E-03	8-680E-01	4-646E-03	1.180E-01
22	R027	0.8	APEROS	LONCI	DENS?	1 6508-03	8 959F-01	1 9838-03	5 823F-01
2.2	DA 17	00	ADEDOG	LONGI	DENG2	1.0178-02	0, 507 = 01	1.5018-04	-1 9475-01
22	RUZI	09	APERUN	LUNGI	DENSZ	1.24/2-03	0.0092-01	1.3012-04	-1.04/E-01
22	R027	10	APER06	LONGI	DENSZ	1.247E-03	8.835E-01	2.166E-04	5.269E-02
22	R027	11	APER06	LONGI	DENS2	1.247E-03	8.900E-01	4.222E-04	9.326E-01
22	R027	12	APER06	LONG1	DENS2	1.247E-03	8.768E-01	1.943E-04	4.090E-01
22	R027	13	APER07	LONG1	DENS2	9.195E-04	8.591E-01	2.834E-05	-4.902E-01
22	R027	14	APER07	LONGI	DENS2	9.195E-04	8.801E-01	7.605E-04	9.850E-01
22	R027	15	APER07	LONGI	DENS2	9.195E-04	8-835E-01	7.610E-05	7-152E-02
22	PO 27	16	APEPO7	LONCI	DENC)	9 105E-04	8 8665-01	1 4628-04	2 6548-01
1 1	RU2/	10	AFERUT	LUNGI	DENSZ	7.17JE-04	0.0001-01	1.4026-04	
11	RUZR		5 1322	143	33 67	0/0 1220	2 681 24		
22	R028	01	APER04	LONGI	DENS2	2.205E-03	9.033E - 01	2.245E-03	7.617E-01
22	R028	02	APER04	LONG1	DENS2	2.205E-03	8.870E-01	9.438E-04	4.477E-01
22	R028	03	APER04	LONG1	DENS2	2.205E-03	8.762E-01	8.749E-04	9.104E-01
22	R028	04	APER04	LONG1	DENS2	2.205E-03	8.937E-01	1.781E-03	3.730E-01
22	R028	0.5	APEROS	LONGI	DENS2	1.543E-03	8-859E-01	1.526E-04	4.668E-01
22	RO28	06	APEROS	TONCI	DENC2	1 5438-03	8.787F - 01	1.369F-03	8.907F-01
2.1	DU 30	07	ADEBOE	TONOT	DENSZ	1 5/28-03	8 0428-01	4 6075-00	1)578-01
44	RUZO	07	AFERUS	LUNGI	DENSZ	1.3436-03	0.7425-01	+ · · · · · · · · · · · · · · · · · · ·	
22	KUZ8	08	APEROS	LUNGI	DENS2	1.343E-03	8.810E-01	2.0348-04	8./34E-03
22	R028	09	APER06	LONGI	DENS2	1.208E-03	8.947E-01	3.873E-04	5.613E-01
22	R028	10	APER06	LONGI	DENS2	1.208E-03	8.966E-01	9.313E-04	1.234E-01
22	R028	11	APER06	LONG1	DENS2	1.208E-03	8.876E-01	7.521E-05	3.969E-01
22	R028	12	APER06	LONG1	DENS2	1.208E-03	8.773E-01	5.283E-04	8.775E-01
22	R028	13	APER07	LONGI	DENS2	8.468E-04	8.870E-01	1.315E-04	9.135E-01
22	R028	14	APER07	LONGI	DENS2	8-468E-04	8.919E-01	1.807E-04	9.243E-01

								0 1775 01
22	R028	IS APER07	LONGI	DENSZ	8.408E-04	8.642E-01	2.280E-03	8.1//E-01
22	R028	16 APER07	LONG1	DENS2	8.468E-04	8.864E-01	3.731E-05	5.116E-01
11	R029	778 1322	743	35 67	676 12262	2 681 24		
22	R029	OI APERIO	LONGI	DENS2	6.642E-04	9.036E - 01	6.134E-05	7.617E-01
2.2	80.20	02 ADED16	LONCI	DENC2	6 6428-04	8 871E-01	2 5848-05	4 4778-01
22	RU29	UZ APERIO	LONGI	DENSZ	0.0426-04	0.0/16-01	2. 3.45-05	4.4//0-01
22	R029	US APERIO	LONGI	DENSZ	0.042E-04	8./01E-01	2.391E-03	9.104E-01
22	R029	04 APER16	LONGI	DENS2	6.642E-04	8.936E-01	4.867E-05	3.730E-01
22	R029	05 APER17	LONG1	DENS2	4.647E-04	8.861E-01	4.169E-06	4.668E-01
22	R029	06 APER17	LONG1	DENS2	4.647E-04	8.788E-01	3-741E-05	8.907E-01
22	P020	07 ADED17	LONCI	DENC 2	4 647E=04	8 9418-01	1 2648-04	1.257E-01
	PO 20	OP ADEDIT	LONGI	DENSI	4.6478-04	8 8125-01	7 2528-04	0 75/5-02
22	R029	UO APENI/	LUNGI	DENSZ	4.047E-04	0.0122-01	7.232E-00	0./345-03
22	KU29	09 APERIS	LONGI	DENSZ	3.03/E-04	8.9436-01	1.0382-03	3.013E-01
22	R029	10 APER18	LONGI	DENS2	3.637E - 04	8.969E-01	2.343E-05	1.234E-01
22	R029	11 APER18	LONGI	DENS2	3.637E-04	8.875E-01	2.055E-06	3.969E-01
22	R029	12 APER18	LONGI	DENS2	3.637E-04	8.777E-01	1.444E-05	8.775E-01
22	R029	13 APER19	LONGI	DENS2	2-552E-04	8-869E-01	3-594E-06	9-135E-01
· · ·	P020	1. ADEDIG	LONCI	DENSI	2.552E = 0.4	8 9198-01	4 938F-06	9 243F-01
22	R()23	14 AFERIA	LONGI	DENSZ	2.5500.04		4.9905-00	1 1015 01
22	RU29	IJ APERIA	LUNGI	DENSZ	2.332E-04	5.0416-01	0.2302-07	1,1026-01
22	R029	16 APER19	LONGI	DENS2	2.552E - 04	8.866E-01	1.020E-06	5.116E-01
11	R030	777 1310	735	42 63	672 1105	8 651 23		
22	R030	01 APER16	LONGI	DENS2	6.351E-04	9.025E-01	1.090E-05	4.780E-01
22	R030	02 APERIG	LONGI	DENS2	6.351E-04	8-953E-01	2-312E-05	5.954E-01
22	P030	O3 APERIG	LONCI	DENCY	6 3518-04	8 986F-01	5 0078-03	3 5188-02
22	RU30	OS APERIO	LONGI	DENSZ	0.331E-04	0.700E-01	1.(100 05)	J.JIGE-02
22	R0 30	04 APERIO	LONGI	DENSZ	0.331E-04	8./32E-01	1.019E-03	4.0342-01
22	R030	05 APER17	LONGI	DENS2	5.105E-04	8.730E-01	1.421E-05	7.556E-01
22	R030	06 APER17	LONGI	DENS2	5.105E-04	8.972E-01	7.093E-06	7.617E-01
22	R030	07 APER17	LONGI	DENS2	5.105E-04	8.905E-01	1.002E-05	-6.438E-01
22	R030	08 APER17	LONGI	DENS2	5.105E-04	8-843E-01	1.684E-05	3-636E-01
22	R030	OO APERIS	LONGI	DENS)	3 739F-04	8.951F-01	1.1938-06	3.385F-01
22	R030	10 APERIO	LONGI	DENG2	3.737E-04	8 0315 01	6 502E-06	- 287E-01
22	RU 30	IU APERIO	LUNGI	DENSZ	3.7392-04	5.931E-01	6.JZJE-06	4.3672-01
22	R030	11 APER18	LONGI	DENS2	3.739E - 04	8.940E - 01	4.911E-05	4.763E-01
22	R030	12 APER18	LONG1	DENS2	3.739E-04	9.037E-01	2.077E-06	-5.193E-01
22	R030	13 APER19	LONG1	DENS2	3,075E-04	8.997E-01	1.860E-03	5.443E-02
22	R030	14 APERIO	LONGI	DENS2	3.075E-04	9.043E-01	1.789E-05	1.038E-01
22	P030	15 ADED10	LONCI	DENC)	3 0758-04	9 033E-01	9 121F-06	6 149F-07
22	R() 30	16 ADEDIO	LONGI	DENG2	3 075E 0	P 617E-01	7 1155-07	0.14)E 02
11	RUSU	IO APERIO	LUNGI	DENSZ	3.0/3E-04	0.01/2-01	/.IIJE-0/	0.0/16-02
11	R031	/18 1186	680	38 70	610 10212	2 616 24		
22	R031	01 APER16	LONGI	DENS2	7.309E-04	8.572E-01	8.097E-06	5.430E-01
22	R031	02 APER16	LONG1	DENS2	7.309E-04	8.729E-01	7.568E-05	8.243E-01
22	R031	03 APER16	LONGI	DENS2	7.309E-04	8.898E-01	9.342E-04	4.106E-02
22	R031	04 APER16	LONGI	DENSI	7.309E-04	8-964E-01	7.145E-04	-8.902E-03
22	D031	OS ADED17	TONCI	DENCZ	4 600E-04	8 704E-01	4 792F-06	2 0585-01
22	RUJI ROJI	OJ APERI/	LONGI	DENSZ	4.000E-04	0.774E-01	4.792E-00	-) 220F-01
22	R() 31	06 APERI/	LONGI	DENSZ	4.600E-04	8.739E-01	3.0032-00	-2.220E-01
22	R031	07 APER17	LONGI	DENS2	4.600E - 04	8.749E-01	3.162E-06	3.901E-01
22	R031	08 APER17	LONG1	DENS2	4.600E-04	8.709E-01	8.031E-06	1.802E-01
22	R031	09 APER18	LONGI	DENS2	3.661E-04	8.661E-01	1.595E-05	9.421E-01
22	R031	10 APERIS	LONGI	DENS2	3-661E-04	8-613E-01	1-379E-06	1.680E-01
22	P031	11 ADED18	LONCI	DENC2	3 6615-04	8 786F-01	2.6865-06	-5.439F-02
22	2021		LONCI	DENCI	2 6618-04	0 0775-01	6 4708-05	7 7148-01
44	RUJI	12 APERIO	LUNGI	DENSZ	J. 0012-04	0.0/25-01	0.4/7E-03	7 . / I 4 E - 0 I
11	KU31	13 APER19	LONGI	DENSZ	Z.031E-04	5.0/0E-01	1.523E-07	2.4025-01
22	R031	14 APER19	LONGI	DENS2	2.631E-04	8.817E-01	4.610E-05	9.855E-01
22	R031	15 APER19	LONG1	DENS2	2.631E-04	8.685E-01	2.525E-07	1.174E-01
22	R031	16 APER19	LONG1	DENS2	2.631E-04	8.6°6E-01	8.268E-07	7.865E-01
11	R032	762 1273	719	43 64	655 11038	8 641 23		
2)	R032	OI APERIA	LONGI	DENS	6.819E-04	9.200E-01	7-0438-06	5.555E-01
22	BU35	() ADEDIA	TONOT	DENCY	6 810F-04	0 2041-01	5 000F-04	-4 207E-01
41	RUJZ	UZ AFERIO	TONGT	ULNJZ	0.0175-04	2.2.05-01	J. 7702-00	-4.27/6-01

22	R032	03	APER16	LONG1	DENS2	6.819E-04	9.241E-01	3.169E-05	-3.574E-01
22	R032	04	APER16	LONG1	DENS2	6.819E-04	8.964E-01	3.398E-05	8.480E-01
22	R032	05	APER17	LONG1	DENS2	4.821E-04	9.120E-01	8.663E-06	-8.587E-02
22	R032	06	APER17	LONG1	DENS2	4.821E-04	9.155E-01	5.820E-06	-4.803E-01
22	R032	07	APER17	LONG1	DENS2	4.821E-04	9.112E-01	2.550E-05	1.605E-01
22	R032	08	APER17	LONGI	DENS2	4-821E-04	9.066E-01	6.918E-06	-2.567E-01
22	R032	0.9	APERIS	LONGI	DENS2	3.791E-04	9-161E-01	3.481E-06	-6.127E-01
22	P032	10	APERIS	LONGI	DENS2	3 7918-04	9 0805-01	4 540E-06	4 996F-01
× ×	P032	11	ADEDIS	LONGI	DENSZ	3 701E-04	9.030E - 01	1 4965-06	-5 253E-01
22	R032	12	ADEDIO	LONGI	DENSZ	3 7018-04	9.1JUE-01	2 0005-06	-J.2JJE-01
22	RU32	12	APERIO	LONGI	DENSZ	3.7912-04	0.9195-01	2.900E-00	0.100E-01
22	KU32	13	APER19	LUNGI	DENSZ	2.7386-114	8.933E-01	1.1//E-00	-1.308E-02
11	KU32	14	APERIG	LONGI	DENSZ	2./38E-04	9.152E-01	1./28E-06	9.712E-02
22	K032	1)	APERIG	LONGI	DENSZ	2.738E-04	9.251E-01	4.5//E-0/	-/.292E-01
22	R032	16	APER19	LONGI	DENS2	2.738E-04	8.963E-01	1.618E-06	2.078E-01
55	MOYEI	NNE D	ES RAPPO	ORTS DI	ES DEBI'	rs de la li	MITE 7 ET T	TAL	0.31227
11	R 1 3 3	52	3 869	495	28 50	445 975	5 450 21		
22	R033	01	APERO4	LONG1	DENS3	1.740E-03	8.934E-01	4.212E-04	-3.697E-01
22	R033	0.2	APER04	LONG1	DENS3	1.740E-03	8.897E-01	1.766E-03	8.760E-01
22	R033	03	APER04	LONG1	DENS3	1.740E-03	8.968E-01	3.803E-04	5.552E-01
22	R033	04	APERO4	LONGI	DENS3	1.740E-03	8.752E-01	2.151E-03	3.502E-01
22	R033	05	APER05	LONG1	DENS3	1.186E-03	8.946E-01	4.558E-04	6.600E-01
12	R033	0.6	APEROS	LONGI	DENS3	1.186E-03	8.731E-01	3.468E-04	4.672E-01
22	R033	07	APEROS	LONGI	DENS3	1.186E-03	8.715E-01	3.391E-04	-7.449F-01
22	R033	0.8	APEROS	LONGI	DENS3	1.186F-03	8 7758-01	9.9065-05	-4.6468-01
,,	ROSS	00	APEROS	LONGI	DENSS	1.017E-03	8 9/55-01	8 6935-05	2 519F-01
22	R033	10	APEROO	LONGI	DENS3	1.017E = 0.3	8.920E-01	8.093E-05	-4 7748-02
22	R033	11	APEROO	TONCI	DENSJ	1.017E-0.3	0.0265-01	0.007E-01	-4.7742-02
22	RUJJ	1 2	APERUO	LONGI	DENSS	1.017E-03	9.0302-01	4.090E-04	4.003E-01
22	RUJJ	12	APERUO	LUNGI	DENSS	1.01/2-03	8.852E-01	9.401E-04	7.305E-02
11	R033	13	APER07	LONGI	DENS3	6.522E-04	8.86/E-01	7.877E-05	5.166E-01
22	R033	14	APER07	LONGI	DENS3	6.522E-04	8.812E-01	4.762E-05	1.716E-01
22	R033	15	APER07	LONGI	DENS3	6.522E-04	8.857E-01	1.454E-05	2.328E-02
22	R033	16	APER07	LONGI	DENS3	6.522E-04	8.798E-01	1.859E-05	1.530E-01
11	R034	50	0 810	468	32 49	419 - 576	0 410 21		
22	R034	01	APER04	LONG1	DENS3	1.503E-03	8.514E-01	2.651E-03	9.383E-01
22	R034	02	APER04	LONGI	DENS3	1.503E-03	8.470E-01	5.199E-04	1.529E-03
22	R034	03	APER04	LONGI	DENS3	1.503E-03	8.586E-01	8.310E-04	5.459E-01
22	R034	04	APER04	LONG1	DENS3	1.503E-03	8.582E-01	3.529E-04	4.220E-01
22	R034	05	APER05	LONGI	DENS3	1.111E-03	8.492E-01	7.906E-04	9.570E-01
22	R034	06	APER05	LONG1	DENS3	1.111E - 03	8.512E-01	2.025E-04	-2.362E-01
22	R034	07	APER05	LONGI	DENS3	1.111E-03	8.516E-01	6.003E-04	6.935E-01
22	R034	0.8	APEROS	LONGI	DENS3	1.111E-03	8-406E-01	1.150E - 04	7.116E-02
22	R034	09	APEROG	LONGI	DENSS	8-812E-04	8-360E-01	1.633E-04	7.800E-01
22	P034	10	APEROG	TONCI	DENC3	8 8125-04	8.8275-01	7 1428-04	6-983E-01
22	R034	11	ADEROG	LONGI	DENSJ	9 9125-04	8 5305-01	1 1325-04	4 6438-01
22	R034	12	APEROO	LONGI	DENSS	0.012E-04	8 5445-01	1.132E-04	2 2748-01
12	RU34	12	APERUO	LONGI	DENSS	6.617E-04	5.JOE-01	2 935E-04	2.2/4E=01
22	RU34	13	APERU/	LUNGI	DENSS	0.027E-04	8.JIUE-01	5.0235-04	9.104E-01
22	KU 34	14	APERUT	LUNGI	DENSS	0.027E-04	8.431E-01	4.0332-05	-2.09/6-01
22	R034	15	APER07	LONGI	DENS3	6.627E-04	8.4/3E-01	1.700E-05	2.749E-01
22	R034	16	APER07	LONG1	DENS3	6.627E-04	8.626E-01	6.921E-05	4.842E-01
11	R035	51	8 837	484	34 50	434 704	0 436 23		
22	R035	01	APER04	LONG1	DENS3	1.659E-03	8.372E-01	1.478E-03	3.187E-02
22	R035	02	APER04	LONGI	DENS3	1.659E-03	8.287E-01	2.517E-04	-5.590E-01
22	R035	03	APER04	LONG1	DENS3	1.659E-03	8.254E-01	3.922E-04	4.139E-01
22	R035	04	APER04	LONG1	DENS3	1.659E-03	8.699E-01	1.401E-03	3.982E-03
22	R035	05	APER05	LONG1	DENS3	1.198E-03	8.591E-01	8.131E-04	3.791E-02
22	R035	0.6	APEROS	TONCI	DENC3	1 1085-03	8 364F-01	1 468F-04	-6.088F-07

22	R035	07	APER05	LONG1	DENS3	1.198E-03	8.722E-01	2.942E-03	4.648E-03
22	R035	08	APER05	LONG1	DENS3	1.198E-03	8.718E-01	4.011E-04	3.254E-01
22	R035	09	APER06	LONG1	DENS3	9.222E-04	8.473E-01	6.852E-05	-3.858E-01
22	R035	10	APER06	LONG1	DENS3	9.222E-04	8.381E-01	2.378E-05	-4.399E-01
22	R035	11	APER06	LONGI	DENS3	9.222E-04	8.618E-01	4.778E-05	-4.059E-01
22	P035	12	APEROS	LONGI	DENS3	9 2228-04	8.9615-01	3.983F-04	8.121E-02
22		12	APEROO7	LONGI	DENGO	5.2222 -04	0.5658-01	2 2 2 7 8 - 0 5	-1 3105-01
22	KU33	13	APERU/	LUNGI	DENSS	0.1202-04	0,0000-01	2.52/2-03	-1. 319E-01
22	R035	14	APERU/	LONGI	DENSS	6.126E-04	8.0/0E-01	1.4/9E-04	-0.240E-03
22	R035	15	APER07	LONG1	DENS3	6.126E - 04	8.402E - 01	3,053E-05	2.781E-01
22	R035	16	APER07	LONG1	DENS3	6.126E-04	8.801E-01	2.511E-05	5.653E-01
11	R036	50	7 850	482	25 43	439 717	73 437 23		
))	R036	01	APER04	LONGI	DENS3	1.512E-03	8-421E-01	1.197E - 03	8.876E-01
22	POSE	02	ADEPOA	LONCI	DENC3	1 512E - 03	8 6915-01	4 898F-04	1.585E-01
22	R()) (0.2	APER04	LONGI	DENSS	1.5126-03			5 6205 01
22	KU 30	03	APER04	LUNGI	DENSS	1.512E-03	8.822E-01	1.000E-04	-3.620E-01
22	R036	04	APER04	LONGI	DENS3	1.512E - 03	8,905E-01	4.104E-03	1.074E-03
22	R036	05	APER05	LONG1	DENS3	1.185E-03	8,656E-01	6.299E-03	9.607E-01
22	R036	06	APER05	LONG1	DENS3	1.185E-03	8.619E-01	5.517E-05	1.521E-01
22	R036	07	APER05	LONG1	DENS3	1.185E-03	9.001E-01	1.837E-03	7.048E-01
22	R036	0.8	APEROS	LONGI	DENS3	1.185F-03	8.774E-01	5-876E-04	1.463E-01
22	R0.26	00	ADEDOG	TONCI	DENCO	9 7445-04	8 727E - 01	7 5005-05	-4 924E-01
22	R030	10	APERUO	LONGI	DENSS	3.744E-04	0.727E-01	7.JUUE-0J	-4.924E-01
22	8030	10	APERUS	LUNGI	DENSS	8.744E-04	8.7032-01	2.709E-03	-3.5965-01
22	R036	11	APER06	LONGI	DENS3	8.744E-04	8.817E - 01	3.845E-05	1.650E-01
22	R036	12	APER06	LONGI	DENS3	8.744E-04	8.843E-01	3.142E-05	-7.511E-01
22	R036	13	APER07	LONG1	DENS3	6.391E-04	8,713E-01	2.039E-05	2.509E-01
22	R036	14	APER07	LONG1	DENS3	6.381E-04	8.803E-01	3.333E-05	-1.799E-01
2)	R036	15	APER07	LONGI	DENS3	6.381E-04	8.583E-01	1-677E-05	3.291E-02
22	P036	16	ADEDOT	LONCI	DENC2	6 2915-04	9 769E-01	2 5198-06	-0 0375-01
22	RUJU ROJJ	10	AFERUT	LUNGI	DENSS	0.301E-04	0.7075-01	2. 3166-00	
11	KU37	30	/ 850	482	25 43	439 /1/	13 4 1 23		
22	R037	01	APER16	LONGI	DENS3	4.555E-04	8.419E-01	3.270E-05	8.876E-01
22	R037	02	APER16	LONG1	DENS3	4.555E-04	8.690E-01	1.338E-05	1.585E-01
22	R037	03	APER16	LONG1	DENS3	4.535E-04	8.824E-01	4.371E-06	-5.620E-01
22	R037	04	APER16	LONG1	DENS3	4.555E-04	8,903E-01	1.121E-04	1.074E-03
22	R037	05	APERI7	LONGI	DENS3	3-570E-04	8-651E-01	1.721E-04	9.607E-01
22	P037	06	ADED 17	TONCI	DENC3	3 5705-04	8 6175-01	1 5085-06	1 5215-01
22	R()) /	07	APERI7	LONGI	DENSJ	3.5705-04	0.017 = 01	1.JU0E-00	7 0:05 01
22	RU37	07	APERI/	LUNGI	DENSS	3.3/06-04	9.002E-01	3.0192-03	7.0482-01
22	R037	08	APER17	LONGI	DENS3	3.570E-04	8.719E-01	1.606E-05	1.463E-01
22	R037	09	APER18	LONGI	DENS3	2.636E-04	8.730E-01	2.049E-06	-4.924E-01
22	R037	10	APER18	LONGI	DENS3	2.636E-04	8.770E-01	7.402E-07	-5.696E-01
22	R037	11	APER18	LONG1	DENS3	2.636E-04	8.819E-01	1.051E-06	1.650E-01
22	R037	12	APER18	LONGI	DENS3	2.636E-04	8-840E-01	8.586E-07	-7.511E-01
22	R037	13	APERIQ	LONG	DENS3	1 9/18-04	8.711F-01	5.572F-07	2.509E-01
22	0 0 7	14	ADEDIO	LONGI	DENCO	1.0215-04	8 802E-01	0 106E-07	-1 709E-01
22	R037	14	APERIT	LONGI	DENSS	1.9216-04	0.6026-01	5.1001-07	2 2015 02
22	RU3/	13	APERIT	LONGI	DENSS	1.9216-04	8.382E-01	4.382E-07	3.291E-02
22	R037	16	APER19	LONGI	DENS3	1.921E-04	8.770E-01	6.880E-08	-9.937E-01
11	R038	51	8 837	484	34 50	434 704	0 436 23		
22	R038	01	APER16	LONGI	DENS3	4.997E-04	8.371E-01	4.039E-05	3.187E-02
22	R038	02	APER16	LONG1	DENS3	4.997E-04	8.286E-01	6.878E-06	-5.590E-01
22	R038	03	APER16	LONGI	DENS3	4.997E-04	8.255E-01	1.072E-05	4.139E-01
22	R038	04	APERIA	LONG	DENGS	4.997E-04	8-699E-01	3-827E-05	3.982E-03
22	RUJB	05	ADEDIT	TONCI	DENC3	3 6065-04	8.5975-01	2.2225-05	3.791F-02
22	0000		APERI/	LONGI	CENJU	3.40(5.0/	0 9458 01		-6 0895-02
22	RUJ6	00	APEKI/	LUNGI	DEN22	3.0002-04	5.JOJE-U1	4.012E-00	-0.000E-02
11	RU38	07	APER17	LONGI	DENS3	3.606E-04	8./18E-01	8.038E-03	4.0481-03
22	R038	08	APER17	LONGI	DENS3	3.606E-04	8.717E-01	1.096E-05	3.254E-01
22	R038	09	APER18	LONG1	DENS3	2.776E-04	8.470E-01	1.872E-06	-5.858E-01
22	R038	10	APER18	LONGI	DENS3	2.776E-04	8.3°2E-01	6.498E-07	-4.399E-01
22	R038	• 11	APER18	LONG1	DENS3	2.776E-04	8.615E-01	1.306E-06	-4.059E-01

	0020	1.0	ADEDIO	TONCI	DENC 2	3 7768-04	9 0615-01	1 0995-05	9 101E-00
22	KU30	12	APERIO	LUNGI	DENSS	2.7752-04	- 0.901E-01	1.0802-03	0.121E-02
22	R038	13	APER19	LONGI	DENS3	1.846E-04	+ 8.362E-01	6.33/E-0/	-1.319E-01
22	R038	14	APER19	LONG1	DENS3	1.846E-04	4 8.677E-01	4.040E-06	-6.240E-03
22	R038	15	APER19	LONGI	DENS3	1.846E-04	8.399E-01	8.343E-07	2.781E-01
3.7	P038	16	APEPIO	TONCI	DENC3	1 846F-04	8 805F-01	6.861F-07	5.653F-01
	0.00	10		LUNGI	01 50	1.0401-04			J. 0 J /L 01
11	KU39	4 /	9 / > >	443	34 30	389 45	100 341 19		
22	R() 39	01	APER16	LONGI	DENS3	5.155E-04	+ 8.496E-01	1.421E-04	9.686E-01
22	R039	02	APER16	LONGI	DENS3	5.155E-04	* 8.857E-01	1.819E-03	-4.355E-03
22	R039	03	APER16	LONG1	DENS3	5.155E-04	4 8.387E-01	4.960E-05	8.812E-01
22	R039	<u>ن</u> 0	APER16	LONGI	DENS3	5-153E-04	8-128F-01	8-075E-06	-7.739E-02
22	DU30	05	ADED17	LONCI	DENC3	2 72.5-0	8 330E-01	3 9755-06	-3 07/5-02
22	RUJ7	05	APERI/	LONGI	DENSS	3.734E-04	+ 0.530E-01	5.9732-00	-3.0745-02
11	KU39	00	APERI/	LONGI	DENS3	3./34E-04	+ 8.314E-01	3.791E-06	-2.350E-01
22	R039	07	APER17	LONGI	DENS3	3.734E-04	4 8.427E-01	5.742E-06	-5.243E-01
22	R039	08	APER17	LONGI	DENS3	3.734E-04	4 8.586E-01	6.377E-06	8.334E-01
22	R039	09	APER18	LONG1	DENS3	2.556E-0	4 8.129E-01	1.099E-05	6.883E-01
22	R039	10	APER18	LONGI	DENS3	2.556E-04	8.432F-01	3.800F-06	7.579F-01
2,	P030	11	ADEDIO	LONCI	DENCO	2.5545.0	0.4 2E 01	3 751E 0%	0 0535 01
22	R(J)7	11	AFERIO	LUNGI	DENSS	2.3362-04	+ 0.009E-01	2.731E-04	9.9335-01
22	RU39	12	APER18	LONGI	DENS3	2.556E-0.	+ 8.485E-01	1.823E-06	2.940E - 02
22	R039	13	APER19	LONGI	DENS3	2.144E-04	4 8.194E-01	1.003E-06	7.695E-01
22	R039	14	APER19	LONG1	DENS3	2.144E-04	4 8.560E-01	1.705E-06	7.968E-01
22	R039	15	APER19	LONGI	DENS3	2.144E-04	8-274E-01	4.525E-07	3-895E-01
22	R030	16	ADEDIO	LONCI	DENCS	2 1445-0	8 527E-01	1 5018-06	4 630F-01
	DO LO	10	0 730	10001		2.1446-0	- 0.0276-01		4.0376-01
11	R040	4)	9 739	433	20 50	<u>, coc</u>	526 375 20		
22	R040	01	APER16	LONGI	DENS3	4.821E-0.4	+ 8.256E-01	8.400E-06	6.431E-01
22	R040	02	APER16	LONGI	DENS3	4.821E-04	4 8.468E-01	3.454E-05	7.356E-01
22	R040	03	APER16	LONG1	DENS3	4.821E-04	4 8.473E-01	7.606E-06	-6.086E-01
22	R040	04	APER16	LONG1	DENS3	4.821E-0.	4 8.414E-01	6.719E-05	9.404E-01
22	RO40	05	APER17	LONGI	DENSS	3 6435-04	8 3777-01	1 0965-06	-6 062F-01
	R040	06	ADED17	LONGI	DENCO	3 6435 0	0 407E 01	1.6525-05	4 002E 01
22	K()4()	00	APERI/	LUNGI	DENSS	3.0432-04	+ 8.60/E-01	1.0336-03	4.093E-01
22	R040	07	APER17	LONGI	DENS3	3.643E-04	+ 8.748E-01	5.587E-06	3.786E-01
22	R040	08	APER17	LONG1	DENS3	3.643E-04	4 8.819E-01	2.500E-05	5.622E-01
22	R040	09	APER18	LONGI	DENS3	2.761E-04	4 8.401E-01	2.329E-06	4.887E-01
22	R040	10	APER18	LONGI	DENS3	2.761E-04	8.636E-01	1.527E-05	9.467E - 01
22	ROAD	11	APERIS	LONGI	DENSS	2 761E = 0	8.465F-01	3.344F-06	6.762F-02
· · ·		10	ADERIO	LONGI	DENSS	2.701E-0.		$3 \cdot 3 + 2 = 00$	2 027E-01
22	R040	12	APERIO	LUNGI	DENSS	2.701E-04		2.751E-00	Z.027E-01
22	R040	13	APER19	LONGI	DENS3	2.120E-04	* 8.652E-01	9.950E-07	5.053E-01
22	R040	14	APER19	LONGI	DENS3	2.120E-04	¥ 8.440E-01	1,983E-06	-1.404E-01
22	R040	15	APER19	LONGI	DENS3	2.120E-04	8.892E-01	3.714E-06	-2.534E-01
22	R040	16	APER19	LONGI	DENS3	2.120E-04	8.587E-01	8.514E-07	5.342E-01
55	MOYEN	NED	FS RAPP	ORTS DI	FS DERT	TS DE LA I	INITE 7 FT	TOTAL	0.16342
11	DOLLN	61	5 1020	= = 0 0				3	0.10042
11	R041	02	5 1029	107	<u>, , , , , , , , , , , , , , , , , , , </u>		0407 JI7 Z	2	
55	R041	01	-9.24	LONGI	DENSI	2.628E-05	2.918E-01		
33	R041	02	-9.24	LONG1	DENS1	1.416E-05	-1.056E-01		
33	R041	03	-9.24	LONG1	DENS1	2.192E-05	1.236E-02		
33	R041	04	-9.24	LONGI 1	DENS1	3.342E-05	3.182E-01		
33	R041	05	-9.24	LONGI	DENSI	1.349E-05	6.419E-01		
22	P041	06	-0 24	TONCI	DENCI	2 0728-05	8 174F-01		
22	R041	00	- 9.24	LONGI	DENSI		0.1/46-01		
22	RU41	07	-9.24	LUNGI	ULNSI	2.0332-03	5./54E-01		
33	RU41	08	-9.24	LONG1	DENSI	2.536E-05	8.564E-01		
33	R041	09	-9.24	LONG1	DENS1	2.830E-05	7.951E-01		
33	R041	10	-9.24	LONG1	DENS1	1.834E-05	6.616E-01		
33	R041	11	-9-24	LONGI	DENSI	8.265E-06	1.533E-01		
33	R0-1	12	-9 24	LONGI	DENSI	1.376F-05	5.333E-01		
22	ROA1	1 2	-0 24	TONCI	DENCI	2 8825-04	8 050F-00		
 	R041	12	- 7.24	LUNGI		2.00JE-U0			
22	KU41	14	-9.24	LONGI	DENSI	1.8438-05	/.195E-01		301
33	ROAL	15	-9.74	LONGI	DENSI	1.2628-05	4.659E-01		

33	ROAL	16 -9.24 LONGI	DENS1	2.441E-05 4.493E-01
11	PO42	607 995 564	43	53 511 7799 492 21
2.2	R042		DENCI	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
22	R042	01 -9.24 LONG1	DENSI	0.639E-00 - 2.393E-01
22	RU42	02 -9.24 LUNGI	DENSI	3.344E-03 3.137E-01
33	RU4Z	03 -9.24 LONGI	DENSI	3.9468-06 -3.3648-01
33	R042	04 -9.24 LONG1	DENSI	4.428E-05 6.073E-01
33	R042	05 -9.24 LONG1	DENSI	5,967E-05 -1.661E-01
33	R042	06 -9.24 LONG1	DENS1	1.665E-05 2.442E-01
33	R042	07 -9.24 LONG1	DENS1	6.117E-05 8.659E-01
33	R042	08 -9.24 LONG1	DENS1	1.085E-04 -6.521E-02
33	R042	09 -9.24 LONG1	DENS1	1,485E-05 2,550E-01
33	R042	10 -9.24 LONG1	DENS1	2.846E-05 6.065E-02
33	R042	11 -9.24 LONG1	DENS1	7.247E-06 5.481E-01
33	RO42	12 -9.24 LONG1	DENSI	2.399E-05 6.275E-01
22	ROA2	13 -9.24 IONCI	DENGI	4 471E-06 3 598E-01
22		14 -9 24 TONCI	DENCI	1 960F-05 2 732F-02
2.2	R042	14 -9,24 LONGI	DENSI	4 - 07 = 05 - 7 - 021 = 02
22	R042	13 -9.24 LONGI	DENSI	
33	K042	16 -9.24 LUNGI	DENSI	2.44/E-05 3./85E-01
11	R043	634 1045 594	40	57 537 9083 523 23
33	R043	01 -9.24 LONG1	DENSI	5.482E-06 -6.544E-01
33	R043	02 -9.24 LONG1	DENS1	1.097E-03 -8.037E-01
33	R043	03 -9.24 LONG1	DENS1	2.253E-05 3.700E-01
33	R043	04 -9.24 LONG1	DENS1	9.414E-06 9.091E-02
33	R043	05 -9.24 LONG1	DENS1	9.143E-06 1.957E-01
33	R043	06 -9.24 LONG1	DENS1	6.611E-06 1.421E-01
33	R043	07 -9.24 LONG1	DENS1	2.209E-05 4.370E-01
33	R043	08 -9.24 LONG1	DENS1	8,697E-06 -2,352E-01
33	R043	09 -9.24 LONG1	DENS1	7.633E-06 -3.993E-01
33	R043	10 -9.24 LONG1	DENS1	1.542E-05 6.098E-03
33	R043	11 -9.24 LONG1	DENSI	8.350E-06 -2.299E-01
33	R043	12 -9.24 LONG1	DENSI	2.594E-04 9.562E-01
33	RO43	13 -9.14 LONGI	DENSI	6 - 157E - 06 - 1 - 394E - 01
33	ROA3	14 -9.24 LONG	DENSI	6.239E-06 $2.912E-01$
33	ROus	15 -9 -24 LONCI	DENG1	2 103E - 05 - 1 094E - 01
22	R0/3	16 -9 24 LONGI	DENSI	5 160F = 05 = 4 355F = 02
11	P040	612 1007 576	27	
2.2	R044		J/	
22	R044	01 -9.24 LUNGI	DENSI	9.2332-08 -3.9472-01
22	RU44	02 -9.24 LONGI	DENSI	5.610E-07 -9.093E-01
3.5	K044	03 -9.24 LONGI	DENSI	9.461E-06 -6.371E-01
33	KU44	04 -9.24 LONGI	DENSI	1.101E-05 -3.32/E-01
33	R044	05 -9.24 LONG1	DENSI	3.158E-05 7.690E-01
33	RU44	06 -9.24 LONG1	DENSI	5.583E-06 -2.467E-01
33	R044	07 -9.24 LONG1	DENS1	4.479E-06 -3.550E-01
33	R044	08 -9.24 LONG1	DENS1	6.821E-06 -3.011E-01
33	R044	09 -9.24 LONG1	DENS1	1.310E-05 2.747E-01
33	R044	10 -9,24 LONG1	DENS1	1.111E-05 -2.618E-01
33	R044	11 -9.24 LONG1	DENS1	1.306E-05 4.417E-01
33	R044	12 -9.24 LONG1	DENS1	5.377E-06 -4.214E-01
33	R044	13 -9.24 LONG1	DENS1	3.022E-06 -8.468E-01
33	R044	14 -9.24 LONG1	DENS1	1.873E-05 -6.177E-01
33	R044	15 -9.24 LONG1	DENS1	4.480E-06 -6.614E-01
33	R044	16 -9.24 LONG1	DENSI	1.139E-05 4.358E-01
11	R045	603 989 563	40	48 515 8570 517 22
33	R045	01 -9.24 LONG1	DENSI	5,289E-06 -5,206E-01
33	R045	02 -9.24 LONG1	DENSI	7.388E-06 -5.232E-01
33	R045	03 -9.24 LONG1	DENSI	8.803E-06 3.184E-01

2 2	B0:5	0.4	-0 24	TONCI	DENCI	1 2468-03 -3 7098-01
22	R()4)	04	- 7. 24	LONGI	DENSI	1.240E=0J=3.707E=01
33	R045	05	-9.24	LUNGI	DENSI	
33	R045	06	-9.24	LONGI	DENSI	5.135E-06 - 4.139E-01
33	R045	07	-9.24	LONG1	DENS1	7.422E-06 -3.719E-01
33	R045	08	-9.24	LONG1	DENS1	1.024E-05 -3.081E-01
33	R045	09	-9.24	LONG1	DENS1	6.706E-06 -3.707E-01
22	PO45	10	-9 24	LONGI	DENSI	1.996F-05 7.639F-01
22	R04J	1.0	- 9.24	LONGI	DENSI	
33	R045	11	-9.24	LUNGI	DENSI	3.912E-06 -3.981E-02
33	R045	12	-9.24	LONGI	DENSI	9.667E-06 -2.979E-01
33	R045	13	-9.24	LONG1	DENSI	5.846E-06 -7.037E-01
33	R045	14	-9.24	LONG1	DENS1	3.851E-06 -4.824E-01
33	ROAS	15	-9.74	LONGI	DENSI	4 - 959E - 06 - 8 - 834E - 01
22	R045	16	-9.24	LONCI	DENCI	3 631E - 06 - 3 808E - 01
	R04J	10	- 7 . 24	LUNGI	DENSI	5.051E-00 -2.598E-01
11	K040	001	992	000	33	46 5211 9147 497 24
33	R046	01	-9.24	LONGI	DENSI	1.755E-05 4.390E-01
33	R046	02	-9.24	LONG1	DENS1	1.169E-05 -4.889E-01
33	R046	03	-9.24	LONG1	DENS1	9,798E-06 4,772E-01
33	R046	04	-9.24	LONGI	DENSI	1.251E-05 - 6.207E-01
22	R040	05	-0.24	LONCI	DENCI	1.640E = 05 - 6.172E = 01
27	R040	05	-9.24	LONGI	DENSI	
33	R046	06	-9.24	LONGI	DENSI	1.037E-04 $1.278E-01$
33	R046	07	-9.24	LONG1	DENSI	4.393E-05 6.123E-01
33	R046	08	-9.24	LONGI	DENS1	1.309E-05 3.782E-01
33	R046	09	-9.24	LONGI	DENS1	2.920E-05 6.675E-01
33	RO46	10	-9.24	LONGI	DENSI	8 667F-05 7 588F-01
22	PO46	1 1	-0.24	LONGI	DENCI	3.507E - 05 - 7.066E - 01
22	R040	11	-9.24	LUNGI	DENSI	4.51/2-00 -7.9002-01
3.3	R046	12	-9.24	LONGI	DENSI	1.064E-05 5.382E-01
33	R046	13	-9,24	LONGI	DENSI	1.730E-05 5.839E-01
33	R046	14	-9.24	LONG1	DENS1	5.879E-06 -5.818E-01
33	R046	15	-9.24	LONG1	DENSI	1.544E-05 -5.206E-01
22	R0.46	16	-9 24	LONGI	DENSI	$9.216E = 06. \pm 2.894E = 01$
55	NETUOI		- 7 . 24	LONGI	DENSI	9.210E-00 -2.594E-01
44	NEIWU	(K-NE	LIFLO /	CANAL	D AM	LENEE (ZONE 1: AMONI DU PM=1100)
44	SIMULA	TION	NS DANS	S LE PI	AN HOP	RIZONTAL (R047 A R058)
11	R047	822	2 1440	821	01 1	105 716 15093 707 31
22	R047	01	APEROS	B LONGI	DENSI	1 1.716E-03 9.384E-01 6.506E-04 5.086E-01
22	R047	02	APEROS	LONG	DENSI	1 1.716E-03 9.286E-01 4.901E-04 -4.342E-01
22	R047	03	APEROS	LONGI	DENSI	1 1.716F-03 9.353E-01 4.947E-04 -7.049E-01
22	R047	0.0	ADEDOG		DENCI	1 1 716E (7) 9 9 9 9 9 9 9 9 9
22	K()47	04	APERUC	LUNG	DENSI	1 1.716 = 03 4.342 = 01 8.043 = 04 - 0.003 = 01
22	RU4/	03	APEROS	LONGI	DENSI	1 1.315E-03 9.408E-01 1.306E-04 -6.790E-01
22	R047	06	APEROS) LONGI	DENSI	1 1.315E-03 9.482E-01 2.457E-04 -7.960E-01
22	R047	07	APEROG	LONG	DENSI	1 1.315E-03 9.341E-01 4.859E-04 -9.296E-01
22	R047	08	APEROS	LONGI	DENSI	1 1.315E-03 9.303E-01 2.938E-04 1.285E-01
2)	ROu7	0.9	APERIC	LONG	DENSI	1 1.013F-03 9.212F-01 3.360E-04 -8.329E-02
22	R047	10	ADEDI	LONCI	DENCI	1 1012E = 02 0 452E = 01 4637E = 04 1 032E = 01
22	R()47	10	APERIC	LUNGI	DENSI	1 1.013E=03 9.432E=01 4.037E=04 1.032E=01
22	R047	11	APERIC	LONGI	DENSI	1 1.013E-03 9.292E-01 9.339E-05 3.534E-01
22	R047	12	APER1() LONG1	DENSI	1 1.013E-03 9.479E-01 8.002E-05 -4.094E-01
22	R047	13	APER11	LONG	DENSI	1 6.911E-04 9.501E-01 5.110E-05 -2.053E-02
22	R047	14	APER11	LONGI	DENSI	1 6,911E-04 9,315E-01 2.040E-05 -3.568E-01
22	R047	15	APERI	LONG	DENS	1 6.911E-04 9.327E-01 8.871E-05 -2.653E-02
2)	R047	16	APFRI	LONCI	DENS	1 6-911E-04 9-346E-01 2-530E-05 -5-183E-01
11	DOVO	0 5 4	7 1 2 0 1		02 1	104 747 17224 751 25
11	RU48	0.25	5 13 0.	0 001	02 1	104 /4/ 1/324 /31 33 104 /4/ 1/324 /31 33
11	KU48	01	APEROS	S LONG	DENSI	1 1.802E-03 9.334E-01 4.013E-03 0.491E-01
22	R048	02	APEROS	B LONGI	DENS	1 1.862E-03 9.395E-01 5.208E-04 2.632E-01
22	R048	03	APEROS	B LONG	DENS	1 1.862E-03 9.619E-01 3.079E-03 7.549E-01
22	R048	04	APEROS	B LONG	DENSI	1 1.862E-03 9.401E-01 2.049E-03 -1.771E-02
22	R048	05	APERO	LONG	DENS	1 1.272E-03 9.508E-01 8.007E-04 1.586E-01
22	ROAR	06	APERO	LONCI	DENC	1 1.272E-03 9.201E-01 4.867E-04 4.258E-01
_						

			7 0 1 0 1		
22	RU48	0/ APER09	LUNGI	DENSI 1.2/2E-03 9.204E-01	2.030E-04 -0.913E-01
22	R048	08 APER09	LONGI	DENSI 1.272E-03 9.294E-01	3.390E-04 -1.855E-01
22	R048	09 APER10	LONG1	DENS1 9.961E-04 9.427E-01	9.454E-05 3.212E-01
22	ROAS	10 APERIO	LONG1	DENS1 9.961E-04 9.443E-01	5-499E-04 1-266E-01
27	PAAR	11 ADEDIO	LONGI	DENS1 0 061E-04 0 423E-01	7 4538-04 6 6158-01
22	R045	11 AFERIO	LONGI	DENSI 9,901E-04 9,425E-01	
22	KU47	IZ APERIU	LUNGI	DENSI 9.901E-04 9.331E-01	1.238E=04 = 5.370E=01
22	R048	13 APERII	LONGI	DENS1 7.086E-04 9.411E-01	5.478E-05 1.842E-01
22	R048	14 APER11	LONG1	DENS1 7.086E-04 9.276E-01	6.992E-05 3.349E-01
11	R049	714 1234	713	01 102 611 10682 626 26	
22	R049	01 APER08	LONGI	DENSI 1-756E-03 9-292E-01	5.501E-04 4.684E-01
22	ROAD	O) APEROS	LONCI	DENSI $1.756E-03$ $9.431E-01$	4 643F-04 -2 722E-01
22	R(147	02 AFEROO	LONGI	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	5 8/3E 0/ 2 7/2E 01
22	KU49	US APERUS	LUNGI	DENSI 1.736E-03 9.206E-01	J. 843E-04 -3.746E-01
22	R049	04 APEROS	LONGI	DENSI 1.756E-03 9.345E-01	7.084E-04 -5.180E-01
22	R049	05 APER09	LONGI	DENS1 1.256E-03 9.253E-01	2.230E-04 -7.858E-02
22	R049	06 APER09	LONG1	DENS1 1.256E-03 9.166E-01	2.078E-04 -2.000E-01
22	R049	07 APER09	LONGI	DENSI 1.256E-03 9.116E-01	1.116E-04 1.015E-01
22	ROAQ	OS APEROO	LONGI	DENSI 1 256E-03 9 413E-01	4 000F-04 8 312F-01
22		00 APERUS	LONGI	DENGI 8 03/E 0/ 0 301E 01	5 501F-05 2 146F-01
22	RU49	U9 APERIO	LUNGI	DENSI 8.934E-04 9.321E-01	5.391E-03 3.146E-01
22	R049	10 APERIO	LONGI	DENSI 8.934E-04 9.267E-01	1.151E-04 7.201E-01
22	R049	11 APERIO	LONG1	DENS1 8.934E-04 9.238E-01	1.286E-04 6.938E-01
22	R049	12 APER10	LONGI	DENS1 8.934E-04 9.348E-01	9.152E-05 3.753E-01
22	R049	13 APER11	LONG1	DENSI 7.016E-04 9.342E-01	3.651E-05 -2.691E-01
2)	ROug	14 APER11	LONGI	DENSI 7 016E-04 9-369E-01	3.898F-05 5.241E-01
22	P00	15 ADEDII	LONCI	DENSI 7 016E 04 $(-28/E-0)$	3 486F-05 -7 570F-01
22	N()47	IJ AFERII	LONGI	DENSI 7.010E-04 9.284E-01	1 72'E 05 7 (00E 0)
22	KU49	10 APERII	LUNGI	DENSI 7.016E-04 9.236E-01	4./34E-03 /.498E-02
11	K020	86/ 1049	867	00 92 775 17774 768 32	
22	R050	01 APER08	LONG1	DENS1 1.828E-03 9.179E-01	6.254E-04 -4.833E-01
22	R050	02 APEROS	LONG1	DENSI 1,828E-03 9.282E-01	3.531E-03 2.795E-01
22	R050	03 APER08	LONG1	DENS1 1.828E-03 9.485E-01	1.340E-03 3.387E-01
22	R050	04 APEROS	LONGI	DENS1 1.828E-03 9.402E-01	2-135E-04 5-021E-01
22	R050	05 ADEPOQ	LONCI	DENCI 1 288E-03 0 487E-01	1 039E = 04 = 8 465E = 01
22	ROJO	OS APEROS	LONGI	DENSI 1.200E-03 7.407E-01	1.039E - 04 = 8.405E - 01
22	RUJU	UO APERUS	LUNGI	DENSI 1.288E-03 9.278E-01	6.449E-04 3.436E-02
22	R030	07 APER09	LONGI	DENSI 1.288E-03 9.487E-01	3.326E-04 = 5.277E-01
22	R030	08 APER09	LONGI	DENS1 1.288E-03 9.512E-01	4.730E-04 1.862E-01
22	R030	09 APER10	LONG1	DENS1 9.665E-04 9.468E-01	1.244E-04 1.033E-01
22	R050	10 APER10	LONG1	DENS1 9.665E-04 9.397E-01	2.980E-04 8.348E-01
22	R050	11 APERIO	LONGI	DENSI 9.665E-04 9.303E-01	2.7048-04 4.9058-01
22	POSO	12 ADEDIO	LONCI	DENCI 0 665E-00 0 272E-01	1 4335-04 4 0775-01
42		12 APERIO	LONGI	DENSI 7.003E-04 7.373E-01	1.453E-04 4.077E-01
22	RUJU	I) APERII	LUNGI	DENSI 7.327E-04 9.481E-01	4.3512-03 -2.9772-01
22	K020	14 APER11	LONGI	DENSI 7.327E-04 9.442E-01	8.731E-05 6.561E-01
22	R050	15 APER11	LONGI	DENS1 7.327E-04 9.447E-01	1.149E-04 - 1.997E-01
22	R050	16 APER11	LONG1	DENS1 7.327E-04 9.378E-01	4.033E-05 6.358E-01
11	R051	714 1234	713	01 102 611 10682 626 26	
22	R051	01 APER12	LONGI	DENS1 6.456E-04 9.395E-01	2-739E-05 4-684E-01
>>	R051	0) APEP12	LONCI	DENSI 6 456E-04 9 404E-01	2312F = 05 = 2722F = 01
	POSI	02 ADERIA	LONGI	DENSI $6.456E 0/ 0.20E 01$	2.512E=05 -2.722E=01
22		OJ APERIZ	LUNGI	DENSI 0.436E-04 9.204E-01	2.9042-03 -3.7462-01
11	KUDI	U4 APER12	LONGI	DENSI 6.436E-04 9.346E-01	3.527E-05 -5.180E-01
22	R051	05 APER13	LONG1	DENSI 4.620E-04 9.253E-01	1.110E-05 -7.858E-02
22	R051	06 APER13	LONG1	DENS1 4.620E-04 9.166E-01	1.035E-05 -2.000E-01
22	R051	07 APER13	LONG1	DENS1 4.620E-04 9.116E-01	5.558E-06 1.015E-01
22	R051	08 APER13	LONGI	DENSI 4.620E-04 9.414E-01	1-992E-05 8-312E-01
22	R051	09 APEPIA	LONGI	DENSI 3.287 E_0 4 0.322 E_0 1	2.784F-06 3 146F-01
22	POST	10 ADED15	LONOL	DENCI 3 3072-0/ 0 1402-01	5 730F-04 7 901F-01
22	VOJI	IU APERIA	LUNGI	DENDI 3.20/E-04 9.200E-01	J./JUE-00 /.2012-01
22	RUJI	II APER14	LONGI	DENSI 3.287E-04 9.238E-01	0.400E-06 6.938E-01
22	R051	12 APER14	LONG1	DENSI 3.287E-04 9.346E-01	4.556E-06 3.753E-01
22	P051	13 APER15	LONGI	DENS1 2.583E-04 9.343E-01	1.818E-06 -2.691E-01

2)	P051	14 ADEDIS	TONCI	DENCI	2 5838-04	0 3685-01	1 0/15-06	5 2418-01
22	ROJI		LONGI	DENSI	2. 3036-04	9, 100E-01	1.7412-00	J. 2416-01
22	RUJI	IJ APERIJ	LUNGI	DENSI	2.3636-04	9.200E-01	1.7302-00	-7.370E-01
22	ROPT	16 APERIS	LONGI	DENSI	2.583E-04	9.235E-01	2.357E-06	7.498E-02
11	R052	798 1384	794	04 100) 694 153	81 696 33		
22	R052	01 APER12	LONG1	DENSI	6.447E-04	9.177E-01	3.380E-04	-4.384E-02
22	R052	02 APER12	LONG1	DENS1	6.447E-04	9.283E-01	6.926E-05	1.875E-01
22	R05/	03 APER12	LONGI	DENSI	6.447E-04	9-094F-01	1.316E-04	4.746E-01
22	POST	04 ADED12	TONCI	DENCI	6 4475-04	0 192 = 01	1 0995-04	-1 0/25-01
22	RUJZ	04 APERIZ	LUNGI	DENSI	0.44/6-04	9.1022-01	1.0001-04	-1.043E-01
22	R052	OS APERIS	LONGI	DENSI	4.526E-04	9.155E-01	1.451E-05	-6.071E-01
22	R052	06 APER13	LONGI	DENSI	4.526E-04	9.179E-01	1.055E-05	-6.686E-02
22	R052	07 APER13	LONG1	DENS1	4.526E-04	9.255E-01	5.590E-05	5.932E-01
22	R052	08 APER13	LONG1	DENS1	4.526E-04	9.207E-01	1.465E-03	-1.798E-01
22	R052	09 APERIA	LONGI	DENSI	3 583F-04	9 032F-01	6 669F-06	-6 7405-01
2.2	P050		LONGI	DENCI	3 5838-04	0.001E-01	1 6675-05	2 506E 01
22	RUJZ	IU APERI4	LUNGI	DENSI	3.3536-04	9.091E-01	1.00/2-03	2.3062-01
22	K027	II APERI4	LONGI	DENSI	3.583E-04	9.201E-01	8.429E-06	-8,999E-01
22	R052	12 APER14	LONGI	DENSI	3.583E-04	9.188E-01	2.492E-06	-4.352E-01
22	R052	13 APER15	LONG1	DENS1	2.597E-04	9.435E-01	1.353E-06	-7.769E-01
22	R052	14 APER15	LONGI	DENSI	2.597E-04	9.104E-01	1.556E-06	-5-309E-01
	R052	15 APEPIS	LONCI	DENCI	2 5075-04	0 2025-01	2 1665-06	-3 3695-01
22	R052		LONGI	DENSI	2. 5976-04	9.202E-01	2.1006-00	-3.300E-01
22	RUJZ	10 APERID	LUNGI	DENSI	2.39/E-04	9.096E-01	1.415E-06	1.204E-01
11	R053	779 1355	777	02 99	9 678 149	30 682 30		
22	R053	01 APER12	LONG1	DENSI	6.137E-04	9.145E-01	1.063E-05	-3.754E-01
22	R053	02 APER12	LONG1	DENS1	6.137E-04	9.262E-01	3.443E-05	2.114E-01
22	R053	03 APER12	LONGI	DENSI	6-137E-04	9.070F-01	1-006E-04	8.491F-01
22	R033	04 APER12	LONCI	DENCI	6 1375-04	0 0/4F = 01	8 3335-05	9 527E-01
22	R053	OF APERIZ	LONGI	DENSI	0.1372-04	9.044E-01	0.323E-0J	5.5276-01
22	RUJJ	OD APERIS	LUNGI	DENSI	4.815E-04	9.103E-01	8.101E-06	-3.136E-01
22	R053	06 APER13	LONGI	DENSI	4.815E-04	9.282E-01	4.576E-05	5.781E-01
22	R053	07 APER13	LONG1	DENSI	4.815E-04	9.314E-01	1.055E-05	3.508E-01
22	R053	08 APER13	LONG1	DENS1	4.815E-04	9.305E-01	1.055E-05	2.684E-01
22	R053	09 APERIA	LONGI	DENSI	3.397F-04	9.113E-01	1.670F-05	3 215E-01
22	P053	10 ADEDIA	LONCI	DENCI	3 2075-04	0 1215-01	2 2055-04	-1 2015-01
22		IU APERIA	LUNGI	DENSI	3.397E-04	9.121E-01	3.39JE-00	-1.291E-01
22	K033	II APERI4	LUNGI	DENSI	3.39/2-04	9.204E-01	3.231E-00	4.00/E-01
22	R033	12 APER14	LONGI	DENSI	3.397E-04	9.087E-01	2.959E-06	-6.506E-01
22	R053	13 APER15	LONG1	DENSI	2.857E-04	9.053E-01	2.819E-06	5.492E-02
22	R053	14 APER15	LONG1	DENS1	2.857E-04	9.195E-01	1.462E-05	9.398E-01
22	R053	15 APER15	LONG1	DENS1	2.857E-04	9.220E-01	3.964E-06	2.066E-01
22	R053	16 APERIS	LONCI	DENCI	2 8578-04	0 2075-01	6 5445-06	-3 064E-01
1 1	ROSA	0)0 1/05	20101		2,0076-04		0.3442 00	3.004L 01
	ROJ4	022 1433	022	00 100		01 /19 34		- 1/0- 00
22	KU34	OI APERIZ	LONGI	DENSI	6.219E - 04	9.2/0E-01	2.7578-05	-5.168E-02
22	R054	02 APER12	LONGI	DENS1	6.219E-04	9.336E-01	8.010E-05	9.037E-02
22	R034	03 APER12	LONG1	DENS1	6.219E-04	9.183E-01	2.761E-05	9.910E-02
22	R054	04 APER12	LONGI	DENS1	6.219E-04	9.391E-01	5.039E-05	3.664E-01
22	R034	05 APERIS	LONGI	DENSI	5.130E-04	9.362E-01	2-400E-05	1.877E-01
20	POSA	OS ADEDIS	LONGI	DENCI	5 1205-04	0 2455-01	4 768E-05	2 2225-01
22	ROJA	OU APERIS	LUNGI	DENSI	J.130E-04	9.24JE-01	4.7062-05	2.332E-01
11	KU34	07 APERIS	LONGI	DENSI	5.130E-04	9.294E-01	5.009E-05	6.5/1E-01
22	R054	08 APER13	LONGI	DENS1	5.130E-04	9.310E-01	2.859E-05	5.185E-01
22	R054	09 APER14	LONG1	DENSI	3.317E-04	9.352E-01	6.658E-06	5.679E-01
22	R054	10 APER14	LONG1	DENS1	3.317E-04	9.370E-01	5.720E-06	6.281E-01
22	R054	11 APERIA	LONGI	DENSI	3.317E-04	9.397E-01	4.935E-06	4-742E-01
	ROSA	12 ADED14	TONCI	DENCI	3 3175-04	9 2005-01	6 6285-04	-4 7305-01
	2014	12 ADDD1-	LONGI	DENSI	3.51/2-04	0 150P 01	4 01/P 04	
22	RUJ4	IS APERIS	LONGI	DENSI	2.000E-04	4-1346-01	0.214E-06	2.0348-02
22	RUJ4	14 APER15	LONGI	DENSI	2.606E-04	9.447E-01	2.614E-06	3.116E-01
22	R054	15 APER15	LONGI	DENS1	2.606E-04	9.241E-01	1.556E-06	-2.979E-01
22	R054	16 APER15	LONG1	DENSI	2.606E-04	9.332E-01	2.552E-06	4.162E-01
55	MOYEN	NE DES RAPP	ORTS DI	ES DEBIT	TS DE LA LI	MITE 7+3 ET	TOTAL	-1.19731
11	R055	822 1435	827	00 108	3 714 160	61 719 34	and a state of the	чины орт 2003-003 ж. 2 —
	Automatica (1996) (1996)							

33	P055	01 -9.34 T.ONG	1 DENSI	1-840E-05 -4-785E-02
22	POSS	0 -9.34 1000	I DENGI	5 368F-05 6 731F-02
22	RUJJ	02 -9.34 LONG	I DENSI	1 (507 05 7 00 F - 0)
33	K022	03 -9.34 LUNG	I DENSI	1.034E-03 7.404E-02
33	R055	04 -9.34 LONG	I DENSI	3.08/E-05 3.146E-01
33	R035	05 -9.34 LONG	1 DENSI	3.665E-05 3.916E-01
33	R035	06 -9.34 LONG	1 DENS1	7.926E-05 2.242E-01
33	R055	07 -9.34 LONG	1 DENS1	8.359E-05 6.598E-01
33	R055	08 -9.34 LONG	1 DENSI	5.037E-05 5.768E-01
22	POSS	00 -9 34 TONO	I DENSI	1.835F-05 3.357F-01
22	ROJJ	10 -9 34 LONG	1 DENGI	2 212E = 05 6 192E = 01
2.2			1 DENSI	1 500E-05 3 377E-01
33	K()))	11 -9.34 LONG	I DENSI	
33	RODD	12 -9.34 LONG	I DENSI	1.838E-03 -5.318E-01
33	R()))	13 -9.34 LONG	I DENSI	6.2//E-05 4.512E-02
33	R055	14 -9.34 LONG	1 DENS1	2.511E-05 3.051E-01
33	R055	15 -9.34 LONG	1 DENSI	1.392E-05 -3.603E-01
33	R055	16 -9.34 LONG	1 DENS1	2.221E-05 3.516E-01
11	R056	808 1423 80	6 02	98 708 15562 711 31
33	R036	01 -9.34 LONG	1 DENSI	8,104E-06 1,035E-02
22	R056	02 -9 34 IONO	DENSI	3.595 = 05 1.279 = 01
22	DOSE		DENSI	3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -
22	RUJO	03 -9,34 LONC	DENSI	
33	RUDO	04 -9.34 LONG	I DENSI	1.3186-03 -0.8496-01
33	R056	05 -9.34 LONG	I DENSI	5.390E-05 4.400E-01
33	R056	06 -9.34 LONG	1 DENSI	1.531E-05 - 3.973E-01
33	R056	07 -9.34 LONG	1 DENSI	4.749E-05 3.860E-01
33	R036	08 -9.34 LONG	1 DENSI	2.267E-05 -2.787E-01
33	R056	09 -9.34 LONG	1 DENS1	1.593E-05 1.767E-01
33	R056	10 -9.34 LONG	1 DENSI	2,005E-05 -3,872E-01
33	R056	11 -9-34 LONG	1 DENSI	3.817E-05 4.191E-01
33	R056	12 -9.34 LONG	1 DENSI	2-257E-05 -1-623E-01
22	POSE	13 -9 34 LONG	1 DENGI	3 270E - 05 1 607E - 01
22	R030		DENSI	5.277E=00 = 3.336E=03
22	RUJO	14 -9.34 LONG	DENSI	$0.120 \pm 04 \pm 0.000 \pm 0.000$
33	KUDD	15 -9.34 LUNU	I DENSI	2.31/2-05 -0.27/2-01
33	R056	16 -9.34 LONG	1 DENSI	1.022E-04 $1.119E-01$
11	R057	824 1445 82	3 01	99 724 17284 698 34
3.3	R037	01 -9.34 LONG	1 DENS1	5.323E-06 -3.357E-01
33	R057	02 -9.34 LONG	1 DENS1	1.392E-05 3.861E-01
33	R057	03 -9.34 LONG	1 DENS1	9.751E-05 2.40°E-02
33	R057	04 -9.34 LONG	1 DENSI	1.288E-05 -3.763E-01
33	R057	05 -9 34 LONG	1 DENSI	4-243E-05 2-384E-01
22	R057	06 -9 34 IONO	1 DENSI	4.596F-05 5-108E-01
22	R037	07 -9 34 IONO	I DENSI	2.2885-05 -4.7555-01
2.2		07 -9.34 LONG	I DENSI	2.200E-0J -4.755E-01
22	RU3/	08 -9.34 LUNG	1 DENSI	
33	R037	09 -9.34 LONG	I DENSI	1.906E-05 -5.085E-01
33	R057	10 -9.34 LONG	1 DENSI	3.383E-05 -7.228E-01
33	R057	11 -9.34 LONG	1 DENS1	2.807E-05 -4.648E-01
33	R957	12 -9.34 LONG	1 DENS1	2.886E-05 -2.231E-01
33	R057	13 -9.34 LONG	1 DENS1	1.647E-04 8.923E-01
33	R057	14 -9.34 LONG	1 DENS1	6.062E-05 3.194E-01
33	R057	15 -9.34 LONG	1 DENSI	1.854E-05 -3.836E-01
33	R057	16 -9.34 LONG	1 DENSI	1.602E-05 - 4.112E-01
11	R058	835 1449 87	1 04	108 723 17284 723 34
33	R058	01 -9 34 1000	I DENCI	3.5878-05 6-4878-01
32	ROSE	02 -0 34 TONC	I DENOI	$6 18/F_05 = 0.865F_02$
22	2052	03 _0 24 TON	I DENDI	0.104E-0J -7.00JE-02 2 652E-05 1 754E-01
22		05 -7.54 LUNG	I DENSI	2.0J)L-UJ 1./J4L-UI
22	RU30	04 -9.34 LONG	DENSI	1.3198-03 -3./948-01
53	KOJR	U) -9.34 LONG	I DENSI	3.468E-05 4.332E-01

- F.23 -

.

33 R058	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	LONGI DENSI LONGI DENSI	1.063E-04 6. 4.899E-05 -2. 5.023E-05 2. 2.258E-05 -8. 3.123E-05 -2. 3.391E-05 -7. 4.288E-05 2. 1.984E-05 -2. 4.623E-05 8. 1.672E-05 -1. 2.125E-05 -3.	071E-01 222E-01 417E-01 957E-02 678E-01 040E-01 100E-01 196E-01 388E-01 581E-01 131E-03	
11 R059 20 R059 20 R059 20 R059 20 R059 22 R05	585 949 01 APER04 02 APER04 03 AFER04 04 APER04 05 APER06 06 APER06 07 APER06 08 AFER06 10 APER16 11 APER16 12 AFER16 13 AFER16 14 AFER18 15 AFER18 16 AFER16 01 AFER06 02 AFER16	546 39 6 LONG4 DENC1 CONG4 DENC1 CONG4 DENC1 CONG4 DENC1 CONG4 DENC1 CONG4 DENC1 CONG4 DENC1	1 485 6854 2.071E-03 2.071E-03 2.071E-03 2.071E-03 1.079E-03 1.079E-03 1.079E-03 1.079E-03 5.962E-04	486 20 567 22	<pre>3.350E CC 7.002E-04 6.130E-04 5.802L C4 1.216E-04 2.841E-04 5.732E 04 5.732E 04 5.732E 04 5.360E-05 7.482E-06 1.259E-04 1.299E 05 2.090E-04 1.299E 05 3.150E-04 3.375E-06 3.382E-04</pre>
22 R060 22 R061	02 AFER04 03 AFER04 04 AFER04 05 AFER06 06 AFER06 07 AFER06 09 AFER06 10 AFER06 11 AFER16 12 AFER16 13 AFER16 14 AFER16 15 AFER18 16 AFER18 16 AFER18 16 AFER04 02 AFER04 03 AFER04 04 AFER04 04 AFER04 05 AFER06 06 AFER06 07 AFER06 08 AFER06	LONG4 DENCI LONG4 DENCI	1.710 ± -01 1.710 ± -03 1.710 ± -03 1.016 ± -03 1.016 ± -03 1.016 ± -03 1.016 ± -03 6.034 ± -04 6.034 ± -04 6.034 ± -04 6.034 ± -04 3.568 ± -04 3.56	491 23	5.127E-01 $1.62CE - 03$ $5.689E-04$ $7.994E-04$ $4.082E-05$ $1.241E-03$ $3.367E-05$ $2.038E-05$ $2.044E-05$ $1.098E-04$ $2.256E-05$ $3.334E-06$ $5.901E-06$ $6.219E-06$ $2.166E-05$ $2.121E-04$ $6.744E-02$ $6.403E-04$ $3.167E-04$ $4.005E-05$ $1.653E-04$ $5.502E-04$ $4.894E-05$ $1.015E-05$

	R061 R061 R061 R061 R061 R061 R062	11 12 13 14 15 16 60	APER16 APER16 APER18 APER18 APER18 APER18 0 1003	LONG4 LONG4 LONG4 LONG4 LONG4 LONG4	DENS1 DENS1 DENS1 DENS1 DENS1 DENS1 DENS1 32 54	5.716E-04 5.716E-04 3.079E-04 3.079E-04 3.079E-04 3.079E-04 514 7674	E. C	5 1	1.675E-04 9.903E-06 4.182E-06 4.030E-06 3.823E-06 1.467E-06
	R062 R062 R062 R062 R062 R062 R062 R062	01 02 03 04 05 06 07 08	AFER04 AFER04 AFER04 AFER04 AFER06 AFER06 AFER06 AFER06	LONG4 LONG4 LONG4 LONG4 LONG4 LONG4 LONG4	DENS1 DENS1 DENS1 DENS1 DENS1 DENS1 DENS1 DENS1 DENS1	1.989E-03 1.989E-03 1.989E-03 1.989E-03 1.017E-03 1.017E-03 1.017E-03 1.017E-03 1.017E-03			4.282E-04 5.676E-04 4.737E-04 2.049E-03 1.280E-04 3.509E-05 1.073E-04 9.534E-05
	RUCD RUCD RUCD RUCD RUCD RUCC RUCC RUCC	0011234562 11234562	AFER16 AFER16 AFER16 AFER16 AFER18 AFER18 AFER18 AFER18 1 1025	LONG4 LONG4 LONG4 LONG4 LONG4 LONG4 LONG4 588	DENDI DENCI DENCI DENCI DENCI DENCI DENCI DENCI 30 60	5.453E-04 5.453E-04 5.453E-04 5.453E-04 5.019E-04 5.019E-04 3.019E-04 3.019E-04 5.019E-04 525 8118	522	20	1.388E-00 1.270E-05 4.438E-04 9.589E-00 1.476E-00 5.751E-00 1.402E-00 1.997E 00
	RC60 RC60 R060 R060 R.60 R.60 R.60 R.60 R.60 R.	01 02 04 05 07 08	AFER04 APER04 AFER04 AFER06 AFER06 AFER06 AFER06	LONG4 LONG4 LONG4 LONG4 LONG4 LONG4 LONG4	DENG1 DENG1 DENG1 DENG1 DENG1 DENG1 DENG1 DENG1	2.030E-03 2.080E-03 2.080E-03 2.080E-03 1.073E-03 1.073E-03 1.073E-03 1.073E-03			4.143E-02 2.274E-02 1.401E-02 2.347E-00 3.040E-04 1.329E-00 1.176E-04 1.816E-04
	R060 R060 R060 R060 R060 R060 R060 R060	$\begin{array}{c} 0.9 \\ 1.0 \\ 1.1 \\ 1.2 \\ 1.2 \\ 1.4 \\ 1.5 \\ 1.6 \\ 5 \\ 8 \end{array}$	APER16 APER16 APER16 APER16 APER18 APER18 APER18 APER18 APER18	LONG4 LONG4 LONG4 LONG4 LONG4 LONG4 LONG4	DENGI DENGI DENGI DENGI DENGI DENGI DENGI	5.850E-04 5.850E-04 5.850E-04 5.850E-04 3.324E-04 3.324E-04 3.324E-04 3.324E-04	∧ ⊖ L	00	5.804E-01 1.546E-04 4.716E-05 3.001E-05 2.479E-05 4.506E-05 8.467E-05 1.147E-05
+2222222222222222222222222222222222222	RC64 R064 R064 R064 R064 R064 R064	02 03 04 05 06 07 08	APER04 APER04 APER04 APER06 APER06 APER06 APER06 APER06	LONG5 LONG5 LONG5 LONG5 LONG5 LONG5 LONG5	DENCI DENSI DENSI DENSI DENSI DENSI DENSI DENSI	1.999E-C3 1.999E-C3 1.999E-C3 1.999E-C3 1.999E-C3 9.586E-C4 9.586E-C4 9.586E-C4 9.586E-C4	20.	22	1.768E-03 4.673E-04 6.410E-04 1.347E-03 2.969E-05 4.223E-05 1.374E-05 3.249E-05
N N N N N N N N N N N N N N N N	RCC4 ROC4 ROC4 ROC4 ROC4 ROC4 ROC4 ROC4	$ \begin{array}{r} 09 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \end{array} $	APER16 APER16 APER16 APER16 APER18 APER18 APER18	LONG5 LONG5 LONG5 LONG5 LONG5 LONG5	DENS1 DENS1 DENS1 DENS1 DENS1 DENS1 DENS1 DENS1	6.221E-04 6.221E-04 6.221E-04 6.221E-04 3.297E-04 3.297E-04 3.297E-04			8.561E-00 1.266E-05 2.081E-05 1.080E-05 3.639E-06 4.880E-07 1.118E 05

22	ROCA	10	AFER18	LONG5	DENS1	3.297E-04	FAG	0.0	6.083E-06
22	ROGS	01	APER04	LONG5	DENS1	1 998E-03	040	نہ ک	3 406E-02
22	R065	$\tilde{02}$	APER04	LONG5	DENS1	1.998E-03			9.720E-04
22	R065	03	APER04	LONG5	DENC 1	1.998E-03			1.199E-04
22	R065	04	APER04	LONG5	DENC1	1.998E-03			4.870E-04
22	R065	30	APER06	LONG5	DENS1	1.140E-03			6.329E-05
22	R065	00	APEROG	LONG5	DENS1	1.140E-03			1.205E-05
22	R065	07	AFER06	LONG5	DENC1	1.140E-03			1.1749-04
22	R065	80	AFER06	LONG5	DENS1	1.140E-03			1.607E-04
22	RUDD	108	APERIO	LONGS	DERGI	5.98/1-04			1.8551-05
22	FUED	11	APERIO	LONGE	DENCI DENCI	5.307E-04 E 927E-04			4.024E-00 1.050F-05
\tilde{c}	ROOF	12	APERIO	LONGE	DENC1	5.9978-04			1 000F-00
	ROOS	13	APER18	LONGE	DENCI	3 163E-04			6.707E-07
10	REFE	14	APER18	LONGE	DENE 1	0.102E-04			1.480E-CC
22	RUCC	15	AFER18	LONG5	DENS1	3.103E-04			3.476E-07
22	RJEC	10	AFER18	LONGS	DENC1	5.100E-04			5.417E 06
11	ECICE	EO-	4 908	564	40 60	504 7137	513	с. .	
	RC CC	(:1	AFER04	LONGE	DENC1	1.901E-05			3.781E-04
22	IN CO	02	AFER04	LONGE	DENC1	1.981E+03			1.335E-00
22	FIC C C	00	AFER04	LONG5	DENC1	1.981E-03			4.754E-04
22	RODE	04	AFER04	LONG5	DEN31	1.981E-00			1.893E-03
22	ROUG	05	AFEROS	LONGE	DENC1	1.059E-03			3.729E-04
62	DUCT	1010	APENUE	LONGE	DENCI	1.000E-00 1 AEOT_AS			2.100E-00 8 087E-05
	THE FR	6.9	APEROE	LONGS	DENGI	1 05022-03			0.2071 00 0.0835-02
00	REFE	0.2	APEP1 6	LONGE	DENC1	5 656E-04			1 718E-05
20	RUCC	1 .	AFER10	LONG5	DENS1	5.056E 04			4.9302-00
1.1 4 -	E.C.C.C	11	AI EILI 6	LCNGL	DENC1	5.0111-04			0.070I-06
21	$R\cup \in \mathbb{N}$		APEH:10	LONGE	DENC1	E1.65%10-04			1.225E-01
1.1.1. 	RODE	• ~ • •	AFER18	LONGE	DENC1	3 024E 04			3.270E 04
22	In OV	14	ALERI.	LONGO		3.020E-04			6.376E
22	RCCC		AFERIS	LONGE	DENC1	3.020E-04			9.122E
	RUEE	16	APERIS	LONGE	DENCE	0.020E-04	FFO	00	7.169E-UV
1 -	IV. L THE DEP	1. 1. 1. 1. 1. 1.		100175	40 0. TAPAD 1	0000 0000 1 7025000	D. etc.	20	A A755.00
50	ROC7	0.5	APEROZ	LONGE	DENC1	1.763E-03			4 053F-04
22	ROA7	0.3	APEE04	LONGE	DENE1	1.763E-00			3.070E-03
22	R067	04	APEN: 4	LONGS	DENC1	1.7632.03			4.675E-04
C. C.	R067	05	AFER06	LONG5	DEN21	1.160E-03			2.193E-04
22	R067	06	APEROC	LONG5	DENC1	1.160E-03			6.964E-08
22	R067	07	APER06	LONG5	DENS1	1.160E-03			5.033E-04
22	R067	80	APER06	LONG5	DENG1	1.160E-03			5.490E-03
22	R067	09	APER15	LONGE	DENS1	5.402E-04			3.576E-05
22	R067	10	APER15	LONGS	DENG1	5.402E-04			1.751E-05
54	ROG7	12	APER10	LONGE	DENC1	5.402E-04 5.402E-04			1.730E-05
22	ROET	13	APERIA	LONGE	DENS1	2 889E-04			1.551E-05
22	R067	14	APER18	LONG5	DENS1	2.889E-04			9.056E-06
22	ROG7	15	APER18	LONG5	DENG1	2.889E-04			1.087E-00
22	R067	16	APER18	LONG5	DENS1	2.889E-04			7.143E-06
11	R068	61	6 1035	585	31 47	538 8418	525	22	
22	ROCE	01	AFER04	LONG5	DENS1	1.700E-03			1.230E-05
22	R068	02	APER04	LONG5	DENS1	1.766E-03			1.418E-04
44	RUGB	03	AFER04	LONGS	DENL1	1.756E-03			4.8821-04

22	R068	0.4	AFER04	LONG5	DENC1	1.766E-03	1.146E-04
22	R068	0.5	APER06	LONGE	DENS1	1.017E-03	3.529E-Cl
22	R068	00	AFER06	LONGE	DENS1	1.017E-03	5.716E-05
22	R068	07	AFEROC	LONGE	DENC1	1.017E-00	1.450E-04
22	R068	80	AFERGE	LONGS	DENS1	1.017E-03	7.145E-05
22	R068	09	APER16	LONG5	DENS1	5.941E-04	1.401E-CE
22	R068	10	APER16	LONGE	DEN31	5.941E-04	1.423E-01
22	R068	11	APER16	LONG 5	DENG1	5.941E-04	7.487E-00
22	R068	12	AFER16	LONG 5	DENS1	5.941E-04	7.503E CO
22	R068	13	APER18	LONGE	DENS1	2.278E-04	1.650E-00
22	R068	14	AFER18	LONGE	DENC1	2.973E 04	0. 4 つ0日-00
22	R : C \in	15	AFER18	LONGE	DENCI	2.978E-04	4.042E -07
22	330II	16	AFER19	LONG5	DENC1	2.978E-04	1.350I CC

ANNEXE G: GRAPHIQUES DES SIMULATIONS (RO59 À RO68) EFFETS D'UNE VARIATION DE 22 % DES LONGUEURS DES FRACTURES SUR LA POROSITE TOTALE

Figure G.1

Relation perméabilité / porosité totale dans le plan vertical: effet d'une augmentation des longueurs des fractures de 22 % sur la porosité totale du milieu

Figure G.2

Relation perméabilité / porosité totale dans le plan vertical: effet d'une diminution des longueurs des fractures de 22 % sur la porosité totale du milieu

Figure G.3

Influence de la variation de 22 % des longueurs de fractures sur la porosité totale du milieu (superposition des figures 4.9, G.1 et G.2)

.

- H.1 -

ANNEXE H: CARTES D'ÉTUDE

H.1 Carte du site du barrage Daniel-Johnson à Manic-5

H.2 Cartes des relevés de fractures des escarpements de surface

